2015步步高理科数学第六章 6.3
【步步高】2015届高考数学总复习 第六章 6.4数列求和强化训练 理 北师大版
§6.4 数列求和1.求数列的前n 项和的方法 (1)公式法①等差数列的前n 项和公式 S n =n (a 1+a n )2=na 1+n (n -1)2d .②等比数列的前n 项和公式 S n =⎩⎪⎨⎪⎧na 1(q =1)a 1(1-q n )1-q =a 1-a n q 1-q (q ≠1)(2)分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. (3)裂项相消法把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. (4)倒序相加法把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广. (5)错位相减法主要用于一个等差数列与一个等比数列对应项相乘所得的数列的求和,即等比数列求和公式的推导过程的推广. (6)并项求和法一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050. 2.常见的裂项公式 (1)1n (n +1)=1n -1n +1; (2)1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1;(3)1n +n +1=n +1-n .1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q .( √ )(2)当n ≥2时,1n 2-1=12(1n -1-1n +1).( √ ) (3)求S n =a +2a 2+3a 3+…+na n 之和时只要把上式等号两边同时乘以a 即可根据错位相减法求得.( × )(4)数列{12n +2n -1}的前n 项和为n 2+12n .( × )(5)若数列a 1,a 2-a 1,…,a n -a n -1是首项为1,公比为3的等比数列,则数列{a n }的通项公式是a n =3n -12.( √ )(6)推导等差数列求和公式的方法叫作倒序求和法,利用此法可求得sin 21°+sin 22°+sin 23°+…+sin 288°+sin 289°=44.5.( √ )2.(2012·大纲全国)已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列⎩⎨⎧⎭⎬⎫1a n a n +1的前100项和为( ) A.100101B.99101 C.99100D.101100 答案 A解析 利用裂项相消法求和. 设等差数列{a n }的首项为a 1,公差为d . ∵a 5=5,S 5=15,∴⎩⎨⎧a 1+4d =5,5a 1+5×(5-1)2d =15,∴⎩⎪⎨⎪⎧a 1=1,d =1,∴a n =a 1+(n -1)d =n .∴1a n a n +1=1n (n +1)=1n -1n +1, ∴数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n a n +1的前100项和为1-12+12-13+…+1100-1101=1-1101=100101.3.若数列{a n }的通项公式为a n =2n +2n -1,则数列{a n }的前n 项和S n 为( ) A .2n +n 2-1 B .2n +1+n 2-1 C .2n +1+n 2-2 D .2n +n 2-2 答案 C解析 S n =(2+22+23+…+2n )+(1+3+5+…+(2n -1)) =2(1-2n )1-2+n (1+2n -1)2=2n +1-2+n 2.4.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100等于( ) A .200 B .-200 C .400 D .-400 答案 B解析 S 100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200.5.3·2-1+4·2-2+5·2-3+…+(n +2)·2-n =________. 答案 4-n +42n解析 设S =3×12+4×122+5×123+…+(n +2)×12n ,则12S =3×122+4×123+5×124+…+(n +2)×12n +1. 两式相减得12S =3×12+(122+123+…+12n )-n +22n +1.∴S =3+(12+122+…+12n -1)-n +22n=3+12[1-(12)n -1]1-12-n +22n =4-n +42n .题型一 分组转化求和例1 已知数列{a n }是3+2-1,6+22-1,9+23-1,12+24-1,…,写出数列{a n }的通项公式并求其前n 项和S n .思维启迪 先写出通项,然后对通项变形,分组后利用等差数列、等比数列的求和公式求解.解 由已知得,数列{a n }的通项公式为 a n =3n +2n -1=3n -1+2n , ∴S n =a 1+a 2+…+a n=(2+5+…+3n -1)+(2+22+…+2n ) =n (2+3n -1)2+2(1-2n )1-2=12n (3n +1)+2n +1-2. 思维升华 某些数列的求和是将数列分解转化为若干个可求和的新数列的和或差,从而求得原数列的和,这就要通过对数列通项结构特点进行分析研究,将数列的通项合理分解转化.特别注意在含有字母的数列中对字母的讨论.求和S n =1+⎝⎛⎭⎫1+12+⎝⎛⎭⎫1+12+14+…+⎝⎛⎭⎫1+12+14+…+12n -1.解 和式中第k 项为 a k =1+12+14+…+12k -1=1-⎝⎛⎭⎫12k1-12=2⎝⎛⎭⎫1-12k . ∴S n =2⎣⎡⎦⎤⎝⎛⎭⎫1-12+⎝⎛⎭⎫1-122+…+⎝⎛⎭⎫1-12n =2[(1+1+…+1)n 个-(12+122+…+12n )] =2⎝ ⎛⎭⎪⎫n -12⎝⎛⎭⎫1-12n 1-12=12n -1+2n -2. 题型二 错位相减法求和例2 已知等差数列{a n }的前3项和为6,前8项和为-4. (1)求数列{a n }的通项公式;(2)设b n =(4-a n )q n -1(q ≠0,n ∈N +),求数列{b n }的前n 项和S n . 思维启迪 (1)列方程组求{a n }的首项、公差,然后写出通项a n . (2)q =1时,b n 为等差数列,直接求和;q ≠1时,用错位相减法求和. 解 (1)设等差数列{a n }的公差为d .由已知得⎩⎪⎨⎪⎧ 3a 1+3d =68a 1+28d =-4,解得⎩⎪⎨⎪⎧a 1=3d =-1.故a n =3+(n -1)·(-1)=4-n . (2)由(1)得,b n =n ·q n -1,于是 S n =1·q 0+2·q 1+3·q 2+…+n ·q n -1. 若q ≠1,将上式两边同乘以q 有 qS n =1·q 1+2·q 2+…+(n -1)·q n -1+n ·q n .两式相减得到(q -1)S n =nq n -1-q 1-q 2-…-q n -1 =nq n-q n -1q -1=nq n +1-(n +1)q n +1q -1.于是,S n =nq n +1-(n +1)q n +1(q -1)2.若q =1,则S n =1+2+3+…+n =n (n +1)2.所以S n=⎩⎪⎨⎪⎧n (n +1)2,q =1nq n +1-(n +1)q n +1(q -1)2,q ≠1.思维升华 (1)错位相减法是求解由等差数列{b n }和等比数列{}对应项之积组成的数列{a n },即a n =b n ×的前n 项和的方法.这种方法运算量较大,要重视解题过程的训练. (2)注意错位相减法中等比数列求和公式的应用X 围.已知等差数列{a n }满足a 2=0,a 6+a 8=-10.(1)求数列{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 2n -1的前n 项和.解 (1)设等差数列{a n }的公差为d ,由已知条件可得⎩⎪⎨⎪⎧ a 1+d =0,2a 1+12d =-10,解得⎩⎪⎨⎪⎧a 1=1,d =-1.故数列{a n }的通项公式为a n =2-n .(2)设数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n -1的前n 项和为S n ,即S n =a 1+a 22+…+a n2n -1,①故S 1=1,S n 2=a 12+a 24+…+a n2n .②所以,当n >1时,①-②得 S n2=a 1+a 2-a 12+…+a n -a n -12n -1-a n 2n =1-(12+14+…+12n -1)-2-n 2n=1-(1-12n -1)-2-n 2n =n 2n .所以S n =n2n -1.当n =1时也成立.综上,数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n -1的前n 项和S n =n2n -1.题型三 裂项相消法求和例3在数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足S 2n =a n ⎝⎛⎭⎫S n -12. (1)求S n 的表达式;(2)设b n =S n2n +1,求{b n }的前n 项和T n .思维启迪 第(1)问利用a n =S n -S n -1 (n ≥2)后,再同除S n -1·S n 转化为⎩⎨⎧⎭⎬⎫1S n 的等差数列即可求S n .第(2)问求出{b n }的通项公式,用裂项相消法求和. 解 (1)∵S 2n =a n ⎝⎛⎭⎫S n-12,a n =S n -S n -1 (n ≥2), ∴S 2n =(S n -S n -1)⎝⎛⎭⎫S n -12, 即2S n -1S n =S n -1-S n ,① 由题意得S n -1·S n ≠0,①式两边同除以S n -1·S n ,得1S n -1S n -1=2,∴数列⎩⎨⎧⎭⎬⎫1S n 是首项为1S 1=1a 1=1,公差为2的等差数列.∴1S n =1+2(n -1)=2n -1,∴S n =12n -1. (2)∵b n =S n 2n +1=1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1, ∴T n =b 1+b 2+…+b n =12[(1-13)+(13-15)+…+(12n -1-12n +1)]=12⎝ ⎛⎭⎪⎫1-12n +1=n2n +1. 思维升华 利用裂项相消法求和时,应注意抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项,再就是将通项公式裂项后,有时候需要调整前面的系数,使裂开的两项之差和系数之积与原通项公式相等.已知数列{a n }的各项均为正数,前n 项和为S n ,且S n =a n (a n +1)2,n ∈N +.(1)求证:数列{a n }是等差数列;(2)设b n =12S n ,T n =b 1+b 2+…+b n ,求T n .(1)证明 ∵S n =a n (a n +1)2,n ∈N +,∴当n =1时,a 1=S 1=a 1(a 1+1)2(a n >0),∴a 1=1.当n ≥2时,由⎩⎪⎨⎪⎧2S n =a 2n +a n ,2S n -1=a 2n -1+a n -1得2a n =a 2n +a n -a 2n -1-a n -1.即(a n +a n -1)(a n -a n -1-1)=0, ∵a n +a n -1>0,∴a n -a n -1=1(n ≥2).所以数列{a n }是以1为首项,以1为公差的等差数列. (2)解 由(1)可得a n =n ,S n =n (n +1)2,b n =12S n =1n (n +1)=1n -1n +1. ∴T n =b 1+b 2+b 3+…+b n =1-12+12-13+…+1n -1n +1=1-1n +1=n n +1.四审结构定方案典例:(12分)(2012·某某)已知数列{a n }的前n 项和S n =-12n 2+kn (其中k ∈N +),且S n 的最大值为8.(1)确定常数k ,并求a n ;(2)求数列⎩⎨⎧⎭⎬⎫9-2a n 2n 的前n 项和T n .规X 解答解 (1)当n =k ∈N +时,S n =-12n 2+kn 取得最大值,即8=S k =-12k 2+k 2=12k 2,故k 2=16,k =4.当n =1时,a 1=S 1=-12+4=72,[3分]当n ≥2时,a n =S n -S n -1=92-n .[6分]当n =1时,上式也成立,综上,a n =92-n .(2)因为9-2a n 2n =n2n -1,所以T n =1+22+322+…+n -12n -2+n2n -1,①[7分]所以2T n =2+2+32+…+n -12n -3+n2n -2②②-①:2T n -T n =2+1+12+…+12n -2-n2n -1=4-12n -2-n2n -1=4-n +22n -1[11分]故T n =4-n +22n -1.[12分]温馨提醒 (1)根据数列前n 项和的结构特征和最值确定k 和S n ,求出a n 后再根据{9-2a n2n }的结构特征确定利用错位相减法求T n .在审题时,要审题目中数式的结构特征判定解题方案;(2)利用S n 求a n 时不要忽视n =1的情况;错位相减时不要漏项或算错项数.方法与技巧非等差、等比数列的一般数列求和,主要有两种思想:(1)转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相消来完成;(2)不能转化为等差或等比的特殊数列,往往通过裂项相消法、错位相减法、倒序相加法等来求和. 失误与防X1.直接应用公式求和时,要注意公式的应用X 围,如当等比数列公比为参数(字母)时,应对其公比是否为1进行讨论.2.在应用错位相减法时,注意观察未合并项的正负号.3.在应用裂项相消法时,要注意消项的规律具有对称性,即前剩多少项则后剩多少项.A 组 专项基础训练 (时间:40分钟)一、选择题1.已知数列{a n }:12,13+23,14+24+34,…,110+210+310+…+910,…,若b n =1a n a n +1,那么数列{b n }的前n 项和S n 为( ) A.n n +1B.4n n +1C.3n n +1D.5nn +1 答案 B解析 a n =1+2+3+…+n n +1=n2,∴b n =1a n a n +1=4n (n +1)=4(1n -1n +1), ∴S n =4[(1-12)+(12-13)+…+(1n -1n +1)] =4(1-1n +1)=4n n +1. 2.已知数列{a n }是等差数列,若a 9+3a 11<0,a 10·a 11<0,且数列{a n }的前n 项和S n 有最大值,那么当S n 取得最小正值时,n 等于( )A .20B .17C .19D .21答案 C解析 由a 9+3a 11<0,得2a 10+2a 11<0,即a 10+a 11<0,又a 10·a 11<0,则a 10与a 11异号,因为数列{a n }的前n 项和S n 有最大值,所以数列{a n }是一个递减数列,则a 10>0,a 11<0,所以S 19=19(a 1+a 19)2=19a 10>0, S 20=20(a 1+a 20)2=10(a 10+a 11)<0. 故使S n 取值最小正值的n 为19.3.已知函数f (n )=⎩⎪⎨⎪⎧n 2(当n 为奇数时),-n 2(当n 为偶数时),且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100等于 ( )A .0B .100C .-100D .10 200答案 B解析 由题意,得a 1+a 2+a 3+…+a 100=12-22-22+32+32-42-42+52+…+992-1002-1002+1012=-(1+2)+(3+2)+…-(99+100)+(101+100)=-(1+2+…+99+100)+(2+3+…+100+101)=-1+101=100.故选B.4.数列a 1+2,…,a k +2k ,…,a 10+20共有十项,且其和为240,则a 1+…+a k +…+a 10的值为( )A .31B .120C .130D .185答案 C解析 a 1+...+a k +...+a 10=240-(2+...+2k + (20)=240-(2+20)×102=240-110=130. 5.数列a n =1n (n +1),其前n 项之和为910,则在平面直角坐标系中,直线(n +1)x +y +n =0在y 轴上的截距为( )A .-10B .-9C .10D .9答案 B解析 数列的前n 项和为11×2+12×3+…+1n (n +1)=1-1n +1=n n +1=910, ∴n =9,∴直线方程为10x +y +9=0.令x =0,得y =-9,∴在y 轴上的截距为-9.二、填空题6.数列32,94,258,6516,…的前n 项和S n 为________. 答案 n (n +1)2+1-12n 解析 ∵32=1+12,94=2+14,258=3+18, 6516=4+116,… ∴S n =32+94+258+6516+…+(n +12n ) =(1+2+3+…+n )+(12+122+123+…+12n ) =n (n +1)2+12[1-(12)n ]1-12=n (n +1)2+1-12n . 7.设f (x )=4x 4x +2,若S =f (12 015)+f (22 015)+…+f (2 0142 015),则S =________. 答案 1 007解析 ∵f (x )=4x 4x +2,∴f (1-x )=41-x41-x +2=22+4x,∴f (x )+f (1-x )=4x 4x +2+22+4x=1. S =f (12 015)+f (22 015)+…+f (2 0142 015),① S =f (2 0142 015)+f (2 0132 015)+…+f (12 015),② ①+②得,2S =[f (12 015)+f (2 0142 015)]+[f (22 015)+f (2 0132 015)]+…+[f (2 0142 015)+f (12 015)]=2 014, ∴S =2 0142=1 007. 8.(2012·课标全国)数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为________.答案 1 830解析 利用数列的递推式的意义结合等差数列求和公式求解.∵a n +1+(-1)n a n =2n -1,∴a 2=1+a 1,a 3=2-a 1,a 4=7-a 1,a 5=a 1,a 6=9+a 1,a 7=2-a 1,a 8=15-a 1,a 9=a 1,a 10=17+a 1,a 11=2-a 1,a 12=23-a 1,…,a 57=a 1,a 58=113+a 1,a 59=2-a 1,a 60=119-a 1,∴a 1+a 2+…+a 60=(a 1+a 2+a 3+a 4)+(a 5+a 6+a 7+a 8)+…+(a 57+a 58+a 59+a 60)=10+26+42+…+234=15×(10+234)2=1 830. 三、解答题9.已知数列{a n }是首项为a 1=14,公比为q =14的等比数列,设b n +2=3log 41a n (n ∈N +),数列{}满足=a n ·b n .(1)求数列{b n }的通项公式;(2)求数列{}的前n 项和S n .解 (1)由题意,知a n =(14)n (n ∈N +), 又b n =3log 41a n -2,故b n =3n -2(n ∈N +).(2)由(1),知a n =(14)n ,b n =3n -2(n ∈N +),所以=(3n -2)×(14)n (n ∈N +). 所以S n =1×14+4×(14)2+7×(14)3+…+(3n -5)×(14)n -1+(3n -2)×(14)n , 于是14S n =1×(14)2+4×(14)3+7×(14)4+…+(3n -5)×(14)n +(3n -2)×(14)n +1. 两式相减,得34S n =14+3[(14)2+(14)3+…+(14)n ]-(3n -2)×(14)n +1=12-(3n +2)×(14)n +1. 所以S n =23-3n +23×(14)n (n ∈N +). 10.若S n 是公差不为0的等差数列{a n }的前n 项和,且S 1,S 2,S 4成等比数列.