信息光学原理第2章
信息光学课后习题解答_苏显渝主编
k 2 2 ( x0 y0 ) U0 ( x0 , y0 ) A0 P( x0 , y0 ) exp j 2f
x 0 y0 k 2 2 exp j ( x y A0 circ( ) 0 ) 2f 0 D1 / 2
2 2
将此式代入菲涅耳衍射公式
0 x1
0 1.5 计算下列一维卷积
x 1 (1) ( 2 x 3) rect( ) 2 x 1 x 1 ( 2) rect( ) rect( ) 2 2
其它
( 3) comb ( x ) rect( x )
解(1)
(1) ( 2 x 3) rect( x 1 1 3 x 1 ) ( x ) rect( ) 2 2 2 2
x y0
2 x 0 y0 e xp( jkf ) exp ( jkf ) D 1 circ( )dx0 dy0 A0 U (0,0, f ) A0 D1 / 2 j f j f 4 2 2 2 D1 I 0 106 I (0,0, z ) A0 4 f
f ( x ) cos2 x 的响应
试计算各自对输入函数 g1 ( x ) 和 g2 ( x ) 解: H1 ( ) rect( )
H 2 ( )
1 rect( ) 3 3
1 F ( ) ( 1) ( 1) 2 1 G1 ( ) H 1 ( ) ( 1) ( 1) 2 1 rect( ) ( 1) ( 1) 0 2
n
0
n
n为奇数
2 ( x 2n )
1.4 计算下面两个函数的一维卷积
光学信息技术原理及应用课后答案
第一章 习题解答1.1 已知不变线性系统的输入为()()x x g com b = 系统的传递函数⎪⎭⎫⎝⎛bf Λ。
若b 取(1)50=.b (2)51=.b ,求系统的输出()x g '。
并画出输出函数及其频谱的图形。
答:(1)()(){}1==x x g δF 图形从略,(2)()()()()()x s co f f δf δx g x x x πδ232+1=⎭⎬⎫⎩⎨⎧1+31+1-31+=F 图形从略。
1.2若限带函数()y x,f 的傅里叶变换在长度L 为宽度W 的矩形之外恒为零, (1)如果L a 1<,Wb 1<,试证明()()y x f y x f b x a x ab ,,sinc sinc =*⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛1 证明:(){}(){}(){}()()(){}(){}()y x,f b x sinc a x sinc ab bf af rect y x f y x,f bf af rect y x f Wf L f rect y x f y x,f y x y x yx *⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛1==∴=⎪⎪⎭⎫⎝⎛=,,F F ,,F ,,F F 1-(2)如果L a 1>, Wb 1>,还能得出以上结论吗? 答:不能。
因为这时(){}(){}()y x yx bf af rect y x f Wf L f rect y x f ,,F ,,F ≠⎪⎪⎭⎫ ⎝⎛。
1.3 对一个空间不变线性系统,脉冲响应为 ()()()y x y x h δ77=sinc ,试用频域方法对下面每一个输入()y x f i ,,求其输出()y x g i ,。
(必要时,可取合理近似)(1)()x y x f π4=1cos ,答:()(){}(){}{}{}()(){}{}{}{}{}xcos x cos f rect x cos y 7x sin x cos y x h y x f y x g x πππδπ4=4=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛74=74==1-1-1-11-1F F F F F F F ,F ,F F ,(2)()()⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754=2y rect x rect x cos y x f π, 答:()(){}(){}{}()()(){}{}()()()()⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛77575⋅75*4=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754==1-1-11-2y rect x rect x cos f rect f sinc 75f sinc x cos y 7x sin y rect x rect x cos y x h y x f y x g x y x ππδπF F F F F ,F ,F F ,(3)()()[]⎪⎭⎫⎝⎛758+1=3x rect x cos y x f π,答: ()()[]()(){}(){}()()()()()()()()()()()(){}⎪⎭⎫ ⎝⎛75=75≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛7⎪⎭⎫ ⎝⎛75*⎪⎭⎫ ⎝⎛4+81+4-81+=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775*8+1=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛758+1=1-1-1-1-1-3x rect f 75f sinc f rect f 75f sinc f rect f δ75f sinc f f x f rect f δ75f sinc x cos y 7x sin x rect x cos y x g y x x y x x y x x x x y x δδδδδπδπF F F F F F F F ,(4)()()()()()y rect x rect x comb y x f 22*=4, 答:()()()()(){}()(){}{}()()()()()()()()()()()()(){}()()x π6cos x π2cos f f f f f f f f f f f rect f f δf f δf f δf f δf rect f sinc 2f sinc f f comb y 7x sin y rect x rect x comb y x g y x y x y x y x y x x yx y x y x y x x y x y x 1060-3180+250=3+0530-3-0530-1+1590+1-1590+=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛7⎪⎭⎫ ⎝⎛-3-2120-1+6370+1-6370+41=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛7⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛2⎪⎭⎫ ⎝⎛41=722*=1-1-1-1-2...,.,.,.,.,F ,.,.,.,F F F F F ,δδδδ0.25δδδ1.4 给定一个不变线性系统,输入函数为有限延伸的三角波()()x x rect x comb x g i Λ*⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛50⎪⎭⎫ ⎝⎛331=对下述传递函数利用图解方法确定系统的输出。
《信息光学第二章》课件
干涉条纹:干涉现象产生的 明暗相间的条纹
光的干涉:光波在传播过程 中相互叠加,形成干涉现象
干涉原理:光的相位差、频 率和振幅对干涉条纹的影响
光的衍射和衍射系统
傅里叶光学基础
傅里叶光学是研究光的传播、干涉、衍射等现象的学科 傅里叶光学的基本原理包括光的波动性、干涉、衍射等 傅里叶光学的应用包括光学成像、光学通信、光学测量等 傅里叶光学的发展对现代光学和光电子学产生了深远影响
量子信息光学:研究量子信息处理和传 输
生物光子学:研究生物系统中的光子学 现象和应用
光子晶体:研究光子晶体的制备和应用
光学成像:研究光学成像技术和应用
光子学:研究光子学器件和系统的设计、 制造和应用
光学通信:研究光学通信技术和应用
信息光学的发展展望
光学技术在信息领域的应用越来 越广泛
光学技术在通信、传感、成像等 领域的发展趋势
1960年代,信息光学理论得到快速发展
1990年代,信息光学在光学通信、光学成像等 领域得到进一步发展
1970年代,信息光学在通信、雷达等领域得到 广泛应用
2000年代,信息光学在光学通信、光学成像等领域得 到广泛应用,并开始向生物医学、环境监测等领域拓展
信息光学的基本原理
光的干涉和干涉系统
干涉系统:由两个或多个光源 组成的系统,可以产生干涉现 象
光学技术在生物医学、环境监测 等领域的应用前景
光学技术在量子信息、人工智能 等领域的发展潜力
感谢您的耐心观看
汇报人:
添加副标题
信息光学第二章
汇报人:
目录
CONTENTS
01 添加目录标题
02 信息光学的基本概 念
03 信息光学的基本原 理
信息光学Chap.2-衍射理论-角谱及其传播
U (x, y, z)
A(cos
,
, z) exp[ jp (cos
x
cos
y)]d(cos )d(cos )
代入亥姆霍兹方程 (2+k2)U(x,y,z)=0, 并交换积分和微分的顺序
(2
复振幅分布的角谱
第一步: 写出屏的透过率函数 t(x,y):
第二步: 写出入射波的复振幅分布U0(x,y ,0) 单位振幅的单色平面波垂直入射照明, U0(x,y,0)=1
第三步: 写出紧靠屏后平面上的透射光场复振幅分布U (x,y , 0)
U (x,y, 0)=U0(x,y, 0) t(x,y)= t(x,y)
第二部分 衍射理论
一、衍射 二、角谱理论
一、衍射
衍射规律:是光波传播的基本规律; 基尔霍夫的衍射理论:是描述光波传播规律的 基本理论; 光波作为标量的条件:
一、衍射
1、衍射的概念:
1)索末菲的定义:“不能用反射或折射来解释的 光线对直线光路的任何偏离”,是对现象的描述;
2)惠更斯-菲涅尔原理:把光波在传播过程中波面 产生破缺的现象;是对圆孔、单缝等衍射现象解释 而提出;
球面 子波源
U (P)
c
U (P0 )K ( )
e jkr r
ds
源点
源点处的面元法线
所考虑的传播方向与面元法线的夹角 源点到场点的距离
场点
原波阵面 成功: 可计算简单孔径的衍射图样强度分布.
