高数上册归纳公式篇 完整

合集下载

(完整版)高数1全套公式

(完整版)高数1全套公式

o
x
极限的计算方法 一、初等函数: 1.lim C C(C是常值函数)
2.若 f x M(即 f x 是有界量),lim (0 即 是无穷小量), lim f x
0,
特别 : f x C lim C 0
fx
3.若 f x M(即 f x 是有界量) lim
0,
特别 : f x C C 0
lim C 0
2.特殊角的三角函数值
f( ) cos sin tan cot
0 (0 )
1 0 0 不存在
6
(30 ) 3/ 2 1/ 2
1/ 3 3
4
( 45 ) 2 /2 2 /2
1 1
3
( 60 ) 1/ 2 3/ 2
3 1/ 3
2
( 90 )
0 1 不存在 0
只需记住这两个特殊的直角三角形的边角关系,依照三角函数的定义即可推出上面的三角值
(3)、 d( ax ) a x ln adx ,特别地,当 a e时, d (ex ) exdx ;
(4)、 d(log a x)
1 dx ,特别地,当 a e 时, d (ln x) 1 dx ;
1。
45 2
1
60
2 1
45
30
1 3 诱导公式:
3
函数
角A
sin cos tg ctg
-α 90 °- α 90 °+ α 180 °-α 180 °+α 270 °-α 270 °+α 360 °-α 360 °+α
-sin α cos α -tg α -ctg α cos α sin α ctg α tg α cos α -sin α -ctg α -tg α sin α -cos α -tg α -ctg α -sin α -cos α tg α ctg α -cos α -sin α ctg α tg α -cos α sin α -ctg α -tg α -sin α cos α -tg α -ctg α sin α cos α tg α ctg α

高等数学上册必考公式(3篇)

高等数学上册必考公式(3篇)

高等数学上册必考公式(3篇)高等数学上册必考公式(3篇)高等数学公式是在数学专业中占重要的位置,同时公式也是很重要的,下面就让小编给大家带来高等数学上册必考公式,希望大家喜欢,欢迎大家阅读! 高等数学函数公式篇1·平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα乘cosαcosα=cotα乘sinαtanα=sinα乘secαcotα=cosα乘cscαsecα=tanα乘cscαcscα=secα乘cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边,余弦等于角A的邻边比斜边正切等于对边比邻边,·三角函数恒等变形公式:·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·s inγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)·辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B·倍角公式:·三倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα) sin(3α)=3sinα-4sin^3(α) cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)cos(3α)=4cos^3(α)-3cosαtan(2α)=2tanα/[1-tan^2(α)]·半角公式:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα ·降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2·其他:sinα+sin(α+2π/n)+sin(α+2π乘2/n)+sin(α+2π乘3/n)+……+sin[α+2π乘(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π乘2/n)+cos(α+2π乘3/n)+……+cos[α+2π乘(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0三角函数的角度换算:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的`关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)部分高等内容·高等代数中三角函数的指数表示(由泰勒级数易得):sinx=[e^(ix)-e^(-ix)]/(2i) cosx=[e^(ix)+e^(-ix)]/2 tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…此时三角函数定义域已推广至整个复数集。

