2016中考试题汇编 等腰三角形

合集下载

中考数学复习《等腰三角形》专项测试卷(带答案)

中考数学复习《等腰三角形》专项测试卷(带答案)

中考数学复习《等腰三角形》专项测试卷(带答案)学校:___________班级:___________姓名:___________考号:___________一.选择题1. 如图,边长为4的等边△ABC 中,DE 为中位线,则四边形BCED 的面积为( ) (A )32(B )33(C )34(D )362. 如图,⊿ABC 和⊿CDE 均为等腰直角三角形,点B,C,D 在一条直线上,点M 是AE 的中点,下列结论:①tan ∠AEC=CDBC;②S ⊿ABC +S ⊿CDE ≧S ⊿ACE ;③BM ⊥DM;④BM=DM.正确结论的个数是( )(A )1个 (B )2个 (C )3个(D )4个MECA3. 如图,△ABC 和△ADE 都是等腰直角三角形,∠BAC =∠DAE =90°, 四边形ACDE 是平行四边形,连结CE 交AD 于点F ,连结BD 交CE 于点G ,连结BE . 下列结论中:① CE =BD ; ② △ADC 是等腰直角三角形; ③ ∠ADB =∠AEB ; ④ CD ·AE =EF ·CG ; 一定正确的结论有(第1题)A BCD EA.1个 B.2个 C.3个 D.4个4. 如图,ΔABC中,以B 为圆心,BC长为半径画弧,分别交AC和AB于D、E两点,并连接BD、DE若∠A=30∘,AB=AC,则∠BDE的度数为何?A. 45 B. 52.5 C. 67.5 D. 755. 如图(1),有两全等的正三角形ABC、DEF,且D、A分别为△ABC、△DEF的重心.固定D点,将△DEF逆时针旋转,使得A落在DE上,如图(2)所示.求图(1)与图(2)中,两个三角形重迭区域的面积比为何?图1 图2A.2:1 B. 3:2 C. 4:3 D. 5:46. 如果一个等腰三角形的两边长分别是5cm和6cm,那么此三角形的周长是A.15cm B.16cmC.17cm D.16cm或17cm7. 如图,在ABC△中13AB AC==,10BC=点D为BC的中点DE DE AB⊥垂足为点E,则DE等于()A.1013B.1513C.6013D.7513 ABCDE FG8.等腰三角形两边长分别为4和8,则这个等腰三角形的周长为 A .16 B .18 C .20 D .16或209.等腰三角形的顶角为80°,则它的底角是( ) A . 20° B . 50° C . 60° D . 80°10.把等腰△ABC 沿底边BC 翻折,得到△DBC ,那么四边形ABDC ( )11.如图,△ABC 是等边三角形,P 是∠ABC 的平分线BD 上一点,PE ⊥AB 于点E ,线段BP 的垂直平分线交BC 于点F ,垂足为点Q .若BF =2,则PE 的长为( )A . 2B .23C .3D .312.如图,在△ABC 中,∠ABC 和∠ACB 的平分线交于点E ,过点E 作MN ∥BC 交AB 于M ,交AC 于N ,若BM+CN=9,则线段MN 的长为( )A .6B .7C .8D .9第11题图AD E F PQC13.已知实数x ,y 满足,则以x ,y 的值为两边长的等腰三角形的周长是( )A . 20或16B . 20C . 16D .以上答案均不对14.如图,在△ABC 中,AB =AC ,∠A =36°,BD 平分∠ABC 交AC 于点D ,若AC =2,则AD 的长是( )A .512- B .512+ C .51- D .51+15.如图,△ABC 为等边三角形,点E 在BA 的延长线上,点D 在BC 边上,且ED=EC .若△ABC 的边长为4,AE=2,则BD 的长为( )A . 2B . 3C .D . +116.如图,在菱形ABCD 中,∠A =60°,E ,F 分别是AB ,AD 的中点,DE ,BF 相交于点G ,连接BD ,CG ,有下列结论:①∠BGD =120° ;②BG +DG =CG ;③△BDF ≌△CGB ;④234ABD S AB =△.其中正确的结论有( )A .1个B .2个C .3个D .4个 二.填空题1. 边长为6cm 的等边三角形中,其一边上高的长度为________.2. 等腰三角形的周长为14,其一边长为4,那么,它的底边为 .3. 在等腰Rt △ABC 中,∠C =90°,AC =1,过点C 作直线l ∥AB ,F 是l 上的一点,且AB =AF ,则点F 到直线BC 的距离为 .4. 已知等边△ABC 中,点D,E 分别在边AB,BC 上,把△BDE 沿直线DE 翻折,使点B 落在点B ˊ处,DB ˊEB ˊ分别交边AC 于点F ,G ,若∠ADF=80º ,则∠EGC 的度数为5. 如图,在△ABC 中,AB =AC ,︒=∠40A 则△ABC 的外角∠BCD = °.6. 如图(四)所示,在△ABC 中,AB=AC ,∠B=50°,则∠A=_______。

等腰三角形典型例题练习(含答案)汇总(2)

等腰三角形典型例题练习(含答案)汇总(2)

等腰三角形典型例题练习等腰三角形典型例题练习•选择题(共2小题)AD 平分/ BAC 交BC 于D,若BC=5cm , BD=3cm ,则点 D 到AB 的距离为(2. 如图,已知 C 是线段AB 上的任意一点(端点除外),分别以AC 、BC 为边并且在AB 的同一侧作等边 △ ACD 和等边△ BCE,连接AE 交CD 于M ,连接BD 交CE 于N .给出以下三个结论:① AE=BD② CN=CM③ MN // AB其中正确结论的个数是( )A. 0 B . 1 |C. 2 D. 3二.填空题(共1小题)3. ______________________________________ 如图,在正三角形 ABC 中,D, E, F 分别是 BC, AC , AB 上的点,DE 丄AC , EF 丄AB , FD 丄BC ,则△ DEF 的面积与△ ABC 的面积之比等于 .E 、F 分别为 AB 、AC 上的点,且/ EDF+ / EAF=180 °求证5. 在△ ABC 中,/ ABC 、/ ACB 的平分线相交于点 0,过点0作DE // BC,分别交 AB 、AC 于点D 、E.请说明DE=BD+EC .C DA . 5cm B. 3 cm C. 2cm |D .不能确定1.如图,/ C=90°三.解答题(共15小题)6. >已知:如图,D是厶ABC的BC边上的中点,DE丄AB , DF丄AC ,垂足分别为 E, F,且DE=DF .请判断△ ABC 是什么三角形?并说明理由.7. 如图,△ ABC是等边三角形,BD是AC边上的高,延长 BC至E,使CE=CD .连接DE .(1)Z E等于多少度?(2)△ DBE是什么三角形?为什么?&如图,在△ ABC 中,/ ACB=90 ° CD 是 AB 边上的高,/ A=30 ° 求证:AB=4BD .9.如图,△ ABC中,AB=AC,点D、E分别在 AB、AC的延长线上,且 BD=CE , DE与BC相交于点F.求证: DF=EF .10 .已知等腰直角三角形 ABC , BC是斜边./ B的角平分线交 AC于D,过C作CE与BD垂直且交BD延长线于E,求证:BD=2CE .11. (20PP?牡丹江)如图①,△ ABC中.AB=AC , P为底边 BC上一点,PE丄AB , PF丄AC , CH丄AB,垂足分别为E、F、H.易证PE+PF=CH .证明过程如下:如图①,连接AP.•/ PE丄 AB , PF丄 AC , CH 丄 AB ,二 S^ABP=P AB ?PE, S A ACP= AC?PF, S A ABC=』AB?CH .又••• S A ABP +S A ACP =S A ABC ,••• !AB ?PE +!AC ?PF 去B ?CH •2 [2 2•/ AB=AC ,• PE +PF =CH •(1)如图②,P 为BC 延长线上的点时,其它条件不变, PE 、PF 、CH 又有怎样的数量关系?请写出你的猜想, 并加以证明: (2) 填空:若/ A=30 ° △ ABC 的面积为49,点P 在直线BC 上,且P 到直线ACPE= •的长(请你直接写出结果)13. 已知:如图, AF 平分/ BAC , BC 丄AF 于点E,点D 在AF 上,ED=EA ,点P 在CF 上,连接PB 交AF 于点 M .若/ BAC=2 / MPC ,请你判断/ F 与/ MCD 的数量关系,并说明理由.C14. 如图,已知 △ ABC 是等边三角形,点 D 、E 分别在BC 、AC 边上,且 AE=CD , AD 与BE 相交于点F.(1) 线段AD 与BE 有什么关系?试证明你的结论.(2) 求/ BFD 的度数.的距离为PF ,当PF=3时,则12 •数学课上,李老师出示了如下的题目:在等边三角形 ABC 中,点E 在AB 上,点D 在CB 的延长线上,且 ED=EC ,如图, 关系,并说明理由”.小敏与同桌小聪讨论后,进行了如下解答:(1) 特殊情况,探索结论当点E 为AB 的中点时,如图1,确定线段AE 与DB 的大小关系,请你直接写出结论: 或=”). (2) 特例启发,解答题目解:题目中,AE 与DB 的大小关系是:AE ________EF // BC ,交AC 于点F .(请你完成以下解答过程)(3) 拓展结论,设计新题 在等边三角形 ABC 中,点E 在直线 AB 上,点D 在直线BC 上,且ED=EC •试确定线段 AE 与DB 的大小 AE DB (填DB (填\”, 或=”).理由如下:如图 2,过点E 作AE=2,求 CD16. 已知:如图,在 △ OAB 中,/ AOB=90 ° OA=OB ,在△ EOF 中,/ EOF=90 ° OE=OF ,连接 AE 、BF .问线 段AE 与BF 之间有什么关系?请说明理由.17. (20PP?郴州)如图,在 △ ABC 中,AB=AC , D 是BC 上任意一点,过 D 分别向AB , AC 引垂线,垂足分别为E, F ,CG 是AB 边上的高.(1) DE ,DF ,CG 的长之间存在着怎样的等量关系?并加以证明;(1)中的结论还成立吗?若不成立,又存在怎样的关系?请说明理由.18. 如图甲所示,在 △ ABC 中,AB=AC ,在底边BC 上有任意一点P ,贝U P 点到两腰的距离之和等于定长(腰上 的高),即PD+PE=CF ,若P 点在BC 的延长线上,那么请你猜想 PD 、PE 和CF 之间存在怎样的等式关系?写出你 的猜想并加以证明.和CF , 求证:AE=CF .(2)若D 在底边的延长线上, 甲等腰三角形典型例题练习参考答案与试题解析一 •选择题(共2小题)1. 如图,/ C=90° AD 平分/ BAC 交BC 于D ,若BC=5cm , BD=3cm ,则点D 到AB 的距离为() A . 5cmB . 3cm C. 2cm D.不能确定 解:T / C=90 ° AD 平分/ BAC 交 BC 于 DD 到AB 的距离即为CD 长CD=5 - 3=2故选C .2. 如图,已知C 是线段AB 上的任意一点(端点除外),分别以AC 、BC 为边并且在AB 的同一侧作等边△ ACD 和等边△ BCE ,连接AE 交CD 于M ,连接BD 交CE 于N .给出以下三个结论:①AE=BD ②CN=CM ③MN // AB 其中正确结论的个数是() 卜析: 由厶ACD 和厶BCE 是等边三角形,根据 SAS 易证得△ ACE DCB ,即可得① 正确;由A ACE DCB ,可得 / EAC= / NDC ,又由/ ACD= / MCN=60 °利用ASA ,可证得△ ACM DCN ,即可得②正确;又可证得 △ CMN 是等边三角形,即可证得 ③正确. 军答: 解::△ ACD 和厶 BCE 是等边三角形,二/ ACD= / BCE=60 ° AC=DC ,EC=BC , /•Z ACD+ / DCE= / DCE+ / ECB ,即/ ACE= / DCB ,二△ ACEDCB (SAS ), ••• AE=BD,故① 正确; /Z EAC= Z NDC ,T Z ACD= Z BCE=60 ° /Z DCE=60 ° /Z ACD= Z MCN=60 ° •/ AC=DC ,/△ ACM DCN (ASA ),•/ CM=CN ,故②正确; 又Z MCN=180。

等腰三角形的性质经典题分类汇编

等腰三角形的性质经典题分类汇编

【知识要点】1.等腰三角形的性质(1)等腰三角形的两个底角 .(简称 )(2)等腰三角形的顶角平分线、底边上的中线、底边上的高 .(三线合一) (3)等腰三角形是轴对称图形,对称轴是 . 2.等腰三角形的判定如果一个三角形有两个角相等,那么这两个角所对的边 .(简称 ) 【题型1】等腰三角形的基本性质(一)1.如图,在△ABC 中,AB=AD=DC ,∠B=70°,则∠C 的度数为 .2.若一个等腰三角形的两边长分别是2和5,则它的周长为 .【变式训练】1.如图,△ABC、△ADE 中,C 、D 两点分别在AE 、AB 上,BC 与DE 相交于F 点.若BD=CD=CE ,∠ADC+∠ACD=114°,则∠DFC 的度数为 .2.如图,在△ABC 中,AB=AC ,∠A=30°,E 为BC 延长线上一点,∠ABC 与∠ACE 的平分线相交于点D ,则∠D 的度数为 .3.如图,在△A BC 中,AB=AC ,D 为BC 中点,∠BAD=35°,则∠C 的度数为 .4.已知一个等腰三角形的两边长分别是7和4,则该等腰三角形的周长为 ;若等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为 .5.在等腰△ABC 中,AB=AC ,中线BD 将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为________.6.等腰三角形的一个外角是60°,则它的顶角的度数是 ;等腰三角形的一个角是70°,则其余内角度数分别是 .第1题第3题第2题BC7.等腰三角形的顶角是80°,则一腰上的高与底边的夹角是 ;等腰三角形的一个角是145°,则其余内角度数分别是 . 【题型2】等腰三角形的性质(二)如图,在△ABC 中,AB=AC ,∠A=30o,BF=CE ,BD=CF.求∠DFE 的度数.【变式训练】1.在△ABC 中,AB =AC ,AD 平分∠BAC ,BC =3 cm.则∠ADB= ,BD= cm.2.在△ABC 中,AB =AC ,AD ⊥BC ,垂足为D ,若∠BAC =70°,则∠BAD = .3.在△ABC 中,AB =AC ,∠A =36°,BD ⊥AC 于点D ,则∠CBD = .4.在△ABC 中,AB =AC ,∠BAC =108°,点D 在BC 上,且BD =AB ,连接AD ,则∠CAD = .5.如图,在△ABC 中,∠ACB =90°,DE 是AB 的垂直平分线,∠CAE ∶∠EAB =4∶1. 求∠B 的度数.6.如图,在△ABC 中,AD =BD =BC ,若∠DBC =28°.求∠ABC 和∠C 的度数.7.如图,在△ABC 中,∠B=90°,AB=BD ,AD=CD.求∠CAD的度数.BADC【题型3】等腰三角形的性质(三)如图,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.求证:BE=CE.【变式训练】1.如图,在△ABC中,AB=AC,点D、E在BC上,且AD=AE.求证:BD=CE2.如图,在等腰△ABC中,AB=AC,O是底边BC上的中点,OD⊥A B于D,OE⊥AC于E.求证:AD=AE.3.如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE=∠BAD.4.如图,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.求证:BE=CE.5.如图,AB=AC ,E 为AB 上一点,F 是AC 延长线上一点,且BE=CF ,EF 交BC 于点D .求证:DE=DF .6.如图,在△ABC 中,AB=AC ,CE ⊥AE 于E ,CE=21BC ,E 在△ABC 外. 求证:∠ACE=∠B.7.如图,在△ABC 中,AB =AC ,AD ⊥BC ,CE ⊥AB ,AE =CE. 求证:(1)△AEF ≌△CEB ; (2)AF =2CD.B。

2016全国各地中考数学分类汇编--三角形

2016全国各地中考数学分类汇编--三角形

2016年全国各地中考数学试题分类解析汇编(第一辑)第11章三角形一.选择题(共19小题)1.(2015•)如图,过△ABC的顶点A,作BC边上的高,以下作确的是()A. B. C. D.2.(2016•凉山州)一个多边形切去一个角后,形成的另一个多边形的角和为1080°,那么原多边形的边数为()A.7 B.7或8 C.8或9 D.7或8或93.(2016•)六边形的角和是()A.540° B.720° C.900° D.1080°4.(2016•)设四边形的角和等于a,五边形的外角和等于b,则a 与b的关系是()A.a>b B.a=b C.a<b D.b=a+180°5.(2016•)六边形的角和是()A.540° B.720° C.900° D.360°6.(2016•)将一矩形纸片沿一条直线剪成两个多边形,那么这两个多边形的角和之和不可能是()A.360° B.540° C.720° D.900°7.(2016•)已知一个正多边形的角是140°,则这个正多边形的边数是()A.6 B.7 C.8 D.98.(2016•)正多边形的一个角是150°,则这个正多边形的边数为()A.10 B.11 C.12 D.139.(2016•)角和为540°的多边形是()A. B. C. D.10.(2016•)如图所示,小华从A点出发,沿直线前进10米后左转24,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A.140米 B.150米 C.160米 D.240米11.(2016•)一个正多边形的角和为540°,则这个正多边形的每一个外角等于()A.108° B.90° C.72° D.60°12.(2016•)若一个正n边形的每个角为144°,则这个正n边形的所有对角线的条数是()A.7 B.10 C.35 D.7013.(2016•)如图的七边形ABCDEFG中,AB、DE的延长线相交于O 点.若图中∠1、∠2、∠3、∠4的外角的角度和为220°,则∠BOD 的度数为何?()A.40 B.45 C.50 D.60 14.(2016•)如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.35° B.95° C.85° D.75°15.(2016•贵港)在△ABC中,若∠A=95°,∠B=40°,则∠C的度数为()A.35° B.40° C.45° D.50°16.(2016•)若a、b、c为△ABC的三边长,且满足|a﹣4|+ =0,则c的值可以为()A.5 B.6 C.7 D.817.(2016•)若一个三角形的两边长分别为3和7,则第三边长可能是()A.6 B.3 C.2 D.1118.(2016•)下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cm B.7cm,4cm,2cm C.3cm,4cm,8cm D.3cm,3cm,4cm19.(2016•)下列每组数分别是三根木棒的长度,能用它们摆成三角形的是()A.3cm,4cm,8cm B.8cm,7cm,15cmC.5cm,5cm,11cm D.13cm,12cm,20cm参考答案与试题解析一.选择题(共19小题)1.(2015•)【分析】根据三角形高线的定义:过三角形的顶点向对边引垂线,顶点和垂足之间的线段叫做三角形的高线解答.【解答】解:为△ABC中BC边上的高的是A选项.故选A.【点评】本题考查了三角形的角平分线、中线、高线,熟记高线的定义是解题的关键.2.(2016•凉山州)A.7 B.7或8 C.8或9 D.7或8或9【分析】首先求得角和为1080°的多边形的边数,即可确定原多边形的边数.【解答】解:设角和为1080°的多边形的边数是n,则(n﹣2)•180°=1080°,解得:n=8.则原多边形的边数为7或8或9.故选:D.【点评】本题考查了多边形的角和定理,一个多边形截去一个角后它的边数可能增加1,可能减少1,或不变.3.(2016•)【分析】多边形角和定理:n变形的角和等于(n﹣2)×180°(n≥3,且n为整数),据此计算可得.【解答】解:由角和公式可得:(6﹣2)×180°=720°,故选:B.【点评】此题主要考查了多边形角和公式,关键是熟练掌握计算公式:(n﹣2)•180°(n≥3,且n为整数).4.(2016•)【分析】根据多边形的角和定理与多边形外角的关系即可得出结论.【解答】解:∵四边形的角和等于a,∴a=(4﹣2)•180°=360°.∵五边形的外角和等于b,∴b=360°,∴a=b.故选B.【点评】本题考查的是多边形的角与外角,熟知多边形的角和定理是解答此题的关键.5.(2016•)【分析】利用多边形的角和定理计算即可得到结果.【解答】解:根据题意得:(6﹣2)×180°=720°,故选B.【点评】此题考查了多边形角与外角,熟练掌握多边形角和定理是解本题的关键.6.(2016•)【分析】根据题意列出可能情况,再分别根据多边形的角和定理进行解答即可.【解答】解:①将矩形沿对角线剪开,得到两个三角形,两个多边形的角和为:180°+180°=360°;②将矩形从一顶点剪向对边,得到一个三角形和一个四边形,两个多边形的角和为:180°+360°=540°;③将矩形沿一组对边剪开,得到两个四边形,两个多边形的角和为:360°+360°=720°;故选:D.【点评】本题考查了多边形的角与外角,能够得出一个矩形截一刀后得到的图形有三种情形,是解决本题的关键.7.(2016•)【分析】首先根据一个正多边形的角是140°,求出每个外角的度数是多少;然后根据外角和定理,求出这个正多边形的边数是多少即可.【解答】解:360°÷(180°﹣140°)=360°÷40°=9.答:这个正多边形的边数是9.故选:D.【点评】此题主要考查了多边形的角与外角,要熟练掌握,解答此题的关键是要明确多边形的外角和定理.8.(2016•)【分析】一个正多边形的每个角都相等,根据角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【解答】解:外角是:180°﹣150°=30°,360°÷30°=12.则这个正多边形是正十二边形.故选:C.【点评】考查了多边形角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数是解题关键.9.(2016•)【分析】根据多边形的角和公式(n﹣2)•180°列式进行计算即可求解.【解答】解:设多边形的边数是n,则(n﹣2)•180°=540°,解得n=5.故选:C.【点评】本题主要考查了多边形的角和公式,熟记公式是解题的关键.10.(2016•)【分析】多边形的外角和为360°每一个外角都为24°,依此可求边数,再求多边形的周长.【解答】解:∵多边形的外角和为360°,而每一个外角为24°,∴多边形的边数为360°÷24°=15,∴小明一共走了:15×10=150米.故选B.【点评】本题考查多边形的角和计算公式,多边形的外角和.关键是根据多边形的外角和及每一个外角都为24°求边数.11.(2016•)【分析】首先设此多边形为n边形,根据题意得:180(n﹣2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.【解答】解:设此多边形为n边形,根据题意得:180(n﹣2)=540,解得:n=5,故这个正多边形的每一个外角等于:=72°.故选C.【点评】此题考查了多边形的角和与外角和的知识.注意掌握多边形角和定理:(n﹣2)•180°,外角和等于360°.12.(2016•)【分析】由正n边形的每个角为144°结合多边形角和公式,即可得出关于n 的一元一次方程,解方程即可求出n的值,将其代入中即可得出结论.【解答】解:∵一个正n边形的每个角为144°,∴144n=180×(n﹣2),解得:n=10.这个正n边形的所有对角线的条数是: = =35.故选C.【点评】本题考查了多边形的角以及多边形的对角线,解题的关键是求出正n边形的边数.本题属于基础题,难度不大,解决该题型题目时,根据多边形的角和公式求出多边形边的条数是关键.13.(2016•)【分析】延长BC交OD与点M,根据多边形的外角和为360°可得出∠OBC+∠MCD+∠CDM=140°,再根据四边形的角和为360°即可得出结论.【解答】解:延长BC交OD与点M,如图所示.∵多边形的外角和为360°,∴∠OBC+∠MCD+∠CDM=360°﹣220°=140°.∵四边形的角和为360°,∴∠BOD+∠OBC+180°+∠MCD+∠CDM=360°,∴∠BOD=40°.故选A.【点评】本题考查了多边形的角与外角以及角的计算,解题的关键是能够熟练的运用多边形的外角和为360°来解决问题.本题属于基础题,难度不大,解决该题型题目时,利用多边形的外角和与角和定理,通过角的计算求出角的角度即可.14.(2016•)【分析】根据三角形角平分线的性质求出∠ACD,根据三角形外角性质求出∠A 即可.【解答】解:∵CE是△ABC的外角∠ACD的平分线,∠ACE=60°,∴∠ACD=2∠ACE=120°,∵∠ACD=∠B+∠A,∴∠A=∠ACD﹣∠B=120°﹣35°=85°,故选:C.【点评】本题考查了三角形外角性质,角平分线定义的应用,注意:三角形的一个外角等于和它不相邻的两个角的和.15.(2016•贵港)【分析】在△ABC中,根据三角形角和是180度来求∠C的度数.【解答】解:∵三角形的角和是180°,又∠A=95°,∠B=40°∴∠C=180°﹣∠A﹣∠B=180°﹣95°﹣40°=45°,故选C.【点评】本题考查了三角形角和定理,利用三角形角和定理:三角形角和是180°是解答此题的关键.16.(2016•)【分析】先根据非负数的性质,求出a、b的值,进一步根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值围,从而确定c的可能值;【解答】解:∵|a﹣4|+ =0,∴a﹣4=0,a=4;b﹣2=0,b=2;则4﹣2<c<4+2,2<c<6,5符合条件;故选A.【点评】本题考查了等腰三角形的性质、三角形三边关系及非负数的性质:有限个非负数的和为零,那么每一个加数也必为零;注意初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).17.(2016•)【分析】根据三角形三边关系,两边之和第三边,两边之差小于第三边即可判断.【解答】解:设第三边为x,则4<x<10,所以符合条件的整数为6,故选A.【点评】本题考查三角形三边关系定理,记住两边之和第三边,两边之差小于第三边,属于基础题,中考常考题型.18.(2016•)【分析】依据三角形任意两边之和大于第三边求解即可.【解答】解:A、因为2+3=5,所以不能构成三角形,故A错误;B、因为2+4<6,所以不能构成三角形,故B错误;C、因为3+4<8,所以不能构成三角形,故C错误;D、因为3+3>4,所以能构成三角形,故D正确.故选:D.【点评】本题主要考查的是三角形的三边关系,掌握三角形的三边关系是解题的关键.19.(2016•)【分析】根据三角形的三边关系,两边之和大于第三边,即两短边的和大于最长的边,即可作出判断.【解答】解:A、3+4<8,故以这三根木棒不可以构成三角形,不符合题意;B、8+7=15,故以这三根木棒不能构成三角形,不符合题意;C、5+5<11,故以这三根木棒不能构成三角形,不符合题意;D、12+13>20,故以这三根木棒能构成三角形,符合题意.故选D.【点评】本题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边.。

