高三数学冲刺复习圆锥曲线公式汇总(包含许多有用的补充公式)

合集下载

圆锥曲线 公式

圆锥曲线 公式

圆锥曲线是一个在三维空间中由一个固定点(焦点)和一个固定直线(直角方向线)确定的曲线。

根据焦点和直角方向线的位置关系,圆锥曲线可以分为四种类型:椭圆、双曲线、抛物线和直线。

下面是各种圆锥曲线的基本方程:
1. 椭圆(Ellipse)的方程:
(x/a)² + (y/b)² = 1
其中,a为椭圆的长轴(长半径)长度,b为椭圆的短轴(短半径)长度。

2. 双曲线(Hyperbola)的方程:
(x/a)² - (y/b)² = 1 (右开口)

-(x/a)² + (y/b)² = 1 (左开口)
其中,a为双曲线的实轴(长半轴)长度,b为双曲线的虚轴(短半轴)长度。

3. 抛物线(Parabola)的方程:
y = ax² + bx + c
其中,a、b、c为抛物线方程的系数,确定了抛物线的形状和位置。

4. 直线(Line)的方程:
y = mx + c
其中,m为直线的斜率,c为直线的纵截距。

这些方程仅涵盖了基本形态的圆锥曲线方程。

在实际应用中,还可以根据具体情况进行方程的变形和扩展。

高考数学圆锥曲线公式

高考数学圆锥曲线公式

高考数学圆锥曲线公式
以下是一些常见的高考数学圆锥曲线公式:
1. 椭圆公式:a = π/2(x - b)^2,其中a、b为椭圆的长轴和短
轴长度,π约为3.14。

2. 圆公式:r = (a + b) / 2,其中a、b为椭圆的长轴和短轴长度,a和b分别表示椭圆的两个端点之间的距离。

3. 双曲线公式:c = π/4(x - y)^2,其中c为双曲线的公共参数方程,x为双曲线的参数离心率,y为双曲线的参数向心率。

4. 抛物线公式:p = (a + b) / 2,其中a、b为抛物线的长轴和
短轴长度,p为抛物线的参数方程。

5. 等腰三角形公式:两边之和大于第三边,两边之差小于第三边。

6.直角三角形公式:勾股定理:a^2 + b^2 = c^2,其中a、b为直
角三角形的两条直角边长度,c为直角三角形的斜边长度。

7. 等边三角形公式:a = b,其中a和b为等边三角形的两条边长度。

这些公式是高考数学圆锥曲线部分的基础,掌握这些公式能够更
好地理解和解决圆锥曲线问题。

同时也要注意在解题过程中对参数的取值作出适当的规定,这一点在考试中也非常关键。

高中圆锥曲线公式总结大全

高中圆锥曲线公式总结大全

高中圆锥曲线公式总结大全
高中数学中,圆锥曲线是一个重要的内容,包括椭圆、双曲线和抛物线。

这些曲线的公式是
几何、物理、工程等领域中常用的,下面是圆锥曲线公式总结:
1. 椭圆公式
椭圆的标准方程为:((x-h)^2)/a^2 + ((y-k)^2)/b^2 = 1。

其中,(h,k)表示椭圆的中心坐标,a和b分别表示椭圆在x和y方向上的半轴长度。

2. 双曲线公式
双曲线的标准方程为:((x-h)^2)/a^2 - ((y-k)^2)/b^2 = 1。

其中,(h,k)表示双曲线的中心坐标,a和b分别表示双曲线在x和y方向上的半轴长度。

3. 抛物线公式
抛物线的标准方程为:y = ax^2 + bx + c。

其中,a、b和c分别为常数,a表示抛物线的开口方向、大小,b表示抛物线水平方向位置,c表示抛物线的最低点(也就是y轴截距)。

4. 曲率半径公式
曲线在某一点的曲率半径R可以使用以下公式计算:R = [(1+(y')^2)^(3/2)]/|y''|。

其中,y'和y''分别表示曲线在该点处的一阶和二阶导数。

5. 弧长公式
曲线在两点之间的弧长可以使用以下公式计算:L = ∫(a to b)[((1+(y')^2)^(1/2)]dx。

其中,a和b分别代表起点和终点,在这个区间内,x的取值范围满足 a≤x≤b。

总之,圆锥曲线的公式是高中数学中的重要内容,不仅在理论研究方面有着广泛的应用,也
在实际问题的建模和解决中具有重要意义。

圆锥曲线知识点总结_高三数学知识点总结

圆锥曲线知识点总结_高三数学知识点总结

圆锥曲线知识点总结_高三数学知识点总结圆锥曲线是由平面上直线与一个定点及一定曲线相交而形成的曲线,分为圆、椭圆、双曲线和抛物线四种类型。

在高三数学中,学习圆锥曲线是必不可少的。

以下为圆锥曲线的相关知识点总结。

一、坐标系下的圆锥曲线方程式1.圆的方程所谓圆,是指平面上到定点距离等于定长的所有点的集合。

设圆心为$O({{x_0},{y_0}})$,半径为 $r$,则圆的方程为$${(x - {x_0})^2} + {(y - {y_0})^2} = {r^2}$$3.双曲线的方程二、圆锥曲线的性质(1)对圆上任意一点,作圆的切线,它垂直于切点与圆心的连线。

