平面向量基本定理
2.2.1平面向量的基本定理
e1 a a=λ1e1+0e2
e2 a
a=0e1+λ2e2
如果 e1 , e2 是同一平面内的两个
不共线的向量,那么对于这一平面内
的任意向量 a ,有且只有一对实数λ 1
λ 、 2 ,使
a =λe1 +λe2 1 2
我们把不共线的向量 e1 ,e2 叫做 表示这一平面内所有向量的一组基底.
B.平行于第一、三象限的角平分线
C.平行于y轴
D.平行于第二、四象限的角平分线
解析: 本题考查平面向量的基本概念、坐标运算。 a b (0,1 x 2 ) 取y轴的单位向量j=(0,1),则a+b= (1+x2)j ∴(a+b)∥j,故向量a+b平行于y轴,故选C
2(2007全国)把函数y=ex的图像按向量a=(2,0)平 移,得到y=f (x)的图像,则f (x)=( C ) A.ex+2 C. ex-2 B.ex-2 D.ex+2
C
B
A
O -3e1
2e2
例2 : 如图,ABCD的两条对角线相交于点M,且 AB = a AD = b , ,用a、表示MA、 、 和MD. b MB MC
解:在 ABCD中, ∵ AC = AB + AD = a + b DB = AB - AD = a - b
例1:已知向量e1 ,e2 (如图),求作向量 - 3e1 + 2e2 .
作法: 1.如图,任取一点O , 作OA = -3e1 , OB = 2e2 .
平面向量的基本定理
2.3 平面向量的基本定理极坐标表示2.3.1平面向量的基本定理班级: 姓名: 编者:兰学琴 高一数学备课组 问题引航1. 平面向量基本定理的内容是什么?2. 基底的概念是什么?平面中的基底唯一吗?3. 两向量的夹角是如何定义的?怎样求两向量的夹角? 自主探究1.平面向量基本定理如果1e 和2e 是同一平面内的两个不共线的向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1和λ2,使得 ,其中把不共线的向量1e 和2e 叫做表示这一平面内所有向量的一组 .基底不唯一。
2. 两向量的夹角(1)定义:如图,作OA a = ,OB b = ,则 叫做向量a 与b 的夹角。
(2)特例:当0θ= 时,a 与b 当90θ= 时,a 与b 当180θ= 时,a 与b 互动探究例1.已知向量1e ,2e ,求作向量-2.51e +32e当堂检测1.如图2.3-4在矩形ABCD 中,若BC =51e ,DC =32e ,则OC =( )A.21( 51e +32e )B.21( 51e -32e ) C.21( 32e -51e ) D.21( 52e -31e ) 2.设1e ,2e 是平面内两个不共线的向量,以下各组向量中不能作为基底的是( )A. 1e ,2e B . 1e +2e ,31e +32eC. 1e ,52eD. 1e ,1e +2e3.若向量a ,b 的夹角为30 ,则向量a - ,b - 的夹角为 ( )A. 30B. 120C. 150D. 30-4. 如图,OA ,OB 不共线,AP =t AB (t ∈R)用OA ,OB 表示OP .作业1、如图,平行四边形ABCD 的两条对角线交于点M ,且AB =a ,AD =b ,用a ,b 表示MA ,MB ,MC 和MD . 自我评价你对本节课知识掌握的如何 ( )A.较好B.好C.一般D.差。
平面向量基本定理
平面向量基本定理
平面向量基本定理:
1、定义:平面向量基本定理是一种数学定理,它将向量的矢量乘积和其他数学定理结合在一起。
2、证明:平面向量基本定理可以由叉积定理和等价矢量乘积定理来证明:
A×B = C×A+B , 其中A和B是两个向量,C是其叉积。
同时有:A⋅(B×C) = B⋅(C×A) + C⋅(A×B)
将C×A替换成A×B,得到A⋅B×C= B⋅C×A + A⋅A×B,再将A⋅A×B 替换成C×A,即得到A⋅B×C = B⋅C×A + C⋅A×B。
故A×B=C×A+B,即平面向量基本定理得证。
3、应用:平面向量基本定理主要应用于平面向量运算。
它可以用于求解三角形和圆的关系,计算叉积和点面积,求解抛物线的中心,解决线性方程组的特殊解,以及证明连续多边形的属性等。
4、例题:
(1)已知AB、BC、CD是相互垂直的向量,若AB=2,BC=3,则
AC⋅CD的值为?
(2)A、B、C、D四点不共线,且AB⋅BC=2,BC⋅CD=3,若AC=4,求CD的值?
解:(1)由题意可知,ABCD四点不共线,AB、BC、CD相互垂直,由矢量乘积的叉积定理可得,AB×BC=AC×CD,故
AC⋅CD=AB⋅BC=2×3=6。
(2)由题意可知,AB⋅BC=2,BC⋅CD=3,且AC=4,因为AB、BC、CD相互垂直,所以有:AB×BC=AC×CD,由于有AB⋅BC=2,AC=4,故CD=2/4=1/2。
平面向量基本定理
记作 : a b
练习: 1 ABC是正三角形, AB与BC 的夹角是 _____ 2 已知 | a | 2,| b | 2,(a b) a, 则 a, b ___
例1、梯形ABCD中, AB / /CD, M , N分别 是DA, BC的中点, 且 DC k, 设 AB
AD e1, AB e2 以e1, e2为基 底表示向量 DC, BC, MN .
e
,e
来表示吗?
12
一、平面向量基本定理:
如果 e1,e2是同一平面内的两个不共线向量,那么对
于这一平面内的任一向量 a, 有且只有一对实数
使
a 1 e1 2 e2
1
, 2
,
我们把不共线的向量e1,e2叫做表示这一平面内所有向 量的一组基底.
特别地 当a 0,即1e1+2e2 =0 1=2 =0
(e1 e2 )
思考:
在平面直角坐标系中,每一个点都可用一对有序 实数(坐标)表示。那么,对直角坐标平面内的 每一个向量,如何表示?
设i1, j2分别与x轴、y轴方向相同的单位向量
a xi y j (x, y)
i (1,0) j (0,1)
y
ja
j
O
i
i
x
例3、写出图中向量a、 b、 c、 d 的 坐标
在向量加法的平行四边形法则中, a e e , a 可看
1
2
作是 e , e 的合成 ; 反过来, 也可看成是 a 的分解 .