(1)求等比数列S 1,S 2,S 4的公比;(2)若S 2=4,求数列{a n }的通项公式;(3)在(2)的条件下,设b n =3a n a n +1,T n 是数列{b n }的前n 项和,求使得T n <m 20对所有n ∈ N +都成立的最小正整数m .解 (1)因为{a n }为等差数列,设{a n }的公差为d (d ≠0),所以S 1=a 1,S 2=2a 1+d ,S 4=4a 1+6d .因为S 1,S 2,S 4成等比数列且设其公比为q ,所以S 1·S 4=S 22.所以a 1(4a 1+6d )=(2a 1+d )2.所以2a 1d =d 2.因为公差d ≠0.所以d =2a 1.所以q =S 2S 1=4a 1a 1=4. (2)因为S 2=4,所以2a 1+d =4.又d =2a 1,所以a 1=1,d =2.所以a n =2n -1.(3)因为b n =3(2n -1)(2n +1)=32(12n -1-12n +1), 所以T n =32[(1-13)+(13-15)+…+(12n -1-12n +1)]=32(1-12n +1)<32. 要使T n <m 20对所有n ∈N +都成立,则有m 20≥32,即m ≥30. 因为m ∈N +,所以m 的最小值为30.B 组 专项能力提升(时间:30分钟)1.已知数列2 008,2 009,1,-2 008,-2 009,…,这个数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前2 014项之和S 2 014等于( )A .2 008B .2 010C .1D .0答案 B解析 由已知得a n =a n -1+a n +1(n ≥2),∴a n +1=a n -a n -1.故数列的前8项依次为2 008,2 009,1,-2 008,-2 009,-1,2 008,2 009.由此可知数列为周期数列,周期为6,且S 6=0.∵2 014=6×335+4,∴S 2 014=S 4=2 008+2 009+1+(-2 008)=2 010.2.(2013·课标全国Ⅰ)设△A n B n 的三边长分别为a n 、b n 、,△A n B n 的面积为S n ,n =1,2,3,…,若b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1=+a n 2,+1=b n +a n 2,则( ) A .{S n }为递减数列B .{S n }为递增数列C .{S 2n -1}为递增数列,{S 2n }为递减数列D .{S 2n -1}为递减数列,{S 2n }为递增数列答案 B解析 因为b 1>c 1,不妨设b 1=4a 13,c 1=2a 13; 故S 1= 3a 12·a 12·a 16·5a 16=1512a 21; a 2=a 1,b 2=23a 1+a 12=56a 1,c 2=43a 1+a 12=76a 1, S 2= 3a 12·a 12·2a 13·a 13=66a 21.显然S 2>S 1;a 3=a 1,b 3=76a 1+a 12=1312a 1, c 3=56a 1+a 12=1112a 1, S 3= 3a 12·a 12·5a 112·7a 112=10524a 21,显然S 3>S 2. 3.(2013·某某)设S n 为数列{a n }的前n 项和,S n =(-1)n a n -12n ,n ∈N +,则: (1)a 3=________; (2)S 1+S 2+…+S 100=________.答案 (1)-116(2)13⎝⎛⎭⎫12100-1 解析 ∵a n =S n -S n -1=(-1)n a n -12n -(-1)n -1a n -1+12n -1, ∴a n =(-1)n a n -(-1)n -1a n -1+12n . 当n 为偶数时,a n -1=-12n , 当n 为奇数时,2a n +a n -1=12n , ∴当n =4时,a 3=-124=-116. 根据以上{a n }的关系式及递推式可求.a 1=-122,a 3=-124,a 5=-126,a 7=-128, a 2=122,a 4=124,a 6=126,a 8=128. ∴a 2-a 1=12,a 4-a 3=123,a 6-a 5=125,…, ∴S 1+S 2+…+S 100=(a 2-a 1)+(a 4-a 3)+…+(a 100-a 99)-⎝⎛⎭⎫12+122+123+…+12100 =⎝⎛⎭⎫12+123+…+1299-⎝⎛⎭⎫12+122+…+12100 =13⎝⎛⎭⎫12100-1. 4.已知数列{a n }的前n 项和S n ,满足:S n =2a n -2n (n ∈N +).(1)求数列{a n }的通项a n ;(2)若数列{b n }满足b n =log 2(a n +2),T n 为数列{b n a n +2}的前n 项和,求证:T n ≥12. (1)解 当n ∈N +时,S n =2a n -2n ,则当n ≥2时,S n -1=2a n -1-2(n -1),两式相减得a n =2a n -2a n -1-2,即a n =2a n -1+2,∴a n +2=2(a n -1+2),∴a n +2a n -1+2=2,当n =1时,S 1=2a 1-2,则a 1=2,∴{a n +2}是以a 1+2=4为首项,2为公比的等比数列, ∴a n +2=4·2n -1,∴a n =2n +1-2;(2)证明 b n =log 2(a n +2)=log 22n +1=n +1,∴b n a n +2=n +12n +1,则T n =222+323+…+n +12n +1, 12T n =223+324+…+n 2n +1+n +12n +2, 两式相减得12T n =222+123+124+…+12n +1-n +12n +2 =14+14(1-12n )1-12-n +12n +2 =14+12-12n +1-n +12n +2=34-n +32n +2, ∴T n =32-n +32n +1, 当n ≥2时,T n -T n -1=-n +32n +1+n +22n =n +12n +1>0, ∴{T n }为递增数列,∴T n ≥T 1=12. 5.直线l n :y =x -2n 与圆:x 2+y 2=2a n +n 交于不同的两点A n ,B n ,n ∈N +.数列{a n }满足:a 1=1,a n +1=14|A n B n |2. (1)求数列{a n }的通项公式;(2)若b n =⎩⎪⎨⎪⎧2n -1(n 为奇数),a n (n 为偶数),求数列{b n }的前n 项和T n . 解 (1)由题意,知圆的圆心到直线l n 的距离d n =n , 半径r n =2a n +n ,所以a n +1=(12|A n B n |)2=r 2n -d 2n =(2a n +n )-n =2a n . 又a 1=1,所以a n =2n -1.(2)当n 为偶数时,T n =(b 1+b 3+…+b n -1)+(b 2+b 4+…+b n ) =[1+5+…+(2n -3)]+(2+23+…+2n -1) =n (n -1)2+2(1-2n )1-4=n 2-n 2+23(2n -1). 当n 为奇数时,n +1为偶数,T n +1=(n +1)2-(n +1)2+23(2n +1-1) =n 2+n 2+23(2n +1-1). 而T n +1=T n +b n +1=T n +2n,所以T n =n 2+n 2+13(2n -2). 所以T n =⎩⎪⎨⎪⎧ n 2-n 2+23(2n -1)(n 为偶数),n 2+n 2+13(2n -2)(n 为奇数).。
【步步高】2015届高考数学(理科,全国通用)二轮专题配套word版练习: 立体几何]
立体几何1.一个物体的三视图的排列规则是俯视图放在正(主)视图下面,长度与正(主)视图一样,侧(左)视图放在正(主)视图右面,高度与正(主)视图一样,宽度与俯视图一样,即“长对正,高平齐,宽相等”.在画一个物体的三视图时,一定注意实线与虚线要分明.[问题1] 如图,若一个几何体的正(主)视图、侧(左)视图、俯视图均为面积等于2的等腰直角三角形,则该几何体的体积为________. 答案 432.在斜二测画法中,要确定关键点及关键线段.“平行于x 轴的线段平行性不变,长度不变;平行于y 轴的线段平行性不变,长度减半.”[问题2] 如图所示的等腰直角三角形表示一个水平放置的平面图形的直观图,则这个平面图形的面积是________. 答案 2 23.简单几何体的表面积和体积(1)S 直棱柱侧=c ·h (c 为底面的周长,h 为高). (2)S 正棱锥侧=12ch ′(c 为底面周长,h ′为斜高).(3)S 正棱台侧=12(c ′+c )h ′(c 与c ′分别为上、下底面周长,h ′为斜高).(4)圆柱、圆锥、圆台的侧面积公式 S 圆柱侧=2πrl (r 为底面半径,l 为母线), S 圆锥侧=πrl (同上),S 圆台侧=π(r ′+r )l (r ′、r 分别为上、下底的半径,l 为母线). (5)体积公式V 柱=S ·h (S 为底面面积,h 为高), V 锥=13S ·h (S 为底面面积,h 为高),V 台=13(S +SS ′+S ′)h (S 、S ′为上、下底面面积,h 为高).(6)球的表面积和体积 S 球=4πR 2,V 球=43πR 3.[问题3] 如图所示,一个空间几何体的正(主)视图和俯视图都是边长为1的正方形,侧(左)视图是一个直径为1的圆,那么这个几何体的表面积为( ) A .4π B .3π C .2π D.32π 答案 D4.空间直线的位置关系:①相交直线——有且只有一个公共点.②平行直线——在同一平面内,没有公共点.③异面直线——不在同一平面内,也没有公共点.[问题4] 在空间四边形ABCD 中,E 、F 、G 、H 分别是四边上的中点,则直线EG 和FH 的位置关系是________. 答案 相交5.空间直线与平面、平面与平面的位置关系 (1)直线与平面①位置关系:平行、直线在平面内、直线与平面相交. ②直线与平面平行的判定定理和性质定理:判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行.③直线与平面垂直的判定定理和性质定理:判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直. 性质定理:垂直于同一个平面的两条直线平行. (2)平面与平面①位置关系:平行、相交(垂直是相交的一种特殊情况). ②平面与平面平行的判定定理和性质定理:判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行. 性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行. ③平面与平面垂直的判定定理和性质定理:判定定理:一个平面过另一个平面的垂线,则这两个平面垂直.性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直.[问题5] 已知b ,c 是平面α内的两条直线,则“直线a ⊥α”是“直线a ⊥b ,直线a ⊥c ”的________条件. 答案 充分不必要 6.空间向量(1)用空间向量求角的方法步骤①异面直线所成的角若异面直线l 1和l 2的方向向量分别为v 1和v 2,它们所成的角为θ,则cos θ=|cos 〈v 1,v 2〉|. ②直线和平面所成的角利用空间向量求直线与平面所成的角,可以有两种方法:方法一 分别求出斜线和它在平面内的射影直线的方向向量,转化为求两条直线的方向向量的夹角(或其补角).方法二 通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角. ③利用空间向量求二面角也有两种方法:方法一 分别在二面角的两个面内找到一个与棱垂直且从垂足出发的两个向量,则这两个向量的夹角的大小就是二面角的平面角的大小.方法二 通过平面的法向量来求,设二面角的两个面的法向量分别为n 1和n 2,则二面角的大小等于〈n 1,n 2〉(或π-〈n 1,n 2〉).易错警示:①求线面角时,得到的是直线方向向量和平面法向量的夹角的余弦,容易误以为是线面角的余弦.②求二面角时,两法向量的夹角有可能是二面角的补角,要注意从图中分析. (2)用空间向量求A 到平面α的距离: 可表示为d =|n ·AB →||n |.[问题6] (1)已知正三棱柱ABC -A 1B 1C 1的侧棱长与底面边长相等,则AB 1与侧面ACC 1A 1所成角的正弦值等于________.(2)正方体ABCD -A 1B 1C 1D 1的棱长为1,O 是底面A 1B 1C 1D 1的中心,则点O 到平面ABC 1D 1的距离为________. 答案 (1)64 (2)24解析 (1)方法一 取A 1C 1的中点E ,连接AE ,B 1E ,如图. 由题意知B 1E ⊥平面ACC 1A 1,则∠B 1AE 为AB 1与侧面ACC 1A 1所成的角. 设正三棱柱侧棱长与底面边长为1, 则sin ∠B 1AE =B 1E AB 1=322=64.方法二 如图,以A 1C 1中点E 为原点建立空间直角坐标系E -xyz ,设棱长为1,则A ⎝⎛⎭⎫12,0,1,B 1⎝⎛⎭⎫0,32,0, 设AB 1与平面ACC 1A 1所成的角为θ,EB 1→为平面ACC 1A 1的法向量. 则sin θ=|cos 〈AB 1→,EB 1→〉|=⎪⎪⎪⎪⎪⎪⎝⎛⎭⎫-12,32,-1·⎝⎛⎭⎫0,32,02×32=64. (2)建立如图所示的空间直角坐标系,则A (1,0,0),B (1,1,0),D 1(0,0,1),C 1(0,1,1),O ⎝⎛⎭⎫12,12,1. 设平面ABC 1D 1的法向量为n =(x ,y ,z ),则 ⎩⎪⎨⎪⎧n ·AB →=0,n ·AD 1→=0,∴⎩⎪⎨⎪⎧y =0,-x +z =0.令z =1,得⎩⎪⎨⎪⎧x =1,y =0,∴n =(1,0,1),又OD 1→=⎝⎛⎭⎫-12,-12,0, ∴O 到平面ABC 1D 1的距离d =|n ·OD 1→||n |=122=24.易错点1 三视图认识不清致误例1 一个空间几何体的三视图如图所示,则该几何体的表面积为( )A .48B .32+817C .48+817D .80错解 由三视图知,该几何体的直观图如图所示,该几何体的下底面是边长为4的正方形;上底面是长为4,宽为2的矩形;两个梯形侧面垂直于底面,上底长为2,下底长为4,高为4;另两个侧面是正方形,边长为4. 所以表面积S =42×3+2×4+2×12(2+4)×4=48+8+24=80.找准失分点 不能准确把握三视图和几何体之间的数量关系,根据正视图可知,侧视图中等腰梯形的高为4,而错认为等腰梯形的腰为4.正解 由三视图知该几何体的直观图如图所示,该几何体的下底面是边长为4的正方形;上底面是长为4、宽为2的矩形;两个梯形侧面垂直于底面,上底长为2,下底长为4,高为4;另两个侧面是矩形,宽为4,长为42+12 =17.所以S 表=42+2×4+12×(2+4)×4×2+4×17×2=48+817.答案 C易错点2 对几何概念理解不透致误例2 给出下列四个命题:①有两个平面互相平行,其余各面都是平行四边形的多面体是棱柱; ②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱; ③底面是平行四边形的四棱柱是平行六面体; ④底面是矩形的平行六面体是长方体.其中正确的命题是__________(写出所有正确命题的序号). 错解1 ①②③ 错解2 ②③④找准失分点 ①是错误的,因为棱柱的侧棱要都平行且相等;④是错误的,因为长方体的侧棱必须与底面垂直. 正解 ②③易错点3 对线面关系定理条件把握不准致误例3 已知m 、n 是不同的直线,α、β、γ是不同的平面.给出下列命题: ①若α⊥β,α∩β=m ,n ⊥m ,则n ⊥α,或n ⊥β; ②若α∥β,α∩γ=m ,β∩γ=n ,则m ∥n ;③若m 不垂直于α,则m 不可能垂直于α内的无数条直线; ④若α∩β=m ,n ∥m ,且n ⊄α,n ⊄β,则n ∥α,且n ∥β; ⑤若m 、n 为异面直线,则存在平面α过m 且使n ⊥α. 其中正确的命题序号是________. 错解 ②③④⑤找准失分点③是错误的;⑤是错误的.正解①是错误的.如正方体中面ABB′A′⊥面ADD′A′,交线为AA′.直线AC⊥AA′,但AC不垂直面ABB′A′,同时AC也不垂直面ADD′A′.②正确.实质上是两平面平行的性质定理.③是错误的.在上面的正方体中,A′C不垂直于平面A′B′C′D′,但与B′D′垂直.这样A′C就垂直于平面A′B′C′D′内与直线B′D′平行的无数条直线.④正确.利用线面平行的判定定理即可.⑤错误.从结论考虑,若n⊥α且m⊂α,则必有m⊥n,事实上,条件并不能保证m⊥n.故错误.答案②④1.已知三条不同直线m,n,l与三个不同平面α,β,γ,有下列命题:①若m∥α,n∥α,则m∥n;②若α∥β,l⊂α,则l∥β;③α⊥γ,β⊥γ,则α∥β;④若m,n为异面直线,m⊂α,n⊂β,m∥β,n∥α,则α∥β.其中正确命题的个数是()A.0 B.1 C.2 D.3答案 C解析因为平行于同一平面的两条直线除了平行,还可能相交或成异面直线,所以命题①错误;由直线与平面平行的定义知命题②正确;由于垂直于同一个平面的两个平面可能平行还可能相交,因此命题③错误;过两条异面直线分别作平面互相平行,这两个平面是唯一存在的,因此命题④正确.故选C.2.设m,n是空间两条直线,α,β是空间两个平面,则下列选项中不正确的是()A.当m⊂α时,“n∥α”是“m∥n”的必要不充分条件B.当m⊂α时,“m⊥β”是“α⊥β”的充分不必要条件C.当n⊥α时,“n⊥β”是“α∥β”成立的充要条件D.当m⊂α时,“n⊥α”是“m⊥n”的充分不必要条件答案 A解析当m⊂α时,若n∥α可得m∥n或m,n异面;若m∥n可得n∥α或n⊂α,所以“n∥α”是“m∥n”的既不充分也不必要条件,答案选A.3.一个几何体的三视图如图所示,则该几何体的体积是()A .64B .72C .80D .112答案 B解析 根据三视图,该几何体为下面是一个立方体、上面两个三棱锥,所以V =4×4×4+2×13×(12·4·2)×3=72,故选B.4.如图所示,在正方体ABCD -A 1B 1C 1D 1中,M ,N ,P ,Q 分别是AA 1,A 1D 1,CC 1,BC 的中点,给出以下四个结论:①A 1C ⊥MN ;②A 1C ∥平面MNPQ ;③A 1C 与PM 相交;④NC 与PM 异面.其中不正确的结论是( ) A .① B .② C .③ D .④ 答案 C解析 作出过M ,N ,P ,Q 四点的截面交C 1D 1于点S ,交AB 于点R ,如图所示中的六边形MNSPQR ,显然点A 1,C 分别位于这个平面的两侧,故A 1C 与平面MNPQ 一定相交,不可能平行,故结论②不正确.5.一个几何体的三视图如图所示,则该几何体的表面积为( )A .2+ 2B .3+ 2C .1+2 2D .5答案 A解析 由三视图可知,该几何体是一个四棱锥,如图所示. 该几何体的底面是边长为1的正方形,故S 1=12=1. 侧棱P A ⊥面ABCD ,且P A =1, 故S △P AB =S △P AD =12×1×1=12,而PD ⊥DC ,CB ⊥PB ,且PB =PD =2, 所以S △PBC =S △PDC =12×2×1=22.所以该几何体的表面积为S =1+2×12+2×22=2+ 2.故选A.6.如图,已知六棱锥P —ABCDEF 的底面是正六边形,P A ⊥平面ABC ,P A =2AB ,则下列结论正确的是( ) A .PB ⊥ADB .平面P AB ⊥平面PBC C .直线BC ∥平面P AED .直线PD 与平面ABC 所成的角为45° 答案 D解析 若PB ⊥AD ,则AD ⊥AB ,但AD 与AB 成60°角,A 错误;平面P AB 与平面ABD 垂直,所以平面P AB 一定不与平面PBC 垂直,B 错误;BC 与AE 是相交直线,所以BC 一定不与平面P AE 平行,C 错误;直线PD 与平面ABC 所成角为∠PDA ,在Rt △P AD 中,AD =P A , ∴∠PDA =45°,D 正确.7.对于四面体ABCD ,给出下列四个命题: ①若AB =AC ,BD =CD ,则BC ⊥AD ; ②若AB =CD ,AC =BD ,则BC ⊥AD ; ③若AB ⊥AC ,BD ⊥CD ,则BC ⊥AD ; ④若AB ⊥CD ,AC ⊥BD ,则BC ⊥AD .其中正确的是________.(填序号) 答案 ①④解析 取线段BC 的中点E ,连接AE ,DE , ∵AB =AC ,BD =CD , ∴BC ⊥AE ,BC ⊥DE , ∴BC ⊥平面ADE , ∵AD ⊂平面ADE , ∴BC ⊥AD ,故①正确.设点O 为点A 在平面BCD 上的射影, 连接OB ,OC ,OD , ∵AB ⊥CD ,AC ⊥BD , ∴OB ⊥CD ,OC ⊥BD , ∴点O 为△BCD 的垂心, ∴OD ⊥BC ,∴BC ⊥AD ,故④正确,易知②③不正确,填①④.8.如图,四面体ABCD 中,AB =1,AD =23,BC =3,CD =2,∠ABC =∠DCB =π2,则二面角A -BC -D 的大小为________.答案 π3解析 由∠ABC =∠DCB =π2知,BA →与CD →的夹角θ就是二面角A -BC -D 的平面角. 又AD →=AB →+BC →+CD →,∴AD →2=(AB →+BC →+CD →)2 =AB →2+BC 2→+CD →2+2AB →·CD →.因此2AB →·CD →=(23)2-12-32-22=-2, ∴cos(π-θ)=-12,且0<π-θ<π,则π-θ=23π,故θ=π3.9.已知直线l ,m ,平面α,β,且l ⊥α,m ⊂β,给出四个命题:①若α∥β,则l ⊥m ;②若l ⊥m ,则α∥β;③若α⊥β,则l ∥m ;④若l ∥m ,则α⊥β. 其中为真命题的是________.(填序号) 答案 ①④解析 对命题①,则l ⊥α,α∥β得,l ⊥β,m ⊂β,∴l⊥m,故①正确.对命题②,l⊥mD⇒/l⊥β,则l⊥mD⇒/α∥β,故②错误.对命题③,当α⊥β时,l与m也可能相交或异面或平行,故③错误.对命题④,由l⊥α,l∥m得m⊥α,又m⊂β,∴α⊥β,故④正确.10.三棱锥D-ABC及其三视图中的正(主)视图和侧(左)视图如图所示,则棱BD的长为________.答案4 2解析由正(主)视图知CD⊥平面ABC,设AC中点为E,则BE⊥AC,且AE=CE=2;由侧(左)视图知CD=4,BE=23,在Rt△BCE中,BC=BE2+EC2=(23)2+22=4,在Rt△BCD中,BD=BC2+CD2=42+42=4 2.故答案为4 2.。