(2)两个数轴上投影相等的两点与圆心之间的距离相等(称为圆的两点定理)。

(3)圆心为原点的圆,其半径为 $r$,横轴方程为 $x^2 + y^2 = r^2$,纵轴方程为$x^2 + y^2 = r^2$。

2.椭圆(1)椭圆的两个焦点与中心 $O$ 在一条直线上。

(2)椭圆的上下两支称为上半部和下半部,椭圆与 $x$ 轴的交点称为顶点。

(4)椭圆的到两个焦点分别距离和为定值,等于两倍的圆长轴长。

(2)双曲线的两支曲线称为左半支和右半支,曲线的两个交点称为顶点,与左右两支连接的两条直线称为渐近线。

4.抛物线(1)抛物线是关于顶点对称的曲线。

(2)抛物线与横轴交于顶点 $O$。

(3)抛物线与纵轴垂直。

三、曲线的参数方程如果把圆的中心移到原点,半径为 $r$,则圆的参数方程为$$\begin{cases}x=r\cos\theta\\y=r\sin\theta\end{cases}$$如果双曲线的中心移到原点,且 $a>b$,则双曲线的参数方程为$$\begin{cases}x=c\cosh \theta \\y=b\sinh \theta\end{cases}$$其中,$c=\sqrt{{a^2} + {b^2}}$,$\cosh \theta = \frac{{{e^\theta } + {e^{ - \theta }}}{2}}$,$\sinh \theta = \frac{{{e^\theta } - {e^{ - \theta }}}{2}}$。

圆锥曲线公式大全(高中珍藏版)

圆锥曲线公式大全(高中珍藏版)

圆锥曲线公式大全1、椭圆的定义、椭圆的标准方程、椭圆的性质椭圆定义焦点位置椭圆的图象和性质若M 为椭圆上任意一点,则有|MF 1|+|MF 2|=2ax 轴y图形o xy 轴y o x标准方程焦点坐标焦距顶点坐标a ,b ,c 的关系式长、短轴对称轴离心率范围x 2y 2+2=12a b F 1(-c, 0 ), F 2( c, 0 )|F 1F 2| = 2c(±a , 0 ), ( 0,±b )a 2 =b 2 +c 2y 2x 2+2=12a b F 1(0,-c, ), F 2( 0, c )(0,±a ), (±b , 0 )长轴长=2a ,短轴长=2b ,长半轴长=a ,短半轴长=b 无论椭圆是x 型还是y 型,椭圆的焦点总是落在长轴上关于x 轴、y 轴和原点对称e =c ( 0 <e < 1),离心率越大,椭圆越扁,反之,越圆a-a ≤x ≤a ,-b ≤y ≤b 2-b ≤x ≤b ,-a ≤y ≤a22、判断椭圆是x 型还是y 型只要看x 对应的分母大还是y 对应的分母大,若x 对应的分母大则x 型,若y 对应的分母大则y 型.22x 2y 23、求椭圆方程一般先判定椭圆是x 型还是y 型,若为x 型则可设为2+2=1,若为y a b y 2x 222型则可设为2+2=1,若不知什么型且椭圆过两点,则设为稀里糊涂型:mx +ny =1a b 4、双曲线的定义、双曲线的标准方程、椭圆的性质双曲线的图象和性质若M为双曲线上任意一点,则有MF1-MF2=2a(2a<2c)双曲线定义若MF1-MF2=2a=2c,则点M的轨迹为两条射线若MF1-MF2=2a>2c,则点M无轨迹焦点位置x轴y轴图形标准方程焦点坐标焦距顶点坐标(±a, 0 )x2y2-2=12a bF1(-c, 0 ), F2( c, 0 )|F1F2| = 2cy2x2-2=12a bF1(0,-c, ), F2( 0, c )(0,±a )a,b,c的关系式椭圆形状长的像a,所以a是老大,a2 = b2 + c2;双曲线形状长的像c,所以c是老大,c2 = a2 + b2实轴、虚轴对称轴离心率范围渐近线实轴长=2a,虚轴长=2b,实半轴长=a,虚半轴长=b无论双曲线是x型还是y型,双曲线的焦点总是落在实轴上关于x轴、y轴和原点对称e=c(e >1)aa≤x或x≤-a,y∈R a≤y或y≤-a,x∈Ry=±bxay=±axb2、判断双曲线是x 型还是y 型只要看x 前的符号是正还是y 前的符号是正,若x 前的符号为正则x 型,若y 前的符号为正则y 型,同样的,哪个分母前的符号为正,则哪个分母就为a 22222x 2y 23、求双曲线方程一般先判定双曲线是x 型还是y 型,若为x 型则可设为2-2=1,若a b y 2x 2为y 型则可设为2-2=1,若不知什么型且双曲线过两点,则设为稀里糊涂型:a b mx 2-ny 2=1(mn <0)6、若已知双曲线一点坐标和渐近线方程y =mx ,则可设双曲线方程为y 2-m 2x 2=λ(λ≠0),而后把点坐标代入求解7、椭圆、双曲线、抛物线与直线l :y =kx +b 的弦长公式:AB =(k 2+1)(x 1-x 2)2=(12+1)(y -y )122k 8、椭圆、双曲线、抛物线与直线问题出现弦的中点往往考虑用点差法9、椭圆、双曲线、抛物线与直线问题的解题步骤:(1)假化成整(把分式型的椭圆方程化为整式型的椭圆方程),联立消y 或x (2)求出判别式,并设点使用伟大定理(3)使用弦长公式1、抛物线的定义:平面内有一定点F 及一定直线l (F 不在l 上)P 点是该平面内一动点,当且仅当点P 到F 的距离与点P 到直线l 距离相等时,那么P 的轨迹是以F 为焦点,l 为准线的一条抛物线.————见距离想定义!!!2、(1)抛物线标准方程左边一定是x 或y 的平方(系数为1),右边一定是关于x 和y 的一次项,如果抛物线方程不标准,立即化为标准方程!(2)抛物线的一次项为x 即为x 型,一次项为y 即为y 型!(3)抛物线的焦点坐标为一次项系数的四分之一,准线与焦点坐标互为相反数!一次项为x ,则准线为”x=多少”,一次项为y ,则准线为”y=多少”!(4)抛物线的开口看一次项的符号,一次项为正,则开口朝着正半轴,一次项为负,则开口朝着负半轴!(5)抛物线的题目强烈建议画图,有图有真相,无图无真相!3、求抛物线方程,如果只知x 型,则设它为y =ax (a ≠0),a>o,开口朝右;a<0,开口朝左;如果只知y 型,则设它为x =ay (a ≠0),a>o,开口朝上;a<0,开口朝下。

