苏科新版2017-2018学年江苏省泰州市姜堰市八年级(上)期末数学试卷
江苏省泰兴市2017-2018学年八年级上学期期末考试数学试题(解析版)
2017—2018学年度第一学期期末测试试题八年级数学一、选择题(本大题共有6题,每题3分,共18分.在每小题所给的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填在答题纸相应的表格中.........)1. 下面四个关于银行的标志中,不是..轴对称图形的是()A. B. C. D.【答案】D【解析】由轴对称图形的定义:“若一个图形沿着某条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形”分析可知,选项A、B、C中的图形都是轴对称图形,只有选项D中的图形不是轴对称图形.故选D.2. 若分式的值为,则的取值为()A. B. C. D. 不存在【答案】A【解析】∵的值为0,∴,解得:.故选A.点睛:分式值为0需同时满足两个条件:(1)分子的值为0;(2)分母的值不为0.3. 不改变分式的值,使式子分子中的系数不含有分数,下列四个选项中正确的是()A. B. C. D.【答案】C【解析】∵不改变分式的值,要使分式的分子中的系数不含分数,∴.故选C.4. 若,则的取值范围是()A. ≥3B. ≤-3C. -3≤≤3D. 不存在【答案】A【解析】∵,∴,解得:.故选A.5. 如图,数轴上的点A表示的数是-1,点B表示的数是1,CB⊥AB于点B,且BC=2,以点A为圆心,AC 为半径画弧交数轴于点D,则点D表示的数为()A. 2.8B.C. -D.【答案】C【解析】由题意可知:AD=AC=,设点D表示的数为:,则由题意可得:,解得:.故选C.6. 一次函数y=kx+b(k≠0)的图象如图所示,则一元一次不等式-kx+b>0的的解集为()A. >-2B. <-2C.D.【答案】D【解析】由函数和的图象关于轴对称可由的图象得到函数的图象如图所示,由图可知:函数的图象位于轴之上的部分在点(2,0)的左侧,∴不等式的解集为:.故选D.点睛:(1)函数和的图象关于轴对称;(2)函数和的图象关于轴对称;(3)不等式的解集是函数的图象位于轴之上的部分图象所对应的自变量的取值范围;不等式的解集是函数的图象位于轴之下的部分图象所对应的自变量的取值范围.二、填空题(本大题共有10题,每题3分,共30分.请将正确答案填写在答题卡相应的位置........上.)7. 的平方根为_______.【答案】【解析】∵,∴的平方根是:.故答案为:.8. 若点和点关于轴对称,则=_______.【答案】-10【解析】∵点和点关于轴对称,∴,∴.故答案为:.9. =_______.【答案】【解析】原式=.故答案为:.【答案】【解析】把精确到10000为:.故答案为:...... ................【答案】【解析】由题意可得:原计划每天用煤吨,现在每天用煤吨,∴现在比原计划每天少用煤:(吨).故答案为:.12. 请写出一个经过点且y随x的增大而减小的一次函数表达式________________.【答案】y=-x+3,等.(答案不唯一)【解析】由题意分析可知,这样的函数有很多,只要这个一次函数中,且其图象过点(-1,2)就可以,如一次函数:等.故本题答案不唯一,如等.13. 若,则的取值范围是_______.【答案】≤【解析】∵,∴,解得:.故答案为:.14. 如图,一圆柱形容器(厚度忽略不计),已知底面半径为6cm,高为16cm.现将一根长度为25cm的玻璃棒一端插入容器中,则玻璃棒露在容器外的长度的最小值是_______cm.【答案】5cm【解析】如图,由烟题意可知:△ACD中,AC=12,CD=16,∠ACD=90°,∴AD=,∴玻璃棒露在容器外面部分最短为:(cm).故答案为:.15. 若关于x的分式方程的解是正数,则m的取值范围为_______.【答案】>2且≠3【解析】解关于的方程得:,∵原方程的解是正数,∴,解得:且.故答案为:且.点睛:关于的方程的解是正数,则字母“m”的取值需同时满足两个条件:(1)不能是增根,即;(2).16. △ABC是等腰三角形,腰上的高为8cm,面积为40cm2,则该三角形的周长是_______cm.【答案】或.【解析】(1)如图1,在△ABC中,AB=AC,∠A是锐角,BD是AC边上的高,由题意可知:BD=8cm,S△ABC=BD·AC=40cm2,∴AC=10cm=BC,∴在Rt△ABD中,由勾股定理可得:AD=(cm),∴DC=AC-AD=4cm,∴在Rt△BDC中,由勾股定理可得:BC=(cm),∴此时△ABC的周长=AB+AC+BC=(cm);(2)如图2,当顶角∠BAC为钝角时,同理可解得△ABC的周长=AB+AC+BC=(cm);综合(1)、(2)可得△ABC的周长为:(cm)或(cm).故答案为:或.点睛:本题是一道考查等腰三角形性质和勾股定理综合应用的题目,解题时要分等腰△ABC的顶角∠BAC 是锐角和钝角两种情况进行讨论,不要忽略了其中任何一种.三、解答题(本大题共有小题,共102分.请在答题纸指定区域作答,解答时应写出必要的文字说明、证明过程或演算步骤)17. (1)计算:;(2)解方程:.【答案】(1)6;(2)x=2.【解析】试题分析:(1)按二次根式的相关运算法则结合“平方差公式”计算即可;(2)先去分母化为整式方程,解整式方程求得的值,再检验并作出结论即可.试题解析:(1)原式=;(2)原方程两边同乘以:得:,解此方程得:,检验:当时,,∴是原分式方程的解,即原方程的解为:.18. 化简并求值:,其中.【答案】7.【解析】试题分析:先按分式的相关运算法则将原式化简,再代值计算即可.试题解析:原式===当时,原式=.19. 如图,在△ABC中,AB=AC,D是BC的中点,DE⊥AB,DF⊥AC,E、F分别是垂足.试说明:DE=DF.【答案】答案见解析【解析】试题分析:由已知可得到∠B=∠C,BD=DC,∠BED=∠CFD=90°从而利用AAS判定△ABD≌△ACD即可得到DE=DF.试题解析:解:∵AB=AC,∴∠B=∠C,∵D是BC的中点,∴BD=DC,∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°,在△ABD和△ACD中,∵∠B=∠C,∠BED=∠CFD,BD=DC,∴△ABD≌△ACD(AAS),∴DE=DF.点睛:此题考查等腰三角形的性质及全等三角形的判定与性质;本题利用全等来证明线段相等,是一种很常用的方法,应熟练掌握,还有其它解题方法,可以一题多解.20. 如图,△ABC.(1)用直尺和圆规作∠A的平分线所在的直线和边BC的垂直平分线(要求:不写作法,保留画图痕迹);(2)设(1)中的直线和直线交于点P,过点P作PE⊥AB,垂足为点E,过点P作PF⊥AC交AC的延长线于点F.请探究BE和CF的数量关系,并说明理由.【答案】(1)作图见解析;(2)证明见解析.【解析】试题分析:(1)如图1,用“尺规作图”作出∠ABC的角平分线,再反向延长即可得到;再用“尺规作图”作出BC 的垂直平分线即可;(2)如图2,连接PB、PC,由题意易证△PBE≌△PCF,从而可得BE=CF.试题解析:(1)如图1,图中直线和直线为题中所求直线;(2)如图2,连接PB、PC,∵AP平分∠BAC,PE⊥AB于点E,PF⊥AC于点F,∴PE=PF,∠PEB=∠PFC=90°,∵垂直平分BC,点P在上,∴PB=PC,∴△PBE≌△PCF,∴BE=CF.21. 随着交通的飞速发展,中国的铁路运输能力得到大幅度提升.已知泰州距离南京大约180千米,乘坐动车可以比乘坐长途大巴节省40分钟.若动车平均速度比长途大巴提升了50% ,请分别求出动车和长途大巴的平均速度.【答案】90;135.【解析】试题分析:设长途大巴的速度为千米/时,则动车的速度为千米/时,则从泰州到南京长途大巴需用时小时,动车需要小时,由乘坐动车比长途大巴节省40分钟即可列出方程,解方程、检验作答即可.试题解析:设长途大巴的速度为千米/时,则动车的速度为千米/时,根据题意得:,解方程得:,经检验,是所列方程的根,当时,.答:长途大巴的速度为90千米/时,动车的速度为135千米/时.22. 已知实数满足.(1)求的值;(2)判断以为边能否构成三角形?若能构成三角形,判别此三角形的形状,并求出三角形的面积;若不能,请说明理由.【答案】(1);(2)直角三角形;面积为.【解析】试题分析:(1)根据“一个式子的算术平方根、绝对值和平方都是非负数”及“几个非负数的和为0,则这几个数都为0”即可列出方程,求得的值;(2)根据(1)中所得结果分别求出的值,即可发现,由此可得以为边的三角形是直角三角形,从而可求出其面积.试题解析:(1)∵实数满足∴,∴;(2)∵,∴,∴,∴以为边的三角形是直角三角形,∴该三角形的面积为:.23. 如图,△ABC中,AC=BC,∠C=90°,点D是AB的中点.(1)如图1,若点E、F分别是AC、BC上的点,且AE=CF,请判别△DEF的形状,并说明理由;(2)若点E、F分别是CA、BC延长线上的点,且AE=CF,则(1)中的结论是否仍然成立?请说明理由.【答案】(1)△DEF是等腰直角三角形. (2)仍然成立.【解析】试题分析:(1)连接CD,如图1,结合已知条件易证△AED≌△CFD,由此即可证得DE=DF,∠EDF=90°,从而可得△DEF是等腰直角三角形;(2)先根据题意画出符合要求的图形,如图2,连接CD,结合已知条件易证△AED≌△CFD,由此即可证得;DE=DF,∠EDF=90°,从而可得此时△DEF仍然是等腰直角三角形.试题解析:(1)△DEF是等腰直角三角形,理由如下:如图1,连接CD,∵AC=BC,∠ACB=90°,点D是BC边的中点,∴CD⊥BC,∠A=∠DCF=45°,CD=BC=AD,又∵AE=CF,∴△AED≌△CFD,∴DE=DF,∠ADE=∠CDF,又∵CD⊥BC,∴∠CFD+∠CDE=∠ADE+∠CDE=∠CDA=90°,即∠EDF=90°,∴△DEF是等腰直角三角形;(2)如图2,(1)中结论仍然成立,理由如下:连接CD,∵AC=BC,∠ACB=90°,点D是BC边的中点,∴CD⊥BC,∠A=∠DCB=45°,CD=BC=AD,∴∠EAD=180°+45°=135°,∠ACD=180°-45°=135°,又∵AE=CF,∴△AED≌△CFD,∴DE=DF,∠ADE=∠CDF,又∵CD⊥BC,∴∠ADE+∠ADF=∠CDF+∠ADF=∠CDA=90°,即∠EDF=90°,∴△DEF是等腰直角三角形;点睛:这是一道综合考查全等三角形的判定与性质和等腰直角三角形的性质的题目,解题的关键是:连接CD,利用等腰直角三角形的性质构造出△CFD,这样通过证△AED≌△CFD即可证得△DEF是等腰直角三角形.24. 如图1,甲、乙两个容器内都装了一定数量的水,现将甲容器中的水匀速倒入乙容器中. 图2中,线段AB、线段CD分别表示容器中的水的深度h(厘米)与倒入时间t(分钟)的函数图像.(1)请说出点C的纵坐标的实际意义;(2)经过多长时间,甲、乙两个容器中的水的深度相等?(3)如果甲容器的底面积为10cm2,求乙容器的底面积.【答案】(1)点C的纵坐标的实际意义是乙容器中原有的水的深度是5cm;(2)2分钟后,两容器内水得深度相等.(3)20cm2.【解析】试题分析:(1)由题意可知,点C的纵坐标表示乙容器中原有水的深度;(2)先分别求出直线AB和直线CD的解析式,解由两个解析式组成的方程组,即可得到两容器中水的深度相等的时间;(3)先由图中信息计算出甲容器内原有水的体积,而根据图中信息可知,将甲容器内的水全部倒入乙容器后,其深度增加了10cm,由此即可计算出乙容器的底面积.试题解析:(1)点C的纵坐标的实际意义是乙容器中原有的水的深度是5cm;(2)设直线AB的解析式为:,由图中信息可得:,解得,∴直线AB的函数关系式为:;同理可求得直线CD的函数关系式为:;由:,解得:,∴2分钟后,两容器内水得深度相等;(3)∵容器甲的底面积为10cm2,容积甲中原有水的深度为20cm,∴容器甲中原有的水的体积为10×20=200cm3,又∵在将甲容器中的水倒入乙容器中后,容器乙中水的深度的增加值为15-5=10cm,∴容器乙的底面积为200÷10=20 cm2.25. 在学习了二次根式后,小明同学发现有的二次根式可以写成另一个二次根式的平方的形式.比如:.善于动脑的小明继续探究:当为正整数时,若,则有,所以,.请模仿小明的方法探索并解决下列问题:(1)当为正整数时,若,请用含有的式子分别表示,得:,;(2)填空:=- ;(3)若,且为正整数,求的值.【答案】(1),;(2);(3)或46.【解析】试题分析:(1)把等式右边展开,参考范例中的方法即可求得本题答案;(2)由(1)中结论可得:,结合都为正整数可得:m=2,n=1,这样就可得到:;(3)将右边展开,整理可得:,结合为正整数,即可先求得的值,再求的值即可.试题解析:(1)∵,∴,∴;(2)由(1)中结论可得:,∵都为正整数,∴或,∵当m=1,n=2时,,而当m=2,n=1时,,∴m=2,n=1,∴;(3)∵,∴,,又∵为正整数,∴,或者,∴当时,;当,,即的值为:46或14.26. 如图,在平面直角坐标系中,点A的坐标为(5,0),点B的坐标为(3,2),直线经过原点和点B,直线经过点A和点B.(1)求直线,的函数关系式;(2)根据函数图像回答:不等式的解集为;(3)若点是轴上的一动点,经过点P作直线∥轴,交直线于点C,交直线于点D,分别经过点C,D向轴作垂线,垂足分别为点E, F,得长方形CDFE.①若设点P的横坐标为m,则点C的坐标为(m,),点D的坐标为(m,);(用含字母m的式子表示)②若长方形CDFE的周长为26,求m的值.【答案】(1)直线,直线;(2)<0或>5;(3)①,;②或. 【解析】试题分析:(1)把点A和B的坐标代入两函数的解析式列方程(组),解得k1、k2、b的值即可得到两函数的解析式;(2)根据函数图象找到两个函数图象一个在轴上方,一个在轴下方的时候所对应的自变量的取值范围即可得到不等式的解集;(3)①由(1)中所求函数解析式即可得到点C和点D的纵坐标;②根据题意分,和三种情况分别用含“m”的代数式表达出矩形CDEF的周长,结合矩形CDEF的周长为26即可求得对应的m的值.试题解析:(1)把点B(3,2)代入得:,解得:;把点A(5,0)和点B(3,2)代入得:,解得:,∴,;(2)由图可知,当或时,两个函数的图象刚好一个在上方,一个在轴的下方,∴不等式的解集为:或;(3)①∵点C在直线上,点D在直线上,且它们的横坐标为m,∴点C、D的坐标分别为:和;②I、当m<0,∵DC=EF=,DF=CE=-m,∴解得:m=-3;II、当时,同理可得:,解得:=-12(不合题意,舍去);III、当时,同理可得:,解得:.综上所述,m的值为或.点睛:(1)本题中不等式的解集就是函数和函数的图象一个在上方,一个在轴的下方时,所对应的自变量的取值范围;(2)解第3小题时,根据题意要分和三种情况讨论,不要忽略了其中任何一种.。
苏科版江苏省泰州市八年级上学期期末数学试题
苏科版江苏省泰州市八年级上学期期末数学试题 一、选择题1.摩托车开始行驶时,油箱中有油4升,如果每小时耗油0.5升,那么油箱中余油量y (升)与它工作时间t (时)之间函数关系的图象是( )A .B .C .D .2.若点P 在y 轴负半轴上,则点P 的坐标有可能是( )A .()1,0-B .()0,2-C .()3,0D .()0,43.如图,矩形ABCD 中,AB =6,BC =12,如果将该矩形沿对角线BD 折叠,那么图中阴影部分△BED 的面积是 ( )A .18B .22.5C .36D .454.下列二次根式中属于最简二次根式的是( )A .8B .36C .a b(a >0,b >0) D .7 5.如图,在△ABC 中,AB="AC," AB +BC=8.将△ABC 折叠,使得点A 落在点B 处,折痕DF 分别与AB 、AC 交于点D 、F ,连接BF ,则△BCF 的周长是( )A .8B .16C .4D .106.如图,点P 在长方形OABC 的边OA 上,连接BP ,过点P 作BP 的垂线,交射线OC 于点Q ,在点P 从点A 出发沿AO 方向运动到点O 的过程中,设AP=x ,OQ=y ,则下列说法正确的是( )A .y 随x 的增大而增大B .y 随x 的增大而减小C .随x 的增大,y 先增大后减小D .随x 的增大,y 先减小后增大 7.若等腰三角形的一个内角为92°,则它的顶角的度数为( ) A .92°B .88°C .44°D .88°或44° 8.把分式22xy x y -中的x 、y 的值都扩大到原来的2倍,则分式的值… ( ) A .不变B .扩大到原来的2倍C .扩大到原来的4倍D .缩小到原来的129.如图,给出下列四组条件:①AB =DE ,BC =EF ,AC =DF ;②AB =DE ,∠B =∠E ,BC =EF ;③∠B =∠E ,BC =EF ,∠C =∠F ;④AB =DE ,AC =DF ,∠B =∠E .其中能使△ABC ≌△DEF 的条件有( )A .1组B .2组C .3组D .4组10.下列四组线段a 、b 、c ,能组成直角三角形的是( )A .4a =,5b =,6c =B .3a =,4b =,5c =C .2a =,3b =,4c =D .1a =,2b =,3c = 11.若分式12x x -+的值为0,则x 的值为( ) A .1 B .2- C .1- D .212.下列四个图形中轴对称图形的个数是( )A .1B .2C .3D .413.甲、乙两地相距80km ,一辆汽车上午9:00从甲地出发驶往乙地,匀速行驶了一半的路程后将速度提高了20km/h ,并继续匀速行驶至乙地,汽车行驶的路程y (km )与时间x (h )之间的函数关系如图所示,该车到达乙地的时间是当天上午( )A .10:35B .10:40C .10:45D .10:5014.如图, Rt ABC 中,90,B ED ∠=︒垂直平分,AC ED 交AC 于点D ,交BC 于点E .已知ABC 的周长为24,ABE 的周长为14,则AC 的长( )A .10B .14C .24D .1515.下列关于10的说法中,错误的是( )A .10是无理数B .3104<<C .10的平方根是10D .10是10的算术平方根 二、填空题16.关于x 的分式方程211x a x +=+的解为负数,则a 的取值范围是_________. 17.49的平方根为_______ 18.写出一个比4大且比5小的无理数:__________.19.若3a 的整数部分为2,则满足条件的奇数a 有_______个.20.已知直角三角形的两边长分别为3、4.则第三边长为________.21.点A (2,-3)关于x 轴对称的点的坐标是______.22.如图,在ABC 中,∠A =60°,D 是BC 边上的中点,DE ⊥BC ,∠ABC 的平分线BF 交DE 于ABC 内一点P ,连接PC ,若∠ACP =m °,∠ABP =n °,则m 、n 之间的关系为______.23.如图,将长方形纸片ABCD 沿对角线AC 折叠,AD 的对应线段AD ′与边BC 交于点E .已知BE =3,EC =5,则AB =___.24.一次函数y =2x -4的图像与x 轴的交点坐标为_______.25.如图,等腰Rt △OAB ,∠AOB =90°,斜边AB 交y 轴正半轴于点C ,若A (3,1),则点C 的坐标为_____.三、解答题26.如图,一次函数23y mx m =++的图像与12y x =-的图像交于点C ,与x 轴和y 轴分别交于点A 和点B ,且点C 的横坐标为3-.(1)求m 的值与AB 的长;(2)若点Q 为线段OB 上一点,且14OCQ BAO S S ∆∆=,求点Q 的坐标.27.通过对下面数学模型的研究学习,解决下列问题:(模型呈现)(1)如图1,90BAD ∠=︒,AB AD =,过点B 作BC AC ⊥于点C ,过点D 作DE AC ⊥于点E .由12290D ∠+∠=∠+∠=︒,得1D ∠=∠.又90ACB AED ∠=∠=︒,可以推理得到ABC DAE ∆∆≌.进而得到AC = ,BC = .我们把这个数学模型称为“K 字”模型或“一线三等角”模型;(模型应用)(2)①如图2,90BAD CAE ∠=∠=︒,AB AD =,AC AE =,连接BC ,DE ,且BC AF ⊥于点F ,DE 与直线AF 交于点G .求证:点G 是DE 的中点;②如图3,在平面直角坐标系xOy 中,点A 的坐标为()2,4,点B 为平面内任一点.若AOB ∆是以OA 为斜边的等腰直角三角形,请直接写出点B 的坐标.28.计算:2201931125272-⎛⎫-+- ⎪⎝⎭29.某学校要对如图所示的一块地进行绿化,已知4m AD =,3m CD =,AD DC ⊥,13m AB =,12m BC =,求这块地的面积.30.如图,在ABC ∆中, AD BC ⊥,且AD BD =,点E 是线段AD 上一点,且BE AC =,连接BE.(1)求证:ACD BED ∆∆≌(2)若78C ∠=︒,求ABE ∠的度数.31.已知A 、B 两地之间有一条270千米的公路,甲、乙两车同时出发,甲车以每小时60千米/时的速度沿此公路从A 地匀速开往B 地,乙车从B 地沿此公路匀速开往A 地,两车分别到达目的地后停止甲、乙两车相距的路程y (千米)与甲车的行驶时间x (时)之间的函数关系如图所示:(1)乙年的速度为______千米/时,a =_____,b =______.(2)求甲、乙两车相遇后y 与x 之间的函数关系式,并写出相应的自变量x 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】由题意根据剩余油量等于油箱中的原有的油量减去用去的油量,列出y、x的关系式,然后根据一次函数的图象选择答案即可.【详解】解:∵油箱中有油4升,每小时耗油0.5升,∴y=4-0.5x,∵4-0.5x≥0,∴x≤8,∴x的取值范围是0≤x≤8,所以,函数图象为:故选:D.【点睛】本题考查一次函数的应用,一次函数的图象,比较简单,难点在于根据实际意义求出自变量x的取值范围.2.B解析:B【解析】【分析】根据y轴上的点的坐标特点,横坐标为0,然后根据题意求解.【详解】解:∵y轴上的点的横坐标为0,又因为点P在y轴负半轴上,∴(0,-2)符合题意故选:B【点睛】本题考查坐标轴上的点的坐标特点,利用数形结合思想解题是本题的解题关键.3.B解析:B【解析】【分析】易得BE=DE,利用勾股定理求得DE的长,利用三角形的面积公式可得阴影部分的面积.【详解】根据翻折的性质可知:∠EBD=∠DBC.又∵AD∥BC,∴∠ADB=∠DBC,∴∠ADB=∠EBD,∴BE=DE.设BE=DE=x,∴AE=12﹣x.∵四边形ABCD是矩形,∴∠A=90°,∴AE2+AB2=BE2,即(12﹣x)2+62=x2,x=7.5,∴S△EDB=12×7.5×6=22.5.故选B.【点睛】本题考查了折叠的性质:折叠前后的两个图形全等,即对应线段相等,对应角相等.同时也考查了勾股定理,利用勾股定理得到DE的长是解决本题的关键.4.D解析:D【解析】【分析】根据最简二次根式的定义即可求出答案.【详解】解:(A)原式=,故A不符合题意;(B)原式=6,故B不符合题意;(C)ab是分式,故C不符合题意;故选:D.【点睛】本题考查最简二次根式,解题的关键是熟练运用最简二次根式的定义,本题属于基础题型.5.A解析:A【解析】【分析】由将△ABC折叠,使得点A落在点B处,折痕DF分别与AB、AC交于点D、F,可得BF=AF,又由在△ABC中,AB=AC,AB+BC=8,易得△BCF的周长等于AB+BC,则可求得答案.【详解】解:由将△ABC折叠,使得点A落在点B处,折痕DF分别与AB、AC交于点D、F,可得BF=AF,又由在△ABC中,AB=AC,AB+BC=8,所以△BCF的周长等于BC+CF+BF=BC+CF+AF=AB+BC=8.故答案选A.【点睛】此题考查了折叠的性质.此题难度不大,解题的关键是掌握折叠前后图形的对应关系,注意等量代换,注意数形结合思想的应用.6.C解析:C【解析】【分析】连接BQ ,由矩形的性质,设BC=AO=a ,AB=OC=b ,利用勾股定理得到222PQ PB BQ +=,然后得到y 与x 的关系式,判断关系式,即可得到答案.【详解】解,如图,连接BQ ,由题意可知,△OPQ ,△QPB ,△ABP 是直角三角形,在矩形ABCO 中,设BC=AO=a ,AB=OC=b ,则OP=a x -,CQ b y =-,由勾股定理,得:222()PQ y a x =+-,222PB x b =+,222()BQ a b y =+-,∵222PQ PB BQ +=,∴222222()()y a x x b a b y +-++=+-,整理得:2by x ax =-+, ∴221()24a a y x b b=--+, ∵10b-<, ∴当2a x =时,y 有最大值24a b; ∴随x 的增大,y 先增大后减小;故选择:C.【点睛】本题考查了矩形的性质,勾股定理,解题的关键是利用勾股定理找到y 与x 的关系式,从而得到答案.7.A解析:A【解析】【分析】已知给出了等腰三角形的一个内角的度数,但没有明确这个内角是顶角还是底角,因此要分类讨论.【详解】解:(1)若等腰三角形一个底角为92°,因为92°+92°=184°>180°,所以这种情况不可能出现,舍去;(2)等腰三角形的顶角为92°.因此这个等腰三角形的顶角的度数为92°.故选A.【点睛】本题考查了等腰三角形的性质.如果已知等腰三角形的一个内角要求它的顶角,需要分该内角是顶角和这个内角是底角两种情况讨论.本题能根据92°角是钝角判断出92°只能是顶角是解题关键.8.A解析:A【解析】 把分式22xy x y -中的x 、y 的值都扩大到原来的2倍,可得222222224(2)(2)44x y xy xy x y x y x y ⋅==---,由此可得分式的值不变,故选A. 9.C解析:C【解析】【分析】根据全等三角形的判定方法:SSS 、SAS 、ASA 及AAS ,即可判定.【详解】①满足SSS ,能判定三角形全等;②满足SAS ,能判定三角形全等;③满足ASA ,能判定三角形全等;④的条件是两边及其一边的对角分别对应相等,不能判定三角形全等.∴能使ABC DEF △≌△全等的条件有3组.故选:C .【点睛】本题考查全等三角形的判定,解题关键是熟练掌握各种判定方法并注意“两边及其一边的对角分别对应相等”不能判定三角形全等.10.B解析:B【解析】【分析】根据勾股定理的逆定理,依次对各选项进行分析即可得答案.【详解】解:A.因为42+52≠62,所以不能围成直角三角形,此选项错误;B.因为32+42=52,所以能围成直角三角形,此选项正确;C. 因为22+32≠42,所以不能围成直角三角形,此选项错误;D. 因为12+2≠32,所以不能围成直角三角形,此选项错误;故选:B.【点睛】本题考查了勾股定理的逆定理. 如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.能依据这一定理判断三角形是否为直角三角形是解决此题的关键. 11.A解析:A【解析】【分析】根据分式的值为0,分子等于0,分母不等于0列式计算即可得解.【详解】根据题意得,1-x=0且x+2≠0,解得x=1且x≠-2,所以x=1.故选:A.【点睛】本题考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.12.C解析:C【解析】【分析】根据轴对称图形的概念求解.【详解】解:根据轴对称图形的定义可知:第1,2,3个图形为轴对称图形,第4个图形不是轴对称图形,轴对称图共3个,故选:C.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.13.B解析:B【解析】【分析】根据图象可知走前一半路程用了1小时,由此可得走前一半路程的速度为40km/h,从而可得走后一半路程的速度为60km/h,根据时间=路程÷速度即可求得答案.【详解】由图象知走前一半路程用的时间为1小时,所以走前一半路程时的速度为40km/h,因为匀速行驶了一半的路程后将速度提高了20km/h,所以以后的速度为20+40=60km/h,时间为4060×60=40分钟,故该车到达乙地的时间是当天上午10:40,故选B.【点睛】本题考查了函数的图象,读懂图象,从中找到必要的信息是解题的关键.14.A解析:A【解析】【分析】首先依据线段垂直平分线的性质得到AE=CE;接下来,依据AE=CE可将△ABE的周长为:14转化为AB+BC=14,求解即可.【详解】∵DE是AC的垂直平分线,∴AE=CE,∴△ABE的周长为:AB+BE+AE=AB+BE+CE=AB+BC∵ABC的周长为24,ABE的周长为14∴AB+BC=14∴AC=24-14=10故选:A【点睛】本题主要考查的是线段垂直平分线的性质,掌握线段垂直平分线的性质是解题的关键. 15.C解析:C【解析】试题解析:A是无理数,说法正确;B、3<4,说法正确;C、10,故原题说法错误;D是10的算术平方根,说法正确;故选C.二、填空题16.【解析】【分析】分式方程去分母转化为整式方程,由分式方程的解为负数,求出a的范围即可【详解】分式方程去分母得:2x+a=x+1解得:x=1-a,由分式方程解为负数,得到1-a<0,且1解析:12a a>≠且【解析】【分析】分式方程去分母转化为整式方程,由分式方程的解为负数,求出a的范围即可【详解】分式方程去分母得:2x+a=x+1解得:x=1-a,由分式方程解为负数,得到1-a<0,且1-a≠-1解得:a>1且a≠2,故答案为: a>1且a≠2【点睛】此题考查分式方程的解,解题关键在于求出x的值再进行分析17.【解析】【分析】利用平方根立方根定义计算即可.【详解】∵,∴的平方根是±,故答案为±.【点睛】本题考查了方根的定义,熟练掌握平方根的定义是解本题的关键.注意:区别平方根和算术平方根解析:2 3【解析】【分析】利用平方根立方根定义计算即可.【详解】∵224=39⎛⎫±⎪⎝⎭,∴49的平方根是±23,故答案为±2 3 .【点睛】本题考查了方根的定义,熟练掌握平方根的定义是解本题的关键.注意:区别平方根和算术平方根.一个非负数的平方根有两个,互为相反数,正值为算术平方根.18.答案不唯一,如:【解析】【分析】根据无理数的定义即可得出答案.【详解】∵42=16,52=25,∴到之间的无理数都符合条件,如:.故答案为答案不唯一,如:.【点睛】本题考查了无理数的解析:【解析】【分析】根据无理数的定义即可得出答案.【详解】∵42=16,52=25.故答案为.【点睛】本题考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.19.9【解析】【分析】的整数部分为,则可求出a的取值范围,即可得到答案.【详解】解:的整数部分为,则a的取值范围 8<a<27所以得到奇数有:9、11、13、15、17、19、21、23、2解析:9【解析】【分析】的整数部分为2,则可求出a的取值范围,即可得到答案.【详解】2,则a的取值范围 8<a<27所以得到奇数a有:9、11、13、15、17、19、21、23、25 共9个故答案为:9【点睛】此题主要考查了估算无理数的大小,估算是我们具备的数学能力,“夹逼法”是估算的一般方法.20.5或【解析】试题分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①长为3的边是直角边,长为4的边是斜边时:第三边的长为:;②长为3、4的边都是直角边时:第三边的解析:5【解析】试题分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①长为3的边是直角边,长为4=②长为3、45;∴或5.考点:1.勾股定理;2.分类思想的应用.21.(2,3)【解析】【分析】根据“关于x轴对称的点,横坐标相同, 纵坐标互为相反数” 解答.【详解】解:点A(2,-3)关于x轴对称的点的坐标为(2,3).故答案为:(2,3).【点睛解析:(2,3)【解析】【分析】根据“关于x轴对称的点,横坐标相同, 纵坐标互为相反数”解答.【详解】解:点A(2,-3)关于x轴对称的点的坐标为(2,3).故答案为:(2,3).【点睛】本题考查了关于x轴,y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数:(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3) 关于原点对称的点, 横坐标与纵坐标都互为相反数.22.m+3n=120【解析】【分析】根据线段垂直平分线的性质,可得∠PBC=∠PCB,结合角平分线的定义,可得∠PBC=∠PCB=∠ABP,最后根据三角形内角和定理,从而得到m、n之间的关系.【解析:m+3n=120【解析】【分析】根据线段垂直平分线的性质,可得∠PBC=∠PCB,结合角平分线的定义,可得∠PBC=∠PCB=∠ABP,最后根据三角形内角和定理,从而得到m、n之间的关系.【详解】解:∵点D是BC边的中点,DE⊥BC,∴PB=PC,∴∠PBC=∠PCB,∵BP平分∠ABC,∴∠PBC=∠ABP,∴∠PBC=∠PCB=∠ABP=n°,∵∠A=60°,∠ACP=m°,∠+∠+∠=︒180,A ABC ACB∴∠PBC+∠PCB+∠ABP=120°-m°,∴3∠ABP=120°-m°,∴3n°+m°=120°,故答案为:m+3n=120.【点睛】本题主要考查了三角形内角和定理以及线段垂直平分线的性质的运用,角平分线的定义,解题时注意:线段垂直平分线上任意一点,到线段两端点的距离相等;三角形内角和等于180°.23.4【解析】【分析】根据矩形的性质和折叠的性质,可以得出△AEC是等腰三角形,EC=EA=4,在直角三角形ABE中由勾股定理可求出AB.【详解】解:∵四边形ABCD是矩形,∴AB=CD,B解析:4【解析】【分析】根据矩形的性质和折叠的性质,可以得出△AEC是等腰三角形,EC=EA=4,在直角三角形ABE中由勾股定理可求出AB.【详解】解:∵四边形ABCD是矩形,∴AB=CD,BC=AD,∠A=∠B=∠C=∠D=90°,由折叠得:AD=AD′,CD=CD′,∠DAC=∠D′AC,∵∠DAC=∠BCA,∴∠D′AC=∠BCA,∴EA=EC=5,在Rt△ABE中,由勾股定理得,AB4,故答案为:4.【点睛】本题考查的知识点是矩形的性质以及矩形的折叠问题,根据矩形的性质和折叠的性质,可以得出△AEC是等腰三角形是解此题的关键.24.(2,0)【解析】【分析】把y=0代入y=2x+4求出x的值,即可得出答案.【详解】把y=0代入y=2x-4得:0=2x-4,x=2,即一次函数y=2x-4与x轴的交点坐标是(2,0)解析:(2,0)【解析】【分析】把y=0代入y=2x+4求出x的值,即可得出答案.【详解】把y=0代入y=2x-4得:0=2x-4,x=2,即一次函数y=2x-4与x轴的交点坐标是(2,0).故答案是:(2,0).【点睛】考查了一次函数图象上点的坐标特征,注意:一次函数与x轴的交点的纵坐标是0.25.(0,)【解析】【分析】过B作BE⊥y轴于E,过A作AF⊥x轴于F,根据全等三角形的性质得到B(﹣1,3),设直线AB的解析式为y=kx+b,求得直线AB的解析式为y=﹣x+,于是得到结论.解析:(0,52)【解析】【分析】过B作BE⊥y轴于E,过A作AF⊥x轴于F,根据全等三角形的性质得到B(﹣1,3),设直线AB的解析式为y=kx+b,求得直线AB的解析式为y=﹣12x+52,于是得到结论.【详解】过B作BE⊥y轴于E,过A作AF⊥x轴于F,如图所示:∴∠BCO=∠AFO=90°,∵A(3,1),∴OF=3,AF=1,∵∠AOB=90°,∴∠BOC+∠OBC=∠BOC+∠AOF=90°,∴∠BOC=∠AOF,∵OA=OB,∴△BOE≌△AOF(AAS),∴BE=AF=1,OE=OF=3,∴B(﹣1,3),设直线AB的解析式为y=kx+b,∴3 31k bk b-+=⎧⎨+=⎩,解得:1252k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴直线AB 的解析式为y =﹣12x +52, 当x =0时,y =52, ∴点C 的坐标为(0,52), 故答案为:(0,52). 【点睛】 此题主要考查全等三角形的判定与性质,解题关键是利用全等得出点坐标进而求得解析式.三、解答题26.(1) 32m =,AB =(2) (0,2)Q . 【解析】【分析】(1)把点C 的横坐标代入正比例函数解析式,求得点C 的纵坐标,然后把点C 的坐标代入一次函数解析式即可求得m 的值,从而得到一次函数的解析式,则易求点A 、B 的坐标,然后根据勾股定理即可求得AB ;(2)由14OCQ BAO S S ∆∆=得到OQ 的长,即可求得Q 点的坐标. 【详解】(1)∵点C 在直线12y x =-上,点C 的横坐标为−3, ∴点C 坐标为3(3,)2-,又∵点C 在直线y =mx +2m +3上, ∴33232m m -++=, ∴32m =, ∴直线AB 的函数表达式为362y x =+, 令x =0,则y =6,令y =0,则3602x +=,解得x =−4,∴A (−4,0)、B (0,6),∴2246213AB =+=;(2)∵14OCQ BAO S S ∆∆=,∴111346242OQ ⨯⋅=⨯⨯⨯, ∴OQ =2,∴点Q 坐标为(0,2).【点睛】 考查两条直线相交问题,一次函数图象上点的坐标特征,勾股定理,三角形的面积公式等,比较基础,难度不大.27.(1)DE ,AE ;(2)①见解析;②()3,1,()1,3-【解析】【分析】(1)根据全等三角形的性质即可得到结论;(2)①作DM ⊥AH 于M ,EN ⊥AH 于N ,根据余角的性质得到∠B=∠1,根据全等三角形的性质得到AH=DM ,同理AH=EN ,求得EN=DM ,由全等三角形的性质得到DG=EG ,于是得到点G 是DE 的中点;②过A 作AM ⊥y 轴,过B 作BN ⊥x 轴于N ,AM 与BN 相交于M ,根据余角的性质得到∠OBN=∠BAM ,根据全等三角形的性质得到AM=BN ,ON=BM ,设AM=x ,则BN=AM=x ,从而得到结论.【详解】解:(1)AC=DE ,BC=AE ;故答案为:DE ,AE(2)①如图,作DM AF ⊥于M ,EN AF ⊥于N ,∵BC AF ⊥,∴90BFA AMD ∠=∠=︒,∵90BAD ∠=︒,∴12190B ∠+∠=∠+∠=︒,∴1B ∠=∠,在ABF ∆与DAM ∆中,BFA AMD ∠=∠,2B ∠=∠,AB DA =,∴ABF DAM∆∆≌(AAS),∴AF DM=,同理AF EN=,∴EN DM=,∵DM AF⊥,EN AF⊥,∴90GMD GNE∠=∠=︒,在DMG∆与ENG∆中,DMG ENG∠=∠,MGD NGE∠=∠,DM EN=,∴DMG ENG∆=(AAS),∴DG EG=,∴点G是DE的中点;②如图,过A作AM⊥y轴,过B作BN⊥x轴于N,AM与BN相交于M,∴∠M=90°,∵∠OBA=90°,∴∠ABM+∠OBN=90°,∵∠ABM+∠BAM=90°,∴∠OBN=∠BAM,在△OBN与△BAM中,M ONBOBN BAMOB AB∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△OBN≌△BAM(AAS),∴AM=BN,ON=BM,设AM=x ,则BN=AM=x ,∴ON= x+2,∴MB+NB=x+x+2=MN=4,∴x=1,x+2=3,∴点B 的坐标(3,1);如图同理可得,点B 的坐标(-1,3),综上所述,点B 的坐标为()3,1,()1,3-【点睛】本题考查了全等三角形的判定和性质,垂直的定义,余角的性质,正确的作出辅助线是解题的关键.28.-5【解析】【分析】根据实数的运算法则进行计算.【详解】解:原式=-1+4-5-3=-5.【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握立方根、算术平方根等考点的运算.29.24m 2.【解析】【分析】连接AC ,先利用勾股定理求出AC ,再根据勾股定理的逆定理判定△ABC 是直角三角形, 根据△ABC 的面积减去△ACD 的面积就是所求的面积.【详解】解:连接AC∵AD DC ⊥∴90ADC ∠=︒在Rt ADC ∆中,根据勾股定理2222435(m)AC AD CD =+=+=在ABC ∆中,∵22222251213AC BC AB +=+==ABC ∆是直角三角形∴()25123424m 22ABC AC A CD D B S S S ∆∆⨯⨯=-=-=四边形.【点睛】本题考查了勾股定理、勾股定理的逆定理的应用,得到△ABC 是直角三角形是解题的关键.同时考查了直角三角形的面积公式.30.(1) 见详解 ; (2) 33°【解析】【分析】(1) 根据题意可得Rt ACD ≌ Rt BED (HL );(2) 根据Rt ABD △中 AD BD =得到ABD △为等腰直角三角形,得到45ABD BAD ∠=∠=,根据Rt ACD ≌ Rt BED 得到12DBE ∠=,即可求出答案.【详解】(1) ∵ AD BC ⊥∴ ADC BDE ∠=∠=90°∵ 在Rt ACD 和Rt BED 中AD BD BE AC =⎧⎨=⎩∴Rt ACD ≌ Rt BED (HL )(2)∵Rt ABD △中 AD BD =∴45ABD BAD ∠=∠=∵Rt ACD ≌ Rt BED∴C BED ∠=∠∵78C ∠=︒Rt BED 中,90DBE BED ∠+∠=∴12DBE ∠=∵45ABD ABE DBE ∠=∠+∠=∴ABE ∠=33° .【点睛】此题主要考查了全等三角形的性质和判定及三角形内角度数的计算,熟记概念是解题的关键.31.(1)75;3.6;4.5;(2)当2 3.6x<≤时,135270y x=-;当3.6 4.5x<≤时,60y x=.【解析】【分析】(1)根据图像可知两车2小时候相遇,根据路程和为270千米即可求出乙车的速度,然后根据“路程、速度、时间”的关系确定a、b的值;(2)根据图像可知相遇后图像分为两段,将相遇后点的坐标和分段处以及到达B地后的坐标分别表示出来,然后运用待定系数法解决即可;【详解】解:(1)乙车的速度为:(270-60×2)÷2=75(千米/时);a=270÷75=3.6,b=270÷60=4.5故答案为:75;3.6;4.5;(2)60×3.6=216(千米),如图,可得(2,0)M,(3.6,216)N,(4.5,270)Q.设当2 3.6x<≤时的解析式为11y k x b=+,1111203.6216k bk b+=⎧⎨+=⎩,解得11135270kb=⎧⎨=-⎩∴当2 3.6x<≤时,135270y x=-,设当3.6 4.5x<≤时的解析式为22y k x b=+,则22223.62164.5270k bk b+=⎧⎨+=⎩,解得2260kb=⎧⎨=⎩,当3.6 4.5x<≤时,60y x=.【点睛】本题考查了分段函数实际问题,解决本题的关键是能够读懂函数图像,从函数图像中找到相关的量,能够熟练运用待定系数法求函数解析式.。