【步步高】2015届高考数学总复习 第六章 6.3等比数列及其前n项和强化训练 理 北师大版
§6.3 等比数列及其前n 项和1.等比数列的定义如果一个数列从第2项起,每一项与它的前一项的比都等于同一个常数(不为零),那么这个数列叫作等比数列,这个常数叫作等比数列的公比,通常用字母__q __表示(q ≠0). 2.等比数列的通项公式设等比数列{a n }的首项为a 1,公比为q ,则它的通项a n =a 1·q n -1(a 1≠0,q ≠0). 3.等比中项若G 2=a ·b _(ab ≠0),那么G 为a 与b 的等比中项. 4.等比数列的常用性质(1)通项公式的推广:a n =a m ·q n -m ,(n ,m ∈N +).(2)若{a n }为等比数列,且k +l =m +n (k ,l ,m ,n ∈N +),则a k ·a l =a m ·a n .(3)若{a n },{b n }(项数相同)是等比数列,则{λa n }(λ≠0),⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n},⎩⎨⎧⎭⎬⎫a n bn 仍是等比数列.5.等比数列的前n 项和公式等比数列{a n }的公比为q (q ≠0),其前n 项和为S n , S n =⎩⎪⎨⎪⎧na 1(q =1)a 1(1-q n )1-q =a 1-a n q 1-q (q ≠1)6.等比数列前n 项和的性质公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为__q n __.1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)满足a n +1=qa n (n ∈N +,q 为常数)的数列{a n }为等比数列.( × ) (2)G 为a ,b 的等比中项⇔G 2=ab .( × )(3)如果{a n }为等比数列,b n =a 2n -1+a 2n ,则数列{b n }也是等比数列.( × ) (4)如果数列{a n }为等比数列,则数列{ln a n }是等差数列.( × )(5)若{a n }是等比数列,则S 1·S 2·…·S k =0(k ≥2,k ∈N )的充要条件是a n +a n +1=0.( √ )(6)设{a n }是任意等比数列,它的前n 项和,前2n 项和与前3n 项和分别为X ,Y ,Z ,则Y (Y -X )=X (Z -X )恒成立.( √ )2.(2013·某某)等比数列x,3x +3,6x +6,…的第四项等于( ) A .-24 B .0 C .12 D .24 答案 A解析 由x,3x +3,6x +6成等比数列得,(3x +3)2=x (6x +6). 解得x 1=-3或x 2=-1(不合题意,舍去). 故数列的第四项为-24.3.(2012·课标全国)已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10等于( ) A .7 B .5 C .-5 D .-7 答案 D解析 方法一 由题意得⎩⎪⎨⎪⎧a 4+a 7=a 1q 3+a 1q 6=2,a 5a 6=a 1q 4×a 1q 5=a 21q 9=-8,∴⎩⎪⎨⎪⎧ q 3=-2,a 1=1或⎩⎪⎨⎪⎧ q 3=-12,a 1=-8,∴a 1+a 10=a 1(1+q 9)=-7.方法二 由⎩⎪⎨⎪⎧ a 4+a 7=2,a 5a 6=a 4a 7=-8解得⎩⎪⎨⎪⎧ a 4=-2,a 7=4或⎩⎪⎨⎪⎧a 4=4,a 7=-2.∴⎩⎪⎨⎪⎧q 3=-2,a 1=1或⎩⎪⎨⎪⎧q 3=-12,a 1=-8, ∴a 1+a 10=a 1(1+q 9)=-7.4.(2013·)若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q =________;前n 项和S n=________. 答案 2 2n +1-2解析 设等比数列的公比为q ,由a 2+a 4=20,a 3+a 5=40. 得20q =40,且a 1q +a 1q 3=20,解之得q =2,且a 1=2. 因此S n =a 1(1-q n )1-q=2n +1-2.5.(2012·某某)已知等比数列{a n }为递增数列,且a 25=a 10,2(a n +a n +2)=5a n +1,则数列{a n }的通项公式a n =________. 答案 2n解析 先判断数列的项是正数,再求出公比和首项.a 25=a 10>0,根据已知条件得2⎝⎛⎭⎫1q +q =5,解得q =2. 所以a 21q 8=a 1q 9,所以a 1=2,所以a n =2n .题型一 等比数列的基本运算例1 (1)设{a n }是由正数组成的等比数列,S n 为其前n 项和.已知a 2a 4=1,S 3=7,则S 5等于( )A.152B.314C.334D.172(2)在等比数列{a n }中,若a 4-a 2=6,a 5-a 1=15,则a 3=________. 思维启迪 利用等比数列的通项公式与前n 项和公式列方程(组)计算. 答案 (1)B (2)4或-4解析 (1)显然公比q ≠1,由题意得⎩⎪⎨⎪⎧a 1q ·a 1q 3=1a 1(1-q 3)1-q =7,解得⎩⎪⎨⎪⎧ a 1=4q =12或⎩⎪⎨⎪⎧a 1=9q =-13(舍去),∴S 5=a 1(1-q 5)1-q =4(1-125)1-12=314.(2)设等比数列{a n }的公比为q (q ≠0),则⎩⎪⎨⎪⎧a 1q 3-a 1q =6a 1q 4-a 1=15,两式相除,得q 1+q2=25,即2q 2-5q +2=0,解得q =2或q =12.所以⎩⎪⎨⎪⎧a 1=1q =2或⎩⎪⎨⎪⎧a 1=-16q =12.故a 3=4或a 3=-4.思维升华 等比数列基本量的运算是等比数列中的一类基本问题,数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)可迎刃而解.(1)在等比数列{a n }中,a 1=1,公比为q ,且|q |≠1.若a m =a 1a 2a 3a 4a 5,则m等于( )A .9B .10C .11D .12(2)设S n 为等比数列{a n }的前n 项和,已知3S 3=a 4-2,3S 2=a 3-2,则公比q 等于( ) A .3 B .4 C .5 D .6(3)已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列{1a n }的前5项和为( )A.158或5B.3116或5C.3116D.158 答案 (1)C (2)B (3)C解析 (1)∵a 1=1,∴a m =a 1a 2a 3a 4a 5=q ·q 2·q 3·q 4=q 10, 即a m =a 1·q 10,∴m =11.故选C.(2)因为⎩⎪⎨⎪⎧3S 3=a 4-2, ①3S 2=a 3-2 ②①-②得3a 3=a 4-a 3,即4a 3=a 4,则q =a 4a 3=4.(3)若q =1,则由9S 3=S 6得9×3a 1=6a 1, 则a 1=0,不满足题意,故q ≠1. 由9S 3=S 6得9×a 1(1-q 3)1-q =a 1(1-q 6)1-q ,解得q =2.故a n =a 1q n -1=2n -1,1a n =(12)n -1.所以数列{1a n }是以1为首项,以12为公比的等比数列,其前5项和为S 5=1×[1-(12)5]1-12=3116.题型二 等比数列的性质及应用例2 (1)在等比数列{a n }中,各项均为正值,且a 6a 10+a 3a 5=41,a 4a 8=5,则a 4+a 8=_______.(2)等比数列{a n }的首项a 1=-1,前n 项和为S n ,若S 10S 5=3132,则公比q =________.思维启迪 利用等比数列的项的性质和前n 项和的性质求解. 答案 (1)51 (2)-12解析 (1)由a 6a 10+a 3a 5=41及a 6a 10=a 28,a 3a 5=a 24, 得a 24+a 28=41.因为a 4a 8=5,所以(a 4+a 8)2=a 24+2a 4a 8+a 28=41+2×5=51.又a n >0,所以a 4+a 8=51. (2)由S 10S 5=3132,a 1=-1知公比q ≠1,S 10-S 5S 5=-132. 由等比数列前n 项和的性质知S 5,S 10-S 5,S 15-S 10成等比数列,且公比为q 5, 故q 5=-132,q =-12.思维升华 (1)在解决等比数列的有关问题时,要注意挖掘隐含条件,利用性质,特别是性质“若m +n =p +q ,则a m ·a n =a p ·a q ”,可以减少运算量,提高解题速度.(2)在应用相应性质解题时,要注意性质成立的前提条件,有时需要进行适当变形.此外,解题时注意设而不求思想的运用.(1)已知各项均为正数的等比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6等于( )A .52B .7C .6D .4 2(2)记等比数列{a n }的前n 项积为T n (n ∈N +),已知a m -1·a m +1-2a m =0,且T 2m -1=128,则m 的值为( )A .4B .7C .10D .12(3)已知S n 为等比数列{a n }的前n 项和,且S 3=8,S 6=7,则a 4+a 5+…+a 9=________.答案 (1)A (2)A (3)-78解析 (1)把a 1a 2a 3,a 4a 5a 6,a 7a 8a 9看成一个整体,则由题意,知它们分别是一个等比数列的第1项,第4项和第7项,这里的第4项刚好是第1项与第7项的等比中项.因为数列{a n }的各项均为正数,所以a 4a 5a 6=(a 1a 2a 3)·(a 7a 8a 9)=5×10=5 2. (2)因为{a n }是等比数列,所以a m -1a m +1=a 2m , 又由题中a m -1a m +1-2a m =0,可知a m =2.由等比数列的性质可知前(2m -1)项积为T 2m -1=a 2m -1m, 即22m -1=128,故m =4.(3)根据等比数列的性质,知S 3,S 6-S 3,S 9-S 6成等比数列,即8,7-8,S 9-7成等比数列,所以(-1)2=8(S 9-7).解得S 9=718.所以a 4+a 5+…+a 9=S 9-S 3=718-8=-78.题型三 等比数列的判定例3已知数列{a n }的前n 项和为S n ,数列{b n }中,b 1=a 1,b n =a n -a n -1 (n ≥2),且a n +S n =n .(1)设=a n -1,求证:{}是等比数列; (2)求数列{b n }的通项公式.思维启迪 (1)由a n +S n =n 及a n +1+S n +1=n +1转化成a n 与a n +1的递推关系,再构造数列{a n -1}. (2)由求a n 再求b n . (1)证明 ∵a n +S n =n ,① ∴a n +1+S n +1=n +1.② ②-①得a n +1-a n +a n +1=1,∴2a n +1=a n +1,∴2(a n +1-1)=a n -1, ∴a n +1-1a n -1=12,∴{a n -1}是等比数列. 又a 1+a 1=1,∴a 1=12,∵首项c 1=a 1-1,∴c 1=-12,公比q =12.又=a n -1,∴{}是以-12为首项,以12为公比的等比数列.(2)解 由(1)可知=⎝⎛⎭⎫-12·⎝⎛⎭⎫12n -1=-⎝⎛⎭⎫12n , ∴a n =+1=1-⎝⎛⎭⎫12n.∴当n ≥2时,b n =a n -a n -1=1-⎝⎛⎭⎫12n -⎣⎡⎦⎤1-⎝⎛⎭⎫12n -1 =⎝⎛⎭⎫12n -1-⎝⎛⎭⎫12n =⎝⎛⎭⎫12n .又b 1=a 1=12代入上式也符合,∴b n =⎝⎛⎭⎫12n . 思维升华 注意判断一个数列是等比数列的方法,另外第(2)问中要注意验证n =1时是否符合n ≥2时的通项公式,能合并的必须合并.设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=4a n +2.(1)设b n =a n +1-2a n ,证明数列{b n }是等比数列; (2)求数列{a n }的通项公式.解 (1)由a 1=1及S n +1=4a n +2,有a 1+a 2=S 2=4a 1+2. ∴a 2=5,∴b 1=a 2-2a 1=3.又⎩⎪⎨⎪⎧S n +1=4a n +2, ①S n =4a n -1+2, ②①-②,得a n +1=4a n -4a n -1, 所以a n +1-2a n =2(a n -2a n -1). ∵b n =a n +1-2a n ,∴b n =2b n -1,故{b n }是首项b 1=3,公比为2的等比数列.(2)由(1)知b n =a n +1-2a n =3·2n -1,所以a n +12n +1-a n 2n =34,故{a n 2n }是首项为12,公差为34的等差数列. 所以a n 2n =12+(n -1)·34=3n -14,得a n =(3n -1)·2n -2.等比数列求和忽视公比q 的X 围致误典例:(5分)设等比数列{a n }的公比为q ,前n 项和S n >0(n =1,2,3,…).则q 的取值X 围为________.易错分析 本题易忽视q 的X 围,由于等比数列求和公式中分两种情况q =1和q ≠1,而本题未说明q 的X 围,求解时应分类讨论,而不能直接利用公式S n =a 1(1-q n )1-q .解析 因为{a n }为等比数列,S n >0, 可以得到a 1=S 1>0,q ≠0, 当q =1时,S n =na 1>0; 当q ≠1时,S n =a 1(1-q n )1-q>0,即1-q n 1-q >0(n =1,2,3,…),上式等价于不等式组⎩⎪⎨⎪⎧1-q <0,1-q n <0,(n =1,2,3,…),①或⎩⎪⎨⎪⎧1-q >0,1-q n>0,(n =1,2,3,…).②解①式得q >1,解②式,由于n 可为奇数,可为偶数, 得-1<q <1.综上,q 的取值X 围是(-1,0)∪(0,+∞). 答案 (-1,0)∪(0,+∞)温馨提醒 在应用公式S n =a 1(1-q n )1-q 或S n =a 1-a n q 1-q求和时,应注意公式的使用条件为q ≠1,而当q =1时,应按常数列求和,即S n =na 1.因此,对含有字母参数的等比数列求和时,应分q =1和q ≠1两种情况进行讨论,体现了分类讨论思想.方法与技巧1.已知等比数列{a n }(1)数列{c ·a n }(c ≠0),{|a n |},{a 2n },{1a n }也是等比数列. (2)a 1a n =a 2a n -1=…=a m a n -m +1. 2.判断数列为等比数列的方法(1)定义法:a n +1a n =q (q 是不等于0的常数,n ∈N +)⇔数列{a n }是等比数列;也可用a n a n -1=q (q 是不等于0的常数,n ∈N +,n ≥2)⇔数列{a n }是等比数列.二者的本质是相同的,其区别只是n 的初始值不同.(2)等比中项法:a 2n +1=a n a n +2(a n a n +1a n +2≠0,n ∈N +)⇔数列{a n }是等比数列. 失误与防X1.特别注意q =1时,S n =na 1这一特殊情况.2.由a n +1=qa n ,q ≠0,并不能立即断言{a n }为等比数列,还要验证a 1≠0.3.在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,防止因忽略q =1这一特殊情形而导致解题失误.A 组 专项基础训练 (时间:40分钟)一、选择题1.(2012·某某)公比为2的等比数列{a n }的各项都是正数,且a 3a 11=16,则log 2a 10等于( ) A .4 B .5 C .6 D .7 答案 B解析 利用等比数列的性质和通项公式求解.∵a 3·a 11=16,∴a 27=16. 又∵等比数列{a n }的各项都是正数, ∴a 7=4.又∵a 10=a 7q 3=4×23=25, ∴log 2a 10=5.故选B.2.等比数列{}a n 中,|a 1|=1,a 5=-8a 2.a 5>a 2,则a n 等于( ) A .(-2)n -1B .-(-2)n -1 C .(-2)n D .-(-2)n 答案 A解析 ∵|a 1|=1,∴a 1=1或a 1=-1. ∵a 5=-8a 2=a 2·q 3,∴q 3=-8,∴q =-2. 又a 5>a 2,即a 2q 3>a 2,∴a 2<0. 而a 2=a 1q =a 1·(-2)<0,∴a 1=1. 故a n =a 1·(-2)n -1=(-2)n -1.3.(2013·课标全国Ⅱ)等比数列{a n }的前n 项和为S n ,已知S 3=a 2+10a 1,a 5=9,则a 1等于( ) A.13B .-13C.19D .-19 答案 C解析 设等比数列{a n }的公比为q , 由S 3=a 2+10a 1得a 1+a 2+a 3=a 2+10a 1, 即a 3=9a 1,q 2=9, 又a 5=a 1q 4=9,所以a 1=19.4.一个等比数列的前三项的积为3,最后三项的积为9,且所有项的积为729,则该数列的项数是( )A .13B .12C .11D .10 答案 B解析 设该等比数列为{a n },其前n 项积为T n , 则由已知得a 1·a 2·a 3=3,a n -2·a n -1·a n =9, (a 1·a n )3=3×9=33,∴a 1·a n =3,又T n =a 1·a 2·…·a n -1·a n , T n =a n ·a n -1·…·a 2·a 1,∴T 2n =(a 1·a n )n ,即7292=3n ,∴n =12.5.数列{a n }中,已知对任意n ∈N +,a 1+a 2+a 3+…+a n =3n -1,则a 21+a 22+a 33+…+a 2n 等于( )A .(3n -1)2B.12(9n -1) C .9n -1 D.14(3n -1) 答案 B解析 ∵a 1+a 2+…+a n =3n -1,n ∈N +,n ≥2时,a 1+a 2+…+a n -1=3n -1-1,∴当n ≥2时,a n =3n -3n -1=2·3n -1,又n =1时,a 1=2适合上式,∴a n =2·3n -1,故数列{a 2n }是首项为4,公比为9的等比数列.因此a 21+a 22+…+a 2n =4(1-9n )1-9=12(9n -1). 二、填空题6.等比数列{a n }中,S n 表示前n 项和,a 3=2S 2+1,a 4=2S 3+1,则公比q 为________.