2016年全国中考数学真题分类 等腰三角形、等边三角形(习题解析)

2016年全国中考数学真题分类 等腰三角形、等边三角形(习题解析)

2016年全国中考数学真题分类等腰三角形与等边三角形一、选择题1.(2016山东滨州,6,3分)如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为( )A.50°B.51°C.51.5°D.52.5°答案:D.4.(2016年湖北荆门,4,3分)如图,△ABC中,AB=AC,AD是∠BAC的平分线,已知AB=5,AD =3,则BC的长为( )A.5 B.6 C.8 D.10[答案]C2.(2016山东泰安,18,3分)如图,在△PAB中,PA=PB,M,N,K分别是边PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为( )A.44°B.66°C.88°D.92°答案:D.3.10.(2016山东烟台,10,3分)如图,Rt△ABC的斜边AB与量角器的直径恰好重合,B点与0刻度线的一端重合,∠ABC=40°,射线CD绕点C转动,与量角器外沿交于点D,若射线CD将△ABC 分割出以BC为边的等腰三角形,则点D在量角器上对应的度数是()D CBA第4题图A.40°B.70°C.70°或80°D.80°或140°答案:D.4.5.6.7.(2016山东菏泽,7,3分)如图,△ABC与△A′B′C′都是等腰三角形,且AB=AC=5,A′B′=A′C′=3,若∠B+∠B′=90°,则△ABC与△A′B′C′的面积比为()A.25:9 B.5:3 C.:D.5:3【答案】A8.9.10.11.12.13.14.15.16.17.18.19.20.22.23.24.25.26.27.28.29.30.31.32.33.34.35.36.37.38.39.二、填空题1.16.(2016江苏淮安,16,3分)已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是.【答案】1014.(2016山东烟台,14,3分)如图,O为数轴原点,A,B两点分别对应﹣3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M对应的实数为.【答案】.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24.25.26.27.28.29.30.31.32.34.35.36.37.38.39.三、解答题1.(2016,山东淄博,22,8分)如图,已知△ABC,AD平分∠BAC交BC于点D,BC的中点为M,ME∥AD,交BA的延长线于点E,交AC于点F.(1)求证:AE=AF;(2)求证:BE=(AB+AC).证明:(1)∵DA平分∠BAC,∴∠BAD=∠CAD,∵AD∥EM,∴∠BAD=∠AEF,∠CAD=∠AFE,∴∠AEF=∠AFE,∴AE=AF.(2)作CG∥EM,交BA的延长线于G.∵EF∥CG,∴∠G=∠AEF,∠ACG=∠AFE,∵∠AEF=∠AFE,∴∠G=∠ACG,∴AG=AC,∵BM=CM.EM∥CG,∴BE=EG,∴BE=BG=(BA+AG)=(AB+AC).2.3.25.(2016浙江宁波,25,12分)从三角形(不是等腰三角形)一个顶点引出一条射线于对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线.(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB的度数.(3)如图2,△ABC中,AC=2,BC=,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.【解答】解:(1)如图1中,∵∠A=40°,∠B=60°,∴∠ACB=80°,∴△ABC不是等腰三角形,∵CD平分∠ACB,∴∠ACD=∠BCD=∠ACB=40°,∴∠ACD=∠A=40°,∴△ACD为等腰三角形,∵∠DCB=∠A=40°,∠CBD=∠ABC,∴△BCD∽△BAC,∴CD是△ABC的完美分割线.(2)①当AD=CD时,如图2,∠ACD=∠A=45°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=96°.②当AD=AC时,如图3中,∠ACD=∠ADC==66°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=114°.③当AC=CD时,如图4中,∠ADC=∠A=48°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∵∠ADC>∠BCD,矛盾,舍弃.∴∠ACB=96°或114°.(3)由已知AC=AD=2,∵△BCD∽△BAC,∴=,设BD=x,∴()2=x(x+2),∵x>0,∴x=﹣1,∵△BCD∽△BAC,∴==,∴CD=×2=﹣.4.(2016山东菏泽,23,10分)如图,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连接BE.(1)如图1,若∠CAB=∠CBA=∠CDE=∠CED=50°①求证:AD=BE;②求∠AEB的度数.[来源:(2)如图2,若∠ACB=∠DCE=120°,CM为△DCE中DE边上的高,BN为△ABE中AE边上的高,试证明:AE=2CM+332BN.【解答】(1)①证明:∵∠CAB=∠CBA=∠CDE=∠CED=50°,∴∠ACB=∠DCE=180°﹣2×50°=80°.∵∠ACB=∠ACD+∠DCB,∠DCE=∠DCB+∠BCE,∴∠ACD=∠BCE.∵△ACB和△DCE均为等腰三角形,∴AC=BC,DC=EC.在△ACD和△BCE中,有,∴△ACD≌△BCE(SAS),∴AD=BE.②解:∵△ACD≌△BCE,∴∠ADC=∠BEC.∵点A,D,E在同一直线上,且∠CDE=50°,∴∠ADC=180°﹣∠CDE=130°,∴∠BEC=130°.∵∠BEC=∠CED+∠AEB,且∠CED=50°,∴∠AEB=∠BEC﹣∠CED=130°﹣50°=80°.(2)证明:∵△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=120°,∴∠CDM=∠CEM=×(180°﹣120°)=30°.∵CM⊥DE,∴∠CMD=90°,DM=EM.在Rt△CMD中,∠CMD=90°,∠CDM=30°,∴DE=2DM=2×=2CM.∵∠BEC=∠ADC=180°﹣30°=150°,∠BEC=∠CEM+∠AEB,∴∠AEB=∠BEC﹣∠CEM=150°﹣30°=120°,∴∠BEN=180°﹣120°=60°.在Rt△BNE中,∠BNE=90°,∠BEN=60°,∴BE==BN.∵AD=BE,AE=AD+DE,∴AE=BE+DE=BN+2CM.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24.25.26.27.28.29.30.31.32.33.34.35.36.37.38.39.。

中考数学复习《等腰三角形》测试题(含答案)

中考数学复习《等腰三角形》测试题(含答案)

中考数学复习《等腰三角形》测试题(含答案)一、选择题(每题6分,共30分)1.[2016·中考预测]等腰三角形的一个内角是80°,则它的顶角的度数是(B) A.80°B.80°或20°C.80°或50°D.20°2.[2015·内江]如图23-1,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠E=35°,则∠BAC的度数为(A) A.40°B.45°C.60°D.70°【解析】∵AE∥BD,∴∠CBD=∠E=35°,图23-1∴∠CBA=70°,∵AB=AC,∴∠C=∠CBA=70°,∴∠BAC=180°-70°×2=40°.3.[2015·黄石]如图23-2,在等腰△ABC中,AB=AC,BD⊥AC,∠ABC=72°,则∠ABD=(B)A.36°B.54°图23-2 C.18°D.64°【解析】∵AB=AC,∠ABC=72°,∴∠ABC=∠ACB=72°,∴∠A=36°,∵BD⊥AC,∴∠ABD=90°-36°=54°.4.如图23-3,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=9,则线段MN的长为(D)A.6 B.7C.8 D.9【解析】∵∠ABC,∠ACB的平分线相交于点E,∴∠MBE=∠EBC,∠ECN=∠ECB.∵MN∥BC,∴∠EBC=∠MEB,∠NEC=∠ECB,∴∠MBE=∠MEB,∠NEC=∠ECN,∴BM=ME,EN=CN.∵MN=ME+EN,∴MN=BM+CN.∵BM+CN=9,∴MN=9,故选D.5.[2015·遂宁]如图23-4,在△ABC中,AC=4 cm,线段AB的垂直平分线交AC于点N,△BCN的周长是7 cm,则BC的长为(C)A.1 cm B.2 cmC.3 cm D.4 cm【解析】∵MN是线段AB的垂直平分线,∴AN=BN,∵△BCN的周长是7 cm,∴BN+NC+BC=7(cm),图23-3图23-4∴AN +NC +BC =7(cm),∵AN +NC =AC ,∴AC +BC =7(cm), 又∵AC =4 cm ,∴BC =7-4=3(cm). 二、填空题(每题6分,共30分)6.[2014·丽水]如图23-5,在△ABC 中,AB =AC ,AD ⊥BC 于点D .若AB =6,CD =4,则△ABC 的周长是__20__.7.[2015·绍兴]由于木质衣架没有柔性,在挂置衣服的时候不太方便操作.小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可.如图23-6①,衣架杆OA =OB =18 cm ,若衣架收拢时,∠AOB =60°,如图23-6②,则此时A ,B 两点之间的距离是__18__cm.图23-6【解析】 ∵OA =OB ,∠AOB =60°, ∴△AOB 是等边三角形, ∴AB =OA =OB =18 cm.8.[2015·乐山]如图23-7,在等腰三角形ABC 中,AB =AC ,DE 垂直平分AB ,已知∠ADE =40°,则∠DBC =__15__°. 【解析】 ∵DE 垂直平分AB , ∴AD =BD ,∠AED =90°,∴∠A =∠ABD , ∵∠ADE =40°,图23-5图23-7∴∠A=90°-40°=50°,∴∠ABD=∠A=50°,∵AB=AC,∴∠ABC=∠C =12(180°-∠A)=65°,∴∠DBC=∠ABC-∠ABD=65°-50°=15°.9.[2014·益阳]如图23-8,将等边△ABC绕顶点A沿顺时针方向旋转,使边AB 与AC重合得△ACD,BC的中点E的对应点为F,则∠EAF的度数是__60°__.图23-8 图23-910.如图23-9,在等边△ABC中,AB=6,点D是BC的中点.将△ABD绕点A旋转后得到△ACE,那么线段DE的长度为__33__.三、解答题(共8分)11.(8分)[2014·衡阳]如图23-10在△ABC中,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F.求证:△BED≌△CFD.图23-10证明:∵AB=AC,∴∠B=∠C.∵DE⊥AB,DF⊥AC,∴∠DEB=∠DFC.又∵BD=CD,∴△BED≌△CFD(AAS).12.(8分)如图23-11,点D,E在△ABC的边BC上,连结AD,AE.①AB=AC;②AD=AE;③BD=CE.以此三个等式中的两个作为命题的题设,另一个作图23-11为命题的结论,构成三个命题:①②⇒③;①③⇒②;②③⇒①.(1)以上三个命题是真命题的为(直接作答)__①②⇒③;①③⇒②;②③⇒①__;(2)请选择一个真命题进行证明.(先写出所选命题,然后证明)解:(2)选择①③⇒②,∵AB=AC,∴∠B=∠C,又∵BD=CE,∴△ABD≌△ACE,∴AD=AE.13.(12分)[2015·南充]如图23-12,△ABC中,AB=AC,AD⊥BC,CE⊥AB,垂足分别为D,E,AE=CE.求证:(1)△AEF≌△CEB;(2)AF=2CD.图23-12证明:(1)∵AD⊥BC,CE⊥AB,∴∠BCE+∠CFD=90°,∠BCE+∠B=90°,∴∠CFD=∠B,∵∠CFD=∠AFE,∴∠AFE=∠B,在△AEF 与△CEB 中, ⎩⎪⎨⎪⎧∠AFE =∠B ,∠AEF =∠CEB ,AE =CE ,∴△AEF ≌△CEB (AAS ); (2)∵AB =AC ,AD ⊥BC , ∴BC =2CD , ∵△AEF ≌△CEB , ∴AF =BC , ∴AF =2CD .14.(12分)[2015·铜仁]已知,如图23-13,点D 在等边三角形ABC 的边AB 上,点F 在边AC 上,连结DF 并延长交BC 的延长线于点E ,EF =FD . 求证:AD =CE .图23-13证明:如答图所示,作DG ∥BC 交AC 于G ,则∠DGF =∠ECF ,在△DFG 和△EFC 中,第14题答图⎩⎪⎨⎪⎧∠DGF =∠ECF ,∠DFG =∠EFC ,FD =EF ,∴△DFG ≌△EFC (AAS ), ∴GD =CE ,∵△ABC 是等边三角形, ∴∠A =∠B =∠ACB =60°, ∵DG ∥BC ,∴∠ADG =∠B ,∠AGD =∠ACB , ∴∠A =∠ADG =∠AGD , ∴△ADG 是等边三角形, ∴AD =GD , ∴AD =CE .。