【名师精选】泰州市姜堰市八年级上期末数学试卷(有答案)
江苏省泰州市姜堰市八年级(上)期末数学试卷一、选择题(本大题共6小题,每小题3分,计18分)1.(3分)在平面直角坐标系中,点P(﹣2,3)在第()象限.A.一B.二C.三D.四2.(3分)若分式有意义,则的取值范围是()A.≠2 B.=2 C.>2 D.<23.(3分)为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,征求了所有学生的意见,根据赞成、反对、无所谓三种意见的人数之比画出扇形统计图,图中α的度数为()A.36°B.20°C.10°D.无法确定4.(3分)在平面直角坐标系中,把直线y=﹣2+3沿y轴向上平移两个单位长度后,得到的直线的函数关系式为()A.y=﹣2+1 B.y=﹣2﹣5 C.y=﹣2+5 D.y=﹣2+75.(3分)如图,在△ABC中,∠ABC和∠ACB的平分线相交于点F,过F作DE∥BC,交AB于点D,交AC于点E.若BD=4,DE=7,则线段EC的长为()A.3 B.4 C.3.5 D.26.(3分)若关于的分式方程=2的解为非负数,则m的取值范围是()A.m>﹣1 B.m≥1 C.m>﹣1且m≠1 D.m≥﹣1且m≠1二、填空题(本大题共10小题,每小题3分,计30分)7.(3分)2026精确到百位记作为.8.(3分)如果分式的值为零,那么=.9.(3分)已知甲、乙两人在同一地点出发,甲往东走4m,乙往南走了3m,这时甲、乙两人相距m.10.(3分)如果点P坐标为(3,﹣4),那么点P到轴的距离为.11.(3分)若+(1﹣y)2=0,则=.12.(3分)某班在一次适应性考试中,分数落在130﹣140分数段的人数为18人,频率为0.3,则该班共有人.13.(3分)如图,直线y1=+n与y2=m﹣1相交于点N,则关于的不等式+n<m ﹣1的解集为.14.(3分)如图,折叠长方形纸片ABCD,使点D落在边BC上的点F处,折痕为AE.已知AB=3cm,BC=5cm.则EC的长为cm.15.(3分)分式的值是正整数,则整数m=.16.(3分)已知∠AOB=45°,点P在∠AOB内部,点P1与点P关于OA对称,点P2与点P关于OB对称,连接P1P2交OA、OB于E、F,若P1E=,OP=,则EF的长度是.三、解答题(本大题共10小题,共102分.)17.(10分)(1)计算:(3﹣π)0﹣|﹣2|﹣(2)解方程: +2=18.(8分)先化简:÷(a﹣),并从0、1、2中选取一个恰当的数值代入求值.19.(10分)已知y+2与成正比,当=1时,y=﹣6.(1)求y与之间的函数关系式;(2)若点(a,2)在这个函数图象上,求a的值.20.(10分)家庭过期药品属于“国家危险废物“处理不当将污染环境,危害健康.某市药监部门为了了解市民家庭处理过期药品的方式,决定对全市家庭作一次简单随机抽样调查本次抽样调查发现,接受调查的家庭都有过期药品,现将有关数据呈现如图:(1)求m、n的值;(2)补全条形统计图;(3)家庭过期药品的正确处理方式是送回收站,若该市有180万户家庭,请估计大约有多少户家庭处理过期药品的方式是送回收站.21.(8分)某社区计划对面积为400m2的区域进行绿化.经测算,甲队每天能完成绿化面积是乙队每天能完成绿化面积的2倍,且甲队单独完成比乙队单独完成少用4天.求甲、乙两队每天单独完成绿化的面积.22.(10分)如图,△ABC 中,边AB 、AC 的垂直平分线分别交BC 于D 、E . (1)若BC=10,则△ADE 周长是多少?为什么?(2)若∠BAC=128°,则∠DAE 的度数是多少?为什么?23.(10分)已知一次函数y=+b ,它的图象与两坐标轴所围成的图形的面积等于2.(1)求b 的值;(2)若函数y=+b 的图象交y 轴于正半轴,则当取何值时,y 的值是正数? 24.(10分)某产品每件成本10元,试销阶段每件产品的销售价(元)与产品的日销售量y (件)之间的关系如表:(1)求日销售量y (件)与每件产品的销售价(元)之间的函数表达式; (2)当每件产品的销售价定为35元时,此时每日的销售利润是多少元? 25.(12分)甲,乙两辆汽车分别从A ,B 两地同时出发,沿同一条公路相向而行,乙车出发2h 后休息,与甲车相遇后,继续行驶.设甲,乙两车与B 地的路程分别为 y 甲(m ),y 乙(m ),甲车行驶的时间为(h ),y 甲,y 乙与之间的函数图象如图所示,结合图象解答下列问题:(1)a= ;(2)求乙车与甲车相遇后y 乙与的函数解析式,并写出自变量的取值范围; (3)若a ≤≤5,则当为何值时,两车相距100m .26.(14分)如图,在平面直角坐标系Oy中,点A的坐标为(0,3),点B的坐标为(4,0),C为第一象限内一点,AC⊥y轴,BC⊥轴,D坐标为(m,0)(0<m<4).(1)若D为OB的中点,求直线DC的解析式;(2)若△ACD为等腰三角形,求m的值;(3)E为四边形OACB的某一边上一点.①若E在边BC上,满足△AOD≌△DBE,求m的值;②若使△EOD为等腰三角形的点E有且只有4个,直接写出符合条件的m的值.2017-2018学年江苏省泰州市姜堰市八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,计18分)1.(3分)在平面直角坐标系中,点P(﹣2,3)在第()象限.A.一B.二C.三D.四【解答】解:点P(﹣2,3)在第二象限.故选:B.2.(3分)若分式有意义,则的取值范围是()A.≠2 B.=2 C.>2 D.<2【解答】解:由题意得,﹣2≠0,解得≠2.故选:A.3.(3分)为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,征求了所有学生的意见,根据赞成、反对、无所谓三种意见的人数之比画出扇形统计图,图中α的度数为()A.36°B.20°C.10°D.无法确定【解答】解:由图知“无所谓”意见人数占总人数的10%,所以图中α的度数为360°×10%=36°,故选:A.4.(3分)在平面直角坐标系中,把直线y=﹣2+3沿y轴向上平移两个单位长度后,得到的直线的函数关系式为()A.y=﹣2+1 B.y=﹣2﹣5 C.y=﹣2+5 D.y=﹣2+7【解答】解:由题意得:平移后的解析式为:y=﹣2+3+2=﹣2+5.故选:C.5.(3分)如图,在△ABC中,∠ABC和∠ACB的平分线相交于点F,过F作DE∥BC,交AB于点D,交AC于点E.若BD=4,DE=7,则线段EC的长为()A.3 B.4 C.3.5 D.2【解答】解:∵∠ABC和∠ACB的平分线相交于点F,∴∠DBF=∠FBC,∠ECF=∠BCF,∵DF∥BC,交AB于点D,交AC于点E.∴∠DFB=∠DBF,∠CFE=∠BCF,∴BD=DF=4,FE=CE,∴CE=DE﹣DF=7﹣4=3.故选:A.6.(3分)若关于的分式方程=2的解为非负数,则m的取值范围是()A.m>﹣1 B.m≥1 C.m>﹣1且m≠1 D.m≥﹣1且m≠1【解答】解:去分母得:m﹣1=2﹣2,解得:=,由题意得:≥0且≠1,解得:m≥﹣1且m≠1,故选:D.二、填空题(本大题共10小题,每小题3分,计30分)7.(3分)2026精确到百位记作为 2.0×103.【解答】解:2026精确到百位记作为2.0×103,故答案为:2.0×103.8.(3分)如果分式的值为零,那么=3.【解答】解:由题意,得﹣3=0且2+1≠0,解得=3,故答案为:3.9.(3分)已知甲、乙两人在同一地点出发,甲往东走4m,乙往南走了3m,这时甲、乙两人相距5m.【解答】解:如图,∵∠AOB=90°,OA=4m,OB=3m∴AB==5m.10.(3分)如果点P坐标为(3,﹣4),那么点P到轴的距离为4.【解答】解:点P(3,﹣4)到轴的距离为4.故答案为:4.11.(3分)若+(1﹣y)2=0,则=2.【解答】解:∵+(1﹣y)2=0,∴﹣4=0,1﹣y=0,解得:=4,y=1,则==2.故答案为:2.12.(3分)某班在一次适应性考试中,分数落在130﹣140分数段的人数为18人,频率为0.3,则该班共有60人.【解答】解:18÷0.3=60(人).故答案为:60.13.(3分)如图,直线y1=+n与y2=m﹣1相交于点N,则关于的不等式+n<m ﹣1的解集为<﹣1.【解答】解:观察图象,可知+n<m﹣1的解集为<﹣1.故答案为<﹣114.(3分)如图,折叠长方形纸片ABCD,使点D落在边BC上的点F处,折痕为AE.已知AB=3cm,BC=5cm.则EC的长为cm.【解答】解:∵△AEF由△AED折叠而,∴AD=AF,DE=FE.在Rt△ABF中,AB=3cm,AF=5cm,∴BF==4cm,∴CF=BC﹣BF=1cm.设EC=cm,则EF=ED=(3﹣)cm,在Rt△CEF中,EF2=CE2+CF2,即(3﹣)2=2+12,解得:=.故答案为:.15.(3分)分式的值是正整数,则整数m=1.【解答】解:由题意可知:2m﹣1=1或2或4,当2m﹣1=1时,∴m=1,符合题意当2m﹣1=2时,∴m=,不符合题意,当2m﹣1=4时,∴m=,不符合题意,综上所述,m=1,故答案为:m=116.(3分)已知∠AOB=45°,点P在∠AOB内部,点P1与点P关于OA对称,点P2与点P关于OB对称,连接P1P2交OA、OB于E、F,若P1E=,OP=,则EF的长度是.【解答】解:∵P,P1关于直线OA对称,P、P2关于直线OB对称,∴OP=OP1=OP2=,∠AOP=∠AOP1,∠BOP=∠BOP2,∵∠AOB=45°,∴∠P1OP2=2∠AOP+2∠BOP=2(∠AOP+∠BOP)=90°,∴△P1OP2是等腰直角三角形,∴P1P2==2,设EF=,∵P1E==PE,∴PF=P2F=﹣,由轴对称可得,∠OPE=∠OP1E=45°,∠OPF=∠OP2F=45°,∴∠EPF=90°,∴PE2+PF2=EF2,即()2+(﹣)2=2,解得=.故答案为:.三、解答题(本大题共10小题,共102分.)17.(10分)(1)计算:(3﹣π)0﹣|﹣2|﹣(2)解方程: +2=【解答】解:(1)原式=1﹣2+﹣=﹣1;(2)去分母得:﹣3+2﹣8=1﹣,解得:=4,经检验=4是方程的增根,方程无解.18.(8分)先化简:÷(a﹣),并从0、1、2中选取一个恰当的数值代入求值.【解答】解:原式=÷=•=,当a=2时,原式=.19.(10分)已知y+2与成正比,当=1时,y=﹣6.(1)求y与之间的函数关系式;(2)若点(a,2)在这个函数图象上,求a的值.【解答】解:(1)∵y+2与成正比,∴设y﹣2=,将=1、y=﹣6代入y+2=得﹣6+2=×1,∴=﹣4,∴y=﹣4﹣2(2)∵点(a,2)在函数y=﹣4﹣2图象上,∴2=﹣4a﹣2,∴a=﹣1.20.(10分)家庭过期药品属于“国家危险废物“处理不当将污染环境,危害健康.某市药监部门为了了解市民家庭处理过期药品的方式,决定对全市家庭作一次简单随机抽样调查本次抽样调查发现,接受调查的家庭都有过期药品,现将有关数据呈现如图:(1)求m、n的值;(2)补全条形统计图;(3)家庭过期药品的正确处理方式是送回收站,若该市有180万户家庭,请估计大约有多少户家庭处理过期药品的方式是送回收站.【解答】解:(1)∵抽样调査的家庭总户数为:80÷8%=1000(户),∴m%==20%,m=20,n%==6%,n=6.(2)C类户数为:1000﹣(80+510+200+60+50)=100,条形统计图补充如下:(3)180×10%=18(万户).若该市有180万户家庭,估计大约有18万户家庭处理过期药品的方式是送回收点.21.(8分)某社区计划对面积为400m2的区域进行绿化.经测算,甲队每天能完成绿化面积是乙队每天能完成绿化面积的2倍,且甲队单独完成比乙队单独完成少用4天.求甲、乙两队每天单独完成绿化的面积.【解答】解:设乙队每天单独完成绿化的面积为m2,则甲队每天单独完成绿化的面积为2m2,根据题意得:﹣=4,解得:=50,经检验,=50是原方程的根,且符合题意,∴2=2×50=100.答:甲队每天能完成绿化面积的为100m2,乙队每天能完成绿化面积的为50m2.22.(10分)如图,△ABC中,边AB、AC的垂直平分线分别交BC于D、E.(1)若BC=10,则△ADE周长是多少?为什么?(2)若∠BAC=128°,则∠DAE的度数是多少?为什么?【解答】解:(1)∵DM、EN是AB、AC的垂直平分线,∴DA=DB,EA=EC,∴△ADE周长为:AD+AE+DE=DB+EC+DE=BC=10;(2)∵∠BAC=128°,∴∠B+∠C=52°,∵DA=DB,EA=EC,∴∠BAD=∠B,∠EAC=∠C,∴∠BAD+∠EAC=52°,∴∠DAE=128°﹣52°=76°.23.(10分)已知一次函数y=+b,它的图象与两坐标轴所围成的图形的面积等于2.(1)求b的值;(2)若函数y=+b的图象交y轴于正半轴,则当取何值时,y的值是正数?【解答】解:(1)当=0时,y=b,∴一次函数图象与y 轴的交点坐标为(0,b ); 当y=+b=0时,=﹣b ,∴一次函数图象与y 轴的交点坐标为(﹣b ,0). ∴×|b |×|﹣b |=2, 解得:b=±2.(2)∵函数y=+b 的图象交y 轴于正半轴, ∴一次函数为y=+2, ∵y 的值是正数, ∴+2>0, 解得>﹣2.故当>﹣2时,y 的值是正数.24.(10分)某产品每件成本10元,试销阶段每件产品的销售价(元)与产品的日销售量y (件)之间的关系如表:(1)求日销售量y (件)与每件产品的销售价(元)之间的函数表达式; (2)当每件产品的销售价定为35元时,此时每日的销售利润是多少元? 【解答】解:(1)设日销售量y (件)与每件产品的销售价(元)之间的函数表达式是y=+b ,,解得,,即日销售量y (件)与每件产品的销售价(元)之间的函数表达式是y=﹣+40;(2)当每件产品的销售价定为35元时,此时每日的销售利润是:(35﹣10)(﹣35+40)=25×5=125(元),即当每件产品的销售价定为35元时,此时每日的销售利润是125元.25.(12分)甲,乙两辆汽车分别从A ,B 两地同时出发,沿同一条公路相向而行,乙车出发2h 后休息,与甲车相遇后,继续行驶.设甲,乙两车与B 地的路程分别为 y 甲(m ),y 乙(m ),甲车行驶的时间为(h ),y 甲,y 乙与之间的函数图象如图所示,结合图象解答下列问题: (1)a= 3 ;(2)求乙车与甲车相遇后y 乙与的函数解析式,并写出自变量的取值范围; (3)若a ≤≤5,则当为何值时,两车相距100m .【解答】解:(1)设甲车行驶的函数解析式为y 甲=+b ,(是不为0的常数) y 甲=+b 图象过点(0,450),(5,0),得,解得,甲车行驶的函数解析式为y 甲=﹣90+450, 当y=180时,=3(h ), ∴a=3, 故答案为:3;(2)设乙车与甲车相遇后y 乙与的函数解析式y 乙=+b , y 乙=+b 图象过点(3,180),(5,450),得,解得,乙车与甲车相遇后y乙与的函数解析式y乙=135﹣225(3≤≤5);(3)3≤≤5时,y乙减y甲等于100千米,即135﹣225﹣(﹣90+450)=100,解得=,∴当为时,两车相距100m.26.(14分)如图,在平面直角坐标系Oy中,点A的坐标为(0,3),点B的坐标为(4,0),C为第一象限内一点,AC⊥y轴,BC⊥轴,D坐标为(m,0)(0<m<4).(1)若D为OB的中点,求直线DC的解析式;(2)若△ACD为等腰三角形,求m的值;(3)E为四边形OACB的某一边上一点.①若E在边BC上,满足△AOD≌△DBE,求m的值;②若使△EOD为等腰三角形的点E有且只有4个,直接写出符合条件的m的值.【解答】解:(1)∵A(0,3),B(4,0),四边形AOBC是矩形,∴OA=BC=3,OB=AC=4,∴C(4,3),∵点D为OB中点,∴D(2,0),设直线CD的解析式为y=+b,则有,解得,∴直线CD的解析式为y=﹣3.(2)①当DA=DC时,D(2,0).②当AD=AC=4时,在Rt△AOD中,OD==,∴D(,0).③当CD=AC时,在Rt△BCD中,BD==,∴D(4﹣,0).(3)①∵△AOD≌△DBE,∴DB=OA=3,∴OD=OB﹣BD=1,∴m=1.②如图1中,当m=3时,使△EOD为等腰三角形的点E有且只有4个;如图2中,当E与C重合时,OD=DC=m,在Rt△CDB中,∵CD2=BD2+BC2,∴m2=(4﹣m)2+32,'∴m=.此时使△EOD为等腰三角形的点E有且只有4个;。
最新江苏省2017-2018年八年级上期末考试数学试题含答案
第一学期期末考试卷八年级数学试题注意事项:1.本卷考试时间为100分钟,满分100分.2.卷中除要求近似计算的按要求给出近似结果外,其余结果均应给出精确结果.一、选择题:(本大题共8小题,每小题3分,共24分,在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内.)1.如图,下列图案中是轴对称图形的是-------------------------------------------------------( )A .(1)、(2)B .(1)、(3)C .(1)、(4)D .(2)、(3)2.下列实数中,是无理数的为--------------------------------------------------------------------( )AB .13C .0D .3-3.在△ABC 中和△DEF 中,已知BC =EF ,∠C =∠F ,增加下列条件后还不能判定△ABC ≌△DEF 的是-------------------------------------------------------------------------( ) A 、AC =DF B 、AB =DE C 、∠A =∠D D 、∠B =∠E4.满足下列条件的△ABC 不是..直角三角形的是----------------------------------------------( ) A 、1=a 、2=b , 3=cB 、1=a 、2=b , 5=cC 、a ∶b ∶c =3∶4∶5D 、∠A ∶∠B ∶∠C =3∶4∶5 5.如图,直线l 是一条河,P ,Q 是两个村庄.计划在l 上的某处修建一个水泵站M ,向P ,Q 两地供水.现有如下四种铺设方案(图中实线表示铺设的管道),则所需管道最短的是------------------------------------------------------------------------------------------------------( )A .B .C .D .6.设正比例函数mx y 的图象经过点)4,(m A ,且y 的值随x 值的增大而减小,则m 的值为-----------------------------------------------------------------------------------------------( )A.2B.-2C. 4D.-47.如图,在平面直角坐标系中,点P 坐标为(-4,3),以点B (-1,0)为圆心,以BP 的长为半径画弧,交x 轴的负半轴于点A ,则点A 的横坐标介于-----------( )A 、-6和-5之间B 、-5和-4之间C 、-4和-3之间D 、-3和-2之间8. 在平面直角坐标系中,点A(1,1),B(3,3),动点C 在x 轴上,若以A 、B 、C 三点为顶点的三角形是等腰三角形,则点C 的个数为------------------------------------------------------( ) A.2 B.3 C.4 D.5(第7题)DCB A二、填空题:(本大题共11小题,每题2分,共22分)9.16的平方根是10.点A (—3,4)关于y 轴对称的点的坐标是 .11.地球上七大洲的总面积约为149 480 000km 2,把这个数值精确到千万位,并用科学计数法表示为 . 12. 函数2-=x y 中自变量x 的取值范围是_____ ________13. 如图,在等腰三角形ABC 中,AC AB =,DE 垂直平分AB ,已知∠ADE =40º,则∠DBC= ︒.14.如图,锐角△ABC 的高AD 、BE 相交于F ,若BF =AC ,BC =7,CD =2,则AF 的长为15.如图,已知△ABC 中,AB=17,AC=10,BC 边上的高AD=8.则△ABC 的周长为(第15题)16.如图,直线b kx y +=与x 轴交于点(2,0),若y <0时,则x 的取值范围是 17.已知点P (1-a ,5+a )在第二象限,且到y 轴的距离为2,则点P 的坐标为 .18.函数y =kx +b (k ≠0)的图象平行于直线y =3x +2,且交y 轴于点(0,-1),则其函数表达式是 .19.已知点A (1,5),B (3,-1),点M 在x 轴上,当AM ﹣BM 最大时,点M 的坐标为 .三、解答题:(本大题满分54分,解答需写必要演算步骤)20.计算:(本题每小题3分,共9分)第13题)(第14题) (第16题)(第19题)(1)计算:()232279--+(2)求0942=-x 中x 的值. (3)求()813=-x 中x 的值.\21.(本题共6分)已知某正数的两个平方根分别是3+a 和152-a ,b 的立方根是2-.求a b --的算术平方根.如图,四边形ABCD的对角线AC与BD相交于点O,AB=AD,CB=CD.求证:⑴、△ABC≌△ADC ;⑵、AC垂直平分BD.23.(本题共6分)(1)近年来,江苏省实施“村村通”工程和农村医疗卫生改革,宜兴市计划在某镇的张村、李村之间建一座定点医疗站P,张、李两村座落在两相交公路内(如图所示),医疗站必须满足下列条件:①使其到两公路的距离相等;②到张、李两村的距离也相等.请你利用尺规作图确定P点的位置.(不写作法,保留作图痕迹)(2)如图:图①、图②都是4×4的正方形网格,小正方形的边长均为1,每个小正方形的顶点称为格点.在①、②两个网格中分别标注了5个格点,按下列要求画图:在图①图②中以5个格点中的三个格点为顶点,各画一个成轴对称的三角形;并计算它的面积分别等于与.第(1)题24.(本题共6分)如图,一次函数y =(m+1)x +32的图像与x 轴的负半轴相交于点A ,与y轴相交于点B ,且△OAB 面积为43. (1)求m 的值及点A 的坐标;(2)过点B 作直线BP 与x 轴的正半轴相交于点P ,且OP =3OA函数表达式 .第(2)题25.(本题共6分)如图,已知Rt△ABC中,∠C=90°.沿DE折叠,使点A与点B重合,折痕为DE.(1)若DE=CE,求∠A的度数;⑵若BC=6,AC=8,求CE的长.甲、乙两人沿相同的路线由A地到B地匀速前进,A,B两地间的路程为20千米,他们前进的路程为s(单位:千米),甲出发后的时间为t(单位:小时),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息回答下列问题:(1)甲的速度是千米/小时,乙比甲晚出发小时;(2)分别求出甲、乙两人前进的路程s与甲出发后的时间t之间的函数关系式;(3)求甲经过多长时间被乙追上,此时两人距离B地还有多远?27.(本题共7分)如图,直线72+-=x y 与x 轴、y 轴分别相交于点C 、B ,与直线x y 23=相交于点A . ⑴ 求A 点坐标; ⑵ 如果在y 轴上存在一点P ,使△OAP 是以OA 为底边的等腰三角形,则P 点坐标是 ;⑶ 在直线72+-=x y 上是否存在点Q ,使△OAQ 的面积等于6,若存在,请求出Q 点的坐标,若不存在,请说明理由.八年级数学参考答案及评分标准一、选择题:(每小题3分,共24分)1.C;2.A;3.B;4.D;5.D;6.B;7.A;8.B;二、细心填一填(本大题共有11小题,每题2分,共22分.)9.4或-4;10.()4,3;11.8105.1⨯;12.x ≥2;13.15︒;14.3;15.48;16.x>2;17.()4,2-;18. y =3x -1;19.(3.5,0)三、解答题(本大题共8小题,共54分.)20.(本题每小题3分,共9分)解:(1)原式=3+3―2--------------------------------------2分=4-------------------------------3分⑵ 492=x ---------1分 解之得:23±=x (1 解1分) ------------- 3分 (3)21=-x --------------------------------2分 ∴3=x -----------------------------3分21.(本题共6分)解:由题意得,(3+a )+(152-a )=0 解得a=4….. …………………..2分∵b 的立方根是2-,∴b=-8……………………….…….4分∴a b --的算术平方根为2……………………… ………6分22.(本题共6分)⑴证明:在△ABC 与△ADC 中,⎪⎩⎪⎨⎧===AC AC CD CB AD AB∴△ABC ≌△ADC (SSS )-------------------------------------------------------3分 ⑵∵△ABC ≌△ADC∴∠BAC =∠DAC---------------------------------------------------------------------5分 又∵AB =AD∴AC 垂直平分BD---------------------------------------------------------------------6分23.(本题共6分)(1)题完成角平分线和线段的垂直平分线共2分(只完成一个得1分),标出点P ;(2)题:画图(各1分),面积是4和25(各1分). 24.(本题共6分)(1)由点B (0,32)得OB =32………………………………………1分 ∵S △OAB =43,∴12×OA ×OB =43,得OA =1,∴A (-1,0)……2分 把点A (-1,0)代入y =(m +1)x +23得m =21. ……………3分 (2)∵OP =3OA ,∴OP =3,∴点P 的坐标为(3,0)………… 4分设直线BP 的函数表达式为y =kx +b ,代入P (3,0)、B (0,32), 得⎪⎩⎪⎨⎧==+2303b b k ,解得⎪⎩⎪⎨⎧=-=2321b k ,直线BP 的函数表达式为y =21-x +32 … 6分 25.(本题共6分)⑴解:∵折叠,∴DE 垂直平分AB ,∴BE =AE∴∠A =∠ABE--------------------------------------------------------------------1分 又∵∠C =90º,ED ⊥AB ,DE =CE ,∴∠CBE =∠ABE-∴∠A =∠ABE =∠CBE--------------------------------------------------2分 又∵∠A +∠ABE +∠CBE =90º∴∠A =30º------------------------------------------------------------------------3分 ⑵解:设CE =x ,则AE =AC -CE =8-x∴BE =AE =8-x -------------------------------------------------------------4分 又∵∠C =90º∴222BE CE BC =+∴()22286x x -=+-----------------------------------------------------------5分 ∴47=x ,即CE =47--------------------------------------------------------6分 26.(本题共8分)⑴5,1---------------2分 ⑵t s 5=甲,20-20t s =乙,--------4分(3)⎩⎨⎧-==20205t s t s 解之:⎪⎪⎩⎪⎪⎨⎧==32034s t ∴34小时-----6分 20402033-=千米---------------8分27.(本题共7分)解:⑴解方程组:⎪⎩⎪⎨⎧=+-=x y x y 2372- 解之得:⎩⎨⎧==32y x ∴A 点坐标是()3,2----------------------------------------------1分⑵P 点坐标是⎪⎭⎫ ⎝⎛613,0------------------------------------------3分 ⑶存在 ∵6421<=∆AOC S ,67>=∆AO B S ∴Q 点有两个位置:Q 在线段AB 上和AC 的延长线上,设点Q 的坐标是()y x ,当Q 点在线段AB 上:作QD ⊥y 轴于点D ,则QD =x x =,∴167=-=-=∆∆∆O AQ O AD O BQ S S S , ∴121=⨯QD OB ,即127=x ,∴72=x ,把72=x 代入72+-=x y ,得745=y ∴Q 的坐标是⎪⎭⎫ ⎝⎛745,72------------------------------------------------------------------5分 当Q 点在AC 的延长线上时,作QD ⊥x 轴于点D ,则QD =y y -=, ∴434216=-=-=∆∆∆OAC OAQ OCQ S S S , ∴1324OC QD ∙=,即()7344y ⨯-=,∴37y =-,把37y =-代入72+-=x y ,得267x =∴Q 的坐标是263,77⎛⎫- ⎪⎝⎭ 综上所述:点Q 是坐标是⎪⎭⎫ ⎝⎛745,72或263,77⎛⎫- ⎪⎝⎭-----------------------------7分。
2017-2018学年八年级数学上学期期末考试试题苏科版(1)
本题共10小题,每小题2分,共20分)1、下列四个图形分别是节能、节水、低碳和绿色食品标志,是轴对称图形的是 ( )A B C D 2、已知点A (2,3),则点A 关于x 轴的对称点坐标为 ( )A .(3,2)B .(2,)C .(,3)D .(,)3、由下列条件不能判定ABC ∆为直角三角形的是 ( )A. A B C ∠+∠=∠B. ::1:3:2A B C ∠∠∠=C. 2()()b c b c a +-=D. 111,,345a b c === 4、下列各式中,正确的是 ( )A ()77--=;B 112=;C 332244=+=;D 0.5=± 5、关于的叙述,正确的是 ( )A .是有理数B .5的平方根是C .2<<3D .在数轴上不能找到表示的点6、如图,在ABC ∆中,55B ∠=︒,30C ∠=︒,分别以点和点为圆心,大于12AC 的长为半径画弧,两弧相交于点、,作直线MN ,交BC 于点,连接AD ,则BAD ∠的度数为( )A. 65°B. 60°C. 55°D. 45°7、两直线l 1:y=2x-1,l 2:y=x+1的交点坐标为 ( )A .(-2,3)B .(2,-3)C .(-2,-3)D .(2,3)8、已知等腰三角形的周长是10,底边长是腰长的函数,则下列函数中,能正确反映与之间函数关系的图象是 ( )A .B .C .D .9、如图,将矩形ABCD 绕点A 旋转至矩形AB ′C ′D ′位置,此时AC 的中点恰好与D 点重合,AB ′交CD 于点E .若AB=3,则△AEC 的面积为 ( )A .B .1.5C .2D .310、如图,在正方形ABCD 中,AC 为对角线,E 为AB 上一点,过点E 作EF ∥AD ,与AC 、DC 分别交于点G ,F ,H 为CG 的中点,连接DE ,EH ,DH ,FH .下列结论:①EG=DF ;②∠AEH+∠ADH=180°;③△EHF ≌△DHC ;④若=,则3S △EDH =13S △DHC ,其中结论正确的有 ( )A .1个B .2个C .3个D .4个第6题 第9题 第10题二、填空题(本题共8小题,每小题3分,共24分)11.12、用四舍五入法把圆周率 3.1415926π≈精确到千分位,得到的近似值是_______.13、比较大小:-5____-4.14、已知点(,)P a b 在一次函数21y x =-的图像上,则21__________a b -+=.15、将函数图象y=2x 向右平移1个单位,所得图象对应的函数关系式为.16、如图,BD 是ABC ∠的角平分线,DE AB ⊥于点,ABC ∆的面积是30 cm 2 ,18AB =,12BC =,则DE =.17、如图,90MON ∠=︒,已知ABC ∆中,5,6AC BC AB ===,ABC ∆的顶点A 、B 分别在边OM 、ON 上,当点在边ON 上运动时,点随之在边OM 上运动,ABC ∆的形状保持不变,在运动过程中,点到点的最大距离为.18、如图,等边三角形的顶点A (1,1)、B (3,1),规定把等边△ABC “先沿x 轴翻折,再向左平移1个单位”为一次变换,如果这样连续经过2016次变换后,等边△ABC 的顶点C 的坐标为.。
2017-2018学年苏科版第一学期初二数学期末考试卷 及答案