答案 3解析 由a 3=2S 2+1,a 4=2S 3+1得a 4-a 3=2(S 3-S 2)=2a 3,∴a 4=3a 3,∴q =a 4a 3=3. 7.(2012·某某)等比数列{a n }的前n 项和为S n ,公比不为1.若a 1=1,则对任意的n ∈N +,都有a n +2+a n +1-2a n =0,则S 5=________.答案 11解析 利用“特殊值”法,确定公比.由题意知a 3+a 2-2a 1=0,设公比为q ,则a 1(q 2+q -2)=0. 由q 2+q -2=0解得q =-2或q =1(舍去),则S 5=a 1(1-q 5)1-q=1-(-2)53=11. 8.设等比数列{a n }的公比为q ,前n 项和为S n ,若S n +1,S n ,S n +2成等差数列,则q 的值为________.答案 -2解析 由已知条件得2S n =S n +1+S n +2,即2S n =2S n +2a n +1+a n +2,即a n +2a n +1=-2. 三、解答题9.已知等差数列{a n }满足a 2=2,a 5=8.(1)求{a n }的通项公式;(2)各项均为正数的等比数列{b n }中,b 1=1,b 2+b 3=a 4,求{b n }的前n 项和T n . 解 (1)设等差数列{a n }的公差为d ,则由已知得⎩⎪⎨⎪⎧a 1+d =2a 1+4d =8.∴a 1=0,d =2. ∴a n =a 1+(n -1)d =2n -2.(2)设等比数列{b n }的公比为q ,则由已知得q +q 2=a 4, ∵a 4=6,∴q =2或q =-3.∵等比数列{b n }的各项均为正数,∴q =2.∴{b n }的前n 项和T n =b 1(1-q n )1-q =1×(1-2n )1-2=2n -1. 10.数列{a n }的前n 项和记为S n ,a 1=t ,点(S n ,a n +1)在直线y =3x +1上,n ∈N +.(1)当实数t 为何值时,数列{a n }是等比数列;(2)在(1)的结论下,设b n =log 4a n +1,=a n +b n ,T n 是数列{}的前n 项和,求T n . 解 (1)∵点(S n ,a n +1)在直线y =3x +1上,∴a n +1=3S n +1,a n =3S n -1+1(n >1,且n ∈N +),a n +1-a n =3(S n -S n -1)=3a n ,∴a n +1=4a n ,n >1,a 2=3S 1+1=3a 1+1=3t +1,∴当t =1时,a 2=4a 1,数列{a n }是等比数列.(2)在(1)的结论下,a n +1=4a n ,a n +1=4n ,b n =log 4a n +1=n ,=a n +b n =4n -1+n ,T n =c 1+c 2+…+=(40+1)+(41+2)+…+(4n -1+n )=(1+4+42+…+4n -1)+(1+2+3+…+n )=4n -13+n (n +1)2.B 组 专项能力提升(时间:30分钟)1.已知{a n }是首项为1的等比数列,若S n 是{a n }的前n 项和,且28S 3=S 6,则数列⎩⎨⎧⎭⎬⎫1a n 的前4项和为( )A.158或4B.4027或4C.4027D.158答案 C解析 设数列{a n }的公比为q .当q =1时,由a 1=1,得28S 3=28×3=84.而S 6=6,两者不相等,因此不合题意.当q ≠1时,由28S 3=S 6及首项为1,得28(1-q 3)1-q =1-q 61-q .解得q =3.所以数列{a n }的通项公式为a n =3n -1.所以数列⎩⎨⎧⎭⎬⎫1a n 的前4项和为1+13+19+127=4027. 2.(2013·某某)已知等比数列{a n }的公比为q ,记b n =a m (n -1)+1+a m (n -1)+2+…+a m (n -1)+m ,=a m (n -1)+1·a m (n -1)+2·…·a m (n -1)+m (m ,n ∈N +),则以下结论一定正确的是( )A .数列{b n }为等差数列,公差为q mB .数列{b n }为等比数列,公比为q 2mC .数列{}为等比数列,公比为qm 2D .数列{}为等比数列,公比为qm m答案 C解析 ∵b n =a m (n -1)(q +q 2+…+q m )∴b n +1b n =a mn (q +q 2+…+q m )a m (n -1)(q +q 2+…+q m )=a mn a m (n -1)=q m (常数). b n +1-b n 不是常数.又∵=(a m (n -1))m q 1+2+…+m =(a m (n -1)q m +12)m , ∴+1=(a mn a m (n -1))m =(q m )m =qm 2(常数). +1-不是常数.∴选C.3.在数列{a n }中,已知a 1=1,a n =2(a n -1+a n -2+…+a 2+a 1) (n ≥2,n ∈N +),这个数列的通项公式是_______________________________.答案 a n =⎩⎪⎨⎪⎧1, n =12×3n -2, n ≥2 解析 由已知n ≥2时,a n =2S n -1①当n ≥3时,a n -1=2S n -2②①-②整理得a n a n -1=3 (n ≥3), ∴a n =⎩⎪⎨⎪⎧1, n =1,2×3n -2, n ≥2. 4.已知在正项数列{a n }中,a 1=2,点A n (a n ,a n +1)在双曲线y 2-x 2=1上,数列{b n }中,点(b n ,T n )在直线y =-12x +1上,其中T n 是数列{b n }的前n 项和. (1)求数列{a n }的通项公式;(2)求证:数列{b n }是等比数列.(1)解 由已知点A n 在y 2-x 2=1上知,a n +1-a n =1, ∴数列{a n }是一个以2为首项,以1为公差的等差数列, ∴a n =a 1+(n -1)d =2+n -1=n +1.(2)证明 ∵点(b n ,T n )在直线y =-12x +1上, ∴T n =-12b n +1,① ∴T n -1=-12b n -1+1(n ≥2),② ①②两式相减得b n =-12b n +12b n -1(n ≥2), ∴32b n =12b n -1, ∴b n =13b n -1(n ≥2). 令n =1,得b 1=-12b 1+1,∴b 1=23, ∴{b n }是一个以23为首项,以13为公比的等比数列.5.(2013·某某)已知首项为32的等比数列{a n }不是..递减数列,其前n 项和为S n (n ∈N +),且S 3+a 3,S 5+a 5,S 4+a 4成等差数列.(1)求数列{a n }的通项公式;(2)设T n =S n -1S n(n ∈N +),求数列{T n }的最大项的值与最小项的值. 解 (1)设等比数列{a n }的公比为q , 因为S 3+a 3,S 5+a 5,S 4+a 4成等差数列, 所以S 5+a 5-S 3-a 3=S 4+a 4-S 5-a 5,即4a 5=a 3,于是q 2=a 5a 3=14. 又{a n }不是递减数列且a 1=32, 所以q =-12. 故等比数列{a n }的通项公式为a n =32×⎝⎛⎭⎫-12n -1=(-1)n -1·32n . (2)由(1)得S n =1-⎝⎛⎭⎫-12n =⎩⎨⎧ 1+12n ,n 为奇数,1-12n ,n 为偶数.当n 为奇数时,S n 随n 的增大而减小,所以1<S n ≤S 1=32, 故0<S n -1S n ≤S 1-1S 1=32-23=56. 当n 为偶数时,S n 随n 的增大而增大,所以34=S 2≤S n <1, 故0>S n -1S n ≥S 2-1S 2=34-43=-712. 综上,对于n ∈N +,总有-712≤S n -1S n ≤56. 所以数列{T n }最大项的值为56,最小项的值为-712.。
【步步高】2015届高三数学北师大版(通用,理)总复习学案:学案32 数列的综合应用
探究点一 等差、等比数列的综合问题 例 1 设{an}是公比大于 1 的等比数列,Sn 为数列{an}的前 n 项和.已知 S3=7,且 a1 +3,3a2,a3+4 构成等差数列. (1)求数列{an}的通项; (2)令 bn=ln a3n+1,n=1,2,…,求数列{bn}的前 n 项和 Tn.
Go the distance
学案 32
数列的综合应用
导学目标: 1.通过构造等差、等比数列模型,运用数列的公式、性质解决简单的实际 问题.2.对数列与其他知识综合性的考查也高于考试说明的要求,另外还要注重数列在生产、 生活中的应用.
自主梳理 1.数列的综合应用 数列的综合应用一是指综合运用数列的各种知识和方法求解问题, 二是数列与其他数学 内容相联系的综合问题.解决此类问题应注意数学思想及方法的运用与体会. (1)数列是一种特殊的函数,解数列题要注意运用方程与函数的思想与方法. (2)转化与化归思想是解数列有关问题的基本思想方法,复杂的数列问题经常转化为等 差、等比数列或常见的特殊数列问题. (3)由特殊到一般及由一般到特殊的思想是解决数列问题的重要思想.已知数列的前若 干项求通项,由有限的特殊事例推测出一般性的结论,都是利用此法实现的. (4)分类讨论思想在数列问题中常会遇到,如等比数列中,经常要对公比进行讨论;由 Sn 求 an 时,要对______________进行分类讨论. 2.数列的实际应用 数列的应用问题是中学数学教学与研究的一个重要内容, 解答应用问题的核心是建立数 学模型. (1)建立数学模型时,应明确是等差数列模型、等比数列模型,还是递推数列模型,是 求 an 还是求 Sn. (2)分期付款中的有关规定 ①在分期付款中,每月的利息均按复利计算; ②在分期付款中规定每期所付款额相同; ③在分期付款时, 商品售价和每期所付款额在贷款全部付清前会随时间的推移而不断增 值; ④各期付款连同在最后一次付款时所生的利息之和, 等于商品售价及从购买时到最后一 次付款的利息之和. 自我检测 1 . ( 原创 题 ) 若 Sn 是等差 数列 {an} 的前 n 项 和, 且 S8 - S3 = 10 , 则 S11 的 值 为 ( ) A.12 B.18 C.22 D.44 a6 2.(2011· 汕头模拟)在等比数列{an}中,an>an+1,且 a7· a11=6,a4+a14=5,则 等于 a16 ( ) 2 3 A. B. 3 2 1 5 C.- D.- 6 6 3.若{an}是首项为 1,公比为 3 的等比数列,把{an}的每一项都减去 2 后,得到一个新 数列{bn}, 设{bn}的前 n 项和为 Sn, 对于任意的 n∈N*, 下列结论正确的是 ( ) 1 n A.bn+1=3bn,且 Sn= (3 -1) 2 1 B.bn+1=3bn-2,且 Sn= (3n-1) 2 1 C.bn+1=3bn+4,且 Sn= (3n-1)-2n 2
【2015步步高】2015届高考一轮复习(题组扣点+课堂探究+学科素养培养+):第六章 动量守恒定律 专题六
vE=tavnDyθ=
2gRcos θ tan θ
由 A 到 E 根据机械能守恒定律:mgh=12mv2E 解得 h=2vg2E=csoins23θθR
(2)由 A 到 C 根据机械能守恒定律:mg(h+R)=12mv2C 根据牛顿第二定律:FN-mg=mvR2C
课堂探究
学科素养培养
高考模拟
课堂探究
(1)释放点 A 距 B 点的高 h;
(2)物块在圆弧轨道最低点 C 受到的支持
力 FN 的大小;
图1
(3)物块与水平面间的动摩擦因数 μ.
课堂探究
学科素养培养
高考模拟
课堂探究
专题六 力学三大观点的应用
解析 (1)物块在 D 竖直方向上的分速度 vDy 满足
v2Dy=2gRcos θ
在 E 点的速度等于在 D 点的水平方向上的分速度
第六章 动量守恒定律
专题六 力学三大观点的应用
课堂探究
专题六 力学三大观点的应用
考点一 应用动量观点和能量观点处理多过程问题
综合应用动量和能量观点处理直线运动、曲线运动(或平抛运 动)和圆周运动相结合的多过程问题是我省高考的重点和热点 之一. 1.弄清有几个物体参与运动,并划分清楚物体的运动过程. 2.进行正确的受力分析,明确各过程的运动特点. 3.光滑的平面或曲面,还有不计阻力的抛体运动,机械能一定 守恒;碰撞过程、子弹打击木块、不受其他外力作用的二物 体相互作用问题,一般考虑用动量守恒定律分析. 4.如含摩擦生热问题,则考虑用能量守恒定律分析.
课堂探究
学科素养培养
高考模拟
课堂探究
专题六 力学三大观点的应用
【例 2】 如图 3 所示为过山车简易模型,它由光滑水平轨道和竖直面内的光滑圆
【2015步步高】2015届高考一轮复习(题组扣点+课堂探究+学科素养培养+):第六章 动量守恒定律 第3课时
第3课时 弹性碰撞和非弹性碰撞
碰撞特点的应用与判断
题组扣点
课堂探究
学科素养培养 高考模拟
课堂探究
第3课时 弹性碰撞和非弹性碰撞
【突破训练 2】 质量为 M 的物块以
速度 v 运动,与质量为 m 的静止
物块发生正碰,碰撞后两者的动
量正好相等.两者质量之比 M/4
C.5
D.6
解析 两物块在碰撞中动量 守恒:Mv=Mv1+mv2,由碰 撞中总能量不增加有:12Mv2≥ 12Mv21+12mv22,再结合题给条 件 Mv1=mv2,联立有Mm≤3,
题组扣点
课堂探究
学科素养培养 高考模拟
课堂探究
第3课时 弹性碰撞和非弹性碰撞
深化拓展 (1)碰撞过程中作用时间极短,内力远大于外力,所以 满足动量守恒. (2)不受外界因素影响的情况下,碰撞只能发生一次且碰后的能量 不比碰前的能量大.
题组扣点
课堂探究
学科素养培养 高考模拟
课堂探究
第3课时 弹性碰撞和非弹性碰撞
【例 2】 质量相等的 A、B 两球在光滑水平面上沿同一直线、
同一方向运动,A 球的动量 pA=9 kg·m/s,B 球的动量 pB=3 kg·m/s,当 A 球追上 B 球时发生碰撞,则碰撞后 A、B 两球的
动量可能的是
(A)
A.pA′=6 kg·m/s,pB′=6 kg·m/s B.pA′=8 kg·m/s,pB′=4 kg·m/s C.pA′=-2 kg·m/s,pB′=14 kg·m/s D.pA′=-4 kg·m/s,pB′=17 kg·m/s
题组扣点
课堂探究
学科素养培养 高考模拟
课堂探究
第3课时 弹性碰撞和非弹性碰撞
【2015步步高】2015届高考一轮复习(题组扣点+课堂探究+学科素养培养+):第六章 动量守恒定律 第1课时
课堂探究
高考模拟
课堂探究
第1课时 动量 动量定理
考点一 对冲量的计算与理解
1.时间性:冲量是力在时间上的积累,讨论冲量时一定要明确 是哪个力在哪段时间上的冲量,即冲量是过程量.
2.矢量性:当力 F 为恒力时,I 的方向与力 F 的方向相同,当力 F 为变力时,I 的方向由动量的变化量的方向确定.
3.绝对性:只要有力的作用就存在冲量,恒力的冲量不会为零, 合力的冲量可能为零,变力的冲量也可能为零.
B.上升与下降过程中阻力的冲量相同
C.上升过程中重力的冲量小于下降过程中
重力的冲量
D.上升过程中阻力的冲量大于重力的冲量
第1课时 动量 动量定理
解析 上升时 F 合=mg+f= ma 上 下降时 F 合′=mg-f=ma 下
所以 a 上>a 下,由 h=12at2 知, t 上<t 下.重力的冲量 I 上=mgt 上<I 下=mgt 下,阻力的冲量为 If=ft,亦可知 If 上<If 下,选项 C 正确,D 项中无法比较.
题组扣点
课堂探究
高考模拟
课堂探究
【例 1】 如图 2 所示,光滑水平面上
有一质量为 m 的物体,在一与水平
方向成 θ 角的恒定拉力 F 作用下运
动,则在时间 t 内
(B )
第1课时 动量 动量定理
解析 一个恒力的冲量等 于这个力与力的作用时间 的乘积,与物体所受的其
他力及合力和运动的方向
图2
A.重力的冲量为 0 B.拉力 F 的冲量为 Ft C.拉力的冲量为 Ftcos θ
无关;D 项中,应是所有 外力的冲量等于动量的变 化量.
D.拉力 F 的冲量等于物体动量的
【2015步步高】2015届高考一轮复习(题组扣点+课堂探究+学科素养培养+):第六章 动量守恒定律 第2课时
度大小.
图5
题组扣点
课堂探究
学科素养培养 高考模拟
课堂探究
第2课时 动量守恒定律
1.应用动量守恒定律的解题步骤 (1)明确研究对象,确定系统的组成(系统包括哪几个物体及研 究的过程); (2)进行受力分析,判断系统动量是否守恒(或某一方向上是否 守恒); (3)规定正方向,确定初末状态动量; (4)由动量守恒定律列出方程; (5)代入数据,求出结果,必要时讨论说明.
【例 1】 (2013·山东理综)如图 5 所示,光 解析 因碰撞时间极短,A 与 C 滑水平轨道上放置着长木板 A(上表面 碰撞过程动量守恒,设碰后瞬
粗糙)和滑块 C,滑块 B 置于 A 的左端,
三者质量分别为 mA=2 kg、mB=1 kg、间 A 的速度为 vA,C 的速度为 mC=2 kg.开始时 C 静止,A、B 一起以 vC,以向右为正方向,由动量 v0=5 m/s 的速度匀速向右运动,A 与 C 守恒定律得
发生碰撞(时间极短)后 C 向右运动,经 mAv0=mAvA+mCvC
①
过一段时间,A、B 再次达到共同速度
一起向右运动,且恰好不再与 C 碰 A 与 B 在摩擦力作用下达到共
撞.求 A 与 C 发生碰撞后瞬间 A 的速 同速度,设共同速度为 vAB,由
度大小.
动量守恒定律得
mAvA+mBv0=(mA+mB)vAB ②
图6
(1)B 运动过程中的最大速度; (2)C 运动过程中的最大速度.
题组扣点
课堂探究
学科素养培养 高考模拟
课堂探究
第2课时 动量守恒定律
解析 (1)碰后瞬间 B 速度最大,选向右为正方向,由动量守恒定 律得
mAv0=mA(-vA′)+mBvB 所以 vB=mAv0m+BvA′=1×140+4 m/s=3.5 m/s,方向向右
【步步高】2015届高考数学总复习 第六章 6.2等差数列及其前n项和课件 理 北师大版解析
题型分类·深度剖析
跟踪训练 2 A.14 (1)设数列{an}是等差数列,若 a3+a4+a5=12,则 a1 ( C ) C.28 D.35 B.21 +a2+…+a7 等于
(2)已知等差数列{an}的前 n 项和为 Sn,且 S10=10,S20=30,则 S30
60 =________.
解析 (1)∵a3+a4+a5=3a4=12,∴a4=4,
大 值; 在等差数列{an}中, a1>0, d<0, 则 Sn 存在最____ 若 a1<0,
小 值. d>0,则 Sn 存在最____
基础知识·自主学习
夯基释疑
夯实基础 突破疑难
题号
1 2 3 4 5
答案
(1)× (2) √ (3) √ (4) × (5) × (6) √
解析
B B C
-49
题型分类·深度剖析
a+b A= 2 如果 ,那么 A 叫作 a 与 b 的等差中项.
基础知识·自主学习
要点梳理
4.等差数列的常用性质 (1)通项公式的推广:an=am+ (n-m)d ,(n,m∈N+). (2)若{an}为等差数列,且 k+l=m+n,(k,l,m,n∈N+), 则 ak+al=am+an .
知识回顾 理清教材
题型分类·深度剖析
题型二
【例 2】 A.63
等差数列的性质及应用
(1)设等差数列{an}的前 n 项和为 Sn,若 S3=9,S6 ( C.36 D.27 ( ) ) B.45
=36,则 a7+a8+a9 等于
(2)若一个等差数列前 3 项的和为 34,最后 3 项的和为 146, 且所有项的和为 390,则这个数列的项数为
【步步高】2015届高考数学总复习 6.1数列的概念及简单表示法课件 理 新人教B版
题型分类·深度剖析
跟踪训练 1
(1)数列-1,7,-13,19,…的一个通项公式是 an
n ( - 1) · (6n-5) =_______________.
3 7 9 (2)数列{an}的前 4 项是 ,1, , ,则这个数列的一个通项公 2 10 17 式是 an=_______________.
(1)符号问题可通过(-1)n 或(-1)n 1 表示,其各项的绝对
+
解析
值的排列规律为后面的数的绝对值总比前面的数的绝对值大 6,故通项公式为 an=(-1)n(6n-5).
题型分类·深度剖析
跟踪训练 1
(1)数列-1,7,-13,19,…的一个通项公式是 an
n ( - 1) · (6n-5) =_______________.
一个通项公式: (1)3,5,7,9,…; 1 3 7 15 31 (2) , , , , ,…; 2 4 8 16 32 3 1 3 1 3 (3)-1, , - ,, - ,, …; 2 3 4 5 6 (4)3,33,333,3 333,….