(完整版)高数公式汇总

(完整版)高数公式汇总

高数公式汇总经管学生会内部资料导数公式:(tgx) sec x(ctgx) csc x(secx) secx tgx(cscx) cscx ctgx(a x) a x l na(log a x) 1xl na基本积分表:tgxdxctgxdxsecxdxcscxdxdx~ 2a xdx~ 2x adx~ 2a xdx2a x 高等数学公式In cosx CIn sinx CIn secx tgx C In cscx ctgx C 1 x-arctg — Ca a1 x a —— C 2a x a1 a x —— C 2a a xarcs in仝C aI n2sin xdx cos x2 2 a 'x2 2 a 'a2x2dxdxdxo三角函数的有理式积分:2usin x 2, c osx1 u22u2,1 u(arcsin x)(arccos x)(arctgx)(arcctgx)dx2~ cosxdx~~~2-sin xxdxx 2—x22 ax 2—x22 ax 21 a2 xn2otg i,111 x211 x2sec2 xdx tgx C2csc xdx ctgx Csecx tgxdx secx Ccscx ctgxdx cscx Cxa x dx — CIn ashxdx chx Cchxdx shx C2 2----------- In( x 、x a ) C2 2 v 7 x aI n2 a —In( x22 a .一In x22a . x arcs in C2x2 a2) C、x2 a2dx2du1 u2高数公式汇总 经管学生会内部资料两个重要极限:sin x ’lim 1x 0 xlim(1 -)x e 2.718281828459045…xarchx In (x x 21)三角函数公式:•诱导公式:-和差角公式:sin( )sin COS COS sin COS ( )COSCOS sin sintg()汽tg1 tg tgCtg()CtgCtg 1Ctg Ctg-和差化积公式:sin sin 2 si nCOS 2 2sinsin2 COSsin22COS COS 2 COSCOS --2 2COS COS2 si nsin2 2一些初等函数: xe e x2xxe e2shx x e x echx x e x ex 21)arthx llnl 双曲正弦:shx双曲余弦:chx双曲正切:thx高数公式汇总经管学生会内部资料sin 2 2sin cos cos2 2cos 2 1ctg2ctg 212ctgtg2 2tg 21 tg•倍角公式: 1 2si n 2-半角公式: 2cos 2sinsin3 3sin 4sin 3 cos3 4cos 3costg33tg tg 31 3tg 2tg 2sin — 2 1 cos 1 cos sin sin 1 cos-余弦定理:-正弦定理:a b sin A sinB c si nC2Rc 2 a 2 b 2 2ab cosC•反三角函数性质: arcs inx arccosx 2 arctgx arcctgx高阶导数公式 ------ 莱布尼兹( Leibniz )公式:2! k ! 中值定理与导数应用:拉格朗日中值定理: f(b) f(a) f ( )(b a) 柯西中值定理:丄型 f (a) f () F(b) F(a) F () n (n) k (n k) (k)(uv) C n u v k 0(n) (n 1) n(n 1) (n 2) n(n 1) (n k 1) (n k) (k)u v nu v u vu v当F(x) x 时,柯西中值定理就是 拉格朗日中值定理 曲率:uv(n)高数公式汇总 经管学生会内部资料弧微分公式:ds .1 y 2dx,其中y tg平均曲率:K .:从M 点到M 点,切线斜率的倾角变 化量;s : MM 弧长。

高数公式大全全

高数公式大全全

高数公式大全1.基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππx x arshx e e e e chx shx thx e e chx e e shx x xxx xx xx ++=+-==+=-=----1ln(:2:2:2)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( αααααααααα23333133cos 3cos 43cos sin 4sin 33sin tg tg tg tg --=-=-=αααααααααααααα222222122212sin cos sin 211cos 22cos cos sin 22sin tg tg tg ctg ctg ctg -=-=-=-=-==·正弦定理:R CcB b A a 2sin sin sin ===·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