2017-2018学年第一学期初二数学期末考试卷一、选择题:(本大题共10小题,每小题3分,共30分)1.(2015•常州)下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是……………………………………()2. (2015•内江)用科学记数法表示0.0000061,结果是……………………………()A.56.110-⨯; B.66.110-⨯;C.50.6110-⨯;D.76110-⨯;3.(2015•宿迁)函数2y x=-,自变量x的取值范围是………………………………()A.x>2 ; B.x<2; C.x≥2; D.x≤2;4.一次函数3y x=-+的图像上有两点A()11,x y、B()22,x y,若12y y<,则1x与2x的大小关系是()A.12x x<; B.12x x>; C.12x x=;D.无法确定;5. 如果点P (),12m m-在第四象限,那么m的取值范围是…………………()A.12m<<;B.12m-<<;C. 0m<; D.12m>;6. 已知点M(3,2)与点N(),x y在同一条平行于x轴的直线上,且点N到y轴的距离为5,则点N的坐标为………………………………………………………………………()A.(2,5);B.(5,2);C.(-5,2);D.(-5,2)或(5,2);7.(2015•达州)如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为…………………………………()A.48° B.36° C.30° D.24°8.(2015•连云港)在实数2,227,0.101001,327;4中,无理数的个数是……()A.0个 B.1个C.2个D.3个;A. B. C. D.第7题图第8题图第9题图9. 如图:在△ABC 中,CE 平分∠ACB ,CF 平分∠ACD ,且EF ∥BC 交AC 于M ,若CM=5,则22CE CF +等于………………………………………………………………………( )A .75;B .100;C .120;D .125;10.如图,点A 的坐标为()2,0-,点B 在直线y x =上运动,当线段AB 最短时点B 的坐标为…………( ) A.22,22⎛⎫-- ⎪ ⎪⎝⎭; B .11,22⎛⎫-- ⎪⎝⎭; C .22,22⎛⎫- ⎪ ⎪⎝⎭; D .(0,0);二、填空题:(本大题共8小题,每小题3分,共24分)11.直角三角形三边长分别为3,4,a ,则a = .12.(2015•凉山州)已知函数222a b y x a b +=++是正比例函数,则a b += .13.(2015•盐城)如图,在△ABC 与△ADC 中,已知AD=AB ,在不添加任何辅助线的前提下,要使△ABC ≌△ADC ,只需再添加的一个条件可以是 .14. 一次函数的图象经过点(1,2),且y 随x 的增大而增大,则这个函数的关系式是 (只需写一个).15.在平面直角坐标系中,点P (2,3)与点P ′()2,2a b a b ++关于原点对称,则a b -= .16. (2015•百色)实数282-的整数部分是 .17. 在△ABC 中,∠A=40°,当∠B= 时,△ABC 是等腰三角形.18.(2015•福建)如图,在△ABC 中,∠ACB=90°,AB=5,BC=3,P 是AB 边上的动点(不与点B 重合),将△BCP 沿CP 所在的直线翻折,得到△B ′CP ,连接B ′A ,则B ′A 长度的最小值是 .三、解答题:(本题满分76分)19.(本题满分8分)计算:(1)()3392322-+---. (2)求x :064)1(273=++x ;20. (本题满分6分)已知AC ⊥BC ,BD ⊥AD ,AC 与BD 交于O ,AC=BD .第18题图第10题图 第13题图求证:(1)BC=AD ; (2)△OAB 是等腰三角形.21. (本题满分6分)如图,在方格纸中(小正方形的边长为1),△ABC 的三个顶点均为格点,将△ABC 沿x 轴向左平移5个单位长度,根据所给的直角坐标系(O 是坐标原点),解答下列问题:(1)画出平移后的△A ′B ′C ′,并直接写出点A ′、B ′、C ′的坐标;(2)求出在整个平移过程中,△ABC 扫过的面积.22. (本题满分7分)(1)已知a 、b 满足2830a b ++-=,解关于x 的方程()221a x b a ++=-.(2)实数a 、b 在数轴上的位置如图所示,化简:2a b a --;23. (本题满分9分)如图,△ABC 中,AB=AC ,BE ⊥AC 于E ,且D 、E 分别是AB 、AC 的中点.延长BC 至点F ,使CF=CE .(1)求∠ABC 的度数;(2)求证:BE=FE ;(3)若AB=2,求△CEF 的面积.已知一次函数y=kx+b的图象经过点(-1,-4),且与函数112y x=+的图象相交于点A (2,a).(1)求一次函数y=kx+b的解析式;(2)若函数y=kx+b图象与x轴的交点是B,函数112y x=+的图象与y轴的交于点C,求四边形ABOC的面积.25. (本题满分8分)已知矩形OABC中,OA=3,AB=6,以OA、OC所在的直线为坐标轴,建立如图所示的平面直角坐标系.将矩形OABC绕点O顺时针方向旋转,得到矩形ODEF,当点B在直线DE上时,设直线DE和x轴交于点P,与y轴交于点Q.(1)求证:△BCQ≌△ODQ;(2)求点P的坐标.如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与x轴交于点A(-3,0),与y轴交于点B,且与正比例函数43y x的图象交点为C(m,4).求:(1)一次函数y=kx+b的解析式;(2)若点D在第二象限,△DAB是以AB为直角边的等腰直角三角形,则点D的坐标为;(3)在x轴上求一点P使△POC为等腰三角形,请求出所有符合条件的点P的坐标.27.(本题满分8分)甲、乙两人同时从相距90千米的A地前往B地,甲乘汽车,乙骑电动车,甲到达B地停留半个小时后返回A地,如图是他们离A地的距离y(千米)与经过的时间x(小时)之间的函数关系图像.(1)求甲从B地返回A地的过程中,y与x之间的函数关系式,并写出自变量x的取值范围;(2)若乙出发后108分钟和甲相遇,求乙从A地到B地用了多少分钟?2014年白天鹅大酒店按餐厨垃圾处理费25元/吨、建筑垃圾处理费16元/吨的收费标准,共支付餐厨和建筑垃圾处理费3400元.从2015年元月起,收费标准上调为:餐厨垃圾处理费100元/吨,建筑垃圾处理费30元/吨,若该企业2015年处理的这两种垃圾数量与2014年相比没有变化,就要多支付垃圾处理费5100元.(1)该酒店2014年处理的餐厨垃圾和建筑垃圾各多少吨?(2)该企业计划2015年将上述两种垃圾处理总量减少到160吨,且建筑垃圾处理量不超过餐厨垃圾处理量的3倍,则2015年该酒店最少需要支付这两种垃圾处理费共多少元?参考答案一、选择题:1.B ;2.B ;3.C ;4.B ;5.D ;6.D ;7.A ;8.B ;9.B ;10.A ;二、填空题:11.5或7;12. 13;13.DC=BC (答案不唯一);14. 64y x =-;15.1;16.3;17.40°、70°或100°;18.1;三、解答题:19.(1)-2;(2)73x =-; 20. 证明:(1)∵AC ⊥BC ,BD ⊥AD ,∴∠ADB=∠ACB=90°,在Rt △ABC 和Rt △BAD 中,∵AB AB AC BD=⎧⎨=⎩,∴Rt △ABC ≌Rt △BAD (HL ),∴BC=AD ,(2)∵Rt △ABC ≌Rt △BAD,∴∠CAB=∠DBA ,∴OA=OB ,∴△OAB 是等腰三角形.21.(1)点A ′、B ′、C ′的坐标分别为(-1,5)、(-4,0)、(-1,0);(2)652; 22.(1)4x =;(2)b -;23. 解:(1)∵BE ⊥AC 于E ,E 是AC 的中点,∴△ABC 是等腰三角形,即AB=BC ,∵AB=AC ,∴△ABC 是等边三角形, ∴∠ABC=60°;(2)∵BE=FE ,∴∠F=∠CEF ,∵∠ACB=60°=∠F+∠CEF ,∴∠F=30°, ∵△ABC 是等边三角形,BE ⊥AC ,∴∠EBC=30°,∴∠F=∠EBC ,∴BE=EF ;(3)过E 点作EG ⊥BC ,如图:∵BE ⊥AC ,∠EBC=30°,AB=BC=2,∴BE=3,CE=1=CF ,在△BEC 中,EG=3CE BE BC =g , ∴13312ECF S =⨯⨯=V . 24.(1)22y x =-;(2)2;25. (1)证明:∵矩形OABC 和矩形ODEF 全等,∴BC=OD ,∠BCQ=∠ODQ=90°,在△BCQ 和△ODQ 中,BCQ ODQ BQC OQD BC OD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∵∠BQC=∠OQD (AAS ),∴△BCQ ≌△ODQ ;(2)∵△BCQ ≌△ODQ ,∴CQ=DQ ,BQ=OQ ,设CQ=x ,则OQ=6-x ,BQ=6-x , 在Rt △BCQ 中,根据勾股定理得:()2269x x --=, 解得:94x =,∴OQ= 915644-=,∴Q 150,4⎛⎫ ⎪⎝⎭; 设BQ :y=kx+b ,把B (-3,6)与Q 150,4⎛⎫ ⎪⎝⎭代入并解得:31544y x =-+,令y=0,得315044x -+=,解得:x=5,26.(1)223y x =+;(2)D 的坐标为(-2,5)或(-5,3). (3)(3)当OC 是腰,O 是顶角的顶点时,OP=OC ,则P 的坐标为(5,0)或(-5,0);当OC 是腰,C 是顶角的顶点时,CP=CP ,则P 与O 关于x=3对称,则P 的坐标是(6,0);当OC 是底边时,设P 的坐标为(a ,0),则()22234a a -+=,解得256a = ,此时P 的坐标是25,06⎛⎫ ⎪⎝⎭; 综上可知P 的坐标为(5,0)或(-5,0)或(6,0)或25,06⎛⎫ ⎪⎝⎭. 27. 解:(1)60180y x =-+(1.5≤x ≤3);(2)乙从A 地到B 地用时为90÷40=2.25(小时)=135分钟.28. 解:(1)设该酒店2014年处理的餐厨垃圾x 吨,建筑垃圾y 吨,根据题意,得25163400100308500x y x y +=⎧⎨+=⎩,解得40150x y =⎧⎨=⎩答:该酒店2014年处理的餐厨垃圾40吨,建筑垃圾150吨;(2)设该酒店2015年处理的餐厨垃圾x 吨,建筑垃圾y 吨,需要支付这两种垃圾处理费共w 元,根据题意得,1603x y y x +=⎧⎨≤⎩,解得x ≥40. w=100x+30(160-x )=70x+4800,∴k=70>0,∴w 的值随x 的增大而增大, ∴当x=40时,w 值最小,最小值=70×40+4800=7600(元).答:2015年该酒店最少需要支付这两种垃圾处理费共7600元.。
苏科版泰州市八年级上学期期末数学试卷 (解析版)
苏科版泰州市八年级上学期期末数学试卷 (解析版) 一、选择题 1.在▱ABCD 中,已知∠A ﹣∠B=20°,则∠C=( )A .80°B .90°C .100°D .110°2.下列志愿者标识中是中心对称图形的是( ).A .B .C .D .3.下列四组线段a ,b ,c ,能组成直角三角形的是( ) A .1a =,2b =,3c =B .1a =,2b =,3c =C .2a =,3b =,4c =D .4a =,5b =,6c = 4.下列四组线段中,可以构成直角三角形的是 ( )A .4,5,6B .2,3,4C .7 ,3 ,4D .1,2 ,3 5.下列有关一次函数y =-3x +2的说法中,错误的是( )A .当x 值增大时,y 的值随着x 增大而减小B .函数图象与y 轴的交点坐标为C .当时,D .函数图象经过第一、二、四象限6.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x 米,所列方程正确的是( )A .1000100030x x -+=2 B .1000100030x x -+=2 C .1000100030x x --=2 D .1000100030x x--=2 7.下到图形中,不是轴对称图形的是( )A .B .C .D .8.在平面直角坐标系中,点()3,2P -关于x 轴对称的点的坐标是( )A .()3,2B .()2,3-C .()3,2-D .()3,2-- 9.若分式12x x -+的值为0,则x 的值为( ) A .1 B .2- C .1- D .210.如图,在平面直角坐标系中,A (0,3),B (5,3),C (5,0),点D 在线段OA 上,将△ABD 沿着直线BD 折叠,点A 的对应点为E ,当点E 在线段OC 上时,则AD 的长是( )A .1B .43C .53D .211.对于函数y =2x ﹣1,下列说法正确的是( )A .它的图象过点(1,0)B .y 值随着x 值增大而减小C .它的图象经过第二象限D .当x >1时,y >0 12.等腰三角形的底边长为6,底边上的中线长为4,它的腰长为( )A .1B .5C .7D .49 13.下列说法中正确的是( )A .带根号的数都是无理数B .不带根号的数一定是有理数C .无限小数都是无理数D .无理数一定是无限不循环小数14.如图,直线(0)y kx b k =+≠经过点(1,3)-,则不等式3kx b +≥的解集为( )A .1x >-B .1x <-C .3x ≥D .1x ≥-15.如图,弹性小球从P(2,0)出发,沿所示方向运动,每当小球碰到正方形OABC 的边时反弹,反弹时反射角等于入射角,当小球第一次碰到正方形的边时的点为P 1,第二次碰到正方形的边时的点为P 2…,第n 次碰到正方形的边时的点为P n ,则P 2020的坐标是( )A .(5,3)B .(3,5)C .(0,2)D .(2,0)二、填空题16.点P (﹣5,12)到原点的距离是_____.17.若△ABC 的三边长分别为a ,b ,c .下列条件:①∠A =∠B ﹣∠C ;②a 2=(b +c )(b ﹣c );③∠A :∠B :∠C =3:4:5;④a :b :c =5:12:13.其中能判断△ABC 是直角三角形的是_____(填序号).18.如图,在Rt △ABO 中,∠OBA=90°,AB=OB ,点C 在边AB 上,且C (6,4),点D 为OB 的中点,点P 为边OA 上的动点,当∠APC=∠DPO 时,点P 的坐标为 ____.19.3.145精确到百分位的近似数是____.20.一个等腰三角形的两边分别是4和9,则这个等腰三角形的周长是_________.21.如图,点C 坐标为(0,1)-,直线334y x =+交x 轴,y 轴于点A 、点B ,点D 为直线上一动点,则CD 的最小值为_________.22.如图,在平面直角坐标系中,点B 在x 轴的正半轴上,AO =AB ,∠OAB =90°,OB =12,点C 、D 均在边OB 上,且∠CAD =45°,若△ACO 的面积等于△ABO 面积的13,则点D 的坐标为 _______ 。
苏科版江苏省泰州市八年级上学期期末数学试卷 (解析版)
苏科版江苏省泰州市八年级上学期期末数学试卷(解析版)一、选择题1.如图,一次函数图象经过点A,且与正比例函数y=-x的图象交于点B,则该一次函数的表达式为()A.y=-x+2 B.y=x+2C.y=x-2 D.y=-x-22.如图,在正方形网格中,若点(1,1)A,点(3,2)C-,则点B的坐标为()A .(1,2)B .(0,2)C.(2,0)D.(2,1)3.下列志愿者标识中是中心对称图形的是().A.B.C.D.4.一次函数y=-5x+3的图象经过的象限是()A.一、二、三B.二、三、四C.一、二、四D.一、三、四5.如图,两个一次函数图象的交点坐标为(2,4),则关于x,y的方程组111222,y k x by k x b=+⎧⎨=+⎩的解为()A.2,4xy=⎧⎨=⎩B.4,2xy=⎧⎨=⎩C.4,xy=-⎧⎨=⎩D.3,xy=⎧⎨=⎩6.若b>0,则一次函数y=﹣x+b的图象大致是()A .B .C .D .7.如图,AD 是ABC 的角平分线,DE AB ⊥于E ,已知ABC 的面积为28.6AC =,4DE =,则AB 的长为( )A .4B .6C .8D .10 8.已知:△ABC ≌△DCB ,若BC=10cm ,AB=6cm ,AC=7cm ,则CD 为( )A .10cmB .7cmC .6cmD .6cm 或7cm 9.下列图案中,不是轴对称图形的是( )A .B .C .D .10.在22、0.3•、227-、38中,无理数的个数有( ) A .1个 B .2个 C .3个 D .4个11.下列交通标识中,是轴对称图形的是( )A .B .C .D .12.如图,正方形OACB 的边长是2,反比例函数k y x=图像经过点C ,则k 的值是( )A .2B .2-C .4D .4-13.以下问题,不适合用普查的是( )A .旅客上飞机前的安检B .为保证“神州9号”的成功发射,对其零部件进行检查 C .了解某班级学生的课外读书时间 D .了解一批灯泡的使用寿命 14.下列各数:4,﹣3.14,227,2π,3无理数有( ) A .1个B .2个C .3个D .4个 15.点P (1,﹣2)关于y 轴对称的点的坐标是( )A .(1,2)B .(﹣1,2)C .(﹣1,﹣2)D .(﹣2,1) 二、填空题16.如图,在直角坐标系中,点A 、B 的坐标分别为(2,4)和(3、0),点C 是y 轴上的一个动点,且A 、B 、C 三点不在同一条直线上,在运动的过程中,当△ABC 是以AB 为底的等腰三角形时,OC =__.17.17.85精确到十分位是_____.18.若点(1,35)P m m +-在x 轴上,则m 的值为________.19.如图,点O 是边长为2的等边三角ABC 内任意一点,且OD AC ⊥,OE AB ⊥,OF BC ⊥,则OD OE OF ++=__________.20.在311,2π,122-,0,0.454454445…,319中,无理数有______个. 21.如果2x -有意义,那么x 可以取的最小整数为______.22.如图,在长方形ABCD 中,5,6AB BC ==,将长方形ABCD 沿BE 折叠,点A 落在'A 处,若'EA 的延长线恰好过点C ,则AE 的长为__________.23.当x =_____时,分式22x x x-+值为0. 24.若点P (3m ﹣1,2+m )关于原点的对称点P ′在第四象限的取值范围是_____.25.如图,平面直角坐标系中,长方形OABC ,点A ,C 分别在y 轴,x 轴的正半轴上,OA =6,OC =3.∠DOE =45°,OD ,OE 分别交BC ,AB 于点D ,E ,且CD =2,则点E 坐标为_____.三、解答题26.已知一次函数的图象经过点P (0,-2),且与两条坐标轴截得的直角三角形的面积为6,求这个一次函数的解析式.27.已知:如图,点B ,D 在线段AE 上,AD=BE ,AC ∥EF ,∠C=∠H.求证:BC=DH.28.已知y 与2x -成正比例,且当1x =时,2y =-.(1)求y 与x 的函数表达式;(2)当12x -<<时,求y 的取值范围.29.如图,ABC ∆为等边三角形,D 为ABC ∆内一点,且ABD DAC ∠=∠,过点C 作AD 的平行线,交BD 的延长线于点E ,BD EC =,连接AE .(1)求证:ABD ACE ∆∆≌;(2)求证:ADE ∆为等边三角形.30.在等边△ABC 的两边AB 、AC 所在直线上分别有两点M 、N ,D 为△ABC 外一点,且∠MDN=60°,∠BDC=120°,BD=DC .探究:当M 、N 分别在直线AB 、AC 上移动时,BM 、NC 、MN 之间的数量关系及△AMN 的周长x 与等边△ABC 的周长y 的关系.(1)如图1,当点M、N边AB、AC上,且DM=DN时,BM、NC、MN之间的数量关系是;此时xy=;(2)如图2,点M、N在边AB、AC上,且当DM≠DN时,猜想( I)问的两个结论还成立吗?若成立请直接写出你的结论;若不成立请说明理由.(3)如图3,当M、N分别在边AB、CA的延长线上时,探索BM、NC、MN之间的数量关系如何?并给出证明.31.如图,正方形网格中每个小正方形的边长都是1,每个小正方形的顶点叫做格点.(1)在图①中,以格点为端点画一条长度为13的线段MN;(2)在图②中,A、B、C是格点,求∠ABC的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】【详解】解:设一次函数的解析式y=kx+b(k≠0),∵一次函数图象经过点A,且与正比例函数y=-x的图象交于点B,∴在直线y=-x 中,令x=-1,解得:y=1,则B 的坐标是(-1,1).把A (0,2),B (-1,1)的坐标代入一次函数的解析式y=kx+b得:2{1b k b =-+=,解得2{1b k ==, 该一次函数的表达式为y=x+2.故选B .2.C解析:C【解析】【分析】根据点(1,1)A ,点(3,2)C -建立平面直角坐标系,再结合图形即可确定出点B 的坐标.【详解】解:∵点A 的坐标是:(1,1),点C 的坐标是:(3,-2),∴点B 的坐标是:(2,0).故选:C .【点睛】本题主要考查了点的坐标,点坐标就是在平面直角坐标系中,坐标平面内的点与一对有序实数是一一对应的关系,这对有序实数则为这个点的坐标点的坐标.3.C解析:C【解析】【分析】根据中心对称图形的概念求解.【详解】解:A 、不是中心对称图形,故选项错误;B 、不是中心对称图形,故选项错误;C 、是中心对称图形,故选项正确;D 、不是中心对称图形,故选项错误.故选:C .【点睛】本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.解析:C【解析】试题分析:直线y=﹣5x+3与y 轴交于点(0,3),因为k=-5,所以直线自左向右呈下降趋势,所以直线过第一、二、四象限.故选C .考点:一次函数的图象和性质.5.A解析:A【解析】【分析】根据任何一个一次函数都可以化为一个二元一次方程,再根据两个函数交点坐标就是二元一次方程组的解可直接得到答案.【详解】解:∵直线y 1=k 1x+b 1与y 2=k 2x+b 2的交点坐标为(2,4),∴二元一次方程组111222,y k x b y k x b =+⎧⎨=+⎩的解为2,4.x y =⎧⎨=⎩ 故选A.【点睛】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.6.C解析:C【解析】分析:根据一次函数的k 、b 的符号确定其经过的象限即可确定答案.详解:∵一次函数y x b =+中100k b =-,,∴一次函数的图象经过一、二、四象限,故选C .点睛:主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y kx b =+的图象有四种情况:①当k >0,b >0,函数y =kx +b 的图象经过第一、二、三象限;②当k >0,b <0,函数y =kx +b 的图象经过第一、三、四象限;③当k <0,b >0时,函数y =kx +b 的图象经过第一、二、四象限;④当k <0,b <0时,函数y =kx +b 的图象经过第二、三、四象限.7.C解析:C【解析】作DF⊥AC于F,根据角平分线的性质求出DF,根据三角形的面积公式计算即可.【详解】解:作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,DF⊥AC,∴DF=DE=4,∴112228 AB DE AC DF即112246428 AB解得,AB=8,故选:C.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.8.C解析:C【解析】【分析】全等图形中的对应边相等.【详解】根据△ABC≌△DCB,所以AB=CD,所以CD=6,所以答案选择C项.【点睛】本题考查了全等,了解全等图形中对应边相等是解决本题的关键.9.D解析:D【解析】【分析】根据轴对称图形的概念求解.【详解】解:A、是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项不合题意;C、是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项符合题意.故选:D.此题主要考查了轴对称的概念,轴对称的关键是寻找对称轴,折叠后两边会重合.10.A解析:A【解析】【分析】根据无理数的三种形式,①开方开不尽的数,②无限不循环小数,③含有π的数,结合题意判断即可.【详解】、•0.3、227-中,•0.3循环小数,是有理数;227-是分数,是有理数;=2,是整数,是有理数;所以无理数共1个.故选:A .【点睛】此题考查了无理数的概念,解答本题的关键是掌握无理数的定义,属于基础题,要熟练掌握无理数的三种形式,难度一般.11.B解析:B【解析】某个图形沿着一条直线折叠,直线两旁的部分能够完全重合的图形是轴对称图形,以上图形中,B 是轴对称图形,故选B12.C解析:C【解析】【分析】根据正方形的性质,即可求出点C 的坐标,然后代入反比例函数解析式里即可.【详解】解:∵正方形OACB 的边长是2,∴点C 的坐标为(2,2)将点C 的坐标代入k y x=中,得22k = 解得:4k =故选C .【点睛】此题考查的是求反比例函数的比例系数,掌握用待定系数法求反比例函数的比例系数是解决此题的关键.13.D解析:D【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:旅客上飞机前的安检适合用普查;为保证“神州9号”的成功发射,对其零部件进行检查适合用普查;了解某班级学生的课外读书时间适合用普查;了解一批灯泡的使用寿命不适合用普查.故选D .【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.14.B解析:B【解析】【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数.【详解】无理数有2π2个.故选:B .【点睛】本题考查的是无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.15.C解析:C【解析】关于y轴对称的点,纵坐标相同,横坐标互为相反数,由此可得P(1,﹣2)关于y轴对称的点的坐标是(﹣1,﹣2),故选C.【点睛】本题考查了关于坐标轴对称的点的坐标,正确地记住关于坐标轴对称的点的坐标特征是关键.关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴对称的点的坐标特点:纵坐标不变,横坐标互为相反数.二、填空题16..【解析】【分析】设C点坐标为(0,a),由勾股定理可表示出BC2和AC2,由△ABC是以AB为底的等腰三角形可知BC=AC,据此可列出关于的方程,求解即可.【详解】解:设C点坐标为(0,解析:11 8.【解析】【分析】设C点坐标为(0,a),由勾股定理可表示出BC2和AC2,由△ABC是以AB为底的等腰三角形可知BC=AC,据此可列出关于a的方程,求解即可.【详解】解:设C点坐标为(0,a),当△ABC是以AB为底的等腰三角形时,BC=AC,平方得BC2=AC2,即32+a2=22+(4﹣a)2,化简得8a=11,解得a=11 8.故OC=11 8,故答案为:11 8.【点睛】本题考查了平面直角坐标系中两点间的距离及等腰三角形的判定,灵活利用两点的坐标确定两点间距离是解题的关键.17.9.【解析】【分析】把百分位上的数字5进行四舍五入即可.【详解】17.85精确到十分位是17.9故答案为:17.9.【点睛】本题考查了近似数和有效数字:“精确到第几位”和“有几个有效解析:9.【解析】【分析】把百分位上的数字5进行四舍五入即可.【详解】17.85精确到十分位是17.9故答案为:17.9.【点睛】本题考查了近似数和有效数字:“精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.18.【解析】【分析】根据x 轴上点的纵坐标为0列方程求解即可.【详解】∵点在x 轴上,∴3m −5=0,解得m =.故答案为:.【点睛】本题考查了点的坐标,熟记x 轴上点的纵坐标为0是解题的关 解析:53【解析】【分析】根据x 轴上点的纵坐标为0列方程求解即可.【详解】∵点(1,35)P m m +-在x 轴上,∴3m−5=0,解得m=53.故答案为:53.【点睛】本题考查了点的坐标,熟记x轴上点的纵坐标为0是解题的关键.19.【解析】【分析】过点A作AG⊥BC于点G,由等边三角形的性质求出BG的长,再根据勾股定理求出AG的长;连接OA,OB,OC,根据三角形的面积公式即可得出结论.【详解】解:过点A作AG⊥BC解析:3【解析】【分析】过点A作AG⊥BC于点G,由等边三角形的性质求出BG的长,再根据勾股定理求出AG的长;连接OA,OB,OC,根据三角形的面积公式即可得出结论.【详解】解:过点A作AG⊥BC于点G,连接OA,OB,OC,∵AB=AC=BC=2,∴BG=12BC=1,∴22213∵S△ABC=S△ABO+S△BOC+S△AOC,∴12AB×(OD+OE+OF)=12BC•AG,∴3.3【点睛】本题考查的是等边三角形的性质,以及勾股定理,熟知等边三角形三线合一的性质是解答此题的关键.20.3【分析】根据无理数的定义进行判断.【详解】解:根据无理数的定义可知,,0.454454445…,为无理数,共3个.故答案为:3.【点睛】本题考查了无理数.解题的关键是掌握无解析:3【解析】【分析】根据无理数的定义进行判断.【详解】解:根据无理数的定义可知,2 ,0.4544544453个.故答案为:3.【点睛】本题考查了无理数.解题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.21.2【解析】【分析】根据被开方数大于等于0列式求解即可.【详解】根据题意得,x-2≥0,解得x≥2,∴x可以取的最小整数为2.故填:2.【点睛】本题考查了二次根式有意义的条件,根据解析:2【解析】【分析】根据被开方数大于等于0列式求解即可.【详解】根据题意得,x-2≥0,∴x 可以取的最小整数为2.故填:2.【点睛】本题考查了二次根式有意义的条件,根据被开方数大于等于列式求解即可,比较简单.22.【解析】【分析】结合长方形与折叠的性质在在中根据勾股定理可得的长,设设,可知,中,由勾股定理得方程,求出x 值即可.【详解】解:四边形ABCD 是长方形由折叠的性质可得在中,根据勾股解析:6【解析】【分析】结合长方形与折叠的性质在在'Rt BAC 中根据勾股定理可得'AC 的长,设设AE x =,可知',6,A E x DE x CE x ==-=+Rt CDE △中,由勾股定理得方程222(6)5(x x -+=+,求出x 值即可.【详解】 解:四边形ABCD 是长方形90,5,6A D AB CD AD BC ︒∴∠=∠=====由折叠的性质可得''',5,90A E AE A B AB EA B A ︒===∠=∠=在'Rt BAC 中,根据勾股定理得'AC ==设AE x =,则',6,A E x DE x CE x ==-=+在Rt CDE △中,根据勾股定理得222DE CD CE +=即222(6)5(x x -+=+可得2236122511x x x -++=++12)50x ∴=6)6x ∴====-=故答案为:6【点睛】本题考查了勾股定理,灵活利用折叠三角形的性质结合勾股定理求线段长是解题的关键. 23.2【解析】【分析】分母为0没意义,分式的值为0的条件是:(1)分子=0;(2)分母≠0,两个条件需同时具备,缺一不可,据此可以解答本题.【详解】要使分式有意义,则分母不为0,即x2+x=x解析:2【解析】【分析】分母为0没意义,分式的值为0的条件是:(1)分子=0;(2)分母≠0,两个条件需同时具备,缺一不可,据此可以解答本题.【详解】要使分式有意义,则分母不为0,即x2+x=x(x+1)≠0,所以x≠0或x≠﹣1;而分式值为0,即分子2﹣x=0,解得:x=2,符合题意故答案为:2.【点睛】此题主要考查分式有意义的条件,熟练掌握,即可解题.24.﹣2<m<【解析】【分析】直接利用关于原点对称点的性质得出P′(﹣3m+1,﹣2﹣m),进而得出不等式组答案.【详解】∵点P(3m﹣1,2+m)关于原点的对称点P′(﹣3m+1,﹣2﹣m)解析:﹣2<m<1 3【解析】【分析】直接利用关于原点对称点的性质得出P′(﹣3m+1,﹣2﹣m),进而得出不等式组答案.【详解】∵点P(3m﹣1,2+m)关于原点的对称点P′(﹣3m+1,﹣2﹣m)在第四象限,∴310 20mm-+>⎧⎨--<⎩,解得:﹣2<m<13,故答案为:﹣2<m<1 3 .【点睛】此题主要考查根据对称性和象限的性质求点坐标参数的取值范围,熟练掌握,即可解题. 25.(,6)【解析】【分析】如图,过点E作EF⊥OE交OD延长线于点F,过点F作FG⊥AB交AB延长线于点G,作FH⊥BC于H,由“AAS”可证△AEO≌△GEF,可得AE=GF,EG=AO=6,解析:(65,6)【解析】【分析】如图,过点E作EF⊥OE交OD延长线于点F,过点F作FG⊥AB交AB延长线于点G,作FH⊥BC于H,由“AAS”可证△AEO≌△GEF,可得AE=GF,EG=AO=6,通过证明△ODC∽△FDH,可得HF HDOC CD,即可求解.【详解】如图,过点E作EF⊥OE交OD延长线于点F,过点F作FG⊥AB交AB延长线于点G,作FH⊥BC于H,∵∠EOF=45°,EF⊥EO,∴∠EOF=∠EFO=45°,∴OE=EF,∵∠AOE+∠AEO=90°,∠AEO+∠GEF=90°,∴∠GEF=∠AOE,且∠OAE=∠G=90°,OE=EF,∴△AEO≌△GEF(AAS)∴AE=GF,EG=AO=6,∴BG=EG﹣BE=6﹣(3﹣AE)=3+AE,∵FH ⊥BC ,∠G =∠CBG =90°,∴四边形BGFH 是矩形,∴BH =GF =AE ,BG =HF =3+AE ,HF ∥BG ∥OC ,∴HD =BD ﹣BH =4﹣AE ,∵HF ∥OC ,∴△ODC ∽△FDH , ∴HF HD OC CD =, ∴3432AE AE +-= ∴AE =65, ∴点E (65,6) 故答案为:(65,6) 【点睛】此题主要考查利用全等三角形和相似三角形的判定与性质判定矩形在平面直角坐标系中的坐标,解题关键是利用其性质构建方程.三、解答题26.y=-13x-2或y=13x-2. 【解析】【分析】 分一次函数与x 轴交点Q 在正半轴与负半轴两种情况确定出Q 的坐标,即可确定出一次函数解析式.【详解】解:设一次函数与x 轴的交点为Q,则①当一次函数与x 轴交点Q 在x 轴负半轴时,由OP=2,与两坐标所围成的直角三角形面积为6,得到Q (-6,0),设一次函数解析式为y=kx+b ,将P 与Q 坐标代入得:2,60,b k b -⎧⎨-+⎩==解得1,32.k b ⎧=-⎪⎨⎪=-⎩ 此时一次函数解析式为y=-13x-2; ②当一次函数与x 轴交点在x 轴正半轴时,由OP=2,与两坐标所围成的直角三角形面积为6,得到Q (6,0),设一次函数解析式为y=mx+n ,将P 与Q 坐标代入得:2,60,n m n -⎧⎨+⎩==解得1,32.m b ⎧=⎪⎨⎪=-⎩ 此时一次函数解析式为y=13x-2. 故所求一次函数解析式为:y=-13x-2或y=13x-2. 【点睛】此题考查了待定系数法求一次函数解析式,熟练掌握待定系数法是解本题的关键.27.证明见解析.【解析】【分析】利用AAS 证明△ABC ≌△EDH ,再根据全等三角形的性质即可得.【详解】∵AD=BE ,∴AD-BD=BE-BD ,即AB=DE.∵AC ∥EH ,∴∠A=∠E ,在△ABC 和△EDH 中C H A E AB DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△EDH(AAS),∴BC=DH.【点睛】本题考查了全等三角形的送定与性质,熟练掌握全等三角形的判定方法是解题的关键.28.(1)y=2x-4;(2)-6<y <0.【解析】【分析】(1)设y=k (x-2),把x=1,y=-2代入求出k 值即可;(2)把x=-1,x=2代入解析式求出相应的y 值,然后根据函数的增减性解答即可.【详解】解:(1)因为y 与x-2成正比例,可得:y=k (x-2),把x=1,y=-2代入y=k (x-2),得k (1-2)=-2,解得:k=2,所以解析式为:y=2(x-2)=2x-4;(2)把x=-1,x=2分别代入y=2x-4,可得:y=-6,y=0,∵y=2x-4中y 随x 的增大而增大,∴当-1<x <2时,y 的范围为-6<y <0.【点睛】本题考查了用待定系数法求一次函数的解析式及一次函数的性质,熟练掌握一次函数的性质是解题关键.29.(1)见解析(2)见解析【解析】【分析】(1)先证明∠ACE=∠CAD=∠ABD ,再根据SAS 证明ABD ACE ∆∆≌即可;(2)由ADB AEC ∆∆≌可得AD AE =,BAD CAE ∠=∠再证明60DAE ︒∠=即可.【详解】(1)ABC ∆为等边三角形,,60AB AC BAC ︒∴=∠=//AD ECDAC ACE ∴∠=∠又ABD DAC ∠=∠ABD ACE ∴∠=∠在BAD ∆与CAE ∆中,AB AC ABD ACE BD EC =⎧⎪∠=∠⎨⎪=⎩()ADB AEC SAS ∴∆∆≌(2)()ADB AEC SAS ∆∆≌,AD AE BAD CAE ∴=∠=∠CAE DAC BAD DAC ∴∠+∠=∠+∠60DAE BAC ︒∴∠=∠=ADE ∴∆为等边三角形.【点睛】此题主要考查了全等三角形的判定与性质以及等边三角形的判定,熟练掌握定理与性质是解此题的关键.30.(1)BM+NC=MN ;23x y =;(2)成立:BM+NC=MN ;(3)BM+MN=NC.证明见解析. 【解析】【分析】(1)由DM=DN ,∠MDN=60°,可证得△MDN 是等边三角形,又由△ABC 是等边三角形,CD=BD,易证得Rt△BDM≌Rt△CDN,然后由直角三角形的性质,即可求得BM、NC、MN之间的数量关系 BM+NC=MN,此时2 =3xy;(2)在CN的延长线上截取CM1=BM,连接DM1.可证△DBM≌△DCM1,即可得DM=DM1,易证得∠CDN=∠MDN=60°,则可证得△MDN≌△M1DN,然后由全等三角形的性质,即可得结论仍然成立;(3)首先在CN上截取CM1=BM,连接DM1,可证△DBM≌△DCM1,即可得DM=DM1,然后证得∠CDN=∠MDN=60°,易证得△MDN≌△M1DN,则可得NC-BM=MN.【详解】解:(1)如图1,BM、NC、MN之间的数量关系 BM+NC=MN.此时2 =3 xy.理由:∵DM=DN,∠MDN=60°,∴△MDN是等边三角形,∵△ABC是等边三角形,∴∠A=60°,∵BD=CD,∠BDC=120°,∴∠DBC=∠DCB=30°,∴∠MBD=∠NCD=90°,∵DM=DN,BD=CD,∴Rt△BDM≌Rt△CDN,∴∠BDM=∠CDN=30°,BM=CN,∴DM=2BM,DN=2CN,∴MN=2BM=2CN=BM+CN;∴AM=AN,∴△AMN是等边三角形,∵AB=AM+BM,∴AM:AB=2:3,∴2 =3xy;(2)猜想:结论仍然成立.证明:在NC的延长线上截取CM1=BM,连接DM1.∵∠MBD=∠M1CD=90°,BD=CD,∴△DBM≌△DCM1,∴DM=DM1,∠MBD=∠M1CD,M1C=BM,∵∠MDN=60°,∠BDC=120°,∴∠M1DN=∠MDN=60°,∴△MDN≌△M1DN,∴MN=M1N=M1C+NC=BM+NC,∴△AMN的周长为:AM+MN+AN=AM+BM+CN+AN=AB+AC,∴2 =3xy;(3)证明:在CN上截取CM1=BM,连接DM1.可证△DBM≌△DCM1,∴DM=DM1,可证∠M1DN=∠MDN=60°,∴△MDN≌△M1DN,∴MN=M1N,∴NC-BM=MN.【点睛】此题考查了等边三角形,直角三角形,等腰三角形的性质以及全等三角形的判定与性质等知识.此题综合性很强,难度较大,解题的关键是注意数形结合思想的应用与辅助线的作法.31.(1)见解析;(2)45°【解析】【分析】(113MN;(2)连接AC,根据勾股定理及逆定理可得三角形ABC是等腰直角三角形,进而可求∠ABC的度数.【详解】解:(1)如图根据勾股定理,得MN22+22AM AN+1323(2)连接AC∵22AC+221310AB=+=2425BC,221310∴AC2+BC2=AB2,∴ABC是等腰直角三角形,∴∠ABC=45°.【点睛】此题考查的是勾股定理和网格问题,掌握勾股定理及逆定理是解决此题的关键.。
2017~2018学年苏科版八年级上期末数学试卷含答案解析