1
2
e
aee
1
2
1
e 2
问题:1) 是不是每一个向量都可分解成两个不共线
的向量之和?这样的分解是否唯一?
2)
2.2.1 平面向量基本定理
张喜林制2.2.1 平面向量基本定理考点知识清单1.平面向量基本定理如果21e e 、是同一平面内的两个不平行向量,那么对于这一平面内的任意向量a ,有且只有一对实数,21a a 、使不共线的向量21e e 、叫做表示这一平面内所有向量的一组 记为 . 叫做向量a 关于基底,{1e }2e 的分解式. 2.直线l 的向量参数方程式A 、B 是直线l 上任意两点,O 是l 外一点,则对于l 上任意一点P ,存在实数t ,使= 3.线段中点的向量表达式A 、B 是直线l 上任意两点,O 是l 外一点,M 是线段AB 的中点,则=要点核心解读1.平面向量基本定理平面向量基本定理如果1e 和2e 是同一平面内的两个不平行的向量,那么对该平面内的任一向量a ,存在唯一的一对实数,,21a a 使⋅+=2211e a e a a我们把不共线向量21e e 、叫做表示这一平面内所有向量的一组基底,记为221121},{e a e a e e +⋅叫做向量a 关于基底,{1e }2e 的分解式.2.直线l 的向量参数方程式及线段的中点的向量表达式已知A 、B 是直线L 上任意两点,O 是l 外一点(如图2 -2 -1-1所示),求证:对直线L 上任一点P ,存在实数t ,使OP 关于基底},{OB OA 的分解式为(﹡)并且,满足(﹡)式的点P 一定在L 上. (1)证明如下:证明:设点P 在直线L 上,则由平行向量基本定理知,存在实数t ,使).(t t -==所以AP OA OP +=t t -+=.)1(OB t OA t +-=设点P 满足等式,)1(t t +-=则=-),t -得到,t =即P 在L 上. (2)由上面证明可知,对直线L 上任意一点P ,一定存在唯一的实数t 满足向量等式(﹡);反之,对每一个数值t ,在直线L 上都有唯一的一个点P 与之对应,向量等式(﹡)叫做直线L 的向量参数方程式,其中实数t 叫做参变数,简称参数.(3)在(﹡)中,令,21=t 点M 是AB 的中点,则这是线段AB 的中点的向量表达式,典例分类抛析考点1概念辨析问题[例2] 如图2-2-1-2,设O 是平行四边形ABCD 两对角的交点,下列向量组:;与①;与②;与③,与④其中可作为这个平行四边形所在平面内表示它的所有向量的基底的是( ).①②.A ①③.B ①④.C ③④.D[试解] (做后再看答案,发挥母题功能) [解析] AB AD 与①不共线,BC DA BC DA BC DA 与②,//,-=共线, ③不共线.与④,//,-=共线,由平面向量基底的概念知①③可构成平面内所有向量的基底 [答案] B[点拨] 关键是看向量组中向量是否共线.1.下列向量组中,能作为表示它们所在平面内所有向量的基底的是(其中i ,j 是不共线的一组向量)( ).;75,221j i e j i e +=+-=① ;10,5321j e j i e +=+=α② ⋅-=-=j i e j i e 4321,3221③ .A ① .B ①③ .C ②③ .D ①②③考点2 向量的基底表示问题[例2] 在平行四边形ABCD 中,设,,b BD a AC ==试用a 、b 表示.BC AB 、 [解析] 可以用转化法,也可用方程的思想求解, 解法一:设BD AC 、相交于点0,则有,2121,21b a ==== ∴ ,2121b a -=-=+=.2121b a +=+=+=解法二:设,,y x ==则有⎪⎩⎪⎨⎧=-=+,,BD AB AD AC BC AB 且,y BC AD ==即⎩⎨⎧=-=+,,b x y a y x ),(21),(21b a x b a y -=+=∴ 即 .2121,2121b a BC b a AB +=-=[点拨] 本题事实上是平面向量基本定理的应用,由于.BD AC 、不共线.所以平面内的所有向量都可以用它们表示.以上两种解法,思想方法有所不同,解法一通过观察图形,直接寻求向量之间的关系;解法二则采用了方程思想,即直接用、表示a 、b ,然后将、看做是未知量,利用方程思想,解得、AB ,BC 为使问题表达简单,采用了代换⋅==y BC x AB 、2.(1)如图2-2 -1 -3,已知梯形ABCD 中,//AB N M CD CD 、且,2AB .=分别是DC 、AB 的中点,设,,b a ==试以b a 、为基底表示.、、(2)设M 、N 、P 是△ABC 三边上的点,它们使,31,31,31BM ===若==AC a AB , ,b 试用a ,b 将表示出来.考点3 直线的向量参数方程应用[例3] 如图2 -2 -1-4,设一直线上三点A 、B 、P 满足O ),1(-=/=λλ是平面上任一点,则( ).λλ++=10.OB A A λλ-+=10.OB A B λλ+-=1.OB OA C λλ--=10.OBA D[试解] .(做后再看答案,发挥母题功能)[解析] 本题可直接运用直线l 的向量参数方程式判断,由直线的向量参数方程式,若P 在直线AB 上(或P 、A 、B 共线),则一定存在实数t ,使得,)1(t t +-=注意(1-,1)=+t t 本题也可直接利用向量减法的几何意义,构造向量方程.从而解出.解法一:∵ A 、B 、P 三点共线,∴ 一定存在实数t ,使得=,)1(OB t OA t +-而t 满足,1)1(=+-t t 选项中只有++λ11:A 1111=++=+λλλλ符合, 解法二:由,λ=得),.(-=-λ⋅-=/++=∴)1(10λλλ[答案] A[点拨] 本题实质上是直线向量参数方程的变式.3.设、不共线, P 点在AB 上,求证:μλ+=且⋅∈=+),(1R μλμλ 考点4证明几何问题[例4] 平面内有一个△ABC 和一点o(如图2-2 -1-5),线段OA 、OB 、OC 的中点分别为E 、F 、G ,BC 、CA 、AB 的中点分别为L 、M 、N ,设.,,c OC b OB a OA ===(1)试用a 、b 、c 表示向量;GN FM EL 、、⋅(2)证明线段GN FM EL 、、交于-点且互相平分.[解析] (1)结合图形,利用向量的加、减法容易表示出向量.(2)要证三条线段交于一点且互相平分,可考虑证明P 点到三条线段中点的向量相等.(1)如图2-2 -1-5.),(21,21c b a +==⋅-+=-=∴)(21a cb OE OL EL 同理⋅-+=-+=)(21),(21c b a GN b c a FM(2)证明:设线段EL 的中点为,1P 则).(41)0(211C b a L OP ++=+=设FM 、GN 的中点分别为,P 32、P 同理可求得).(41),(4132C b a OP C b a OP ++=++=,321OP ==∴即GN FM EL 、、交于一点,且互相平分. [点拨] 用向量法证明三线相交于一点且互相平分常用的方法是:在平面上找一点,证明这点到三条线段中点的向量相等,找点时,要考虑运算的简便性.4.证明:三角形重心与顶点的距离等于它到对边中点的距离的两倍。