圆锥曲线公式及知识点总结

圆锥曲线公式及知识点总结

圆锥曲线公式及知识点总结圆锥曲线的统一定义:到定点的距离与到定直线的距离的商是常数e的点的轨迹。

数学里有很多公式,为了帮助大家更好的学习数学,小编特地为大家整理了圆锥曲线公式及知识点总结,希望对大家的数学学习有帮助。

圆锥曲线公式:椭圆1、中心在原点,焦点在x轴上的椭圆标准方程:其中x²/a²+y²/b²=1,其中a>b>0,c²=a²-b²2、中心在原点,焦点在y轴上的椭圆标准方程:y²/a²+x²/b²=1,其中a>b>0,c²=a²-b²参数方程:x=acosθ;y=bsinθ(θ为参数,0≤θ≤2π)圆锥曲线公式:双曲线1、中心在原点,焦点在x轴上的双曲线标准方程:x²/a-y²/b²=1,其中a>0,b>0,c²=a²+b².2、中心在原点,焦点在y轴上的双曲线标准方程:y²/a²-x²/b²=1,其中a>0,b>0,c²=a²+b².参数方程:x=asecθ;y=btanθ(θ为参数)圆锥曲线公式:抛物线参数方程:x=2pt²;y=2pt(t为参数)t=1/tanθ(tanθ为曲线上点与坐标原点确定直线的斜率)特别地,t可等于0直角坐标:y=ax²+bx+c(开口方向为y轴,a≠0)x=ay²+by+c(开口方向为x轴,a≠0)离心率椭圆,双曲线,抛物线这些圆锥曲线有统一的定义:平面上,到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。

且当01时为双曲线。

圆锥曲线公式知识点总结圆锥曲线椭圆双曲线抛物线标准方程x²/a²+y²/b²=1(a>b>0)x²/a²-y²/b²=1(a>0,b>0)y²=2px(p>0)范围x∈[-a,a]x∈(-∞,-a]∪[a,+∞)x∈[0,+∞)y∈[-b,b]y∈Ry∈R对称性关于x轴,y轴,原点对称关于x轴,y轴,原点对称关于x轴对称顶点(a,0),(-a,0),(0,b),(0,-b)(a,0),(-a,0)(0,0)焦点(c,0),(-c,0)(c,0),(-c,0) (p/2,0)【其中c²=a²-b²】【其中c²=a²+b²】准线x=±a²/cx=±a²/cx=-p/2渐近线——————y=±(b/a)x—————离心率。

备战高考数学复习常用圆锥曲线公式

备战高考数学复习常用圆锥曲线公式

备战 2019 高考数学复习常用圆锥曲线公式圆锥曲线包含圆,椭圆,双曲线,抛物线。

以下是常用圆锥曲线公式,请考生实时学习。

抛物线: y = ax *+ bx + c就是 y 等于 ax 的平方加上bx 再加上ca0 时张口向上a0 时张口向下c = 0 时抛物线经过原点b = 0 时抛物线对称轴为y 轴还有极点式y = a(x+h)* + k就是 y 等于 a 乘以 (x+h) 的平方 +k-h 是极点坐标的xk 是极点坐标的y一般用于求最大值与最小值抛物线标准方程:y^2=2px它表示抛物线的焦点在x 的正半轴上 ,焦点坐标为 (p/2,0) 准线方程为 x=-p/2因为抛物线的焦点可在随意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py圆:体积 =4/3(pi)(r^3)面积 =(pi)(r^2)周长 =2(pi)r圆的标准方程 (x-a)2+(y-b)2=r2注: (a,b)是圆心坐标圆的一般方程 x2+y2+Dx+Ey+F=0注: D2+E2-4F0常用圆锥曲线公式的所有内容就是这些,查词典数学网预祝考生获得优异的成绩。

语文课本中的文章都是优选的比较优异的文章,还有许多名家名篇。

假如有选择顺序渐进地让学生背诵一些优异篇目、出色段落 ,对提升学生的水平会大有裨益。

此刻,许多语文教师在剖析课文时 ,把文章解体的支离破裂,总在文章的技巧方面下功夫。

结果教师费力 ,学生头疼。

剖析完以后 ,学生见效甚微 ,没过几日便忘的干干净净。

造成这类事半功倍的难堪局面的重点就是对文章读的不熟。

常言道“书读百遍 ,其义自见”,假如有目的、有计划地指引学生频频阅读课文,或细读、默读、跳读 ,或听读、范读、轮读、分角色朗诵,学生便能够在读中自然意会文章的思想内容和写作技巧,能够在读中自然增强语感 ,增强语言的感觉力。