2017~2018学年度八年级上学期期末数学试卷一、选择题(每小题2分,计12分.将正确答案的序号填写在下面的表格中)1.下列图形中,不是轴对称图形的是()A.线段 B.等腰三角形C.圆D.平行四边形2.16的平方根是()A.4 B.﹣4 C.±4 D.±23.已知一个样本含有30个数据,这些数据被分成4组,各组数据的个数之比为2:4:3:1,则第三小组的频数和频率分别为()A.12、0.3 B.9、0.3 C.9、0.4 D.12、0.44.一次函数y=2x+1的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.小明从家出发,外出散步,到一个公共阅报栏看了一会报后,继续散步了一段时间,然后回家.如图描述了小明在散步过程中离家的距离s(米)与离家后所用时间t(分)之间的函数关系.则下列说法中错误的是()A.小明看报用时8分钟B.小明离家最远的距离为400米C.小明从家到公共阅报栏步行的速度为50米/分D.小明从出发到回家共用时16分钟6.如图,已知一次函数y=ax+b的图象为直线l,则关于x的不等式ax+b<1的解集为()A.x<0 B.x>0 C.x<1 D.x<2二、填空题(本大题共10小题,每小题2分,共20分)7.比较大小:2.8.一只不透明袋子中装有1个白球和2个红球,每个球除颜色外都相同,将球摇匀.从中任意摸出1个球,摸到红球的概率记为P1,摸到白球的概率记为P2,则P1P2.(填“>”、“<”或“=”)9.在直角三角形中,若两条直角边长分别为6cm和8cm,则斜边上的中线为cm.10.某图书馆有A、B、C三类图书,它们的数量用如图所示的扇形统计图表示,若B类图书有37.5万册,则C类图书有万册.11.如图,在△ABC中,AC=BC.把△ABC沿着AC翻折,点B落在点D处,连接BD.如果∠CBD=10°,则∠BAC的度数为°.12.一次函数y=mx+3的图象与一次函数y=x+1和正比例函数y=﹣x的图象相交于同一点,则m=.13.已知点P(a,b)在一次函数y=2x﹣1的图象上,则2a﹣b+1=.14.一次函数y=2x的图象沿x轴正方向平移3个单位长度,则平移后的图象所对应的函数表达式为.15.如图,平面直角坐标系内有一点A(3,4),O为坐标原点.点B在y轴上,OB=OA,则点B 的坐标为.16.如图,Rt△ABC,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D 处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为.三、解答题(本大题共9小题,共68分)17.计算:+(π﹣1)0+.优等品频率,;(2)在图中画出这批乒乓球“优等品”频率的折线统计图;(3)这批乒乓球“优等品”的概率的估计值是.19.为了解某种电动汽车的性能,对这种电动汽车进行了抽检,将一次充电后行驶的里程数分为A,B,C,D四个等级,其中相应等级的里程依次为200千米,210千米,220千米,230千米,获得如下不完整的统计图.根据以上信息,解答下列问题:(1)补全条形统计图;(2)扇形统计图中D等级对应的扇形的圆心角是多少度?(3)如果该厂年生产5000辆这种电动汽车,估计能达到D等级的车辆有多少台?20.已知:如图,在△ABC中,AB=AC,点D,E在边BC上,且BD=CE.求证:∠ADE=∠AED.21.如图,平面直角坐标系中,一次函数y=﹣2x+1的图象与y轴交于点A.(1)若点A关于x轴的对称点B在一次函数y=x+b的图象上,求b的值,并在同一坐标系中画出该一次函数的图象;(2)求这两个一次函数的图象与y轴围成的三角形的面积.22.如图,Rt△ABC中,AB=AC,∠BAC=90°,点O是BC的中点,如果点M、N分别在线段AB、AC上移动,并在移动过程中始终保持AN=BM.(1)求证:△ANO≌△BMO;(2)求证:OM⊥ON.23.如图,Rt△ABC中,∠ACB=90°.(1)作∠BAC的平分线,交BC于点D;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,若BD=5,CD=3,求AC的长.24.如图①所示,某乘客乘高速列车从甲地经过乙地到丙地,假设列车匀速行驶.如图②表示列车离乙地路程y(千米)与列车从甲出发后行驶时间x(小时)之间的函数关系图象.(1)甲、丙两地间的路程为千米;(2)求高速列车离乙地的路程y与行驶时间x之间的函数关系式,并写出x的取值范围;(3)当行驶时间x在什么范围时,高速列车离乙地的路程不超过100千米.25.已知,点M、N分别是正方形ABCD的边CB、CD的延长线上的点,连接AM、AN、MN,∠MAN=135°.(友情提醒:正方形的四条边都相等,即AB=BC=CD=DA;四个内角都是90°,即∠ABC=∠BCD=∠CDA=∠DAB=90°)(1)如图①,若BM=DN,求证:MN=BM+DN.(2)如图②,若BM≠DN,试判断(1)中的结论是否仍成立?若成立,请给予证明;若不成立,请说明理由.八年级上学期期末数学试卷参考答案与试题解析一、选择题(每小题2分,计12分.将正确答案的序号填写在下面的表格中)1.下列图形中,不是轴对称图形的是()A.线段 B.等腰三角形C.圆D.平行四边形【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、线段是轴对称图形;B、等腰三角形是轴对称图形;C、圆是轴对称图形;D、平行四边形是中心对称图形,不是轴对称图形.故选D.【点评】掌握好轴对称的概念.轴对称的关键是寻找对称轴,两边图象折叠后可重合.2.16的平方根是()A.4 B.﹣4 C.±4 D.±2【考点】平方根.【分析】根据平方根定义求出即可.【解答】解:16的平方根是±4,故选C.【点评】本题考查了平方根的应用,注意:一个正数有两个平方根,它们互为相反数.3.已知一个样本含有30个数据,这些数据被分成4组,各组数据的个数之比为2:4:3:1,则第三小组的频数和频率分别为()A.12、0.3 B.9、0.3 C.9、0.4 D.12、0.4【考点】频数与频率.【分析】根据比例关系由频数=总数×频率即可得出第三小组的频数,进而得出它的频率.【解答】解:∵一个样本含有30个数据,这些数据被分成4组,各组数据的个数之比为2:4:3:1,∴第三小组的频数为:30×=9,∴第三小组的频率分别为:=0.3.故选:B.【点评】此题考查了频数与频率,一般称落在不同小组中的数据个数为该组的频数,频数与数据总数的比值为频率.频率反映了各组频数的大小在总数中所占的分量.4.一次函数y=2x+1的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】一次函数的性质.【分析】根据k,b的符号确定一次函数y=x+2的图象经过的象限.【解答】解:∵k=2>0,图象过一三象限,b=1>0,图象过第二象限,∴直线y=2x+1经过一、二、三象限,不经过第四象限.故选D.【点评】本题考查一次函数的k>0,b>0的图象性质.需注意x的系数为1,难度不大.5.小明从家出发,外出散步,到一个公共阅报栏看了一会报后,继续散步了一段时间,然后回家.如图描述了小明在散步过程中离家的距离s(米)与离家后所用时间t(分)之间的函数关系.则下列说法中错误的是()A.小明看报用时8分钟B.小明离家最远的距离为400米C.小明从家到公共阅报栏步行的速度为50米/分D.小明从出发到回家共用时16分钟【考点】函数的图象.【分析】根据函数图象,从转折点考虑得到信息判断即可.【解答】解:A、小明看报用时8﹣4=4分钟,错误;B、小明离家最远的距离为400米,正确;C、小明从家到公共阅报栏步行的速度为50米/分,正确;D、小明从出发到回家共用时16分钟,正确;故选A.【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,通常从函数图象考虑信息.6.如图,已知一次函数y=ax+b的图象为直线l,则关于x的不等式ax+b<1的解集为()A.x<0 B.x>0 C.x<1 D.x<2【考点】一次函数与一元一次不等式.【专题】计算题.【分析】观察函数图象,写出在y轴右侧的自变量的取值范围即可.【解答】解:当x>0时,ax+b<1,即不等式ax+b<1的解集为x<0.故选B.【点评】本题考查了一次函数与一元一次不等式:一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.二、填空题(本大题共10小题,每小题2分,共20分)7.比较大小:>2.【考点】实数大小比较.【专题】推理填空题;实数.【分析】首先分别求出、2的立方的值各是多少;然后根据实数大小比较的方法:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,判断出、2的立方的大小关系,即可推得、2的大小关系.【解答】解:=9,23=8,∵9>8,∴>2.故答案为:>.【点评】(1)此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.(2)解答此题的关键是判断出、2的立方的大小关系.8.一只不透明袋子中装有1个白球和2个红球,每个球除颜色外都相同,将球摇匀.从中任意摸出1个球,摸到红球的概率记为P1,摸到白球的概率记为P2,则P1>P2.(填“>”、“<”或“=”)【考点】概率公式.【分析】由一只不透明袋子中装有1个白球和2个红球,每个球除颜色外都相同,直接利用概率公式求解即可求得P1与P2,继而求得答案.【解答】解:∵一只不透明袋子中装有1个白球和2个红球,每个球除颜色外都相同,∴从中任意摸出1个球,摸到红球的概率为P1==;摸到白球的概率为P2==,∴P1>P2.故答案为:>.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.9.在直角三角形中,若两条直角边长分别为6cm和8cm,则斜边上的中线为5cm.【考点】直角三角形斜边上的中线;勾股定理.【专题】常规题型.【分析】利用勾股定理求出斜边的长度,然后根据直角三角形斜边上的中线等于斜边的一半的性质解答.【解答】解:根据勾股定理得,斜边==10cm,∴斜边上的中线=×斜边=×10=5cm.故答案为:5.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质以及勾股定理,熟记性质是解题的关键.10.某图书馆有A、B、C三类图书,它们的数量用如图所示的扇形统计图表示,若B类图书有37.5万册,则C类图书有45万册.【考点】扇形统计图.【分析】由图可知B类图书占25%,则可直接求出总图书的册数,再利用C类图书占30%解答即可.【解答】解:C类图书有37.5÷25%×30%=45万册,故答案为:45.【点评】本题考查了扇形统计图,关键是根据从扇形图上可以清楚地看出各部分数量和总数量之间的关系解答.11.如图,在△ABC中,AC=BC.把△ABC沿着AC翻折,点B落在点D处,连接BD.如果∠CBD=10°,则∠BAC的度数为40°.【考点】翻折变换(折叠问题).【分析】由翻折的性质可知∠BAC=∠DAC,∠ABC=∠ADC,∠CBD=∠CDB=10°,由等腰三角形的性质可知∠BAC=∠ABC,最后在△ABD依据三角形的内角和是180°列方程求解即可.【解答】解:设∠BAC=x.∵AC=BC,∴∠BAC=∠ABC=x.由翻折的性质可知:∠BAC=∠DAC=x,∠ABC=∠ADC=x,∠CBD=∠CDB=10°.∵在△ABD中由勾股定理可知:∠BAC+∠DAC+∠ABC+∠ADC+∠CBD+∠CDB=180°.∴4x+20°=180°.解得:x=40°.故答案为:40.【点评】本题主要考查的是翻折变换、等腰三角形的性质、三角形的内角和定理的应用,依据翻折的性质和等腰三角形的性质得到∠BAC=∠DAC=∠ABC=∠ADC是解题的关键.12.一次函数y=mx+3的图象与一次函数y=x+1和正比例函数y=﹣x的图象相交于同一点,则m= 5.【考点】两条直线相交或平行问题.【分析】求得一次函数y=x+1和正比例函数y=﹣x的图象的交点,代入y=mx+3即可求得m的值.【解答】解:解得,∴交点为(﹣,),∵一次函数y=mx+3的图象与一次函数y=x+1和正比例函数y=﹣x的图象相交于同一点,∴=﹣m+3解得m=5.故答案为5.【点评】本题考查了两直线相交的问题,根据两直线的交点坐标符合两直线的解析式是解题的关键.13.已知点P(a,b)在一次函数y=2x﹣1的图象上,则2a﹣b+1=2.【考点】一次函数图象上点的坐标特征.【分析】直接把点P(a,b)代入一次函数y=2x﹣1,进而可得出结论.【解答】解:∵点P(a,b)在一次函数y=2x﹣1的图象上,∴2a﹣1=b,∴2a﹣b=1,∴2a﹣b+1=2.故答案为:2.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.14.一次函数y=2x的图象沿x轴正方向平移3个单位长度,则平移后的图象所对应的函数表达式为y=2x﹣6.【考点】一次函数图象与几何变换.【分析】沿x轴正方向平移即是向右平移,根据解析式“左加右减”的平移规律,即可得到平移后的直线解析式.【解答】解:一次函数y=2x的图象沿x轴正方向平移3个单位长度,得到直线y=2(x﹣3),即y=2x ﹣6.故答案为y=2x﹣6.【点评】本题考查一次函数图象与几何变换,掌握解析式的平移规律:左加右减,上加下减是解题的关键.15.如图,平面直角坐标系内有一点A(3,4),O为坐标原点.点B在y轴上,OB=OA,则点B 的坐标为0,5)或(0,﹣5).【考点】勾股定理;坐标与图形性质.【分析】作AC⊥x轴于C,则∠OCA═90°,OC=3,AC=4,由勾股定理求出OA=5,得出OB=5,即可得出点B的坐标;注意两种情况.【解答】解:作AC⊥x轴于C,如图所示:则∠OCA═90°,OC=3,AC=4,∴OA==5,∴OB=5,当点B在y轴正半轴上时,B(0,5);当点B在y轴﹣半轴上时,B(0,﹣5);故答案为:(0,5)或(0,﹣5).【点评】本题考查了勾股定理、坐标与图形性质;熟练掌握勾股定理是解决问题的关键,注意分两种情况讨论.16.如图,Rt△ABC,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D 处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为.【考点】翻折变换(折叠问题).【分析】首先根据折叠可得CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,然后求得△ECF是等腰直角三角形,进而求得∠B′FD=90°,CE=EF=,ED=AE=,从而求得B′D=1,DF=,在Rt△B′DF中,由勾股定理即可求得B′F的长.【解答】解:根据折叠的性质可知CD=AC=3,B′C=BC=4,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,∴B′D=4﹣3=1,∠DCE+∠B′CF=∠ACE+∠BCF,∵∠ACB=90°,∴∠ECF=45°,∴△ECF是等腰直角三角形,∴EF=CE,∠EFC=45°,∴∠BFC=∠B′FC=135°,∴∠B′FD=90°,∵S△ABC=AC•BC=AB•CE,∴AC•BC=AB•CE,∵根据勾股定理求得AB=5,∴CE=,∴EF=,ED=AE=,∴DF=EF﹣ED=,∴B′F=.故答案为:.【点评】此题主要考查了翻折变换,等腰三角形的判定和性质,勾股定理的应用等,根据折叠的性质求得相等的相等相等的角是本题的关键.三、解答题(本大题共9小题,共68分)17.计算:+(π﹣1)0+.【考点】实数的运算;零指数幂.【专题】计算题;实数.【分析】原式第一项利用立方根定义计算,第二项利用零指数幂法则计算,最后一项利用算术平方根定义计算即可得到结果.【解答】解:原式=﹣3+1+3=1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.优等品频率(1)a=0.94,b=0.945;(2)在图中画出这批乒乓球“优等品”频率的折线统计图;(3)这批乒乓球“优等品”的概率的估计值是0.95.【考点】利用频率估计概率;频数(率)分布折线图.【分析】(1)利用频率的定义计算;(2)先描出各点,然后折线连结;(3)根据频率估计概率,频率都在0.95左右波动,所以可以估计这批乒乓球“优等品”概率的估计值是0.95.【解答】解:(1)a==0.94,b==0.945;(2)如图,(3)这批乒乓球“优等品”概率的估计值是0.95.故答案为0.94,0.945;0.95.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.也考查了频率分布折线图.19.为了解某种电动汽车的性能,对这种电动汽车进行了抽检,将一次充电后行驶的里程数分为A,B,C,D四个等级,其中相应等级的里程依次为200千米,210千米,220千米,230千米,获得如下不完整的统计图.根据以上信息,解答下列问题:(1)补全条形统计图;(2)扇形统计图中D等级对应的扇形的圆心角是多少度?(3)如果该厂年生产5000辆这种电动汽车,估计能达到D等级的车辆有多少台?【考点】条形统计图;用样本估计总体;扇形统计图.【专题】数形结合.【分析】(1)先利用B等级的数量和它所占的百分比可计算出抽检的电动汽车的总数,然后计算出A等级电动汽车的数量,再补全条形统计图;(2)用D等级所占的百分比乘以360°可得D等级对应的扇形的圆心角;(3)利用样本估计总体,用样本中D等级所占的百分比乘以5000即可.【解答】解:(1)抽检的电动汽车的总数为30÷30%=100(辆),A等级电动汽车的数量为100﹣30﹣40﹣20=10(辆),条形统计图为:(2)20÷100×360°=72°,答:扇形统计图中D等级对应的扇形的圆心角是72°;(3)20÷100×5000=1000,答:估计能达到D等级的车辆有1000台.【点评】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了样本估计总体.20.已知:如图,在△ABC中,AB=AC,点D,E在边BC上,且BD=CE.求证:∠ADE=∠AED.【考点】全等三角形的判定与性质;等腰三角形的性质.【专题】证明题.【分析】根据等腰三角形等边对等角的性质可以得到∠B=∠C,然后证明△ABD和△ACE全等,根据全等三角形对应边相等有AD=AE,再根据等边对等角的性质即可证明.【解答】证明:法一:∵AB=AC,∴∠B=∠C(等边对等角),在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴AD=AE(全等三角形对应边相等),∴∠ADE=∠AED(等边对等角).法二:过点A作AM⊥BC于M,∵AB=AC,∴BM=CM,∵BD=CE,∴DM=EM,∴AD=AE,∴∠ADE=∠AED(等边对等角).【点评】本题考查了全等三角形的判定与性质以及等腰三角形的性质,找出已知边的夹角相等是证明三角形全等的关键,也是本题的突破点.21.如图,平面直角坐标系中,一次函数y=﹣2x+1的图象与y轴交于点A.(1)若点A关于x轴的对称点B在一次函数y=x+b的图象上,求b的值,并在同一坐标系中画出该一次函数的图象;(2)求这两个一次函数的图象与y轴围成的三角形的面积.【考点】一次函数图象上点的坐标特征;一次函数的图象.【分析】(1)先求出A点坐标,再根据关于x轴对称的点的坐标特点得出B点坐标,代入一次函数y=x+b求出b的值即可得出其解析式,画出该函数图象即可;(2)设两个一次函数图象的交点为点C,联立两函数的解析式得出C点坐标,利用三角形的面积公式即可得出结论.【解答】解:(1)∵把x=0代入y=﹣2x+1,得y=1.∴点A坐标为(0,1),∴点B坐标为(0,﹣1).∵点B在一次函数y=x+b的图象上,∴﹣1=×0+b,∴b=﹣1.(2)设两个一次函数图象的交点为点C.∵,解得,∴点C坐标为(,﹣).∴S△ABC=×2×=.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.22.如图,Rt△ABC中,AB=AC,∠BAC=90°,点O是BC的中点,如果点M、N分别在线段AB、AC上移动,并在移动过程中始终保持AN=BM.(1)求证:△ANO≌△BMO;(2)求证:OM⊥ON.【考点】全等三角形的判定与性质.【专题】证明题.【分析】(1)根据SAS证明△AON≌△BOM即可;(2)根据全等三角形的性质和垂直的定义证明即可.【解答】证明:(1)∵AB=AC,∠BAC=90°,O为BC的中点,∴OA⊥BC,OA=OB=OC,∴∠NAO=∠B=45°,在△AON与△BOM中,,∴△AON≌△BOM;(2)∵△AON≌△BOM,∴∠NOA=∠MOB,∵AO⊥BC,∴∠AOB=90°,即∠MOB+∠AOM=90°.∴∠NOM=∠NOA+∠AOM=∠MOB+∠AOM=90°,∴OM⊥ON.【点评】本题考查了全等三角形的判定和性质;熟练掌握全等三角形的判定方法是解决问题的关键.23.如图,Rt△ABC中,∠ACB=90°.(1)作∠BAC的平分线,交BC于点D;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,若BD=5,CD=3,求AC的长.【考点】作图—基本作图;全等三角形的判定与性质.【分析】(1)首先以A为圆心,小于AC长为半径画弧,交AC、AB于H、F,再分别以H、F为圆心,大于HF长为半径画弧,两弧交于点M,再画射线AM交CB于D;(2)过点D作DE⊥AB,垂足为E,首先证明△ACD≌△AED可得AC=AE,CD=DE=3,在Rt△BDE 中,由勾股定理得:DE2+BE2=BD2,进而可得BE长,然后再在Rt△ABC中,设AC=x,则AB=AE+BE=x+4,利用勾股定理可得x2+82=(x+4)2,再解即可.【解答】解:(1)如图:(2)过点D作DE⊥AB,垂足为E.则∠AED=∠BED=90°.∵AD平分∠BAC,∴∠CAD=∠EAD.在△ACD和△AED中,,∴△ACD≌△AED(AAS).∴AC=AE,CD=DE=3.在Rt△BDE中,由勾股定理得:DE2+BE2=BD2.∴BE2=BD2﹣DE2=52﹣32=16.∴BE=4.在Rt△ABC中,设AC=x,则AB=AE+BE=x+4.由勾股定理得:AC2+BC2=AB2,∴x2+82=(x+4)2.解得:x=6,即AC=6.【点评】此题主要考查了基本作图,以及勾股定理的应用,全等三角形的判定和性质,关键是得到AC=AE,CD=DE,掌握直角三角形中,两直角边的平方和等于斜边的平方.24.如图①所示,某乘客乘高速列车从甲地经过乙地到丙地,假设列车匀速行驶.如图②表示列车离乙地路程y(千米)与列车从甲出发后行驶时间x(小时)之间的函数关系图象.(1)甲、丙两地间的路程为1050千米;(2)求高速列车离乙地的路程y与行驶时间x之间的函数关系式,并写出x的取值范围;(3)当行驶时间x在什么范围时,高速列车离乙地的路程不超过100千米.【考点】一次函数的应用;一元一次不等式的应用;待定系数法求一次函数解析式.【专题】综合题;函数思想;一元一次不等式(组)及应用;一次函数及其应用.【分析】(1)由图可知,甲地到乙地距离900km,乙地与丙地距离150km,进而得到甲、丙间的距离;(2)先求出列车到达丙地的时间,然后用待定系数法分别求出从甲到乙、从乙到丙时,y与x的函数关系式;(3)分两种情况:①未到乙地时,离乙地的路程不超过100千米;②已过乙地,离乙地的路程不超过100千米;分别列出不等式求出x的范围即可.【解答】解:(1)由函数图象可知,当x=0时y=900,即刚出发时,甲与乙的距离为900千米,当x=3时y=0,表示3小时后列车到达乙地,故列车速度为:900÷3=300千米/小时,∵150÷300=0.5小时,∴0.5小时后列车到达丙地,乙与丙间的距离为150千米,故甲、丙两地间的距离为:900+150=1050千米;(2)当0≤x≤3时,设函数关系式为:y=k1x+b1,将(0,900),(3,0)代入得:,解得:,∴y=﹣300x+900;当3≤x≤3.5时,设函数关系式为:y=k2x+b2,将(3,0),(3.5,150)代入得:,解得:,∴y=300x﹣900;综上,当0≤x≤3时,y=﹣300x+900;当3≤x≤3.5时,y=300x﹣900;(3)①当列车从甲到乙地的路程不超过100千米时,即当0≤x≤3时,有:﹣300x+900≤100,解得:≤x≤3;②当列车从乙行驶到丙,到乙地的路程不超过100千米时,即当3≤x≤3.5时,有:300x﹣900≤100,解得:3≤x≤;综上,当≤x≤时,高速列车离乙地的路程不超过100千米.【点评】本题主要考查一次函数的综合应用,结合题意读懂图象是前提,待定系数法求函数解析式是关键.25.已知,点M、N分别是正方形ABCD的边CB、CD的延长线上的点,连接AM、AN、MN,∠MAN=135°.(友情提醒:正方形的四条边都相等,即AB=BC=CD=DA;四个内角都是90°,即∠ABC=∠BCD=∠CDA=∠DAB=90°)(1)如图①,若BM=DN,求证:MN=BM+DN.(2)如图②,若BM≠DN,试判断(1)中的结论是否仍成立?若成立,请给予证明;若不成立,请说明理由.【考点】全等三角形的判定与性质;正方形的性质.【分析】(1)作AE⊥MN,垂足为E.证明△ADN≌△ABM.得到AN=AM,∠NAD=∠MAB.再证明△ADN≌△AEN.得到DN=EN,即可解答.(2)利用已知条件证明△ABP≌△ADN,得到AP=AN,∠BAP=∠DAN.再证明∠MAN=∠MAP.从而证明△ANM≌△APM,得到MN=MP,由MP=BM+BP=BM+DN,即可得到MN=BM+DN.【解答】解:(1)如图①,作AE⊥MN,垂足为E.∵四边形ABCD是正方形,∴AD=AB,∠ADC=∠ABC=90°,∴∠ADN=∠ABM=90°.在△ADN与△ABM中,,∴△ADN≌△ABM.∴AN=AM,∠NAD=∠MAB.∵∠MAN=135°,∠BAD=90°,∴∠NAD=∠MAB=(360°﹣135°﹣90°)=67.5°.∴∠AND=∠AMB=22.5°,∵AN=AM,∠MAN=135°,AE⊥MN,∴MN=2NE,∠AMN=∠ANM=22.5°.在△ADN与△AEN中,∵,∴△ADN≌△AEN.∴DN=EN.∴MN=2EN=2DN=BM+DN.(2)如图②,若BM≠DN,①中的结论仍成立,理由如下:延长BC到点P,使BP=DN,连结AP.∵四边形ABCD是正方形,∴AB=AD,∠ABC=∠ADC=∠BAD=90°.∴∠ADN=90°.在△ABP与△ADN中,∵,∴△ABP≌△ADN.∴AP=AN,∠BAP=∠DAN.∵∠MAN=135°,∴∠MAP=∠MAB+∠BAP=∠MAB+∠DAN=360°﹣∠MAN﹣∠BAD=360°﹣135°﹣90°=135°.∴∠MAN=∠MAP.在△ANM与△APM中,∵,∴△ANM≌△APM.∴MN=MP.∵MP=BM+BP=BM+DN,∴MN=BM+DN.【点评】本题考查了全等三角形的性质定理与判定定理,解决本题的关键是证明三角形全等.。
新苏科版2017-2018学年八年级(上)期末数学质量调研试卷
2017-2018学年八年级(上)期末数学质量调研试卷一、选择题(每题3分,共24分,每题中只有一个正确选项)1.下列奥运会会徽,是轴对称图形的是()A.B.C.D.2.下列A、B、C、D四组图形中,是全等图形的一组是()A.B.C.D.3.下列各组数中,能构成直角三角形的是()A.1,B.6,8,10C.4,5,9D.5,12,184.下列、0、0.565656…、、﹣0.010010001…(每两个1之间增加1个0)各数中,无理数的个数为()A.1B.2C.3D.45.由四舍五入得到的近似数8.01×104,精确到()A.10 000B.100C.0.01D.0.000 16.在平面直角坐标系中,点P(﹣2,﹣3)向右移动3个单位长度后的坐标是()A.(﹣5,﹣3)B.(1,﹣3)C.(1,0)D.(﹣2,0)7.已知等腰三角形的两边长为4,5,则它的周长为()A.13B.14C.15D.13或148.已知一次函数y=(m﹣1)x的图象上两点A(x1,y1),B(x2,y2),当x1>x2时,有y1<y2,那么m的取值范围是()A.m>0B.m<0C.m>1D.m<1二、填空题(本大题共10小题,每小题4分,共40分)9.点(2,3)在哪个象限.10.4是的算术平方根.11.小刚家位于某住宅楼A座16层,记为:A16,按这种方法,小红家住B座10层,可记为.12.点P(﹣4,2)关于x轴对称的点Q的坐标.13.如图是一个围棋棋盘(局部),把这个围棋棋盘放置在一个平面直角坐标系中,白棋①的坐标是(﹣2,﹣1),白棋③的坐标是(﹣1,﹣3),则黑棋②的坐标是.14.当直线y=kx+b与直线y=2x﹣2平行,且经过点(3,2)时,则直线y=kx+b为.15.如图,已知AB=AC,用“ASA”定理证明△ABD≌△ACE,还需添加条件.16.如图矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D′落在∠ABC的角平分线上时,DE的长为.17.如图,每个小正方形的边长都为1,则△ABC的三边长a、b、c的大小关系是.18.已知如图,在平面直角坐标系中,x轴上的动点P(x,0)到定点A(0,2)、B(3,1)的距离分别为PA和PB,求PA+PB的最小值为.三、解答题(本大题共9小题,共86分.解答时应写出文字说明、证明过程或演算步骤) 19.(8分)求下列各式中x的值.(1)x2=3(2)x3=﹣6420.(6分)在数轴上画出表示的点.21.(8分)已知如图:AB∥CD,AB=CD,BF=CE,点B、F、E、C在一条直线上,求证:(1)△ABE≌△DCF;(2)AE∥FD.22.(8分)已知:如图,锐角△ABC的两条高BD、CE相交于点O,且OB=OC.(1)求证:△ABC是等腰三角形;(2)判断点O是否在∠BAC的角平分线上,并说明理由.23.(8分)从旗杆的顶端系一条绳子,垂到地面还多2米,小敏拉起绳子下端绷紧,刚好接触地面,发现绳子下端距离旗杆底部8米,小敏马上计算出旗杆的高度,你知道她是如何解的吗?24.(10分)(1)请在所给的平面直角坐标系中画出一次函数y1=x﹣1和y2=﹣2x+5画出函数的图象;(2)根据图象直接写出的解为;(3)利用图象求两条直线与x轴所围成图形的面积.25.(10分)甲汽车出租公司按每100千米150元收取租车费;乙汽车出租公司按每100千米50元收取租车费,另加管理费800元设甲家收取租车费y1元、乙家收取的租车费y2元.(1)分别求出y1元、y2元与所使用的里程x千米之间的函数关系式;(2)判断x在什么范围内,乙家收取的租车费y2元较甲家y元较少.26.(14分)已知一辆快车与一辆慢车沿着相同路线从甲地到乙地,同起点同方向,所行路程与所用的时间的函数图象如图所示:y表示离开出发点的距离.(单位:千米)(1)快车比慢车迟出发小时,早到小时;(2)求两车的速度;(3)求甲乙两地的距离;(4)求图中图中直线AB的解析式,并说出点C表示的实际意义.27.(14分)活动一:已知如图1,AB⊥AD,DE⊥AD,BC⊥CE,且AB=CD.求证:△ABC≌△DCE.活动二:动手操作,将两个斜边长相等的直角三角形纸片按图2放置,其中∠ACB=∠CED=90°,∠A=45°,∠D=30°.把△DCE绕点C按顺时针方向旋转15°得到△MCN.如图3,连接MB,找出图中的全等三角形,并说明理由;活动三:已知如图,点C坐标为(0,2),B为x轴上一点,△ABC是以BC为腰的等腰直角三角形,∠BCA=90°,当B点从原点出发沿x轴正半轴运动时,在图中画出A点运动路线.并请说明理由.参考答案CCBBB BDD9.第一象限.10.16.11.B10.12.(﹣4,﹣2).13.(1,﹣2).14.解:∵直线y=kx+b与y=2x﹣2平行,∴k=2,把(3,2)代入y=2x+b,得6+b=2,解得b=﹣4,∴y=kx+b的表达式是y=2x﹣4.答案为:y=2x﹣4.15.解:∵在△ABD和△ACE中,有AB=AC,且∠A=∠A,∴当利用ASA来证明时,还需要添加∠B=∠C,答案为:∠B=∠C.16.解:如图,连接BD′,过D′作MN⊥AB,交AB于点M,CD于点N,作D′P⊥BC 交BC于点P∵点D的对应点D′落在∠ABC的角平分线上,∴MD′=PD′,设MD′=x,则PD′=BM=x,∴AM=AB﹣BM=7﹣x,又折叠图形可得AD=AD′=5,∴x2+(7﹣x)2=25,解得x=3或4,即MD′=3或4.在Rt△END′中,设ED′=a,①当MD′=3时,AM=7﹣3=4,D′N=5﹣3=2,EN=4﹣a,∴a2=22+(4﹣a)2,解得a=,即DE=,②当MD′=4时,AM=7﹣4=3,D′N=5﹣4=1,EN=3﹣a,∴a2=12+(3﹣a)2,解得a=,即DE=.答案为:或.17.解:在图中,每个小正方形的边长为1,则a==,c=4,b==5,c2=16,a2=17,b2=25,c2<a2<b2,故c<a<b,答案为c<a<b.18.3.19.解:(1)x2=3,开方得:x=±;(2)x3=﹣64,开立方得:x=﹣4.20.(6分)在数轴上画出表示的点.解:如图所示:21.证明:(1)∵AB∥CD,∴∠B=∠C,∵BF=CE,∴BF﹣EF=CE﹣EF,即BE=CF,在△ABE和△DCF中,∴△ABE≌△DCF;(2)由(1)得△ABE≌△DCF,∴∠AEB=∠DFE,∴AE∥DF.22.1)证明:∵OB=OC,∴∠OBC=∠OCB,∵锐角△ABC的两条高BD、CE相交于点O,∴∠BEC=∠CDB=90°,∵∠BEC+∠BCE+∠ABC=∠CDB+∠DBC+∠ACB=180°,∴180°﹣∠BEC﹣∠BCE=180°﹣∠CDB﹣∠CBD,∴∠ABC=∠ACB,∴AB=AC,∴△ABC是等腰三角形;(2)解:点O在∠BAC的角平分线上.理由:连接AO并延长交BC于F,在△AOB和△AOC中,∴△AOB≌△AOC(SSS).∴∠BAF=∠CAF,∴点O在∠BAC的角平分线上.23.解:设旗杆高度为AC=h米,则绳子长为AB=h+2米,BC=8米,根据勾股定理有:h2+82=(h+2)2,解得h=15米.24.解:(1)如图,(2)的解为;故答案为;(3)解方程﹣2x+5=0得x=,则直线y=﹣2x+5与x轴的交点坐标为(,0),解方程x﹣1=0得x=1,则直线y=x﹣1与x轴的交点坐标为(1,0),所以两条直线与x轴所围成图形的面积=×(﹣1)×1=.25.解:(1)y1=1.5x,y2=0.5x+800;(2)当y2<y1时,乙家收取的租车费y2元较甲家y1元较少;1.5x<0.5x+800解得x<800;答:当汽车行驶路程为小于800千米时,乙家收取的租车费y2元较甲家y元较少.26.解:(1)慢车比快车早出发2小时,快车比慢车早4小时到达;故答案为:2;4;(2)设快车追上慢车时,慢车行驶了x小时,则慢车的速度可以表示为千米/小时,快车的速度为千米/小时,根据两车行驶的路程相等,可以列出方程,解得x=6(小时).所以慢车的速度为千米/小时,快车的速度为千米/小时;(3)两地间的路程为70×18=1260千米.(4)设直线AB的解析式为:y=kx+b,可得:,解得:,所以直线AB的解析式为:y=105x﹣210,点C表示的实际意义是两车在420千米处相遇.27.活动一:证明:如图1中,∵AB⊥AD,DE⊥AD,BC⊥CE,∴∠A=∠D=∠BCE=90°,∴∠B+∠ACB=90°,∠ACB+∠ECD=90°,∴∠B=∠ECD,∵AB=CD,∴△ABC≌△DCE.活动二:解:结论:△ACB≌△CBM.理由:∵∠CNM=90°,∠CMN=30°,∴∠MCN=60°,∵∠BCN=15°,∴∠MCB=45°,∵∠A=45°,∴∠A=∠BCM,∵AB=CM,AC=CB,∴△ACB≌△CBM(ASA).活动三:解:作AH⊥y轴于H.∵C(0,2),∴OC=2,∵∠AHC=∠COB=∠ACB=90°,∴∠HAC+∠ACH=90°,∠ACH+∠BCO=90°,∴∠HAC=∠BCO,∵AC=CB,∴△ACH≌△CBO,∴AH=OC=2,∴点A到y的距离为定值,∴点A在平行于y轴的射线上运动,射线与y轴之间的距离为2(如图中虚线);。
苏科版江苏省泰州市八年级上学期期末数学试卷 (解析版)