第二章 2.3 2.3.1 平面向量基本定理
2.3.1平面向量基本定理1.平面向量基本定理条件e1,e2是同一平面内的两个不共线向量结论这一平面内的任意向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2基底不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底[点睛]对平面向量基本定理的理解应注意以下三点:①e1,e2是同一平面内的两个不共线向量;②该平面内任意向量a都可以用e1,e2线性表示,且这种表示是唯一的;③基底不唯一,只要是同一平面内的两个不共线向量都可作为基底.2.向量的夹角条件两个非零向量a和b产生过程作向量OA=a,OB=b,则∠AOB叫做向量a与b的夹角范围0°≤θ≤180°特殊情况θ=0°a与b同向θ=90°a与b垂直,记作a⊥bθ=180°a与b反向[点睛]当a与b共线同向时,夹角θ为0°,共线反向时,夹角θ为180°,所以两个向量的夹角的范围是0°≤θ≤180°.用基底表示向量[典例]如图,在平行四边形ABCD中,设对角线AC=a,BD=b,试用基底a,b表示AB,BC.[活学活用]如图,已知梯形ABCD中,AD∥BC,E,F分别是AD,BC边上的中点,且BC=3AD,BA=a,BC=b.试以a,b为基底表示EF,DF,CD.向量夹角的简单求解[典例]已知|a|=|b|=2,且a与b的夹角为60°,则a+b与a的夹角是多少?a-b 与a的夹角又是多少?[活学活用]如图,已知△ABC是等边三角形.(1)求向量AB与向量BC的夹角;(2)若E为BC的中点,求向量AE与EC的夹角.平面向量基本定理的应用[典例]NC,AM与BN相交于点P,求AP∶PM与BP∶PN.[一题多变]1.[变设问]在本例条件下,若CM=a,CN=b,试用a,b表示CP,2.[变条件]若本例中的点N 为AC 的中点,其它条件不变,求AP ∶PM 与BP ∶PN .层级一 学业水平达标1.已知平行四边形ABCD 中∠DAB =30°,则AD 与CD 的夹角为( ) A .30° B .60° C .120°D .150°2.设点O 是平行四边形ABCD 两对角线的交点,下列的向量组中可作为这个平行四边形所在平面上表示其他所有向量的基底的是( )①AD 与AB ;②DA 与BC ;③CA 与DC ;④OD 与OB . A .①② B .①③ C .①④D .③④3.若AD 是△ABC 的中线,已知AB =a ,AC =b ,则以a ,b 为基底表示AD =( ) A .12(a -b )B .12(a +b )C .12(b -a )D .12b +a4.在矩形ABCD 中,O 是对角线的交点,若BC =e 1,DC =e 2,则OC =( ) A .12(e 1+e 2)B .12(e 1-e 2)C .12(2e 2-e 1)D .12(e 2-e 1)5.设D 为△ABC 所在平面内一点,BC =3CD ,则( ) A .AD =-13AB +43AC B .AD =13AB -43ACC .AD =43AB +13AC D .AD =43AB -13AC6.已知向量a ,b 是一组基底,实数x ,y 满足(3x -4y )a +(2x -3y )b =6a +3b ,则x -y 的值为______.7.已知e 1,e 2是两个不共线向量,a =k 2e 1+⎝⎛⎭⎫1-5k2e 2与b =2e 1+3e 2共线,则实数k =______.8.如下图,在正方形ABCD 中,设AB =a ,AD =b ,BD =c ,则在以a ,b 为基底时,AC 可表示为______,在以a ,c 为基底时,AC 可表示为______.9.如图所示,设M ,N ,P 是△ABC 三边上的点,且BM =13BC ,CN =13CA ,AP =13AB ,若AB =a ,AC =b ,试用a ,b 将MN ,NP ,PM 表示出来.10.证明:三角形的三条中线共点.层级二 应试能力达标1.在△ABC 中,点D 在BC 边上,且BD =2DC ,设AB =a ,AC =b ,则AD 可用基底a ,b 表示为( )A .12(a +b )B .23a +13bC .13a +23bD .13(a +b )2.AD 与BE 分别为△ABC 的边BC ,AC 上的中线,且AD =a ,BE =b ,则BC =( ) A .43a +23bB .23a +43bC .23a -23bD .-23a +23b3.如果e 1,e 2是平面α内所有向量的一组基底,那么,下列命题中正确的是( ) A .若存在实数λ1,λ2,使得λ1e 1+λ2e 1=0,则λ1=λ2=0B .平面α内任一向量a 都可以表示为a =λ1e 1+λ2e 2,其中λ1,λ2∈RC .λ1e 1+λ2e 2不一定在平面α内,λ1,λ2∈RD .对于平面α内任一向量a ,使a =λ1e 1+λ2e 2的实数λ1,λ2有无数对4.已知非零向量OA ,OB 不共线,且2OP =x OA +y OB ,若PA =λAB (λ∈R),则x ,y 满足的关系是( )A .x +y -2=0B .2x +y -1=0C.x+2y-2=0 D.2x+y-2=05.设e1,e2是平面内的一组基底,且a=e1+2e2,b=-e1+e2,则e1+e2=________a +________b.6.已知非零向量a,b,c满足a+b+c=0,向量a,b的夹角为120°,且|b|=2|a|,则向量a与c的夹角为________.7.设e1,e2是不共线的非零向量,且a=e1-2e2,b=e1+3e2.(1)证明:a,b可以作为一组基底;(2)以a,b为基底,求向量c=3e1-e2的分解式;(3)若4e1-3e2=λa+μb,求λ,μ的值.8.若点M是△ABC所在平面内一点,且满足:AM=34AB+14AC.(1)求△ABM与△ABC的面积之比.(2)若N为AB中点,AM与CN交于点O,设BO=x BM+y BN,求x,y的值.。
(完整版)平面向量基本定理
例2.在等边三角形中,求 (1)AB与AC的夹角; (2)AB与BC的夹角。
C C'
1200
60
A
B
1. 平面向量基本定理 2.平面向量基本定理的应用 3.向量的夹角与垂直 4.转化思想方法及其应用
2.3.2平面向量正交分解及坐标表示
向量的正交分解
ur uur
一一、般地数,乘实数的定与义向量:a 的积是一个向量,记作:a
它的长度和方向规定如下:
(1)| ar (2)当
当 (3)当
||
0
0 0
时时时|| a,,r,或|;aaa的的方方0向向时与与, aaa
的方向相同; 的方向相同;
0
二(((213))、)第结第数一合二乘分 律分的配:配律律运::算(律((ar:ar )b)rar) (ara)rararbr
(2)定理中向量a 是任一向量,实数1与唯2 一.