题型分类·深度剖析
题型一 由数列的前几项求数列的通项
(1)由题意得,当 n≥2 时,
an=a1+(a2-a1)+(a3-a2)+…+ (an-an-1) = 2 + (2 + 3 + … + n) = 2 + n-12+n nn+1 = 2 +1. 2
1×1+1 又 a1=2= +1,符合 2 上式,
nn+1 因此 an= +1. 2
S1
n=1 . Sn-Sn-1 n≥2
基础知识·自主学习
夯基释疑
夯实基础 突破疑难
题号
1 2 3 4 5
答案
(1)× (2)√ (3)× (4) √(5)√ (6)√
2015年高中数学步步高大一轮复习讲义(文科)第六章_数列
常考题型强化练——数列A 组 专项基础训练 (时间:40分钟)一、选择题1.设等差数列{a n }前n 项和为S n ,若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( ) A .6B .7C .8D .92.已知{a n }为等比数列,S n 是它的前n 项和.若a 2·a 3=2a 1,且a 4与2a 7的等差中项为54,则S 5等于( )A .35B .33C .31D .293.已知S n 为数列{a n }的前n 项和,且满足2a n -a 1=S 1·S n (a 1≠0,n ∈N +),则a 7等于( ) A .16B .32C .64D .1284.已知等差数列{a n }的公差d =-2,a 1+a 4+a 7+…+a 97=50,那么a 3+a 6+a 9+…+a 99的值是( )A .-78B .-82C .-148D .-1825.设等差数列{a n }的前n 项和是S n ,若-a m <a 1<-a m +1(m ∈N +,且m ≥2),则必定有( ) A .S m >0,且S m +1<0 B .S m <0,且S m +1>0 C .S m >0,且S m +1>0D .S m <0,且S m +1<0二、填空题 6.若数列{a n }满足1a n +1-1a n =d (n ∈N +,d 为常数),则称数列{a n }为调和数列,已知数列⎩⎨⎧⎭⎬⎫1x n 为调和数列且x 1+x 2+…+x 20=200,则x 5+x 16=________.7.已知数列{a n }的前n 项和为S n ,且S n =2n -a n ,则数列{a n }的通项公式a n =__________. 8.已知等比数列{}a n 中,各项都是正数,且a 1,12a 3,2a 2成等差数列,则a 9+a 10a 7+a 8的值为_____.三、解答题9.已知等差数列{a n }的前n 项和为S n ,n ∈N +,a 3=5,S 10=100. (1)求数列{a n }的通项公式;(2)设b n =2a n +2n ,求数列{b n }的前n 项和T n .10.已知等差数列{a n }的前三项为a -1,4,2a ,记前n 项和为S n .(1)设S k =2 550,求a 和k 的值;(2)设b n =S nn,求b 3+b 7+b 11+…+b 4n -1的值.B 组 专项能力提升 (时间:25分钟)1.已知数列{a n }是首项为a 1=4的等比数列,且4a 1,a 5,-2a 3成等差数列,则其公比q 等于( )A .1B .-1C .1或-1 D. 22.在直角坐标系中,O 是坐标原点,P 1(x 1,y 1),P 2(x 2,y 2)是第一象限的两个点,若1,x 1,x 2,4依次成等差数列,而1,y 1,y 2,8依次成等比数列,则△OP 1P 2的面积是 ( )A .1B .2C .3D .43.已知数列{a n}满足:a 1=1,a n=⎩⎨⎧1+2a n2, n 为偶数,12+2a n -12, n 为奇数,n =2,3,4,…,设b n =a 2n -1+1,n =1,2,3,…,则数列{b n }的通项公式是________. 4.某音乐酒吧的霓虹灯是用,,三个不同音符组成的一个含n +1(n ∈N +)个音符的音符串,要求由音符开始,相邻两个音符不能相同.例如n =1时,排出的音符串是,;n =2时,排出的音符串是,,,;…….记这种含n +1个音符的所有音符串中,排在最后一个的音符仍是的音符串的个数为a n .故a 1=0,a 2=2.则 (1)a 4=________;(2)a n =________.5.已知数列{a n }的前n 项和S n 与通项a n 满足S n =12-12a n .(1)求数列{a n }的通项公式;(2)设f (x )=log 3x ,b n =f (a 1)+f (a 2)+…+f (a n ),T n =1b 1+1b 2+…+1b n ,求T 2 012;(3)若c n =a n ·f (a n ),求{c n }的前n 项和U n .。
【步步高】2015届高三数学北师大版(通用,理)总复习强化训练+专题检测第八章 8.1【步步高】20
§8.1 空间几何体的三视图、直观图、表面积与体积1.空间几何体的结构特征多面体(1)棱柱的侧棱都平行且相等,上、下底面是全等的多边形.(2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形. (3)棱台可由平行于底面的平面截棱锥得到,其上、下底面是相似多边形.旋转体(1)圆柱可以由矩形绕一边所在直线旋转得到.(2)圆锥可以由直角三角形绕一条直角边所在直线旋转得到.(3)圆台可以由直角梯形绕垂直于底边的腰所在直线旋转得到,也可由平行于底面的平面截圆锥得到.(4)球可以由半圆或圆绕直径所在直线旋转得到.2(1)在已知图形中建立直角坐标系xOy .画直观图时,它们分别对应x ′轴和y ′轴,两轴交于点O ′,使∠x ′O ′y ′=45°,它们确定的平面表示水平平面;(2)已知图形中平行于x 轴或y 轴的线段,在直观图中分别画成平行于x ′轴和y ′轴的线段;(3)已知图形中平行于x 轴的线段,在直观图中保持原长度不变;平行于y 轴的线段,长度为原来的12.3.空间几何体的三视图空间几何体的三视图是用正投影得到,这种投影下与投影面平行的平面图形留下的影子与平面图形的形状和大小是完全相同的,三视图包括主视图、左视图、俯视图.、感悟人生化学4.柱、锥、台和球的表面积和体积名称几何体 表面积 体积 柱体(棱柱和圆柱) S 表面积=S 侧+2S 底 V =Sh 锥体(棱锥和圆锥)S 表面积=S 侧+S 底V =13Sh台体(棱台和圆台) S 表面积=S 侧+S 上+S 下V =13(S 上+S 下+S 上S 下)h球S =4πR 2V =43πR 31.判断下面结论是否正确(请在括号中打“√”或“×”)(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.( × )(2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.( × )(3)用斜二测画法画水平放置的∠A 时,若∠A 的两边分别平行于x 轴和y 轴,且∠A =90°,则在直观图中,∠A =45°.( × )(4)正方体、球、圆锥各自的三视图中,三视图均相同. ( × )(5)圆柱的侧面展开图是矩形.( √ )(6)台体的体积可转化为两个锥体的体积之差来计算.( √ )2.(2013·四川)一个几何体的三视图如图所示,则该几何体的直观图可以是( )答案 D解析 由三视图可知上部是一个圆台,下部是一个圆柱,选D.3.(2013·课标全国Ⅰ)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的体积为( )A.500π3cm 3B.866π3 cm 3C.1 372π3 cm 3D.2 048π3cm 3答案 A解析 作出该球轴截面的图像如图所示,依题意BE =2,AE =CE =4,设DE =x ,故AD =2+x ,因为AD 2=AE 2+DE 2,解得x =3,故该球的半径AD =5,所以V =43πR 3=500π3.目前孩子的教育消费化学教案过半网友认为偏高了化学教案增加了家庭的经济负担化学教案同时认可放养式教育的家长寥4.一个三角形在其直观图中对应一个边长为1的正三角形,原三角形的面积为________.答案62解析 由斜二测画法,知直观图是边长为1的正三角形,其原图是一个底为1,高为6的三角形,所以原三角形的面积为62.成长为正直法官不可或缺的品质试卷试题5.若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为________.答案33π 解析 侧面展开图扇形的半径为2,圆锥底面半径为1, ∴h =22-1=3,∴V =13π×1×3=33π.题型一空间几何体的结构特征例1(1)下列说法正确的是() A.有两个平面互相平行,其余各面都是平行四边形的多面体是棱柱B.四棱锥的四个侧面都可以是直角三角形C.有两个平面互相平行,其余各面都是梯形的多面体是棱台D.棱台的各侧棱延长后不一定交于一点(2)给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②有一个面是多边形,其余各面都是三角形的几何体是棱锥;③直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;④棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是() A.0 B.1 C.2 D.3思维启迪从多面体、旋转体的定义入手,可以借助实例或几何模型理解几何体的结构特征.答案(1)B(2)A解析(1)A错,如图1;B正确,如图2,其中底面ABCD是矩形,可证明∠P AB,∠PCB 都是直角,这样四个侧面都是直角三角形;C错,如图3;D错,由棱台的定义知,其侧棱必相交于同一点.(2)①不一定,只有这两点的连线平行于轴时才是母线;②不一定,因为“其余各面都是三角形”并不等价于“其余各面都是有一个公共顶点的三角形”,如图1所示;③不一定,当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥,如图2所示,它是由两个同底圆锥组成的几何体;④错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.思维升华 (1)有两个面互相平行,其余各面都是平行四边形的几何体不一定是棱柱.(2)既然棱台是由棱锥定义的,所以在解决棱台问题时,要注意“还台为锥”的解题策略.(3)旋转体的形成不仅要看由何种图形旋转得到,还要看旋转轴是哪条直线. 如图是一个无盖的正方体盒子展开后的平面图,A ,B ,C是展开图上的三点,则在正方体盒子中,∠ABC 的值为( )A .30°B .45°C .60°D .90°答案 C解析 还原正方体,如图所示,连接AB ,BC ,AC ,可得△ABC 是正三角形,则∠ABC =60°.题型二 空间几何体的三视图和直观图例2 (1)如图,某几何体的主视图与左视图都是边长为1的正方形,且体积为12,则该几何体的俯视图可以是 ( )(2)正三角形AOB 的边长为a ,建立如图所示的直角坐标系xOy ,则它的直观图的面积是________.思维启迪 (1)由主视图和左视图可知该几何体的高是1,由体积是12B.可求出底面积.由底面积的大小可判断其俯视图是哪一个.(2)按照直观图画法规则确定平面图形和其直观图面积的关系. 答案 (1)C (2)616a 2解析 (1)由该几何体的主视图和左视图可知该几何体是柱体,且其高为1,由其体积是12可知该几何体的底面积是12,由图知A 的面积是1,B 的面积是π4,C 的面积是12,D 的面积是π4,故选C.(2)画出坐标系x ′O ′y ′,作出△OAB 的直观图O ′A ′B ′(如图).D ′为O ′A ′的中点. 易知D ′B ′=12DB ,∴S △O ′A ′B ′=12×22S △OAB =24×34a 2=616a 2.思维升华 (1)三视图中,主视图和左视图一样高,主视图和俯视图一样长,左视图和俯视图一样宽.即“长对正,宽相等,高平齐”.(2)解决有关“斜二测画法”问题时,一般在已知图形中建立直角坐标系,尽量运用图形中原有的垂直直线或图形的对称轴为坐标轴,图形的对称中心为原点,注意两个图形中关键线段长度的关系. (1)(2013·湖南)已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的主视图的面积不可能等于( )A .1B. 2C.2-12D.2+12和(2)如图,矩形O′A′B′C′是水平放置的一个平面图形的直观图,其中O′A′=6 cm,O′C′=2 cm,则原图形是()A.正方形B.矩形C.菱形D.一般的平行四边形答案(1)C(2)C解析(1)由俯视图知正方体的底面水平放置,其主视图为矩形,以正方体的高为一边长,另一边长最小为1,最大为2,面积范围应为[1,2],不可能等于2-12.改善地表水质、处理含重(2)如图,在原图形OABC中,应有OD=2O′D′=2×2 2=4 2 cm,CD=C′D′=2 cm.∴OC=OD2+CD2=(42)2+22=6 cm,∴OA=OC,故四边形OABC是菱形.题型三空间几何体的表面积与体积例3(1)一个空间几何体的三视图如图所示,则该几何体的表面积为()A.48 B.32+817C.48+817 D.80(2)已知某几何体的三视图如图所示,其中主视图、左视图均由直角三角形与半圆构成,俯视图由圆与内接三角形构成,根据图中的数据可得几何体的体积为( )A.2π3+12B.4π3+16缺化学教案应在“妻子苦心相劝”前加“不顾”试卷试题C.2π6+16D.2π3+12① 一定条件下化学教案思维启迪:先由三视图确定几何体的构成及度量,然后求表面积或体积.答案 (1)C (2)C解析 (1)由三视图知该几何体的直观图如图所示,该几何体的下底面是边长为4的正方形;上底面是长为4、宽为2的矩形;两个梯形侧面垂直于底面,上底长为2,下底长为4,高为4;另两个侧面是矩形,宽为4,长为42+12=17.所以S 表=42+2×4+12×(2+4)×4×2+4×17×2=48+817.(2)由三视图确定该几何体是一个半球体与三棱锥构成的组合体, 如图,其中AP ,AB ,AC 两两垂直,且AP =AB =AC =1, 故AP ⊥平面ABC ,S △ABC =12AB ×AC =12,所以三棱锥P -ABC 的体积V 1=13×S △ABC ×AP =13×12×1=16,又Rt △ABC 是半球底面的内接三角形,所以球的直径2R =BC =2, 解得R =22, 所以半球的体积V 2=12×4π3×(22)3=2π6,故所求几何体的体积V =V 1+V 2=16+2π6.嚣尘上化学教案严重损害政府的公信力试卷试题思维升华 解决此类问题需先由三视图确定几何体的结构特征,判断是否为组合体,由哪些简单几何体构成,并准确判断这些几何体之间的关系,将其切割为一些简单的几何体,再求出各个简单几何体的体积,最后求出组合体的体积. (2012·课标全国)已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为( )A.26 B.36案却使人感到徒具虚名试卷试题赭红色的水化学教案几乎看不见流动化学教案细小到无法与河C.23D.22“而”连词化学教案表修饰试卷试题答案 A解析 由于三棱锥S -ABC 与三棱锥O -ABC 底面都是△ABC ,O 是SC 的中点,因此三棱锥S -ABC 的高是三棱锥O -ABC 高的2倍,所以三棱锥S -ABC 的体积也是三棱锥O -ABC 体积的2倍. 在三棱锥O -ABC 中,其棱长都是1,如图所示, S △ABC =34×AB 2=34,高OD =12-⎝⎛⎭⎫332=63,∴V S -ABC =2V O -ABC =2×13×34×63=26.唯独挂念几位好友化学教案只能远隔异地化学教案也不知何时才能相见化学教案梦中转化思想在立体几何计算中的应用典例:(12分)如图,在直棱柱ABC —A ′B ′C ′中,底面是边长为3的等边三角形,AA ′=4,M 为AA ′的中点,P 是BC 上一点,且由P 沿棱柱侧面经过棱CC ′到M 的最短路线长为29,设这条最短路线与CC ′的交点为N ,求:(1)该三棱柱的侧面展开图的对角线长; (2)PC 与NC 的长; (3)三棱锥C —MNP 的体积.思维启迪 (1)侧面展开图从哪里剪开展平;(2)MN +NP 最短在展开图上呈现怎样的形式; (3)三棱锥以谁做底好. 规范解答解 (1)该三棱柱的侧面展开图为一边长分别为4和9的矩形,故对角线长为42+92=97.[2分](2)将该三棱柱的侧面沿棱BB ′展开,如下图,设PC =x ,则MP 2=MA 2+(AC +x )2.∵MP =29,MA =2,AC =3, ∴x =2,即PC =2.又NC ∥AM ,故PC P A =NC AM ,即25=NC2.化学教案但是刺猬则只知道一件大事”的一种发挥试卷试题它用以比喻两种相反的思想格:“∴NC =45.[8分](3)S △PCN =12×CP ×CN =12×2×45=45.在三棱锥M —PCN 中,M 到面PCN 的距离,即h =32×3=332.乙醚-∴V C —MNP =V M —PCN =13·h ·S △PCN =13×332×45=235.[12分]温馨提醒 (1)解决空间几何体表面上的最值问题的根本思路是“展开”,即将空间几何体的“面”展开后铺在一个平面上,将问题转化为平面上的最值问题.(2)如果已知的空间几何体是多面体,则根据问题的具体情况可以将这个多面体沿多面体中某条棱或者两个面的交线展开,把不在一个平面上的问题转化到一个平面上.如果是圆柱、圆锥则可沿母线展开,把曲面上的问题转化为平面上的问题.(3)本题的易错点是,不知道从哪条侧棱剪开展平,不能正确地画出侧面展开图.缺乏空间图形向平面图形的转化意识.方法与技巧1.棱柱、棱锥要掌握各部分的结构特征,计算问题往往转化到一个三角形中进行解决.2.旋转体要抓住“旋转”特点,弄清底面、侧面及展开图形状. 3.三视图画法:(1)实虚线的画法:分界线和可见轮廓线用实线,看不见的轮廓线用虚线;(2)理解“长对正、宽平齐、高相等”. 4.直观图画法:平行性、长度两个要素.5.求几何体的体积,要注意分割与补形.将不规则的几何体通过分割或补形将其转化为规则的几何体求解.6.与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.失误与防范1.台体可以看成是由锥体截得的,但一定强调截面与底面平行.2.注意空间几何体的不同放置对三视图的影响.3.几何体展开、折叠问题,要抓住前后两个图形间的联系,找出其中的量的关系.A组专项基础训练(时间:40分钟)一、选择题1.五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱对角线的条数共有()A.20 B.15C.12 D.10答案 D解析如图,在五棱柱ABCDE-A1B1C1D1E1中,从顶点A出发的对角线有两条:AC1,AD1,同理从B,C,D,E点出发的对角线均有两条,共2×5=10(条).2.(2012·福建)一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是() A.球B.三棱锥C.正方体D.圆柱答案 D解析考虑选项中几何体的三视图的形状、大小,分析可得.球、正方体的三视图形状都相同、大小均相等,首先排除选项A和C.对于如图所示三棱锥O-ABC,当OA 、OB 、OC 两两垂直且OA =OB =OC 时, 其三视图的形状都相同,大小均相等,故排除选项B. 不论圆柱如何设置,其三视图的形状都不会完全相同, 故答案选D.3.(2013·重庆)某几何体的三视图如图所示,则该几何体的体积为( )A.5603B.5803C .200D .240答案 C解析 由三视图知该几何体为直四棱柱,其底面为等腰梯形,上底长为2,下底长为8,高为4,故面积为S =(2+8)×42=20.又棱柱的高为10,所以体积V =Sh =20×10=200.4.