苏科版江苏省泰州市八年级上学期期末数学试卷 (解析版) 一、选择题 1.在平面直角坐标系中,下列各点位于第四象限的点是( )A .(2,3)-B .()4,5-C .(1,0)D .(8,1)--2.如图,数轴上的点P 表示的数可能是( )A .3B .21+C .71-D .51+ 3.下列四组数,可作为直角三角形三边长的是 A .456cm cm cm 、、B .123cm cm cm 、、C .234cm cm cm 、、D .123cm cm cm 、、 4.如图,ABC ∆中,90ACB ∠=︒,4AC =,3BC =,点E 是AB 中点,将CAE ∆沿着直线CE 翻折,得到CDE ∆,连接AD ,则线段AD 的长等于( )A .4B .165C .245D .5 5.如图,在ABC ∆中,31C ∠=︒,ABC ∠的平分线BD 交AC 于点D ,如果DE 垂直平分BC ,那么A ∠的度数为( )A .31︒B .62︒C .87︒D .93︒ 6.下列无理数中,在﹣1与2之间的是( )A .3B .2C 2D 57.3329a b a b a b a(a >0,b >0)的结果是( ) A 53ab B 23ab C 179ab D 89ab 8.在直角坐标系中,函数y kx =与12y x k =-的图像大数是( )A .B .C .D .9.如图,将边长为1的正方形OABC 沿x 轴正方向连续翻转2020次,点A 依次落在点1A 、2A 、3A 、4A …2020A 的位置上,则点2020A 的坐标为( )A .2019,0()B .2019,1()C .2020,0()D .2020,1()10.下列交通标识中,是轴对称图形的是( )A .B .C .D .11.一次函数y=kx ﹣1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( )A .(﹣5,3)B .(1,﹣3)C .(2,2)D .(5,﹣1)12.如果0a b -<,且0ab <,那么点(),a b 在( )A .第一象限B .第二象限C .第三象限D .第四象限 13.在平面直角坐标系中,点M (﹣3,2)关于y 轴对称的点的坐标为( )A .(﹣3,﹣2)B .(﹣2,﹣3)C .(3,2)D .(3,﹣2) 14.工人师傅常用角尺平分一个任意角做法如下:如图所示,在∠AOB 的两边OA ,OB 上分别取OM =ON ,移动角尺,使角尺两边相同的刻度分别与M ,N 重合,过角尺顶点C 的射线OC 即是∠AOB 的平分线画法中用到三角形全等的判定方法是( )A .SSSB .SASC .ASAD .HL 15.正比例函数y =kx (k ≠0)的函数值y 随着x 增大而减小,则一次函数y =x +k 的图象大致是( ) A . B . C .D .二、填空题16.17.85精确到十分位是_____.17.如图,一艘轮船由海平面上的A 地出发向南偏西45º的方向行驶50海里到达B 地,再由B 地向北偏西15º的方向行驶50海里到达C 地,则A 、C 两地相距____海里.18.4的算术平方根是 .19.若关于x 的分式方程122x x a x x--=--有增根,则a 的值_____________. 20.点A (2,-3)关于x 轴对称的点的坐标是______. 21.如图,点E ,F 在AC 上,AD=BC ,DF=BE ,要使△ADF ≌△CBE ,还需要添加的一个条件是________(添加一个即可)22.已知x =a 时,多项式x 2+6x+k 2的值为﹣9,则x =﹣a 时,该多项式的值为_____.23.将一次函数y =2x +2的图象向下平移2个单位长度,得到相应的函数表达式为____.24.函数y =-3x +2的图像上存在一点P ,点P 到x 轴的距离等于3,则点P 的坐标为________.25.如图,在ABC ∆中,AC AD BD ==,28B ∠=,则CAD ∠的度数为__________.三、解答题26.(1)计算:3168--;(2)求x 的值:2(2)90x .27.某学校是乒乓球体育传统项目校,为进一步推动该项目的发展.学校准备到体育用品店购买甲、乙两种型号乒乓球若干个,已知3个甲种乒乓球和5个乙种乒乓球共需50元,2个甲种乒乓球和3个乙种乒乓球共需31元.(1)求1个甲种乒乓球和1个乙种乒乓球的售价各是多少元?(2)学校准备购买这两种型号的乒乓球共200个,要求甲种乒乓球的数量不超过乙种乒乓球的数量的3倍,请设计出最省钱的购买方案,并说明理由.28.如图所示是甲乙两个工程队完成某项工程的进度图,首先是甲独做了10天,然后两队合做,完成剩下的工程.(1)甲队单独完成这项工程,需要多少天?(2)求乙队单独完成这项工程需要的天数;(3)实际完成的时间比甲独做所需的时间提前多少天?29.如图,在平面直角坐标系中,已知A (4,0)、B (0,3).(1)求AB的长为____.(2)在坐标轴上是否存在点P,使△ABP是等腰三角形?若存在,请直接写出点P坐标;若不存在,请说明理由.30.一架梯子AB长25米,如图斜靠在一面墙上,梯子底端B离墙7米.(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米,那么梯子底部在水平方向滑动了4米吗?为什么?31.计算:(10156)3【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】根据平面直角坐标系中各象限内点的坐标特征对各选项分析判断即可得解.【详解】解:A.(2,-3)在第四象限,故本选项正确;B.(-4,5)在第二象限,故本选项错误;C.(1,0)在x轴正半轴上,故本选项错误;D.(-8,-1)在第三象限,故本选项错误.故选A.【点睛】本题考查了平面直角坐标系中象限内点的坐标特征,解决本题的关键是熟练掌握每个象限的坐标特征.2.B解析:B【解析】【分析】先换算出每项的值,全部保留三位小数,然后观察数轴上P点的位置,逐项判断即可开.【详解】3≈1.732,2≈1.414,5≈2.236,7≈2.646,所以A项≈1.732,B项≈2.414,C项≈1.646,D项≈3.236观察数轴上P点的位置,B项正确.故选B.【点睛】本题主要考查实数与数轴上的点的对应关系,掌握实数与数轴之间一一对应的关系,估算出每个二次根式的值是解题的关键.3.D解析:D【解析】【分析】根据勾股定理的逆定理对四个选项进行逐一判断即可.【详解】A、∵52+42≠62,∴此组数据不能构成直角三角形,故本选项错误;B、12+22≠32,∴此组数据不能构成直角三角形,故本选项错误;C、∵22+32≠42,∴此组数据不能构成直角三角形,故本选项错误;D、∵12+(2)2=(3)2,∴此组数据能构成直角三角形,故本选项正确.故选:D.【点睛】本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.4.C解析:C【解析】【分析】延长CE交AD于F,连接BD,先判定△ABC∽△CAF,即可得到CF=6.4,EF=CF-CE=1.4,再依据EF为△ABD的中位线,即可得出BD=2EF=2.8,最后根据∠ADB=90°,即可运用勾股定理求得AD的长.【详解】解:如图,延长CE交AD于F,连接BD,∵∠ACB=90°,AC=4,BC=3,∴AB=5,∵∠ACB=90°,CE为中线,∴CE=AE=BE=12.5 2AB=,∴∠ACF=∠BAC,又∵∠AFC=∠BCA=90°,∴△ABC∽△CAF,∴CF ACAC BA=,即445CF=,∴CF=3.2,∴EF=CF-CE=0.7,由折叠可得,AC=DC,AE=DE,∴CE垂直平分AD,又∵E为AB的中点,∴EF为△ABD的中位线,∴BD=2EF=1.4,∵AE=BE=DE,∴∠DAE=∠ADE,∠BDE=∠DBE,又∵∠DAE+∠ADE+∠BDE+∠DBE=180°,∴∠ADB=∠ADE+∠BDE=90°,∴Rt△ABD中,245==,故选:C.【点睛】本题考查了翻折变换、相似三角形的判定和性质、勾股定理、直角三角形斜边中线的性质等知识的综合运用,解题的关键是作辅助线构造相似三角形,灵活运用所学知识解决问题.5.C解析:C【解析】【分析】根据垂直平分线的性质,可以得到∠C=∠ABC,再根据角平分线的性质,得到∠ABC的度数,最后利用三角形内角和即可解决.【详解】∵DE垂直平分BC,DB DC∴=,31C DBC︒∴∠=∠=,∵BD平分ABC∠,262ABC DBC ︒∴∠=∠=,180A ABC C ︒∴∠+∠+∠=,180180623187A ABC C ︒︒︒︒︒∴∠=-∠-∠=--=故选C【点睛】本题考查了垂直平分线的性质,角平分线的性质和三角形内角和,解决本题的关键是熟练掌握三者性质,正确理清各角之间的关系.6.C解析:C【解析】试题分析:A 1,故错误;B <﹣1,故错误;C .﹣1<2,故正确;2,故错误;故选C .【考点】估算无理数的大小.7.A解析:A【解析】【分析】23a b a ab a ⨯⨯即可求解.【详解】解:∵a >0,b >0,23a b a ab a ⨯⨯=故选:A .【点睛】本题考查二次根式的性质与化简;能够根据二次根式的性质,将所求式子进行正确的化简是解题的关键.8.B解析:B【解析】【分析】根据四个选项图像可以判断y kx = 过原点且k <0,12y x k =- ,-k >0 即可判断. 【详解】解:A .y kx = 与12y x k =-图像增减相反,得到k <0,所以12y x k =- 与y 轴交点大于0故错误;B .y kx = 与12y x k =-图像增减相反,得到k <0,所以12y x k =- 与y 轴交点大于0 故正确;C .y kx = 与12y x k =-图像增减相反,12y x k =-为递增一次函数且不过原点,故错误;D .y kx =过原点,而图中两条直线都不过原点,故错误.故选 B【点睛】此题主要考查了一次函数图像的性质,熟记k >0,y 随x 的增大而增大;k <0,y 随x 的增大而减小;常数项为0,函数过原点.9.A解析:A【解析】【分析】根据题意分别求出1A 、2A 、3A 、4A …横坐标,再总结出规律即可得出.【详解】解:根据规律1A (0,1)、2A (2,1)、3A (3,0)、4A (3,0),5A (4,1)、6A (6,1)、7A (7,0)、8A (7,0) …每4个一个循环,可以判断2020A 在505次循环后与4A 一致,即与2019A 相等,坐标应该是(2019,0)故选 A【点睛】此题主要考查了通过图形观察规律的能力,并根据规律进行简单计算的能力.10.B解析:B【解析】某个图形沿着一条直线折叠,直线两旁的部分能够完全重合的图形是轴对称图形,以上图形中,B 是轴对称图形,故选B11.C解析:C【解析】【分析】根据函数图象的性质判断系数k >0,则该函数图象经过第一、三象限,由函数图象与y 轴交于负半轴,则该函数图象经过第一、三、四象限,由此得到结论.【详解】∵一次函数y=kx ﹣1的图象的y 的值随x 值的增大而增大,∴k >0,A 、把点(﹣5,3)代入y=kx ﹣1得到:k=﹣45<0,不符合题意; B 、把点(1,﹣3)代入y=kx ﹣1得到:k=﹣2<0,不符合题意; C 、把点(2,2)代入y=kx ﹣1得到:k=32>0,符合题意; D 、把点(5,﹣1)代入y=kx ﹣1得到:k=0,不符合题意,故选C . 【点睛】考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k >0是解题的关键.12.B解析:B【解析】【分析】根据0a b -<,且0ab <可确定出a 、b 的正负情况,再判断出点(),a b 的横坐标与纵坐标的正负性,然后根据各象限内点的坐标特征解答.【详解】解:∵0a b -<,且0ab <,∴a 0,0b <>∴点(),a b 在第二象限故选:B【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).13.C解析:C【解析】【分析】直接利用关于y 轴对称则纵坐标相等横坐标互为相反数进而得出答案.【详解】解:点M (﹣3,2)关于y 轴对称的点的坐标为:(3,2).故选:C .【点睛】本题考查的知识点是关于x 轴、y 轴对称的点的坐标,属于基础题目,易于掌握.14.A解析:A【解析】【分析】根据全等三角形的判定方法即可解决问题.【详解】由题意:OM=ON,CM=CN,OC=OC,∴△COM≌△CON(SSS),∴∠COM=∠CON,故选:A.【点睛】此题主要考查三角形全等判定的应用,熟练掌握,即可解题.15.A解析:A【解析】【分析】根据自正比例函数的性质得到k<0,然后根据一次函数的性质得到一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.【详解】解:∵正比例函数y=kx(k≠0)的函数值y随x的增大而减小,∴k<0,∵一次函数y=x+k的一次项系数大于0,常数项小于0,∴一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.故选A.【点睛】本题考查了一次函数图象:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).二、填空题16.9.【解析】【分析】把百分位上的数字5进行四舍五入即可.【详解】17.85精确到十分位是17.9故答案为:17.9.【点睛】本题考查了近似数和有效数字:“精确到第几位”和“有几个有效解析:9.【解析】【分析】把百分位上的数字5进行四舍五入即可.【详解】17.85精确到十分位是17.9故答案为:17.9.【点睛】本题考查了近似数和有效数字:“精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.17.50【解析】【分析】由已知可得△ABC是等边三角形,从而不难求得AC的距离.【详解】解:∵点B在点A的南偏西45°方向上,点C在点B的北偏西15°方向上,∴∠ABC=45°+15°=60解析:50【解析】【分析】由已知可得△ABC是等边三角形,从而不难求得AC的距离.【详解】解:∵点B在点A的南偏西45°方向上,点C在点B的北偏西15°方向上,∴∠ABC=45°+15°=60°∵AB=BC=50,∴△ABC是等边三角形,∴AC=50;故答案为:50.【点睛】本题主要考查了解直角三角形中的方向角问题,能够证明△ABC是等边三角形是解题的关键.18.【解析】试题分析:∵,∴4算术平方根为2.故答案为2.考点:算术平方根.解析:【解析】试题分析:∵224,∴4算术平方根为2.故答案为2.考点:算术平方根.19.4【解析】方程第二个分母提取-1变形后,去分母转化为整式方程,表示出方程的解,令方程的解为2,即可求出a 的值.【详解】方程变形得:,去分母得:x+x-a=x-2,解得:x=a-解析:4【解析】【分析】方程第二个分母提取-1变形后,去分母转化为整式方程,表示出方程的解,令方程的解为2,即可求出a 的值.【详解】 方程变形得:+122x x a x x -=--, 去分母得:x+x-a=x-2,解得:x=a-2, ∵方程122x x a x x--=--有增根, ∴x=2,即a-2=2,解得:a=4,故答案为:4.【点睛】 此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.20.(2,3)【解析】【分析】根据 “关于x 轴对称的点,横坐标相同, 纵坐标互为相反数” 解答.【详解】解:点A (2,-3)关于x 轴对称的点的坐标为(2,3).故答案为:(2,3).【点睛解析:(2,3)【解析】【分析】根据 “关于x 轴对称的点,横坐标相同, 纵坐标互为相反数” 解答.解:点A(2,-3)关于x轴对称的点的坐标为(2,3).故答案为:(2,3).【点睛】本题考查了关于x轴,y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数:(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3) 关于原点对称的点, 横坐标与纵坐标都互为相反数.21.∠D=∠B【解析】【分析】要判定△ADF≌△CBE,已经有AD=BC,DF=BE,还缺少第三组对应边相等或这两边组成的夹角相等,根据全等三角形的判定方法求解即可.【详解】∵AD=BC, D解析:∠D=∠B【解析】【分析】要判定△ADF≌△CBE,已经有AD=BC,DF=BE,还缺少第三组对应边相等或这两边组成的夹角相等,根据全等三角形的判定方法求解即可.【详解】∵AD=BC, DF=BE,∴只要添加∠D=∠B,根据“SAS”即可证明△ADF≌△CBE.故答案为∠D=∠B.【点睛】本题重点考查的是全等三角形的判定方法,熟练掌握全等三角形的知识是解答的关键,应该多加练习.三角形全等的判定定理有:边边边(SSS)、边角边(SAS)、角边角(ASA)、角角边(AAS).22.27【解析】【分析】把代入多项式,得到的式子进行移项整理,得,根据平方的非负性把和求出,再代入求多项式的值.【详解】解:将代入,得:移项得:,,即,时,故答案为:27【点睛解析:27【解析】【分析】把x a =代入多项式,得到的式子进行移项整理,得22(3)a k +=-,根据平方的非负性把a 和k 求出,再代入求多项式的值.【详解】解:将x a =代入2269x x k ++=-,得:2269a a k ++=-移项得:2269a a k ++=-22(3)a k ∴+=-2(3)0a +,20k -30a ∴+=,即3a =-,0k =x a ∴=-时,222636327x x k ++=+⨯=故答案为:27【点睛】本题考查了代数式求值,平方的非负性.把a 代入多项式后进行移项整理是解题关键.23.y =2x【解析】【分析】直接利用一次函数平移规律:左右平移,x 左加右减;上下平移,b 上加下减,得出答案.【详解】解:将函数y =2x+2的图象向下平移2个单位长度后,所得图象的函数关系式为y解析:y =2x【解析】【分析】直接利用一次函数平移规律:左右平移,x 左加右减;上下平移,b 上加下减,得出答案.【详解】解:将函数y =2x +2的图象向下平移2个单位长度后,所得图象的函数关系式为y =2x +2故答案为:y=2x.【点睛】本题考查的知识点是一次函数图象与几何变换,掌握一次函数图象平移的规律“左右平移,x左加右减;上下平移,b上加下减”是解此题的关键.24.或【解析】【分析】根据点到x轴的距离等于纵坐标的长度求出点P的纵坐标,然后代入函数解析式求出x的值,即可得解.【详解】解:∵点P到x轴的距离等于3,∴点P的纵坐标的绝对值为3,解析:1,33⎛⎫⎪⎝⎭或533⎛⎫⎪⎝⎭,【解析】【分析】根据点到x轴的距离等于纵坐标的长度求出点P的纵坐标,然后代入函数解析式求出x的值,即可得解.【详解】解:∵点P到x轴的距离等于3,∴点P的纵坐标的绝对值为3,∴点P的纵坐标为3或﹣3,当y=3时,﹣3x+2=3,解得,x=﹣13;当y=﹣3时,﹣3x+2=﹣3,解得x=53;∴点P的坐标为(﹣13,3)或(53,﹣3).故答案为(﹣13,3)或(53,﹣3).【点睛】本题考查一次函数图象上点的坐标特征,利用数形结合思想解题是本题的关键,注意分类讨论.25.68°【解析】由在△ABC中,AC=AD=BD,∠B=28°,根据等腰三角形的性质,即可求得∠ADC 的度数,接着求得∠C的度数,可得结论.【详解】解:∵AD=BD,∴∠BAD=∠解析:68°【解析】【分析】由在△ABC中,AC=AD=BD,∠B=28°,根据等腰三角形的性质,即可求得∠ADC的度数,接着求得∠C的度数,可得结论.【详解】解:∵AD=BD,∴∠BAD=∠B=28°,∴∠ADC=∠B+∠BAD=28°+28°=56°,∵AD=AC,∴∠C=∠ADC=56°,∴∠CAD=180°-∠ADC-∠C=180°-56°-56°=68°,故答案为:68°.【点睛】此题考查了等腰三角形的性质与三角形外角的性质.此题难度不大,注意掌握数形结合思想的应用.三、解答题.26.(1)6;(2)x=1或x=5【解析】【分析】(1)本题涉及算术平方根、立方根2个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.(2)移项后,两边直接开平方即可得到x+2=3,x+2=﹣3,求解即可.【详解】(1)原式=4-(-2)=4+2=6;(2)x+2=±3.x+2=3,x+2=-3.x=1或x=-5.【点睛】本题考查了实数运算和直接开平方法解一元二次方程,关键是掌握算术平方根、立方根各知识点.27.(1)1个甲种乒乓球的售价是5元,乙种售价是7元;(2)当购买甲种乒乓球150只,乙种乒乓球50只时最省钱.【解析】【分析】(1)设1个甲种乒乓球的售价是x 元,1个乙种乒乓球的售价是y 元,根据题意列出二元一次方程组,解方程组即可;(2)设购买甲种乒乓球a 只,则购买乙种乒乓球()200a -只,费用为w 元,根据题意列出费用关于a 的一次函数,根据一次函数的性质解答即可.【详解】(1)设1个甲种乒乓球的售价是x 元,1个乙种乒乓球的售价是y 元,35502331x y x y +=⎧⎨+=⎩,解得,57x y =⎧⎨=⎩, 答:1个甲种乒乓球的售价是5元,乙种售价是7元;(2)设购买甲种乒乓球a 只,则购买乙种乒乓球()200a -只,费用为w 元,()5720021400w a a a =+-=-+,∵()3200a a -,∴150a ≤,∴当150a =时,w 取得最小值,此时1100w =,20050a -=,答:当购买甲种乒乓球150只,乙种乒乓球50只时最省钱.【点睛】本题考查的是列二元一次方程组、一元一次不等式解实际问题/一次函数的性质等知识,解题的关键是学会利用一次函数的性质解决最值问题.28.(1)40天;(2)60天;(3)12天 .【解析】【分析】(1)由第一段图像可知,甲队独做10天完成总工作量的0.25,则可求出甲的工作效率,再用总量1除以这个效率即可得出甲队单独完成这项工程需要的天数;(2)由第二段图像可知,甲乙6天完成总量的(0.5-0.25)即0.25,甲6天做的工作量可求,于是求出乙6天的工作量,进而求出乙的工作效率,再用总量除以这个效率即可得出乙队单独完成这项工程需要的天数;(3)因为甲队独做用40天,再求出实际完成的时间,两个数相减即可,甲乙合作完成了总量的0.75,除以他们的效率和再加上10,即是实际完成的时间,用40减这个数值即可得出结论.【详解】(1)因为甲队独做10天完成总工作量的0.25,所以甲一天做了0.25÷10=140,于是甲队单独完成这项工程需要的天数为:1÷140=40天; (2)甲乙6天完成总量的(0.5-0.25)即0.25, 则乙6天的工作量是0.25-140×6=110, 所以乙的效率是110÷6=160, 所以乙队单独完成这项工程需要的天数为1÷160=60天; (3)甲乙合作完成了总量的0.75,除以他们的效率和再加上10,即是实际完成的时间,即0.75÷(140+160)+10=18+10=28(天), 因为甲队独做需用40天,所以40-28=12天, 故实际完成的时间比甲独做所需的时间提前12天.考点:实际问题与一次函数.29.(1)5;(2)(0,8),(0,-3),(0,-2),70,6⎛⎫-⎪⎝⎭,(9,0),(-1,0),(-4,0),7,08⎛⎫⎪⎝⎭;理由见解析 【解析】【分析】(1)根据A 、B 两点坐标得出OA 、OB 的长,再根据勾股定理即可得出AB 的长(2)分三种情况,AB=AP ,AB=BP ,AP=BP ,利用等腰三角形性质和两点之间距离公式,求出点P 坐标.【详解】解:(1) ∵A (4,0)、B (0,3).∴OA=3,OB=4,5AB ∴==(2)当点P 在y 轴上时当AB=BP 时, 此时OP=3+5=8或OP=5-3=2,∴P 点坐标为(0,8)或(0,-2);当AB=AP 时,此时OP=BO=3,∴P 点坐标为;(0,-3);当AP=BP 时,设P(0,x),∴= 7:6x =-;∴P 点坐标为70,6⎛⎫- ⎪⎝⎭ 当点P 在x 轴上时当AB=AP 时, 此时OP=4+5=9或OP=5-4=1,∴P 点坐标为(9,0)或(-1,0);当AB=BP 时,此时OP=AO=4,∴P 点坐标为(-4,0);当AP=BP 时,设P(x ,0),∴2223(4)x x +=- :78x =;∴P 点坐标为7,08⎛⎫ ⎪⎝⎭综上所述:符合条件的点的坐标为:(0,8),(0,-3),(0,-2),70,6⎛⎫-⎪⎝⎭,(9,0),(-1,0),(-4,0),7,08⎛⎫ ⎪⎝⎭【点睛】本题主要考查等腰三角形性质、两点之间距离公式和勾股定理,学生只要掌握这些知识点,解决此问题就会变得轻而易举,需要注意的是,在解题过程中不要出现漏解现象.30.(1)24米;(2)梯子底部在水平方向不是滑动了4米,而是8米.【解析】【分析】(1)应用勾股定理求出AC 的高度,即可求解;(2)应用勾股定理求出B ′C 的距离即可解答.【详解】(1)如图,在Rt △ABC 中AB 2=AC 2+BC 2,得AC 2222257AB BC --米)答:这个梯子的顶端距地面有24米.(2)由A 'B '2=A 'C 2+CB '2,得B 'C 2222'''25(244)A B A C ---米),∴BB '=B 'C ﹣BC =15﹣7=8(米).答:梯子底部在水平方向不是滑动了4米,而是8米.【点睛】本题考查正确运用勾股定理,善于观察题目的信息是解题以及学好数学的关键.31.2【解析】【分析】先计算括号里面的,再计算二次根式的乘法,即可求出答案.【详解】===.解:原式(566)464233【点睛】此题主要考查了二次根式的混合运算,掌握运算法则是解题关键.。
苏科版泰州市八年级上学期期末数学试卷 (解析版)
苏科版泰州市八年级上学期期末数学试卷 (解析版)一、选择题1.4的平方根是( ) A .2B .2±C .2D .2±2.已知一次函数y=kx +3(k≠0)的图象经过点A ,且函数值y 随x 的增大而增大,则点A 的坐标可能是( ) A .(﹣2,﹣4) B .(1,2)C .(﹣2,4)D .(2,﹣1)3.若分式12xx -+的值为0,则x 的值为( ) A .1B .2-C .1-D .24.如图,在ABC ∆中,31C ∠=︒,ABC ∠的平分线BD 交AC 于点D ,如果DE 垂直平分BC ,那么A ∠的度数为( )A .31︒B .62︒C .87︒D .93︒ 5.下列四组线段中,可以构成直角三角形的是 ( )A .4,5,6B .2,3,4C .7 ,3 ,4D .1,2 ,3 6.以下列各组线段为边作三角形,不能构成直角三角形的是( ) A .1,2,5 B .3,4,5C .3,6,9D .23,7,617.如图,△ABC 中,AB =AC ,AD 是∠BAC 的平分线.已知AB =5,AD =3,则BC 的长为( )A .5B .6C .8D .108.已知二元一次方程组522x y x y -=-⎧⎨+=-⎩的解为41x y =-⎧⎨=⎩,则在同一平面直角坐标系中,两函数y =x +5与y =﹣12x ﹣1的图像的交点坐标为( ) A .(﹣4,1)B .(1,﹣4)C .(4,﹣1)D .(﹣1,4)9.如图,∠AOB=60°,OA=OB ,动点C 从点O 出发,沿射线OB 方向移动,以AC 为边在右侧作等边△ACD ,连接BD ,则BD 所在直线与OA 所在直线的位置关系是( )A .平行B .相交C .垂直D .平行、相交或垂直10.下列运算正确的是( )A .236a a a ⋅=B .235()a a -=-C .109(0)a a a a ÷=≠D .4222()()bc bc b c -÷-=-11.计算021( 3.14)()2π--+=( )A .5B .-3C .54D .14-12.如图,在放假期间,某学校对其校内的教学楼(图中的点A ),图书馆(图中的点B )和宿含楼(图中的点C )进行装修,装修工人需要放置一批装修物资,使得装修物资到点A ,点B 和点C 的距离相等,则装修物资应该放置在( )A .AC 、BC 两边高线的交点处B .在AC 、BC 两边中线的交点处 C .在A ∠、B 两内角平分线的交点处D .在AC 、BC 两边垂直平分线的交点处 13.4 的算术平方根是( ) A .16 B .2 C .-2 D .2± 14.等腰三角形的底边长为6,底边上的中线长为4,它的腰长为( ) A .1 B .5 C .7 D .49 15.一次函数y =﹣2x+3的图象不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限二、填空题16.若△ABC 的三边长分别为a ,b ,c .下列条件:①∠A =∠B ﹣∠C ;②a 2=(b +c )(b ﹣c );③∠A :∠B :∠C =3:4:5;④a :b :c =5:12:13.其中能判断△ABC 是直角三角形的是_____(填序号).17.地球上七大洲的总面积约为149480000km 2(精确到10000000 km 2),用四舍五入法按要求取近似值,并用科学记数法为_________ km 2.18.根据如图所示的计算程序,小明输入的x 的值为36,则输出的y 的值为__________.19.一次函数32y x =-+的图象一定不经过第______象限. 20.等腰三角形的两边长分别为5cm 和2cm ,则它的周长为_____.21.当直线()223y k x k =-+-经过第二、三、四象限时,则k 的取值范围是_____. 22.如图,在平面直角坐标系xOy 中,点A 的坐标为(1,3),点B 的坐标为(2,-1),点C 在同一坐标平面中,且△ABC 是以AB 为底的等腰三角形,若点C 的坐标是(x ,y ),则x 、y 之间的关系为y =______(用含有x 的代数式表示).23.将矩形纸片ABCD 按如图所示的方式折叠,恰好得到菱形AECF .若AB=6,则菱形AECF 的面积为__________.24.等腰三角形的两边长分别为5cm 和2cm ,则它的周长为_____.25.如图,平面直角坐标系中,长方形OABC ,点A ,C 分别在y 轴,x 轴的正半轴上,OA =6,OC =3.∠DOE =45°,OD ,OE 分别交BC ,AB 于点D ,E ,且CD =2,则点E 坐标为_____.三、解答题26.如图,Rt ABC ∆中,90ACB ∠=︒.(1)尺规作图(保留作图痕迹,不写作法与证明): ①作B 的平分线BD 交边AC 于点D ; ②过点D 作DE AB ⊥于点E ;(2)在(1)所画图中,若3CD =,8AC =,则AB 长为________________.27.如图,在4×3正方形网格中,阴影部分是由5个小正方形组成的一个图形,请你用四种方法分别在如图方格内再填涂2个小正方形,使这7个小正方形组成的图形是轴对称图形.28.小明骑自行车从甲地到乙地,图中的折线表示小明行驶的路程()km s 与所用时间()h t 之间的函数关系.试根据函数图像解答下列问题:(1)小明在途中停留了____h ,小明在停留之前的速度为____km/h ; (2)求线段BC 的函数表达式;(3)小明出发1小时后,小华也从甲地沿相同路径匀速向乙地骑行,6t =h 时,两人同时到达乙地,求t 为何值时,两人在途中相遇.29.如图,矩形ABCD 中,6AB =,8AD =,点P 从点A 出发,以每秒一个单位的速度沿A B C →→的方向运动;同时点Q 从点B 出发,以每秒2个单位的速度沿B C D →→的方向运动,当其中一点到达终点后两点都停止运动.设两点运动的时间为t 秒.(1)当t =______时,两点停止运动; (2)当t 为何值时,BPQ ∆是等腰三角形? 30.求下列各式中x 的值: (1)4x 2﹣12=0 (2)48﹣3(x ﹣2)2=031.在△ABC 中,AB 、AC 边的垂直平分线分别交BC 边于点M 、N(1)如图①,若∠BAC =110°,则∠MAN = °,若△AMN 的周长为9,则BC = (2)如图②,若∠BAC =135°,求证:BM 2+CN 2=MN 2;(3)如图③,∠ABC 的平分线BP 和AC 边的垂直平分线相交于点P ,过点P 作PH 垂直BA 的延长线于点H .若AB =5,CB =12,求AH 的长【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】根据平方根的定义直接作答. 【详解】解:4的平方根是2±【点睛】本题考查平方根的定义,掌握一个正数有两个平方根,它们互为相反数是本题的解题关键. 2.A解析:A【解析】【分析】先根据一次函数的增减性判断出k的符号,再对各选项进行逐一分析即可.【详解】∵一次函数y=kx+2(k≠0)的函数值y随x的增大而增大,∴k>0.A. ∵当x=-2,y=-4时,-2k+3=-4,解得k=3.5>0,∴此点符合题意,故本选项正确;B. ∵当x=1,y=2时, k+3=2,解得k=-1<0,∴此点不符合题意,故本选项错误;C. ∵当x=-2,y=4时,-2k+3=4,解得k=−0.5<0,∴此点不符合题意,故本选项错误;D. ∵当x=2,y=−1时,2k+3=−1,解得k=-2<0,∴此点不符合题意,故本选项错误.故答案选A..【点睛】本题考查的知识点是一次函数图像上点的坐标特征,解题的关键是熟练的掌握一次函数图像上点的坐标特征.3.A解析:A【解析】【分析】根据分式的值为0,分子等于0,分母不等于0列式计算即可得解.【详解】根据题意得,1-x=0且x+2≠0,解得x=1且x≠-2,所以x=1.故选:A.【点睛】本题考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.4.C解析:C【解析】【分析】根据垂直平分线的性质,可以得到∠C=∠ABC,再根据角平分线的性质,得到∠ABC的度数,最后利用三角形内角和即可解决.∵DE 垂直平分BC ,DB DC ∴=,31C DBC ︒∴∠=∠=,∵BD 平分ABC ∠,262ABC DBC ︒∴∠=∠=, 180A ABC C ︒∴∠+∠+∠=,180180623187A ABC C ︒︒︒︒︒∴∠=-∠-∠=--=故选C 【点睛】本题考查了垂直平分线的性质,角平分线的性质和三角形内角和,解决本题的关键是熟练掌握三者性质,正确理清各角之间的关系.5.D解析:D 【解析】 【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可. 【详解】A .42+52≠62,不可以构成直角三角形,故A 选项错误;B .22+32≠42,不可以构成直角三角形,故B 选项错误;C )2+2≠42,可以构成直角三角形,故C 选项错误.D .12+)22,可以构成直角三角形,故D 选项正确. 故选D . 【点睛】本题考查了勾股定理的逆定理:如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.6.C解析:C 【解析】 【分析】由勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可. 【详解】解:A 、∵12+222,故A 选项能构成直角三角形; B 、∵32+42=52,故B 选项能构成直角三角形; C 、∵32+62≠92,故C 选项不能构成直角三角形;D 、∵72+()22,故D 选项能构成直角三角形. 故选:C .本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.7.C解析:C【解析】【分析】根据等腰三角形的三线合一得出∠ADB=90°,再根据勾股定理得出BD的长,即可得出BC 的长.【详解】在△ABC中,AB=AC,AD是∠BAC的平分线,∴AD⊥BC,BC=2BD.∴∠ADB=90°在Rt△ABD中,根据勾股定理得:=4∴BC=2BD=2×4=8.故选C.【点睛】本题考查了等腰三角形的性质及勾股定理,熟练掌握性质定理是解题的关键.8.A解析:A【解析】【分析】根据一次函数与二元一次方程组的关系进行解答即可.【详解】解:∵二元一次方程组522x yx y-=-⎧⎨+=-⎩的解为41xy=-⎧⎨=⎩∴在同一平面直角坐标系中,两函数y=x+5与y=﹣12x﹣1的图像的交点坐标为:(-4,1)故选:A.【点睛】本题考查的是一次函数与二元一次方程组的关系,一般地,如果一个二元一次方程组有唯一解,那么这个解就是方程组对应的两条直线的交点坐标.9.A解析:A【解析】【分析】先判断出OA=OB,∠OAB=∠ABO,分两种情况判断出△AOC≌△ABD,进而判断出∠ABD=∠AOB=60°,即可得出结论.【详解】∵∠AOB=60°,OA=OB,∴△OAB是等边三角形,∴OA=AB,∠OAB=∠ABO=60°①当点C在线段OB上时,如图1,∵△ACD是等边三角形,∴AC=AD,∠CAD=60°,∴∠OAC=∠BAD,在△AOC和△ABD中,OA BAOAC BADAC AD=⎧⎪∠=∠⎨⎪=⎩,∴△AOC≌△ABD,∴∠ABD=∠AOC=60°,∴∠ABE=180°﹣∠ABO﹣∠ABD=60°=∠AOB,∴BD∥OA;②当点C在OB的延长线上时,如图2,∵△ACD是等边三角形,∴AC=AD,∠CAD=60°,∴∠OAC=∠BAD,在△AOC和△ABD中,OA BAOAC BADAC AD=⎧⎪∠=∠⎨⎪=⎩,∴△AOC≌△ABD,∴∠ABD=∠AOC=60°,∴∠ABE=180°﹣∠ABO﹣∠ABD=60°=∠AOB,∴BD∥OA,故选A.【点睛】本题考查了等边三角形的判定和性质,全等三角形的判定和性质,求出∠ABD=60°是解本题的关键.10.C解析:C【解析】【分析】根据同底数幂的乘法、除法、积的乘方和幂的乘方进行计算即可.【详解】A. a 2⋅a 3=a 5,故A 错误;B. (−a 2)3=−a 6,故B 错误;C. a 10÷a 9=a(a≠0),故C 正确;D. (−bc)4÷(−bc)2=b 2c 2,故D 错误; 故答案选C. 【点睛】本题考查了同底数幂的相关知识点,解题的关键是熟练的掌握同底数幂的乘法与除法的运算.11.A解析:A 【解析】 【分析】根据0指数幂和负整数幂定义进行计算即可. 【详解】021( 3.14)()1452π--+=+=故选:A 【点睛】考核知识点:幂的运算.理解0指数幂和负整数幂定义是关键.12.D解析:D 【解析】 【分析】根据线段垂直平分线的性质判断即可. 【详解】作AC ,BC 两边的垂直平分线,它们的交点为P ,由线段垂直平分线的性质,P A =PB =PC , 故选:D. 【点睛】本题主要考查了垂直平分线的性质,熟练掌握相关性质要点是解决本题的关键.13.B解析:B 【解析】 【分析】根据算术平方根的定义直接求解即可. 【详解】解:42=, 故选B.【点睛】本题考查了算术平方根的定义,正确把握定义是解题关键.14.B解析:B【解析】【分析】根据等腰三角形的性质可知BC上的中线AD同时是BC上的高线,根据勾股定理求出AB的长即可.【详解】∵等腰三角形ABC中,AB=AC,AD是BC上的中线,∴BD=CD=12BC=3,AD同时是BC上的高线,∴2222345BD AD+=+=.故它的腰长为5.故选:B.【点睛】本题考查了勾股定理及等腰三角形的性质.解题关键是得出中线AD同时是BC上的高线.15.C解析:C【解析】试题解析:∵k=-2<0,∴一次函数经过二四象限;∵b=3>0,∴一次函数又经过第一象限,∴一次函数y=-x+3的图象不经过第三象限,故选C.二、填空题16.①②④【解析】【分析】根据三角形的内角和定理和勾股定理的逆定理逐个判断即可.【详解】解:∵∠A=∠B﹣∠C,∴∠A+∠C =∠B ,∵∠A+∠C+∠B =180°,∴∠B =90°,∴△A解析:①②④【解析】【分析】根据三角形的内角和定理和勾股定理的逆定理逐个判断即可.【详解】解:∵∠A =∠B ﹣∠C ,∴∠A +∠C =∠B ,∵∠A +∠C +∠B =180°,∴∠B =90°,∴△ABC 是直角三角形,故①符合题意;∵a 2=(b +c )(b ﹣c )∴a 2+c 2=b 2,∴△ABC 是直角三角形,故②符合题意;∵∠A :∠B :∠C =3:4:5,∠A +∠B +∠C =180°,∴∠A =45°,∠B =60°,∠C =75°,∴△ABC 不是直角三角形,故③不符合题意;∵a :b :c =5:12:13,∴a 2+b 2=c 2,∴△ABC 是直角三角形,故④符合题意;故答案为:①②④.【点睛】此题主要考查直角三角形的判定,解题的关键是熟知勾股定理逆定理与三角形的内角和定理的运用.17.5×108【解析】试题解析:将149480000用科学记数法表示为:1.4948×108≈1.5×108. 故答案为:1.5×108.点睛:科学记数法的表示形式为的形式,其中 为整数.解析:5×108【解析】试题解析:将149480000用科学记数法表示为:1.4948×108≈1.5×108.故答案为:1.5×108.点睛:科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数. 18.0【解析】【分析】根据题意,由时,代入,求出答案即可.【详解】解:∵小明输入的的值为36,∴;故答案为:0.【点睛】本题考查了代数式求值:把满足条件的字母的值代入代数式进行计算得到 解析:0【解析】【分析】根据题意,由36x =时,代入3y =-,求出答案即可. 【详解】解:∵小明输入的x 的值为36,∴3330y =-=-=; 故答案为:0.【点睛】本题考查了代数式求值:把满足条件的字母的值代入代数式进行计算得到对应的代数式的值.19.三【解析】【分析】根据一次函数的解析式中的k 、b 的符号,确定函数图象的位置,即可确定其不经过的象限;【详解】解:在一次函数y=-3x+2中,∵b=2>0,∴函数图象经过y 轴的正半轴,解析:三【解析】【分析】根据一次函数的解析式中的k 、b 的符号,确定函数图象的位置,即可确定其不经过的象限;【详解】解:在一次函数y=-3x+2中,∵b=2>0,∴函数图象经过y轴的正半轴,k=-3<0,∴y随x的增大而减小,∴函数的图象经过第一、二、四象限,∴不经过第三象限.故答案为:三.【点睛】本题考查了一次函数的性质. 解题时可根据解析式中的k、b的值的正负作出草图,从而很容易判断函数经过(或不经过)那一象限.20.12cm.【解析】【分析】题目给出等腰三角形有两条边长为5cm和2cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:①5cm为腰,2解析:12cm.【解析】【分析】题目给出等腰三角形有两条边长为5cm和2cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:①5cm为腰,2cm为底,此时周长为12cm;②5cm为底,2cm为腰,则两边和小于第三边无法构成三角形,故舍去.所以其周长是12cm.故答案为12cm.【点睛】此题主要考查等腰三角形的周长,解题的关键熟知等腰三角形的性质及三角形的构成条件. 21..【解析】【分析】根据一次函数,,时图象经过第二、三、四象限,可得,,即可求解;【详解】经过第二、三、四象限,∴,,∴,,∴,故答案为.【点睛】本题考查一次函数图象与系数的关系解析:13k <<.【解析】【分析】根据一次函数y kx b =+,k 0<,0b <时图象经过第二、三、四象限,可得220k -<,30k -<,即可求解;【详解】()223y k x k =-+-经过第二、三、四象限,∴220k -<,30k -<,∴1k >,3k <,∴13k <<,故答案为13k <<.【点睛】本题考查一次函数图象与系数的关系;掌握一次函数y kx b =+,k 与b 对函数图象的影响是解题的关键.22.【解析】【分析】设的中点为,过作的垂直平分线,通过待定系数法求出直线的函数表达式,根据可以得到直线的值,再求出中点坐标,用待定系数法求出直线的函数表达式即可.【详解】解:设的中点为,过作的 解析:1548x + 【解析】【分析】设AB 的中点为D ,过D 作AB 的垂直平分线EF ,通过待定系数法求出直线AB 的函数表达式,根据EF AB ⊥可以得到直线EF 的k 值,再求出AB 中点坐标,用待定系数法求出直线EF 的函数表达式即可.