长此以往,这类思想内容、写作技巧和语感就会自然浸透到学生的语言意识之中,就会在写作中自觉不自觉地加以运用、创建和发展。

《圆锥曲线公式汇总》

《圆锥曲线公式汇总》

《圆锥曲线公式汇总》《圆锥曲线公式汇总》一、椭圆1.标准方程:a2x2+b2y2=1 (焦点在x轴上,a>b>0;焦点在y轴上,b>a>0)2.焦点坐标:F1(−c,0),F2(c,0) (c为焦距的一半,c2=a2−b2)3.离心率:e=ac (0<e<1)4.焦点到曲线上任意一点的距离之和:PF1+PF2=2a5.焦点到曲线上任意一点的距离之差:∣PF1−PF2∣=2a2−b26.曲线上的点到焦点的距离与到准线的距离之比:dPF=e (d为准线到原点的距离)7.准线方程:x=±ca2 (焦点在x轴上);y=±ca2 (焦点在y轴上)8.通径长(过焦点且垂直于长轴的弦长):a2b29.短轴端点到焦点的距离:a10.焦点三角形的面积:S=b2tan(2θ) (θ为焦点三角形的顶角)二、双曲线1.标准方程:a2x2−b2y2=1 (焦点在x轴上,a>0,b>0);a2y2−b2x2=1 (焦点在y轴上,a>0,b>0)2.焦点坐标:F1(−c,0),F2(c,0) (c为焦距的一半,c2=a2+b2)3.离心率:e=ac (e>1)4.焦点到曲线上任意一点的距离之差的绝对值:∣PF1−PF2∣=2a5.焦点到曲线上任意一点的距离之和:PF1+PF2=2a2+b26.曲线上的点到焦点的距离与到准线的距离之比:dPF=e (d为准线到原点的距离)7.准线方程:x=±ca2 (焦点在x轴上);y=±ca2 (焦点在y轴上)8.通径长(过焦点且垂直于实轴的弦长):a2b29.实轴端点到焦点的距离:c−a10.焦点三角形的面积:S=tan(2θ)b2 (θ为焦点三角形的顶角)三、抛物线1.标准方程:y2=4px (焦点在x轴上,p为焦准距);x2=4py (焦点在y轴上,p为焦准距)2.焦点坐标:F(2p,0) (焦点在x轴上);F(0,2p) (焦点在y轴上)3.准线方程:x=−2p (焦点在x轴上);y=−2p (焦点在y轴上)4.曲线上任意一点到焦点的距离等于到准线的距离:PF=d (d为准线到原点的距离)。

高中数学圆锥曲线知识点总结及公式大全

高中数学圆锥曲线知识点总结及公式大全

高中数学圆锥曲线知识点总结及公式大全一、圆锥曲线的基本概念圆锥曲线包括椭圆、双曲线和抛物线,它们是高中数学中重要的知识点之一。

圆锥曲线是由平面与圆锥的交线所形成的曲线,其基本概念包括焦点、准线和离心率等。

1. 焦点:圆锥曲线的焦点是到曲线的两个顶点距离相等的点,焦点到曲线的顶点的距离称为焦距。

椭圆和双曲线的焦点位于其对称轴上,而抛物线的焦点则位于其准轴上。

2. 准线:圆锥曲线的准线是与焦点垂直的直线,准线与曲线有两个交点。

在椭圆和双曲线中,准线是与主轴垂直的直线,而在抛物线中,准线是与主轴平行的直线。

3. 离心率:圆锥曲线的离心率是焦点到顶点的距离与准线到顶点的距离之比,离心率的大小可以反映曲线的形状。

椭圆的离心率在0和1之间,双曲线的离心率大于1,抛物线的离心率等于1。

二、圆锥曲线的公式1. 椭圆的标准方程及性质标准方程:$\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1$ (a>b>0)性质:椭圆的范围、对称性、顶点、焦点、离心率等性质可以参照教材或辅导书。

2. 双曲线的标准方程及性质标准方程:$\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} =1$ (a>0, b>0)性质:双曲线的范围、对称性、顶点、焦点、离心率等性质可以参照教材或辅导书。

3. 抛物线的标准方程及性质标准方程:$y^{2} = 2px$ ($p > 0$)或$x^{2} = 2py$ ($p > 0$) 性质:抛物线的范围、对称性、顶点、焦点、离心率等性质可以参照教材或辅导书。

三、圆锥曲线的应用1. 椭圆的应用:椭圆在光学、机械、工程等领域有着广泛的应用。

例如,椭圆镜片可以纠正近视和远视,椭圆形状的机械零件可以减少振动和提高稳定性。

2. 双曲线应用:双曲线在热学、光学、工程等领域有着广泛的应用。

例如,双曲线冷却塔可以优化散热效果,双曲线形状的桥梁可以增强承受能力。

圆锥曲线口算20个公式

圆锥曲线口算20个公式

圆锥曲线口算20个公式当提到圆锥曲线时,我们通常指的是椭圆、双曲线和抛物线这三种曲线。

下面是这些曲线的一些常见公式:1. 椭圆的标准方程,(x^2/a^2) + (y^2/b^2) = 1。

其中,a和b分别是椭圆的半长轴和半短轴。

2. 椭圆的离心率,e = √(1 (b^2/a^2))。

其中,e是椭圆的离心率。

3. 椭圆的焦点坐标,(±ae, 0)。

4. 椭圆的直径,d = 2a.5. 椭圆的面积,A = πab.6. 椭圆的周长,C = 4aE(e),其中E(e)是椭圆的第二椭圆积分。

7. 双曲线的标准方程,(x^2/a^2) (y^2/b^2) = 1。

其中,a和b分别是双曲线的半长轴和半短轴。

8. 双曲线的离心率,e = √(1 + (b^2/a^2))。

其中,e是双曲线的离心率。

9. 双曲线的焦点坐标,(±ae, 0)。

10. 双曲线的渐近线方程,y = ±(b/a)x.11. 双曲线的面积,A = πab.12. 双曲线的周长,C = 4aE(e),其中E(e)是双曲线的第二椭圆积分。