2016年中考数学压轴题及解析分类汇编

2016年中考数学压轴题及解析分类汇编

中考数学压轴题及解析分类汇编问题中考数学压轴:等腰三角形问题中考数学压轴:直角三角形问题问题中考数学压轴:梯形问题中考数学压轴:面积问题2016中考数学压轴题:函数相似三角形问题(一)例1、直线113y x=-+分别交x轴、y轴于A、B两点,△AOB绕点O按逆时针方向旋转90°后得到△COD,抛物线y=ax2+bx+c经过A、C、D三点.(1) 写出点A、B、C、D的坐标;(2) 求经过A、C、D三点的抛物线表达式,并求抛物线顶点G的坐标;(3) 在直线BG上是否存在点Q,使得以点A、B、Q为顶点的三角形与△COD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.图1思路点拨1.图形在旋转过程中,对应线段相等,对应角相等,对应线段的夹角等于旋转角.2.用待定系数法求抛物线的解析式,用配方法求顶点坐标.3.第(3)题判断∠ABQ =90°是解题的前提.4.△ABQ 与△COD 相似,按照直角边的比分两种情况,每种情况又按照点Q 与点B 的位置关系分上下两种情形,点Q 共有4个.满分解答(1)A (3,0),B (0,1),C (0,3),D (-1,0).(2)因为抛物线y =ax 2+bx +c 经过A (3,0)、C (0,3)、D (-1,0) 三点,所以930,3,0.a b c c a b c ++=⎧⎪=⎨⎪-+=⎩ 解得1,2,3.a b c =-⎧⎪=⎨⎪=⎩所以抛物线的解析式为y =-x 2+2x +3=-(x -1)2+4,顶点G 的坐标为(1,4).(3)如图2,直线BG 的解析式为y =3x +1,直线CD 的解析式为y =3x +3,因此CD //BG . 因为图形在旋转过程中,对应线段的夹角等于旋转角,所以AB ⊥CD .因此AB ⊥BG ,即∠ABQ =90°.因为点Q 在直线BG 上,设点Q 的坐标为(x ,3x +1),那么BQ ==. Rt △COD 的两条直角边的比为1∶3,如果Rt △ABQ 与Rt △COD 相似,存在两种情况: ①当3BQ BA =3=.解得3x =±.所以1(3,10)Q ,2(3,8)Q --.②当13BQ BA =13=.解得13x =±.所以31(,2)3Q ,41(,0)3Q -.图2 图3考点伸展第(3)题在解答过程中运用了两个高难度动作:一是用旋转的性质说明AB ⊥BG ;二是BQ =.我们换个思路解答第(3)题:如图3,作GH ⊥y 轴,QN ⊥y 轴,垂足分别为H 、N .通过证明△AOB ≌△BHG ,根据全等三角形的对应角相等,可以证明∠ABG =90°. 在Rt △BGH 中,sin 1∠=,cos 1∠=①当3BQ BA=时,BQ = 在Rt △BQN 中,sin 13QN BQ =⋅∠=,cos 19BN BQ =⋅∠=.当Q 在B 上方时,1(3,10)Q ;当Q 在B 下方时,2(3,8)Q --.②当13BQ BA =时,BQ =31(,2)3Q ,41(,0)3Q -. 例2、 Rt △ABC 在直角坐标系内的位置如图1所示,反比例函数(0)k y k x=≠在第一象限内的图像与BC 边交于点D (4,m ),与AB 边交于点E (2,n ),△BDE 的面积为2.(1)求m与n的数量关系;(2)当tan∠A=12时,求反比例函数的解析式和直线AB的表达式;(3)设直线AB与y轴交于点F,点P在射线FD上,在(2)的条件下,如果△AEO 与△EFP相似,求点P的坐标.图1思路点拨1.探求m与n的数量关系,用m表示点B、D、E的坐标,是解题的突破口.2.第(2)题留给第(3)题的隐含条件是FD//x轴.3.如果△AEO与△EFP相似,因为夹角相等,根据对应边成比例,分两种情况.满分解答(1)如图1,因为点D(4,m)、E(2,n)在反比例函数kyx=的图像上,所以4,2.m kn k=⎧⎨=⎩整理,得n=2m.(2)如图2,过点E作EH⊥BC,垂足为H.在Rt△BEH中,tan∠BEH=tan∠A=12,EH=2,所以BH=1.因此D(4,m),E(2,2m),B(4,2m+1).已知△BDE的面积为2,所以11(1)2222BD EH m⋅=+⨯=.解得m=1.因此D(4,1),E(2,2),B(4,3).因为点D(4,1)在反比例函数kyx=的图像上,所以k=4.因此反比例函数的解析式为4yx =.设直线AB 的解析式为y =kx +b ,代入B (4,3)、E (2,2),得34,22.k b k b =+⎧⎨=+⎩ 解得12k =,1b =.因此直线AB 的函数解析式为112y x =+.图2 图3 图4(3)如图3,因为直线112y x =+与y 轴交于点F (0,1),点D 的坐标为(4,1),所以FD // x 轴,∠EFP =∠EAO .因此△AEO 与△EFP 相似存在两种情况:①如图3,当EA EF AO FP ==.解得FP =1.此时点P 的坐标为(1,1).②如图4,当EA FPAO EF ==.解得FP =5.此时点P 的坐标为(5,1).考点伸展本题的题设部分有条件“Rt △ABC 在直角坐标系内的位置如图1所示”,如果没有这个条件限制,保持其他条件不变,那么还有如图5的情况:第(1)题的结论m 与n 的数量关系不变.第(2)题反比例函数的解析式为12y x =-,直线AB 为172y x =-.第(3)题FD 不再与x 轴平行,△AEO 与△EFP 也不可能相似.图52016中考数学压轴题函数相似三角形问题(二)例3、如图1,已知梯形OABC,抛物线分别过点O(0,0)、A(2,0)、B(6,3).(1)直接写出抛物线的对称轴、解析式及顶点M的坐标;(2)将图1中梯形OABC的上下底边所在的直线OA、CB以相同的速度同时向上平移,分别交抛物线于点O1、A1、C1、B1,得到如图2的梯形O1A1B1C1.设梯形O1A1B1C1的面积为S,A1、B1的坐标分别为(x1,y1)、(x2,y2).用含S的代数式表示x2-x1,并求出当S=36时点A1的坐标;(3)在图1中,设点D的坐标为(1,3),动点P从点B出发,以每秒1个单位长度的速度沿着线段BC运动,动点Q从点D出发,以与点P相同的速度沿着线段DM运动.P、Q两点同时出发,当点Q到达点M时,P、Q两点同时停止运动.设P、Q两点的运动时间为t,是否存在某一时刻t,使得直线PQ、直线AB、x轴围成的三角形与直线PQ、直线AB、抛物线的对称轴围成的三角形相似?若存在,请求出t的值;若不存在,请说明理由.图1 图2思路点拨1.第(2)题用含S 的代数式表示x 2-x 1,我们反其道而行之,用x 1,x 2表示S .再注意平移过程中梯形的高保持不变,即y 2-y 1=3.通过代数变形就可以了.2.第(3)题最大的障碍在于画示意图,在没有计算结果的情况下,无法画出准确的位置关系,因此本题的策略是先假设,再说理计算,后验证.3.第(3)题的示意图,不变的关系是:直线AB 与x 轴的夹角不变,直线AB 与抛物线的对称轴的夹角不变.变化的直线PQ 的斜率,因此假设直线PQ 与AB 的交点G 在x 轴的下方,或者假设交点G 在x 轴的上方.满分解答(1)抛物线的对称轴为直线1x =,解析式为21184y x x =-,顶点为M (1,18-). (2) 梯形O 1A 1B 1C 1的面积12122(11)3()62x x S x x -+-⨯3==+-,由此得到1223s x x +=+.由于213y y -=,所以22212211111138484y y x x x x -=--+=.整理,得212111()()384x x x x ⎡⎤-+-=⎢⎥⎣⎦.因此得到2172x x S -=. 当S =36时,212114,2.x x x x +=⎧⎨-=⎩ 解得126,8.x x =⎧⎨=⎩ 此时点A 1的坐标为(6,3). (3)设直线AB 与PQ 交于点G ,直线AB 与抛物线的对称轴交于点E ,直线PQ 与x 轴交于点F ,那么要探求相似的△GAF 与△GQE ,有一个公共角∠G .在△GEQ 中,∠GEQ 是直线AB 与抛物线对称轴的夹角,为定值.在△GAF 中,∠GAF 是直线AB 与x 轴的夹角,也为定值,而且∠GEQ ≠∠GAF .因此只存在∠GQE =∠GAF 的可能,△GQE ∽△GAF .这时∠GAF =∠GQE =∠PQD . 由于3tan 4GAF ∠=,tan 5DQ t PQD QP t∠==-,所以345t t =-.解得207t =.图3 图4例4、 如图1,已知点A (-2,4) 和点B (1,0)都在抛物线22y mx mx n =++上.(1)求m 、n ;(2)向右平移上述抛物线,记平移后点A 的对应点为A ′,点B 的对应点为B ′,若四边形A A ′B ′B 为菱形,求平移后抛物线的表达式;(3)记平移后抛物线的对称轴与直线AB ′ 的交点为C ,试在x 轴上找一个点D ,使得以点B ′、C 、D 为顶点的三角形与△ABC 相似.图1思路点拨1.点A 与点B 的坐标在3个题目中处处用到,各具特色.第(1)题用在待定系数法中;第(2)题用来计算平移的距离;第(3)题用来求点B ′ 的坐标、AC 和B ′C 的长.2.抛物线左右平移,变化的是对称轴,开口和形状都不变.3.探求△ABC 与△B ′CD 相似,根据菱形的性质,∠BAC =∠CB ′D ,因此按照夹角的两边对应成比例,分两种情况讨论.满分解答(1) 因为点A (-2,4) 和点B (1,0)都在抛物线22y mx mx n =++上,所以444,20.m m n m m n -+=⎧⎨++=⎩ 解得43m =-,4n =. (2)如图2,由点A (-2,4) 和点B (1,0),可得AB =5.因为四边形A A ′B ′B 为菱形,所以A A ′=B ′B = AB =5.因为438342+--=x x y ()2416133x =-++,所以原抛物线的对称轴x =-1向右平移5个单位后,对应的直线为x =4. 因此平移后的抛物线的解析式为()3164342,+--=x y .图2(3) 由点A (-2,4) 和点B ′ (6,0),可得A B ′=如图2,由AM //CN ,可得''''B N B C B M B A =,即28=.解得'B C =AC =ABC 与△B ′CD 中,∠BAC =∠CB ′D .①如图3,当''AB B C AC B D ==,解得'3B D =.此时OD =3,点D 的坐标为(3,0).②如图4,当''AB B D AC B C ==,解得5'3B D =.此时OD =133,点D 的坐标为(133,0).图3 图4考点伸展在本题情境下,我们还可以探求△B ′CD 与△AB B ′相似,其实这是有公共底角的两个等腰三角形,容易想象,存在两种情况.我们也可以讨论△B ′CD 与△C B B ′相似,这两个三角形有一组公共角∠B ,根据对应边成比例,分两种情况计算.2016中考数学压轴题函数相似三角形问题(三)例5 、 如图1,抛物线经过点A (4,0)、B (1,0)、C (0,-2)三点. (1)求此抛物线的解析式;(2)P 是抛物线上的一个动点,过P 作PM ⊥x 轴,垂足为M ,是否存在点P ,使得以A 、P 、M 为顶点的三角形与△OAC 相似?若存在,请求出符合条件的 点P 的坐标;若不存在,请说明理由;(3)在直线AC 上方的抛物线是有一点D ,使得△DCA 的面积最大,求出点D 的坐标.,图1思路点拨1.已知抛物线与x 轴的两个交点,用待定系数法求解析式时,设交点式比较简便. 2.数形结合,用解析式表示图象上点的坐标,用点的坐标表示线段的长. 3.按照两条直角边对应成比例,分两种情况列方程. 4.把△DCA 可以分割为共底的两个三角形,高的和等于OA . 满分解答(1)因为抛物线与x 轴交于A (4,0)、B (1,0)两点,设抛物线的解析式为)4)(1(--=x x a y ,代入点C 的 坐标(0,-2),解得21-=a .所以抛物线的解析式为22521)4)(1(212-+-=---=x x x x y .(2)设点P 的坐标为))4)(1(21,(---x x x . ①如图2,当点P 在x 轴上方时,1<x <4,)4)(1(21---=x x PM ,x AM -=4. 如果2==CO AOPM AM ,那么24)4)(1(21=----x x x .解得5=x 不合题意. 如果21==CO AO PM AM ,那么214)4)(1(21=----x x x .解得2=x . 此时点P 的坐标为(2,1).②如图3,当点P 在点A 的右侧时,x >4,)4)(1(21--=x x PM ,4-=x AM .解方程24)4)(1(21=---x x x ,得5=x .此时点P 的坐标为)2,5(-.解方程214)4)(1(21=---x x x ,得2=x 不合题意.③如图4,当点P 在点B 的左侧时,x <1,)4)(1(21--=x x PM ,x AM -=4. 解方程24)4)(1(21=---x x x ,得3-=x .此时点P 的坐标为)14,3(--.解方程214)4)(1(21=---x x x ,得0=x .此时点P 与点O 重合,不合题意.综上所述,符合条件的 点P 的坐标为(2,1)或)14,3(--或)2,5(-.图2 图3 图4 (3)如图5,过点D 作x 轴的垂线交AC 于E .直线AC 的解析式为221-=x y . 设点D 的横坐标为m )41(<<m ,那么点D 的坐标为)22521,(2-+-m m m ,点E 的坐标为)221,(-m m .所以)221()22521(2---+-=m m m DE m m 2212+-=.因此4)221(212⨯+-=∆m m S DAC m m 42+-=4)2(2+--=m .当2=m 时,△DCA 的面积最大,此时点D 的坐标为(2,1).图5 图6考点伸展第(3)题也可以这样解:如图6,过D 点构造矩形OAMN ,那么△DCA 的面积等于直角梯形CAMN 的面积减去△CDN 和△ADM 的面积.设点D 的横坐标为(m ,n ))41(<<m ,那么42)4(21)2(214)22(21++-=--+-⨯+=n m m n n m n S . 由于225212-+-=m m n ,所以m m S 42+-=. 例6 、 如图1,△ABC 中,AB =5,AC =3,cos A =310.D 为射线BA 上的点(点D 不与点B 重合),作DE //BC 交射线CA 于点E ..(1) 若CE =x ,BD =y ,求y 与x 的函数关系式,并写出函数的定义域; (2) 当分别以线段BD ,CE 为直径的两圆相切时,求DE 的长度;(3) 当点D 在AB 边上时,BC 边上是否存在点F ,使△ABC 与△DEF 相似?若存在,请求出线段BF 的长;若不存在,请说明理由.图1 备用图 备用图思路点拨1.先解读背景图,△ABC 是等腰三角形,那么第(3)题中符合条件的△DEF 也是等腰三角形.2.用含有x 的式子表示BD 、DE 、MN 是解答第(2)题的先决条件,注意点E 的位置不同,DE 、MN 表示的形式分两种情况.3.求两圆相切的问题时,先罗列三要素,再列方程,最后检验方程的解的位置是否符合题意.4.第(3)题按照DE 为腰和底边两种情况分类讨论,运用典型题目的结论可以帮助我们轻松解题. 满分解答(1)如图2,作BH ⊥AC ,垂足为点H .在Rt △ABH 中,AB =5,cosA =310AH AB =,所以AH =32=12AC .所以BH 垂直平分AC ,△ABC 为等腰三角形,AB =CB =5. 因为DE //BC ,所以AB AC DB EC =,即53y x=.于是得到53y x =,(0x >). (2)如图3,图4,因为DE //BC ,所以DE AE BC AC =,MN AN BC AC =,即|3|53DE x -=,1|3|253x MN -=.因此5|3|3x DE -=,圆心距5|6|6x MN -=.图2 图3 图4在⊙M 中,115226M r BD y x ===,在⊙N 中,1122N r CE x ==. ①当两圆外切时,5162x x +5|6|6x -=.解得3013x =或者10x =-. 如图5,符合题意的解为3013x =,此时5(3)15313x DE -==. ②当两圆内切时,5162x x -5|6|6x -=. 当x <6时,解得307x =,如图6,此时E 在CA 的延长线上,5(3)1537x DE -==; 当x >6时,解得10x =,如图7,此时E 在CA 的延长线上,5(3)3533x DE -==.图5 图6 图7(3)因为△ABC 是等腰三角形,因此当△ABC 与△DEF 相似时,△DEF 也是等腰三角形.如图8,当D 、E 、F 为△ABC 的三边的中点时,DE 为等腰三角形DEF 的腰,符合题意,此时BF =2.5.根据对称性,当F 在BC 边上的高的垂足时,也符合题意,此时BF =4.1.如图9,当DE 为等腰三角形DEF 的底边时,四边形DECF 是平行四边形,此时12534BF =.图8 图9 图10 图11考点伸展:第(3)题的情景是一道典型题,如图10,如图11,AH 是△ABC 的高,D 、E 、F 为△ABC 的三边的中点,那么四边形DEHF 是等腰梯形.例 7 如图1,在直角坐标系xOy 中,设点A (0,t ),点Q (t ,b ).平移二次函数2tx y -=的图象,得到的抛物线F 满足两个条件:①顶点为Q ;②与x 轴相交于B 、C 两点(∣OB ∣<∣OC ∣),连结A ,B .(1)是否存在这样的抛物线F ,使得OC OB OA⋅=2?请你作出判断,并说明理由;(2)如果AQ ∥BC ,且tan ∠ABO =23,求抛物线F 对应的二次函数的解析式.思路点拨1.数形结合思想,把OC OB OA⋅=2转化为212t x x =⋅.2.如果AQ ∥BC ,那么以OA 、AQ 为邻边的矩形是正方形,数形结合得到t =b . 3.分类讨论tan ∠ABO =23,按照A 、B 、C 的位置关系分为四种情况.A 在y 轴正半轴时,分为B 、C 在y 轴同侧和两侧两种情况;A 在y 轴负半轴时,分为B 、C 在y 轴同侧和两侧两种情况. 满分解答(1)因为平移2tx y -=的图象得到的抛物线F 的顶点为Q (t ,b ),所以抛物线F 对应的解析式为b t x t y +--=2)(.因为抛物线与x 轴有两个交点,因此0>b t .令0=y ,得-=t OB t b,+=t OC tb . 所以-=⋅t OC OB (|||||tb)( +t t b )|-=2|t 22|OA t tb ==.即22b t t t -=±.所以当32t b =时,存在抛物线F 使得||||||2OC OB OA ⋅=.(2)因为AQ //BC ,所以t =b ,于是抛物线F 为t t x t y +--=2)(.解得1,121+=-=t x t x .①当0>t 时,由||||OC OB <,得)0,1(-t B .如图2,当01>-t 时,由=∠ABO tan 23=||||OB OA =1-t t ,解得3=t .此时二次函数的解析式为241832-+-=x x y .如图3,当01<-t 时,由=∠ABO tan 23=||||OB OA =1+-t t ,解得=t 53.此时二次函数的解析式为-=y 532x +2518x +12548.图2 图3②如图4,如图5,当0<t 时,由||||OC OB <,将t -代t ,可得=t 53-,3-=t .此时二次函数的解析式为=y 532x +2518x -12548或241832++=x x y .图4 图5考点伸展第(2)题还可以这样分类讨论:因为AQ //BC ,所以t =b ,于是抛物线F 为2()y t x t t =--+.由3tan 2OA ABO OB ∠==,得23OB OA =. ①把2(,0)3B t 代入2()y t x t t =--+,得3t =±(如图2,图5).②把2(,0)3B t -代入2()y t x t t =--+,得35t =±(如图3,图4).2016中考数学压轴题函数等腰三角形问题(一)例1、如图1,已知正方形OABC 的边长为2,顶点A 、C 分别在x 、y 轴的正半轴上,M 是BC 的中点.P (0,m )是线段OC 上一动点(C 点除外),直线PM 交AB 的延长线于点D .(1)求点D 的坐标(用含m 的代数式表示); (2)当△APD 是等腰三角形时,求m 的值;(3)设过P 、M 、B 三点的抛物线与x 轴正半轴交于点E ,过点O 作直线ME 的垂线,垂足为H (如图2).当点P 从O 向C 运动时,点H 也随之运动.请直接写出点H 所经过的路长(不必写解答过程).图1 图2思路点拨1.用含m 的代数式表示表示△APD 的三边长,为解等腰三角形做好准备. 2.探求△APD 是等腰三角形,分三种情况列方程求解.3.猜想点H 的运动轨迹是一个难题.不变的是直角,会不会找到不变的线段长呢?Rt △OHM 的斜边长OM 是定值,以OM 为直径的圆过点H 、C . 满分解答(1)因为PC //DB ,所以1CP PM MCBD DM MB===.因此PM =DM ,CP =BD =2-m .所以AD =4-m .于是得到点D 的坐标为(2,4-m ).(2)在△APD 中,22(4)AD m =-,224AP m =+,222(2)44(2)PD PM m ==+-. ①当AP =AD 时,2(4)m -24m =+.解得32m =(如图3). ②当PA =PD 时,24m +244(2)m =+-.解得43m =(如图4)或4m =(不合题意,舍去).③当DA =DP 时,2(4)m -244(2)m =+-.解得23m =(如图5)或2m =(不合题意,舍去).综上所述,当△APD 为等腰三角形时,m 的值为32,43或23.图3 图4 图5(3)点H.考点伸展第(2)题解等腰三角形的问题,其中①、②用几何说理的方法,计算更简单:①如图3,当AP=AD时,AM垂直平分PD,那么△PCM∽△MBA.所以12 PC MBCM BA==.因此12PC=,32m=.②如图4,当PA=PD时,P在AD的垂直平分线上.所以DA=2PO.因此42m m-=.解得43m=.第(2)题的思路是这样的:如图6,在Rt△OHM中,斜边OM为定值,因此以OM为直径的⊙G经过点H,也就是说点H在圆弧上运动.运动过的圆心角怎么确定呢?如图7,P与O重合时,是点H运动的起点,∠COH=45°,∠CGH=90°.图6 图7例2 如图1,已知一次函数y =-x +7与正比例函数43y x = 的图象交于点A ,且与x 轴交于点B .(1)求点A 和点B 的坐标;(2)过点A 作AC ⊥y 轴于点C ,过点B 作直线l //y 轴.动点P 从点O 出发,以每秒1个单位长的速度,沿O —C —A 的路线向点A 运动;同时直线l 从点B 出发,以相同速度向左平移,在平移过程中,直线l 交x 轴于点R ,交线段BA 或线段AO 于点Q .当点P 到达点A 时,点P 和直线l 都停止运动.在运动过程中,设动点P 运动的时间为t 秒. ①当t 为何值时,以A 、P 、R 为顶点的三角形的面积为8?②是否存在以A 、P 、Q 为顶点的三角形是等腰三角形?若存在,求t 的值;若不存在,请说明理由.图1思路点拨1.把图1复制若干个,在每一个图形中解决一个问题.2.求△APR 的面积等于8,按照点P 的位置分两种情况讨论.事实上,P 在CA 上运动时,高是定值4,最大面积为6,因此不存在面积为8的可能.3.讨论等腰三角形APQ ,按照点P 的位置分两种情况讨论,点P 的每一种位置又要讨论三种情况.满分解答(1)解方程组7,4,3y x y x =-+⎧⎪⎨=⎪⎩得3,4.x y =⎧⎨=⎩ 所以点A 的坐标是(3,4).令70y x =-+=,得7x =.所以点B 的坐标是(7,0).(2)①如图2,当P 在OC 上运动时,0≤t <4.由8A P R A C P P O RC O R A S S S S =--=△△△梯形,得1113+7)44(4)(7)8222t t t t -⨯-⨯⨯--⨯-=(.整理,得28120t t -+=.解得t =2或t =6(舍去).如图3,当P 在CA 上运动时,△APR 的最大面积为6.因此,当t =2时,以A 、P 、R 为顶点的三角形的面积为8.图2 图3 图4②我们先讨论P 在OC 上运动时的情形,0≤t <4.如图1,在△AOB 中,∠B =45°,∠AOB >45°,OB =7,AB =OB >AB .因此∠OAB >∠AOB >∠B .如图4,点P 由O 向C 运动的过程中,OP =BR =RQ ,所以PQ //x 轴.因此∠AQP =45°保持不变,∠PAQ 越来越大,所以只存在∠APQ =∠AQP 的情况. 此时点A 在PQ 的垂直平分线上,OR =2CA =6.所以BR =1,t =1. 我们再来讨论P 在CA 上运动时的情形,4≤t <7. 在△APQ 中, 3cos 5A ∠=为定值,7AP t =-,5520333AQ OA OQ OA OR t =-=-=-. 如图5,当AP =AQ 时,解方程520733t t -=-,得418t =.如图6,当QP =QA 时,点Q 在PA 的垂直平分线上,AP =2(OR -OP ).解方程72[(7)(4)]t t t -=---,得5t =.如7,当PA =PQ 时,那么12cos AQ A AP∠=.因此2cos AQ AP A =⋅∠.解方程52032(7)335t t -=-⨯,得22643t =. 综上所述,t =1或418或5或22643时,△APQ 是等腰三角形.图5 图6 图7考点伸展当P在CA上,QP=QA时,也可以用2cos=⋅∠来求解.AP AQ A2016中考数学压轴题函数等腰三角形问题(二)例3 如图1,在直角坐标平面内有点A(6, 0),B(0, 8),C(-4, 0),点M、N分别为线段AC和射线AB上的动点,点M以2个单位长度/秒的速度自C向A方向作匀速运动,点N以5个单位长度/秒的速度自A向B方向作匀速运动,MN交OB于点P.(1)求证:MN∶NP为定值;(2)若△BNP与△MNA相似,求CM的长;(3)若△BNP是等腰三角形,求CM的长.图1思路点拨1.第(1)题求证MN∶NP的值要根据点N的位置分两种情况.这个结论为后面的计算提供了方便.2.第(2)题探求相似的两个三角形有一组邻补角,通过说理知道这两个三角形是直角三角形时才可能相似.3.第(3)题探求等腰三角形,要两级(两层)分类,先按照点N 的位置分类,再按照顶角的顶点分类.注意当N 在AB 的延长线上时,钝角等腰三角形只有一种情况.4.探求等腰三角形BNP ,N 在AB 上时,∠B 是确定的,把夹∠B 的两边的长先表示出来,再分类计算.满分解答(1)如图2,图3,作NQ ⊥x 轴,垂足为Q .设点M 、N 的运动时间为t 秒. 在Rt △ANQ 中,AN =5t ,NQ =4t ,AQ =3t .在图2中,QO =6-3t ,MQ =10-5t ,所以MN ∶NP =MQ ∶QO =5∶3. 在图3中,QO =3t -6,MQ =5t -10,所以MN ∶NP =MQ ∶QO =5∶3.(2)因为△BNP 与△MNA 有一组邻补角,因此这两个三角形要么是一个锐角三角形和一个钝角三角形,要么是两个直角三角形.只有当这两个三角形都是直角三角形时才可能相似.如图4,△BNP ∽△MNA ,在Rt △AMN 中,35AN AM =,所以531025t t =-.解得3031t =.此时CM 6031=.图2 图3 图4(3)如图5,图6,图7中,OP MPQN MN=,即245OP t =.所以85OP t =. ①当N 在AB 上时,在△BNP 中,∠B 是确定的,885BP t =-,105BN t =-.(Ⅰ)如图5,当BP =BN 时,解方程881055t t -=-,得1017t =.此时CM 2017=.(Ⅱ)如图6,当NB =NP 时,45BE BN =.解方程()1848105255t t ⎛⎫-=- ⎪⎝⎭,得54t =.此时CM 52=. (Ⅲ)当PB =PN 时,1425BN BP =.解方程()1481058255t t ⎛⎫-=- ⎪⎝⎭,得t 的值为负数,因此不存在PB =PN 的情况.②如图7,当点N 在线段AB 的延长线上时,∠B 是钝角,只存在BP =BN 的可能,此时510BN t =-.解方程885105t t -=-,得3011t =.此时CM 6011=.图5 图6 图7考点伸展如图6,当NB =NP 时,△NMA 是等腰三角形,1425BN BP =,这样计算简便一些.例4、如图1,在矩形ABCD 中,AB =m (m 是大于0的常数),BC =8,E 为线段BC 上的动点(不与B 、C 重合).连结DE ,作EF ⊥DE ,EF 与射线BA 交于点F ,设CE =x ,BF =y .(1)求y 关于x 的函数关系式;(2)若m =8,求x 为何值时,y 的值最大,最大值是多少? (3)若12y m=,要使△DEF 为等腰三角形,m 的值应为多少?图1思路点拨1.证明△DCE ∽△EBF ,根据相似三角形的对应边成比例可以得到y 关于x 的函数关系式.2.第(2)题的本质是先代入,再配方求二次函数的最值.3.第(3)题头绪复杂,计算简单,分三段表达.一段是说理,如果△DEF 为等腰三角形,那么得到x =y ;一段是计算,化简消去m ,得到关于x 的一元二次方程,解出x 的值;第三段是把前两段结合,代入求出对应的m 的值.满分解答(1)因为∠EDC 与∠FEB 都是∠DEC 的余角,所以∠EDC =∠FEB .又因为∠C =∠B =90°,所以△DCE ∽△EBF .因此DC EB CE BF =,即8m xx y-=.整理,得y 关于x 的函数关系为218y x x m m=-+. (2)如图2,当m =8时,2211(4)288y x x x =-+=--+.因此当x =4时,y 取得最大值为2.(3) 若12y m =,那么21218x x m m m=-+.整理,得28120x x -+=.解得x =2或x =6.要使△DEF 为等腰三角形,只存在ED =EF 的情况.因为△DCE ∽△EBF ,所以CE =BF ,即x =y .将x =y =2代入12y m =,得m =6(如图3);将x =y =6代入12y m=,得m =2(如图4).图2 图3 图4考点伸展本题中蕴涵着一般性与特殊性的辩证关系,例如: 由第(1)题得到218y x x m m =-+221116(8)(4)x x x m m m=--=--+, 那么不论m 为何值,当x =4时,y 都取得最大值.对应的几何意义是,不论AB 边为多长,当E 是BC 的中点时,BF 都取得最大值.第(2)题m =8是第(1)题一般性结论的一个特殊性.再如,不论m 为小于8的任何值,△DEF 都可以成为等腰三角形,这是因为方程218x x x m m=-+总有一个根8x m =-的.第(3)题是这个一般性结论的一个特殊性.2016中考数学压轴题函数相似三角形问题(三)例5 已知:如图1,在平面直角坐标系xOy 中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =2,OC =3,过原点O 作∠AOC 的平分线交AB 于点D ,连接DC ,过点D 作DE ⊥DC ,交OA 于点E .(1)求过点E 、D 、C 的抛物线的解析式;(2)将∠EDC 绕点D 按顺时针方向旋转后,角的一边与y 轴的正半轴交于点F ,另一边与线段OC 交于点G .如果DF 与(1)中的抛物线交于另一点M ,点M 的横坐标为56,那么EF =2GO 是否成立?若成立,请给予证明;若不成立,请说明理由;(3)对于(2)中的点G ,在位于第一象限内的该抛物线上是否存在点Q ,使得直线GQ 与AB 的交点P 与点C 、G 构成的△PCG 是等腰三角形?若存在,请求出点Q 的坐标;若不存在成立,请说明理由.图1思路点拨1.用待定系数法求抛物线的解析式,这个解析式在第(2)、(3)题的计算中要用到. 2.过点M 作MN ⊥AB ,根据对应线段成比例可以求FA 的长. 3.将∠EDC 绕点D 旋转的过程中,△DCG 与△DEF 保持全等.4.第(3)题反客为主,分三种情况讨论△PCG 为等腰三角形,根据点P 的位置确定点Q 的位置,再计算点Q 的坐标.满分解答(1)由于OD 平分∠AOC ,所以点D 的坐标为(2,2),因此BC =AD =1. 由于△BCD ≌△ADE ,所以BD =AE =1,因此点E 的坐标为(0,1).设过E 、D 、C 三点的抛物线的解析式为c bx ax y ++=2,那么⎪⎩⎪⎨⎧=++=++=.039,224,1c b a c b a c 解得65-=a ,613=b 1=c .因此过E 、D 、C 三点的抛物线的解析式为1613652++-=x x y .(2)把56=x 代入1613652++-=x x y ,求得512=y .所以点M 的坐标为⎪⎭⎫⎝⎛512,56.如图2,过点M 作MN ⊥AB ,垂足为N ,那么DADNFA MN =,即25622512-=-FA .解得1=FA . 因为∠EDC 绕点D 旋转的过程中,△DCG ≌△DEF ,所以CG =EF =2.因此GO =1,EF=2GO .(3)在第(2)中,GC =2.设点Q 的坐标为⎪⎭⎫ ⎝⎛++-161365,2x x x . ①如图3,当CP =CG =2时,点P 与点B (3,2)重合,△PCG 是等腰直角三角形.此时G Q Q x x y -=,因此11613652-=++-x x x 。