大学高等数学公式大全

大学高等数学公式大全

大学高等数学公式大全第一部分:微积分基础一、导数1. 导数的定义:导数是一个函数在某一点上的瞬时变化率,表示为f'(x)或dy/dx。

2. 导数的运算法则:常数函数的导数为0。

幂函数的导数为指数乘以底数的指数减1,即d/dx(x^n) =nx^(n1)。

指数函数的导数为指数函数乘以指数,即d/dx(a^x) = a^xln(a)。

对数函数的导数为1除以x乘以底数的对数,即d/dx(ln(x)) =1/x。

三角函数的导数:d/dx(sin(x)) = cos(x),d/dx(cos(x)) =sin(x),d/dx(tan(x)) = sec^2(x)。

3. 高阶导数:函数的导数可以继续求导,得到高阶导数。

例如,f''(x)表示二阶导数。

二、积分1. 定积分的定义:定积分是一个函数在某个区间上的累积和,表示为∫[a,b]f(x)dx。

2. 积分的运算法则:常数函数的积分为其乘以区间长度,即∫[a,b]c dx = c(ba)。

幂函数的积分为其指数加1除以指数加1乘以区间长度,即∫[a,b]x^n dx = (b^(n+1)a^(n+1))/(n+1)。

指数函数的积分为其指数函数除以指数,即∫[a,b]a^x dx = (a^ba^a)/ln(a)。

对数函数的积分为其对数函数乘以区间长度,即∫[a,b]ln(x) dx = (xln(x)x)。

三角函数的积分:∫[a,b]sin(x) dx = cos(x) + C,∫[a,b]cos(x) dx = sin(x) + C,∫[a,b]tan(x) dx = ln|cos(x)| + C。

3. 积分的性质:积分与导数互为逆运算,即d/dx(∫f(x)dx) = f(x)。

积分区间可以改变顺序,即∫[a,b]f(x)dx = ∫[b,a]f(x)dx。

积分可以分解为多个区间上的积分,即∫[a,c]f(x)dx =∫[a,b]f(x)dx + ∫[b,c]f(x)dx。

(完整版)高数公式大全(费了好大的劲),推荐文档

(完整版)高数公式大全(费了好大的劲),推荐文档

lim[ f ( x) g ( x)]
两个重要极限
lim
sin
x
1, lim
sin
x
0; lim(1
1)x
e
lim(1
1
x) x
x0 x
x x
x
x
x0
常用等价无穷小:
1 cos x ~ 1 x2; x ~ sin x ~ arcsin x ~ arctan x; n 1 x 1 ~ 1 x;
lim n0
n i 1
f(i)1 nn
F (b) F (a) F (x)
b a
,
(F(x) f (x))
连续可积; 有界+有限个间断点可积; 可积有界; 连续原函数存在
(x) x f (t)dt (x) f (x) a
d (x) f (t)dt f [(x)](x) f [ (x)] (x)
1 x
n0
3、
弧微分公式:ds 1 y2 dx x(t) y(t)2 dt 2 2 d
平均曲率:K从点到点.(, 切: 线M斜率的M倾 角变化量;: s
弧长)
s MM
M点的曲率:K lim d s0 s ds
y
(t) (t) (t) (t)
= (1 y2 )3
Байду номын сангаас
3
[2 (t) 2 (t)]2
x2 a2 2a x a
a2 x2 2a a x
dx ln(x x2 a2 ) C;
x2 a2
x2 a2 dx x x2 a2 a2 ln(x x2 a2 ) C;
2
2
a2 x2 dx x a2 x2 a2 arcsin x C

高数公式大全(全)

高数公式大全(全)

高数公式大全1。

基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππe e e e chx shx thx e e chx e e shx x xxx xx xx +-==+=-=----:2:2:双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式-—莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

高等数学公式大全

高等数学公式大全

高等数学公式大全
1.极限运算法则:lim(f(x)+g(x))=limf(x)+limg(x),
lim(f(x)-g(x))=limf(x)-limg(x),
lim(f(x)*g(x))=limf(x)*limg(x),
lim(f(x)/g(x))=limf(x)/limg(x)。

2.导数公式:包括求导的四则运算法则、复合函数的求导法
则、高阶导数等。

3.导数的应用:包括极值与拐点、曲线的凹凸性和拐点、函
数图形的描绘等。

4.不定积分:包括不定积分的性质和运算法则、基本积分公
式、积分的方法等。

5.定积分:包括定积分的性质和运算法则、微积分基本定理
等。

6.多重积分:包括二重积分、三重积分等。

7.微分方程:包括一阶微分方程、高阶微分方程、线性微分
方程等。

8.空间解析几何:包括向量的表示与运算、向量的数量积、
向量积等。

9.多元函数的微分学:包括偏导数与高阶偏导数、全微分、
方向导数等。

10.重积分:包括二重积分、三重积分、曲线积分、曲面
积分等。

高数上册归纳公式篇(完整)