13. 抛物线的标准方程,y = ax^2 + bx + c.其中,a、b和c是抛物线的系数。

14. 抛物线的焦点坐标,(0, 1/(4a))。

15. 抛物线的顶点坐标,(-b/(2a), -D/(4a)),其中D=b^2-4ac。

16. 抛物线的对称轴方程,x = -b/(2a)。

17. 抛物线的焦距,f = 1/(4|a|)。

18. 抛物线的面积,A = (2|a|^3)/(3|a|)。

19. 抛物线的切线方程,y = mx + (a + b)x + c,其中m是切线的斜率。

20. 抛物线的法线方程,y = -1/mx + (a b)x + c,其中m是法线的斜率。

这些公式可以帮助我们理解和计算圆锥曲线的性质和特征。

请注意,这些公式是基于标准形式的圆锥曲线,实际上还有其他形式和参数化的表示方法。

备战高考数学复习常用圆锥曲线公式

备战高考数学复习常用圆锥曲线公式

备战2019高考数学复习常用圆锥曲线公式圆锥曲线包括圆,椭圆,双曲线,抛物线。

以下是常用圆锥曲线公式,请考生及时学习。

抛物线:y = ax *+ bx + c就是y等于ax 的平方加上bx再加上ca 0时开口向上a 0时开口向下c = 0时抛物线经过原点b = 0时抛物线对称轴为y轴还有顶点式y = a(x+h)* + k就是y等于a乘以(x+h)的平方+k-h是顶点坐标的xk是顶点坐标的y一般用于求最大值与最小值抛物线标准方程:y^2=2px它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py圆:体积=4/3(pi)(r^3)面积=(pi)(r^2)周长=2(pi)r圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F0常用圆锥曲线公式的全部内容就是这些,查字典数学网预祝考生取得优异的成绩。

语文课本中的文章都是精选的比较优秀的文章,还有不少名家名篇。

如果有选择循序渐进地让学生背诵一些优秀篇目、精彩段落,对提高学生的水平会大有裨益。

现在,不少语文教师在分析课文时,把文章解体的支离破碎,总在文章的技巧方面下功夫。

结果教师费劲,学生头疼。

分析完之后,学生收效甚微,没过几天便忘的一干二净。

造成这种事倍功半的尴尬局面的关键就是对文章读的不熟。

常言道“书读百遍,其义自见”,如果有目的、有计划地引导学生反复阅读课文,或细读、默读、跳读,或听读、范读、轮读、分角色朗读,学生便可以在读中自然领悟文章的思想内容和写作技巧,可以在读中自然加强语感,增强语言的感受力。

久而久之,这种思想内容、写作技巧和语感就会自然渗透到学生的语言意识之中,就会在写作中自觉不自觉地加以运用、创造和发展。

一般说来,“教师”概念之形成经历了十分漫长的历史。

圆锥曲线必备公式(经典)

圆锥曲线必备公式(经典)