完整版)等腰三角形专项练习题

完整版)等腰三角形专项练习题

完整版)等腰三角形专项练习题BatchDoc-Word文档批量处理工具BatchDoc是一款方便快捷的Word文档批量处理工具,可以实现多种功能,如批量转换、批量重命名、批量加密、批量解密、批量压缩、批量解压等,提高了工作效率。

1.在等腰三角形ABC中,AB=AC,BD平分∠ABC,已知∠A=36°,求∠1的度数。

解:由BD平分∠XXX可知∠ABD=∠CBD,又因为AB=AC,所以∠BAC=2∠ABD=2∠CBD,即∠1=180°-∠BAC=108°。

2.已知等腰三角形的两边长分别为5和6,求该等腰三角形的周长。

解:设等腰三角形的底边为x,则根据勾股定理可得x²=6²-(5/2)²=31.25,即x=√31.25,所以周长为2x+5+6=2√31.25+11≈17.5.3.在一张长为18厘米,宽为16厘米的矩形纸板上,剪下一个腰长为10厘米的等腰三角形,且要求等腰三角形的一个顶点与矩形的一个顶点重合,其它两个顶点在矩形的边上,求剪下的等腰三角形的面积。

解:如图,设剪下的等腰三角形为△ABC,其中AB=AC=10,BC=x,则根据勾股定理可得x²=16²-10²=196,即x=14.所以△ABC的面积为(1/2)×10×14=70平方厘米。

4.如图,在等腰三角形ABC中,∠B、∠C的平分线相交于F,过点F作DE∥BC,交AB于D,交AC于E,判断下列结论的正确性:①△BDF、△CEF都是等腰三角形;②DE=BD+CE;③△ADE的周长为AB+AC;④BD=CE。

解:①正确,因为∠XXX∠XXX∠XXX∠XXX∠BAC/2,所以△BDF、△CEF都是等腰三角形;②正确,因为根据相似三角形可得BD/BC=AD/AC,CE/BC=AE/AC,又因为AD=AE,所以BD=CE,即DE=2BD;③错误,因为AB+AC=2AB≠AD+DE+EA=AD+2BD;④正确,因为根据相似三角形可得BD/BC=AD/AC,CE/BC=AE/AC,又因为AD=AE,所以BD=CE。

北京市2016年各区中考二模汇编:等腰三角形

北京市2016年各区中考二模汇编:等腰三角形

9. 【2016 年东城二模,第 19 题】 如图,已知∠ABC=90°,分别以 AB 和 BC 为边向外作等边 △ABD 和等边△BCE,连接 AE,CD. 求证:AE=CD.
10. 【2016 年东城一模,第 21 题】 如图,在边长为 4 的正方形 ABCD 中,请画出以 A 为一个顶点,另外两个顶点在正方形 .. ABCD 的边上,且含边长为 3 的等腰三角形.(要求:画出三个大小不同,符合题意的 等腰三角形,只要画出示意图,并在所画等腰三角形长为 3 的边上标注数字 3)
PO, PA .若 POA m , PAO n ,则我们把 m , n 叫做点 P 的“双角坐标”.例 A 如,点 1,1 的“双角坐标”为 45 ,90 .
1 3 2 2 的“双角坐标”为; 1 (2)若点 P 到 x 轴的距离为 ,则 m n 的最小值为. 2
A D A D A D
B
C
B
C
B
C
11. 【2016 年丰台二模,第 20 题】
A
如图,△ABC 是等边三角形, BD ⊥ AC 于 点 D,E 为 BC 的中点,连接 DE. 求证:DE =DC. B E C D
12. 【2016 年西城二模,第 28 题】 在等腰直角三角形 ABC 中, AB AC, BAC 90 .点 P 为直线 AB 上一个动点(点 P 不与点 A, B 重合),连接 PC ,点 D 在直线 BC 上,且 PD PC .过点 P 作 PE PC ,点 D, E 在直线 AC 的同侧,且 PE PC ,连接 BE . (1)情况一:当点 P 在线段 AB 上时,图形如图 1 所示; ....... 情况二:如图 2,当点 P 在 BA 的延长线上,且 AP AB 时,请依题意补全图 2; ...... (2)请从问题(1)的两种情况中,任选一种情况,完成下列问题: ①求证: ACP DPB ; ②用等式表示线段 BC , BP, BE 之间的数量关系,并证明.

(新)初中数学《等腰三角形》专项测试题附答案解析(全汇编)

(新)初中数学《等腰三角形》专项测试题附答案解析(全汇编)

(新)初中数学《等腰三角形》专项测试题(全汇编)一、选择题1.等腰三角形的一个角是80°,则它顶角的度数是()A.80° B.80°或20° C.80°或50° D.20°2.已知等腰三角形的两边长分别是3和5,则该三角形的周长是()A.8 B.9 C.10或12 D.11或133.在等腰△ABC中,AB=AC,中线BD将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为()A.7 B.11 C.7或11 D.7或104.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为()A.60° B.120° C.60°或150° D.60°或120°5.在等腰△ABC中,AB=AC,BD⊥AC,∠ABC=72°,则∠ABD=()A.36° B.54° C.18 ° D.64°6. 在△ABC中,D是BC上的点,AB=AD=DC,∠B=70°,则∠C的度数为()A.35° B.40° C.45° D.50°7. 在△ABC中,∠B=∠C,AB=5,则AC的长为()A.2 B.3 C.4 D.58. 在矩形ABCD中,AB<BC,AC,BD相交于点O,则等腰三角形的个数是()A.8 B.6 C.4 D.29. 在等腰△ABC中,AB=AC,其周长为20 cm,则AB边的取值范围是()A.1 cm<AB<4 cm B.5 cm<AB<10 cm C.4 cm<AB<8 cm D.4 cm<AB<10cm10. 在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB于D.如果∠A=30°,AE=6cm,那么CE等于()A. 4 cm B.2 cm C. 3 cm D.1 cm11.在平面直角坐标系xOy中,A(0,2),B(0,6),动点C在直线y=x上.若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数是( )A.2 B.3 C.4 D.512. 在△ABC中,AB=20 cm,AC=12 cm,点P从点B出发以每秒3 cm的速度向点A运动,点Q从点A同时出发以每秒2 cm的速度向点C运动,其中一个动点到达端点时,另一个动点也随之停止运动,当△APQ是以PQ为底的等腰三角形时,运动的时间是()A.2.5秒B.3秒C.3.5秒D.4秒13. 等腰但不等边的三角形的角平分线、高线、中线的总条数是()A.3 B.5 C.7 D.914. 已知△ABC中,三边a,b,c满足|b-c|+(a-b)2=0,则∠A等于()A. 60° B.45° C.90° D.不能确定15.等腰三角形周长为36cm,两边长之比为4:1,则底边长为()A.16cm B.4cm C.20cm D.16cm或4cm二、填空题16. 等腰三角形的一个外角为110°,则底角的度数可能是_______.17. 等腰三角形的对称轴是____________.18.△ABC中,AB=AC,∠A=36°,BD平分∠ABC,则∠BD C=_______度,此图有___个等腰三角形.19. 在△ABC中,与∠A相邻的外角是100°,要使△ABC是等腰三角形,则∠B的度是_________.20. 在△ABC中,若∠A=80°,∠B=50°,AC=5,则AB=_______.三、解答题.21.在△ABC中,AB=AC,AD是BC边上的高,∠C=63°,BC=4,求∠BAD的度数及DC的长.22.在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于F.求证:AF平分∠BAC23.如图,已知点B、C、D在同一条直线上,△ABC和△CDE都是等边三角形.BE交AC于F,AD交CE于H,求证:(1)△BCE≌△ACD(2)CF=CH(3)△FCH是等边三角形;24. 如图,已知AB=AC=AD,且AD∥BC,求证:∠C = 2∠D25.在△ABC中,∠A BC与∠A CB的平分线交于点O,过O点作DE∥BC,分别交AB、AC于D、E,若AB=5,AC=4,求△ADE的周长.参考答案与解析一、选择题1. B 2D 3C 4D 5B 6A 7D 8C 9B 10C 11B 12D 13C 14A 15B二 填空:(16) 70°或55°(17) 底边上的高(顶角平分线或底边的中线)所在的直线(18)72°,3个 (19) 50°或80°或20° (20)5三、解答题.(21) 27°/2 (25) 93解析:解答:设AB =AC =x BC =y则有12,2152x x x y +=+=⎧⎨⎩或者12,2152x x x y +=+=⎧⎨⎩ 所以x =8, y =11或者x =10,y =7.即三角形AB =AC =8,BC =11.或AB =AC =10,BC =7.故选C.分析:等腰三角形两腰相等,会解二元一次方程.4.解析:解答:分两种情况:一种是这个高在三角形内,即此三角形是锐角三角形顶角=180°-90°-30°=60°,另一种是这个高落在一腰延长线上,即此三角形为钝角三角形顶角的补角=180°-90°-30°=60°,顶角=180°-60°=120°.分析:此题要注意分两种情况,要考虑锐角三角形和钝角三角形.6解析:解答:∵AB =AD , ∴∠ADB =∠B =70°.∵AD =DC , ∴12C DAC ADB ∠=∠=∠=35°. 分析:等腰三角形两底角相等,再根据三角形的外角等于和它不相邻的两个内角和.8解析:解答:∵四边形ABCD 是矩形,∴AO =BO =CO =DO ,∴△ABO ,△BCO ,△DCO ,△ADO 都是等腰三角形.分析:根据矩形的对角线相等且互相平分可得AO =BO =CO =DO ,进而得到等腰三角形.9解析:解答:∵在等腰△ABC 中,AB =AC ,其周长为20cm ,∴设AB=AC=x cm,则BC=(20-2x)cm,∴2x>20−2x,即20−2x>0.解得5 cm<x<10 cm.分析:设AB=AC=x,则BC=20-2x,根据三角形的三边关系即可得出结论.10解析:解答:∵ED⊥AB,∠A=30°,∴AE=2ED,∵AE=6cm,∴ED=3cm.∵∠ACB=90°,BE平分∠ABC,∴ED=CE,∴CE=3cm.分析:根据在直角三角形中,30度所对的直角边等于斜边的一半得出AE=2ED,求出ED,再根据角平分线到两边的距离相等得出ED=CE,即可得出CE的值11.解析:解答:AB的垂直平分线与直线y=x相交于点C1,∵A(0,2),B(0,6),∴AB=6-2=4,点A为圆心,以AB的长为半径画弧,与直线y=x的交点为C2,C3∵OB=6,∴点B到直线y=x的距离为=∵4,∴以点B为圆心,以AB的长为半径画弧,与直线y=x没有交点,所以,点C的个数是1+2=3.分析:根据线段垂直平分线上的点到线段两端点的距离相等可得AB的垂直平分线与直线y=x的交点为点C再求出AB的长,以点A为圆心,以AB的长为半径画弧,与直线y=x的交点为点C,求出点B到直线y=x的距离可知以点B为圆心,以AB的长为半径画弧,与直线没有交点12.解析:解答:设运动的时间为x cm/s,在△ABC中,AB=20cm,AC=12cm点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动当△APQ是等腰三角形时,AP=AQ,AP=20-3x,AQ=2x即20-3x=2x,解得x=4.分析:设运动的时间为x,则AP=20-3x,当APQ是等腰三角形时,AP=AQ,则20-3x=2x,解得x即可.13解析:解答:等腰但不等边的三角形底边上的角平分线、中线、高线三线重合成一条;腰上的三条线不重合,因而共有7条线.分析:画出图形,根据等腰三角形的性质进行分析即可得到答案14.解析:解答:△ABC中,三边a,b,c满足|b-c|+(a-b)2=0∴b-c=0,a-b=0,∴a=b=c,∴a=b=c,∴三角形是等边三角形,∴∠A=60°.分析:根据非负数的性质列式求解得到a=b=c,然后选择答案即可.15解析:解答:因为两边长之比为4:1,所以设较短一边为x,则另一边为4x;(1)假设x为底边,4x为腰;则8x+x=36,x=4,即底边为4;(2)假设x为腰,4x为底边,则2x+4x=36,x=6,4x=24;∵6+6<24,∴该假设不成立.所以等腰三角形的底边为4cm.分析:题中只给出了两边之比,没有明确说明哪个是底哪个是腰,所以应该分两种情况进行分析,再结合三角形三边的关系将不合题意的解舍去.16解析:解答:当110°是等腰三角形底角的外角时,底角为70°;当110°是等腰三角形顶角的外角时,因为等腰三角形两底角相等,所以一个底角的度数等于外角110°的一半,即55°分析:外角与它相邻的内角互补,外角等于和它不相邻的两个内角和.17答案:底边上的高(顶角平分线或底边的中线)所在的直线18.解析:解答:∵AB=AC,∠A=36°,∴△ABC是等腰三角形,∠C=∠ABC=(180°−36°)12⨯=72°.∵BD为∠ABC的平分线,∴∠ABD=∠A=∠DBC=36°,∴AD=BD,△ADB是等腰三角形,∴∠1=180°-36°-72°=72°=∠C,∴BC=BD,△CDB是等腰三角形.图中共有3个等腰三角形.分析:由已知条件,根据三角形内角和等于180、角的平分线的性质求得各个角的度数,然后利用等腰三角形的判定进行找寻,注意做到由易到难,不重不漏.19解析:解答:∵∠A的相邻外角是100°,∴∠A=80°.分两种情况:(1)当∠A为底角时,另一底角∠B=∠A=80°;(2)当∠A为顶角时,则底角∠B=∠C= (180°−80°)12⨯=50°(3)当∠B是顶角时,∠B=180°-2∠A=20°.综上所述,∠B的度数是80°或50°或20°.分析:已知给出了∠A的相邻外角是100°,没有明确是顶角还是底角,所以要进行分类讨论,分类后还有用内角和定理去验证每种情况是不是都成立.20解析:解答:∵∠A=80°,∠B=50°,∴∠C=180°-80°-50°=50°.∴AB=AC=5.分析:由已知条件先求出∠C的度数是50°,根据等角对等边的性质求解即可.三、解答题.21.解答:∵AB=AC,∠C=63°,∴∠B=∠C=63°,∴∠BAC=180°-63°-63°=54°.又∵AD是BC边上的高,∴AD是∠BAC的平分线,AD是BC边上的中线,∴∠BAD=12∠BAC=27°,DC=12BC=2.解析:分析:根据等腰三角形的两个底角相等求出顶角∠BAC的度数,再由等腰三角形的三线合一性质即可求出∠BAD=12∠BAC=27°,DC=12BC=2.22.证明:∵AB=AC,∴∠ABC=∠ACB.又∵BD⊥AC,CE⊥AB,∴∠BEC=∠CDB=90°.在△BCE和△CBD中,∠ABC=∠ACB,∠BEC=∠CDB,BC=BC.∴△BCE≌△CBD(AAS).∴BE=CD.∵AB=AC,BE=CD,∴AB-BE=AC-CD,∴AE=AD.∴在△AEF和△ADF中,AE=AD, AF=AF.△AEF≌△ADF(HL).∴∠EAF=∠DAF,AF平分∠BAC.解析:分析:要通过两次三角形全等,再结合等腰三角形的性质得出结论. 23(1)证明:∵△ABC和△CDE都是等边三角形,∴∠BCA=∠DCE=60°,BC=AC=AB,EC=CD=ED,∴∠BCE=∠ACD.在△BCE和△ACD中,,,,BC AC BCE ACD CE CD =⎧∠=∠=⎪⎨⎪⎩∴△BCE ≌△ACD (S A S );(2)CF =CH ; ∵△BCE ≌△ACD ,∴∠CBF =∠CAH .∵∠ACB =∠DCE =60°,在△BCF 和△ACH 中,∴∠ACH =60°,∴∠BCF =∠ACH ,,,,CBF CAH BC AC BCF ACH ∠=∠=∠=∠⎧⎪⎨⎪⎩∴△BCF ≌△ACH (A S A ),∴CF =CH ;(3)△FCH 是等边三角形;∵CF =CH ,∠ACH =60°,∴△CFH 是等边三角形. 24.证明:∵AB =AC =AD ,∴∠C =∠ABC ,∠D =∠ABD.∴∠ABC =∠CBD +∠D .∵AD ∥BC ,∴∠CBD =∠D ,∴∠ABC =∠D +∠D =2∠D ,又∵∠C =∠ABC ,∴∠C =2∠D .解析:分析:首先根据AB =AC =AD ,∵AD ∥BC ,∴∠D =∠DBC 可得∠C =∠ABC ,∠D =∠ABD ,∠ABC =∠CBD +∠D ;然后根据AD ∥BC ,可得∠CBD =∠D ,据此判断出∠ABC =2∠D ,再根据∠C =∠ABC ,即可判断出∠C =2∠D25.如图,在△ABC 中,∠B 与∠C 的平分线交于点O , 过O 点作DE ∥BC ,分别交AB 、AC 于D 、E ,若AB =5,AC=4,求△ADE的周长.答案:解答:∵在△ABC中,∠B与∠C的平分线交于点O,∴∠DBO=∠CBO,∠ECO=∠BCO,∵DE∥BC,∴∠DOB=∠CBO,∠EOC=∠BCO,∴∠DBO=∠DOB,∠ECO=∠EOC,∴OD=BD,OE=CE,∵AB=5,AC=4,∴△ADE的周长为:AD+DE+AE=AD+DO+EO+AE=AD+DB+EC+AE=AB+AC=5+4=9.解析:分析:由在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,易证得△DOB与△EOC是等腰三角形,即DO=DB,EO=EC,继而可得△ADE的周长等于AB+AC,即可求得答案.。