高数上册归纳公式篇(完整)

精心整理公式篇目录一、函数与极限1.常用双曲函数2.常用等价无穷小3.两个重要极限二、导数与微分1.常用三角函数与反三角函数的导数公式2.n阶导数公式3.4.参数方程求导公式5.微分近似计算三、微分中值定理与导数的应用1.一阶中值定理2.高阶中值定理3.部分函数使用麦克劳林公式展开4.曲率四、定积分1.部分三角函数的不定积分2.几个简单分式的不定积分五、不定积分1.利用定积分计算极限2.积分上限函数的导数3.牛顿-4.三角相关定积分5.6.1.2.3.七、微分方程1.可降阶方程2.变系数线性微分方程3.常系数齐次线性方程的通解4.二阶常系数非齐次线性方程(特定形式)的特解形式5.特殊形式方程(选)一、函数与极限1.常用双曲函数(sh(x).ch(x).th(x))2.常用等价无穷小(x→0时)3.两个重要极限二、导数与微分1.常用三角函数与反三角函数的导数公式(凡是“余”求导都带负号)2.n 阶导数公式特别地,若n =λ3.高阶导数的莱布尼茨公式与牛顿二项式定理的比较函数的0阶导数可视为函数本身4.参数方程求导公式5.微分近似计算(x ∆很小时)(注意与拉格朗日中值定理比较)常用:(三、微分中值定理与导数的应用1.一阶中值定理()(x f 在],[b a 连续,),(b a 可导)罗尔定理(端点值相等()(f a f =拉格朗日中值定理柯西中值定理(0)('≠x g ≠0)2.)n R 为余项(ξ在x 和0x 之间)令00=x ,得到麦克劳林公式3.部分函数使用麦克劳林公式展开(皮亚诺型余项)4.曲率四、不定积分1.部分三角函数的不定积分2.几个简单分式的不定积分五、定积分1.利用定积分计算极限2.积分上限函数的导数推广得3.牛顿-莱布尼茨公式和积分中值定理(1)牛顿-莱布尼茨公式(微积分基本公式)(2)积分中值定理函数)a上可积[bf在],(x,a上的平均值f在][b(xf称为))(ξ4.三角相关定积分三角函数系的正交性5.典型反常积分的敛散性(1)无穷限的反常积分推论1(2)瑕积分(无界函数的反常积分)推论2Convergence:收敛,Divergence:发散6.Γ函数(选)(1)递推公式:推论:(2)欧拉反射公式(余元公式)六、定积分的应用1.平面图形面积(1)直角坐标:由曲线0ax==,y及x)(≥=xf(2)极坐标:ρ=有曲线(φ2.体积(1)绕x(2)平行截面(与x轴垂直)面积为)(xA3.弧微分公式(1)直角坐标:(2)极坐标:七、微分方程1.可降阶方程(1))()(x f y n =型n 次积分得(2))',("y x f y =型作换元'y p =得),('p x f p =得通解),(1C x p ϕ=则21),(C dx C x y +=⎰ϕ(3))',("y y f y =型作换元'y p =,),(,"p y f dxdp p dx dp p dx dp y ===得通解dx dy C y p ==),(1ϕ 则21),(C x C y dy +=⎰ϕ 2.变系数线性微分方程(1)一阶线性微分方程:)()('x Q y x P y =+对应齐次方程:0)('=+y x P y 原方程)()('x Q y x P y =+的通解为(2)0)(')(1=+++-y x P y x P n n若(),(21x y x y n 个线性无关解)()()(22x y C x y C x n n +++若)(*x y 为非齐次方程的一个特解则非齐次方程的通解为)(*)(x y x Y y +=3.常系数齐次线性方程的通解(1)二阶方程0"=++q py y特征方程为02=++q pr r①0>∆,两个不等实根a b r a b r 2,221∆+-=∆--=通解为x r x r e C e C y 2121+=②0=∆,两个相等实根221p r r -== 通解为x r e x C C y 1)(21+=③0<∆,一对共轭复根2,2,,21∆-=-=-=+=βαβαβαp i r i r通解为)sin cos (21x C x C e y x ββα+=(2)高阶方程0'1)1(1)(=++++--y p y p y p y n n n n 特征方程为0111=++++--n n n n p r p r p r 对于其中的根r 的对应项①实根r一个单实根:rx Ce一个k 重实根:rx k k C x C C (121-+++②复根i r βα±=2,1一对单复根:cos (21C x C e x βα+一对k 重复根]sin )(cos )1211x x D x D D x x C k k k k ββ--+++++ 4.)的特解形式 '"qy py y =++02=++q pr r (1))()(x P e x f m x λ=)(x P m 为x 的m 次多项式 特解形式为x m k e x Q x y λ)(*=)(x Q m 是x 的m 次多项式(2)]sin )(cos )([)()2()1(x x P x x P e x f n l x ωωλ+=)(),()2()1(x P x P n l 分别为x 的n l ,次多项式 特解形式为x m m k e x x R x x Q x y λωω]sin )(cos )([*+= },max{n l m =,)(),(x R x Q m m 为x 的m 次多项式记i z ωλ+=5.特殊形式方程(选)(1)伯努利方程n y x Q y x P dxdy )()(=+(1,0≠n ) 令n y z -=1,dxdy y n dx dz n--=)1( 得通解),(C x z ϕ=(2)欧拉方程作变换t e x =或x t ln =,记dtd D = 将上各式代入原方程得到此为常系数线性微分方程 可得通解),,,,(21n C C C t y ϕ= 即可得原方程通解),,,,(21n C C C x y Φ=。