局限:难以确定K( ).无法引入-p /2的相移
2)基尔霍夫衍射公式
在单色点光源照明平面孔径的情况下: 惠-菲原理
A(cos , cos , z)
信息光学第二章2
• 这一近似称为夫琅禾费近似或远场近似。在这一 近似条件下,脉冲响应可进一步简化为
h ( x 0 , y0 ; x , y ) exp( jkz ) k k exp j ( x 2 y 2 ) exp j ( xx0 yy0 ) j z 2z z
2 2 0 0 0 0
代入 有:
U ( x, y)
U ( x , y )h( x-x , y-y )dx dy
0 0 0 0 0 0
0
( x x 0 ) 2 ( y y0 ) 2 exp( jkz ) U ( x, y) U 0 ( x0 , y0 )exp jk dx0 dy0 j z 2z
入射光
Q
2.2 基尔霍夫衍射理论
1. 惠更斯-菲涅尔原理
光场中任一给定曲面上的各面元可以看做子 波源,这些子波源是相干的,则在波继续传播的空 间上任一点处的光振动,都可看做是这些子波源各 自发出的子波在该点相干叠加的结果。 其数学表达式为:
U ( Q ) c U 0 ( p ) k ( )
1/ 2
• 旁轴近似下
1 x x 0 2 1 y y0 2 r z 1 2 z 2 z
• 脉冲响应可近似为
h x x 0 , y y0 exp jkz j z
2 2 k exp j x - x 0 y - y0 2z
1 a0e U (Q) j r0
jkr0
cos(n, r ) - cos(n, r0 ) e jkr ds 2 r
基尔霍夫衍射公式
信息光学 第二章概述
二 惠更斯-菲涅耳原理 目的:以子波相干叠加的方法对衍射结果进行定量描述。 Z Q R S Z/ 研究方法:单色点光源S发出的球面波波面为,波面半径为R, 光波传播空间内任意一点P的振动应是波面上发出的所有子波 在该点振动的相干叠加。 r
P
三
基尔霍夫衍射公式
基尔霍夫的贡献:1.给出了倾斜因子 K 2.给出了常数C的具体形式
(夫琅和费近似)
+
2.2 衍射的角谱理论
孔径平面和观察平面上的光场分布都可以分别看成 是许多不同方向传播的单色平面波分量的线性组合。每 一平面波分量的相对振幅和相位取决于相应的角谱。 x0 y0
U 0 ( x0 , y0 )
cos cos A0 ( , )
xy
U ( x, y )
z cos cos A( , )
本章讲述标量衍射理论,需要指出的是,在现代衍 射 光学、微光学、二元光学及光子晶体分析中,常利 用矢量波衍射理论。
本章主要研究内容
• 基尔霍夫衍射理论
• 衍射的角谱理论
• 菲涅尔衍射和夫琅禾费衍射 • 透镜的傅里叶变换性质
2.1 基尔霍夫衍射理论
• 惠更斯-菲涅尔原理与基尔霍夫衍射公式
• 惠更斯-菲涅尔原理与叠加积分
z=z
z=0
基尔霍夫理论与角谱理论的比较
• (1)基尔霍夫理论和角谱理论是统一的,它们都 证明了光的传播现象可看作线性系统。--共同 的物理基础(标量波动方程) • (2)基尔霍夫理论是在空域讨论光的传播,是把 孔径平面光场看作点源的集合,观察平面上的场 分布等于它们发出的不同权重的球面波的相干叠 加。球面子波在观察平面上的复振幅分布就是系 统的脉冲响应。角谱理论是在频域讨论光的传播, 是把孔径平面场分布看作许多不同方向传播的平 面波分量的线性组合。观察平面上场分布仍然等 于这些平面波分量的叠加,但每个平面波引入了 相移。相移的大小决定系统的传递函数,它是系 统脉冲响应的傅里叶变换。
信息光学(傅里叶光学)Chap2-1
1
1
其它
其他频率 分量全通
H(f)
-1/4
0 1/4 -1
f
H(f) = 1-2rect(2f)
线性不变系统 例
H(f) = 1-2rect(2f)
脉冲响应: h( x)
-1
x H ( f ) d ( x) sinc 2
h(x)
x -2 0 2
线性不变系统 H(f) = 1-2rnc50 f sinc( f )
只要知道各个脉冲响应函数, 系统的输出即为脉冲响应函数 的线性组合. 问题是如何求对任意点的脉冲d 响应h(x,
y; xh)
§2-1 线性系统简介
脉冲响应函数h(x, y ; x h )的求法:
对一般系统而言, 脉冲响应函数的形式可能是点 点不同的
例如,
{d(x)}= h (x)=1 {d(x-1)}= h (x;1)= exp(-j2px) h (x;1) h (x-1)=1
{d(x-x, y-h)}=h (x-x, y-h) 则此线性系统称为空间不变系统或位移 不变系统.