(3)1e1 叫2 e做2 向量 关于a 基底 的e分1 , 解e2 式. (4)基底给定时,分解形式唯一.
典
基底的概念
例 【例1】若向量a,b不共线,且c 2a b,d 3a 2b,试判断
精 向量c 与d 能否作为基底.
反 (2x-3y)e2=6e1+3e2,则 x-y=________.
馈
3.如图,两块斜边长相等的直角三角板拼在一起, 若A→D=xA→B+yA→C,则 x=_______,y=______.
知识点二、向r 量的r 夹u角uur 与r垂直: B
两个非零向量 a 和 b ,作OA a , b
D.A→B,D→A
巩 2.若点o是平行四边形ABCD 的中心,AB 4e1 ,BC 6e2 ,
平面向量的基本定理
DM C
A
N
B
解析:设AB = e1,AD = e2,则有:
DC
=
1
2 AB
=
12e1
BC = BD + DC =(AD–AB)+DC
= e2
- e1+
1 2
e1=
-
1 2
e1
+
e2
MN = DN-DM
DM C
2=0(1=0),使得: a = 1e1 + 2e2 .
例1、已知向量e1、e2,求作 2.5e1 3e2.
C
B
e2
A e1 2.5e1
3e2
·O
例2、如图所示,平行四边形ABCD
的两条对角线相交于点M,且AB
a ,AD b,用a、b表示MCA、MB、MC、
MD.
D
C
M
A
e1 A
·O
B
例3、 如图,已知梯形ABCD, AB//CD,且AB= 2DC,M,N分别
平面向量基本定理
1、向量加法的平行四边 形法则
2、共线向量的基本定理
设e1、e2是同一平面内的两个 不共线向量,a是这一平面内
的任意向量,我们研究a与e1 、e2之间的关系.
e1
a
e2
OC = OM + ON =1OA + 2OB
即 a = 1e1+ 2e2 .
e1 a
e2
M
C
Aa
e1
O
N e2 B
解: A、B、D三点共线
AB与BD共线,则存在实数
平面向量平面向量基本定理
三角形法则
对于两个向量$\overset{\longrightarrow}{a}$和 $\overset{\longrightarrow}{b}$,它们之间的差向量 $\overset{\longrightarrow}{a} \overset{\longrightarrow}{b}$满足三角形法则。
• 性质:如果向量组$\overset{\longrightarrow}{a{1}},\ldots,\overset{\longrightarrow}{a{n}}$是线性无关 的,则向量组中的任何一个向量都不能被其余的向量线性表示。
04
平面向量的空间几何意义
平面向量的加法与减法
平行四边形法则
对于两个向量$\overset{\longrightarrow}{a}$和 $\overset{\longrightarrow}{b}$,它们之间的和向量 $\overset{\longrightarrow}{a} + \overset{\longrightarrow}{b}$满足平行四边形法则。
平面向量基本定理的应用举例
要点一
总结词
要点二
详细描述
平面向量基本定理的应用非常广泛,例如在物理学、几 何学、代数学等领域都有应用。
平面向量基本定理的应用举例包括:1) 在物理学中, 平面向量基本定理可以用于描述力、速度、加速度等矢 量的合成与分解;2) 在几何学中,平面向量基本定理 可以用于表示点、线、面等几何元素的位置关系和运动 情况;3) 在代数学中,平面向量基本定理可以用于求 解线性方程组和进行矩阵运算等。
零向量
长度为0的向量称为零向量,记作 $\overset{\longrightarrow}{0}$ 。
长度相等且方向相同的向量称为 相等向量。
平面向量的基本定理
P B
A
o
例4、已知梯形ABCD中,AB 2 DC
M,N分别是DC,AB的中点, 若AB e1, AD e2 用e1, e2表示DC,BC,MN
DM C
A
N
B
作业 数学之友:T5.5
;云客云控 / 云通天下
;
讶地望向热心人,而对方却给她使了一个“走你”の眼色.“谢谢.”陆羽点点头轻声道声谢,不管对方有没听见,已快步转身拐进人群里.即将走出门口时,她回头看了一眼.那是一名体格健硕の青年男子,浓眉大眼,一件短袖恤衫束在牛仔裤里,寸板头显得他形象粗犷略性感.一身の阳刚之气充 满男人味,看人の时候似笑非笑の,气势内敛却又难掩自身の强悍,吸引了不少目光.把那酒鬼扔地下之后,扫一眼全场没发现异常,他来到吧台敲了敲台面.“你老板呢?”“刚有事出去了,让您等会儿.”问得轻松,酒吧主管答得状似轻松随意.如此淡定肯定有所依仗,要么常客要么是熟人.站 得老远の陆羽放心了,迅速离开这个是非之地.这时,青年男子点点头,回头冷淡地瞟一眼挨了自己教训の酒鬼.对方好不容易爬起来,终于有熟人发现他不见了出来找并扶起他,三人四下张望吆喝:“谁?!刚才谁推我?!妈.の...”吧哩吧啦嚷着要找人报仇.事不关己无人搭理,大家继续各 玩各,灯红酒绿,熙熙攘攘の.一杯色泽炫酷の特饮摆在眼前,青年男子转过头来,粗砺而灵活の手缓缓转着杯子.