2016中考数学真题之 三角形(基础+分类)

2016中考数学真题之 三角形(基础+分类)

1. (2016·四川达州·3分)如图,在5×5的正方形网格中,从在格点上的点A,B,C,D中任取三点,所构成的三角形恰好是直角三角形的概率为()A.B.C.D.2.(2016广州)如图2,已知三角形ABC,AB=10,AC=8,BC=6,DE是AC的垂直平分线,DE交AB于D,连接CD,CD=( )A、3B、4C、4.8D、53. (2016年浙江省台州市)如图,数轴上点A,B分别对应1,2,过点B作PQ⊥AB,以点B为圆心,AB长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M对应的数是()A.B.C.D.4.(2016·山东烟台)如图,Rt△ABC的斜边AB与量角器的直径恰好重合,B点与0刻度线的一端重合,∠ABC=40°,射线CD绕点C转动,与量角器外沿交于点D,若射线CD将△ABC分割出以BC为边的等腰三角形,则点D在量角器上对应的度数是()A.40°B.70°C.70°或80°D.80°或140°5.(2016.山东省威海市,3分)如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A.B.C.D.6.(2016·江苏连云港)如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为S1、S2、S3;如图2,分别以直角三角形三个顶点为圆心,三边长为半径向外作圆心角相等的扇形,面积分别为S4、S5、S6.其中S1=16,S2=45,S5=11,S6=14,则S3+S4=()A.86 B.64 C.54 D.48 7.(2016•株洲)如图,以直角三角形a、b、c为边,向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形个数有()A.1 B.2 C.3 D.48.(2016•浙江省舟山)如图,矩形ABCD中,AD=2,AB=3,过点A,C作相距为2的平行线段AE,CF,分别交CD,AB于点E,F,则DE的长是()A.B.C.1 D.9. (2016·湖北黄冈)如图,在矩形ABCD中,点E,F分别在边CD,BC上,且DC=3DE=3a,将矩形沿直线EF折叠,使点C恰好落在AD边上的点P处,则FP=_______.A P(C) DEB F C10.(2016·广东梅州)如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(23,0),B(0,2),则点B2016的坐标为______________.图2DACEB11.(2016.山东省临沂市,3分)如图,将一矩形纸片ABCD折叠,使两个顶点A,C重合,折痕为FG.若AB=4,BC=8,则△ABF的面积为.12.(2016•淄博)如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为()A.B.2C.D.10﹣513.(2016•南京)下列长度的三条线段能组成钝角三角形的是()A.3,4,4 B.3,4,5 C.3,4,6 D.3,4,714.(2015•毕节市)下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.,,B.1,,C.6,7,8 D.2,3,415.(2015•大连)如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC的长为()A.﹣1 B.+1 C.﹣1 D.+116.(2015•淄博)如图,在Rt△ABC中,∠BAC=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.已知DC=8,AD=4,则图中长为4的线段有()A.4条B.3条C.2条D.1条17.(2015•黑龙江)△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC于点E,则PD+PE的长是()A.4.8 B.4.8或3.8 C.3.8 D.5 15.(2015泰州)如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP 沿BP翻折至△EBP,PE与CD 相交于点O,且OE=OD,则AP的长为()A.4 B.4.5 C.4.8 D.524.(本小题满分10分)(2016福州)如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积;(3)当射线BN交线段CD于点F时,求DF的最大值.。

中考数学真题分类汇编:等腰三角形

中考数学真题分类汇编:等腰三角形

等腰三角形一.选择题1.(2012肇庆)等腰三角形两边长分别为4和8,则这个等腰三角形的周长为A.16 B.18C.20 D.16或20【解析】先利用等腰三角形的性质:两腰相等;再由三角形的任意两边和大于第三边,确定三角形的第三边长,最后求得其周长.【答案】C【点评】本题将两个简易的知识点:等腰三角形的两腰相等和三角形的三边关系组合在一起.难度较小.2.(2012江西)等腰三角形的顶角为80°,则它的底角是()A.20° B.50° C.60° D.80°考点:等腰三角形的性质。

分析:根据三角形内角和定理和等腰三角形的性质,可以求得其底角的度数.解答:解:∵等腰三角形的一个顶角为80°∴底角=(180°﹣80°)÷2=50°.故选B.点评:考查三角形内角和定理和等腰三角形的性质的运用,比较简单.3.(2012•中考)把等腰△ABC沿底边BC翻折,得到△DBC,那么四边形ABDC()解答:解:∵等腰△ABC沿底边BC翻折,得到△DBC,∴四边形ABDC是菱形,∵菱形既是中心对称图形,又是轴对称图形,∴四边形ABDC既是中心对称图形,又是轴对称图形.故选C .点评: 本题考查了中心对称图形,等腰三角形的性质,轴对称图形,判断出四边形ABDC 是菱形是解题的关键.4.(2012荆州)如图,△ABC 是等边三角形,P 是∠ABC 的平分线BD 上一点,PE ⊥AB 于点E ,线段BP 的垂直平分线交BC 于点F ,垂足为点Q .若BF =2,则PE 的长为( )A .2 B ..3 【解析】题目中已知了△ABC 是等边三角形,联想到等边三角形的三边相等、三角相等、三线合一的性质。

本题中,有含有30°角的直角三角形,要想到30°角的直角边等于斜边的一半。

△ABC 是等边三角形,BD 是∠ABC 的平分线, 所以∠ABD=∠CBD=21∠ABC=30°。

等腰三角形题型汇编(全)

等腰三角形题型汇编(全)

题型一:等腰三角形有关角的计算1、锐角△ABC中,AB=AC,点D在AC边上,DE⊥AB于E,延长ED交BC的延长线于点F.(1)当∠A=40°时,求∠F的度数;(2)设∠F为x度,∠FDC为y度,试确定y与x之间的函数关系式.2、在△ABC中,已知AB=AC,BD⊥AC于D,∠DBC=35°,求∠BAC的度数。

3、一个等腰三角形的一腰上的高于另一腰成35度角,则此等腰三角形的顶角是多少?题型二:等腰三角形有关边的计算1、已知一个等腰三角形的一边长为5,另一边长为7,求这个等腰三角形的周长。

2 、 一个等腰三角形的周长为20cm 。

从底边上的一个顶点引腰的中线,分三角形周长为两部分,其中一部分比另一部分长2cm 。

求等腰三角形的腰长。

题型三:等腰三角形的性质与判定1、如图,已知AB=AC,BD=CD,AE 平分∠CAF,试判断AE 与AD 的位置关系,并说明理由。

2、在△ABC 中,AC=BC ,∠ACB=90°,D 是AC 上一点,AE ⊥BD 交BD 的延长线于E ,又BD 平分∠ABC 。

求证:AE=21BD3、如图,△BDA 、△HDC 都是等腰直角三角形,且D 在BC 上,BH 的延长线与 AC 交于点E ,请你判断线段AC 与BH 有什么关系?并说明理由.题型四:角平分线和线段垂直平分线的应用 1、如图,AD 是△ABC 的角平分线,EF 是AD 的垂直平分线.求证:(1)∠EAD=∠EDA .(2)DF ∥AC .(3)∠EAC=∠B .2、如图,在△ABC 中,AC=BC ,∠ACB=90°,D 是AC 上一点,AE ⊥BD 交BD 的延长线于E ,且AE=21BD ,AE 延长线与BC 的延长线相交于F (1)试说明AF=BD ;(2)请问BD 是∠ABC 的平分线吗?如果是,请说明理由;3、已知,如图∠B=∠C=90°,M是BC的中点,DM平分∠ADC.(1)求证:AM平分∠DAB;(2)猜想AM与DM的位置关系如何,并证明你的结论.4、已知,如图∠B=∠C=90°,AM平分∠DAB,DM平分∠ADC.求证:BM=CM题型五:对称在一次函数中的应用1、求与一次函数y=2x-1的图像关于x轴对称的直线的函数解析式2、不作函数y=-2x+1与y=2x+1的图像,试判断它们的图像关于哪一个坐标轴对称。

全国各地中考数学试题分类汇编(第2期)专题22 等腰三角形(含解析)

全国各地中考数学试题分类汇编(第2期)专题22 等腰三角形(含解析)

等腰三角形选择题1. (2016·浙江省湖州市·3分)如图1,在等腰三角形ABC中,AB=AC=4,BC=7.如图2,在底边BC上取一点D,连结AD,使得∠DAC=∠ACD.如图3,将△ACD沿着AD所在直线折叠,使得点C落在点E处,连结BE,得到四边形ABED.则BE的长是()A.4 B. C.3D.2【考点】翻折变换(折叠问题);四点共圆;等腰三角形的性质;相似三角形的判定与性质.【分析】只要证明△ABD∽△MBE,得=,只要求出BM、BD即可解决问题.【解答】解:∵AB=AC,∴∠ABC=∠C,∵∠DAC=∠ACD,∴∠DAC=∠ABC,∵∠C=∠C,∴△CAD∽△CBA,∴=,∴=,∴CD=,BD=BC﹣CD=,∵∠DAM=∠DAC=∠DBA,∠ADM=∠ADB,∴△ADM∽△BDA,∴=,即=,∴DM=,MB=BD﹣DM=,∵∠ABM=∠C=∠MED,∴A、B、E、D四点共圆,∴∠ADB=∠BEM,∠EBM=∠EAD=∠ABD,∴△ABD∽△MBE,∴=,∴BE===.故选B .2.(2016·广西百色·3分)如图,正△ABC 的边长为2,过点B 的直线l ⊥AB ,且△ABC 与△A′BC′关于直线l 对称,D 为线段BC′上一动点,则AD+CD 的最小值是( )A .4B .32C .23D .2+3【考点】轴对称-最短路线问题;等边三角形的性质.【分析】连接CC′,连接A′C 交y 轴于点D ,连接AD ,此时AD+CD 的值最小,根据等边三角形的性质即可得出四边形CBA′C′为菱形,根据菱形的性质即可求出A′C 的长度,从而得出结论.【解答】解:连接CC′,连接A′C 交l 于点D ,连接AD ,此时AD+CD 的值最小,如图所示.∵△ABC 与△A′BC′为正三角形,且△ABC 与△A′BC′关于直线l 对称,∴四边形CBA′C′为边长为2的菱形,且∠BA′C′=60°, ∴A′C=2×23A′B=23.故选C .3.(2016·广西桂林·3分)已知直线y=﹣3x+3与坐标轴分别交于点A ,B ,点P 在抛物线y=﹣ (x ﹣ 3 )2+4上,能使△ABP 为等腰三角形的点P 的个数有( )A.3个 B.4个 C.5个 D.6个【考点】二次函数图象上点的坐标特征;一次函数图象上点的坐标特征;等腰三角形的判定.【分析】以点B为圆心线段AB长为半径做圆,交抛物线于点C、M、N点,连接AC、BC,由直线y=﹣x+3可求出点A、B的坐标,结合抛物线的解析式可得出△ABC等边三角形,再令抛物线解析式中y=0求出抛物线与x轴的两交点的坐标,发现该两点与M、N重合,结合图形分三种情况研究△ABP为等腰三角形,由此即可得出结论.【解答】解:以点B为圆心线段AB长为半径做圆,交抛物线于点C、M、N点,连接AC、BC,如图所示.令一次函数y=﹣x+3中x=0,则y=3,∴点A的坐标为(0,3);令一次函数y=﹣x+3中y=0,则﹣x+3,解得:x=,∴点B的坐标为(,0).∴AB=2.∵抛物线的对称轴为x=,∴点C的坐标为(2,3),∴AC=2=AB=BC,∴△ABC为等边三角形.令y=﹣(x﹣)2+4中y=0,则﹣(x﹣)2+4=0,解得:x=﹣,或x=3.∴点E的坐标为(﹣,0),点F的坐标为(3,0).△ABP为等腰三角形分三种情况:①当AB=BP时,以B点为圆心,AB长度为半径做圆,与抛物线交于C、M、N三点;②当AB=AP时,以A点为圆心,AB长度为半径做圆,与抛物线交于C、M两点,;③当AP=BP时,作线段AB的垂直平分线,交抛物线交于C、M两点;∴能使△ABP为等腰三角形的点P的个数有3个.故选A.4.(2016·贵州安顺·3分)已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是()A.20或16B.20C.16D.以上答案均不对【分析】根据非负数的意义列出关于x、y的方程并求出x、y的值,再根据x是腰长和底边长两种情况讨论求解.【解答】解:根据题意得,解得,(1)若4是腰长,则三角形的三边长为:4、4、8,不能组成三角形;(2)若4是底边长,则三角形的三边长为:4、8、8,能组成三角形,周长为4+8+8=20.故选B.【点评】本题考查了等腰三角形的性质、非负数的性质及三角形三边关系;解题主要利用了非负数的性质,分情况讨论求解时要注意利用三角形的三边关系对三边能否组成三角形做出判断.根据题意列出方程是正确解答本题的关键.5. (2016·湖北武汉·3分)平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.5 B.6 C.7 D.8【考点】等腰三角形的判定;坐标与图形性质【答案】A【解析】构造等腰三角形,①分别以A,B为圆心,以AB的长为半径作圆;②作AB的中垂线.如图,一共有5个C点,注意,与B重合及与AB共线的点要排除。

中考数学真题《等腰三角形与直角三角形》专项测试卷(带答案)

中考数学真题《等腰三角形与直角三角形》专项测试卷(带答案)