如图是一个物体的三视图,则此三视图所描述物体的直观图是( )答案 D解析 由俯视图可知是B 和D 中的一个,由主视图和左视图可知B 错.5.某几何体的三视图如图所示,其中俯视图是个半圆,则该几何体的表面积为( )A.32πB .π+3生是一只狐狸化学教案却以为自己是刺猬试卷试题毫无疑问化学教案伯林不欣赏甚至厌恶大体C.32π+ 3D.52π+315.答案 C解析 由三视图可知该几何体为一个半圆锥,底面半径为1,高为3,∴表面积S =12×2×3+12×π×12+12×π×1×2=3+3π2.化学教案多于市人之言语试卷试题二、填空题6.如图所示,E 、F 分别为正方体ABCD —A 1B 1C 1D 1的面ADD 1A 1、面BCC 1B 1的中心,则四边形BFD 1E 在该正方体的面DCC 1D 1上的投影是________.(填序号)答案 ②解析 四边形在面DCC 1D 1上的投影为②:B 在面DCC 1D 1上的投影为C ,F 、E 在面DCC 1D 1上的投影应在边CC 1与DD 1上,而不在四边形的内部,故①③④错误.7.已知三棱锥A —BCD 的所有棱长都为2,则该三棱锥的外接球的表面积为________.答案 3π解析 如图,构造正方体ANDM —FBEC .因为三棱锥A —BCD 的所有棱长都为2,所以正方体ANDM —FBEC 的棱长为1.所以该正方体的外接球的半径为32. 易知三棱锥A —BCD 的外接球就是正方体ANDM —FBEC 的外接球,所以三棱锥A —BCD 的外接球的半径为32.所以三棱锥A —BCD 的外接球的表面积为S 球=4π⎝⎛⎭⎫322=3π.8.(2013·江苏)如图,在三棱柱A 1B 1C 1-ABC 中,D ,E ,F 分别是AB ,AC ,AA 1的中点,设三棱锥F -ADE 的体积为V 1,三棱柱A 1B 1C 1-ABC 的体积为V 2,则V 1∶V 2=________.答案 1∶24解析 设三棱锥F -ADE 的高为h ,则V 1V 2=13h ⎝⎛⎭⎫12AD ·AE ·sin ∠DAE (2h )12(2AD )(2AE )sin ∠DAE什么话也没说化学教案一副马上就要哭出来的样子试卷试题小伙子走后化学教案这件事情成了老板教育=124. 三、解答题9.一个几何体的三视图及其相关数据如图所示,求这个几何体的表面积.解 这个几何体是一个圆台被轴截面割出来的一半.根据图中数据可知圆台的上底面半径为1,下底面半径为2,高为3,母线长为2,几何体的表面积是两个半圆的面积、圆台侧面积的一半和轴截面的面积之和,故这个几何体的表面积为S =12π×12+12π×22+12π×(1+2)×2+12×(2+4)×3=11π2+3 3.10.已知一个上、下底面为正三角形且两底面中心连线垂直于底面的三棱台的两底面边长分别为30 cm 和20 cm ,且其侧面积等于两底面面积之和,求棱台的高.解 如图所示,三棱台ABC —A 1B 1C 1中,O 、O 1分别为两底面中心,D 、D 1分别为BC 和B 1C 1的中点,则DD 1为棱台的斜高. 由题意知A 1B 1=20,AB =30,则OD =53,O 1D 1=1033,由S 侧=S 上+S 下,得12×(20+30)×3DD 1=34×(202+302),解得DD 1=1333,在直角梯形O 1ODD 1中, O 1O =DD 21-(OD -O 1D 1)2=43,所以棱台的高为4 3 cm.B 组 专项能力提升 (时间:30分钟)1.在四棱锥E —ABCD 中,底面ABCD 为梯形,AB ∥CD,2AB =3CD ,M 为AE 的中点,设E —ABCD 的体积为V ,那么三棱锥M —EBC 的体积为 ( )A.25VB.13V C.23VD.310V答案 D解析设点B到平面EMC的距离为h1,点D到平面EMC的距离为h2.连接MD.因为M是AE的中点,所以V M—ABCD=12V.所以V E—MBC=12V-V E—MDC.而V E—MBC=V B—EMC,V E—MDC=V D—EMC,所以V E—MBCV E—MDC =V B—EMCV D—EMC=h1h2.了近代化学教案潮菜融合了海内外更多饮食文化的长处化学教案使传统的饮食文化得以发扬、因为B,D到平面EMC的距离即为到平面EAC的距离,而AB∥CD,且2AB=3CD,所以h1h2=3 2.13.所以V E—MBC=V M-EBC=310V.2.已知四棱锥P-ABCD的三视图如下图所示,则四棱锥P-ABCD的四个侧面中的最大的面积是()A.3 B.2 5 C.6 D.8答案 C解析因为三视图复原的几何体是四棱锥,顶点在底面的射影是底面矩形的长边的中点,底面边长分别为4,2,后面是等腰三角形,腰为3,所以后面的三角形的高为32-22=5,所以后面三角形的面积为12×4×5=25,两个侧面面积为12×2×3=3,后面三角形的面积为12×4×(5)2+22=6,四棱锥P -ABCD 的四个侧面中面积最大的是前面三角形的面积:6.故选C.3.表面积为3π的圆锥,它的侧面展开图是一个半圆,则该圆锥的底面直径为________.答案 2解析 设圆锥的母线为l ,圆锥底面半径为r .则12πl 2+πr 2=3π,πl =2πr ,∴r =1,即圆锥的底面直径为2.4.如图,在四棱锥P -ABCD 中,底面为正方形,PC 与底面ABCD 垂直,图为该四棱锥的主视图和左视图,它们是腰长为6 cm 的全等的等腰直角三角形.(1)根据图所给的主视图、左视图,画出相应的俯视图,并求出该俯视图的面积;(2)求P A .解 (1)该四棱锥的俯视图为(内含对角线),边长为6 cm 的正方形,如图,其面积为36 cm 2. (2)由左视图可求得PD =PC 2+CD 2=62+62=6 2.由主视图可知AD =6,且AD ⊥PD , 所以在Rt △APD 中, P A =PD 2+AD 2=(62)2+62=6 3 cm.5.已知一个圆锥的底面半径为R ,高为H ,在其内部有一个高为x 的内接圆柱.(1)求圆柱的侧面积;(2)x 为何值时,圆柱的侧面积最大? 解 (1)作圆锥的轴截面,如图所示.因为r R =H -x H ,所以r =R -R Hx ,所以S 圆柱侧=2πrx=2πRx -2πR H x 2(0<x <H ).(2)因为-2πRH<0,所以当x =2πR 4πR H =H2时,S 圆柱侧最大.故当x =H2,即圆柱的高为圆锥高的一半时,圆柱的侧面积最大.。
步步高高中数学理科文档
§1.3简单的逻辑联结词、全称量词与存在量词1.简单的逻辑联结词(1)命题中的且、或、非叫做逻辑联结词.2.全称量词与存在量词(1)全称量词:短语“所有的”“任意一个”在逻辑常叫做全称量词,用“∀”表示;含有全称量词的命题叫做全称命题.(2)存在量词:短语“存在一个”“至少有一个”在逻辑常叫做存在量词,用“∃”表示;含有存在量词的命题叫做特称命题.3.含有一个量词的命题的否定1.判断下面结论是否正确(请在括号打“√”或“×”)(1)命题p∧q为假命题,则命题p、q都是假命题.(×)2n>1 000,则綈p:∃n∈N,02n≤1 000.(×)(2)已知命题p:∃n0∈N,0(3)命题p和綈p不可能都是真命题.(√)(4)命题“∀x∈R,x2≥0”的否定是“∀x∈R,x2<0”.(×)(5)若命题p、q至少有一个是真命题,则p∨q是真命题.(√) 2.命题p:∀x∈R,sin x<1;命题q:∃x∈R,cos x≤-1,则下列结论是真命题的是()A .p ∧qB .綈p ∧qC .p ∨綈qD .綈p ∧綈q答案 B解析 p 是假命题,q 是真命题, ∴綈p ∧q 是真命题.3.(2013·)命题“对任意x ∈R ,都有x 2≥0”的否定为( )A .对任意x ∈R ,都有x 2<0B .不存在x ∈R ,使得x 2<0C .存在x 0∈R ,使得x 20≥0D .存在x 0∈R ,使得x 20<0 答案 D解析 因为“∀x ∈M ,p (x )”的否定是“∃x ∈M ,綈p (x )”,故“对任意x ∈R ,都有x 2≥0”的否定是“存在x 0∈R ,使得x 20<0”.4.(2013·)在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p 是“甲降落在指定围”,q 是“乙降落在指定围”,则命题“至少有一位学员没有降落在指定围”可表示为( )A .(綈p )∨(綈q ) B. p ∨(綈q )C .(綈p )∧(綈q )D .p ∨q答案 A解析 “至少有一位学员没有落在指定围”=“甲没有落在指定围”或“乙没有落在指定围”=(綈p )∨(綈q ).5.若命题“∃x ∈R ,x 2-mx -m <0”是假命题,则实数m 的取值围是________. 答案 [-4,0]解析 “∃x ∈R ,x 2-mx -m <0”是假命题,则“∀x ∈R ,x 2-mx -m ≥0”是真命题.即Δ=m 2+4m ≤0,∴-4≤m ≤0.题型一 含有逻辑联结词命题的真假判断例1 命题p :将函数y =sin 2x 的图象向右平移π3个单位得到函数y =sin ⎝⎛⎭⎫2x -π3的图象;命题q :函数y =sin ⎝⎛⎭⎫x +π6cos ⎝⎛⎭⎫π3-x 的最小正周期为π,则命题“p ∨q ”“p ∧q ”“綈p ”为真命题的个数是( )A .1B .2C .3D .0思维启迪 先判断命题p 、q 的真假,然后利用真值表判断p ∨q 、p ∧q 、綈p 的真假. 答案 B解析 函数y =sin 2x 的图象向右平移π3个单位后,所得函数为y =sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π3=sin ⎝⎛⎭⎫2x -2π3, ∴命题p 是假命题.又y =sin ⎝⎛⎭⎫x +π6cos ⎝⎛⎭⎫π3-x =sin ⎝⎛⎭⎫x +π6cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫x +π6 =sin 2⎝⎛⎭⎫x +π6=12-12cos ⎝⎛⎭⎫2x +π3, ∴其最小正周期为T =2π2=π,∴命题q 真.由此,可判断命题“p ∨q ”真,“p ∧q ”假,“綈p ”为真. 思维升华 “p ∨q ”“p ∧q ”“綈p ”形式命题真假的判断步骤: (1)确定命题的构成形式; (2)判断其中命题p 、q 的真假;(3)确定“p ∧q ”“p ∨q ”“綈p ”形式命题的真假.(1)若命题p :函数y =x 2-2x 的单调递增区间是[1,+∞),命题q :函数y =x-1x 的单调递增区间是[1,+∞),则( )A .p ∧q 是真命题B .p ∨q 是假命题C .綈p 是真命题D .綈q 是真命题(2)“p 或q ”为真命题是“p 且q ”为真命题的________条件. 答案 (1)D (2)必要不充分解析 (1)因为函数y =x 2-2x 的单调递增区间是[1,+∞), 所以p 是真命题;因为函数y =x -1x 的单调递增区间(-∞,0)和(0,+∞), 所以q 是假命题.所以p ∧q 为假命题,p ∨q 为真命题,綈p 为假命题,綈q 为真命题,故选D. (2)若命题“p 或q ”为真命题,则p 、q 中至少有一个为真命题. 若命题“p 且q ”为真命题,则p 、q 都为真命题,因此“p 或q ”为真命题是“p 且q ”为真命题的必要不充分条件. 题型二 全(特)称命题的否定例2 写出下列命题的否定,并判断其真假:(1)p :∀x ∈R ,x 2-x +14≥0;(2)q :所有的正方形都是矩形; (3)r :∃x 0∈R ,x 20+2x 0+2≤0; (4)s :至少有一个实数x 0,使x 30+1=0.思维启迪 否定量词,否定结论,写出命题的否定;判断命题的真假.解 (1)綈p :∃x 0∈R ,x 20-x 0+14<0,假命题. (2)綈q :至少存在一个正方形不是矩形,假命题. (3)綈r :∀x ∈R ,x 2+2x +2>0,真命题. (4)綈s :∀x ∈R ,x 3+1≠0,假命题. 思维升华 (1)对全(特)称命题进行否定的方法①找到命题所含的量词,没有量词的要结合命题的含义加上量词,再进行否定. ②对原命题的结论进行否定.(2)判定全称命题“∀x ∈M ,p (x )”是真命题,需要对集合M 中的每个元素x ,证明p (x )成立;要判断特称命题是真命题,只要在限定集合至少能找到一个x =x 0,使p (x 0)成立.(1)已知命题p :∀x 1,x 2∈R ,(f (x 2)-f (x 1))·(x 2-x 1)≥0,则綈p 是( )A .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0B .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0C .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0D .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0 (2)命题“存在实数x ,使x >1”的否定..是( )A .对任意实数x ,都有x >1B .不存在实数x ,使x ≤1C .对任意实数x ,都有x ≤1D .存在实数x ,使x ≤1 答案 (1)C (2)C解析 (1)綈p :∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0. (2)利用特称命题的否定是全称命题求解.“存在实数x ,使x >1”的否定是“对任意实数x ,都有x ≤1”.故选C. 题型三 逻辑联结词与命题真假的应用例3 (1)(2013·名校联考)已知p :∃x ∈R ,mx 2+1≤0,q :∀x ∈R ,x 2+mx +1>0,若p ∨q 为假命题,则实数m 的取值围为( )A .m ≥2B .m ≤-2C .m ≤-2或m ≥2D .-2≤m ≤2(2)已知命题p :“∀x ∈[0,1],a ≥e x ”;命题q :“∃x ∈R ,使得x 2+4x +a =0”.若命题“p ∧q ”是真命题,则实数a 的取值围是__________.思维启迪 利用含逻辑联结词命题的真假求参数围问题,可先求出各命题为真时参数的围,再利用逻辑联结词的含义求参数围. 答案 (1)A (2)[e,4]解析 (1)依题意知,p ,q 均为假命题.当p 是假命题时,mx 2+1>0恒成立,则有m ≥0;当q 是假命题时,则有Δ=m 2-4≥0,m ≤-2或m ≥2.因此由p ,q 均为假命题得⎩⎪⎨⎪⎧m ≥0m ≤-2或m ≥2,即m ≥2.(2)若命题“p ∧q ”是真命题,那么命题p ,q 都是真命题.由∀x ∈[0,1],a ≥e x, 得a ≥e ;由∃x ∈R ,使x 2+4x +a =0,知Δ=16-4a ≥0,a ≤4,因此e ≤a ≤4.思维升华 以命题真假为依据求参数的取值围时,首先要对两个简单命题进行化简,然后依据“p ∧q ”“p ∨q ”“綈p ”形式命题的真假,列出含有参数的不等式(组)求解即可.(1)已知命题p :“∀x ∈[1,2],x 2-a ≥0”,命题q :“∃x ∈R ,使x 2+2ax +2-a=0”,若命题“p 且q ”是真命题,则实数a 的取值围是 ( )A .{a |a ≤-2或a =1}B .{a |a ≥1}C .{a |a ≤-2或1≤a ≤2}D .{a |-2≤a ≤1}(2)命题“∃x ∈R,2x 2-3ax +9<0”为假命题,则实数a 的取值围为________. 答案 (1)A (2)[-22,22]解析 (1)由题意知,p :a ≤1,q :a ≤-2或a ≥1,∵“p 且q ”为真命题,∴p 、q 均为真命题,∴a ≤-2或a =1.(2)因题中的命题为假命题,则它的否定“∀x ∈R,2x 2-3ax +9≥0”为真命题,也就是常见的“恒成立”问题,因此只需Δ=9a 2-4×2×9≤0,即-22≤a ≤2 2.借助逻辑联结词求解参数围典例:(12分)已知c >0,且c ≠1,设p :函数y =c x 在R 上单调递减;q :函数f (x )=x 2-2cx+1在⎝⎛⎭⎫12,+∞上为增函数,若“p 且q ”为假,“p 或q ”为真,数c 的取值围. 思维启迪 (1)p 、q 都为真时,分别求出相应的a 的取值围;(2)用补集的思想,求出綈p 、綈q 分别对应的a 的取值围;(3)根据“p 且q ”为假、“p 或q ”为真,确定p 、q 的真假. 规解答解 ∵函数y =c x 在R 上单调递减,∴0<c <1.[2分] 即p :0<c <1,∵c >0且c ≠1,∴綈p :c >1.[3分]又∵f (x )=x 2-2cx +1在⎝⎛⎭⎫12,+∞上为增函数,∴c ≤12. 即q :0<c ≤12,∵c >0且c ≠1,∴綈q :c >12且c ≠1.[5分]又∵“p 或q ”为真,“p 且q ”为假, ∴p 真q 假或p 假q 真.[6分]①当p 真,q 假时,{c |0<c <1}∩⎩⎨⎧⎭⎬⎫c |c >12且c ≠1=⎩⎨⎧⎭⎬⎫c |12<c <1.[8分] ②当p 假,q 真时,{c |c >1}∩⎩⎨⎧⎭⎬⎫c |0<c ≤12=∅.[10分]综上所述,实数c 的取值围是⎩⎨⎧⎭⎬⎫c |12<c <1.[12分]第一步:求命题p 、q 对应的参数的围. 第二步:求命题綈p 、綈q 对应的参数的围.第三步:根据已知条件构造新命题,如本题构造新命题 “p 且q ”或“p 或q ”.第四步:根据新命题的真假,确定参数的围. 第五步:反思回顾.查看关键点、易错点及解题规.温馨提醒 解决此类问题的关键是准确地把每个条件所对应的参数的取值围求解出来,然后转化为集合交、并、补的基本运算.答题时,可依答题模板的格式进行,这样可使答题思路清晰,过程完整.老师在阅卷时,便于查找得分点.方法与技巧1.把握含逻辑联结词的命题的形式,特别是字面上未出现“或”、“且”,要结合语句的含义理解.2.要写一个命题的否定,需先分清其是全称命题还是特称命题,对照否定结构去写,并注意与否命题区别;否定的规律是“改量词,否结论”. 失误与防1.p ∨q 为真命题,只需p 、q 有一个为真即可;p ∧q 为真命题,必须p 、q 同时为真.2.p 或q 的否定:非p 且非q ;p 且q 的否定:非p 或非q . 3.命题的否定与否命题“否命题”是对原命题“若p ,则q ”的条件和结论分别加以否定而得到的命题,它既否定其条件,又否定其结论;“命题的否定”即“非p ”,只是否定命题p 的结论.A 组 专项基础训练(时间:35分钟,满分:57分)一、选择题1.设命题p :函数y =sin 2x 的最小正周期为π2;命题q :函数y =cos x 的图象关于直线x=π2对称.则下列判断正确的是 ( ) A .p 为真 B .綈q 为假 C .p ∧q 为假D .p ∨q 为真答案 C解析 p 是假命题,q 是假命题,因此只有C 正确.2.(2013·)设x ∈Z ,集合A 是奇数集,集合B 是偶数集.若命题p :∀x ∈A,2x ∈B ,则( ) A .綈p :∀x ∈A,2x ∈B B .綈p :∀x ∉A,2x ∉B C .綈p :∃x ∉A,2x ∈B D .綈p :∃x ∈A,2x ∉B答案 D解析 命题p :∀x ∈A,2x ∈B 是一个全称命题,其命题的否定綈p 应为∃x ∈A,2x ∉B ,选D.3.已知命题p :所有有理数都是实数;命题q :正数的对数都是负数,则下列命题中为真命题的是( )A .綈p ∨qB .p ∧qC .綈p ∧綈qD .綈p ∨綈q 答案 D解析 不难判断命题p 为真命题,命题q 为假命题,从而上述叙述中只有綈p ∨綈q 为真命题.4.已知命题p :若a >1,则a x >log a x 恒成立;命题q :在等差数列{a n }中(其中公差d ≠0),m +n =p +q 是a n +a m =a p +a q 的充分不必要条件(m ,n ,p ,q ∈N *).则下面选项中真命题是 ( )A .綈p ∧綈qB .綈p ∨綈qC .