线性不变系统的脉冲响应:
h (x, y; x, h) = h (x-x, y-h)
观察点 输入脉冲 坐标 坐标 二个坐标的 相对间距
线性不变系统的输入-输出变换关系不随空间位置变化.
§2-2 线性不变系统: 例
•低通滤波器: 允许通过的频率有一上限—截止频率 例2.1中的传递函数的性质:在|频率| < b的区间 内信号能无畸变地通过,此外全部阻塞. 这种系统的作用 是低通滤波器. • 高通滤波器: 允许通过的频率有一下限 • 带通滤波器: 只通过某特定频带内的频率分量 • 其它滤波器: 位相滤波器, 匹配滤波器等等
信息光学导论_chapter 2
01
1 4
eikr01 U eikr01 U r n n r01 S 01
dS
称为基尔霍夫积分定理。 称为 基尔霍夫积分定理。
关于基尔霍夫积分定理的几点说明: 1.物理意义:衍射光场中任意点P0的 复振幅分布U(P0)可以用包围该点的 任意封闭曲面S上的各点的波动边界 值U和 U n 求得。
标量衍射理论的发展(简介):
惠更斯原理(1678) (几何作图法)
惠更斯-菲涅耳原理(1818)
(引入干涉的思想)
基尔霍夫公式(1882)
(应用格林定理)
本章从基尔霍夫衍射公式开始,讨论两类 典型的衍射,即夫琅和费衍射和菲涅耳衍射, 并用空间频谱的观点来分析衍射现象。
本章重点
1.空域与频域的基尔霍夫衍射公式 2.经简化后的两类典型的衍射 3.一些典型孔径的夫琅和费衍射 4. 泰保效应和采用会聚球面波照明孔径时形成 的衍射
三.菲涅耳—基尔霍夫衍射公式
对孔径采取具体的照明方式后 采取具体的照明方式后, , 基尔霍夫衍射公 式会有更具体的形式。 式会有更具体的形式 。 设孔径由P 设孔径由 P2点处的单色点光源照明 点处的单色点光源照明: :
eikr21 U (P 1) A r21
由于 r01、r21 从而
课后思考
1.基尔霍夫边界条件具有不自洽性,如何改善? 1. 基尔霍夫边界条件具有不自洽性,如何改善? 2.当一束截面很大的平行光遇到一个小小的墨 2.当一束截面很大的平行光遇到一个小小的墨 点时,有人认为它无关大局,其影响可以忽略, 后场基本上还是一束平行光。这个看法对吗? 为什么?
第二讲 衍射规律的频域表达式
1 1 ,则 k 、 r01 r21
傅立叶光学(信息光学)_课件
0 x<0
step(x)
1
0
step(x-x0),间断点移到x0处
x
二、符号函数:描述某孔径一半宽有 的位相差
1 x>0 Sgn(x)= 0 x=0
-1 x<0
Sgn(x)=2step(x)-1
sgn(x)
1
x
0
1
三、矩形函数(门函数):表示狭缝、矩孔的透过
傅立叶光学
第一章 绪论 第二章 线性系统与Fourier分析 第三章 光波的标量衍射理论 第四章 透镜的Fourier变换性质 第五章 光学成像系统的频率响应 第七章 光学全息 第八章 空间滤波与光学信息处理
第一章 绪论
一、“信息光学”的含义 信息光学=数学工具(级数、积分)+经典光学 (光波的传播、干涉、衍射、成像、光学信息的记 录与再现、光学信号的处理)
2、光学中的线性叠加原理uv uuv uuv 波的迭加原理:矢量:E E1( p) E2( p) L
n
相干光场:复振幅:U(p)=Ui ( p) i 1
n
非相干光场:光强:I ( p) Ii ( p) i 1
3、利用系统的特性来求输入/输出关系 “三步法则”: 第一步:将复杂输入分解为简单输入函数之和 第二步:分别求出简单函数的输出 第三步:将简单函数输出加起来
2.1 线性系统的基本概念 一、系统:同类事物按一定关系所组
成的整体
特征(性):不管内部结构,只是全体与外 部的关系,是整体行为,综 合行为
二、物理系统:由一个或多个物理装
置所组成的系统
1、概念:考虑与外形的信息交换 2、内容:输入/输出关系 3、特点:系统的外特性 4、作用:对输入信号变换作用——运算作用
信息光学第二章
从而平面波的复振幅的一般表达式变为
U (x, y, z) a exp[ j (xf x yf y zf z )]
空间频率的倒数即为振荡周期(X,Y,Z)
λ
λ
λ
X cosα ,Y cosβ, Z cosγ
空间频率表示在 x 、y 、z 轴上单位距离内的复振幅周期变化的次
数。这就是平面波空间频率的物理意义
信息光学
标量衍射理论
1
一 什么是标量衍射理论?