高数公式大全(全)

高数公式大全(全)

高数公式大全1.基本积分表:三角函数的有理式积分:一些初等函数: 两个重要极限:三角函数公式:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

(完整版)高数1全套公式

(完整版)高数1全套公式

一、三角函数1.公式同角三角函数间的基本关系式:·平方关系:sin^2(α)+cos^2(α)=1; tan^2(α)+1=sec^2(α);cot^2(α)+1=csc^2(α)·商的关系:tanα=sinα/cosαcotα=cosα/sinα·倒数关系:tanα·cotα=1; sinα·cscα=1; cosα·secα=1三角函数恒等变形公式:·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)倍角公式:sin(2α)=2sinα·cosαcos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·半角公式:sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]2只需记住这两个特殊的直角三角形的边角关系,依照三角函数的定义即可推出上面的三角值1。

(完整版)高数1全套公式

(完整版)高数1全套公式
0(>式等不次二元一a
02>cbxax 2121)(xxxxxx>或<< abx2 Rx 02<cbxax 21xxx x x
因式分解与乘法公式
2
22
22
322
322
2233
2233
22(1)()()(2)2()(3)2()(4)()()(5)()()(6)33()(7)33()
222(abababaabbabaabbabababaabbababaabbaababbabaababbababcabbcca 2
竖变横不变(奇变偶不变),符号看象限(一全,二正弦割,三切,四余弦割
b42 0 0 0
0(2>一元二次函数acbxaxy
.1x
2cbxax一元二次方程
acbbx2422,1有二互异实根
abx2)(2,1有一根有二相等实根 无实根 1 45 2 1 45 1 2 30 60 3 2x 1x
、1()dxxdx(为任意常数);
、()lnxxdaaadx,特别地,当ea时,()xxdeedx;
、1(log)
adxdxxa,特别地,当ea时,1(ln)dxdxx;
、(sin)cosdxxdx;