中考数学真题《等腰三角形与直角三角形》专项测试卷(带答案)学校:___________班级:___________姓名:___________考号:___________(25道)一、单选题1.如图,直角ABC 中 30B ∠=︒ 点O 是ABC 的重心 连接CO 并延长交AB 于点E 过点E 作EF AB ⊥交BC 于点F 连接AF 交CE 于点M ,则MO MF的值为( )A .12 B 5C .23 D 32.将一副直角三角板和一把宽度为2cm 的直尺按如图方式摆放:先把60︒和45︒角的顶点及它们的直角边重合 再将此直角边垂直于直尺的上沿 重合的顶点落在直尺下沿上 这两个三角板的斜边分别交直尺上沿于A B 两点,则AB 的长是( )A .23B .232C .2D .233.如图,ABC 是等腰三角形 36AB AC A =∠=︒,.以点B 为圆心 任意长为半径作弧 交AB 于点F 交BC 于点G 分别以点F 和点G 为圆心 大于12FG 的长为半径作弧 两弧相交于点H 作射线BH 交AC 于点D 分别以点B 和点D 为圆心 大于12BD 的长为半径作弧 两孤相交于M N 两点 作直线MN 交AB 于点E 连接DE .下列四个结论:①AED ABC ∠=∠ ①BC AE = ①12ED BC = ①当2AC =时 51AD =.其中正确结论的个数是( )A .1B .2C .3D .44.如图ABC 中 90,4,,ACB AB AC x BAC α︒∠===∠= O 为AB 中点 若点D 为直线BC 下方一点 且BCD △与ABC 相似,则下列结论:①若45α=︒ BC 与OD 相交于E ,则点E 不一定是ABD △的重心 ①若60α=︒,则AD 的最大值为 ①若60,ABC CBD α=︒∽,则OD 的长为 ①若ABC BCD △∽△,则当2x =时 AC CD +取得最大值.其中正确的为( )A .①①B .①①C .①①①D .①①①5.如图,在ABC 中 90,30,2,B A BC D ︒︒∠=∠==为AB 的中点.若点E 在边AC 上 且AD DE AB BC =,则AE 的长为( )A .1B .2C .1D .1或26.如图,在Rt ABC 中 9053C AB BC ∠=︒==,, 以点A 为圆心 适当长为半径作弧 分别交AB AC,于点E F , 分别以点E F ,为圆心 大于12EF 的长为半径作弧 两弧在BAC ∠的内部相交于点G 作射线AG 交BC 于点D ,则BD 的长为( )A .35B .34C .43D .537.5月26日 “2023中国国际大数据产业博览会”在贵阳开幕 在“自动化立体库”中有许多几何元素 其中有一个等腰三角形模型(示意图如图所示) 它的顶角为120︒ 腰长为12m ,则底边上的高是( )A .4mB .6mC .10mD .12m8.如图,ABC 为等边三角形 点D E 分别在边BC AB 上 60ADE ∠=︒ 若4BD DC = 2.4DE =,则AD 的长为( )A .1.8B .2.4C .3D .3.29.下面是“作已知直角三角形的外接圆”的尺规作图过程: 已知:如图1 在Rt ABC △中 90C ∠=︒.求作:Rt ABC △的外接圆.作法:如图2.(1)分别以点A 和点B 为圆心 大于12AB 的长为半径作弧 两弧相交于P Q 两点 (2)作直线PQ 交AB 于点O(3)以O 为圆心 OA 为半径作O O 即为所求作的圆.下列不属于...该尺规作图依据的是() A .两点确定一条直线B .直角三角形斜边上的中线等于斜边的一半C .与线段两个端点距离相等的点在这条线段的垂直平分线上D .线段垂直平分线上的点与这条线段两个端点的距离相等10.如图,在ABC 中 9034ABC AB BC ∠=︒==,, 点D 在边AC 上 且BD 平分ABC 的周长,则BD的长是( )A B C D11.ABC 的三边长a b c 满足2()|0a b c --=,则ABC 是( )A .等腰三角形B .直角三角形C .锐角三角形D .等腰直角三角形12.四边形ABCD 的边长如图所示 对角线AC 的长度随四边形形状的改变而变化.当ABC 为等腰三角形时 对角线AC 的长为( )A .2B .3C .4D .5二 填空题13.将形状 大小完全相同的两个等腰三角形如图所示放置 点D 在AB 边上 ①DEF 绕点D 旋转 腰DF 和底边DE 分别交①CAB 的两腰CA CB 于M N 两点 若CA=5 AB=6 AB=1:3,则MD+12⋅MA DN的最小值为 .14.如图,在Rt ABC △中 90ACB ∠=︒ 点D 为BC 的中点 过点C 作CE AB ∥交AD 的延长线于点E 若4AC = 5CE =,则CD 的长为 .15.如图,在Rt ABC 中 90ACB ∠=︒ 3AC BC == 点D 在直线AC 上 1AD = 过点D 作DE AB ∥直线BC 于点E 连接BD 点O 是线段BD 的中点 连接OE ,则OE 的长为 .16.如图,在ABC 中 90,6C AC BC ∠=︒==.P 为边AB 上一动点 作PD BC ⊥于点D PE AC ⊥于点E ,则DE 的最小值为 .17.如图.四边形ABCD 中 AB AD = BC DC = 60C ∠=︒ AE CD ∥交BC 于点E 8BC = 6AE =,则AB 的长为 .18.如图,已知50ABC ∠=︒ 点D 在BA 上 以点B 为圆心 BD 长为半径画弧 交BC 于点E 连接DE ,则BDE ∠的度数是 度.19.如图,在ABC 中 以A 为圆心 AC 长为半径作弧 交BC 于C D 两点 分别以点C 和点D 为圆心 大于12CD 长为半径作弧 两弧交于点P 作直线AP 交CD 于点E 若5AC = 6CD =,则AE = .20.如图,在ABC 中 以点C 为圆心 任意长为半径作弧 分别交AC BC 于点D E 分别以点DE 为圆心 大于12DE 的长为半径作弧 两弧交于点F 作射线CF 交AB 于点G 若9AC = 6BC = BCG 的面积为8,则ACG 的面积为 .21.如图,CD 为Rt ABC △斜边AB 上的中线 E 为AC 的中点.若8AC = 5CD =,则DE = .22.在 Rt △ABC 中, △ACB =90° AC =6 BC =8 D 是AB 的中点,则 CD = .三 解答题23.在Rt ABC △中 90BAC AD ∠=︒,是斜边BC 上的高.(1)证明:C ABD BA ∽△△(2)若610AB BC ==, 求BD 的长.24.如图,BD 是等边ABC 的中线 以D 为圆心 DB 的长为半径画弧 交BC 的延长线于E 连接DE .求证:CD CE =.25.如图,在四边形ABCD 中 点E 是边BC 上一点 且BE CD = B AED C ∠=∠=∠.(1)求证:EAD EDA ∠=∠(2)若60C ∠=︒ 4DE =时 求AED △的面积.参考答案一、单选题1.如图,直角ABC 中 30B ∠=︒ 点O 是ABC 的重心 连接CO 并延长交AB 于点E 过点E 作EF AB ⊥交BC 于点F 连接AF 交CE 于点M ,则MO MF的值为( )A .12BC .23 D【答案】D 【详解】解:①点O 是①ABC 的重心 ①OC =23CE ①①ABC 是直角三角形 ①CE =BE =AE ①①B =30° ①①F AE =①B =30° ①BAC =60° ①①F AE =①CAF =30° ①ACE 是等边三角形 ①CM =12CE ①OM =23CE ﹣12CE =16CE 即OM =16AE ①BE =AE ①EF①EF ①AB ①①AFE =60° ①①FEM =30° ①MF =12EF ①MF①MO MF1AE故选D .2.将一副直角三角板和一把宽度为2cm 的直尺按如图方式摆放:先把60︒和45︒角的顶点及它们的直角边重合 再将此直角边垂直于直尺的上沿 重合的顶点落在直尺下沿上 这两个三角板的斜边分别交直尺上沿于A B 两点,则AB 的长是( )A.2B.2 C .2 D.【答案】B 【分析】根据等腰直角三角形的性质可得2cm AD CD == 由含30度角直角三角形的性质可得24cm BC CD == 由勾股定理可得BD 的长 即可得到结论.【详解】解:如图,在Rt ACD △中 45ACD ∠=︒①45CAD ACD ∠=︒=∠①2cm AD CD ==在Rt BCD 中 60BCD ∠=︒①30CBD ∠=︒①24cm BC CD == ①)22224223cm BD BC CD --= ①()233cm AB BD AD =-=.故选:B .【点睛】本题考查了勾股定理 等腰直角三角形的性质 含30︒角直角三角形的性质 熟练掌握勾股定理是解题的关键.3.如图,ABC 是等腰三角形 36AB AC A =∠=︒,.以点B 为圆心 任意长为半径作弧 交AB 于点F 交BC 于点G 分别以点F 和点G 为圆心 大于12FG 的长为半径作弧 两弧相交于点H 作射线BH 交AC 于点D 分别以点B 和点D 为圆心 大于12BD 的长为半径作弧 两孤相交于M N 两点 作直线MN 交AB 于点E 连接DE .下列四个结论:①AED ABC ∠=∠ ①BC AE = ①12ED BC = ①当2AC =时 51AD =.其中正确结论的个数是( )A .1B .2C .3D .4【答案】C 【分析】根据等腰三角形两底角相等与36A ∠=︒ 得到72ABC C ∠=∠=︒ 根据角平分线定义得到36ABD CBD ∠=∠=︒ 根据线段垂直平分线性质得到EB ED = 得到EBD EDB ∠=∠ 推出EDB CBD ∠=∠ 得到DE BC ∥ 推出AED ABC ∠=∠ ①正确 根据等角对等边得到AD AE = AD BD = 根据三角形外角性质得到72BDC C ∠=︒=∠ 得到BC BD = 推出BC AE = ①正确 根据AED ABC △∽△ 得到ED AD AD BC AC AD DC ==+ 推出ED = ①错误 根据2AC =时CD AD = 2AD AD =-,推出1AD = ①正确. 【详解】①ABC 中 AB AC = 36A ∠=︒ ①()1180722ABC C A ∠=∠=︒-∠=︒ 由作图知 BD 平分ABC ∠ MN 垂直平分BD ①1362ABD CBD ABC ∠=∠=∠=︒EB ED = ①EBD EDB ∠=∠①EDB CBD ∠=∠①DE BC ∥①AED ABC ∠=∠ ①正确 ADE C ∠=∠①AED ADE ∠=∠①AD AE =①A ABD ∠=∠①AD BD =①72BDC A ABD ∠=∠+∠=︒ ①BDC C ∠=∠①BC BD =①BC AE = ①正确设ED x = BC a =则AD a = BE x =①CD BE x ==①AED ABC △∽△ ①EDADADBC AC AD DC ==+ ①x aa a x =+①220x ax a +-=①0x >①51x -= 即51ED -=①错误 当2AC =时 2CD AD =- ①51CD AD -=512AD AD -=-, ①51AD = ①正确①正确的有①①① 共3个.故选:C .【点睛】本题主要考查了等腰三角形 相似三角形 解决问题的关键是熟练掌握等腰三角形判定和性质 相似三角形的判定和性质 角平分线的定义和线段垂直平分线的性质.4.如图ABC 中 90,4,,ACB AB AC x BAC α︒∠===∠= O 为AB 中点 若点D 为直线BC 下方一点 且BCD △与ABC 相似,则下列结论:①若45α=︒ BC 与OD 相交于E ,则点E 不一定是ABD △的重心 ①若60α=︒,则AD 的最大值为27 ①若60,ABC CBD α=︒∽,则OD 的长为23 ①若ABC BCD △∽△,则当2x =时 AC CD +取得最大值.其中正确的为( )A .①①B .①①C .①①①D .①①①【答案】A 【分析】①有3种情况 分别画出图形 得出ABD △的重心 即可求解 当60α=︒ BD BC ⊥时 AD 取得最大值 进而根据已知数据 结合勾股定理 求得AD 的长 即可求解 ①如图5 若60α=︒ C ABC BD ∽△△ 根据相似三角形的性质求得3CD = 3GE DF == 32CF = 进而求得OD 即可求解 ①如图6 根据相似三角形的性质得出214CD BC =在Rt ABC △中 2216BC x =- 根据二次函数的性质 即可求AC CD +取得最大值时 2x =. 【详解】①有3种情况 如图1 BC 和OD 都是中线 点E 是重心如图2 四边形ABDC 是平行四边形 F 是AD 中点 点E 是重心如图3 点F 不是AD 中点 所以点E 不是重心①正确①当60α=︒ 如图4时AD 最大 4AB =∴2AC BE == BC AE == 6BD ==∴8DE =∴AD =≠∴①错误①如图5 若60α=︒ C ABC BD ∽△△①60BCD ∠=︒ 90CDB ∠=︒ 4AB = 2AC = BC = OE = 1CE =①CD = GE DF ==32CF =①52EF DG == OG①OD =≠①①错误①如图6 ABC BCD ∽△△①CD BC BC AB= 即214CD BC =在Rt ABC △中 2216BC x =- ①()221116444CD x x =-=-+ ①22114(2)544AC CD x x x +=-+=--+ 当2x =时 AC CD +最大为5①①正确.故选:A .【点睛】本题考查了三角形重心的定义 勾股定理 相似三角形的性质 二次函数的性质 分类讨论 画出图形是解题的关键.5.如图,在ABC 中 90,30,2,B A BC D ︒︒∠=∠==为AB 的中点.若点E 在边AC 上 且AD DE AB BC=,则AE 的长为( )A .1B .2C .13D .1或2【答案】D 【分析】根据题意易得3,4==AB AC 然后根据题意可进行求解.【详解】解:①90,30,2B A BC ∠︒∠︒=== ①323,24AB BC AC BC ====①点D 为AB 的中点 ①132AD AB =①AD DE AB BC= ①1DE =①当点E 为AC 的中点时 如图①122AE AC == ①当点E 为AC 的四等分点时 如图所示:①1AE =综上所述:1AE =或2故选D .【点睛】本题主要考查含30度直角三角形的性质及三角形中位线 熟练掌握含30度直角三角形的性质及三角形中位线是解题的关键.6.如图,在Rt ABC 中 9053C AB BC ∠=︒==,, 以点A 为圆心 适当长为半径作弧 分别交AB AC,于点E F , 分别以点E F ,为圆心 大于12EF 的长为半径作弧 两弧在BAC ∠的内部相交于点G 作射线AG 交BC 于点D ,则BD 的长为( )A .35B .34C .43D .53【答案】D 【分析】过点D 作DM AB ⊥于M 由勾股定理可求得4AC = 由题意可证明ADC ADM △≌△,则可得4AM AC == 从而有1BM = 在Rt DMB 中 由勾股定理建立方程即可求得结果.【详解】解:过点D 作DM AB ⊥于M 如图由勾股定理可求得4AC =由题中作图知 AD 平分BAC ∠①DM AB AC BC ⊥⊥,①DC DM =①AD AD =①Rt Rt ADC ADM △≌△①4AM AC ==①1BM AB AM =-=设BD x =,则3MD CD BC BD x ==-=-在Rt DMB 中 由勾股定理得:2221(3)x x +-= 解得:53x = 即BD 的长为为53故选:D .【点睛】本题考查了作图:作角平分线 角平分线的性质定理 全等三角形的判定与性质 勾股定理 利用全等的性质 利用勾股定理建立方程是解题的关键.7.5月26日 “2023中国国际大数据产业博览会”在贵阳开幕 在“自动化立体库”中有许多几何元素 其中有一个等腰三角形模型(示意图如图所示) 它的顶角为120︒ 腰长为12m ,则底边上的高是( )A .4mB .6mC .10mD .12m【答案】B 【分析】作AD BC ⊥于点D 根据等腰三角形的性质和三角形内角和定理可得()1180302B C BAC ∠=∠=︒-∠=︒ 再根据含30度角的直角三角形的性质即可得出答案. 【详解】解:如图,作AD BC ⊥于点DABC 中,120BAC ∠=︒ AB AC =∴()1180302B C BAC ∠=∠=︒-∠=︒AD BC ⊥∴11126m 22AD AB ==⨯=故选B .【点睛】本题考查等腰三角形的性质 三角形内角和定理 含30度角的直角三角形的性质等解题的关键是掌握30度角所对的直角边等于斜边的一半.8.如图,ABC 为等边三角形 点D E 分别在边BC AB 上 60ADE ∠=︒ 若4BD DC =2.4DE =,则AD 的长为( )A .1.8B .2.4C .3D .3.2【答案】C【分析】证明ADC DEB ∽△△ 根据题意得出45BD BC = 进而即可求解.【详解】解:①ABC 为等边三角形①60B C ∠=∠=︒①ADB ADE BDE C DAC ∠=∠+∠=∠+∠ 60ADE ∠=︒①BDE DAC ∠=∠①ADC DEB ∽△△ ①AD ACDE BD =①4BD DC = ①45BD BC =①AD AC DE BD =5445BC BC == ① 2.4DE = ①534AD DE =⨯= 故选:C .【点睛】本题考查了相似三角形的性质与判定 等边三角形的性质 熟练掌握相似三角形的性质与判定是解题的关键.9.下面是“作已知直角三角形的外接圆”的尺规作图过程: 已知:如图 1 在Rt ABC △中 90C ∠=︒.求作:Rt ABC △的外接圆.作法:如图2.(1)分别以点A 和点B 为圆心 大于12AB 的长为半径作弧 两弧相交于P Q 两点 (2)作直线PQ 交AB 于点O(3)以O 为圆心 OA 为半径作O O 即为所求作的圆.下列不属于...该尺规作图依据的是() A .两点确定一条直线B .直角三角形斜边上的中线等于斜边的一半C .与线段两个端点距离相等的点在这条线段的垂直平分线上D .线段垂直平分线上的点与这条线段两个端点的距离相等【答案】D【分析】利用直角三角形斜边中线的性质证明:OC OA OB ==即可.【详解】解:作直线PQ (两点确定一条直线)连接PA PB QA QB OC ,,,,①由作图 PA PB QA QB ==,①PQ AB ⊥且AO BO =(与线段两个端点距离相等的点在这条线段的垂直平分线上).①90ACB ∠=︒ ①12OC AB =(直角三角形斜边中线等于斜边的一半) ①OA OB OC ==①A B C 三点在以O 为圆心 AB 为直径的圆上.①O 为ABC 的外接圆.故选:D .【点睛】本题考查作图-复杂作图 线段的垂直平分线的定义 直角三角形斜边中线的性质等知识 解题的关键熟练掌握基本知识 属于中考常考题型.10.如图,在ABC 中 9034ABC AB BC ∠=︒==,, 点D 在边AC 上 且BD 平分ABC 的周长,则BD 的长是( )A B C D 【答案】C 【分析】如图所示 过点B 作BE AC ⊥于E 利用勾股定理求出5AC = 进而利用等面积法求出125BE =,则可求出95AE = 再由BD 平分ABC 的周长 求出32AD CD ==, 进而得到65DE =,则由勾股定理得BD ==【详解】解:如图所示 过点B 作BE AC ⊥于E①在ABC 中 9034ABC AB BC ∠=︒==,, ①225AC AB +BC ①1122ABC S AC BE BC AC =⋅=⋅△ ①125AB BC BE AC ⋅== ①2295AE AB BE =-= ①BD 平分ABC 的周长①AD AB BC CD +=+ 即34AD CD +=+又①5AD CD AC +==①32AD CD ==, ①65DE AD AE =-= ①2265BD BE DE =+=故选C .【点睛】本题主要考查了勾股定理 正确作出辅助线构造直角三角形是解题的关键.11.ABC 的三边长a b c 满足2()23|320a b a b c ----=,则ABC 是( )A .等腰三角形B .直角三角形C .锐角三角形D .等腰直角三角形【答案】D【分析】由等式可分别得到关于a b c 的等式 从而分别计算得到a b c 的值 再由222+=a b c 的关系 可推导得到ABC 为直角三角形.【详解】解①2()23|320a b a b c ---+-=又①()20230320a b a b c ⎧-≥⎪⎪--⎨-≥⎪⎩①()2000a b c ⎧-=-=⎪⎩①02300a b a b c ⎧-=⎪--=⎨⎪-⎩解得33a b c ⎧=⎪=⎨⎪=⎩ ①222+=a b c 且a b =①ABC 为等腰直角三角形故选:D .【点睛】本题考查了非负性和勾股定理逆定理的知识 求解的关键是熟练掌握非负数的和为0 每一个非负数均为0 和勾股定理逆定理.12.四边形ABCD 的边长如图所示 对角线AC 的长度随四边形形状的改变而变化.当ABC 为等腰三角形时 对角线AC 的长为( )A .2B .3C .4D .5【答案】B 【分析】利用三角形三边关系求得04AC << 再利用等腰三角形的定义即可求解.【详解】解:在ACD 中 2AD CD ==①2222AC -<<+ 即04AC <<当4AC BC ==时 ABC 为等腰三角形 但不合题意 舍去若3AC AB ==时 ABC 为等腰三角形故选:B .【点睛】本题考查了三角形三边关系以及等腰三角形的定义 解题的关键是灵活运用所学知识解决问题.二 填空题13.将形状 大小完全相同的两个等腰三角形如图所示放置 点D 在AB 边上 ①DEF 绕点D 旋转 腰DF 和底边DE 分别交①CAB 的两腰CA CB 于M N 两点 若CA=5 AB=6 AB=1:3,则MD+12⋅MA DN的最小值为 .【答案】23【分析】先求出AD=2 BD=4 根据三角形的一个外角等于与它不相邻的两个内角的和可得①AMD+①A=①EDF+①BDN 然后求出①AMD=①BDN 从而得到①AMD 和①BDN 相似 根据相似三角形对应边成比例可得MA MD BD DN= 求出MA•DN=4MD 再将所求代数式整理出完全平方的形式 然后根据非负数的性质求出最小值即可.【详解】①AB=6 AB=1:3 ①AD=6×13=2 BD=6﹣2=4 ①①ABC 和①FDE 是形状 大小完全相同的两个等腰三角形①①A=①B=①FDE 由三角形的外角性质得 ①AMD+①A=①EDF+①BDN ①①AMD=①BDN①①AMD①①BDN ①MA MD BD DN= ①MA•DN=BD•MD=4MD ①MD+12⋅MA DN =MD+2233()(2323MD MD MD+- =①3MD MD 即3MD+12⋅MA DN 有最小值为23故答案为考点:相似三角形的判定与性质 等腰三角形的性质 旋转的性质 最值问题 综合题.14.如图,在Rt ABC △中 90ACB ∠=︒ 点D 为BC 的中点 过点C 作CE AB ∥交AD 的延长线于点E 若4AC = 5CE =,则CD 的长为 .【答案】32/112/1.5 【分析】先根据AAS 证明BDA CDE △≌△ 推出5==BA CE 再利用勾股定理求出BC 最后根据中点的定义即可求CD 的长. 【详解】解:CE AB ∥∴BAD CED ∠=∠点D 为BC 的中点∴BD CD = 又BDA CDE ∠=∠∴BDA CDE △≌△()AAS∴5==BA CERt ABC △中 90ACB ∠=︒ 4AC =∴3BC === ∴1322CD BC ==. 故答案为:32. 【点睛】本题考查全等三角形的判定与性质 勾股定理 平行线的性质等 证明BDA CDE △≌△是解题的关键.15.如图,在Rt ABC 中 90ACB ∠=︒ 3AC BC == 点D 在直线AC 上 1AD = 过点D 作DE AB ∥直线BC 于点E 连接BD 点O 是线段BD 的中点 连接OE ,则OE 的长为 .541【分析】分两种情况当D 在CA 延长线上和当D 在CA 上讨论 画出图形 连接OC 过点O 作ON BC ⊥于N 利用勾股定理解题即可【详解】解:当在线段上时 连接OC 过点O 作ON BC ⊥于N①当D 在线段AC 上时1AD =2CD AC AD ∴=-=90BCD ∠=︒22222313BD CD BC ∴=+=+点O 是线段BD 的中点1132OC OB OD BD ∴====ON BC ⊥1322CN BN BC ∴===AB DE45COE A CBA CED ∴∠=∠=∠=∠=︒2CE CD ∴==31222NE ∴=-=221ON CO CN =-2222151()2OE ON NE ∴=++=②当D 在CA 延长线上时,则4CD AD AC =+=O 是线段BD 的中点 90BCD ∠=︒12OC OB OD BD ∴=== ON BC ⊥1322CN BN BC ∴=== OB OD =122ON CD ∴== AB DE45CAB COE CBA CED ∴∠=∠=∠=∠=︒4CE CD ∴==35422EN CE CN ∴=-=-=OE ∴==OE ∴【点睛】本题考查等腰直角三角形的判定和性质 勾股定理 正确作出辅助线是解题的关键.16.如图,在ABC 中 90,6C AC BC ∠=︒==.P 为边AB 上一动点 作PD BC ⊥于点D PE AC ⊥于点E ,则DE 的最小值为 .【答案】32【分析】连接CP 利用勾股定理列式求出AB 判断出四边形CDPE 是矩形 根据矩形的对角线相等可得DE CP = 再根据垂线段最短可得CP AB ⊥时 线段DE 的值最小 然后根据直角三角形的面积公式列出方程求解即可.【详解】解:如图,连接CP①90,6C AC BC ∠=︒== ①22226662AB AC BC ++=①PD BC ⊥于点D PE AC ⊥于点E 90ACB ∠=︒①四边形CDPE 是矩形①DE CP =由垂线段最短可得CP AB ⊥时 线段CP 的值最小 此时线段DE 的值最小此时 1122ABC S AC BC AB CP ==△⋅⋅ 代入数据:11666222CP ①32CP =①DE 的最小值为32故答案为:【点睛】本题考查了矩形的判定与性质 垂线段最短的性质 勾股定理 判断出CP AB ⊥时 线段DE 的值最小是解题的关键.17.如图.四边形ABCD 中 AB AD = BC DC = 60C ∠=︒ AE CD ∥交BC 于点E 8BC = 6AE =,则AB 的长为 .【答案】【分析】连接AC BD 交于点O 过点E 作EF AC ⊥ 交AC 于点F 先证明BCD △是等边三角形 AC垂直平分BD 求得30EAC ACD ACB ∠=∠=∠=︒ 6AE EC == 再解三角形求出AO AC CO =-= 4BO = 最后运用勾股定理求得AB 即可.【详解】解:如图:连接AC BD 交于点O又①BC DC = 60C ∠=︒①BCD △是等边三角形①8BD BC CD ===①AB AD = BC DC =①AC BD ⊥ 142BO DO BD === ①1302ACD ACB BCD ∠=∠=∠=︒ 又①AE CD ∥①30EAC ACD ACB ∠=∠=∠=︒.①6AE EC ==过点E 作EF AC ⊥ 交AC 于点F ①3cos30633CF CE =⋅︒==3cos30633AF AE =⋅︒==3cos3083CO BC =⋅︒==①63AC CF AF =+=①634323AO AC CO =-==①在Rt BOA 中 2222(23)427AB BO AO ++= 故答案为:27【点睛】本题属于四边形综合题 主要考查了等边三角形的判定和性质 平行线的性质 垂直平分线 勾股定理 解直角三角形等知识点 正确作出辅助线成为解答本题的关键.18.如图,已知50ABC ∠=︒ 点D 在BA 上 以点B 为圆心 BD 长为半径画弧 交BC 于点E 连接DE ,则BDE ∠的度数是 度.【答案】65【分析】根据题意可得BD BE = 再根据等腰三角形两个底角相等和三角形内角和为180°进行计算即可解答.【详解】解:根据题意可得:BD BE =①BDE BED ∠=∠①18050ABC BDE BED ABC ∠+∠+∠=︒∠=︒,①65BDE BED ∠=∠=︒.故答案为:65.【点睛】本题主要考查了等腰三角形的性质 三角形内角和等知识点 掌握等腰三角形的性质是解答本题的关键.19.如图,在ABC 中 以A 为圆心 AC 长为半径作弧 交BC 于C D 两点 分别以点C 和点D 为圆心 大于12CD 长为半径作弧 两弧交于点P 作直线AP 交CD 于点E 若5AC = 6CD =,则AE = .【答案】4【分析】利用圆的性质得出AP 垂直平分CD 和5AD AC == 运用勾股定理便可解决问题.【详解】解:根据题意可知 以点C 和点D 为圆心 大于12CD 长为半径作弧 两弧交于点P ①AP 垂直平分CD ,即90AED ∠=︒ ①132DE CD == 又①在ABC 中 以A 为圆心 AC 长为半径作弧 交BC 于C D 两点 其中5AC =①5AD AC ==在ADE 中 4AE =故答案为:4.【点睛】本题主要考查圆和三角形的相关性质 掌握相关知识点是解题的关键.20.如图,在ABC 中 以点C 为圆心 任意长为半径作弧 分别交AC BC 于点D E 分别以点DE 为圆心 大于12DE 的长为半径作弧 两弧交于点F 作射线CF 交AB 于点G 若9AC = 6BC = BCG 的面积为8,则ACG 的面积为 .【答案】12【分析】过点B 作BM AC ∥交CG 的延长线于点M 证明ACG BMG ∽ 得出AG AC AC GB BM BC == 根据96ACG BCG S AG AC S GB BC ===32= 即可求解. 【详解】解:如图所示 过点B 作BM AC ∥交CG 的延长线于点M①ACM CMB ∠=∠由作图可得CG 是ACB ∠的角平分线①ACM BCM ∠=∠①BCM CMB ∠=∠①BC BM =①BM AC ∥①ACG BMG ∽ ①AG AC AC GB BM BC== ①96ACG BCG S AG AC S GB BC ===32= ①BCG 的面积为8①ACG 的面积为12故答案为:12.【点睛】本题考查了相似三角形的性质与判定 作角平分线 熟练掌握基本作图以及相似三角形的性质与判定是解题的关键.21.如图,CD 为Rt ABC △斜边AB 上的中线 E 为AC 的中点.若8AC = 5CD =,则DE = .【答案】3【分析】首先根据直角三角形斜边中线的性质得出AB 然后利用勾股定理即可得出BC 最后利用三角形中位线定理即可求解.【详解】解:①在Rt ABC △中 CD 为Rt ABC △斜边AB 上的中线 5CD =①210AB CD ==①6BC①E 为AC 的中点 ①132DE BC == 故答案为:3.【点睛】本题主要考查直角三角形的性质 三角形中位线定理 掌握直角三角形中斜边上的中线等于斜边的一半是解题的关键.22.在 Rt △ABC 中, △ACB =90° AC =6 BC =8 D 是AB 的中点,则 CD = .【答案】5【分析】先根据题意画出图形 再运用勾股定理求得AB 然后再根据直角三角形斜边上的中线等于斜边的一半解答即可.【详解】解:如图:①△ACB =90° AC =6 BC =8 ①22226810AB AC BC①①ACB =90° D 为AB 的中点①CD =12AB =12×10=5.故答案为5.【点睛】本题主要考查了运用勾股定理解直角三角形 直角三角形斜边上的中线等于斜边的一半的性质等知识点 掌握“直角三角形斜边上的中线等于斜边的一半”成为解题的关键.三 解答题23.在Rt ABC △中 90BAC AD ∠=︒,是斜边BC 上的高.(1)证明:C ABD BA ∽△△(2)若610AB BC ==, 求BD 的长.【答案】(1)见解析 (2)185BD = 【分析】(1)根据三角形高的定义得出90ADB ∠=︒ 根据等角的余角相等 得出BAD C ∠=∠ 结合公共角B B ∠=∠ 即可得证(2)根据(1)的结论 利用相似三角形的性质即可求解.【详解】(1)证明:①90BAC AD ∠=︒,是斜边BC 上的高.①90ADB ∠=︒ 90B C ∠+∠=︒①90B BAD ∠+∠=︒①BAD C ∠=∠又①B B ∠=∠①C ABD BA ∽△△(2)①C ABD BA ∽△△ ①AB BD CB AB=又610AB BC ==, ①23618105AB BD CB ===. 【点睛】本题考查了相似三角形的性质与判定 熟练掌握相似三角形的性质与判定是解题的关键. 24.如图,BD 是等边ABC 的中线 以D 为圆心 DB 的长为半径画弧 交BC 的延长线于E 连接DE .求证:CD CE =.【答案】见解析【分析】利用三线合一和等腰三角形的性质 证出2E ∠=∠ 再利用等边对等角即可.【详解】证明:BD 为等边ABC 的中线BD AC ∴⊥ 160∠=︒330∴∠=︒BD DE =330E ∴∠=∠=︒2160E ∠+∠=∠=︒230E ∴∠=∠=︒CD CE ∴=【点睛】本题考查了等边三角形 等腰三角形的性质和判定 理解记忆相关定理是解题的关键.25.如图,在四边形ABCD 中 点E 是边BC 上一点 且BE CD = B AED C ∠=∠=∠.(1)求证:EAD EDA ∠=∠(2)若60C ∠=︒ 4DE =时 求AED △的面积.【答案】(1)见解析 (2)3【分析】(1)由B AED ∠=∠求出BAE CED ∠=∠ 然后利用AAS 证明BAE CED ≅ 可得EA ED = 再由等边对等角得出结论(2)过点E 作EF AD ⊥于F 根据等腰三角形的性质和含30︒直角三角形的性质求出DF 和AD 然后利用勾股定理求出EF 再根据三角形面积公式计算即可.【详解】(1)证明:①B AED ∠=∠①180180B AED ︒-∠=︒-∠ 即BEA BAE BEA CED ∠+∠=∠+∠①BAE CED ∠=∠在BAE 和CED △中 B C BAE CED BE CD ∠=∠⎧⎪∠=∠⎨⎪=⎩①()AAS BAE CED ≅①EA ED =①EAD EDA ∠=∠(2)解:过点E 作EF AD ⊥于F由(1)知EA ED =①60C AED ︒∠=∠=①30AEF DEF ∠=∠=︒①4DE = ①122DF DE == ①24AD DF == 22224223EF DE DF =--①11422AED S AD EF =⋅=⨯⨯=【点睛】本题考查了三角形内角和定理 全等三角形的判定和性质 等腰三角形的性质 含30︒直角三角形的性质以及勾股定理等知识 正确寻找证明三角形全等的条件是解题的关键.。