衍射:按照索末菲定义是“不能用反射或折射来解释的光线对直 线光路的任何偏离”
光的标量衍射理论的条件 (1)衍射孔径比波长大很多, (2)观察点离衍射孔不太靠近;
经典的标量衍射理论最初是1678年惠更斯提出的,1818年菲涅耳 引入干涉的概念补充了惠更斯原理,1882年基尔霍夫利用格林定 理,采用球面波作为求解波动方程的格林函数,导出了严格的标 量衍射公式
z
f x f y )
U (x, y,) exp( j z
f x f y )
其中 U (x, y,) a exp[ j (xf x yf y )]
该式表达了在任一距离z的平面上的复振幅分布,由在 z 0 平 面上的复振幅和与传播距离及方向有关的一个复指数函数的乘积 给出
可以推导出,二阶线性微分方程
d A(cos , cos , z) k cos cos A(cos , cos , z)
dz
该二阶常微分方程的一个基本解是
A(cos , cos , z) C cos , cos exp jkz cos cos
z 平面上的角谱 A(cos , cos ,)为因而有
5
球面波的复振幅表示
从点光源发出的光波,在各向同性介质中传播时形成球形的波面, 称为球面波。一个复杂的光源常常可以看做是许多点光源的集合, 它所发出的光波就是球面波的叠加
信息光学原理第2章
2.1 光波的数学描述
2.1.5 复振幅分布的空间频谱(角谱)
利用傅里叶变换对位于单色光场中的xy平面上的复振幅分布进
行傅里叶分析,有
U x, y A fx, fy exp j2 fxx fy y dfxdfy
A fx, fy U x, yexp j2 fxx fy y dxdy
几何光学 (光与宏观物质的作用)
信息光学原理(电子工业出版社) 苏显渝 吕乃光 陈家壁
信息光学是光学和信息科学相结合的新的学科分支。 它研究以光为载体的信息的获取、信息的交换和处 理、信息的传递和传输,是信息科学的一个分支。 信息光学采用线性系统理论、傅里叶分析方法分析 各种光学现象。
第二章
标量衍射理论
cos2 cos2 cos2 1
2.1 光波的数学描述
对于如右图所示 的沿某一确定方向传播的平面波,在xy 平面上的复振幅为:
U x, y, z a exp jkz cos exp jk x cos y cos
a
exp
jkz
1
cos2
cos2
exp
jk
x
cos
y
cos
u x, y, z,t a x, y, zcos 2t x, y, z
其中,v是光波的时间频率;a(x,y,z)和(x,y,z)分别是P点光振动
的振幅和初相位。根据欧拉公式,可将该波函数表示为复指数函数 取实部的形式:
u x, y, z, t Re a x, y, z e j2tx,y,z
参考文献:
(1) W. Lauterborn, T.Kurz, M.Wiesenfeldt, Coherent optics, 北京:世界图书出版社,1998。
信息光学 第二章
zHale Waihona Puke x0)z2、(
y
z
y0
)2
z 都是小量,r可展开为
r z[1 (x x0 )2 ( y y0 )2 [(x x0 )2 ( y y0 )2 ]2 ]
2z
8z4
当z足够大时,展开式中第三项可忽略。这种近似称菲涅耳近似或
傍轴近似。
这时指数部分的r取为
r z[1 (x x0 )2 ( y y0 )2 ] 2z
振幅,而假定其它分量也可以用同样的方法处理,忽略电 磁场矢量间的耦合特性,称之为标量衍射理论。 标量衍射理论适用条件: (1)衍射孔径比波长大得多 (2)观察平面远离孔径平面