)sindxxdx;
、2(tan)secdxxdx;
、2(cot)cscdxxdx;


数 10logaaxya R y=logax
xa>10<a<1O(1,0)xy
过点1,0. 1a单增. 10a单减.
log1,log10,,0logloglog,logloglog,loglog,loglog0,1,loglog(0)
0)
aaaaaaaapaacacxaxaMNMNMNMMNNMPMbbcaaxxaxx

(完整版)高数公式汇总

(完整版)高数公式汇总

高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

(完整版)高数一全套公式

(完整版)高数一全套公式

初等数学基础知识一、三角函数1.公式同角三角函数间的基本关系式:·平方关系:sin^2(α)+cos^2(α)=1; tan^2(α)+1=sec^2(α);cot^2(α)+1=csc^2(α)·商的关系:tanα=sinα/cosαcotα=cosα/sinα·倒数关系:tanα·cotα=1; sinα·cscα=1; cosα·secα=1三角函数恒等变形公式:·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)倍角公式:sin(2α)=2sinα·cosαcos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·半角公式:sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]2只需记住这两个特殊的直角三角形的边角关系,依照三角函数的定义即可推出上面的三角值。

高数公式大全

高数公式大全

高数公式大全(全)(总11页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--高数公式大全1.基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππx x arshx e e e e chx shx thx e e chx ee shx x xxx xx xx++=+-==+=-=----1ln(:2:2:2)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xx x x x x三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin 2cos 2sin sin 2cos2sin 2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin(·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

大一上学期高数公式

大一上学期高数公式

大一上学期高数公式1.对数函数相关公式:(1) a^x = b,其中 a>0,a≠1,b>0,则 x = log(a)b。

(2) log(a^n) = nlog(a)。

(3) log(ab) = log(a) + log(b)。

(4) log(a/b) = log(a) - log(b)。

(5) log(a^m) = mlog(a)。

(6) loga(b) = logc(b) / logc(a)。

2.极限相关公式:(1) 若f(x) ≤ g(x) ≤ h(x),当x → a 时,有 lim[f(x)] = L,lim[h(x)] = L,则 lim[g(x)] = L。

(2) 若 lim[f(x)] = A,lim[g(x)] = B,则lim[f(x) ± g(x)] =A ± B。

(3) 若 lim[f(x)] = A,lim[g(x)] = B,则 lim[f(x)g(x)] = AB。

(4) 若 lim[f(x)] = A,lim[g(x)] = B(B ≠ 0),则lim[f(x)/g(x)] = A/B。

(5) 若 lim[f(x)] = A,则 lim[f(cx)] = Ac,其中 c 为常数。

3.函数导数相关公式:(1) (x^n)' = nx^(n-1),其中 n 为正整数,n ≠ 0。

(2) (a^x)' = a^xlna。

(3)(e^x)'=e^x。

(4) (log(a)x)' = 1/(xlna)。

(5) (sinx)' = cosx。

(6) (cosx)' = -sinx。

(7) (tanx)' = sec^2x。

(8) (cotx)' = -csc^2x。

(9) (secx)' = secx·tanx。

(10) (cscx)' = -cscx·cotx。

高等数学上公式

高等数学上公式

~


五、间断点
1.第一类:可去间断点、跳跃间断点
2.第二类:无穷间断点、震荡间断点
六、零点定理与介值定理
1.零点定理:设函数 f (x) 在闭区间 a, b上连续,且 f (a) 与 f (b) 异号(即 f (a) f (b) 0 ),
则在开区间 a, b内至少有一点 ,使 f ( ) 0 . 2.介值定理:设函数 f (x) 在闭区间 a, b 上连续,且在这区间的端点取不同的函数值
公式: tan x cot x 1
2. 倍角公式: cos 2a cos2 a sin 2 a 2 cos2 a 1 1 2 sin 2 a
sin
2a