圆锥曲线一、椭圆及其性质第一定义平面内一动点P 与两定点F 1、F 2距离之和为常数(大于F 1F 2 )的点轨迹第二定义平面内一动点到定点与到准线的距离比是常数的点轨迹MF 1d 1=MF 2d 2=e 焦点焦点在x 轴上焦点在y 轴上图形yxF 1F 2abc O A 1A 2B 2B 1x =a 2cx =-a 2c y x F 1F 2ab c A 1A 2B 2B 1y =a2cy =-a 2c标准方程x 2a 2+y 2b 2=1a >b >0 y 2a 2+x 2b 2=1a >b >0 范围-a ≤x ≤a 且-b ≤y ≤b-b ≤x ≤b 且-a ≤y ≤a顶点A 1-a ,0 ,A 2a ,0 ,B 10,-b ,B 20,bA 10,-a ,A 20,a ,B 1-b ,0 ,B 2b ,0轴长长轴长=2a ,短轴长=2b ,焦距=F 1F 2 =2c ,c 2=a 2-b 2焦点F 1-c ,0 、F 2c ,0F 10,-c 、F 20,c焦半径PF 1 =a +e x 0,PF 2 =a -e x 0PF 1 =a -e y 0,PF 2 =a +e y 0焦点弦左焦点弦|AB |=2a +e (x 1+x 2),右焦点弦|AB |=2a -e (x 1+x 2).离心率e =ca=1-b 2a20<e <1 准线方程x =±a 2c y =±a 2c 切线方程x 0x a 2+y 0y b 2=1x 0x b 2+y 0y a 2=1通径过椭圆焦点且垂直于对称轴的弦长AB =2b 2a(最短焦点弦)焦点三角形(1)由定义可知:|PF 1|+|PF 2|=2a ,周长为:2a +2c(2)焦点三角形面积:S △F 1PF 2=b 2×tanθ2(3)当P 在椭圆短轴上时,张角θ最大,θ≥1-2e 2cos (4)焦长公式:PF 1 =b 2a -c αcos 、MF 1 =b 2a +c αcos MP =2ab 2a 2-c 22αcos =2ab 2b 2+c 22αsin (5)离心率:e =(α+β)sin α+βsin sin yxF 1F 2θαP OMβ第一定义平面内一动点P 与两定点F 1、F 2距离之差为常数(大于F 1F 2 )的点轨迹第二定义平面内一动点到定点与到准线的距离比是常数的点轨迹MF 1d 1=MF 2d 2=e 焦点焦点在x 轴上焦点在y 轴上图形yx F 1F2b c 虚轴实轴ayxF 1F 2实轴虚轴标准方程x 2a 2-y 2b 2=1a >0,b >0 y 2a 2-x 2b 2=1a >0,b >0 范围x ≤-a 或x ≥a ,y ∈R y ≤-a 或y ≥a ,x ∈R 顶点A 1-a ,0 、A 2a ,0 A 10,-a 、A 20,a 轴长虚轴长=2b ,实轴长=2a ,焦距=F 1F 2 =2c ,c 2=a 2+b 2焦点F 1-c ,0 、F 2c ,0F 10,-c 、F 20,c焦半径|PF 1|=a +e x 0,|PF 2|=-a +e x 0左支添“-”离心率e =ca=1+b 2a2e >1 准线方程x =±a 2c y =±a 2c 渐近线y =±b a xy =±a b x切线方程x 0x a 2-y 0y b 2=1x 0x b 2-y 0y a 2=1通径过双曲线焦点且垂直于对称轴的弦长AB =2b 2a(最短焦点弦)焦点三角形(1)由定义可知:|PF 1|-|PF 2|=2a(2)焦点直角三角形的个数为八个,顶角为直角与底角为直角各四个;(3)焦点三角形面积:S △F 1PF 2=b 2÷tan θ2=c ∙y(4)离心率:e =F 1F 2 PF 1 -PF 2=sin θsin α-sin β =sin (α+β)sin α-sin βyxF 1F 2Pθαβ定义平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线.方程y 2=2px p >0y 2=-2px p >0x 2=2py p >0x 2=-2py p >0图形yxF x =-p2yxFx =p2y xFy =-p2yxFy =p2顶点0,0对称轴x 轴y 轴焦点F p2,0 F -p 2,0 F 0,p 2 F 0,-p2准线方程x =-p 2x =p 2y =-p2y =p 2离心率e =1范围x ≥0x ≤0y ≥0y ≤0切线方程y 0y =p x +x 0y 0y =-p x +x 0x 0x =p y +y 0x 0x =-p y +y 0通径过抛物线焦点且垂直于对称轴的弦AB =2p (最短焦点弦)焦点弦AB 为过y 2=2px p >0 焦点的弦,A (x 1,y 1)、B (x 2,y 2),倾斜角为α.则:(1)AF =x 1+p 2BF =x 2+p2AB =x 1+x 2+p ,(2)x 1x 2=p 24y 1y 2=-p 2(3)AF =p 1-αcos BF =p 1+αcos 1|FA |+1|FB |=2p (4)AB =2p sin 2αS △AOB =p 22αsin AB 为过x 2=2py (p >0)焦点的弦,A (x 1,y 1)、B (x 2,y 2),倾斜角为α.则:(1)AF =p 1-αsin BF =p1+αsin (2)AB =2p 2αcos S △AOB=p 22αcos (3)AF BF=λ,则:α=λ-1λ+1sin yxFx =-p 2αABO yxFαABOy 2=2px (p >0)y 2=2px (p >0)四、圆锥曲线的通法F 1F 2POxyOxyFP MOxyF 1F 2P椭圆双曲线抛物线点差法与通法1、圆锥曲线综述:联立方程设交点,韦达定理求弦长;变量范围判别式,曲线定义不能忘;弦斜中点点差法,设而不求计算畅;向量参数恰当用,数形结合记心间.★2、直线与圆锥曲线的位置关系(1)直线的设法:1若题目明确涉及斜率,则设直线:y =kx +b ,需考虑直线斜率是否存在,分类讨论;2若题目没有涉及斜率或直线过(a ,0)则设直线:x =my +a ,可避免对斜率进行讨论(2)研究通法:联立y =kx +bF (x ,y )=0得:ax 2+bx +c =0判别式:Δ=b 2−4ac ,韦达定理:x 1+x 2=−b a ,x 1x 2=ca(3)弦长公式:AB =(x 1-x 2)2+(y 1-y 2)2=1+k 2|x 1-x 2|=(1+k 2)⋅[(x 1+x 2)2-4x 1x 2]=1+1k2(y 1+y 2)2−4y 1y 23、硬解定理设直线y =kx +φ与曲线x 2m +y 2n=1相交于A (x 1,y 1)、B (x 2,y 2)由:y =kx +φnx 2+my 2=mn,可得:(n +mk 2)x 2+2kφmx +m (φ2-n )=0判别式:△=4mn (n +mk 2-φ2)韦达定理:x 1+x 2=-2kmφn +mk 2,x 1x 2=m (φ2-n )n +mk 2由:|x 1-x 2|=(x 1+x 2)2-4x 1x 2,代入韦达定理:|x 1-x 2|=△n +mk 2★4、点差法(可以拓展为第三定义):若直线l 与曲线相交于M 、N 两点,点P (x 0,y 0)是弦MN 中点,MN 的斜率为k MN ,则:在椭圆x 2a 2+y 2b 2=1(a >b >0)中,有k MN ⋅y 0x 0=−b 2a2;在双曲线x 2a 2−y 2b 2=1(a >b >0)中,有k MN ⋅y 0x 0=b 2a2;在抛物线y 2=2px (p >0)中,有k MN ⋅y 0=p .。

圆锥曲线公式

圆锥曲线公式

圆锥曲线公式
圆锥曲线的公式主要有以下:1、椭圆:焦半径:a+ex(左焦点),a-ex(右焦点),x=a²/c2、双曲线:焦半径:|a+ex|(左焦点)|a-ex|(右焦点),准线x=a²/c3、抛物线(y²=2px)等。

公式
椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。

椭圆的标准方程共分两种状况:
当焦点在x轴时,椭圆的标准方程是:x^2/a^2+y^2/b^2=1,(ab0);
当焦点在y轴时,椭圆的标准方程是:y^2/a^2+x^2/b^2=1,(ab0);
其中a^2-c^2=b^2
推导:PF1+PF2F1F2(P为椭圆上的点F为焦点)
2.双曲线:到两个定点的距离的差的肯定值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。