主要研究问题:
研究光源S发出的球面波照明无限大的不透明屏上的孔, 计算孔径右边空间衍射场中某点P的场值--小孔衍射问题
2.1.4 相干光场在自由空间传播的脉冲响应的近似表达式
本章主要研究内容
• 基尔霍夫衍射理论 • 衍射的角谱理论 • 菲涅尔衍射和夫琅禾费衍射 • 透镜的傅里叶变换性质
2.1 基尔霍夫衍射理论
• 惠更斯-菲涅尔原理与基尔霍夫衍射公式 • 惠更斯-菲涅尔原理与叠加积分 • 相干光场在自由空间传播的平移不变性 • 相干光场在自由空间传播的脉冲响应
2.1. 惠更斯—菲涅耳原理与基尔霍夫衍射公式
只要满足傍轴条件,就可以对任意的入射波进行变换。薄透 镜的相位变换特性与入射波无关,由透镜本身性质决定。
2.4.2 透镜的傅里叶变换特性
会聚透镜除具有成像性质外,另一个性质就是能作 傅里叶变换。
正因如此,傅里叶分析方法才得以广泛用于光学。
用正透镜观察夫琅和费衍射(实现傅立叶变换)的途径 (1)平行光照明下,在透镜的后焦平面上观察(在无穷远 处照明光源的共轭面) (2)照明光源的共轭面上。
《信息光学》课件
第二章:光学矩阵理论
光学矩阵是描述光学元件的传输特性的数学工具。学习光学矩阵的定义、表示方法、性质和计算方法,以及如 何通过光学矩阵推导光学元件的传输特性。
第三章:信息光学器件
光波导器件
光波导器件是利用光波导的特性来传输和处理信息的器件,包括光纤和光波导芯片。
光栅器件
光栅器件利用光栅结构的衍射特性来处理信息,例如光栅衍射和光栅激光器。
结束语
感谢大家的聆听与支持!在未来,信息光学将在通信、计算、存储等领域有 更广泛的应用,让我们Байду номын сангаас起探索信息光学的无限可能。
闪烁光记录器
闪烁光记录器是一种使用光固体材料记录和存储信息的高密度光存储设备。
第四章:信息光学应用
光学通信
光学通信是利用光信 号传输信息的通信方 式,具有高速、大容 量和低损耗的优势。
光存储
光存储技术利用光的 特性进行信息的高密 度存储,如光盘和固 态存储器。
光量子计算
光量子计算利用光的 量子特性进行高速并 行计算,被认为是未 来计算科学的重要方 向。
《信息光学》PPT课件
欢迎大家来到《信息光学》PPT课件!本课程将带领您探索信息光学的世界, 学习信息光学的概念、原理和应用,为您展示信息光学的魅力。
第一章:信息光学概述
信息光学是研究光与信息传输、处理和存储的学科,涉及广泛的应用领域。了解信息光学的定义、研究内容以 及与其他学科的关系,将打开信息光学的大门。
光晶体管
光晶体管是一种利用 光调控电流和电压的 器件,具有高速、低 功耗和可重构性。
第五章:信息光学前沿研究
1
研究热点
了解当前信息光学领域的研究热点,如全息影像、量子信息和高速光通信等。
信息光学实验讲义二
信息光学实验讲义(二)指导教师:刘厚通安徽工业大学数理学院实验三全息光栅的制作引言光栅是一种重要的分光元件,在实际中被广泛应用。
许多光学元件, 例如单色仪、摄谱仪、光谱仪等都用光栅作分光元件;与刻划光栅相比, 全息光栅具有杂散光少、分辨率高、适用光谱范围宽、有效孔径大、生产效率高, 成本低廉等突出优点。
实验目的1、了解全息光栅的原理;2、掌握制作全息光栅的常用光路和调整方法;3、掌握制作全息光栅的方法。
基本原理(1)全息光栅当参考光波和物光波都是点光源且与全息干板对称放置时可以在干板上形成平行直条纹图形,这便是全息光栅。
采用线性曝光可以得到正弦振幅型全息光栅。
从光的波动性出发,以光自身的干涉进行成像,并且利用全息照相的办法成像制作全息光栅,这是本节的内容。