2016中考数学真题word版【考点分类汇编】22等腰三角形

2016中考数学真题word版【考点分类汇编】22等腰三角形

等腰三角形一.选择题1,(2015威海,第9题4分)【答案】:B【解析】根据等腰三角形两底角相等求出∠ABC=∠ACB,再求出∠CBD,然后根据∠ABD=∠ABC﹣∠CBD计算即可得解.【备考指导】本题考查了等腰三角形的性质,主要利用了等腰三角形两底角相等,熟记性质是解题的关键.2..(2015·山东潍坊第11 题3分)如图,有一块边长为6cm的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是()A.cm2B.cm2C.cm2D.cm2考点:二次函数的应用;展开图折叠成几何体;等边三角形的性质..分析:如图,由等边三角形的性质可以得出∠A=∠B=∠C=60°,由三个筝形全等就可以得出AD=BE=BF=CG=CH=AK,根据折叠后是一个三棱柱就可以得出DO=PE=PF=QG=QH=OK,四边形ODEP、四边形PFGQ、四边形QHKO为矩形,且全等.连结AO证明△AOD≌△AOK就可以得出∠OAD=∠OAK=30°,设OD=x,则AO=2x,由勾股定理就可以求出AD=x,由矩形的面积公式就可以表示纸盒的侧面积,由二次函数的性质就可以求出结论.解答:解:∵△ABC为等边三角形,∴∠A=∠B=∠C=60°,AB=BC=A C.∵筝形ADOK≌筝形BEPF≌筝形AGQH,∴AD=BE=BF=CG=CH=AK.∵折叠后是一个三棱柱,∴DO=PE=PF=QG=QH=OK,四边形ODEP、四边形PFGQ、四边形QHKO都为矩形.∴∠ADO=∠AKO=90°.连结AO,在Rt△AOD和Rt△AOK中,,∴Rt△AOD≌Rt△AOK(HL).∴∠OAD=∠OAK=30°.设OD=x,则AO=2x,由勾股定理就可以求出AD=x,∴DE=6﹣2x,∴纸盒侧面积=3x(6﹣2x)=﹣6x2+18x,=﹣6(x﹣)2+,∴当x=时,纸盒侧面积最大为.故选C.点评:本题考查了等边三角形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,矩形的面积公式的运用,二次函数的性质的运用,解答时表示出纸盒的侧面积是关键.3.(2015•江苏苏州,第7题3分)如图,在△ABC中,AB=AC,D为BC中点,∠BAD=35°,则∠C的度数为A.35°B.45°C.55°D.60°【难度】★【考点分析】考察等腰三角形三线合一,往年选择填空也常考察三角形基础题目,难度很小。