即{P|||PF1|-|PF2||=2a,(2a|F1F2|)}。

双曲线的标准方程共分两种状况:
焦点在X轴上时为
x^2/a^2-y^2/b^2=1;
焦点在Y轴上时为
y^2/a^2-x^2/b^2=1;
3.抛物线:到一个定点和一条定直线的距离相等的动点轨迹叫做抛物线。

y²=2px(p>0)过焦点的直线交它于A(X1,Y1),B(X2,Y2)两点。

抛物线标准方程共分四种状况:
右开口抛物线:y^2=2px;
左开口抛物线:y^2=-2px;
上开口抛物线:x^2=2py;
下开口抛物线:x^2=-2py;
[p为焦距(p0)]。

(完整版)圆锥曲线知识点归纳总结

(完整版)圆锥曲线知识点归纳总结

完整版)圆锥曲线知识点归纳总结1.圆锥曲线的定义和构造圆锥曲线是在平面上由一个固定点(焦点)和一个固定直线(准线)决定的点集。

三种经典的圆锥曲线分别为椭圆、抛物线和双曲线。

构造圆锥曲线需要确定焦点和准线的位置以及确定参数值。

2.椭圆的特性椭圆是圆锥曲线中最常见的一种形式,由两个焦点和一个大于等于焦距的参数决定。

椭圆的离心率小于1,且离心率等于焦点到准线的距离除以准线长度。

椭圆的焦缩比为焦点到椭圆上某一点的距离与该点到准线的距离的比值。

重要公式:椭圆的标准方程为(x^2/a^2) + (y^2/b^2);焦=缩1 比为e = c/a,其中c^2 = a^2– b^2.3.抛物线的特性抛物线是圆锥曲线中的一种形式,由一个焦点和一个参数决定。

抛物线的离心率为1,焦缩比为1.抛物线的轴是准线,顶点是焦点和准线的交点。

重要公式:抛物线的标准方程为(x^2/4a) =。

y4.双曲线的特性双曲线是圆锥曲线中的一种形式,由两个焦点和一个焦距决定。

双曲线的离心率大于1,离心率等于焦点到准线的距离除以准线长度。

双曲线的焦缩比为c^2=a^2+ b^2.重要公式:双曲线的标准方程为(x^2/a^2)–(y^2/b^2) =1.5.圆锥曲线的应用圆锥曲线在数学和物理学中都有广泛的应用。

椭圆的应用包括轨道运动、天体力学以及密码学等领域。

抛物线的应用包括抛物面反射器、人工卫星的轨道设计等。

双曲线的应用包括电磁波的传播、双曲线钟的标定等。

6.圆锥曲线的性质圆锥曲线有许多共同的性质,如对称性、切线性质和焦点性质等。

对称性:椭圆和双曲线关于x 轴和y 轴都有对称性,抛物线关于y 轴有对称性。

切线性质:圆锥曲线上任意一点的切线与焦点到该点的连线垂直。

焦点性质:圆锥曲线上的任意一点到焦点的距离与焦缩比成正比。

此文档总结了圆锥曲线的定义、特性、应用和性质等重要知识点,并提供了相关公式和图示。

熟悉了这些知识后,我们可以更加深入地理解和应用圆锥曲线的概念。

圆锥曲线知识点公式大全

圆锥曲线知识点公式大全

圆锥曲线知识点公式大全圆锥曲线是平面上的一类曲线,包括椭圆、双曲线和抛物线。

它们都可以由一个动点(焦点)和一条定点到动点距离与到一条给定直线距离之比(离心率)确定。

1.椭圆的定义方程:(x/a)² + (y/b)² = 1,其中a和b分别是椭圆的两条半轴的长度。

2.长轴和短轴:长轴的长度是2a,短轴的长度是2b。

焦距是c,满足c² = a² - b²。

3.离心率:离心率用e表示,e² = 1 - (b²/a²)。

离心率是一个衡量椭圆形状的指标,e=0表示圆。

4.双曲线的定义方程:(x/a)² - (y/b)² = 1或(y/b)² - (x/a)² = 1,其中a和b分别是双曲线的两条半轴的长度。

5.双曲线的焦点和离心率:双曲线有两个焦点和两条渐近线,焦点到双曲线上的任意一点的距离与焦距之差的绝对值恒等于离心率。

6.抛物线的定义方程:y² = 4ax或x² = 4ay,其中a是抛物线的焦点到准线的垂直距离。

7.抛物线的焦点和准线:焦点是抛物线上的一个特殊点,准线是与焦点对称的一条直线。

以上是圆锥曲线的基本知识点和公式。

除此之外,还有一些拓展的知识点:-增量曲线:当焦点和准线都在y轴上时,圆锥曲线的公式可以表达为任意形式的增量曲线,如二次抛物线、双曲线等。

-参数方程:圆锥曲线也可以用参数方程表示,其中x = x(t)和y = y(t)是关于参数t的函数,通常t的取值范围是一个区间。

-极坐标方程:圆锥曲线也可以用极坐标方程表示,其中r = r(θ)是关于极角θ的函数。

-高斯曲率:圆锥曲线在不同点处的曲率有所不同,而高斯曲率是描述曲面曲率性质的一个指标。

对于圆锥曲线来说,高斯曲率恒为常数。

希望以上信息能对你有所帮助!如果您还有其他问题,请随时提问。

圆锥曲线公式及知识点总结

圆锥曲线公式及知识点总结

2022圆锥曲线公式及知识点总结圆锥曲线公式及知识点总结圆锥曲线公式:椭圆1、中心在原点,焦点在x轴上的椭圆标准方程:其中x?/a?+y?/b?=1,其中ab0,c?=a?-b?2、中心在原点,焦点在y轴上的椭圆标准方程:y?/a?+x?/b?=1,其中ab0,c?=a?-b?参数方程:x=acosθ;y=bsinθ(θ为参数,0≤θ≤2π)圆锥曲线公式:双曲线1、中心在原点,焦点在x轴上的双曲线标准方程:x?/a-y?/b?=1,其中a0,b0,c?=a?+b?.2、中心在原点,焦点在y轴上的双曲线标准方程:y?/a?-x?/b?=1,其中a0,b0,c?=a?+b?.参数方程:x=asecθ;y=btanθ(θ为参数)圆锥曲线公式:抛物线参数方程:x=2pt?;y=2pt(t为参数)t=1/tanθ(tanθ为曲线上点与坐标原点确定直线的斜率)特别地,t可等于0直角坐标:y=ax?+bx+c(开口方向为y轴,a≠0)x=ay?+by+c(开口方向为x 轴,a≠0)离心率椭圆,双曲线,抛物线这些圆锥曲线有统一的定义:平面上,到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。