2
sin
a

cos
a

tan
2a

1

2 tan
2
a

二、重要极限
lim sin x 1 , x0 x
lim(1
少有一点 (a b) ,使等式 f (b) f (a) f ( )(b a) 成立. 二、洛必达法则 ①当 x a 时,函数 f (x) 及 F (x) 都趋近于零,②在点 a 的去心领域内, f (x) 及 F (x) 都
存பைடு நூலகம்且
F
( x)

0
,③
lim
xa
第四章 不定积分
一、基本计分表
kdx kx C(k是常数),
xudx

x u 1 u 1

C

dx ln x C x

1
dx x
2

arctan
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

公式篇
目录
一、
1.常用双曲函数
2.常用等价无穷小
3.两个重要极限
二、
1.常用三角函数与反三角函数的导数公式
2.n阶导数公式
3.高阶导数的莱布尼茨公式与牛顿二项式定理的比较
4.参数方程求导公式
5.微分近似计算
三、
1.一阶中值定理
2.高阶中值定理
3.部分函数使用麦克劳林公式展开
4.曲率
四、
1.部分三角函数的不定积分
2.几个简单分式的不定积分
五、
1.利用定积分计算极限
2.积分上限函数的导数
3.牛顿-莱布尼茨公式和积分中值定理
4.三角相关定积分
5.典型反常积分的敛散性
6.Γ函数(选)
六、
1.平面图形面积
2.体积
3.弧微分公式
七、
1.可降阶方程
2.变系数线性微分方程
3.常系数齐次线性方程的通解
4.二阶常系数非齐次线性方程(特定形式)的特解形式
5.特殊形式方程(选)
一、函数与极限
1.常用双曲函数( sh(x).ch(x).th(x) )
2.常用等价无穷小(x→0时)
3.两个重要极限
二、导数与微分
1.常用三角函数与反三角函数的导数公式
(凡是“余”求导都带负号)
2.n阶导数公式
特别地,若n
λ
=
3.高阶导数的莱布尼茨公式与牛顿二项式定理的比较
函数的0阶导数可视为函数本身
4.参数方程求导公式
5.微分近似计算(x∆很小时)
(注意与拉格朗日中值定理比较) 常用:
(与等价无穷小相联记忆)
三、微分中值定理与导数的应用
1.一阶中值定理 ()
a连续,)
a可导 )
(b
,
[b
f在]
(x
,
罗尔定理 ( 端点值相等)
a
f
f= )
(
(b
)
拉格朗日中值定理
柯西中值定理 (0
)
x
g≠0 )
('≠
2.高阶中值定理 ()
(+
a上有直到)1
n阶导数 )
(x
f在)
,
(b
泰勒中值定理
n R 为余项
(ξ在x 和0x 之间)
令00=x ,得到麦克劳林公式
3.部分函数使用麦克劳林公式展开(皮亚诺型余项)
4.曲率
四、不定积分
1.部分三角函数的不定积分
2.几个简单分式的不定积分
五、定积分
1.利用定积分计算极限
2.积分上限函数的导数
推广得
3.牛顿-莱布尼茨公式和积分中值定理
(1)牛顿-莱布尼茨公式(微积分基本公式)
(2)积分中值定理
函数)(x f 在],[b a 上可积
)(ξf 称为)(x f 在],[b a 上的平均值
4.三角相关定积分
三角函数系的正交性
5.典型反常积分的敛散性
(1)无穷限的反常积分
推论1
(2)瑕积分(无界函数的反常积分)
推论2
Convergence:收敛,Divergence:发散
6.Γ函数(选)
(1) 递推公式:
推论:
(2)欧拉反射公式(余元公式)
六、定积分的应用
1.平面图形面积
(1)直角坐标:
由曲线0)(≥=x f y 及b x a x ==,与x 轴围成图形
(2)极坐标:
有曲线)(θφρ=及βθαθ==,围成图形
2.体积
(1)绕x 轴旋转体体积
(2)平行截面面积已知的立体的体积 平行截面(与x 轴垂直)面积为)
(x A 3.弧微分公式
(1)直角坐标:
(2)极坐标:
七、微分方程
1.可降阶方程
(1))()(x f y n =型