綈p ∨qD .p ∧q答案 B 解析对于命题p ,如图所示,作出函数y =a x (a >1)与y =log a x (a >1)在(0,+∞)上的图象,显然当a >1时,函数y =a x 的图象在函数y =log a x 图象的上方,即当a >1时,a x >log a x 恒成立,故命题p 为真命题.对于命题q ,由等差数列的性质,可知当公差不为0时,m +n =p +q 是a n +a m =a p +a q 的充要条件,故命题q 为假命题.∴命题綈p 为假,綈q 为真,故綈p ∨綈q 为真. 5.下列命题中,真命题是( )A .∃x 0∈⎣⎡⎦⎤0,π2,sin x 0+cos x 0≥2 B .∀x ∈(3,+∞),x 2>2x +1 C .∃x 0∈R ,x 20+x 0=-1 D .∀x ∈⎝⎛⎭⎫π2,π,tan x >sin x 答案 B解析 对于选项A , ∀x ∈⎣⎡⎦⎤0,π2,sin x +cos x =2sin ⎝⎛⎭⎫x +π4≤2, ∴此命题为假命题;对于选项B ,当x ∈(3,+∞)时,x 2-2x -1=(x -1)2-2>0, ∴此命题为真命题;对于选项C ,∀x ∈R ,x 2+x +1=⎝⎛⎭⎫x +122+34>0, ∴此命题为假命题;对于选项D ,当x ∈⎝⎛⎭⎫π2,π时,tan x <0<sin x , ∴此命题为假命题.故选B. 6.下列结论正确的个数是( )①命题p :“∃x 0∈R ,x 20-2≥0”的否定为綈p :“∀x ∈R ,x 2-2<0”;②若綈p 是q 的必要条件,则p 是綈q 的充分条件;③“M >N ”是“⎝⎛⎭⎫23M >⎝⎛⎭⎫23N ”的充分不必要条件. A .0 B .1 C .2 D .3 答案 C解析 对于①,易知①是正确的;对于②,由“綈p 是q 的必要条件”知,q 可推知綈p ,则p 可推知綈q (注:互为逆否的两个命题的真假性一致),因此p 是綈q 的充分条件,②正确;对于③,由M >N 不能得到⎝⎛⎭⎫23M >⎝⎛⎭⎫23N,因此③是错误的.故选C. 二、填空题7.若命题p :关于x 的不等式ax +b >0的解集是{x |x >-ba },命题q :关于x 的不等式(x -a )(x -b )<0的解集是{x |a <x <b },则在命题“p ∧q ”、“p ∨q ”、“綈p ”、“綈q ”中,是真命题的有________. 答案 綈p 、綈q解析 依题意可知命题p 和q 都是假命题,所以“p ∧q ”为假、“p ∨q ”为假、“綈p ”为真、“綈q ”为真. 8.下列结论:①若命题p :∃x ∈R ,tan x =1;命题q :∀x ∈R ,x 2-x +1>0.则命题“p ∧綈q ”是假命题;②已知直线l 1:ax +3y -1=0,l 2:x +by +1=0,则l 1⊥l 2的充要条件是ab =-3;③命题“若x 2-3x +2=0,则x =1”的逆否命题:“若x ≠1,则x 2-3x +2≠0”.其中正确结论的序号为________. 答案 ①③解析 ①中命题p 为真命题,命题q 为真命题, 所以p ∧綈q 为假命题,故①正确; ②当b =a =0时,有l 1⊥l 2,故②不正确; ③正确.所以正确结论的序号为①③. 9.写出下列命题的否定,并判断真假: (1)q :∀x ∈R ,x 不是5x -12=0的根; (2)r :有些质数是奇数; (3)s :∃x 0∈R ,|x 0|>0.解 (1)綈q :∃x 0∈R ,x 0是5x -12=0的根,真命题. (2)綈r :每一个质数都不是奇数,假命题. (3)綈s :∀x ∈R ,|x |≤0,假命题.10.已知c >0,设命题p :函数y =c x 为减函数.命题q :当x ∈⎣⎡⎦⎤12,2时,函数f (x )=x +1x >1c恒成立.如果“p 或q ”为真命题,“p 且q ”为假命题,求c 的取值围. 解 由命题p 为真知,0<c <1,由命题q 为真知,2≤x +1x ≤52,要使此式恒成立,需1c <2,即c >12, 若“p 或q ”为真命题,“p 且q ”为假命题, 则p 、q 中必有一真一假,当p 真q 假时,c 的取值围是0<c ≤12; 当p 假q 真时,c 的取值围是c ≥1.综上可知,c 的取值围是⎩⎨⎧⎭⎬⎫c |0<c ≤12或c ≥1.B 组 专项能力提升 (时间:25分钟,满分:43分)1.下列命题中的假命题是 ( )A .∀x ∈R,2x -1>0B .∀x ∈N *,(x -1)2>0C .∃x ∈R ,lg x <1D .∃x ∈R ,tan x =2 答案 B解析 A 正确;对于B ,当x =1时,(x -1)2=0,错误; 对于C ,当x ∈(0,1)时,lg x <0<1,正确;对于D ,∃x ∈R ,tan x =2,正确. 2.设有两个命题,p :不等式e x 4+1e x >a 的解集为R ;q :函数f (x )=-(7-3a )x 在R 上是减函数,如果这两个命题中有且只有一个真命题,那么实数a 的取值围是( )A .1≤a <2B .2<a ≤73C .2≤a <73 D .1<a ≤2 答案 A解析 记A ={a |不等式e x 4+1e x >a 的解集为R }; B ={a |f (x )=-(7-3a )x 在R 上是减函数}.由于函数y =e x 4+1e x 的最小值为1,故A ={a |a <1}. 又因为函数f (x )=-(7-3a )x 在R 上是减函数, 故7-3a >1,即a <2,所以B ={a |a <2}.要使这两个命题中有且只有一个真命题,a 的取值围为[(∁R A )∩B ]∪[(∁R B )∩A ], 而(∁R A )∩B =[1,+∞)∩(-∞,2)=[1,2),(∁R B )∩A =[2,+∞)∩(-∞,1)=∅,因此[(∁R A )∩B ]∪[(∁R B )∩A ]=[1,2),故选A.二、填空题3.已知命题p :“∀x ∈R ,∃m ∈R,4x -2x +1+m =0”,若命题綈p 是假命题,则实数m 的取值围是__________.答案 (-∞,1]解析 若綈p 是假命题,则p 是真命题,即关于x 的方程4x -2·2x +m =0有实数解,由于m =-(4x -2·2x )=-(2x -1)2+1≤1,∴m ≤1.4.设p :关于x 的不等式a x >1的解集是{x |x <0};q :函数y =ax 2-x +a 的定义域为R .若p ∨q 是真命题,p ∧q 是假命题,则实数a 的取值围是________________.答案 ⎝⎛⎭⎫0,12∪[1,+∞)解析 根据指数函数的单调性,可知命题p 为真命题时,实数a 的取值集合为P ={a |0<a <1},对于命题q :函数的定义域为R 的充要条件是ax 2-x +a ≥0恒成立.当a =0时,不等式为-x ≥0,解得x ≤0,显然不成立;当a ≠0时,不等式恒成立的条件是⎩⎪⎨⎪⎧a >0,Δ=-12-4a ×a ≤0,解得a ≥12. 所以命题q 为真命题时,a 的取值集合为Q ={a |a ≥12}.由“p ∨q 是真命题,p ∧q 是假命题”,可知命题p ,q 一真一假,当p 真q 假时,a 的取值围是P ∩(∁R Q )={a |0<a <1}∩{a |a <12}={a |0<a <12};当p 假q 真时,a 的取值围是(∁R P )∩Q ={a |a ≤0或a ≥1}∩{a |a ≥12}={a |a ≥1}.综上,a 的取值围是⎝⎛⎭⎫0,12∪[1,+∞). 5.已知命题p :方程2x 2+ax -a 2=0在[-1,1]上有解;命题q :只有一个实数x 0满足不等式x 20+2ax 0+2a ≤0,若命题“p 或q ”是假命题,求a 的取值围.解 由2x 2+ax -a 2=0得(2x -a )(x +a )=0,∴x =a 2或x =-a ,∴当命题p 为真命题时⎪⎪⎪⎪a 2≤1或|-a |≤1,∴|a |≤2.又“只有一个实数x 0满足不等式x 20+2ax 0+2a ≤0”,即抛物线y =x 2+2ax +2a 与x 轴只有一个交点,∴Δ=4a 2-8a =0,∴a =0或a =2.∴当命题q 为真命题时,a =0或a =2.∴命题“p或q”为真命题时,|a|≤2.∵命题“p或q”为假命题,∴a>2或a<-2. 即a的取值围为{a|a>2或a<-2}.。
【步步高】高考数学总复习 第六章 专题三高考中的数列问题强化训练 理 北师大版
专题三 高考中的数列问题1.公比不为1的等比数列{a n }的前n 项和为S n ,且-3a 1,-a 2,a 3成等差数列,若a 1=1,则S 4等于( )A .-20B .0C .7D .40答案 A解析 记等比数列{a n }的公比为q ,其中q ≠1, 依题意有-2a 2=-3a 1+a 3,-2a 1q =-3a 1+a 1q 2≠0. 即q 2+2q -3=0,(q +3)(q -1)=0,又q ≠1,因此有q =-3,S 4=1×[1-(-3)4]1+3=-20,选A.2.等比数列{a n }的各项均为正数,且a 5a 6+a 4a 7=18,则log 3a 1+log 3a 2+…+log 3a 10等于( ) A .12B .10C .8D .2+log 35答案 B解析 等比数列{a n }中,a 5a 6=a 4a 7, 又因为a 5a 6+a 4a 7=18,∴a 5a 6=9, log 3a 1+log 3a 2+…+log 3a 10=log 3(a 1a 2…a 10) =log 3(a 5a 6)5=5log 3(a 5a 6)=5log 39=10.3.若正项数列{a n }满足lg a n +1=1+lg a n ,且a 2 001+a 2 002+a 2 003+…+a 2 010=2 013,则a 2 011+a 2 012+a 2 013+…+a 2 020的值为( )A .2 013·1010B .2 013·1011C .2 014·1010D .2 014·1011答案 A解析 由条件知lg a n +1-lg a n =lga n +1a n =1,即a n +1a n=10,所以{a n }为公比是10的等比数列.因为(a 2 001+…+a 2 010)·q 10=a 2 011+…+a 2 020,所以a 2 011+…+a 2 020=2 013·1010,选A.4.已知数列{a n }满足a n =1+2+22+…+2n -1,则{a n }的前n 项和S n =________.答案 2n +1-2-n解析 ∵a n =1+2+22+…+2n -1=1-2n 1-2=2n -1,∴S n =(21+22+ (2))-n =2×(1-2n )1-2-n=2n +1-2-n .5.把一数列依次按第一个括号内一个数,第二个括号内两个数,第三个括号内三个数,第四个括号内一个数,…循环分为(1),(3,5),(7,9,11),(13),(15,17),(19,21,23),(25),…,则第50个括号内各数之和为________. 答案 392解析 将三个括号作为一组,则由50=16×3+2,知第50个括号应为第17组的第二个括号,即第50个括号中应是两个数.又因为每组中含有6个数,所以第48个括号的最末一个数为数列{2n -1}的第16×6=96项,第50个括号的第一个数应为数列{2n -1}的第98项,即为2×98-1=195,第二个数为2×99-1=197,故第50个括号内各数之和为195+197=392.故填392.题型一 等差、等比数列的综合问题 例1 在等差数列{a n }中,a 10=30,a 20=50.(1)求数列{a n }的通项公式;(2)令b n =2a n -10,证明:数列{b n }为等比数列; (3)求数列{nb n }的前n 项和T n .思维启迪 (1)设出数列{a n }的通项公式,结合已知条件列方程组即可求解; (2)由(1)写出b n 的表达式,利用定义法证明; (3)写出T n 的表达式,考虑用错位相减法求解. (1)解 由a n =a 1+(n -1)d ,a 10=30,a 20=50,得方程组⎩⎪⎨⎪⎧a 1+9d =30a 1+19d =50,解得⎩⎪⎨⎪⎧a 1=12d =2.所以a n =12+(n -1)·2=2n +10. (2)证明 由(1),得b n =2a n -10=22n +10-10=22n =4n ,所以b n +1b n =4n +14n =4.所以{b n }是首项为4,公比为4的等比数列. (3)解 由nb n =n ×4n ,得 T n =1×4+2×42+…+n ×4n ,①4T n =1×42+…+(n -1)×4n +n ×4n +1,②①-②,得-3T n =4+42+…+4n -n ×4n +1=4(1-4n )-3-n ×4n +1.所以T n =(3n -1)×4n +1+49.思维升华 (1)正确区分等差数列和等比数列,其中公比等于1的等比数列也是等差数列. (2)等差数列和等比数列可以相互转化,若数列{b n }是一个公差为d 的等差数列,则{ab n }(a >0,a ≠1)就是一个等比数列,其公比q =a d ;反之,若数列{b n }是一个公比为q (q >0)的正项等比数列,则{log a b n }(a >0,a ≠1)就是一个等差数列,其公差d =log a q .数列{a n }的前n 项和为S n ,若a 1=2且S n =S n -1+2n (n ≥2,n ∈N +).(1)求S n ;(2)是否存在等比数列{b n }满足b 1=a 1,b 2=a 3,b 3=a 9?若存在,求出数列{b n }的通项公式;若不存在,说明理由. 解 (1)因为S n =S n -1+2n ,所以有S n -S n -1=2n 对n ≥2,n ∈N +成立. 即a n =2n 对n ≥2,n ∈N +成立,又a 1=S 1=2×1,所以a n =2n 对n ∈N +成立. 所以a n +1-a n =2对n ∈N +成立, 所以{a n }是等差数列,所以有S n =a 1+a n 2·n =n 2+n ,n ∈N +.(2)存在.由(1)知,a n =2n 对n ∈N +成立, 所以有a 3=6,a 9=18,又a 1=2, 所以有b 1=2,b 2=6,b 3=18, 则b 2b 1=b 3b 2=3, 所以存在以b 1=2为首项,以3为公比的等比数列{b n }, 其通项公式为b n =2·3n -1.题型二 数列与函数的综合问题例2 已知二次函数y =f (x )的图像经过坐标原点,其导函数为f ′(x )=6x -2,数列{a n }的前n 项和为S n ,点(n ,S n )(n ∈N +)均在函数y =f (x )的图像上. (1)求数列{a n }的通项公式;(2)设b n =3a n a n +1,T n 是数列{b n }的前n 项和,求使得T n <m 20对所有n ∈N +都成立的最小正整数m .思维启迪 (1)先求出函数f (x ),再利用n ,S n 的关系求a n .(2)可以利用裂项相消法求出T n .通过T n 的取值范围确定最小正整数m . 解 (1)设二次函数f (x )=ax 2+bx (a ≠0), 则f ′(x )=2ax +b .由于f ′(x )=6x -2,得a =3,b =-2, 所以f (x )=3x 2-2x .又因为点(n ,S n )(n ∈N +)均在函数y =f (x )的图像上, 所以S n =3n 2-2n .当n ≥2时,a n =S n -S n -1=3n 2-2n -[3(n -1)2-2(n -1)]=6n -5; 当n =1时,a 1=S 1=3×12-2=6×1-5, 所以a n =6n -5(n ∈N +).(2)由(1)得b n =3a n a n +1=3(6n -5)[6(n +1)-5]=12·⎝⎛⎭⎫16n -5-16n +1,故T n =12[(1-17)+(17-113)+…+(16n -5-16n +1)]=12(1-16n +1).因此,要使12(1-16n +1)<m 20对n ∈N +恒成立,则m 必须且仅需满足12≤m20,即m ≥10.所以满足要求的最小正整数为10.思维升华 数列与函数的综合一般体现在两个方面:(1)以数列的特征量n ,a n ,S n 等为坐标的点在函数图像上,可以得到数列的递推关系; (2)数列的项或前n 项和可以看作关于n 的函数,然后利用函数的性质求解数列问题.已知数列{a n }的前n 项和为S n ,对一切正整数n ,点P n (n ,S n )都在函数f (x )=x 2+2x 的图像上,且过点P n (n ,S n )的切线的斜率为k n . (1)求数列{a n }的通项公式;(2)设Q ={x |x =k n ,n ∈N +},R ={x |x =2a n ,n ∈N +},等差数列{c n }的任一项c n ∈Q ∩R ,其中c 1是Q ∩R 中的最小数,110<c 10<115,求{c n }的通项公式. 解 (1)∵点P n (n ,S n )都在函数f (x )=x 2+2x 的图像上, ∴S n =n 2+2n (n ∈N +).当n ≥2时,a n =S n -S n -1=2n +1, 当n =1时,a 1=S 1=3满足上式, 所以数列{a n }的通项公式为a n =2n +1. (2)对f (x )=x 2+2x 求导可得f ′(x )=2x +2.∵过点P n (n ,S n )的切线的斜率为k n ,∴k n =2n +2, ∴Q ={x |x =2n +2,n ∈N +},R ={x |x =4n +2,n ∈N +}. ∴Q ∩R =R .又∵c n ∈Q ∩R ,其中c 1是Q ∩R 中的最小数,∴c 1=6, ∵{c n }的公差是4的倍数, ∴c 10=4m +6(m ∈N +).又∵110<c 10<115,∴⎩⎪⎨⎪⎧110<4m +6<115m ∈N +,解得m =27,所以c 10=114,设等差数列的公差为d ,则d =c 10-c 110-1=114-69=12,∴c n =6+(n -1)×12=12n -6, 所以{c n }的通项公式为c n =12n -6. 题型三 数列与不等式的综合问题例3 已知数列{a n }中,a 1=2,a 2=3,其前n 项和S n 满足S n +2+S n =2S n +1+1(n ∈N +);数列{b n }中,b 1=a 1,b n +1=4b n +6(n ∈N +). (1)求数列{a n },{b n }的通项公式;(2)设c n =b n +2+(-1)n -1λ·2a n (λ为非零整数,n ∈N +),试确定λ的值,使得对任意n ∈N +,都有c n +1>c n 成立.思维启迪 (1)先求a n ,再构造等比数列求b n ;(2)不等式c n +1>c n 恒成立,可以转化为求函数的最值问题.解 (1)由已知,得S n +2-S n +1-(S n +1-S n )=1, 所以a n +2-a n +1=1(n ≥1). 又a 2-a 1=1,所以数列{a n }是以a 1=2为首项,1为公差的等差数列. 所以a n =n +1. 又b n +1+2=4(b n +2),所以{b n +2}是以4为首项,4为公比的等比数列. 所以b n =4n -2.(2)因为a n =n +1,b n =4n -2,所以c n =4n +(-1)n -1λ·2n +1.要使c n +1>c n 恒成立,需c n +1-c n =4n +1-4n +(-1)n λ·2n +2-(-1)n -1λ·2n +1>0恒成立,即3·4n -3λ(-1)n -12n +1>0恒成立.所以(-1)n -1λ<2n-1恒成立.①当n 为奇数时,即λ<2n -1恒成立,当且仅当n =1时,2n-1有最小值1,所以λ<1;②当n 为偶数时,即λ>-2n -1恒成立,当且仅当n =2时,-2n-1有最大值-2.所以λ>-2,结合①②可知-2<λ<1. 又λ为非零整数,则λ=-1.故存在λ=-1,使得对任意n ∈N +,都有c n +1>c n 成立.