【详解】解:设AB 的中点为D ,过D 作AB 的垂直平分线EF∵A(1,3),B(2,-1)设直线AB 的解析式为11y k x b =+,把点A 和B 代入得:321k b k b +=⎧⎨+=-⎩解得:1147k b =-⎧⎨=⎩ ∴47y x =-+∵D 为AB 中点,即D (122+,312-) ∴D (32,1) 设直线EF 的解析式为22y k x b =+∵EF AB ⊥∴121k k =-∴ 214k = ∴把点D 和2k 代入22y k x b =+可得:213142b =⨯+ ∴258b = ∴1548y x =+ ∴点C(x ,y )在直线1548y x =+上 故答案为1548x + 【点睛】 本题主要考查了等腰三角形的性质,中垂线的性质,待定系数法求一次函数的表达式,根据题意作出中垂线,再用待定系数法求出一次函数的解析式是解题的关键.23.8【解析】【分析】根据菱形AECF,得∠FCO=∠ECO,再利用∠ECO=∠ECB,可通过折叠的性质,结合直角三角形勾股定理求得BC的长,则利用菱形的面积公式即可求解.【详解】解:∵四边形解析:【解析】【分析】根据菱形AECF,得∠FCO=∠ECO,再利用∠ECO=∠ECB,可通过折叠的性质,结合直角三角形勾股定理求得BC的长,则利用菱形的面积公式即可求解.【详解】解:∵四边形AECF是菱形,AB=6,∴设BE=x,则AE=6-x,CE=6-x,∵四边形AECF是菱形,∴∠FCO=∠ECO,∵∠ECO=∠ECB,∴∠ECO=∠ECB=∠FCO=30°,2BE=CE,∴CE=2x,∴2x=6-x,解得:x=2,∴CE=AE=4.利用勾股定理得出:∴菱形的面积=AE•故答案为:【点睛】此题主要考查了折叠问题以及勾股定理等知识,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.24.12cm.【解析】【分析】题目给出等腰三角形有两条边长为5cm和2cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:①5cm为腰,2解析:12cm.【解析】【分析】题目给出等腰三角形有两条边长为5cm和2cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:①5cm为腰,2cm为底,此时周长为12cm;②5cm为底,2cm为腰,则两边和小于第三边无法构成三角形,故舍去.所以其周长是12cm.故答案为12cm.【点睛】此题主要考查等腰三角形的周长,解题的关键熟知等腰三角形的性质及三角形的构成条件. 25.(,6)【解析】【分析】如图,过点E作EF⊥OE交OD延长线于点F,过点F作FG⊥AB交AB延长线于点G,作FH⊥BC于H,由“AAS”可证△AEO≌△GEF,可得AE=GF,EG=AO=6,解析:(65,6)【解析】【分析】如图,过点E作EF⊥OE交OD延长线于点F,过点F作FG⊥AB交AB延长线于点G,作FH⊥BC于H,由“AAS”可证△AEO≌△GEF,可得AE=GF,EG=AO=6,通过证明△ODC∽△FDH,可得HF HDOC CD,即可求解.【详解】如图,过点E作EF⊥OE交OD延长线于点F,过点F作FG⊥AB交AB延长线于点G,作FH⊥BC于H,∵∠EOF=45°,EF⊥EO,∴∠EOF=∠EFO=45°,∴OE=EF,∵∠AOE+∠AEO=90°,∠AEO+∠GEF=90°,∴∠GEF=∠AOE,且∠OAE=∠G=90°,OE=EF,∴△AEO≌△GEF(AAS)∴AE=GF,EG=AO=6,∴BG=EG﹣BE=6﹣(3﹣AE)=3+AE,∵FH⊥BC,∠G=∠CBG=90°,∴四边形BGFH是矩形,∴BH=GF=AE,BG=HF=3+AE,HF∥BG∥OC,∴HD=BD﹣BH=4﹣AE,∵HF∥OC,∴△ODC∽△FDH,∴HF HD OC CD=,∴3432AE AE +-=∴AE=65,∴点E(65,6)故答案为:(65,6)【点睛】此题主要考查利用全等三角形和相似三角形的判定与性质判定矩形在平面直角坐标系中的坐标,解题关键是利用其性质构建方程.三、解答题26.(1)①详见解析;②详见解析;(2)10.【解析】【分析】(1)①按角的平分线的作法步骤作图即可;②按垂线的作法步骤作图即可;(2)根据角平分线的性质得到DE=CD.在△AED中利用勾股定理得到AE的长.设AB=x,则BE=AB-AE=x-4.证明Rt△BDC≌Rt△BDE,得到BC=DE=x-4.在Rt△ABC中,利用勾股定理列方程即可得到结论.【详解】(1)①如图,BD就是所要求作的图形.②如图,DE就是所要求作的图形.(2)∵∠C =90°,DE ⊥AB ,BD 平分∠ABC ,∴DE =CD =3.∵AC =8,∴AD =AC -DC =8-3=5,∴AE =222253AD DE -=-=4.设AB =x ,则BE =AB -AE =x -4.在Rt △BDC 和Rt △BDE 中,∵BD =BD ,DC =DE ,∴Rt △BDC ≌Rt △BDE ,∴BC =DE =x -4.在Rt △ACB 中,∵222AC BC AB +=,∴2228(4)x x +-=,解得:x =10.∴AB =10.【点睛】本题考查了基本作图和角平分线的性质以及勾股定理.掌握角平分线的性质是解答本题的关键.27.详见解析.【解析】【分析】根据轴对称的性质画出图形即可.【详解】解:如图所示:.【点睛】本题考查的利用轴对称设计图案,用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.28.(1)2,10;(2)s=15t-40(45)t ≤≤;(3)t=3h 或t=6h.【解析】【分析】(1)由图象中的信息可知:小明从第2小时到第4小时行驶的路程没有发生变化,所以途中停留了2h ;小明2小时内行驶的路程是20 km ,据此可以求出他的速度;(2)由图象可知:B(4,20),C(5,35),设线段BC 的函数表达式为s=kt+b,代入后得到方程组,解方程组即可;(3)先求出从甲地到乙地的总路程,现求小华的速度,然后分三种情况讨论两人在途中相遇问题.当02t <≤时, 10t=10(t-1);当24t <<时, 20=10(t-1);当46t ≤≤时, 15t-40=10(t-1);逐一求解即可.【详解】解:(1)由图象可知:小明从第2小时到第4小时行驶的路程没有发生变化,所以途中停留了2h ;由图象可知:小明2小时内行驶的路程是20 km ,所以他的速度是20210÷=(km/ h );故答案是:2;10.(2)设线段BC 的函数表达式为s=kt+b,由图象可知:B(4,20),C(5,35),∴420535k b k b +=⎧⎨+=⎩, ∴1540k b =⎧⎨=-⎩, ∴线段BC 的函数表达式为s=15t-40(45)t ≤≤;(3)在s=15t-40中,当t=6时,s=15×6-40=50,∴从甲地到乙地全程为50 km ,∴小华的速度=50(61)10÷-=(km/ h ),下面分三种情况讨论两人在途中相遇问题:当02t <≤时,两人在途中相遇,则10t=10(t-1),方程无解,不合题意,舍去;当24t <<时,两人在途中相遇,则20=10(t-1),解得t=3;当46t ≤≤时,两人在途中相遇,则15t-40=10(t-1),解得t=6;∴综上所述,当t=3h 或t=6h 时,两人在途中相遇.【点睛】本题考查了一次函数的应用,能够正确理解函数图象横纵坐标表示的意义,解题关键是理解一些关键点的含义,并结合实际问题数量关系进行求解.29.(1)7秒;(2)当t 为2秒或225秒时,BPQ ∆是等腰三角形. 【解析】【分析】(1)分别计算P 、Q 到达终点的时间,根据当其中一点到达终点后两点都停止运动,取时间较短的;(2)分三种情况讨论,利用等腰三角形的定义可求解.【详解】解:(1)∵四边形ABCD 为矩形,6AB =,8AD =,∴6DC AB ==,8BC AD ==,∴点P 运动到终点所需(6+8)÷1=14秒,Q 运动到终点所需(6+8)÷2=7秒,∴当t =7时,两点停止运动; (2)①当t ≤4时,P 点在线段AB 上,Q 点在线段BC 上时,若Rt BPQ ∆是等腰三角形,则BP=BQ,即6-t=2t ,解得t=2秒;②当P 点在线段AB 上,Q 点在线段CD 上时,此时4<t≤6,如下图,若BPQ ∆是等腰三角形,则PQ=BQ,此时作PE ⊥DC,∵四边形ABCD 为矩形,∴∠C=∠ABC=90°,∴四边形BCEP 为矩形,∴EC=PB=6-t ,EP=BC ,∵PQ=BQ ,∴Rt △EPQ ≌Rt △CBQ (HL ),∴EQ=QC ,即6282t t -=-,解得225t =, ③当P 点在线段BC 上,Q 点在线段CD 上时,此时6<t≤7如下图,BP=t-6,QC=2t-8,∵当6<t≤7时,QC-BP=2t-8-(t-6)=t-2>0,∴BQ>QP>QC>BP,BPQ∆不可能是等腰三角形,综上所述,当t为2秒或225秒时,BPQ∆是等腰三角形.【点睛】本题考查矩形的性质和判定,全等三角形的性质和判定,一元一次方程的应用,等腰三角形的定义.掌握方程思想和分类讨论思想是解决此题的关键.30.(1)x32)x=6或x=﹣2【解析】【分析】(1)根据平方根,即可解答;(2)根据平方根,即可解答.【详解】(1)4x2﹣12=0,4x2=12,x2=3,x3(2)48﹣3(x﹣2)2=0,3(x﹣2)2=48,(x﹣2)2=16,x﹣2=±4,x=6或x=﹣2.【点睛】此题主要考查利用开平方法求方程的解,熟练掌握,即可解题.31.(1)40;9;(2)见详解;(3)3.5【解析】【分析】(1)根据线段垂直平分线的性质得到AM=BM,NA=NC,根据等腰三角形的性质得到BAM=∠B,∠NAC=∠C,结合图形计算即可;(2)连接AM、AN,仿照(1)的作法得到∠MAN=90°,根据勾股定理证明结论;(3)连接AP、CP,过点P作PE⊥BC于点E,根据线段垂直平分线的性质得到AP=CP,根据角平分线的性质得到PH=PE,证明Rt△APH≌Rt△CPE得到AH=CE,证明△BPH≌△BPE,得到BH=BE,结合图形计算即可.【详解】解:(1)∵∠BAC=110°,∴∠B+∠C=180°﹣110°=70°,∵AB边的垂直平分线交BC边于点M,∴AM=BM,∴∠BAM=∠B,同理:NA=NC,∴∠NAC=∠C,∴∠MAN=110°﹣(∠BAM+∠NAC)=40°,∵△AMN的周长为9,∴MA+MN+NA=9,∴BC=MB+MN+NC=MA+MN+NA=9,故答案为:40;9;(2)如图②,连接AM、AN,∵∠BAC=135°,∴∠B+∠C=45°,∵点M在AB的垂直平分线上,∴AM=BM,∴∠BAM=∠B,同理AN=CN,∠CAN=∠C,∴∠BAM+∠CAN=45°,∴∠MAN=∠BAC﹣(∠BAM+∠CAN)=90°,∴AM2+AN2=MN2,∴BM2+CN2=MN2;(3)如图③,连接AP、CP,过点P作PE⊥BC于点E,∵BP 平分∠ABC ,PH ⊥BA ,PE ⊥BC ,∴PH =PE ,∵点P 在AC 的垂直平分线上,∴AP =CP ,在Rt △APH 和Rt △CPE 中,PA PC PH PE =⎧⎨=⎩, ∴Rt △APH ≌Rt △CPE (HL ),∴AH =CE ,在△BPH 和△BPE 中,BHP BEP PBH PBE BP BP ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BPH ≌△BPE (AAS )∴BH =BE ,∴BC =BE+CE =BH+CE =AB+2AH ,∴AH =(BC ﹣AB )÷2=3.5.【点睛】本题考查的是全等三角形的判定和性质、勾股定理、线段垂直平分线的性质、角平分线的性质、三角形内角和定理,掌握全等三角形的判定定理和性质定理是解题的关键.。
苏科版江苏省泰州市姜堰区八年级上学期期末模拟数学试题
苏科版江苏省泰州市姜堰区八年级上学期期末模拟数学试题一、选择题1.摩托车开始行驶时,油箱中有油4升,如果每小时耗油0.5升,那么油箱中余油量y (升)与它工作时间t (时)之间函数关系的图象是( )A .B .C .D .2.如图,一次函数图象经过点A ,且与正比例函数y=-x 的图象交于点B ,则该一次函数的表达式为( )A .y=-x+2B .y=x+2C .y=x-2D .y=-x-23.如图,一次函数(0)y kx b k =+>的图象过点(0,2),则不等式20kx b +->的解集是( )A .0x >B .0x <C .2x <D .2x >4.若a 3a a =a 的值为( )A .1B .0C .0或1D .0或1或1-5.在平面直角坐标系中,点()23P -,关于x 轴的对称点的坐标是( ) A .()23-,B .()23,C .()23--,D .()23-,6.如图,一艘轮船停在平静的湖面上,则这艘轮船在湖中的倒影是( )A .B .C .D .7.如图,AB =AC ,D ,E 分别是AB ,AC 上的点,下列条件不能判断△ABE ≌△ACD 的是( )A .∠B =∠C B .BE =CD C .AD =AED .BD =CE8.下列等式从左到右的变形,属于因式分解的是( )A .()a x y ax ay -=-B .()()311x x x x x -=+- C .()()21343x x x x ++=++D .()22121x x x x ++=++9.中国传统服装历史悠远,下列服装中,是轴对称的是()A .B .C .D .10.下列交通标识中,是轴对称图形的是( ) A .B .C .D .11.已知a >0,b <0,那么点P(a ,b)在( ) A .第一象限B .第二象限C .第三象限D .第四象限12.如图,动点P 从点A 出发,按顺时针方向绕半圆O 匀速运动到点B ,再以相同的速度沿直径BA 回到点A 停止,线段OP 的长度d 与运动时间t 的函数图象大致是( )A .B .C .D .13.以下问题,不适合用普查的是( ) A .旅客上飞机前的安检 B .为保证“神州9号”的成功发射,对其零部件进行检查C .了解某班级学生的课外读书时间D .了解一批灯泡的使用寿命 14.满足下列条件的△ABC 是直角三角形的是( )A .∠A :∠B :∠C =3:4:5 B .a :b :c =1:2:3 C .∠A =∠B =2∠CD .a =1,b =2,c =315.正比例函数y =kx (k ≠0)的函数值y 随着x 增大而减小,则一次函数y =x +k 的图象大致是( )A .B .C .D .二、填空题16.若△ABC 的三边长分别为a ,b ,c .下列条件:①∠A =∠B ﹣∠C ;②a 2=(b +c )(b ﹣c );③∠A :∠B :∠C =3:4:5;④a :b :c =5:12:13.其中能判断△ABC 是直角三角形的是_____(填序号).17.已知点A (x 1,y 1)、B (x 2,y 2 )是函数y =﹣2x +1图象上的两个点,若x 1<x 2,则y 1﹣y 2_____0(填“>”、“<”或“=”).18.若等腰三角形的两边长为10cm ,5cm ,则周长为__________cm .19.如图,在正方形ABCD 的外侧,作等边三角形CDE ,连接,AE BE ,试确定AEB 的度数.20.将一次函数34y x =-的图象向上平移3个单位长度,相应的函数表达式为_____. 21.如图,在四边形ABCD 中,∠A =90°,AD =4,连接BD ,BD ⊥CD ,∠ADB =∠C .若P 是BC边上一动点,则DP 长的最小值为 .22.点(−1,3)关于x 轴对称的点的坐标为____.23.将一次函数2y x =-的图象平移,使其经过点(2,3),则所得直线的函数解析式是______.24.如图,在平面直角坐标系中,点B 在x 轴的正半轴上,AO =AB ,∠OAB =90°,OB =12,点C 、D 均在边OB 上,且∠CAD =45°,若△ACO 的面积等于△ABO 面积的13,则点D 的坐标为 _______ 。
苏科版江苏省泰州市八年级(上)期末数学试卷
苏科版江苏省泰州市八年级(上)期末数学试卷一、选择题1.如图,一只蚂蚁从点A沿数轴向右直爬行2个单位到达点B,点A表示-2,设点B 所表示的数为m,则1m-+(m+6)的值为 ( )A.3 B.5 C.7 D.92.4的平方根是()A.2B.2±C.2 D.2±3.如图,△ABC≌△ADE,∠B=20°,∠E=110°,则∠EAD的度数为()A.80°B.70°C.50°D.130°4.一次函数y=-5x+3的图象经过的象限是()A.一、二、三B.二、三、四C.一、二、四D .一、三、四5.如图,两个一次函数图象的交点坐标为(2,4),则关于x,y的方程组111222,y k x by k x b=+⎧⎨=+⎩的解为()A.2,4xy=⎧⎨=⎩B.4,2xy=⎧⎨=⎩C.4,xy=-⎧⎨=⎩D.3,xy=⎧⎨=⎩6.下列标志中属于轴对称图形的是()A.B.C.D.7.由四舍五入得到的近似数48.0110⨯,精确到()A.万位B.百位C.百分位D.个位8.在22、0.3•、227-、38中,无理数的个数有()A.1个B.2个C.3个D.4个9.已知点(,21)P a a-在一、三象限的角平分线上,则a的值为()A.1-B.0 C.1 D.210.下列说法正确的是()A.(﹣3)2的平方根是3 B.16=±4C.1的平方根是1 D.4的算术平方根是211.一辆货车早晨7∶00出发,从甲地驶往乙地送货.如图是货车行驶路程y(km)与行驶时间x(h)的完整的函数图像(其中点B、C、D在同一条直线上),小明研究图像得到了以下结论:①甲乙两地之间的路程是100km;②前半个小时,货车的平均速度是40km/h;③8∶00时,货车已行驶的路程是60km;④最后40 km货车行驶的平均速度是100km/h;⑤货车到达乙地的时间是8∶24,其中,正确的结论是()A.①②③④B.①③⑤C.①③④D.①③④⑤12.下列各点中,位于平面直角坐标系第四象限的点是()A.(1,2) B.(﹣1,2) C.(1,﹣2) D.(﹣1,﹣2)13.如图,一支铅笔放在圆柱体笔筒中,笔筒的内部底面直径是9cm,内壁高12cm,则这只铅笔的长度可能是()A.9cm B.12cm C.15cm D.18cm14.如图,若BD为等边△ABC的一条中线,延长BC至点E,使CE=CD=1,连接DE,则DE 的长为( )A .32B .3C .52D .515.已知一次函数y =kx +b 的图象经过第一、二、三象限,则b 的值可以是( ) A .﹣2B .﹣1C .0D .2二、填空题16.如图,△ABC 的顶点都在正方形网格格点上,点A 的坐标为(-1,4).将△ABC 沿y 轴翻折到第一象限,则点C 的对应点C′的坐标是_____.17.如图,直线l 1:y =﹣12x +m 与x 轴交于点A ,直线l 2:y =2x +n 与y 轴交于点B ,与直线l 1交于点P (2,2),则△PAB 的面积为_____.18.如图,AD 是ABC ∆的角平分线,DE AB ⊥于E ,若18AB =,12AC =,ABC ∆的面积等于30,则DE =_______.19.如图,正比例函数y=kx 与反比例函数y=6x的图象有一个交点A(2,m),AB ⊥x 轴于点B ,平移直线y=kx 使其经过点B ,得到直线l ,则直线l 对应的函数表达式是_________ .20.如图,在平面直角坐标系中,点P 的坐标为(0,4),直线y =34x -3与x 轴、y 轴分别交于点A 、B ,点M 是直线AB 上的一个动点,则PM 的最小值为________.21.在平面直角坐标系中,已知一次函数312y x =-+的图像经过111(,)P x y ,222(,)P x y 两点,若12x x >,则1y ______________2y22.等腰三角形的顶角为76°,则底角等于__________.23.如图①,四边形ABCD 中,//,90BC AD A ∠=︒,点P 从A 点出发,沿折线AB BC CD →→运动,到点D 时停止,已知PAD △的面积s 与点P 运动的路程x 的函数图象如图②所示,则点P 从开始到停止运动的总路程为________.24.4的平方根是 .25.函数y =-3x +2的图像上存在一点P ,点P 到x 轴的距离等于3,则点P 的坐标为________.三、解答题26.如图所示,在ABC ∆中,BAC ∠的平分线AD 交BC 于点D ,DE 垂直平分AC ,垂足为点E .求证:BAD C ∠=∠.27.(1)计算:3168--; (2)求x 的值:2(2)90x .28.甲、乙两同学的家与学校的距离均为3200米.甲同学先步行200米,然后乘公交车去学校,乙同学骑自行车去学校.已知甲步行速度是乙骑自行车速度的13,公交车的速度是乙骑自行车速度的3倍.甲、乙两同学同时从家出发去学校,结果甲同学比乙同学早到8分钟.(1)求乙骑自行车的速度;(2)当甲到达学校时,乙同学离学校还有多远? 29.一次函数()0y kx b k =+≠的图像为直线l .(1)若直线l 与正比例函数2y x =的图像平行,且过点(0,−2),求直线l 的函数表达式;(2)若直线l 过点(3,0),且与两坐标轴围成的三角形面积等于3,求b 的值. 30.(1)如图①,小明同学作出ABC ∆两条角平分线AD ,BE 得到交点I ,就指出若连接CI ,则CI 平分ACB ∠,你觉得有道理吗?为什么?(2)如图②,Rt ABC ∆中,5AC =,12BC =,13AB =,ABC ∆的角平分线CD 上有一点I ,设点I 到边AB 的距离为d .(d 为正实数) 小季、小何同学经过探究,有以下发现: 小季发现:d 的最大值为6013. 小何发现:当2d =时,连接AI ,则AI 平分BAC ∠. 请分别判断小季、小何的发现是否正确?并说明理由.31.如图,矩形ABCD 中,6AB =,8AD =,点P 从点A 出发,以每秒一个单位的速度沿A B C →→的方向运动;同时点Q 从点B 出发,以每秒2个单位的速度沿B C D →→的方向运动,当其中一点到达终点后两点都停止运动.设两点运动的时间为t 秒.(1)当t=______时,两点停止运动;∆是等腰三角形?(2)当t为何值时,BPQ【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】【详解】解:意,得+2∴0<m<1,∴|m-1|+(m+6)=1-m+m+6=7,故选C.【点睛】本题了实数与数轴的关系,绝对值的意义.关键是根据题意求出m的值,确定m的范围.2.D解析:D【解析】【分析】根据平方根的定义直接作答.【详解】±解:4的平方根是2故选:D【点睛】本题考查平方根的定义,掌握一个正数有两个平方根,它们互为相反数是本题的解题关键. 3.C解析:C【解析】【分析】根据全等的性质知∠D=∠B=20°,再根据三角形的内角和即可求出∠EAD.【详解】∵△ABC ≌△ADE ,∠B=20°,∠E=110°, ∴∠D=∠B=20°,∴∠EAD=180°-20°-110°=50°,故选C. 【点睛】本题是对三角形全等知识的考查,熟练掌握全等知识及三角形的内角和是解决本题的关键.4.C解析:C 【解析】试题分析:直线y=﹣5x+3与y 轴交于点(0,3),因为k=-5,所以直线自左向右呈下降趋势,所以直线过第一、二、四象限. 故选C .考点:一次函数的图象和性质.5.A解析:A 【解析】 【分析】根据任何一个一次函数都可以化为一个二元一次方程,再根据两个函数交点坐标就是二元一次方程组的解可直接得到答案. 【详解】解:∵直线y 1=k 1x+b 1与y 2=k 2x+b 2的交点坐标为(2,4), ∴二元一次方程组111222,y k x b y k x b =+⎧⎨=+⎩的解为2,4.x y =⎧⎨=⎩故选A. 【点睛】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.6.C解析:C 【解析】 【分析】根据对称轴的定义,关键是找出对称轴即可得出答案. 【详解】解:根据对称轴定义 A 、没有对称轴,所以错误 B 、没有对称轴,所以错误 C 、有一条对称轴,所以正确 D 、没有对称轴,所以错误【点睛】此题主要考查了对称轴图形的判定,寻找对称轴是解题的关键.7.B解析:B 【解析】 【分析】由于48.0110⨯=80100,观察数字1所在的数位即可求得答案. 【详解】解:∵48.0110⨯=80100,数字1在百位上, ∴ 近似数48.0110⨯精确到百位, 故选 B. 【点睛】此题主要考查了近似数和有效数字,熟记概念是解题的关键.8.A解析:A 【解析】 【分析】根据无理数的三种形式,①开方开不尽的数,②无限不循环小数,③含有π的数,结合题意判断即可. 【详解】、•0.3、227-中,•0.3循环小数,是有理数; 227-是分数,是有理数;=2,是整数,是有理数;所以无理数共1个. 故选:A . 【点睛】此题考查了无理数的概念,解答本题的关键是掌握无理数的定义,属于基础题,要熟练掌握无理数的三种形式,难度一般.9.C解析:C 【解析】根据第一、三象限的角平分线上的点的横坐标与纵坐标相等列出方程求解即可. 【详解】∵点P (a ,2a-1)在一、三象限的角平分线上, ∴a=2a-1, 解得a=1. 故选:C . 【点睛】本题考查了坐标与图形性质,熟记第一、三象限的角平分线上的点的横坐标与纵坐标相等是解题的关键.10.D解析:D 【解析】 【分析】根据平方根和算术平方根的定义解答即可. 【详解】A 、(﹣3)2的平方根是±3,故该项错误;B 4,故该项错误;C 、1的平方根是±1,故该项错误;D 、4的算术平方根是2,故该项正确.故选D. 【点睛】本题考查了平方根、算术平方根的定义,解决本题的关键是熟记平方根、算术平方根的定义.11.D解析:D 【解析】 【分析】根据折线图,把货车从甲地驶往乙地分为三段,再根据图象的时间和路程进行计算判断. 【详解】①甲乙两地之间的路程是100 km ,①正确;②前半个小时,货车的平均速度是:400.580?km/h ÷=,②错误; ③8∶00时,货车已行驶了一个小时,路程是60 km ,③正确;④最后40 km 货车行驶的平均速度就是求BC 段的速度,时间为1.3-1=0.3小时,路程为90-60=30km ,平均速度是300.3100?km /h ÷=,④正确;⑤货车走完BD 段所用时间为:401000.4÷=小时,即0.46024⨯=分钟 ∴货车走完全程所花时间为:1小时24分钟, ∴货车到达乙地的时间是8∶24,⑤正确; 综上:①③④⑤正确; 故选:D 【点睛】本题考查了一次函数的应用,能够正确理解函数图象的横、纵坐标表示的意义,理解问题的过程,并能通过图象得到自变量和函数值之间的数量关系是解题的关键.12.C解析:C 【解析】 【分析】根据各象限内点的坐标特征对各选项分析判断利用排除法求解. 【详解】A 、(1,2)在第一象限,故本选项错误;B 、(﹣1,2)在第二象限,故本选项错误;C 、(1,﹣2)在第四象限,故本选项正确;D 、(﹣1,﹣2)在第三象限,故本选项错误. 故选:C . 【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).13.D解析:D 【解析】 【分析】首先根据题意画出图形,利用勾股定理计算出AC 的长. 【详解】根据题意可得图形:AB=12cm ,BC=9cm , 在Rt △ABC 中:2222=129AB BC ++(cm ),则这只铅笔的长度大于15cm . 故选D . 【点睛】此题主要考查了勾股定理的应用,正确得出笔筒内铅笔的最短长度是解决问题的关键.14.B解析:B 【解析】 【分析】由等边三角形的性质及已知条件可证BD=DE,可知BC长及BD⊥AC,在Rt△BDC中,由勾股定理得BD长,易知DE长.【详解】解:∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,AB=BC,∵BD为中线,∴∠DBC=12∠ABC=30°,∵CD=CE,∴∠E=∠CDE,∵∠E+∠CDE=∠ACB,∴∠E=30°=∠DBC,∴BD=DE,∵BD是AC中线,CD=1,∴AD=CD=1,∵△ABC是等边三角形,∴BC=AC=1+1=2,且BD⊥AC,在Rt△BDC中,由勾股定理得:BD==即DE=BD故选:B.【点睛】本题主要考查了等边三角形的性质,灵活利用等边三角形三线合一及三个角都是60度的性质是解题的关键.15.D解析:D【解析】【分析】根据一次函数的图象经过第一、二、三象限判断出b的符号,再找出符合条件的b的可能值即可.【详解】∵一次函数的图象经过第一、二、三象限,∴b>0,∴四个选项中只有2符合条件.故选:D.【点睛】本题考查了一次函数图象与系数的关系:对于一次函数y=kx+b:当k>0,b>0⇔y=kx+b 的图象在一、二、三象限;k>0,b<0⇔y=kx+b的图象在一、三、四象限;k<0,b>0⇔y=kx+b的图象在一、二、四象限;k<0,b<0⇔y=kx+b的图象在二、三、四象限.二、填空题16.(3,1)【解析】【分析】关于y轴对称的点的坐标的特征:横坐标互为相反数,纵坐标相同.【详解】由题意得点C(-3,1)的对应点C′的坐标是(3,1).考点:关于y轴对称的点的坐标【点睛解析:(3,1)【解析】【分析】关于y轴对称的点的坐标的特征:横坐标互为相反数,纵坐标相同.【详解】由题意得点C(-3,1)的对应点C′的坐标是(3,1).考点:关于y轴对称的点的坐标【点睛】本题属于基础题,只需学生熟练掌握关于y轴对称的点的坐标的特征,即可完成. 17.【解析】【分析】把点P(2,2)分别代入y=﹣x+m和y=2x+n,求得m=3,n=﹣2,解方程得到A(6,0),B(0,﹣2),根据三角形的面积公式即可得到结论.【详解】解:把点P(2,解析:【解析】【分析】把点P(2,2)分别代入y=﹣12x+m和y=2x+n,求得m=3,n=﹣2,解方程得到A(6,0),B(0,﹣2),根据三角形的面积公式即可得到结论.【详解】解:把点P(2,2)分别代入y=﹣12x+m和y=2x+n,得,m=3,n=﹣2,∴直线l1:y=﹣12x+3,直线l2:y=2x﹣2,对于y =﹣12x+3,令y =0,得,x =6, 对于y =2x ﹣2,令x =0,得,y =﹣2,∴A (6,0),B (0,﹣2), ∵直线l 1:y =﹣12x+3与y 轴的交点为(0,3), ∴△PAB 的面积=12×5×6﹣12×5×2=10, 故答案为:10.【点睛】 本题考查了两直线相交与平行问题,三角形的面积的计算,正确的识别图形是解题的关键.18.2【解析】【分析】延长AC,过D 点作DF⊥AF 于F ,根据角平分线的性质得到DE=DF,由即可求出.【详解】解:如图延长AC,过D 点作DF⊥AC 于F∵是的角平分线,DE⊥AB,∴DE解析:2【解析】【分析】延长AC ,过D 点作DF ⊥AF 于F ,根据角平分线的性质得到DE=DF,由ABC ABD ACDSS S =+即可求出.【详解】解:如图延长AC ,过D 点作DF ⊥AC 于F∵AD 是ABC ∆的角平分线,DE⊥AB,∴DE =DF∵ABC ABD ACD SS S =+=30 ∴113022AB DE DF AC ⋅+⋅= ∵18AB =,12AC = ,DE =DF ∴1118123022DE DE ⨯⋅+⨯= 得到 DE=2故答案为:2.【点睛】 此题主要考查了角平分线的性质,熟记概念是解题的关键.19.y=x-3【解析】【分析】由已知先求出点A 、点B 的坐标,继而求出y=kx 的解析式,再根据直线y =kx 平移后经过点B ,可设平移后的解析式为y=kx+b ,将B 点坐标代入求解即可得.【详解】当x=2解析:y=32x-3 【解析】【分析】由已知先求出点A 、点B 的坐标,继而求出y=kx 的解析式,再根据直线y=kx 平移后经过点B ,可设平移后的解析式为y=kx+b ,将B 点坐标代入求解即可得.【详解】当x=2时,y=6x =3,∴A(2,3),B (2,0), ∵y=kx 过点 A(2,3),∴3=2k ,∴k=32, ∴y=32x , ∵直线y=32x 平移后经过点B , ∴设平移后的解析式为y=32x+b , 则有0=3+b ,解得:b=-3,∴平移后的解析式为:y=32x-3, 故答案为:y=32x-3. 【点睛】本题考查了一次函数与反比例函数的综合应用,涉及到待定系数法,一次函数图象的平移等,求出k的值是解题的关键.20.【解析】【分析】认真审题,根据垂线段最短得出PM⊥AB时线段PM最短,分别求出PB、OB、OA 、AB的长度,利用△PBM∽△ABO,即可求出本题的答案【详解】解:如图,过点P作PM⊥AB,解析:28 5【解析】【分析】认真审题,根据垂线段最短得出PM⊥AB时线段PM最短,分别求出PB、OB、OA、AB的长度,利用△PBM∽△ABO,即可求出本题的答案【详解】解:如图,过点P作PM⊥AB,则:∠PMB=90°,当PM⊥AB时,PM最短,因为直线y=34x﹣3与x轴、y轴分别交于点A,B,可得点A的坐标为(4,0),点B的坐标为(0,﹣3),在Rt△AOB中,AO=4,BO=3,22345+=,∵∠BMP=∠AOB=90°,∠B=∠B,PB=OP+OB=7,∴△PBM∽△ABO,∴PB PMAB AO=,即:754PM =,所以可得:PM=285.21.<【解析】【分析】根据一次函数的性质,当k<0时,y随x的增大而减小即可判断.【详解】∵一次函数中k=<0,∴y随x的增大而减小,∵x1>x2,∴y1<y2.故答案为:<.【点睛解析:<【解析】【分析】根据一次函数的性质,当k<0时,y随x的增大而减小即可判断.【详解】∵一次函数312y x=-+中k=32-<0,∴y随x的增大而减小,∵x1>x2,∴y1<y2.故答案为:<.【点睛】此题主要考查了一次函数的性质,关键是掌握一次函数y=kx+b,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小.22.52°【解析】【分析】根据等腰三角形的性质,以及三角形内角和定理,进行计算即可.【详解】解:∵等腰三角形的顶角为76°,∴底角为:,故答案为:52°.【点睛】本题考查了等腰三角形性解析:52°【解析】【分析】根据等腰三角形的性质,以及三角形内角和定理,进行计算即可.【详解】解:∵等腰三角形的顶角为76°,∴底角为:11=104=52 22⨯︒︒⨯︒︒(180-76),故答案为:52°.【点睛】本题考查了等腰三角形性质,以及三角形内角和定理,解题的关键是掌握等腰三角形等边对等角计算角度.23.11【解析】【分析】根据函数图象可以直接得到AB、BC和三角形ADB的面积,从而可以求得AD 的长,作辅助线CE⊥AD,从而可得CD的长,进而求得点P从开始到停止运动的总路程,本题得以解决.【解析:11【解析】【分析】根据函数图象可以直接得到AB、BC和三角形ADB的面积,从而可以求得AD的长,作辅助线CE⊥AD,从而可得CD的长,进而求得点P从开始到停止运动的总路程,本题得以解决.【详解】解:作CE⊥AD于点E,如下图所示,由图象可知,点P从A到B运动的路程是3,当点P与点B重合时,△PAD的面积是212,由B到C运动的路程为3,∴321 222 AD AB AD⨯⨯==解得,AD=7,又∵BC//AD,∠A=90°,CE⊥AD,∴∠B=90°,∠CEA=90°,∴四边形ABCE是矩形,∴AE=BC=3,∴DE=AD-AE=7-3=4,∴5,CD ===∴点P 从开始到停止运动的总路程为: AB+BC+CD=3+3+5=11.故答案为:11【点睛】本题考查了根据函数图象获取信息,解题的关键是明确题意,能从函数图象中找到准确的信息,利用数形结合的思想解答问题.24.±2.【解析】试题分析:∵,∴4的平方根是±2.故答案为±2. 考点:平方根.解析:±2.【解析】试题分析:∵2(2)4±=,∴4的平方根是±2.故答案为±2.考点:平方根.25.或【解析】【分析】根据点到x 轴的距离等于纵坐标的长度求出点P 的纵坐标,然后代入函数解析式求出x 的值,即可得解.【详解】解:∵点P 到x 轴的距离等于3,∴点P 的纵坐标的绝对值为3, 解析:1,33⎛⎫ ⎪⎝⎭或533⎛⎫ ⎪⎝⎭,【解析】【分析】根据点到x 轴的距离等于纵坐标的长度求出点P 的纵坐标,然后代入函数解析式求出x 的值,即可得解.【详解】解:∵点P 到x 轴的距离等于3,∴点P 的纵坐标的绝对值为3,∴点P 的纵坐标为3或﹣3,当y=3时,﹣3x+2=3,解得,x=﹣13; 当y=﹣3时,﹣3x+2=﹣3,解得x=53; ∴点P 的坐标为(﹣13,3)或(53,﹣3). 故答案为(﹣13,3)或(53,﹣3). 【点睛】 本题考查一次函数图象上点的坐标特征,利用数形结合思想解题是本题的关键,注意分类讨论.三、解答题26.见解析【解析】【分析】利用角平分线的定义得到BAD DAE ∠=∠,然后利用垂直平分线的性质得到DA DC =,则DAE C ∠=∠,从而使问题得解.【详解】解:∵AD 平分BAC ∠∴BAD DAE ∠=∠,∵DE 垂直平分AC ,∴DA DC =,∴DAE C ∠=∠,∴BAD C ∠=∠【点睛】本题考查角平分线的定义和垂直平分线的性质,掌握相关性质正确推理论证是本题的解题关键.27.(1)6;(2)x =1或x =5-.【解析】【分析】(1)本题涉及算术平方根、立方根2个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.(2)移项后,两边直接开平方即可得到x +2=3,x +2=﹣3,求解即可.【详解】(1)原式=4-(-2)=4+2=6;(2)x +2=±3.x +2=3,x +2=-3.x =1或x =-5.【点睛】本题考查了实数运算和直接开平方法解一元二次方程,关键是掌握算术平方根、立方根各知识点.28.(1)乙骑自行车的速度为200m/min ;(2)乙同学离学校还有1600m【解析】【分析】(1)设乙骑自行车的速度为x m/min ,则甲步行速度是13x m/min ,公交车的速度是3x m/min ,根据题意列方程即可得到结论;(2)200×8=1600米即可得到结果.【详解】解:(1)设乙骑自行车的速度为xm/min ,则公交车的速度是3x m/min ,甲步行速度是13x m/min. 由题意得: 320020032002008133x x x --=+, 解得x =200,经检验x =200原方程的解答:乙骑自行车的速度为200m/min.(2)当甲到达学校时,乙同学还要继续骑行8分钟200×8=1600m ,答:乙同学离学校还有1600m.【点睛】此题主要考查了分式方程的应用,根据题意列出方程是解题关键.29.(1)y=2x-2;(2)b=2或-2.【解析】【分析】(1)因为直线l 与直线2y x =平行,所以k 值相等,即k=2,又因该直线过点(0,−2),所以就有-2=2×0+b ,从而可求出b 的值,于是可解;(2)直线l 与y 轴的交点坐标是(0,b ),与x 轴交于(3,0),然后根据三角形面积公式列方程求解即可.【详解】解:(1)∵直线l 与直线2y x =平行,∴k=2,∴直线l 即为y=2x+b .∵直线l 过点(0,−2),∴-2=2×0+b ,∴b=-2.∴直线l 的解析式为y=2x-2.(2)∵直线l 与y 轴的交点坐标是(0,b ),与x 轴交于(3,0),∴直线l 与两坐标轴围成的三角形面积=132b ⨯⋅. ∴132b ⨯⋅=3, 解得b=2或-2.【点睛】 本题考查了一次函数的有关计算,两条直线平行问题,直线与两坐标轴围成的三角形面积等,难度不大,关键是掌握两条直线平行时k 值相等及求直线与两坐标轴的交点坐标.30.(1)有道理,理由详见解析;(2)小季和小何都正确,理由详见解析【解析】【分析】(1)过I 点分别作IM ,IN ,IK 垂直于AB ,BC ,AC 于点M ,N ,K ,根据角平分线的性质即可得解;(2)根据等积法的相关方法进行求解即可.【详解】(1)如下图,过I 点分别作IM ,IN ,IK 垂直于AB ,BC ,AC 于点M ,N ,K ,连接IC∵AI 平分∠BAC ,IM ⊥AB ,IK ⊥AC∴IM =IK ,同理IM =IN∴IK =IN又∵IK ⊥AC ,IN ⊥BC∴CI 平分∠BCA ;(2)如下图,过C 点作CE ⊥AB 于点E ,则d 的最大值为CE 长∵5AC =,12BC =∴115123022ABC S AC BC ∆=⋅=⨯⨯= 又∵11133022ABC S AB CE CE ∆=⋅=⨯⨯=∴6013CE = ∴d 的最大值为6013 ∴小季正确;假设此时AI 平分BAC ∠,如下图,连接AI ,BI ,过I 点作IG ,IH ,IF 分别垂直于AC ,BC ,AB 于点G ,H ,F∵AI 平分BAC ∠,CD 平分∠ACB∴BI 平分∠CBA∵IG ⊥AC ,IH ⊥BC ,ID ⊥AB∴IG=IH=IF=d ∵ACB AIC BIC ABI S S S S ∆∆∆∆=++∴11112222AC BC AC IG BC IH AB IF ⋅=⋅+⋅+⋅ ∴1111512512132222d d d ⨯⨯=⨯⨯+⨯⨯+⨯⨯ ∴2d =∴假设成立,当2d =时,连接AI ,则AI 平分BAC ∠∴小何正确.【点睛】本题主要考查了等积法及角平分线的性质,熟练掌握等积法的运用及角平分线性质的证明是解决本题的关键.31.(1)7秒;(2)当t 为2秒或225秒时,BPQ ∆是等腰三角形. 【解析】【分析】(1)分别计算P 、Q 到达终点的时间,根据当其中一点到达终点后两点都停止运动,取时间较短的;(2)分三种情况讨论,利用等腰三角形的定义可求解.【详解】解:(1)∵四边形ABCD 为矩形,6AB =,8AD =,∴6DC AB ==,8BC AD ==,∴点P 运动到终点所需(6+8)÷1=14秒,Q 运动到终点所需(6+8)÷2=7秒,∴当t =7时,两点停止运动;(2)①当t≤4时,P点在线段AB上,Q点在线段BC上时,若Rt BPQ∆是等腰三角形,则BP=BQ,即6-t=2t,解得t=2秒;②当P点在线段AB上,Q点在线段CD上时,此时4<t≤6,如下图,若BPQ∆是等腰三角形,则PQ=BQ,此时作PE⊥DC,∵四边形ABCD为矩形,∴∠C=∠ABC=90°,∴四边形BCEP为矩形,∴EC=PB=6-t,EP=BC,∵PQ=BQ,∴Rt△EPQ≌Rt△CBQ(HL),∴EQ=QC,即6282tt-=-,解得225t=,③当P点在线段BC上,Q点在线段CD上时,此时6<t≤7如下图,BP=t-6,QC=2t-8,∵当6<t≤7时,QC-BP=2t-8-(t-6)=t-2>0,∴BQ>QP>QC>BP,BPQ∆不可能是等腰三角形,综上所述,当t为2秒或225秒时,BPQ∆是等腰三角形.【点睛】本题考查矩形的性质和判定,全等三角形的性质和判定,一元一次方程的应用,等腰三角形的定义.掌握方程思想和分类讨论思想是解决此题的关键.。