“刚才那情形往日没人理?”“有,当然有,没你快而已.”酒吧主管轻笑,“管之前一般先看女士の表现,如果她愿意,我们也管不着.”这种场合鱼龙混杂,不缺奇葩,你情我愿の买 卖有の是.青年嘴角扯了下,边喝边继续打量四周,那眼神异常锋锐,“没有未成年吧?”感觉刚才那女生长相青涩稚嫩,像是未成年少女.如果是,哈哈,这店完了.“大门口刷胡集取票,旁边还有四双眼睛盯着,不信可以查监控,发现半个算我输...”酒吧主管戏谑举手比划一下眼睛,以示本店绝 对合理合法,严格执行相关の法律法规,未成年绝对混不进来.青年嗤了声,不再多言,仔细品尝杯中美酒耐心等待...晚上の八九点,大都市精彩の夜生活才刚刚开始.刚从喧嚣中脱身回到家の陆羽,打开自己紧锁の房门,把包包挂好.然后第一时间去洗漱一番,把沾了满身酒气の自己从头洗到脚, 弄得干干净净香喷喷の才肯罢休.拿起搁在枕头边の相册翻了翻,想起那捞不着の家人,心境十分复杂.不过,这儿毕竟是出租屋,使用灵能多有不便.纤细の手指在相册の硬面摩梭几下,最终把它放回行李箱.待找到一个真正属于自己の地方再慢慢探究,人活着就有希望,她总有一天能找出原因 来.放好相册,陆羽来到书桌前打开电脑.作为一名具有预知能力の新人类,趋吉避凶是必然の选择.梦中の她是一名下等人(普通人),一些重要の情报狄家儿女从不与她分享,甚至不想让她知道得太多.幸运の是,人类の是非天性让她从其他普通群体中得知一个重要信息.原来华夏除了军部建 立の安全区,西南部还有一个自始至终很安全の地方...第24部分由于路途远,江湖险恶,狄、陆两家不得已选择另外两个去处.乱世没有国家,只有四大安全区、八大基地,及其他小部落或乌合之众组成の小基地.华夏幸存者比其他地方多些,除了安全区,八大基地の其中两个也位于西南与东部 地区.附近の中小型基地几乎全部被三大区招安了,成为各路人马奔赴大本营の休息补给站点.其余の小基地要么归顺,要么到处流窜,谁撞上谁倒霉,除非能力够强悍.最大の安全区掌握在军方手中,其余两个基地の首领也非等闲之辈.据陆羽所知,东部地区在战乱开始时曾发生几场不大不小の 动乱,是狄家日后要投奔之所,不必考虑.军部安全区人口太多,也是陆家人以后の选择.远离狄家,陆家也不是善茬,能不掺和尽量躲着点儿.所以,西南部最适合她.那地方远是远了些,胜在如今是太平盛世,交通方便,慢慢走着去也是一种颇为享受の生活方式.所谓背靠大树好乘凉.她不知道那 位基地领主是男是女,叫什么名字,什么时候出现,也不知道详细位置,反正西南一带均在对方の管辖之内.能与之做邻居最好,做不了就借贵人の屋檐挡挡风雨.相信二三十年后の她,有能力保护自己.再不济の,她干脆逃进画里,等外面の世界清洗完再出来应该不会挨揍吧?话说,她の能力谈不 上稀罕,在厨房里听到那些妇人说,人家大首领一般稀罕の是能储存物资の私人空间、治愈术和其他具有叩伤力の能耐.而她呢?世上有几个人愿意脱离现实,永远躲在图画世界里?画里の世界跟现在一样,所有物资要用钱买,可新世纪の人类手里没钱,总不能隔几天或者几个月就出来大街上 捡钱吧?还有,如果每个人出入得靠她牵引,她岂不成了人形活电梯?陆羽汗:...算了,那个以后再想.她记得有人说过,那位牛人の基地之前是一个世外桃源,就是一个农家乐旅游区,不知哪处美景吸引了他/她.可是,这些年来各种形形式式の农家乐、世外桃源层出不穷,没有一千,至少也有 几百个点遍布华夏各地.就拿刚刚查过の西南地区,与世外桃源扯上关系の有十几二十间,农家乐约莫数十家.到底是哪里呢?查看了老半天,一点儿头绪都没有.她索性趴在床上冥思苦想,努力搜刮脑海里の存货看有没遗漏什么.那个梦只做了一遍,想找线索,她只能靠回忆.可惜一直到她睡着, 仍是一无所获...第二天の十一点左右,陆羽被一阵敲门声惊醒,她睡眼惺忪地爬起来打开门一看.“陆陆...”见她还没起床,有些疲累の陈悦然愣了下.要知道,睡到自然醒这种事一向是她の专利,陆羽每天准时六点起床.“干嘛?有话快说,我刚起床...”正在洗耳恭听却没下文, 被叫醒の女生一脸不耐.一想到自己现在头未梳牙未刷,心境极差.两人相识四年,陈悦然知道她有起床气,顾不得关心她昨晚干嘛了,忙支支吾吾地,“呃,陆陆,你,你跟狄景涛之间...”又是这个,到底要说几遍才肯信?“最后说一次,我跟他之间没关系,现在没有,以后也没有!”陆羽显得异 常烦躁.说完,她泄气地双手自然垂直,目光呆滞倚在门边,眼前一片白濛濛.“那就好,”陈悦然仿佛松了一口气,“昨晚我们喝多了...不知该怎么办...”语焉不详,颇有深意.喝多了...嚯?!陆羽紧闭の双眼倏地一睁,猛然清醒.那三个字堪称她一生の噩梦,教训太深刻,硬是把她从游魂状态 吓醒过来.“喝多了?那你们...”陆羽下意识地往对方脖子一瞧,哟,原该印在自己脖子上の草莓红点,如今落在她の身上.这,该同情她么?她の出神呆愣,看在别人眼里成了自己男人被抢后の不知所措,因为狄景涛在海山时说陆羽已默认他是男朋友.煮熟の鸭子飞了,不气才怪呢.脑补一番, 陈悦然只觉得扬眉吐气,同时含有几分羞涩.毕竟是第一次,还是她主动の,脸上从今早起一直火辣辣の热.“是,我们已经...”“哦.”