思维升华 数列中有关项或前n 项和的恒成立问题,往往转化为函数的最值问题;求项或前n 项和的不等关系可以利用不等式的性质或基本不等式求解.(2013·天津)已知首项为32的等比数列{a n }的前n 项和为S n (n ∈N +),且-2S 2,S 3,4S 4成等差数列. (1)求数列{a n }的通项公式; (2)证明:S n +1S n ≤136(n ∈N +).(1)解 设等比数列{a n }的公比为q , 因为-2S 2,S 3,4S 4成等差数列,所以S 3+2S 2=4S 4-S 3,即S 4-S 3=S 2-S 4, 可得2a 4=-a 3,于是q =a 4a 3=-12.又a 1=32,所以等比数列{a n }的通项公式为a n =32×⎝⎛⎭⎫-12n -1=(-1)n -1·32n . (2)证明 由(1)知,S n =1-⎝⎛⎭⎫-12n , S n +1S n=1-⎝⎛⎭⎫-12n +11-⎝⎛⎭⎫-12n=⎩⎨⎧2+12n (2n+1),n 为奇数,2+12n(2n-1),n 为偶数.当n 为奇数时,S n +1S n 随n 的增大而减小,所以S n +1S n ≤S 1+1S 1=136.当n 为偶数时,S n +1S n随n 的增大而减小,所以S n +1S n ≤S 2+1S 2=2512.故对于n ∈N +,有S n +1S n ≤136.(时间:80分钟)1.已知数列{a n }的前n 项和为S n ,且满足:a n +2S n S n -1=0(n ≥2,n ∈N ),a 1=12,判断⎩⎨⎧⎭⎬⎫1S n 与{a n }是否为等差数列,并说明你的理由. 解 因为a n =S n -S n -1(n ≥2), 又因为a n +2S n S n -1=0,所以S n -S n -1+2S n S n -1=0(n ≥2), 所以1S n -1S n -1=2(n ≥2),又因为S 1=a 1=12,所以⎩⎨⎧⎭⎬⎫1S n 是以2为首项,2为公差的等差数列.所以1S n =2+(n -1)×2=2n ,故S n =12n.所以当n ≥2时,a n =S n -S n -1=12n -12(n -1)=-12n (n -1),所以a n +1=-12n (n +1),而a n +1-a n =-12n (n +1)--12n (n -1)=-12n ⎝⎛⎭⎫1n +1-1n -1=1n (n -1)(n +1).所以当n ≥2时,a n +1-a n 的值不是一个与n 无关的常数,故数列{a n }不是一个等差数列.综上,可知⎩⎨⎧⎭⎬⎫1S n 是等差数列,{a n }不是等差数列.2.设数列{a n }满足a 1=0且11-a n +1-11-a n=1.(1)求{a n }的通项公式;(2)设b n =1-a n +1n ,记S n =∑k =1n b k ,证明:S n <1.(1)解 由题设11-a n +1-11-a n=1,即⎩⎨⎧⎭⎬⎫11-a n 是公差为1的等差数列, 又11-a 1=1,故11-a n=n . 所以a n =1-1n.(2)证明 由(1)得b n =1-a n +1n =n +1-nn +1·n=1n -1n +1, S n =∑k =1n b k =∑k =1n ⎝ ⎛⎭⎪⎫1k -1k +1=1-1n +1<1.3.如图,从点P 1(0,0)作x 轴的垂线交曲线y =e x 于点Q 1(0,1), 曲线在Q 1点处的切线与x 轴交于点P 2,再从P 2作x 轴的垂 线交曲线于点Q 2,依次重复上述过程得到一系列点:P 1,Q 1; P 2,Q 2;…;P n ,Q n .记P k 点的坐标为(x k,0)(k =1,2,…,n ). (1)试求x k 与x k -1的关系(2≤k ≤n ); (2)求|P 1Q 1|+|P 2Q 2|+…+|P n Q n |.解 (1)设P k -1(x k -1,0),由y ′=e x 得Q k -1(x k -1,e x k -1)点处切线方程为y -e x k -1=e x k -1(x -x k -1),由y =0得x k =x k -1-1(2≤k ≤n ). (2)由x 1=0,x k -x k -1=-1,得x k =-(k -1), 所以|P k Q k |=e x k =e-(k -1),于是S n =|P 1Q 1|+|P 2Q 2|+…+|P n Q n |=1+e -1+e -2+…+e -(n -1)=1-e -n 1-e -1=e -e 1-n e -1. 4.设数列{a n }的前n 项和为S n ,a 1=10,a n +1=9S n +10. (1)求证:{lg a n }是等差数列;(2)设T n 是数列{3(lg a n )(lg a n +1)}的前n 项和,求T n ;(3)求使T n >14(m 2-5m )对所有的n ∈N +恒成立的整数m 的取值集合.(1)证明 依题意,得a 2=9a 1+10=100,故a 2a 1=10.当n ≥2时,a n +1=9S n +10,a n =9S n -1+10,两式相减得a n +1-a n =9a n , 即a n +1=10a n ,a n +1a n=10,故{a n }为等比数列,且a n =a 1q n -1=10n (n ∈N +),∴lg a n =n .∴lg a n +1-lg a n =(n +1)-n =1, 即{lg a n }是等差数列.(2)解 由(1)知,T n =3[11×2+12×3+…+1n (n +1)]=3(1-12+12-13+…+1n -1n +1)=3nn +1.(3)解 ∵T n =3-3n +1,∴当n =1时,T n 取最小值32.依题意有32>14(m 2-5m ),解得-1<m <6,故所求整数m 的取值集合为{0,1,2,3,4,5}.5.已知等差数列{a n }的前n 项和为S n ,且S 10=55,S 20=210. (1)求数列{a n }的通项公式;(2)设b n =a na n +1,是否存在m 、k (k >m ≥2,m ,k ∈N +),使得b 1、b m 、b k 成等比数列?若存在,求出所有符合条件的m 、k 的值;若不存在,请说明理由. 解 (1)设等差数列{a n }的公差为d ,则S n =na 1+n (n -1)2d .由已知,得⎩⎨⎧10a 1+10×92d =55,20a 1+20×192d =210.即⎩⎪⎨⎪⎧2a 1+9d =112a 1+19d =21, 解得⎩⎪⎨⎪⎧a 1=1,d =1.所以a n =a 1+(n -1)d =n (n ∈N +).(2)假设存在m 、k (k >m ≥2,m ,k ∈N +), 使得b 1、b m 、b k 成等比数列,则b 2m =b 1b k , 因为b n =a n a n +1=n n +1,所以b 1=12,b m =m m +1,b k =kk +1,所以(m m +1)2=12×kk +1.整理,得k =2m 2-m 2+2m +1.以下给出求m 、k 的方法: 因为k >0,所以-m 2+2m +1>0, 解得1-2<m <1+ 2.因为m ≥2,m ∈N +,所以m =2,此时k =8. 故存在m =2,k =8,使得b 1、b m 、b k 成等比数列. 6.已知数列{a n }的前n 项和S n =2a n -2n +1.(1)证明:数列{a n2n }是等差数列;(2)若不等式2n 2-n -3<(5-λ)a n 对任意n ∈N +恒成立,求λ的取值范围. 解 (1)当n =1时,S 1=2a 1-22得a 1=4. S n =2a n -2n -1,当n ≥2时,S n -1=2a n -1-2n ,两式相减得 a n =2a n -2a n -1-2n ,即a n =2a n -1+2n ,所以a n 2n -a n -12n -1=2a n -1+2n2n-a n -12n -1=a n -12n -1+1-a n -12n -1=1. 又a 121=2, 所以数列{a n2n }是以2为首项,1为公差的等差数列.(2)由(1)知a n2n =n +1,即a n =(n +1)·2n .因为a n >0,所以不等式2n 2-n -3<(5-λ)a n 等价于 5-λ>2n -32n ,记b n =2n -32n ,n ≥2时,b n -1b n =2n -12n +12n -32n =2n -14n -6,所以n ≥3时b n +1b n <1,(b n )max =b 3=38,所以λ<178.。
高考能力测试步步高数学基础训练6
高考水平测试步步高数学根底练习6根底练习6 函数的奇偶性、单调性、对称性●练习指要理解函数奇偶性、单调性的概念;掌握函数奇偶性、单调性的判定方法.一、选择题1.以下判断正确的选项是A.f (x )=222--x x x 是奇函数 B.f (x )=(1-x )xx -+11是偶函数 C.f (x )=lg(x +12-x )是非奇非偶函数D.f (x )=1既是奇函数又是偶函数2.(2001年全国高考题)设f (x )、g(x )都是单调函数,有如下命题:①假设f (x )单调递增,g(x )单调递增,那么f (x )-g(x )单调递增;②假设f (x )单调递增,g(x )单调递减,那么f (x )-g(x )单调递增;③假设f (x )单调递减,g(x )单调递增,那么f (x )-g(x )单调递减;④假设f (x )单调递减,g(x )单调递减,那么f (x )-g(x )单调递减.其中正确的命题是A.①③B.①④C.②③D.②④ 3.f (x )是定义在R 上的奇函数,当x <0时,f (x )=(31)x ,那么f (21)的值是 A.33 B.-33 C.3 D.-3 二、填空题4.函数y =21log (x 2-6x +8)的单调递增区间是_________;单调递减区间是_________.5.(2022年天津试题)设函数f (x )在(-∞,+∞)内有定义,以下函数①y =-|f (x )| ②y =xf (x 2) ③y =-f (-x ) ④y =f (x )-f (-x )中必为奇函数的有_________.(要求填写正确答案的序号)三、解做题6.函数f (x )对任意m 、n ∈R ,都有f (m +n )=f (m )+f (n )-1,并且当x >0时,f (x )>1.(1)求证f (x )是R 上的增函数.(2)设f (3)=4,解不等式f (a 2+a -5)<2.7.讨论函数f (x )=x +x1及g(x )=x -x 1的单调性. 8.(2022年上海春季高考题)函数f (x )=53131--xx ,g (x )= 53131-+xx .(1)证实f (x )是奇函数,并求f (x )的单调区间.(2)分别计算f (4)-5f (2)g(2)和f (9)-5f (3)g(3)的值.由此概括出涉及函数f (x )和g(x )的对所有不等于零的实数x都成立的一个等式,并加以证实.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题型分类·深度剖析
题型二 等比数列的性质及应用
思维启迪 解析 答案 思维升华
【例2】 (1)在等比数列{an}中, 各项均为正值,且 a6a10+a3a5 =41,a4a8=5,则a4+a8= ________. (2)等比数列 {an}的首项a1=- S10 1,前n项和为Sn,若 = S5 31 ,则公比q=________. 32
题型分类·深度剖析
题型二 等比数列的性质及应用
思维启迪 解析 答案 思维升华
【例2】 (1)在等比数列{an}中, (1)在解决等比数列的有关问题 各项均为正值,且 a6a10+a3a5 =41,a4a8=5,则a4+a8=
51 ________.
时,要注意挖掘隐含条件,利 用性质,特别是性质“若m+n =p+q,则 am· an=ap· aq”,可 以减少运算量,提高解题速度 .
(2) 设 等 比 数 列 {an} 的 公 比 为
a q3- a q= 6 1 1 q(q≠0),则 4 a q 1 - a1= 15
,两式
(2)在等比数列{an}中,若a4 -a2=6,a5-a1=15,则a3
4或-4 =______.
基础知识 题型分类
q 2 相除,得 = , 2 5 1+ q 即 2q2-5q+2=0, 1 解得 q=2 或 q= . 2
数学
R A(理)
§6.3 等比数列及其前n项和
第六章 数 列
基础知识·自主学习
要点梳理
知识回顾 理清教材
1.等比数列的定义 如果一个数列 从第2项起,每一项与它的前一项的比等于同一
常数(不为零)
,那么这个数列叫做等比数列,这个常数叫
做等比数列的 公比 ,通常用字母 q 表示 . 2.等比数列的通项公式 设等比数列{an}的首项为 a1,公比为 q,则它的通项 an
题型一 等比数列的基本运算
思维启迪 解析 答案 思维升华
【例1】 (1)设{an}是由正数组 成的等比数列,Sn为其前 n项 和.已知a2a4=1,S3=7,则 S5等于 15 31 A. B. 2 4 ( 33 C. 4 ) 17 D. 2
(2)在等比数列{an}中,若a4 -a2=6,a5-a1=15,则a3 =______.
跟踪训练1 A.9 B.10 (1)在等比数列{an}中, a1= 1,公比为 q,且 |q |≠ 1. ( C ) D.12 (B ) C.5 D.6 C.11
若 am= a1a2a3a4a5,则 m等于
(2)设 Sn为等比数列 {an}的前 n项和,已知 3S3= a4-2,3S2= a3- 2,则公比 q等于 A.3 B.4
基础知识 题型分类 思想方法 练出高分
题型分类·深度剖析
题型一 等比数列的基本运算
思维启迪 解析 答案 思维升华
【例1】 (1)设{an}是由正数组 成的等比数列,Sn为其前 n项 和.已知a2a4=1,S3=7,则 S5等于 15 31 A. B. 2 4 ( 33 C. 4 ) 17 D. 2
① ②
题型分类·深度剖析
(3)已知{an}是首项为 1 的等比数列,Sn 是{an}的前 n 项和,且 9S3 1 =S6,则数列{ }的前 5 项和为 ( C ) an 15 31 31 15 A. 或 5 B. 或 5 C. D. 8 16 16 8 解析 (3)若 q=1,则由 9S3=S6 得 9×3a1=6a1,
题型分类·深度剖析
题型二 等比数列的性质及应用
思维启迪 解析 答案 思维升华
【例2】 (1)在等比数列{an}中, 各项均为正值,且 a6a10+a3a5 =41,a4a8=5,则a4+a8=
51 ________.
S10 31 = , a1 =- 1 知公比 S5 32 S10-S5 1 q≠ 1, =- . S5 32 (2) 由
(2)在等比数列{an}中,若a4 -a2=6,a5-a1=15,则a3 =______.
基础知识 题型分类
a1=-16 或 1 q = 2
.
故 a3=4 或 a3=-4.
思想方法 练出高分
题型分类·深度剖析
题型一 等比数列的基本运算
思维启迪 解析 答案 思维升华
【例1】 (1)设{an}是由正数组 成的等比数列,Sn为其前 n项 和.已知a2a4=1,S3=7,则 S5等于 15 31 A. B. 2 4 ( B ) 33 17 C. D. 4 2
ak· al=am· an
.
(3)若{an},{bn}(项数相同)是等比数列,则{λan}(λ≠0), 1 an 2 ,{an}, {an· 仍是等比数列. b } , n an bn
基础知识 题型分类 思想方法 练出高分
基础知识·自主学习
基础知识 性质 求解.
题型分类·深度剖析
题型二 等比数列的性质及应用
思维启迪 解析 答案 思维升华
【例2】 (1)在等比数列{an}中,
(1)由 a6a10+a3a5=41 及 a6a10=
2 2 各项均为正值,且 a6a10+a3a5 a8,a3a5=a4,
等比数列基本量的运算是 等比数列中的一类基本问 题,数列中有五个量 a1, n, q,an, Sn,一般可以 “知三求二”,通过列方 程 (组 )可迎刃而解 .
思想方法
(2)在等比数列{an}中,若a4 -a2=6,a5-a1=15,则a3
4或-4 =______.
基础知识 题型分类
练出高分
题型分类·深度剖析
要点梳理
知识回顾 理清教材
5.等比数列的前n项和公式 等比数列{an}的公比为q(q≠0),其前n项和为Sn, 当q=1时,Sn=na1; a11-qn a1-anq 当q≠1时,Sn= = . 1-q 1-q 6.等比数列前n项和的性质 公比不为-1的等比数列{an}的前n项和为Sn,则Sn,
(2) 设 等 比 数 列 {an} 的 公 比 为
a q3- a q= 6 1 1 q(q≠0),则 4 a q 1 - a1= 15
,两式
q 2 相除,得 = , 2 5 1+ q
即 2q2-5q+2=0, 解得 q=2 或 q 1 = . 2
a1=1 所以 q=2
(1) 显 然 公 比 q≠1 , 由 题 意 得 a1q· a1q3=1 a1 1-q3 1-q =7
a1=4 解得 1 q= 2 (舍去),
,
(2)在等比数列{an}中,若a4 -a2=6,a5-a1=15,则a3 =______.
基础知识 题型分类
a1=9 或 1 q=- 3
1 a11-q5 41-25 31 ∴S5= = = . 1 4 1-q 1- 2
思想方法 练出高分
题型分类·深度剖析
题型一 等比数列的基本运算
思维启迪 解析 答案 思维升华
【例1】 (1)设{an}是由正数组 成的等比数列,Sn为其前 n项 和.已知a2a4=1,S3=7,则 S5等于 15 31 A. B. 2 4 ( 33 C. 4 ) 17 D. 2
(2)等比数列 {an}的首项a1=- 意性质成立的前提条件,有时需 S10 1,前n项和为Sn,若 = S5 要进行适当变形.此外,解题时 1 31 - 注意设而不求思想的运用. 2 ,则公比q=________. 32
基础知识 题型分类 思想方法
练出高分
题型分类·深度剖析
题型二 等比数列的性质及应用
思维启迪 解析 答案 思维升华
【例2】 (1)在等比数列{an}中, 各项均为正值,且 a6a10+a3a5 =41,a4a8=5,则a4+a8= ________.
S10 31 = , a1 =- 1 知公比 S5 32 S10-S5 1 q≠ 1, =- . S5 32 (2) 由
n-1 a · q = 1 .
3.等比中项 若
G2=a·b (ab≠0) ,那么 G叫做 a与 b的等比中项 .
题型分类 思想方法 练出高分 基础知识
基础知识·自主学习
要点梳理
知识回顾 理清教材
4.等比数列的常用性质
n-m q (1)通项公式的推广:an=am· ,(n,m∈N*).
(2)若{an}为等比数列,且k+l=m+n(k,l,m,n∈N*), 则
由等比数列前n项和的性质知 S5,S10-S5,S15-S10成等比数
(2)等比数列 {an}的首项a1=- 列,且公比为q5, S10 1,前n项和为Sn,若 = 1 1 5 S5 故 q =- , q =- . 1 32 2 31 - 2 ,则公比q=________. 32
基础知识 题型分类 思想方法 练出高分
q2· q3· q4=q10, 解析 (1)∵a1=1,∴am=a1a2a3a4a5=q·
即 am=a1· q10,∴m=11.故选 C.
3S3=a4-2, (2)因为 3S2=a3-2
a4 ①-②得 3a3=a4-a3,即 4a3=a4,则 q= =4. a3
基础知识 题型分类 思想方法 练出高分
n q S2n-Sn,S3n-S2n仍成等比数列,其公比为
.
练出高分
基础知识
题型分类
思想方法
基础知识·自主学习
夯基释疑
夯实基础 突破疑难
题号
1 2 3 4 5
2
答案
(1)× (2) ×(3) × (4) × (5) √ (6) √
解析
A D
2n+1-2
2n
基础知识
题型分类
思想方法
练出高分
题型分类·深度剖析
=41,a4a8=5,则a4+a8= ________.