苏科版江苏省泰州市八年级上数学期末试卷
苏科版江苏省泰州市八年级上数学期末试卷一、选择题1.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则( )A .2k <B .2k >C .0k >D .k 0< 2.若一个数的平方等于4,则这个数等于( )A .2±B .2C .16±D .16 3.如图,已知ABC DCB ∠=∠,添加以下条件,不能判定ABC DCB ∆≅∆的是( )A .AB DC =B .BE CE =C .AC DB =D .A D ∠=∠ 4.分式221x x -+的值为0,则x 的值为( ) A .0 B .2 C .﹣2 D .125.在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是( ) A . B . C . D .6.已知等腰三角形的两边长分别为3和4,则它的周长为( )A .10B .11C .10或11D .77.如图,在ABC ∆中,90C ∠=︒,2AC =,点D 在BC 上,5AD =,ADC 2B ∠=∠,则BC的长为( )A 51B 51C 31D 31 8.下列条件中,不能判断△ABC 是直角三角形的是( ) A .a :b :c =3:4:5B .∠A :∠B :∠C =3:4:5 C .∠A +∠B =∠CD .a :b :c =1:239.下列图案中,属于轴对称图形的是( )A.B.C.D.10.一辆货车早晨7∶00出发,从甲地驶往乙地送货.如图是货车行驶路程y(km)与行驶时间x(h)的完整的函数图像(其中点B、C、D在同一条直线上),小明研究图像得到了以下结论:①甲乙两地之间的路程是100km;②前半个小时,货车的平均速度是40km/h;③8∶00时,货车已行驶的路程是60km;④最后40 km货车行驶的平均速度是100km/h;⑤货车到达乙地的时间是8∶24,其中,正确的结论是()A.①②③④B.①③⑤C.①③④D.①③④⑤11.如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为()A.2.8 B.2C.2.4 D.3.512.我们知道,平面内不垂直的两条相交直线是轴对称图形,该图形对称轴条数为()A.1 B.2 C.4 D.无数13.一组不为零的数a,b,c,d,满足a cb d,则以下等式不一定成立的是()A .a c =b dB .a b b +=c d d +C .9a b -=9c d -D .99a b a b -+=99c d c d-+ 14.下列各数中,无理数是( )A .πB .C .D . 15.若253x +在实数范围内有意义,则x 的取值范围是( ) A .x >﹣52B .x >﹣52且x ≠0C .x ≥﹣52D .x ≥﹣52且x ≠0 二、填空题 16.如图,在数轴上,点A 、B 表示的数分别为0、2,BC ⊥AB 于点B ,且BC=1,连接AC ,在AC 上截取CD=BC ,以A 为圆心,AD 的长为半径画弧,交线段AB 于点E ,则点E 表示的实数是_____.17.若等腰三角形的两边长为10cm ,5cm ,则周长为__________cm .18.若1712a +=,则352020a a -+=__________. 19.在△ABC 中,AB=AC ,∠BAC=100°,点D 在BC 边上,连接AD ,若△ABD 为直角三角形,则∠ADC 的度数为_____.20.一次函数1y kx b =+与2y x a =+的图象如图,则()0kx b x a +-+>的解集是__.21.若关于x 的分式方程122x x a x x--=--有增根,则a 的值_____________. 22.如图,在平面直角坐标系中,已知点A(1,0)、B(0,2),如果将线段AB 绕点B 顺时针旋转90°至CB ,那么点C 的坐标是 .23.如图,矩形ABCD 的边AD 长为2,AB 长为1,点A 在数轴上对应的数是-1,以A 点为圆心,对角线AC 长为半径画弧,交数轴于点E ,则这个点E 表示的实数是_______24.已知x =a 时,多项式x 2+6x+k 2的值为﹣9,则x =﹣a 时,该多项式的值为_____.25.若等腰三角形的顶角为30°,那么这个等腰三角形的底角为_____°三、解答题26.如图,在ABC ∆中,AB AC =,ABC ∆的高BH ,CM 交于点P .(1)求证:PB PC =.(2)若5PB =,3PH =,求AB .27.正方形网格中每个小正方形的边长都是1,每个小正方形的顶点叫做格点,以格点为顶点.(1)在图①中,画一个面积为10的正方形;(2)在图②、③中,分别画两个不全等的直角三角形,使它们的三边长都是无理数.28.已知一次函数y =kx +3的图象经过点(1,4).(1)求这个一次函数的解析式;(2)求关于x 的不等式kx +3≤6的解集.29.已知21a -的算术平方根是3,31a b +-的平方根是4±,c 是52a b c +-的平方根.30.(1)求式中x 的值:2(1)16x -=;(2)计算:2020312527--+-31.如图①,在A 、B 两地之间有汽车站C ,客车由A 地驶往C 站,货车由B 地驶往A 地,两车同时出发,匀速行驶,图②是客车、货车离 C 站的路程1y 、2y (km)与行驶时间x(h)之间的函数图像.(1)客车的速度是 km/h ;(2)求货车由 B 地行驶至 A 地所用的时间;(3)求点E 的坐标,并解释点 E 的实际意义.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据一次函数图象的增减性来确定(k-2)的符号,从而求得k 的取值范围.【详解】∵在一次函数y=(k-2)x+1中,y 随x 的增大而增大,∴k-2>0,∴k >2,故选B.【点睛】本题考查了一次函数图象与系数的关系.在直线y=kx+b (k≠0)中,当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.2.A解析:A【解析】【分析】平方为4,由此可得出答案.【详解】±2.所以这个数是:±2.故选:A.【点睛】本题考查了平方根的知识,比较简单,注意不要漏解.3.C解析:C【解析】【分析】全等三角形的判定方法有SAS,ASA,AAS,SSS,根据定理逐个判断即可.【详解】A.AB=DC,∠ABC=∠DCB,BC=BC,符合SAS,即能推出△ABC≌△DCB,故本选项错误;B.∵BE=CE,∴∠DBC=∠ACB.∵∠ABC=∠DCB,BC=CB,∠ACB=∠DBC,符合ASA,即能推出△ABC≌△DCB,故本选项错误;C.∠ABC=∠DCB,AC=BD,BC=BC,不符合全等三角形的判定定理,即不能推出△ABC≌△DCB,故本选项正确;D.∠A=∠D,∠ABC=∠DCB,BC=BC,符合AAS,即能推出△ABC≌△DCB,故本选项错误.故选:C.【点睛】本题考查了全等三角形的性质和判定,等腰三角形的性质的应用,能正确根据全等三角形的判定定理进行推理是解答此题的关键,注意:全等三角形的判定方法有SAS,ASA,AAS,SSS.4.B解析:B【解析】【分析】直接利用分式的值为零,则分子为零进而得出答案.【详解】解:∵分式22 1x x -+的值为0,∴x﹣2=0,解得:x=2.故选:B.【点睛】此题主要考查了分式为零的条件,正确把握分式为零的条件是解题关键.5.B解析:B【解析】【分析】根据轴对称图形的概念,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴因此.【详解】A 、不是轴对称图形,不符合题意;B 、是轴对称图形,符合题意;C 、不是轴对称图形,不符合题意;D 、不是轴对称图形,不符合题意.故选B.【点睛】考核知识点:轴对称图形识别.6.C解析:C【解析】【分析】可分3是腰长与底边,两种情况讨论求解即可.【详解】解:①3是腰长时,三角形的三边分别为:3、3、4,能组成三角形,周长=3+3+4=10,②3是底边时,三角形的三边分别为3、4、4,能组成三角形,周长=3+4+4=11,∴三角形的周长为10或11.故选择:C .【点睛】本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键,难点在于要分情况讨论.7.B解析:B【解析】【分析】根据ADC 2B ∠=∠,可得∠B=∠DAB ,即BD AD ==Rt △ADC 中根据勾股定理可得DC=1,则1.【详解】解:∵∠ADC 为三角形ABD 外角∴∠ADC=∠B+∠DAB∠=∠∵ADC2B∴∠B=∠DAB==∴BD AD在Rt△ADC中,由勾股定理得:DC1===∴1故选B【点睛】∠=∠这个特殊条件.本题考查勾股定理的应用以及等角对等边,关键抓住ADC2B8.B解析:B【解析】【分析】A、根据比值结合勾股定理的逆定理即可判断出三角形的形状;B、根据角的比值求出各角的度数,便可判断出三角形的形状;C、根据三角形的内角和为180度,即可计算出∠C的值;D、根据比值结合勾股定理的逆定理即可判断出三角形的形状.【详解】A、因为a:b:c=3:4:5,所以设a=3x,b=4x,c=5x,则(3x)2+(4x)2=(5x)2,故为直角三角形,故A选项不符合题意;B、因为∠A:∠B:∠C=3:4:5,所以设∠A=3x,则∠B=4x,∠C=5x,故3x+4x+5x=180°,解得x=15°,3x=15×3=45°,4x=15×4=60°,5x=15×5=75°,故此三角形是锐角三角形,故B选项符合题意;C、因为∠A+∠B=∠C,∠A+∠B+∠C=180°,则∠C=90°,故为直角三角形,故C选项不符合题意;D、因为a:b:c=1:2,所以设a=x,b=2x,x,则x2+x)2=(2x)2,故为直角三角形,故D选项不符合题意,故选B.【点睛】本题考查了解直角三角形的相关知识,根据勾股定理的逆定理、三角形的内角和定理结合解方程是解题的关键.9.D解析:D【解析】【分析】根据轴对称图形的定义逐一分析即可.【详解】A选项不是轴对称图形,故本选项不符合题意;B选项不是轴对称图形,故本选项不符合题意;C选项不是轴对称图形,故本选项不符合题意;D 选项是轴对称图形,故本选项符合题意;故选D .【点睛】此题考查的是轴对称图形的识别,掌握轴对称图形的定义是解决此题的关键.10.D解析:D【解析】【分析】根据折线图,把货车从甲地驶往乙地分为三段,再根据图象的时间和路程进行计算判断.【详解】①甲乙两地之间的路程是100 km ,①正确;②前半个小时,货车的平均速度是:400.580?km/h ÷=,②错误;③8∶00时,货车已行驶了一个小时,路程是60 km ,③正确;④最后40 km 货车行驶的平均速度就是求BC 段的速度,时间为1.3-1=0.3小时,路程为90-60=30km ,平均速度是300.3100?km /h ÷=,④正确;⑤货车走完BD 段所用时间为:401000.4÷=小时,即0.46024⨯=分钟∴货车走完全程所花时间为:1小时24分钟,∴货车到达乙地的时间是8∶24,⑤正确;综上:①③④⑤正确;故选:D【点睛】本题考查了一次函数的应用,能够正确理解函数图象的横、纵坐标表示的意义,理解问题的过程,并能通过图象得到自变量和函数值之间的数量关系是解题的关键.11.B解析:B【解析】【分析】延长BG 交CH 于点E ,根据正方形的性质证明△ABG ≌△CDH ≌△BCE ,可得GE=BE-BG=2,HE=CH-CE=2,∠HEG=90°,从而由勾股定理可得GH 的长.【详解】解:如图,延长BG 交CH 于点E ,∵四边形ABCD 是正方形,∴∠ABC=90°,AB=CD=10,∵AG=8,BG=6,∴AG2+BG2=AB2,∴∠AGB=90°,∴∠1+∠2=90°,又∵∠2+∠3=90°,∴∠1=∠3,同理:∠4=∠6,在△ABG和△CDH中,AB=CD=10AG=CH=8BG=DH=6∴△ABG≌△CDH(SSS),∴∠1=∠5,∠2=∠6,∴∠2=∠4,在△ABG和△BCE中,∵∠1=∠3,AB=BC,∠2=∠4,∴△ABG≌△BCE(ASA),∴BE=AG=8,CE=BG=6,∠BEC=∠AGB=90°,∴GE=BE-BG=8-6=2,同理可得HE=2,在Rt△GHE中,GH===故选:B.【点睛】本题主要考查正方形的性质、全等三角形的判定与性质、勾股定理及其逆定理的综合运用,通过证三角形全等得出△GHE为直角三角形且能够求出两条直角边的长是解题的关键.12.B解析:B【解析】【分析】直接利用轴对称图形的性质画出对称轴即可.【详解】解:如图所示:平面内不垂直的两条相交直线是轴对称图形,该图形对称轴条数为2条.故选:B.【点睛】此题主要考查了轴对称图形的性质,正确掌握轴对称图形的性质是解题关键.13.C解析:C【解析】【分析】根据比例的性质,对所给选项进行整理,找到不一定正确的选项即可.【详解】解:一组不为零的数a ,b ,c ,d ,满足a c b d=, ∴a b c d =,11a c b d +=+,即a b c d b d ++=,故A 、B 一定成立; 设a c k b d==, ∴a bk =,c dk =, ∴999999a b kb b k a b kb b k ---==+++,999999c d kd d k c d kd d k ---==+++, ∴9999a b c d a b c d --=++,故D 一定成立; 若99a c b d --=则99a c b b d d -=-,则需99b d=, ∵b 、d 不一定相等,故不能得出99a c b d --=,故D 不一定成立. 故选:C .【点睛】本题考查了比例性质;根据比例的性质灵活变形是解题关键.14.A解析:A【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】A. π是无理数;B. =2,是有理数;C. 是有理数;D. =2,是有理数.故选:A.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.15.C解析:C【解析】【分析】根据二次根式有意义的条件即可确定x的取值范围.【详解】解:由题意得,2x+5≥0,解得x≥﹣52,故选:C.【点睛】a0a≥时有意义,正确理解二次根式有意义的条件是解题的关键.二、填空题16.【解析】∵∠ABC=90°,AB=2,BC=1,∴AC= = ,∵CD=CB=1,∴AD=AC-CD= -1,∴AE= -1,∴点E表示的实数是 -1.5-1【解析】∵∠ABC=90°,AB=2,BC=1,∴22AB BC+5,∵CD=CB=1,∴5 -1,∴5,∴点E517.【解析】【分析】此题有两种可能:10厘米的边长做腰或5厘米的边长做腰进行分类讨论,结合三角形三边关系,从而求解.【详解】解:①以10cm为腰时,三角形周长为10+10+5=25cm;②以5解析:25cm【解析】【分析】此题有两种可能:10厘米的边长做腰或5厘米的边长做腰进行分类讨论,结合三角形三边关系,从而求解.【详解】解:①以10cm 为腰时,三角形周长为10+10+5=25cm ;②以5cm 为腰,因为5+5=10,不符合三角形两边之和大于第三边,此情况不成立;故答案为:25cm .【点睛】此题主要考查三角形三边关系及等腰三角形的性质,注意分类讨论思想的应用是本题的解题关键.18.2024【解析】【分析】,代入a 值,根据乘法法则进行计算即可.【详解】===4+2020=2024故答案为:2024【点睛】考核知识点:二次根式运算.掌握运算法则,运用乘法公解析:2024【解析】【分析】352020a a -+=()252020a a -+,代入a 值,根据乘法法则进行计算即可.【详解】352020a a -+=()2211520205202022a a ⎡⎤⎛⎫⎢⎥-+=⨯-+ ⎪ ⎪⎢⎥⎝⎭⎣⎦=1185202024⎡⎤+⨯-+⎢⎥⎣⎦=2020=4+2020=2024故答案为:2024【点睛】考核知识点:二次根式运算.掌握运算法则,运用乘法公式是关键.19.130°或90°.【解析】分析:根据题意可以求得∠B和∠C的度数,然后根据分类讨论的数学思想即可求得∠ADC的度数.详解:∵在△ABC中,AB=AC,∠BAC=100°,∴∠B=∠C=40°解析:130°或90°.【解析】分析:根据题意可以求得∠B和∠C的度数,然后根据分类讨论的数学思想即可求得∠ADC 的度数.详解:∵在△ABC中,AB=AC,∠BAC=100°,∴∠B=∠C=40°,∵点D在BC边上,△ABD为直角三角形,∴当∠BAD=90°时,则∠ADB=50°,∴∠ADC=130°,当∠ADB=90°时,则∠ADC=90°,故答案为130°或90°.点睛:本题考查等腰三角形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用等腰三角形的性质和分类讨论的数学思想解答.20.【解析】【分析】不等式kx+b-(x+a)>0的解集是一次函数y1=kx+b在y2=x+a的图象上方的部分对应的x的取值范围,据此即可解答.【详解】解:不等式的解集是.故答案为:.【点x<-解析:1【解析】不等式kx+b-(x+a )>0的解集是一次函数y 1=kx+b 在y 2=x+a 的图象上方的部分对应的x 的取值范围,据此即可解答.【详解】解:不等式()0kx b x a +-+>的解集是1x <-.故答案为:1x <-.【点睛】本题考查了一次函数的图象与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.21.4【解析】【分析】方程第二个分母提取-1变形后,去分母转化为整式方程,表示出方程的解,令方程的解为2,即可求出a 的值.【详解】方程变形得:,去分母得:x+x-a=x-2,解得:x=a-解析:4【解析】【分析】方程第二个分母提取-1变形后,去分母转化为整式方程,表示出方程的解,令方程的解为2,即可求出a 的值.【详解】 方程变形得:+122x x a x x -=--, 去分母得:x+x-a=x-2,解得:x=a-2, ∵方程122x x a x x--=--有增根, ∴x=2,即a-2=2,解得:a=4,故答案为:4.【点睛】 此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.22..【分析】【详解】如图,过点C作CD⊥y轴于点D,∵∠CBD+∠ABO=90°,∠ABO+∠BAO=90°,∴∠CBD=∠BAO,在△ABO与△BCD中,∠CBD=∠BAO,,.解析:(21)【解析】【分析】【详解】如图,过点C作CD⊥y轴于点D,∵∠CBD+∠ABO=90°,∠ABO+∠BAO=90°,∴∠CBD=∠BAO,在△ABO与△BCD中,∠CBD=∠BAO,∠BDC=∠AOB, BC=AB,∴△ABO≌△BCD(AAS),∴CD=OB,BD=AO,∵点A(1,0),B(0,2),∴CD=2,BD=1,∴OD=OB-BD=1,又∵点C在第二象限,∴点C的坐标是(-2,1).23.—1【解析】【分析】首先根据勾股定理计算出AC的长,进而得到AE的长,再根据A点表示-1,可得E点表示的数.【详解】∵AD长为2,AB长为1,∴AC=,∵A点表示-1,∴E点表示的数为:1【解析】【分析】首先根据勾股定理计算出AC 的长,进而得到AE 的长,再根据A 点表示-1,可得E 点表示的数.【详解】∵AD 长为2,AB 长为1,∴=∵A 点表示-1,∴E ,【点睛】本题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方和一定等于斜边长的平方.24.27【解析】【分析】把代入多项式,得到的式子进行移项整理,得,根据平方的非负性把和求出,再代入求多项式的值.【详解】解:将代入,得:移项得:,,即,时,故答案为:27【点睛解析:27【解析】【分析】把x a =代入多项式,得到的式子进行移项整理,得22(3)a k +=-,根据平方的非负性把a 和k 求出,再代入求多项式的值.【详解】解:将x a =代入2269x x k ++=-,得:2269a a k ++=-移项得:2269a a k ++=-22(3)a k ∴+=-2(3)0a +,20k -30a ∴+=,即3a =-,0k =x a ∴=-时,222636327x x k ++=+⨯=故答案为:27【点睛】本题考查了代数式求值,平方的非负性.把a 代入多项式后进行移项整理是解题关键. 25.75【解析】【分析】根据等腰三角形两个底角相等可得解.【详解】依题意知,等腰三角形两个底角相等.当顶角=30°时,两底角的和=180°-30°=150°.所以每个底角=75°.故答案解析:75【解析】【分析】根据等腰三角形两个底角相等可得解.【详解】依题意知,等腰三角形两个底角相等.当顶角=30°时,两底角的和=180°-30°=150°.所以每个底角=75°.故答案为75.考点:三角形内角和与等腰三角形性质.点评:本题难度较低.已知角为顶角,根据等腰三角形性质与三角形内角和性质计算即可.三、解答题26.(1)证明见解析;(2)10【解析】【分析】(1)利用AAS 定理证明MBC HCB ∆∆≌,从而求得PBC PCB ∠=∠,使问题得解;(2)利用勾股定理求HC 的长度,然后在ABH ∆中,设设AB AC x ==,则()4AH x =-,利用勾股定理列方程求解.【详解】证明:(1)∵AB AC = ∴A ABC CB =∠∠∵BH 、CM 为ABC ∆的高∴90BMC CHB ∠=∠=︒又∵BC CB =(公共边)∴MBC HCB ∆∆≌(AAS )∴PBC PCB ∠=∠,∴PB PC =(2)∵5PC PB ==,3PH =,∴在Rt △PCH 中,22534HC =-=,8BH =设AB AC x ==,则()4AH x =-,ABH ∆中由勾股定理可得方程:222AB AH BH =+,即()22248x x =-+解方程得:10x =∴10AB =【点睛】本题考查全等三角形的判定及勾股定理的应用,数形结合思想解题,正确列出方程是本题的解题关键.27.作图见解析.【解析】试题分析:(1)根据正方形的面积为10可得正方形边长为10,画一个边长为10正方形即可;(2)①画一个边长为2,22,10的直角三角形即可;②画一个边长为5,5,10的直角三角形即可;试题解析:(1)如图①所示:(2)如图②③所示.考点:1.勾股定理;2.作图题.28.(1)y =x +3;(2)x ≤3.【解析】试题分析:()1把14x y ==,代入3y kx =+, 求出k 的值是多少,即可求出这个一次函数的解析式.()2首先把()1中求出的k 的值代入36kx +≤,然后根据一元一次不等式的解法,求出关于x 的不等式36kx +≤,的解集即可.试题解析:(1)∵一次函数y =kx +3的图象经过点(1,4),∴ 4=k +3,∴ k =1,∴ 这个一次函数的解析式是:y =x +3.(2)∵ k =1,∴ x +3≤6,∴ x ≤3,即关于x 的不等式kx +3≤6的解集是:x ≤3.29.【解析】【分析】根据算术平方根的定义求出a 的值,根据平方根的定义求出b 的值,根据微粒数的估算求出c 的值,然后代入计算,即可得到答案.【详解】解:∵21a -的算术平方根是3,∴21=9a -,∴5a =;∵31a b +-的平方根是4±,∴31=16a b +-,∴351=16b ⨯+-,∴2b =;∵又45<<,∴4,∴4c =,∴252245a b c +-=+⨯-=,∴2a b c +-的平方根为:【点睛】本题考查了算术平方根、平方根、估算无理数的大小等知识点,能根据已知得出a 、b 、c 的值是解此题的关键.30.(1)x =5或﹣3;(2)﹣9.【解析】【分析】(1)直接利用平方根的定义化简得出答案;(2)直接利用立方根以及算术平方根的定义化简得出答案.【详解】(1)(x﹣1)2=16,x﹣1=±4,解得:x=5或﹣3;(2)20201-=﹣1﹣5﹣3=﹣9.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.31.(1)60;(2)14h;(3)点E代表的实际意义是在行驶143h时,客车和货车相遇,相遇时两车离C站的距离为80km.【解析】【分析】(1)由图象可知客车6小时行驶的路程是360km,从而可以求得客车的速度;(2)由图象可以得到货车行驶的总的路程,前2h行驶的路程是60km,从而可以起求得货车由B地行驶至A地所用的时间;(3)根据图象利用待定系数法分别求得EF和DP所在直线的解析式,然后联立方程组即可求得点E的坐标,根据题意可以得到点E代表的实际意义.【详解】解:(1)由图象可得,客车的速度是:360÷6=60(km/h),故答案为:60;(2)由图象可得,货车由B地到A地的所用的时间是:(60+360)÷(60÷2)=14(h),即货车由B地到A地的所用的时间是14h;(3)设客车由A到C对应的函数解析式为y=kx+b,则36060bk b=⎧⎨+=⎩,得60360kb=-⎧⎨=⎩,即客车由A到C对应的函数解析式为y=-60x+360;根据(2)知点P的坐标为(14,360),设货车由C到A对应的函数解析式为y=mx+n,则2014360m nm n+=⎧⎨+=⎩,得3060mn=⎧⎨=-⎩,即货车由C到A对应的函数解析式为y=30x-60;∴603603060y xy x=-+⎧⎨=-⎩,得14380xy⎧=⎪⎨⎪=⎩,∴点E的坐标为(143,80),故点E代表的实际意义是在行驶143h时,客车和货车相遇,相遇时两车离C站的距离为80km.【点睛】本题考查一次函数的应用,解答此类问题的关键是明确题意,利用待定系数法求出一次函数解析式,然后利用一次函数的性质和数形结合的思想解答.。
苏科版泰州市苏科版八年级数学上 期末测试题(Word版 含答案)
苏科版泰州市苏科版八年级数学上 期末测试题(Word 版 含答案) 一、选择题1.如图,以数轴的单位长度为边作一个正方形,以原点为圆心,正方形的对角线长为半径画弧,交数轴于点A ,则点A 表示的数为( )A .12+B .21-C .2D .322.在平面直角坐标系中,下列各点位于第四象限的点是( )A .(2,3)-B .()4,5-C .(1,0)D .(8,1)-- 3.若a 满足3a a =,则a 的值为( ) A .1 B .0 C .0或1 D .0或1或1-4.已知一次函数y=kx +3(k≠0)的图象经过点A ,且函数值y 随x 的增大而增大,则点A 的坐标可能是( )A .(﹣2,﹣4)B .(1,2)C .(﹣2,4)D .(2,﹣1)5.下列各数中,是无理数的是( )A .38B .39C .4-D .2276.若等腰三角形的一个内角为92°,则它的顶角的度数为( )A .92°B .88°C .44°D .88°或44°7.若b >0,则一次函数y =﹣x +b 的图象大致是( )A .B .C .D .8.一次函数y=kx ﹣1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( )A .(﹣5,3)B .(1,﹣3)C .(2,2)D .(5,﹣1)9.如图,在ABC ∆中,AB AC =,AB 的垂直平分线交AB 于点D ,交AC 于点E ,若76BEC ∠=,则ABC ∠=( )A .70B .71C .74D .76 10. 4的平方根是( )A .2B .±2C .16D .±1611.下列四个图标中,是轴对称图形的是( ) A . B . C . D .12.下列各式中,属于分式的是( )A .x ﹣1B .2mC .3bD .34(x+y ) 13.关于等腰三角形,以下说法正确的是( )A .有一个角为40°的等腰三角形一定是锐角三角形B .等腰三角形两边上的中线一定相等C .两个等腰三角形中,若一腰以及该腰上的高对应相等,则这两个等腰三角形全等D .等腰三角形两底角的平分线的交点到三边距离相等14.下列分式中,x 取任意实数总有意义的是( ) A .21x x+ B .221(2)x x -+ C .211x x -+ D .2x x + 15.将直线y =12x ﹣1向右平移3个单位,所得直线是( ) A .y =12x +2 B .y =12x ﹣4 C .y =12x ﹣52 D .y =12x +12二、填空题16.如图,△ABC 的顶点都在正方形网格格点上,点A 的坐标为(-1,4).将△ABC 沿y 轴翻折到第一象限,则点C 的对应点C′的坐标是_____.17.如图,已知函数y =3x +b 和y =ax -3的图象交于点P(-2,-5),则根据图象可得不等式3x +b >ax -3的解集是________.18.若等腰三角形的两边长为10cm ,5cm ,则周长为__________cm .19.在平面直角坐标系中,(2,3)A -、(4,4)B ,点P 是x 轴上一点,且PA PB =,则点P 的坐标是__________.20.在平面直角坐标系中,把直线y=-2x+3沿y 轴向上平移两个单位后,得到的直线的函数关系式为_____.21.已知某地的地面气温是20℃,如果每升高1000m 气温下降6℃,则气温t (℃)与高度h (m )的函数关系式为_____.22.将一次函数y =2x 的图象向上平移1个单位,所得图象对应的函数表达式为__________.23.在平面直角坐标系中,已知线段AB 的两个端点坐标分别是A (-4,-1),B (1,1),将线段AB 平移后得到线段A B ''(点A 的对应点为A '),若点A '的坐标为(-2,2)则点B '的坐标为________________24.如图,等腰Rt △OAB ,∠AOB =90°,斜边AB 交y 轴正半轴于点C ,若A (3,1),则点C 的坐标为_____.25.若分式2223x x -+的值为零,则x 的值等于___. 三、解答题26.(1)计算:03( 3.14)98|3|π--+-(2)求x 的值:228x =.27.某商场计划销售甲、乙两种产品共200件,每销售1件甲产品可获得利润0.4万元, 每销售1件乙产品可获得利润0.5万元,设该商场销售了甲产品x (件),销售甲、乙两种产品获得的总利润为y(万元).(1)求y与x之间的函数表达式;(2)若每件甲产品成本为0.6万元,每件乙产品成本为0.8万元,受商场资金影响,该商场能提供的进货资金至多为150万元,求出该商场销售甲、乙两种产品各为多少件时,能获得最大利润. 28.在△ABC中,AB=6,AC=BC=5,将△ABC绕点A按顺时针方向旋转,得到△ADE,旋转角为α(0°<α<180°),点B的对应点为点D,点C的对应点为点E,连接BD,BE.(1)如图,当α=60°时,延长BE交AD于点F.①求证:△ABD是等边三角形;②求证:BF⊥AD,AF=DF;③请直接写出BE的长;(2)在旋转过程中,过点D作DG垂直于直线AB,垂足为点G,连接CE,当∠DAG=∠ACB,且线段DG与线段AE无公共点时,请直接写出BE+CE的值.29.如图,函数483y x=-+的图像分别与 x轴、 y轴交于 A、 B两点,点 C在 y轴上,AC平分OAB∠.(1) 求点 A、 B的坐标;(2) 求ABC的面积;(3) 点 P在坐标平面内,且以A、 B、P为顶点的三角形是等腰直角三角形,请你直接写出点 P的坐标.30.一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.(1)求y关于x的函数关系式;(不需要写定义域)(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?31.如图,正比例函数y=34x与一次函数y=ax+7的图象相交于点P(4,n),过点A(2,0)作x轴的垂线,交一次函数的图象于点B,连接OB.(1)求a值;(2)求△OBP的面积;(3)在坐标轴的正半轴上存在点Q,使△POQ是以OP为腰的等腰三角形,请直接写出Q 点的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】先根据勾股定理求出正方形对角线的长,然后根据实数与数轴的关系解答即可.【详解】22112,∴点A2.故选C.【点睛】本题考查了勾股定理,以及实数与数轴,主要是数轴上无理数的作法,需熟练掌握.2.A解析:A【解析】【分析】根据平面直角坐标系中各象限内点的坐标特征对各选项分析判断即可得解.【详解】解:A.(2,-3)在第四象限,故本选项正确;B.(-4,5)在第二象限,故本选项错误;C.(1,0)在x轴正半轴上,故本选项错误;D.(-8,-1)在第三象限,故本选项错误.故选A.【点睛】本题考查了平面直角坐标系中象限内点的坐标特征,解决本题的关键是熟练掌握每个象限的坐标特征.3.C解析:C【解析】【分析】只有0和1的算术平方根与立方根相等.【详解】∴a为0或1.故选:C.【点睛】本题考查了立方根:如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.也考查了算术平方根.4.A解析:A【解析】【分析】先根据一次函数的增减性判断出k的符号,再对各选项进行逐一分析即可.【详解】∵一次函数y=kx+2(k≠0)的函数值y随x的增大而增大,∴k>0.A. ∵当x=-2,y=-4时,-2k+3=-4,解得k=3.5>0,∴此点符合题意,故本选项正确;B. ∵当x=1,y=2时, k+3=2,解得k=-1<0,∴此点不符合题意,故本选项错误;C. ∵当x=-2,y=4时,-2k+3=4,解得k=−0.5<0,∴此点不符合题意,故本选项错误;D. ∵当x=2,y=−1时,2k+3=−1,解得k=-2<0,∴此点不符合题意,故本选项错误.故答案选A..【点睛】本题考查的知识点是一次函数图像上点的坐标特征,解题的关键是熟练的掌握一次函数图像上点的坐标特征.5.B解析:B【解析】【分析】根据无理数的定义结合算术平方根和立方根逐一判断即可得.【详解】2=,为有理数,故该选项错误;D. 2-,为有理数,故该选项错误;D. 227,为有理数,故该选项错误.故选B.【点睛】本题考查无理数的定义,立方根,算术平方根.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.6.A解析:A【解析】【分析】已知给出了等腰三角形的一个内角的度数,但没有明确这个内角是顶角还是底角,因此要分类讨论.【详解】解:(1)若等腰三角形一个底角为92°,因为92°+92°=184°>180°,所以这种情况不可能出现,舍去;(2)等腰三角形的顶角为92°.因此这个等腰三角形的顶角的度数为92°.故选A.【点睛】本题考查了等腰三角形的性质.如果已知等腰三角形的一个内角要求它的顶角,需要分该内角是顶角和这个内角是底角两种情况讨论.本题能根据92°角是钝角判断出92°只能是顶角7.C解析:C【解析】分析:根据一次函数的k 、b 的符号确定其经过的象限即可确定答案.详解:∵一次函数y x b =+中100k b =-,,∴一次函数的图象经过一、二、四象限,故选C .点睛:主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y kx b =+的图象有四种情况:①当k >0,b >0,函数y =kx +b 的图象经过第一、二、三象限;②当k >0,b <0,函数y =kx +b 的图象经过第一、三、四象限;③当k <0,b >0时,函数y =kx +b 的图象经过第一、二、四象限;④当k <0,b <0时,函数y =kx +b 的图象经过第二、三、四象限.8.C解析:C【解析】【分析】根据函数图象的性质判断系数k >0,则该函数图象经过第一、三象限,由函数图象与y 轴交于负半轴,则该函数图象经过第一、三、四象限,由此得到结论.【详解】∵一次函数y=kx ﹣1的图象的y 的值随x 值的增大而增大,∴k >0,A 、把点(﹣5,3)代入y=kx ﹣1得到:k=﹣45<0,不符合题意; B 、把点(1,﹣3)代入y=kx ﹣1得到:k=﹣2<0,不符合题意;C 、把点(2,2)代入y=kx ﹣1得到:k=32>0,符合题意; D 、把点(5,﹣1)代入y=kx ﹣1得到:k=0,不符合题意,故选C .【点睛】考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k >0是解题的关键.9.B解析:B【解析】【分析】由垂直平分线的性质可得AE=BE ,进而可得∠EAB=∠ABE ,根据三角形外角性质可求出∠A 的度数,利用等腰三角形性质求出∠ABC 的度数.【详解】∵DE 是AC 的垂直平分线,∴∠A=∠ABE ,∵76BEC ∠=,∠BEC=∠EAB+∠ABE ,∴∠A=76°÷2=38°,∵AB=AC ,∴∠C=∠ABC=(180°-38°)÷2=71°,故选B.