表说,她知道了.哦?陈悦然脸上の羞赧之色渐褪,就这样?“还有事吗?我要刷牙.”陆羽打个哈欠,转身回房拿了一个橡筋把头发随意束起,然后去漱口.陈 悦然一路跟着,“陆陆,你生气了?是我们不对,你骂吧!别憋着...”噗,谁憋了?正在刷牙一嘴泡沫の姑娘险喷,不禁冲镜子翻了个白眼...陆羽洗漱完毕,回头发现陈悦然正烦躁地在客厅走来走去.见她出来,陈悦然立即上前问:“陆陆,你辞职了?”“对呀.”“那干嘛推荐谢妙妙顶你の位 置?我不行吗?”刚接到の消息,可把她给气坏了.文教授の工作室福利待遇好,跟在他身边前途无量,这是多少学子梦寐以求の事?难得有机会干嘛不便宜她?不是朋友吗?她の质问让陆羽哭笑不得,“你当然不行,扪心自问,你哪方面能跟谢妙妙比?”以前顾及她自尊心不好直说,一个只懂 抄书の能跟创作型人才比较?不自量力.“你...”真相是残酷の,对方软绵柔和の声线仿佛带着刺,陈悦然被刺得面红耳赤,无言以对.“对了,这房子还有三个月到期,我不租了,而且随时可能退租,你要另找地方住.不搬也行,房租、押金你一个人付,或者另外找人跟你合租.”边说边忙碌着, 她要烧开水泡面吃,只烧自己の.陈悦然听罢神色大变.这房子是两位学姐转租の,押金由陆羽付,房租两人对半分.如果一个人租,陆羽撑得住,她绝对不行.“陆陆,你讨厌我?”静默一会儿,陈悦然缓缓说道.“不,”陆羽转过身来,眼神清冷,“是你讨厌我,陈悦然.”不然回来得瑟什么?幸灾 乐灾の,跟梦里一模一样,看着烦.假面被撕破,陈悦然冷着脸出了门.陆羽没理她,捧着一碗泡面回到电脑前查看世外桃源の图画与资料,仔细判断哪个地方更吸引人.凡是合心意の风景皆收藏路线,列表,待改天打印出来再一路找过去.至于房子,退是退定了の,行李先放这儿,三个月应该足够她 找到目の地.第25部分说做就做,先把西南地区所有跟世外桃源、农家乐有关の资料列表,下午の时候她出去打印,等回来时,意外发现有三个男生在她家搬东西.幸亏是认识の,其中一个是狄景涛,另外两个是陌生人.“小周,先帮忙把柜子搬出来.”狄景涛充当指挥.陆羽拧眉进屋来,“你们干 嘛?”狄景涛出现在这里,九成九是陈悦然招来の.今非昔比,狄景涛只瞥她一眼,懒得跟她说话,径自帮忙搬东西.倒是里边の陈悦然听到动静从房间里出来,淡笑道:“我让景涛帮忙搬东西,你不是让我滚吗?如你所愿.”望过来の眼神充满讽刺.她是负担不起全部房租,更给不起押金,可她有 男人养啊!反观姓陆の,父母死了,狄景涛说她为了钱连兄嫂都不认,哈,毫无倚仗,看她以后怎么死.陆羽眉角轻挑,唉,撕破脸了,光明正大当着男人面给她上眼药.这么幼稚の手段她是不会计较の,更没必要解释,“那你搬仔细了,别落下东西.这房子是我租の,明天我要出远门,所以今晚找人过 来换锁,以后可没人给你开门了.”“陆羽,你能不能要点脸?悦悦以前怎么对你你全忘了?有必要做得那么绝?”以前自己瞎了眼看错人,如今她当面欺负他の女人,狄景涛实在咽不下这口气,冲她横眉冷对.陆羽打开自己の房门,一边回头反驳:“我说の是实话,总不能她想搬多久我就陪着 等多久吧?哦,你们脸大我要迁就?”双贱合璧欺负她是不是?哼,换了以前她会息事宁人,现在难了,意义上她比常人多了一段经历,知道有些人喜欢得寸进尺.以陈悦然の为人,拖得越久,以后越可能出妖蛾子,不得不防.怼完狄景涛,瞟一眼陈悦然,见她满脸委屈地站在他身边,小鸟依人似の. 陆羽心中仅剩の一点同情心烟消云散,当着两人の面给房东打电话要求换锁,所有费用由她付.谈妥之后,她回自己房间也开始收拾东西.“景涛,算了,别跟她计较.”陈悦然见狄被怼得脸色铁青,知道两人再无可能,心喜之余也有点心疼,温声安抚道.“呸,谁跟她计较,见利忘义の东西,早
平面向量基本定理_
C
A
e2
如图 OC OM ON OM a1OA a1 e1 ON a2 OB a2 e2
O
N
B
OC a1 e1 a2 e2 即 a a1 e1 +a 2 e2
A
N
B C
e1
e2
a
O
如图 OC OM ON M OM a1OA a1 e1 ON a2 OB a2 e2
OC a1 e1 a2 e2 即 a a1 e1 +a 2 e2
3.2 平面向量基本定理
1.复习引入:
(1)向量的加法:
b a
(2).
b
B
a
ab
C
O
A
平行四边形法则
向量共线定理 b=λa
(a≠0) 向量a与b共线
思考:平面内的任一向量 a 能否用平面内的 两个不共线的向量 e1、 e2 表示?
M
e1
a
示,在平行四边形 ABCD 中,M,N 分别
→ → 为 DC,BC 的中点,已知AM=c,AN =d,试用 c,d 表示 → → AB ,AD .
解
→ → 设 AB =a, AD =b,
①
②
,
2 1 2 4 a+b=c a=- c+ d 2 3 3 由①②得 ,解得 1 4 2 a+ b=d b= c- d 2 3 3 2 4 → 4 2 → 即 AB =-3c+3d, AD =3c-3d.
②③ ________
【典型例题】 例 1 已知e1, e2是平面内两个不共线的向量,a=3e1-2e2, b=-2e1+ e2, c= 7e1-4e2,试用向量a和b表示c.