n 次积分得 (2))',("y x f y =型
作换元'y p =得),('p x f p =
得通解),(1C x p ϕ=
则21),(C dx C x y +=⎰ϕ
(3))',("y y f y =型
作换元'y p =,),(,"p y f dx
dp p dx dp p dx dp y ===
得通解dx dy C y p ==),(1ϕ 则21)
,(C x C y dy +=⎰ϕ 2.变系数线性微分方程
(1)一阶线性微分方程:)()('x Q y x P y =+
对应齐次方程: 0)('=+y x P y 的通解为dx x P Ce Y ⎰=-)(
原方程)()('x Q y x P y =+的通解为
一阶线性非齐次方程的通解等于相应齐次方程的通解和非齐次方程一个特解的和
(2)高阶线性微分方程
对应齐次方程为0)(')()(1)1(1)(=++++--y x P y x P y x P y n n n n Λ
若)(,),(),(21x y x y x y n K 为齐次方程n 个线性无关解
则齐次方程的通解为)()()()(2211x y C x y C x y C x Y n n +++=Λ 若)(*x y 为非齐次方程的一个特解
则非齐次方程的通解为)(*)(x y x Y y +=
3.常系数齐次线性方程的通解
(1)二阶方程0"=++q py y
特征方程为02=++q pr r
①0>∆,两个不等实根a
b r a b r 2,221∆+-=∆--=
通解为x r x r e C e C y 2121+= ②0=∆,两个相等实根2
21p r r -
== 通解为x r e x C C y 1)(21+= ③0<∆,一对共轭复根2
,2,,21∆-=-=-=+=βαβαβαp i r i r 通解为)sin cos (21x C x C e y x ββα+=
(2)高阶方程0'1)1(1)(=++++--y p y p y p y n n n n Λ 特征方程为0111=++++--n n n n p r p r p r Λ
对于其中的根r 的对应项
①实根r
一个单实根:rx Ce
一个k 重实根: rx k k e x C x C C )(121-+++Λ
②复根i r βα±=2,1
一对单复根:)sin cos (21x C x C e x ββα+ 一对k 重复根: ]sin )(cos )[(121121x x D x D D x x C x C C e k k k k x ββα--+++++++ΛΛ
通解为对应项之和
4.二阶常系数非齐次线性方程(特定形式)的特解形式 )('"x f qy py y =++,对应的特征方程为02=++q pr r
(1))()(x P e x f m x λ= )(x P m 为x 的m 次多项式 特解形式为x m k e x Q x y λ)(*=
)(x Q m 是x 的m 次多项式
(2)]sin )(cos )([)()2()1(x x P x x P e x f n l x ωωλ+= )(),()2()1(x P x P n l 分别为x 的n l ,次多项式 特解形式为x m m k e x x R x x Q x y λωω]sin )(cos )([*+= },max{n l m =,)(),(x R x Q m m 为x 的m 次多项式 记i z ωλ+=
5.特殊形式方程(选)
(1)伯努利方程
n y x Q y x P dx
dy )()(=+ (1,0≠n ) 令n y z -=1,dx
dy y n dx dz n --=)1( 得通解),(C x z ϕ=
(2)欧拉方程
作变换t e x =或x t ln =,记dt d D =
将上各式代入原方程得到
此为常系数线性微分方程
可得通解),,,,(21n C C C t y K ϕ=
即可得原方程通解),,,,(21n C C C x y K Φ=。

相关文档
最新文档