【点睛】本题考查线段垂直平分线的性质、等腰三角形的性质及外角性质.线段垂直平分线上的点到线段两端的距离相等;等腰三角形的两个底角相等;三角形的外角定义和它不相邻的两个内角的和,熟练掌握相关性质是解题关键.10.B解析:B【解析】【分析】根据平方根的意义求解即可,正数a 有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.【详解】∵(±2)2=4,∴4的平方根是±2,即2±.故选B.【点睛】本题考查了平方根的意义,如果个一个数x 的平方等于a ,即x 2=a ,那么这个数x 叫做a 的平方根.11.B解析:B【解析】【分析】直接根据轴对称图形的概念分别解答得出答案.【详解】A 、不是轴对称图形,不合题意;B 、是轴对称图形,符合题意;C 、不是轴对称图形,不符合题意;D 、不是轴对称图形,不合题意.故选:B .【点睛】本题考查的是轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.12.B【解析】【分析】利用分式的定义判断即可.分式的分母中必须含有字母,分子分母均为整式.【详解】解:2m是分式,故选:B.【点睛】此题考查了分式的定义,熟练掌握分式的定义是解本题的关键.13.D解析:D【解析】【分析】根据全等三角形的判定定理,等腰三角形的性质,三角形的内角和判断即可.【详解】解:A:如果40︒的角是底角,则顶角等于100︒,故三角形是钝角三角形,此选项错误;B、当两条中线为两腰上的中线时,可知两条中线相等,当两条中线一条为腰上的中线,一条为底边上的中线时,则这两条中线不一定相等,∴等腰三角形的两条中线不一定相等,此选项错误;C、如图,△ABC和△ABD中,AB=AC=AD,CD∥AB,DG是△ABD 的AB边高,CH是是△ABC 的AB边高,则DG=CH,但△ABC和△ABD不全等;故此选项错误;D、三角形的三个内角的角平分线交于一点,该点叫做三角形的内心.内心到三边的距离相等.故此选项正确;故选:D.【点睛】本题考查了全等三角形的判定,等腰三角形的性质,三角形的内角和,熟练掌握各知识点是解题的关键.14.C解析:C【解析】【分析】根据分式有意义的条件是分母不等于零即可判断.【详解】A.x=0时,x2=0,A选项不符合题意;B.x=﹣2时,分母为0,B选项不符合题意;C.x取任意实数总有意义,C选项符号题意;D.x=﹣2时,分母为0.D选项不符合题意.故选:C.【点睛】此题主要考查分式有意义的条件,熟练掌握,即可解题. 15.C解析:C【解析】【分析】直接根据“左加右减”的原则进行解答即可.【详解】由“左加右减”的原则可知,将直线y=12x﹣1向右平移3个单位,所得直线的表达式是y=12(x﹣3)﹣1,即y=12x﹣52.故选:C.【点睛】此题主要考查一次函数的平移,熟练掌握平移规律,即可解题.二、填空题16.(3,1)【解析】【分析】关于y轴对称的点的坐标的特征:横坐标互为相反数,纵坐标相同. 【详解】由题意得点C(-3,1)的对应点C′的坐标是(3,1).考点:关于y轴对称的点的坐标【点睛解析:(3,1)【解析】【分析】关于y轴对称的点的坐标的特征:横坐标互为相反数,纵坐标相同.【详解】由题意得点C(-3,1)的对应点C′的坐标是(3,1).考点:关于y轴对称的点的坐标【点睛】本题属于基础题,只需学生熟练掌握关于y轴对称的点的坐标的特征,即可完成.17.x>-2【解析】【分析】根据一次函数的图象和两函数的交点坐标即可得出答案.【详解】解:观察图象知,当x>-2时,y=3x+b的图象在y=ax-3的图象的上方,故该不等式的解集为x>-2故解析:x>-2【解析】【分析】根据一次函数的图象和两函数的交点坐标即可得出答案.【详解】解:观察图象知,当x>-2时,y=3x+b的图象在y=ax-3的图象的上方,故该不等式的解集为x>-2故答案为:x>-2【点睛】本题考查了议程函数与一元一次不等式的应用,主要考查学生的观察能力和理解能力,题型较好,难度不大.18.【解析】【分析】此题有两种可能:10厘米的边长做腰或5厘米的边长做腰进行分类讨论,结合三角形三边关系,从而求解.【详解】解:①以10cm为腰时,三角形周长为10+10+5=25cm;②以5解析:25cm【解析】【分析】此题有两种可能:10厘米的边长做腰或5厘米的边长做腰进行分类讨论,结合三角形三边关系,从而求解.【详解】解:①以10cm为腰时,三角形周长为10+10+5=25cm;②以5cm为腰,因为5+5=10,不符合三角形两边之和大于第三边,此情况不成立;故答案为:25cm.【点睛】此题主要考查三角形三边关系及等腰三角形的性质,注意分类讨论思想的应用是本题的解题关键.19.(,0)【解析】【分析】画图,设点的坐标是(x,0),因为PA=OB,根据勾股定理可得:AC2+PC2=BD2+PD2.【详解】已知如图所示;设点的坐标是(x,0),因为PA=OB根据勾解析:(1912,0)【解析】【分析】画图,设点P的坐标是(x,0),因为PA=OB,根据勾股定理可得:AC2+PC2=BD2+PD2.【详解】已知如图所示;设点P的坐标是(x,0),因为PA=OB根据勾股定理可得:AC2+PC2=BD2+PD2所以32+(x+2)2=42+(4-x)2解得1912 x所以点P的坐标是(1912,0)故答案为:(1912,0)【点睛】考核知识点:勾股定理.数形结合,根据勾股定理建立方程是关键. 20.y=-2x+5.【解析】【分析】根据平移法则上加下减可得出平移后的解析式.【详解】解:由题意得:平移后的解析式为:y=-2x+3+2=-2x+5.故答案为y=-2x+5.【点睛】本题解析:y=-2x+5.【解析】【分析】根据平移法则上加下减可得出平移后的解析式.【详解】解:由题意得:平移后的解析式为:y=-2x+3+2=-2x+5.故答案为y=-2x+5.【点睛】本题考查一次函数图形的平移变换和函数解析式之间的关系,解题关键是在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.21.t=﹣0.006h+20【解析】【分析】根据题意得到每升高1m气温下降0.006℃,由此写出关系式即可.【详解】∵每升高1000m气温下降6℃,∴每升高1m气温下降0.006℃,∴气温解析:t=﹣0.006h+20【解析】【分析】根据题意得到每升高1m气温下降0.006℃,由此写出关系式即可.【详解】∵每升高1000m气温下降6℃,∴每升高1m气温下降0.006℃,∴气温t(℃)与高度h(m)的函数关系式为t=﹣0.006h+20,故答案为:t=﹣0.006h+20.【点睛】本题考查了函数关系式,正确找出气温与高度之间的关系是解题的关键.22.y=2x+1.【解析】由“上加下减”的原则可知,将函数y=2x的图象向上平移1个单位所得函数的解析式为y=2x+1,故答案为y=2x+1.解析:y=2x+1.【解析】由“上加下减”的原则可知,将函数y=2x的图象向上平移1个单位所得函数的解析式为y=2x+1,故答案为y=2x+1.23.(3,4)【解析】分析:首先根据点A和点A′的坐标得出平移的方向和平移的数量,然后根据平移法则得出点B′的坐标.详解:∵A的坐标为(-4,-1),A′的坐标为(-2,2),∴平移法则为:先向解析:(3,4)【解析】分析:首先根据点A和点A′的坐标得出平移的方向和平移的数量,然后根据平移法则得出点B′的坐标.详解:∵A的坐标为(-4,-1),A′的坐标为(-2,2),∴平移法则为:先向右平移2个单位,再向上平移3个单位,∴点B′的坐标为(3,4).点睛:本题主要考查的是线段的平移法则,属于基础题型.线段的平移法则就是点的平移法则,属于基础题型.24.(0,)【解析】【分析】过B作BE⊥y轴于E,过A作AF⊥x轴于F,根据全等三角形的性质得到B(﹣1,3),设直线AB的解析式为y=kx+b,求得直线AB的解析式为y=﹣x+,于是得到结论.解析:(0,52)【解析】【分析】过B作BE⊥y轴于E,过A作AF⊥x轴于F,根据全等三角形的性质得到B(﹣1,3),设直线AB的解析式为y=kx+b,求得直线AB的解析式为y=﹣12x+52,于是得到结论.【详解】过B作BE⊥y轴于E,过A作AF⊥x轴于F,如图所示:∴∠BCO=∠AFO=90°,∵A(3,1),∴OF=3,AF=1,∵∠AOB=90°,∴∠BOC+∠OBC=∠BOC+∠AOF=90°,∴∠BOC=∠AOF,∵OA=OB,∴△BOE≌△AOF(AAS),∴BE=AF=1,OE=OF=3,∴B(﹣1,3),设直线AB的解析式为y=kx+b,∴3 31k bk b-+=⎧⎨+=⎩,解得:1252kb⎧=-⎪⎪⎨⎪=⎪⎩,∴直线AB的解析式为y=﹣12x+52,当x=0时,y=52,∴点C的坐标为(0,52),故答案为:(0,52).【点睛】此题主要考查全等三角形的判定与性质,解题关键是利用全等得出点坐标进而求得解析式. 25.【解析】【分析】当分式的值为0时,分式的分子为0,分母不为0,由此求解即可.【详解】解:∵分式的值为零,且∴x﹣2=0,解得:x =2.故答案为:2.【点睛】本题考查了分式值为0的解析:【解析】【分析】当分式的值为0时,分式的分子为0,分母不为0,由此求解即可.【详解】 解:∵分式2223x x -+的值为零,且2230x +≥ ∴x ﹣2=0,解得:x =2.故答案为:2.【点睛】 本题考查了分式值为0的条件,灵活利用分式值为0的条件是解题的关键.三、解答题26.(1)3;(2)2x =±【解析】【分析】(1)先根据零指数幂、算术平方根、立方根、绝对值的意义逐项化简,再算加减即可; (2)根据平方根的意义求解即可.【详解】解:(1)原式1323=-++3=;(2)∵228x =,∴24x =,∴2x =±.【点睛】本题考查了实数的混合运算,熟练掌握零指数幂、算术平方根、立方根、绝对值的意义是解答本题的关键.27.(1) y=-0.1x+100 (2) 该商场销售甲50件,乙150件时,能获得最大利润.【解析】【分析】(1) 根据题意即可列出一次函数,化简即可;(2) 设甲的件数为x ,那么乙的件数为:200-x ,根据题意列出不等式0.6x+0.8(200-x)≤150,解出,根据y=-0.1x+100的性质,即可求出.【详解】解:(1)由题意可得:y=0.4x+0.5×(200-x )得到:y=-0.1x+100所以y与x之间的函数表达式为y=-0.1x+100(2)设甲的件数为x,那么乙的件数为:200-x,依题意可得:0.6x+0.8(200-x)≤150解得:x≥50由y=-0.1x+100得到y随x的增大而减小所以当利润最大时,x值越小利润越大所以甲产品x=50 乙产品200-x=150答:该商场销售甲50件,乙150件时,能获得最大利润.【点睛】此题主要考查了一次函数及一元一次不等式,熟练掌握实际生活转化为数学模式是解题的关键.28.(1)①②详见解析;③﹣4;(2)13.【解析】【分析】(1)①由旋转性质知AB=AD,∠BAD=60°即可得证;②由BA=BD、EA=ED根据中垂线性质即可得证;③分别求出BF、EF的长即可得;(2)由∠ACB+∠BAC+∠ABC=180°、∠DAG+∠DAE+∠BAE=180°、∠DAG=∠ACB、∠DAE=∠BAC得∠BAE=∠BAC且AE=AC,根据三线合一可得CE⊥AB、AC=5、AH=3,继而知CE=2CH=8、BE=5,即可得答案.【详解】(1)①∵△ABC绕点A顺时针方向旋转60°得到△ADE,∴AB=AD,∠BAD=60°,∴△ABD是等边三角形;②由①得△ABD是等边三角形,∴AB=BD,∵△ABC绕点A顺时针方向旋转60°得到△ADE,∴AC=AE,BC=DE,又∵AC=BC,∴EA=ED,∴点B、E在AD的中垂线上,∴BE是AD的中垂线,∵点F在BE的延长线上,∴BF⊥AD, AF=DF;③由②知BF⊥AD,AF=DF,∴AF=DF=3,∵AE=AC=5,∴EF=4,∵在等边三角形ABD中,BF=AB•sin∠BAF=6×32=33,∴BE=BF﹣EF=33﹣4;(2)如图所示,∵∠DAG=∠ACB,∠DAE=∠BAC,∴∠ACB+∠BAC+∠ABC=∠DAG+∠DAE+∠ABC=180°,又∵∠DAG+∠DAE+∠BAE=180°,∴∠BAE=∠ABC,∵AC=BC=AE,∴∠BAC=∠ABC,∴∠BAE=∠BAC,∴AB⊥CE,且CH=HE=12 CE,∵AC=BC,∴AH=BH=12AB=3,则CE=2CH=8,BE=5,∴BE+CE=13.【点睛】本题主要考查旋转的性质、等边三角形的判定与性质、中垂线的性质、三角形内角和定理等知识点,熟练掌握旋转的性质是解题的关键.29.(1)A(6,0),B(0,8);(2)15;(3)使△PAB为等腰直角三角形的P点坐标为(14,6)或(-2,-6)或(8,14)或(-8,2)或(-1,1)或(7,7).【解析】【分析】(1)在函数解析式中分别令y=0和x=0,解相应方程,可求得A、B的坐标;(2)过C作CD⊥AB于点D,由勾股定理可求得AB,由角平分线的性质可得CO=CD,再根据S△AOB=S△AOC+S△ABC,可求得CO,则可求得△ABC的面积;(3)可设P(x,y),则可分别表示出AP2、BP2,分∠PAB=90°、∠PBA=90°和∠APB=90°三种情况,分别可得到关于x、y的方程组,可求得P点坐标.【详解】解:(1)在483y x=-+中,令y=0可得0=-43x+8,解得x=6,令x=0,解得y=8,∴A(6,0),B(0,8);(2)如图,过点C作CD⊥AB于点D,∵AC平分∠OAB,∴CD=OC,由(1)可知OA=6,OB=8,∴AB=10,∵S△AOB=S△AOC+S△ABC,∴12×6×8=12×6×OC+12×10×OC,解得OC=3,∴S△ABC=12×10×3=15;(3)设P(x,y),则AP2=(x-6)2+y2,BP2=x2+(y-8)2,且AB2=100,∵△PAB为等腰直角三角形,∴有∠PAB=90°、∠PBA=90°和∠APB=90°三种情况,①当∠PAB=90°时,则有PA2=AB2且PA2+AB2=BP2,即222222(6)100(6)100(8)x yx y x y⎧-+=⎨-++=+-⎩,解得146xy=⎧⎨=⎩或26xy=-⎧⎨=-⎩,此时P点坐标为(14,6)或(-2,-6);②∠PBA=90°时,有PB2=AB2且PB2+AB2=PA2,即222222(8)100(8)100(6)x yx y x y⎧+-=⎨+-+=-+⎩,解得814xy=⎧⎨=⎩或82xy=-⎧⎨=⎩,此时P点坐标为(8,14)或(-8,2);③∠APB=90°时,则有PA2=PB2且PA2+PB2=AB2,即22222222(6)(8)(6)(8)100x y x yx y x y⎧-+=+-⎨-+++-=⎩,解得11xy=-⎧⎨=⎩或77xy=⎧⎨=⎩,此时P点坐标为(-1,1)或(7,7);综上可知使△PAB为等腰直角三角形的P点坐标为(14,6)或(-2,-6)或(8,14)或(-8,2)或(-1,1)或(7,7).【点睛】本题为一次函数的综合应用,涉及函数图象与坐标轴的交点、勾股定理、三角形的面积、角平分线的性质、等腰直角三角形的性质、分类讨论思想及方程思想等知识.在(1)中注意函数图象与坐标轴的交点的求法,在(2)中利用角平分线的性质和等积法求得OC 的长是解题的关键,在(3)中用P 点坐标分别表示出PA 、PB 的长,由等腰直角三角形的性质得到关于P 点坐标的方程组是解题的关键.本题考查知识点较多,综合性较强,计算较大,难度较大.30.(1)该一次函数解析式为y=﹣110x+60.(2)在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.【解析】【分析】(1)根据函数图象中点的坐标利用待定系数法求出一次函数解析式;(2)根据一次函数图象上点的坐标特征即可求出剩余油量为8升时行驶的路程,即可求得答案.【详解】(1)设该一次函数解析式为y=kx+b ,将(150,45)、(0,60)代入y=kx+b 中,得1504560k b b +=⎧⎨=⎩,解得:11060k b ⎧=-⎪⎨⎪=⎩, ∴该一次函数解析式为y=﹣110x+60; (2)当y=﹣110x+60=8时, 解得x=520,即行驶520千米时,油箱中的剩余油量为8升.530﹣520=10千米,油箱中的剩余油量为8升时,距离加油站10千米,∴在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.【点睛】本题考查了一次函数的应用,熟练掌握待定系数法,弄清题意是解题的关键.31.(1)a=-1;(2)7;(3)点Q 的坐标为(5,0)或(8,0)或(0,5)或(0,6)【解析】【分析】(1)先由点P 在正比例函数图象上求得n 的值,再把点P 坐标代入一次函数的解析式即可求出结果;(2)易求点B 坐标,设直线AB 与OP 交于点C ,如图,则点C 坐标可得,然后利用△OBP 的面积=S △BCO +S △BCP 代入相关数据计算即可求出结果;(3)先根据勾股定理求出OP 的长,再分两种情况:当OP=OQ 时,以O 为圆心,OP 为半径作圆分别交y 轴和x 轴的正半轴于点Q 1、Q 2,如图2,则点Q 1、Q 2即为所求,然后利用等腰三角形的定义即可求出结果;当PO=PQ时,以P为圆心,OP为半径作圆分别交y轴和x轴的正半轴于点Q4、Q3,如图3,则点Q4、Q3也为所求,然后利用等腰三角形的性质即可求得结果.【详解】解:(1)把点P(4,n)代入y=34x,得:n=34×4=3,∴P(4,3),把P(4,3)代入y=ax+7得,3=4a+7,∴a=﹣1;(2)∵A(2,0),AB⊥x轴,∴B点的横坐标为2,∵点B在y=﹣x+7上,∴B(2,5),设直线AB与OP交于点C,如图1,当x=2时,33242y=⨯=,∴C(2,32),∴△OBP的面积=S△BCO+S△BCP=12⨯2×(5﹣32)+12⨯(4﹣2)×(5﹣32)=7;(3)过点P作PD⊥x轴于点D,∵P(4,3),∴OD=4,PD=3,∴22345OP=+=,当OP=OQ时,以O为圆心,OP为半径作圆分别交y轴和x轴的正半轴于点Q1、Q2,如图2,则点Q1、Q2即为所求,且Q2(5,0)、Q1(0,5);当PO=PQ时,以P为圆心,OP为半径作圆分别交y轴和x轴的正半轴于点Q4、Q3,如图3,则点Q4、Q3也为所求,由于PO=PQ3,∴DQ3=DO=4,∴Q3(8,0),过点P作PF⊥y轴于点F,同理可得:FQ4=FO=3,∴Q4(0,6).综上所述,在坐标轴的正半轴上存在点Q,使△POQ是以OP为腰的等腰三角形,点Q的坐标为(5,0)或(8,0)或(0,5)或(0,6).【点睛】本题考查了一次函数图象上点的坐标特征、勾股定理、三角形的面积和等腰三角形的性质等知识,属于常考题型,熟练掌握一次函数的相关知识和等腰三角形的性质是解题的关键.。
泰州市八年级上期末数学试卷(附答案)-精品
2017-2018学年江苏省泰州市八年级(上)期末数学试卷一、选择题(本大题共6小题,每小题3分,计18分)1.(3分)在平面直角坐标系中,点P(﹣2,3)在第()象限.A.一B.二C.三D.四2.(3分)若分式有意义,则x的取值范围是()A.x≠2 B.x=2 C.x>2 D.x<23.(3分)为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,征求了所有学生的意见,根据赞成、反对、无所谓三种意见的人数之比画出扇形统计图,图中α的度数为()A.36°B.20°C.10°D.无法确定4.(3分)在平面直角坐标系中,把直线y=﹣2x+3沿y轴向上平移两个单位长度后,得到的直线的函数关系式为()A.y=﹣2x+1 B.y=﹣2x﹣5 C.y=﹣2x+5 D.y=﹣2x+75.(3分)如图,在△ABC中,∠ABC和∠ACB的平分线相交于点F,过F作DE∥BC,交AB 于点D,交AC于点E.若BD=4,DE=7,则线段EC的长为()A.3 B.4 C.3.5 D.26.(3分)若关于x的分式方程=2的解为非负数,则m的取值范围是()A.m>﹣1 B.m≥1 C.m>﹣1且m≠1 D.m≥﹣1且m≠1二、填空题(本大题共10小题,每小题3分,计30分)7.(3分)2026精确到百位记作为.8.(3分)如果分式的值为零,那么x= .9.(3分)已知甲、乙两人在同一地点出发,甲往东走4km ,乙往南走了3km ,这时甲、乙两人相距 km .10.(3分)如果点P 坐标为(3,﹣4),那么点P 到x 轴的距离为 .11.(3分)若+(1﹣y )2=0,则= .12.(3分)某班在一次适应性考试中,分数落在130﹣140分数段的人数为18人,频率为0.3,则该班共有 人.13.(3分)如图,直线y 1=x+n 与y 2=mx ﹣1相交于点N ,则关于x 的不等式x+n <mx ﹣1的解集为 .14.(3分)如图,折叠长方形纸片ABCD ,使点D 落在边BC 上的点F 处,折痕为AE .已知AB=3cm ,BC=5cm .则EC 的长为 cm .15.(3分)分式的值是正整数,则整数m= .16.(3分)已知∠AOB=45°,点P 在∠AOB 内部,点P 1与点P 关于OA 对称,点P 2与点P 关于OB 对称,连接P 1P 2交OA 、OB 于E 、F ,若P 1E=,OP=,则EF 的长度是 .三、解答题(本大题共10小题,共102分.)17.(10分)(1)计算:(3﹣π)0﹣|﹣2|﹣(2)解方程: +2=18.(8分)先化简:÷(a﹣),并从0、1、2中选取一个恰当的数值代入求值.19.(10分)已知y+2与x成正比,当x=1时,y=﹣6.(1)求y与x之间的函数关系式;(2)若点(a,2)在这个函数图象上,求a的值.20.(10分)家庭过期药品属于“国家危险废物“处理不当将污染环境,危害健康.某市药监部门为了了解市民家庭处理过期药品的方式,决定对全市家庭作一次简单随机抽样调查本次抽样调查发现,接受调查的家庭都有过期药品,现将有关数据呈现如图:(1)求m、n的值;(2)补全条形统计图;(3)家庭过期药品的正确处理方式是送回收站,若该市有180万户家庭,请估计大约有多少户家庭处理过期药品的方式是送回收站.21.(8分)某社区计划对面积为400m2的区域进行绿化.经测算,甲队每天能完成绿化面积是乙队每天能完成绿化面积的2倍,且甲队单独完成比乙队单独完成少用4天.求甲、乙两队每天单独完成绿化的面积.22.(10分)如图,△ABC中,边AB、AC的垂直平分线分别交BC于D、E.(1)若BC=10,则△ADE周长是多少?为什么?(2)若∠BAC=128°,则∠DAE的度数是多少?为什么?23.(10分)已知一次函数y=x+b ,它的图象与两坐标轴所围成的图形的面积等于2.(1)求b 的值;(2)若函数y=x+b 的图象交y 轴于正半轴,则当x 取何值时,y 的值是正数?24.(10分)某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如表:(1)求日销售量y (件)与每件产品的销售价x (元)之间的函数表达式;(2)当每件产品的销售价定为35元时,此时每日的销售利润是多少元?25.(12分)甲,乙两辆汽车分别从A ,B 两地同时出发,沿同一条公路相向而行,乙车出发2h 后休息,与甲车相遇后,继续行驶.设甲,乙两车与B 地的路程分别为 y 甲(km ),y 乙(km ),甲车行驶的时间为x (h ),y 甲,y 乙与x 之间的函数图象如图所示,结合图象解答下列问题:(1)a= ;(2)求乙车与甲车相遇后y 乙与x 的函数解析式,并写出自变量x 的取值范围;(3)若a ≤x ≤5,则当x 为何值时,两车相距100km .26.(14分)如图,在平面直角坐标系xOy 中,点A 的坐标为(0,3),点B 的坐标为(4,0),C 为第一象限内一点,AC ⊥y 轴,BC ⊥x 轴,D 坐标为(m ,0)(0<m <4).(1)若D 为OB 的中点,求直线DC 的解析式;(2)若△ACD 为等腰三角形,求m 的值;(3)E 为四边形OACB 的某一边上一点.①若E 在边BC 上,满足△AOD ≌△DBE ,求m 的值;②若使△EOD 为等腰三角形的点E 有且只有4个,直接写出符合条件的m 的值.2017-2018学年江苏省泰州市姜堰市八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,计18分)1.(3分)在平面直角坐标系中,点P(﹣2,3)在第()象限.A.一B.二C.三D.四【解答】解:点P(﹣2,3)在第二象限.故选:B.2.(3分)若分式有意义,则x的取值范围是()A.x≠2 B.x=2 C.x>2 D.x<2【解答】解:由题意得,x﹣2≠0,解得x≠2.故选:A.3.(3分)为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,征求了所有学生的意见,根据赞成、反对、无所谓三种意见的人数之比画出扇形统计图,图中α的度数为()A.36°B.20°C.10°D.无法确定【解答】解:由图知“无所谓”意见人数占总人数的10%,所以图中α的度数为360°×10%=36°,故选:A.4.(3分)在平面直角坐标系中,把直线y=﹣2x+3沿y轴向上平移两个单位长度后,得到的直线的函数关系式为()A.y=﹣2x+1 B.y=﹣2x﹣5 C.y=﹣2x+5 D.y=﹣2x+7【解答】解:由题意得:平移后的解析式为:y=﹣2x+3+2=﹣2x+5.故选:C.5.(3分)如图,在△ABC中,∠ABC和∠ACB的平分线相交于点F,过F作DE∥BC,交AB 于点D,交AC于点E.若BD=4,DE=7,则线段EC的长为()A.3 B.4 C.3.5 D.2【解答】解:∵∠ABC和∠ACB的平分线相交于点F,∴∠DBF=∠FBC,∠ECF=∠BCF,∵DF∥BC,交AB于点D,交AC于点E.∴∠DFB=∠DBF,∠CFE=∠BCF,∴BD=DF=4,FE=CE,∴CE=DE﹣DF=7﹣4=3.故选:A.6.(3分)若关于x的分式方程=2的解为非负数,则m的取值范围是()A.m>﹣1 B.m≥1 C.m>﹣1且m≠1 D.m≥﹣1且m≠1【解答】解:去分母得:m﹣1=2x﹣2,解得:x=,由题意得:≥0且≠1,解得:m≥﹣1且m≠1,故选:D.二、填空题(本大题共10小题,每小题3分,计30分)7.(3分)2026精确到百位记作为 2.0×103.【解答】解:2026精确到百位记作为2.0×103,故答案为:2.0×103.8.(3分)如果分式的值为零,那么x= 3 .【解答】解:由题意,得x﹣3=0且x2+1≠0,解得 x=3,故答案为:3.9.(3分)已知甲、乙两人在同一地点出发,甲往东走4km,乙往南走了3km,这时甲、乙两人相距 5 km.【解答】解:如图,∵∠AOB=90°,OA=4km,OB=3km∴AB==5km.10.(3分)如果点P坐标为(3,﹣4),那么点P到x轴的距离为 4 .【解答】解:点P(3,﹣4)到x轴的距离为4.故答案为:4.11.(3分)若+(1﹣y)2=0,则= 2 .【解答】解:∵+(1﹣y)2=0,∴x﹣4=0,1﹣y=0,[]解得:x=4,y=1,则==2.故答案为:2.12.(3分)某班在一次适应性考试中,分数落在130﹣140分数段的人数为18人,频率为0.3,则该班共有60 人.【解答】解:18÷0.3=60(人).故答案为:60.13.(3分)如图,直线y1=x+n与y2=mx﹣1相交于点N,则关于x的不等式x+n<mx﹣1的解集为x<﹣1 .【解答】解:观察图象,可知x+n<mx﹣1的解集为x<﹣1.故答案为 x<﹣114.(3分)如图,折叠长方形纸片ABCD,使点D落在边BC上的点F处,折痕为AE.已知AB=3cm,BC=5cm.则EC的长为cm.【解答】解:∵△AEF由△AED折叠而,∴AD=AF,DE=FE.在Rt△ABF中,AB=3cm,AF=5cm,∴BF==4cm,∴CF=BC﹣BF=1cm.设EC=xcm,则EF=ED=(3﹣x)cm,在Rt△CEF中,EF2=CE2+CF2,即(3﹣x)2=x2+12,解得:x=.故答案为:.15.(3分)分式的值是正整数,则整数m= 1 .【解答】解:由题意可知:2m ﹣1=1或2或4, 当2m ﹣1=1时,∴m=1,符合题意当2m ﹣1=2时,∴m=,不符合题意,当2m ﹣1=4时,∴m=,不符合题意,综上所述,m=1,故答案为:m=116.(3分)已知∠AOB=45°,点P 在∠AOB 内部,点P 1与点P 关于OA 对称,点P 2与点P 关于OB 对称,连接P 1P 2交OA 、OB 于E 、F ,若P 1E=,OP=,则EF 的长度是 .【解答】解:∵P ,P 1关于直线OA 对称,P 、P 2关于直线OB 对称,∴OP=OP 1=OP 2=,∠AOP=∠AOP 1,∠BOP=∠BOP 2, ∵∠AOB=45°,∴∠P 1OP 2=2∠AOP+2∠BOP=2(∠AOP+∠BOP )=90°,∴△P 1OP 2是等腰直角三角形,∴P 1P 2==2, 设EF=x ,∵P1E==PE,∴PF=P2F=﹣x,由轴对称可得,∠OPE=∠OP1E=45°,∠OPF=∠OP2F=45°,∴∠EPF=90°,∴PE2+PF2=EF2,即()2+(﹣x)2=x2,解得x=.故答案为:.[]三、解答题(本大题共10小题,共102分.)17.(10分)(1)计算:(3﹣π)0﹣|﹣2|﹣(2)解方程: +2=【解答】解:(1)原式=1﹣2+﹣=﹣1;(2)去分母得:﹣3+2x﹣8=1﹣x,解得:x=4,经检验x=4是方程的增根,方程无解.18.(8分)先化简:÷(a﹣),并从0、1、2中选取一个恰当的数值代入求值.【解答】解:原式=÷=•=,当a=2时,原式=.19.(10分)已知y+2与x成正比,当x=1时,y=﹣6.(1)求y与x之间的函数关系式;(2)若点(a,2)在这个函数图象上,求a的值.[xxk]【解答】解:(1)∵y+2与x成正比,∴设y﹣2=kx,将x=1、y=﹣6代入y+2=kx得﹣6+2=k×1,∴k=﹣4,∴y=﹣4x﹣2(2)∵点(a,2)在函数y=﹣4x﹣2图象上,∴2=﹣4a﹣2,∴a=﹣1.20.(10分)家庭过期药品属于“国家危险废物“处理不当将污染环境,危害健康.某市药监部门为了了解市民家庭处理过期药品的方式,决定对全市家庭作一次简单随机抽样调查本次抽样调查发现,接受调查的家庭都有过期药品,现将有关数据呈现如图:(1)求m、n的值;(2)补全条形统计图;(3)家庭过期药品的正确处理方式是送回收站,若该市有180万户家庭,请估计大约有多少户家庭处理过期药品的方式是送回收站.【解答】解:(1)∵抽样调査的家庭总户数为:80÷8%=1000(户),∴m%==20%,m=20,n%==6%,n=6.(2)C类户数为:1000﹣(80+510+200+60+50)=100,条形统计图补充如下:(3)180×10%=18(万户).若该市有180万户家庭,估计大约有18万户家庭处理过期药品的方式是送回收点.21.(8分)某社区计划对面积为400m2的区域进行绿化.经测算,甲队每天能完成绿化面积是乙队每天能完成绿化面积的2倍,且甲队单独完成比乙队单独完成少用4天.求甲、乙两队每天单独完成绿化的面积.【解答】解:设乙队每天单独完成绿化的面积为xm2,则甲队每天单独完成绿化的面积为2xm2,根据题意得:﹣=4,解得:x=50,经检验,x=50是原方程的根,且符合题意,[]∴2x=2×50=100.答:甲队每天能完成绿化面积的为100m2,乙队每天能完成绿化面积的为50m2.22.(10分)如图,△ABC中,边AB、AC的垂直平分线分别交BC于D、E.(1)若BC=10,则△ADE周长是多少?为什么?(2)若∠BAC=128°,则∠DAE的度数是多少?为什么?【解答】解:(1)∵DM、EN是AB、AC的垂直平分线,∴DA=DB,EA=EC,∴△ADE周长为:AD+AE+DE=DB+EC+DE=BC=10;(2)∵∠BAC=128°,∴∠B+∠C=52°,∵DA=DB,EA=EC,∴∠BAD=∠B,∠EAC=∠C,∴∠BAD+∠EAC=52°,∴∠DAE=128°﹣52°=76°.23.(10分)已知一次函数y=x+b,它的图象与两坐标轴所围成的图形的面积等于2.(1)求b的值;(2)若函数y=x+b的图象交y轴于正半轴,则当x取何值时,y的值是正数?【解答】解:(1)当x=0时,y=b,∴一次函数图象与y轴的交点坐标为(0,b);当y=x+b=0时,x=﹣b,∴一次函数图象与y轴的交点坐标为(﹣b,0).∴×|b|×|﹣b|=2,解得:b=±2.(2)∵函数y=x+b的图象交y轴于正半轴,∴一次函数为y=x+2,∵y的值是正数,∴x+2>0,解得x>﹣2.故当x>﹣2时,y的值是正数.24.(10分)某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如表:已知日销售量y 是销售价x 的一次函数.(1)求日销售量y (件)与每件产品的销售价x (元)之间的函数表达式;(2)当每件产品的销售价定为35元时,此时每日的销售利润是多少元?【解答】解:(1)设日销售量y (件)与每件产品的销售价x (元)之间的函数表达式是y=kx+b ,,解得,,即日销售量y (件)与每件产品的销售价x (元)之间的函数表达式是y=﹣x+40;(2)当每件产品的销售价定为35元时,此时每日的销售利润是:(35﹣10)(﹣35+40)=25×5=125(元),即当每件产品的销售价定为35元时,此时每日的销售利润是125元.25.(12分)甲,乙两辆汽车分别从A ,B 两地同时出发,沿同一条公路相向而行,乙车出发2h 后休息,与甲车相遇后,继续行驶.设甲,乙两车与B 地的路程分别为 y 甲(km ),y 乙(km ),甲车行驶的时间为x (h ),y 甲,y 乙与x 之间的函数图象如图所示,结合图象解答下列问题:(1)a= 3 ;(2)求乙车与甲车相遇后y 乙与x 的函数解析式,并写出自变量x 的取值范围;(3)若a ≤x ≤5,则当x 为何值时,两车相距100km .【解答】解:(1)设甲车行驶的函数解析式为y 甲=kx+b ,(k 是不为0的常数)y 甲=kx+b 图象过点(0,450),(5,0),得,解得,甲车行驶的函数解析式为y 甲=﹣90x+450,当y=180时,x=3(h),∴a=3,故答案为:3;(2)设乙车与甲车相遇后y乙与x的函数解析式y乙=kx+b,y乙=kx+b图象过点(3,180),(5,450),得,解得,乙车与甲车相遇后y乙与x的函数解析式y乙=135x﹣225(3≤x≤5);(3)3≤x≤5时,y乙减y甲等于100千米,即135x﹣225﹣(﹣90x+450)=100,解得x=,∴当x为时,两车相距100km.26.(14分)如图,在平面直角坐标系xOy中,点A的坐标为(0,3),点B的坐标为(4,0),C为第一象限内一点,AC⊥y轴,BC⊥x轴,D坐标为(m,0)(0<m<4).(1)若D为OB的中点,求直线DC的解析式;(2)若△ACD为等腰三角形,求m的值;(3)E为四边形OACB的某一边上一点.①若E在边BC上,满足△AOD≌△DBE,求m的值;②若使△EOD为等腰三角形的点E有且只有4个,直接写出符合条件的m的值.【解答】解:(1)∵A(0,3),B(4,0),四边形AOBC是矩形,∴OA=BC=3,OB=AC=4,∴C(4,3),∵点D为O B中点,∴D(2,0),设直线CD的解析式为y=kx+b,则有,解得,∴直线CD的解析式为y=x﹣3.(2)①当DA=DC时,D(2,0).②当AD=AC=4时,在Rt△AOD中,OD==,∴D(,0).③当CD=AC时,在Rt△BCD中,BD==,∴D(4﹣,0).(3)①∵△AOD≌△DBE,∴DB=OA=3,∴OD=OB﹣BD=1,∴m=1.②如图1中,当m=3时,使△EOD为等腰三角形的点E有且只有4个;如图2中,当E与C重合时,OD=DC=m,在Rt△CDB中,∵CD2=BD2+BC2,∴m2=(4﹣m)2+32,'∴m=.此时使△EOD为等腰三角形的点E有且只有4个;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年江苏省泰州市姜堰市八年级(上)期末数学试卷
一、选择题(本大题共6小题,每小题3分,计18分)
1.(3分)在平面直角坐标系中,点P(﹣2,3)在第()象限.A.一B.二C.三D.四
2.(3分)若分式1
x−2
有意义,则x的取值范围是()
A.x≠2B.x=2C.x>2D.x<2
3.(3分)为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,征求了所有学生的意见,根据赞成、反对、无所谓三种意见的人数之比画出扇形统计图,图中α的度数为()
A.36°B.20°C.10°D.无法确定4.(3分)在平面直角坐标系中,把直线y=﹣2x+3沿y轴向上平移两个单位长度后,得到的直线的函数关系式为()
A.y=﹣2x+1B.y=﹣2x﹣5C.y=﹣2x+5D.y=﹣2x+7 5.(3分)如图,在△ABC中,∠ABC和∠ACB的平分线相交于点F,过F作DE ∥BC,交AB于点D,交AC于点E.若BD=4,DE=7,则线段EC的长为()
A.3B.4C.3.5D.2
6.(3分)若关于x的分式方程m−1
x−1
=2的解为非负数,则m的取值范围是()
A.m>﹣1B.m≥1C.m>﹣1且m≠1D.m≥﹣1且m ≠1
二、填空题(本大题共10小题,每小题3分,计30分)
7.(3分)2026精确到百位记作为 .
8.(3分)如果分式x−3
x +1
的值为零,那么x= . 9.(3分)已知甲、乙两人在同一地点出发,甲往东走4km ,乙往南走了3km ,
这时甲、乙两人相距 km .
10.(3分)如果点P 坐标为(3,﹣4),那么点P 到x 轴的距离为 .
11.(3分)若 x −4+(1﹣y )2=0,则 xy = .
12.(3分)某班在一次适应性考试中,分数落在130﹣140分数段的人数为18
人,频率为0.3,则该班共有 人.
13.(3分)如图,直线y 1=x +n 与y 2=mx ﹣1相交于点N ,则关于x 的不等式x +n
<mx ﹣1的解集为 .
14.(3分)如图,折叠长方形纸片ABCD ,使点D 落在边BC 上的点F 处,折痕
为AE .已知AB=3cm ,BC=5cm .则EC 的长为 cm .
15.(3分)分式42m−1
的值是正整数,则整数m= . 16.(3分)已知∠AOB=45°,点P 在∠AOB 内部,点P 1与点P 关于OA 对称,点
P 2与点P 关于OB 对称,连接P 1P 2交OA 、OB 于E 、F ,若P 1E=12
,OP= 2,则EF 的长度是 .
三、解答题(本大题共10小题,共102分.)
17.(10分)(1)计算:(3﹣π)0﹣| 3﹣2|﹣ 3
(2)解方程:3
4−x +2=1−x x−4
18.(8分)先化简:a−1a ÷(a ﹣1a ),并从0、1、2中选取一个恰当的数值代入求值.
19.(10分)已知y +2与x 成正比,当x=1时,y=﹣6.
(1)求y 与x 之间的函数关系式;
(2)若点(a ,2)在这个函数图象上,求a 的值.
20.(10分)家庭过期药品属于“国家危险废物“处理不当将污染环境,危害健康.某
市药监部门为了了解市民家庭处理过期药品的方式,决定对全市家庭作一次简单随机抽样调查本次抽样调查发现,接受调查的家庭都有过期药品,现将有关数据呈现如图:
(1)求m 、n 的值;
(2)补全条形统计图;
(3)家庭过期药品的正确处理方式是送回收站,若该市有180万户家庭,请估
计大约有多少户家庭处理过期药品的方式是送回收站.。