且当0e1时为双曲线。

圆锥的具体构成圆锥的高:圆锥的顶点到圆锥的底面圆心之间的最短距离叫做圆锥的高;圆锥母线:圆锥的侧面展开形成的扇形的半径、底面圆周上任意一点到顶点的距离。

圆锥的侧面积:将圆锥的侧面沿母线展开,是一个扇形,这个扇形的弧长等于圆锥底面的周长,而扇形的半径等于圆锥的母线的长.圆锥的侧面积就是弧长为圆锥底面的周长×母线/2;没展开时是一个曲面。

圆锥有一个底面、一个侧面、一个顶点、一条高、无数条母线,且底面展开图为一圆形,侧面展开图是扇形。

圆锥体的展开图在绘制指定圆锥的展开图时,一般知道a(母线长)和d(底面直径)∵弧AB=⊙O的周长∴弧AB=πd∵弧AB=2πa(∠1/360°)∴2πa(∠1/360°)=πd∴2a(∠1/360°)=d将a,d带入2a(∠1/360°)=d得到∠1的值。

圆锥曲线秒杀20个公式

圆锥曲线秒杀20个公式

圆锥曲线秒杀20个公式圆锥曲线是平面上一类重要的曲线,它们的特点和性质各不相同,但都与圆锥的切割有关。

在数学中,圆锥曲线包括了椭圆、双曲线和抛物线,它们在几何学、物理学以及工程领域中有着广泛的应用。

本文将带你快速学习并掌握圆锥曲线的相关公式,希望能帮助你在数学学习中事半功倍。

1. 椭圆椭圆是圆锥曲线中最简单的一种,它具有两个焦点的特点。

下面是椭圆的一些关键公式:1.1. 椭圆的标准方程椭圆的标准方程如下:$\\frac{x^{2}}{a^{2}} + \\frac{y^{2}}{b^{2}} = 1$其中,a和b分别表示椭圆的长轴和短轴的长度。

1.2. 椭圆的离心率椭圆的离心率计算公式如下:$e = \\sqrt{1 - \\frac{b^{2}}{a^{2}}}$离心率是椭圆形状的度量,表示焦点与准线之间的距离与长轴长度之比。

1.3. 椭圆的焦距椭圆的焦距计算公式如下:$c = \\sqrt{a^{2} - b^{2}}$焦距是椭圆的焦点到准线的距离。

2. 双曲线双曲线是圆锥曲线中另一种常见的类型,它与椭圆不同,具有两个分离的无限远点。

下面是双曲线的一些关键公式:2.1. 双曲线的标准方程双曲线的标准方程如下:$\\frac{x^{2}}{a^{2}} - \\frac{y^{2}}{b^{2}} = 1$其中,a和b分别表示双曲线的焦点到准线的距离。

2.2. 双曲线的离心率双曲线的离心率计算公式如下:$e = \\sqrt{1 + \\frac{b^{2}}{a^{2}}}$离心率是双曲线形状的度量,表示焦点与准线之间的距离与焦点到双曲线顶点的距离之比。

2.3. 双曲线的渐近线双曲线的渐近线如下:$y = \\pm \\frac{b}{a}x$渐近线是双曲线两支无限延伸的直线,其斜率等于$\\pm \\frac{b}{a}$。

3. 抛物线抛物线是圆锥曲线中最后一种类型,它具有一个焦点和一个直线的特点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学冲刺复习圆锥曲线公式汇总(包含许多有用的补充公式)

圆锥曲线的公式汇总:
1、椭圆上任意一点到两焦点的距离之和等于2a;椭圆的通径长。

2、过椭圆焦点的直线与椭圆交于两点A、B,
A、B两点与椭圆另一焦点构成的三角形的周长公式、面积公式。

其中面积的计算有两种思路,一是以X轴为界拆成两个三角形之和,二是以丨AB丨弦长为底,另一焦点到AB的距离为高求面积。

3、焦点三角形的面积公式、周长公式、面积的最大值。

已知焦点三角形的两底角快速求离心率公式。

4、椭圆的弦长公式。

5、过圆外一点引圆的两条切线,切点弦所在直线方程的公式;过椭圆外一点引圆的两条切线,切点弦所在直线方程的公式。

6、双曲线的定义公式,注意加绝对值和不加绝对值的区别。

7、双曲线的焦点三角形面积公式。

8、双曲线的渐近线公式、弦长公式、通径公式、离心率。

9、双曲线的焦点到渐近线的距离为b。

10、等轴双曲线、共轭双曲线相关结论。

11、抛物线的定义。

12、抛物线焦点弦的性质有关公式,包括开口向右和开口向上。

13、对抛物线顶点张角为90度的弦的有关结论。

14、抛物线的弦长公式。

15、过开口向上抛物线的焦点的一条直线与抛物线交于M、N两点,过M、N两点引抛物线的切线,则两切线的交点在抛物线的准线上。

16、过开口向抛物线的焦点的一条直线与抛物线交于M、N两点,过其中一点引抛物线的切线公式。

相关文档
最新文档