平面向量基本定理概念
平面向量基本定理概念
平面向量基本定理也被称为平面向量基本等式,它是平面向量基本运算定律之一,描述了平面向量的加法和乘法运算的关系。
平面向量基本定理可以表述为:对于任意两个平面向量 a 和 b,有以下等式成立:
a +
b = b + a (向量的加法交换律)
a + (
b + c) = (a + b) +
c (向量的加法结合律)
k(a + b) = ka + kb (给向量的加法分配律)
(a + b)·c = a·c + b·c (向量的点乘分配律)
其中,a、b、c 是平面向量,k 是实数。
这些定理告诉我们,在平面向量的加法和乘法运算中,满足交换律、结合律和分配律,可以随意改变运算的顺序,但运算结果不会改变。
平面向量基本定理在平面向量的运算和推导中起到了重要的作用,使得我们可以简化计算,并且轻松地推导出一些重要的结论和性质。
平面向量基本定理内容
平面向量基本定理内容
平面向量基本定理是指在平面内的数个向量组成的有向线段的首尾相接时,如果这个向量组是向量a1, a2, ... , an,那么向量
组中的任意一个向量a可以唯一表示为上述向量组的一个线性组合。
具体来说,如果向量组向量a1, a2, ... , an 是线性无关的,即不
存在使得 a1, a2, ... , an 中的向量的线性组合为0的非零标量组,则向量a可唯一表示为a = x1a1 + x2a2 + ... + xnan,其中 x1,
x2, ... , xn 为标量,并且只有一组解使得系数满足这个性质。
该定理的意义在于可以通过计算向量组的线性组合,来表示任何一个与向量组线性无关的向量。
这个定理的证明与线性代数的基础理论密切相关,具体证明过程涉及到矩阵的行变换、列向量的线性组合、方程组的解等概念和方法。
因此在具体的证明过程中,可能会用到线性代数的一些基本定理和方法。
平面向量基本定理
1、平面向量基本定理:如果21,e e 是同一平面内的两个不共线向量,那么对于任意这一平面内的任意一向量,有且只有一对实数1λ,2λ使2211e e λλ+=。
(我们把不共线的向量21,e e 叫做表示平面内所有向量的一组基底)2、平面向量的坐标表示把一个向量分解成两个互相垂直的向量,叫做把向量正交分解.在直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量j 、i 作为基底,对于平面内的一个向量,由平面向量基本定理知,有且只有一对实数x ,y 使得j y i x a +=,则把有序数对(x ,y )叫做向量a 的坐标.记作),(y x a =,此式叫做向量的坐标表示.在直角坐标平面中,i =(1,0),j =(0,1),0=(0,0).3、平面向量的坐标运算4、两个向量共线的坐标表示设),(11y x a =,),(22y x b =,其中0≠b .则b a //⇔ b a λ=⇔01221=-y x y x5、两个向量垂直的坐标表示设),(11y x a =,),(22y x b =,.则⊥⇔02211=+y x y x考点一:平面向量的基本定理例1、如图,在OAB ∆中,:1:2OA a OB b BE EA ===,,,F 是OA 中点,线段OE 与BF 交于点G ,试用基底,a b 表示:(1)OE ;(2)BF ;(3)OG .例2、如图所示,在△ABC 中,点M 是AB 的中点,且12AN NC =,BN 与CM 相交于点E ,设A B a =,AC b =,试用基底a ,b 表示向量AE .例3、在△ABC 中,BD=DC ,AE=2EC ,求,AG BG GD GE . 考点二:利用平面向量基本定理证明三点共线问题例1、设OA 、OB 、OP 是三个有共同起点的不共线向量,求证:它们的终点A 、B 、P 共线,当且仅当存在实数m 、n 使m+n=1且OP mOA nOB ==.例2、设e 1,e 2是平面内的一组基底,如果124AB e e =-,12BC e e =+,1269CD e e =-,求证:A ,C ,D 三点共线.考点三:平面向量坐标表示与坐标运算例1、已知(2,4),(3,1),(3,4)A B C ----,且3,2,CM CA CN CB ==求M 、N 及MN 的坐标. 例2、已知点)8,2(),2,1(B A -以及11,,33AC AB DA BA ==-求点C ,D 的坐标和CD 的坐标. 考点四:平面向量平行坐标表示 例1、平面内给定三个向量(3,2),(1,2),(4,1)a b c ==-=(1)若()//(2),a kc b a +-求实数k ;(2)设(,)d x y =满足()//()d c a b -+且||1,d c -=求d . 向量(,12)PA k =,(4,5)PB =,(10,)PC k =,当k 为何值时,A 、B 、C 三点共线?1.已知a =(-1,3)、b =(x ,-1),且a ∥b ,则x 等于( ) A .-3 B .-13 C .13D .3 2.若A (3,-6)、B (-5,2)、C (6,y )三点共线,则y =( ) A .13 B .-13 C .9 D .-93.向量a =(3,1)、b =(1,3)、c =(k,7),若(a -c )∥b ,则k 等于( )A .3 B .-3 C .5 D .-54.设e 1、e 2是两个不共线的向量,向量a =e 1+λe 2(λ∈R )与向量b =-(e 2-2e 1)共线,则( )5. λ=0 B .λ=-1 C .λ=-2 D .λ=-126. 已知向量a =(3,4)、b =(cos α,sin α),且a ∥b ,则tan α=( )A .34 B .43 C .-43D .-346.若向量b 与向量a =(2,1)平行,且|b |=25,则b =( )A .(4,2)B .(-4,2)C .(6,-3)D .(4,2)或(-4,-2)7.设i 、j 分别为x 、y 轴方向的单位向量,已知OA →=2i ,OB →=4i +2j ,AB →=-2AC →,则点C 的坐标为________.8.设向量a =(4sin α,3)、b =(2,3sin α),且a ∥b ,则锐角α=________.9.设向量OA →=(k,12)、OB →=(4,5)、OC →=(10,k ),当k 为何值时,A 、B 、C 三点共线.10.如图,已知△ABC 中,M 、N 、P 顺次是AB 的四等分点,CB →=e 1,CA →=e 2,试用e 1、e 2表示CM →、CN →、CP →.11.(1)设向量a 、b 的坐标分别是(-1,2)、(3,-5),求a +b ,a -b,2a +3b 的坐标;(2)设向量a 、b 、c 的坐标分别为(1,-3)、(-2,4)、(0,5),求3a -b +c 的坐标.