【中考】2016等腰三角形含解析

【中考】2016等腰三角形含解析

等腰三角形一、选择题1.(2016·山东烟台)如图,Rt△ABC的斜边AB与量角器的直径恰好重合,B点与0刻度线的一端重合,∠ABC=40°,射线CD绕点C转动,与量角器外沿交于点D,若射线CD 将△ABC分割出以BC为边的等腰三角形,则点D在量角器上对应的度数是()A.40°B.70°C.70°或80°D.80°或140°【考点】角的计算.【分析】如图,点O是AB中点,连接DO,易知点D在量角器上对应的度数=∠DOB=2∠BCD,只要求出∠BCD的度数即可解决问题.【解答】解:如图,点O是AB中点,连接DO.∵点D在量角器上对应的度数=∠DOB=2∠BCD,∵当射线CD将△ABC分割出以BC为边的等腰三角形时,∠BCD=40°或70°,∴点D在量角器上对应的度数=∠DOB=2∠BCD=80°或140°,故选D.2.(2016·山东枣庄)如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D等于12A .15°B .17. 5°C .20°D .22.5°【答案】A. 【解析】试题分析:在△ABC 中,AB=AC ,∠A=30°,根据等腰三角形的性质可得∠ABC=∠ACB=75°,所以∠ACE=180°-∠ACB=180°-75°=105°,根据角平分线的性质可得∠DBC=37.5°,∠ACD=52.5°,即可得∠BCD=127.5°,根据三角形的内角和定理可得∠D=180°-∠DBC-∠BCD=180°-37.5°-127.5°=15°,故答案选A.考点:等腰三角形的性质;三角形的内角和定理.3.(2016.山东省泰安市,3分)如图,在△PAB 中,PA=PB ,M ,N ,K 分别是PA ,PB ,AB 上的点,且AM=BK ,BN=AK ,若∠MKN=44°,则∠P 的度数为( )A .44°B .66°C .88°D .92°【分析】根据等腰三角形的性质得到∠A=∠B ,证明△AMK ≌△BKN ,得到∠AMK=∠BKN ,根据三角形的外角的性质求出∠A=∠MKN=44°,根据三角形内角和定理计算即可. 【解答】解:∵PA=PB ,∴∠A=∠B ,在△AMK 和△BKN 中,DA B第4题图,∴△AMK≌△BKN,∴∠AMK=∠BKN,∵∠MKB=∠MKN+∠NKB=∠A+∠AMK,∴∠A=∠MKN=44°,∴∠P=180°﹣∠A﹣∠B=92°,故选:D.【点评】本题考查的是等腰三角形的性质、全等三角形的判定和性质、三角形的外角的性质,掌握等边对等角、全等三角形的判定定理和性质定理、三角形的外角的性质是解题的关键.4.(2016·江苏省扬州)如图,矩形纸片ABCD中,AB=4,BC=6.将该矩形纸片剪去3个等腰直角三角形,所有剪法中剩余部分面积的最小值是()A.6 B.3 C.2.5 D.2【考点】几何问题的最值.【分析】以BC为边作等腰直角三角形△EBC,延长BE交AD于F,得△ABF是等腰直角三角形,作EG⊥CD于G,得△EGC是等腰直角三角形,在矩形ABCD中剪去△ABF,△BCE,△ECG得到四边形EFDG,此时剩余部分面积的最小【解答】解:如图以BC为边作等腰直角三角形△EBC,延长BE交AD于F,得△ABF是等腰直角三角形,作EG⊥CD于G,得△EGC是等腰直角三角形,在矩形ABCD中剪去△ABF,△BCE,△ECG得到四边形EFDG,此时剩余部分面积的最小=4×6﹣×4×4﹣×3×6﹣×3×3=2.5.34故选C .二、填空题1.(2016·湖北黄冈)如图,已知△ABC, △DCE, △FEG , △HGI 是4个全等的等腰三角形,底边BC ,CE ,EG ,GI 在同一条直线上,且AB=2,BC=1. 连接AI ,交FG 于点Q ,则QI=_____________.A D F HQB C E G I(第14题)【考点】相似三角形的判定和性质、勾股定理、等腰三角形的性质.【分析】过点A 作AM ⊥BC. 根据等腰三角形的性质,得到MC=21BC=21,从而5MI=MC+CE+EG+GI=27.再根据勾股定理,计算出AM 和AI 的值;根据等腰三角形的性质得出角相等,从而证明AC ∥GQ ,则△IAC ∽△IQG ,故AI QI =CI GI ,可计算出QI=34.A D F HQB MC E G I【解答】解:过点A 作AM ⊥BC.根据等腰三角形的性质,得 MC=21BC=21.∴MI=MC+CE+EG+GI=27.在Rt △AMC 中,AM 2=AC 2-MC 2= 22-(21)2=415.AI=MI AM22+=)(272415+=4. 易证AC ∥GQ ,则△IAC ∽△IQG∴AI QI =CI GI即4QI =31∴QI=34.故答案为:34.2. (2016·四川资阳)如图,在3×3的方格中,A、B、C、D、E、F分别位于格点上,从C、D、E、F四点中任取一点,与点A、B为顶点作三角形,则所作三角形为等腰三角形的概率是.【考点】概率公式;等腰三角形的判定.【分析】根据从C、D、E、F四个点中任意取一点,一共有4种可能,选取D、C、F时,所作三角形是等腰三角形,即可得出答案.【解答】解:根据从C、D、E、F四个点中任意取一点,一共有4种可能,选取D、C、F时,所作三角形是等腰三角形,故P(所作三角形是等腰三角形)=;故答案为:.3. (2016·四川成都·4分)如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为3.【考点】矩形的性质;线段垂直平分线的性质;等边三角形的判定与性质.【分析】由矩形的性质和线段垂直平分线的性质证出OA=AB=OB=3,得出BD=2OB=6,由勾股定理求出AD即可.【解答】解:∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,6∵AE垂直平分OB,∴AB=AO,∴OA=AB=OB=3,∴BD=2OB=6,∴AD===3;故答案为:3.4. (2016·四川达州·3分)如图,P是等边三角形ABC内一点,将线段AP绕点A顺时针旋转60°得到线段AQ,连接BQ.若PA=6,PB=8,PC=10,则四边形APBQ 的面积为24+9.【考点】旋转的性质;等边三角形的性质.【分析】连结PQ,如图,根据等边三角形的性质得∠BAC=60°,AB=AC,再根据旋转的性质得AP=PQ=6,∠PAQ=60°,则可判断△APQ为等边三角形,所以PQ=AP=6,接着证明△APC ≌△ABQ得到PC=QB=10,然后利用勾股定理的逆定理证明△PBQ为直角三角形,再根据=S△BPQ+S△APQ进行计算.三角形面积公式,利用S四边形APBQ【解答】解:连结PQ,如图,∵△ABC为等边三角形,∴∠BAC=60°,AB=AC,∵线段AP绕点A顺时针旋转60°得到线段AQ,∴AP=PQ=6,∠PAQ=60°,∴△APQ为等边三角形,7∴PQ=AP=6,∵∠CAP+∠BAP=60°,∠BAP+∠BAQ=60°,∴∠CAP=∠BAQ,在△APC和△ABQ中,,∴△APC≌△ABQ,∴PC=QB=10,在△BPQ中,∵PB2=82=64,PQ2=62,BQ2=102,而64+36=100,∴PB2+PQ2=BQ2,∴△PBQ为直角三角形,∠BPQ=90°,=S△BPQ+S△APQ =×6×8+×62=24+9.∴S四边形APBQ故答案为24+9.5.(2016江苏淮安,16,3分)已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是10.【考点】等腰三角形的性质;三角形三边关系.【分析】根据任意两边之和大于第三边,知道等腰三角形的腰的长度是4,底边长2,把三条边的长度加起来就是它的周长.89【解答】解:因为2+2<4,所以等腰三角形的腰的长度是4,底边长2, 周长:4+4+2=10, 答:它的周长是10, 故答案为:10【点评】此题考查等腰三角形的性质,关键是先判断出三角形的两条腰的长度,再根据三角形的周长的计算方法,列式解答即可.6.(2016·广东广州)如图3,△ABC 中,AB =AC ,BC =12cm ,点D 在AC 上,DC =4cm ,将线段DC 沿CB 方向平移7cm 得到线段EF ,点E 、F 分别落在边AB 、BC 上,则△EBF 的周长是cm.[难易] 容易[考点] 平移 ,等腰三角形等角对等边 [解析] ∵CD 沿CB 平移7cm 至EF∴=∴=-===∠=∠=∴∠=∠∴==∴=++=++=V Q //,75,4,,444513EBF EF CD CF BF BC CF EF CD EFB C AB AC B C EB EF C EB EF BF [参考答案] 137.(2016·广西贺州)如图,在△ABC 中,分别以AC 、BC 为边作等边三角形ACD 和等边三角形BCE ,连接AE 、BD 交于点O ,则∠AOB 的度数为 120° .【考点】全等三角形的判定与性质;等边三角形的性质.【分析】先证明∴△DCB≌△ACE,再利用“8字型”证明∠AOH=∠DCH=60°即可解决问题.【解答】解:如图:AC与BD交于点H.∵△ACD,△BCE都是等边三角形,∴CD=CA,CB=CE,∠ACD=∠BCE=60°,∴∠DCB=∠ACE,在△DCB和△ACE中,,∴△DCB≌△ACE,∴∠CAE=∠CDB,∵∠DCH+∠CHD+∠BDC=180°,∠AOH+∠AHO+∠CAE=180°,∠DHC=∠OHA,∴∠AOH=∠DCH=60°,∴∠AOB=180°﹣∠AOH=120°.故答案为120°1011【点评】本题考查全等三角形的判定和性质、等边三角形的性质等知识,解题的关键是正确寻找全等三角形,学会利用“8字型”证明角相等,属于中考常考题型.8.(2016·山东烟台)如图,O 为数轴原点,A ,B 两点分别对应﹣3,3,作腰长为4的等腰△ABC ,连接OC ,以O 为圆心,CO 长为半径画弧交数轴于点M ,则点M 对应的实数为.【考点】勾股定理;实数与数轴;等腰三角形的性质.【分析】先利用等腰三角形的性质得到OC ⊥AB ,则利用勾股定理可计算出OC=,然后利用画法可得到OM=OC=,于是可确定点M 对应的数. 【解答】解:∵△ABC 为等腰三角形,OA=OB=3, ∴OC ⊥AB , 在Rt △OBC 中,OC===,∵以O 为圆心,CO 长为半径画弧交数轴于点M , ∴OM=OC=,∴点M 对应的数为.故答案为.9.(2016.山东省青岛市,3分)如图,以边长为20cm的正三角形纸板的各顶点为端点,在各边上分别截取4cm长的六条线段,过截得的六个端点作所在边的垂线,形成三个有两个直角的四边形.把它们沿图中虛线剪掉,用剩下的纸板折成一个底为正三角形的无盖柱形448﹣480cm3.盒子,则它的容积为【分析】由题意得出△ABC 为等边三角形,△OPQ为等边三角形,得出∠A=∠B=∠C=60°,AB=BC=AC.∠POQ=60°,连结AO,作QM⊥OP于M,在Rt△AOD中,∠OAD=∠OAK=30°,得出OD=AD=2cm,AD=OD=2cm,同理:BE=AD=2cm,求出PQ、QM,无盖柱形盒子的容积=底面积×高,即可得出结果.【解答】解:如图,由题意得:△ABC为等边三角形,△OPQ为等边三角形,∴∠A=∠B=∠C=60°,AB=BC=AC,∠POQ=60°,∴∠ADO=∠AKO=90°.连结AO,作QM⊥OP于M,在Rt△AOD中,∠OAD=∠OAK=30°,∴OD=AD=2cm,∴AD=OD=2cm,同理:BE=AD=2cm,∴PQ=DE=20﹣2×2=20﹣4(cm),∴QM=OP•sin60°=(20﹣4)×=10﹣6,(cm),∴无盖柱形盒子的容积=×(20﹣4)(10﹣6)×4=448﹣480(cm3);12故答案为:448﹣480.10.(2016·江苏泰州)如图,已知直线l1∥l2,将等边三角形如图放置,若∠α=40°,则∠β等于20°.【考点】等边三角形的性质;平行线的性质.【分析】过点A作AD∥l1,如图,根据平行线的性质可得∠BAD=∠β.根据平行线的传递性可得AD∥l2,从而得到∠DAC=∠α=40°.再根据等边△ABC可得到∠BAC=60°,就可求出∠DAC,从而解决问题.【解答】解:过点A作AD∥l1,如图,则∠BAD=∠β.∵l1∥l2,∴AD∥l2,∵∠DAC=∠α=40°.∵△ABC是等边三角形,∴∠BAC=60°,∴∠β=∠BAD=∠BAC﹣∠DAC=60°﹣40°=20°.故答案为20°.13三.解答题1.(2016年浙江省宁波市)从三角形(不是等腰三角形)一个顶点引出一条射线于对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线.(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB 的度数.(3)如图2,△ABC中,AC=2,BC=,CD是△ABC的完美分割线,且△ACD是以CD 为底边的等腰三角形,求完美分割线CD的长.【考点】相似三角形的判定与性质.【专题】新定义.【分析】(1)根据完美分割线的定义只要证明①△ABC不是等腰三角形,②△ACD是等腰三角形,③△BDC∽△BCA即可.14(2)分三种情形讨论即可①如图2,当AD=CD时,②如图3中,当AD=AC时,③如图4中,当AC=CD时,分别求出∠ACB即可.(3)设BD=x,利用△BCD∽△BAC,得=,列出方程即可解决问题.【解答】解:(1)如图1中,∵∠A=40°,∠B=60°,∴∠ACB=80°,∴△ABC不是等腰三角形,∵CD平分∠ACB,∴∠ACD=∠BCD=∠ACB=40°,∴∠ACD=∠A=40°,∴△ACD为等腰三角形,∵∠DCB=∠A=40°,∠CBD=∠ABC,∴△BCD∽△BAC,∴CD是△ABC的完美分割线.(2)①当AD=CD时,如图2,∠ACD=∠A=45°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=96°.②当AD=AC时,如图3中,∠ACD=∠ADC==66°,15∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=114°.③当AC=CD时,如图4中,∠ADC=∠A=48°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∵∠ADC>∠BCD,矛盾,舍弃.∴∠ACB=96°或114°.(3)由已知AC=AD=2,∵△BCD∽△BAC,∴=,设BD=x,∴()2=x(x+2),∵x>0,∴x=﹣1,∵△BCD∽△BAC,∴==,∴CD=×2=﹣.16【点评】本题考查相似三角形的判定和性质、等腰三角形的性质等知识,解题的关键是理解题意,学会分类讨论思想,属于中考常考题型.2.(2016·上海)如图所示,梯形ABCD中,AB∥DC,∠B=90°,AD=15,AB=16,BC=12,点E是边AB上的动点,点F是射线CD上一点,射线ED和射线AF交于点G,且∠AGE=∠DAB.(1)求线段CD的长;(2)如果△AEC是以EG为腰的等腰三角形,求线段AE的长;(3)如果点F在边CD上(不与点C、D重合),设AE=x,DF=y,求y关于x的函数解析式,并写出x的取值范围.17【考点】四边形综合题.【专题】综合题.【分析】(1)作DH⊥AB于H,如图1,易得四边形BCDH为矩形,则DH=BC=12,CD=BH,再利用勾股定理计算出AH,从而得到BH和CD的长;(2)分类讨论:当EA=EG时,则∠AGE=∠GAE,则判断G点与D点重合,即ED=EA,作EM⊥AD于M,如图1,则AM=AD=,通过证明Rt△AME∽Rt△AHD,利用相似比可计算出此时的AE长;当GA=GE时,则∠AGE=∠AEG,可证明AE=AD=15,(3)作DH⊥AB于H,如图2,则AH=9,HE=AE﹣AH=x﹣9,先利用勾股定理表示出DE=,再证明△EAG∽△EDA,则利用相似比可表示出EG=,则可表示出DG,然后证明△DGF∽△EGA,于是利用相似比可表示出x和y的关系.【解答】解:(1)作DH⊥AB于H,如图1,易得四边形BCDH为矩形,∴DH=BC=12,CD=BH,在Rt△ADH中,AH===9,∴BH=AB﹣AH=16﹣9=7,∴CD=7;18(2)当EA=EG时,则∠AGE=∠GAE,∵∠AGE=∠DAB,∴∠GAE=∠DAB,∴G点与D点重合,即ED=EA,作EM⊥AD于M,如图1,则AM=AD=,∵∠MAE=∠HAD,∴Rt△AME∽Rt△AHD,∴AE:AD=AM:AH,即AE:15=:9,解得AE=;当GA=GE时,则∠AGE=∠AEG,∵∠AGE=∠DAB,而∠AGE=∠ADG+∠DAG,∠DAB=∠GAE+∠DAG,∴∠GAE=∠ADG,∴∠AEG=∠ADG,∴AE=AD=15,综上所述,△AEC是以EG为腰的等腰三角形时,线段AE的长为或15;(3)作DH⊥AB于H,如图2,则AH=9,HE=AE﹣AH=x﹣9,在Rt△ADE中,DE==,∵∠AGE=∠DAB,∠AEG=∠DEA,19∴△EAG∽△EDA,∴EG:AE=AE:ED,即EG:x=x:,∴EG=,∴DG=DE﹣EG=﹣,∵DF∥AE,∴△DGF∽△EGA,∴DF:AE=DG:EG,即y:x=(﹣):,∴y=(9<x<).20【点评】本题考查了四边形的综合题:熟练掌握梯形的性质等等腰三角形的性质;常把直角梯形化为一个直角三角形和一个矩形解决问题;会利用勾股定理和相似比计算线段的长;会运用分类讨论的思想解决数学问题.3.(2016·江苏省宿迁)如图,在矩形ABCD中,AD=4,点P是直线AD上一动点,若满足△PBC是等腰三角形的点P有且只有3个,则AB的长为4.【分析】如图,当AB=AD时,满足△PBC是等腰三角形的点P有且只有3个.【解答】解:如图,当AB=AD时,满足△PBC是等腰三角形的点P有且只有3个,△P1BC,△P2BC是等腰直角三角形,△P3BC是等腰直角三角形(P3B=P3C),则AB=AD=4,故答案为4.【点评】本题考查矩形的性质,等腰三角形的性质等知识,解题的关键是理解题意,属于中考常考题型.214.(2016·江苏省宿迁)如图,已知BD是△ABC的角平分线,点E、F分别在边AB、BC上,ED∥BC,EF∥AC.求证:BE=CF.【分析】先利用平行四边形性质证明DE=CF,再证明EB=ED,即可解决问题.【解答】证明:∵ED∥BC,EF∥AC,∴四边形EFCD是平行四边形,∴DE=CF,∵BD平分∠ABC,∴∠EBD=∠DBC,∵DE∥BC,∴∠EDB=∠DBC,∴∠EBD=∠EDB,∴EB=ED,∴EB=CF.22【点评】本题考查平行四边形的判定和性质、等腰三角形的判定和性质等知识,解题的关键是灵活运用直线知识解决问题,属于基础题,中考常考题型.5.(2016·江苏省宿迁)已知△ABC是等腰直角三角形,AC=BC=2,D是边AB上一动点(A、B两点除外),将△CAD绕点C按逆时针方向旋转角α得到△CEF,其中点E是点A的对应点,点F是点D的对应点.(1)如图1,当α=90°时,G是边AB上一点,且BG=AD,连接GF.求证:GF∥AC;(2)如图2,当90°≤α≤180°时,AE与DF相交于点M.①当点M与点C、D不重合时,连接CM,求∠CMD的度数;②设D为边AB的中点,当α从90°变化到180°时,求点M运动的路径长.【分析】(1)欲证明GF∥AC,只要证明∠A=∠FGB即可解决问题.(2)①先证明A、D、M、C四点共圆,得到∠CMF=∠CAD=45°,即可解决问题.23②利用①的结论可知,点M在以AC为直径的⊙O上,运动路径是弧CD,利用弧长公式即可解决问题.【解答】解:(1)如图1中,∵CA=CB,∠ACB=90°,∴∠A=∠ABC=45°,∵△CEF是由△CAD旋转逆时针α得到,α=90°,∴CB与CE重合,∴∠CBE=∠A=45°,∴∠ABF=∠ABC+∠CBF=90°,∵BG=AD=BF,∴∠BGF=∠BFG=45°,∴∠A=∠BGF=45°,∴GF∥AC.(2)①如图2中,∵CA=CE,CD=CF,∴∠CAE=∠CEA,∠CDF=∠CFD,∵∠ACD=∠ECF,∴∠ACE=∠CDF,∵2∠CAE+∠ACE=180°,2∠CDF+∠DCF=180°,∴∠CAE=∠CDF,∴A、D、M、C四点共圆,24∴∠CMF=∠CAD=45°,∴∠CMD=180°﹣∠CMF=135°.②如图3中,O是AC中点,连接OD、CM.∵AD=DB,CA=CB,∴CD⊥AB,∴∠ADC=90°,由①可知A、D、M、C四点共圆,∴当α从90°变化到180°时,点M在以AC为直径的⊙O上,运动路径是弧CD,∵OA=OC,CD=DA,∴DO⊥AC,∴∠DOC=90°,∴的长==.∴当α从90°变化到180°时,点M运动的路径长为.25【点评】本题考查几何变换综合题、等腰直角三角形的性质、平行线的判定和性质、弧长公式、四点共圆等知识,解题的关键是发现A、D、M、C四点共圆,最后一个问题的关键,正确探究出点M的运动路径,记住弧长公式,属于中考压轴题.266.(2016•辽宁沈阳)在△ABC中,AB=6,AC=BC=5,将△ABC绕点A按顺时针方向旋转,得到△ADE,旋转角为α(0°<α<180°),点B的对应点为点D,点C的对应点为点E,连接BD,BE.(1)如图,当α=60°时,延长BE交AD于点F.①求证:△ABD是等边三角形;②求证:BF⊥AD,AF=DF;③请直接写出BE的长;(2)在旋转过程中,过点D作DG垂直于直线AB,垂足为点G,连接CE,当∠DAG=∠ACB,且线段DG与线段AE无公共点时,请直接写出BE+CE的值.温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.【考点】三角形综合题.【分析】(1)①由旋转性质知AB=AD,∠BAD=60°即可得证;②由BA=BD、EA=ED根据中垂线性质即可得证;③分别求出BF、EF的长即可得;(2)由∠ACB+∠BAC+∠ABC=180°、∠DAG+∠DAE+∠BAE=180°、∠DAG=∠ACB、∠DAE=∠BAC得∠BAE=∠BAC且AE=AC,根据三线合一可得CE⊥AB、AC=5、AH=3,继而知CE=2CH=8、BE=5,即可得答案.【解答】解:(1)①∵△ABC绕点A顺时针方向旋转60°得到△ADE,27∴AB=AD,∠BAD=60°,∴△ABD是等边三角形;②由①得△ABD是等边三角形,∴AB=BD,∵△ABC绕点A顺时针方向旋转60°得到△ADE,∴AC=AE,BC=DE,又∵AC=BC,∴EA=ED,∴点B、E在AD的中垂线上,∴BE是AD的中垂线,∵点F在BE的延长线上,∴BF⊥AD,AF=DF;③由②知BF⊥AD,AF=DF,∴AF=DF=3,∵AE=AC=5,∴EF=4,∵在等边三角形ABD中,BF=AB•sin∠BAF=6×=3,∴BE=BF﹣EF=3﹣4;28(2)如图所示,∵∠DAG=∠ACB,∠DAE=∠BAC,∴∠ACB+∠BAC+∠ABC=∠DAG+∠DAE+∠ABC=180°,又∵∠DAG+∠DAE+∠BAE=180°,∴∠BAE=∠ABC,∵AC=BC=AE,∴∠BAC=∠ABC,∴∠BAE=∠BAC,∴AB⊥CE,且CH=HE=CE,∵AC=BC,∴AH=BH=AB=3,则CE=2CH=8,BE=5,∴BE+CE=13.29【点评】本题主要考查旋转的性质、等边三角形的判定与性质、中垂线的性质、三角形内角和定理等知识点,熟练掌握旋转的性质是解题的关键.30。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016中考试题汇编 等腰三角形
一、选择题:
1.等腰三角形有一个角是90°,则另两个角分别是( ) A .30°,60° B .45°,45° C .45°,90° D .20°,70°
2.如图,在△ABC 中,AB=AC ,∠A=30°,E 为BC 延长线上一点,∠ABC 与∠ACE 的平分线相交于点D ,则∠D 的度数为( )
A .15°
B .17.5°
C .20°
D .22.5°
3.如图,△ABC 中,D 为AB 上一点,E 为BC 上一点,且AC=CD=BD=BE ,∠A=50°,则∠CDE 的度数为( ) A .50° B .51°
C .51.5°
D .52.5°
4.已知△ABC 中,AB=6,AC=8,BC=11,任作一条直线将△ABC 分成两个三角形,若其中有一个三角形是等腰三角形,则这样的直线最多有( ) A .3条 B .5条 C .7条 D .8条
5如图,已知AB=A 1B ,A 1B 1=A 1A 2,A 2B 2=A 2A 3,A 3B 3=A 3A 4…,若∠A=70°,则∠A n 的度数为( ) A

B

C

D

6.如图所示,点D 是△ABC 的边AC 上一点(不含端点),AD =BD ,则下列结论正确的是( )
A .AC >BC
B .A
C =B C .C .∠A >∠ABC
D .∠A =∠ABC
7.如图,在△ABC 中,AB=AC ,过点A 作AD ∥BC ,若∠1=70°,则∠BAC 的大小为( )A .40° B .30°
C .70°
D .50°
8.如图,在△PAB 中,PA=PB ,M ,N ,K 分别是PA ,PB ,AB 上的点,且AM=BK ,BN=AK ,若∠MKN=44°,则∠P 的度数为( ) A .44°
B .66°
C .88°
D .92°
9.等腰三角形的两边长分别为4cm 和8cm ,则它的周长为( ) A .16cm B .17cm C .20cm D .16cm 或20cm
10如图,在△ABC 中,∠A=36°,AB=AC ,BD 是△ABC 的角平分线.若在边AB 上截取BE=BC ,连接DE ,则图中
11平面直角坐标系中,已知A (2,2)、B (4,0).若在坐标轴上取点C ,使△ABC 为等腰三角形,则满足条件的点C 的个数是( ) A .5
B .6
C .7
D .8
12如图,在Rt △ABC 中,∠C=90°,∠CAB 的平分线交BC 于D ,DE 是AB 的垂直平分线,垂足为E .若BC=3,则DE 的长为( )
A .1
B .2
C .3
D .4
二.填空题
1已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是 .
2.等腰三角形一腰上的高与另一腰的夹角为48°,则该等腰三角形的底角的度数为 . 3若等腰三角形的顶角为120°,腰长为2㎝,则它的底边长为______________㎝。

4.如图,△A 1A 2A 3,△A 4A 5A 5,△A 7A 8A 9,…,△A 3n ﹣2A 3n ﹣1A 3n (n 为正整数)均为等边三角形,它们的边长依次
为2,4,6,…,2n ,顶点A 3,A 6,A 9,…,A 3n 均在y 轴上,点O 是所有等边三角形的中心,则点A 2016的坐标为________.
5.如图,在△ABC 中,AB =AC =6,AB
的垂直平分线交AB 于点E ,交BC 于点D ,连接AD ,若AD =4,则DC = . 6如图,已知直线l 1∥l 2,将等边三角形如图放置,若∠α=40°,则∠β等于 .
7.
等腰三角形一腰上的高与另一腰的夹角的度数为
20
°
,则顶角的度数是

8如图,△ABC 中,D 是BC 上一点,AC=AD=DB ,∠BAC=102°,则∠ADC= 度.
9由于木质衣架没有柔性,在挂置衣服的时候不太方便操作.小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣
服后松开即可.如图1,衣架杆OA=OB=18cm ,若衣架收拢时,∠AOB=60°,如图2,则此时A ,B 两点之间的距离是 cm .
10等腰三角形的一个外角是60°,则它的顶角的度数是 .
三解答题
1如图,已知△ABC中,AB=AC,BD、CE是高,BD与CE相交于点O.
(1)求证:OB=OC;
(2)若∠ABC=50°,求∠BOC的度数.
2.求证:等腰三角形的两个底角相等
(请根据图用符号表示已知和求证,并写出证明过程)
已知:
求证:
证明:
3.在等边△ABC中,点D,E分别在边BC、AC上,若CD=2,过点D作DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,求EF的长.
4如图,在ABC
∆中,AB AC
=,AD是BC边上的中线,BE AC
⊥于点E。

求证:CBE BAD
∠=∠。

5如图,AE∥BF,AC平分∠BAE,交BF于C.
(1)尺规作图:过点B作AC的垂线,交AC于O,交AE于D(保留作图痕迹,不写作法);
(2)在(1)的图形中,找出两条相等的线段,并予以证明.
6.如图,河的两岸l1与l2相互平行,A、B是l1上的两点,C、D是l2上的两点,某人在点A处测得∠CAB=90°,∠DAB=30°,再沿AB方向前进20米到达点E(点E在线段AB上),测得∠DEB=60°,求C、D两点间的距离.
A
D
E。

相关文档
最新文档