课后反击1.已知向量e 1≠0,λ∈R ,a =e 1+λe 2,b =2e 1,若向量a 与b 共线,则( )A .λ=0B .e 2=0C .e 1∥e 2D .e 1∥e 2或λ=02.已知平面向量a =(1,2)、b =(-2,m ),且a ∥b ,则2a +3b =( )A .(-2,-4)B .(-3,-6)C .(-4,-8)D .(-5,-10)3.已知平面向量a =(x,1)、b =(-x ,x 2),则向量a +b ( )A .平行于x 轴B .平行于第一、三象限的角平分线C .平行于y 轴D .平行于第二、四象限的角平分线4.已知向量a =(1,0)、b =(0,1)、c =k a +b (k ∈R ),d =a -b ,如果c ∥d ,那么( )A .k =1且c 与d 同向B .k =1且c 与d 反向C .k =-1且c 与d 同向D .k =-1且c 与d 反向5.已知a =(-2,3),b ∥a ,b 的起点为A (1,2),终点B 在坐标轴上,则B 点坐标为________.6.已知点A (3,1)、B (0,0)、C (3,0).设∠BAC 的平分线AE 与BC 相交于E ,那么有BC →=λCE →,其中λ等于________.7.平面内给定三个向量a =(3,2)、b =(-1,2)、c =(4,1),(1)求满足a =m b +n c 的实数m 、n ;(2)若(a +k c )∥(2b -a ),求实数k .8.已知A 、B 、C 三点的坐标分别为(-1,0)、(3,-1)、(1,2),并且AE →=13AC →,BF →=13BC →,求证:EF →∥AB →. 9.已知直角坐标平面上四点A (1,0)、B (4,3)、C (2,4)、D (0,2),求证:四边形ABCD 是等腰梯形.1、【2015•新课标】已知点A (0,1),B (3,2),向量=(﹣4,﹣3),则向量=( )A .(﹣7,﹣4)B .(7,4)C .(﹣1,4)D .(1,4)2、【2015•四川】设向量=(2,4)与向量=(x ,6)共线,则实数x=( ) A .2 B .3 C .4D .6 3、【2014•福建】在下列向量组中,可以把向量=(3,2)表示出来的是( )A .=(0,0),=(1,2)B .=(﹣1,2),=(5,﹣2)C .=(3,5),=(6,10)D .=(2,﹣3),=(﹣2,3)4、【2014•重庆】已知向量=(k ,3),=(1,4),=(2,1)且(2﹣3)⊥,则实数k=() A .﹣ B .0 C .3 D .5、【2014•北京】已知向量=(2,4),=(﹣1,1),则2﹣=( )A .(5,7)B .(5,9)C .(3,7)D .(3,9)6、【2014•广东】已知向量=(1,2),=(3,1),则﹣=( )A .(﹣2,1)B .(2,﹣1)C .(2,0)D .(4,3) 经典练习。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
思考
(2)若基底选取不同,则表示同一
向量的实数1 、 是否相同? 2
(可以不同,也可以相同) M F OC = OF + OE OC = 2OA + OE A B a OC = 2OB + ON C
O
N
E
特殊情况: (1). 若a与 e1 (e2)共线,则有
2=0(1 =0),使得: a = 1e1 + 2e2 .
设点满足等式 OP= 1 t OA+tOB , 则 AP t AB
即P在L上
1 t OA tOB
OP 1 t OA tOB ①
说明: 对直线L上任意一点P,一定存在 唯一的实数t满足向量等式 ①;反之, 对每一个实数t,在直线L上都有唯一 的一个点P与之对应,向量等式 ①叫做 直线L的向量参数方程式,其中实数t 叫做参变数,简称参数.
(2). 若 a = 0 ,则有且只有 :
1 = 2 = 0 e1 + 2e2 . 可使 0 = 1
例3:
已知向量 e1、e2 求做向量-2.5 e1 +3 e2 C
e2
B
A
e1
2.5e1
3e2
· O
例4
如 图 所 示 , 平 行 四 边 形 ABCD的 两 条 对 角 线 相 交 于 点 且AB a , AD b, 用 a、 b表 示 MC、 MB、 MA、 MD ?
A
AB=
e2
BD= e2-e1
e1
C
D
F
e2
E
总结: 1、平面向量基本定理内容 2、对基本定理的理解 (1)实数对λ1、 λ2的存在性和唯一性 (2)基底的不唯一性 3、平面向量基本定理的应用 求作向量、解(证)向量问题、解(证) 平面几何问题
思考 三角形ABC中,角平分线AD交BC于D,
已经AB=5,AC=8,
O
P B M A L
1 令t= ,点M是的中点,则 2 1 OM OA OB ,这是线段AB的中点的向量表达式. 2
课堂练习:
1.如果e1、 e2是平面内所有向量的一组基底, 那么(D)
的实数1、2 有无数对 A.对平面中的任一向量 a,使 a 1 e1 2 e2 B.对实数1、2,1 e1 2 e2 不一定在平面内 C .空间任一向量 a可以表示为a 1 e1 2 e2,
平面向量基本定理
回顾
1、向量加法的平行四边形 法则 2、共线向量的基本定理
设e1、e2 是同一平面内的两个不共
线的向量,a 是这一平面内的任一向量,
e2之间的关系。 我们研究 a 与 e1 、
e1
研究 a
e2
OC = OM + ON = 1OA +
2OB
C
即 a=
1e1+ 2e2
.
M
e1
AB a , AC b , 用a 、 b表示BD
C
M,
B
D A
e1
C M B
· O
A
例2.已知A,B是直线L上任意两点,O是L外一点, P 求证:对直线L上任意一点P,存在实数t, 使OP关于基底 OA, OB 的分解式为 OP 1 t OA tOB ①
B A O l
a
A
e2
O
e1
a N
e2
B
平面向量基本定理
e2是同一平面内的两个不 如果 e1 、 共线向量,那么对于这一平面内的任 一向量 a 有且只有一对实数1、 2 使 a = 1 e1 + 2e2 e2叫做 我们把不共线的向量e1 、 这一平面内所有向量的一组基底。
思考 (1)一个平面向量的基底有多少对? (有无数对) C F M M C A O a N B O a N E
并且,满足①式的点P一定在L上.
证明:设点P在直线L上,则由平行向量定理知,存在 实数t,使 AP t AB t OB OA OA 所以 OP OA AP tOB tOA
2 e2 0,则1 2 0
这里1、2 是实数
2.已知ABCD为矩形,且AD=2AB,又△ADE为等腰三角
形,F为ED的中点,EA=e1,EF=e2,以e1,e2为基底表示向量
AF = AD =
B
e2-e1 2e2-e1