(2)光栅制作原理与光栅频率的控制用全息方法制作光栅, 实际上就是拍摄一张相干的两束平行光波产生的干涉条纹的照相底片,当波长为λ的两束平行光以夹角 交迭时, 在其干涉场中放置一块全息干版, 经曝光、显影、定影、漂白等处理, 就得到一块全息光栅。
相邻干涉条纹之间的距离即为光栅的空间周期d (实验中常称为光栅常数) 。
如图2-1所示:图2-1全息光栅制作原理示意图有多种光路可以制作全息光栅。
其共同特点是①将入射细光束分束后形成两个点光源,经准直后形成两束平面波;②采用对称光路,可方便地得到等光程。
如图2-2和图2-3所示。
Ⅰ图 2-2 全息光栅制作实验光路图MSPL1L2L1234567891011121314151617SPML350150100270200150L1L2图 2-3 全息光栅制作实验光路图图2-2采用马赫-曾德干涉仪光路,它是由两块分束镜(半反半透镜)和两块全反射镜组成,四个反射面接近互相平行,中心光路构成一个平行四边形。
从激光器出射的光束经过扩束镜及准直镜,形成一束宽度合适的平行光束。
这束平行光射入分束板之后分为两束。
一束由分束板反射后达反射镜,经过其再次反射并透过另一个分束镜,这是第一束光;另一束透过分束镜,经反射镜及分束镜两次反射后射出,这是第二束光。
信息光学导论第二章
第二章信息光学的数学基础◆引言在这一节,我们将以简明的格式,全面地罗列傅里叶变换和卷积、相关及其主要性质,着重从光学眼光看待那些公式和数学定理,给出相应的光学显示或光学模拟,这有助于生动地理解、掌握傅里叶变换和卷积、相关,其意义就不仅仅限于光学领域了。
2.1傅里叶变换◆傅里叶级数首先.让我们回忆周期函数的傅里叶级数展开式,这里,)(x g 称为原函数,n G 称为博里叶系数或频谱值,它是傅里叶分量nf x i e2π的幅值.◆频谱的概念频谱的概念,广义上讲就是求一个函数的傅立叶级数或一个函数的傅立叶变换。
因此,傅立叶分析也称频谱分析。
频谱分为振幅型频谱和相位型频谱。
相位型频谱用的较少,通常提到的频谱大都指振幅型频谱。
为了更深刻的理解不同形式的频谱概念,以实例来进一步说明。
对于光栅我们可以用透过率函数)(x g 来描述,一维透射光栅的透过率函数是一矩形波函数。
为了讨论问题方便, 设光栅狭缝总数N 无限大.)(x g 是周期性函数 则:上式表明,图中表示的矩形波可以分解为不同频率的简谐波,这些简谐波的频率为),()(md x g x g +=),2,1,( ±±=m ++-+=)52cos(52)32cos(32)2cos(221)(000x p x f x f x g ππππππ这里f 称为空间频率. 0f 是f 的基频.。
周期性函数的频谱都是分立的谱,各谱线的频率为基频整数倍.在f =0处有直流分量.透过率函数也可用复数傅里叶级数表示:再回到光栅装置.由光栅方程,在近轴条件下因此透镜后焦面上频率为当单色光波入射到待分析的图象上时,通过夫琅和费衍射,一定空间频率的信息就被一定特定方向的平面衍射波输送出来. 这些衍射波在近场彼此交织在一起,到了远场它们彼此分开,从而达到分频的目的.故傅立叶变换能达到分频的目的。
◆傅里叶变换在现实世界中,不存在严格意义下的周期函数,非周期变化是更为普遍的现象.从数学眼光看,非周期函数可看作周期∞→d 的函数.据此,可将上述傅里叶级数求和式过渡到积分表达式.结果如下,上式(*******)称为傅里叶变换,下式******)称为博里叶逆变换.对于二维情形,傅里叶变换和逆变换的积分式为简单地表示为,5,3,1,dd d f =xf i n x f i xf i x f i x p i x f i x f i n e G e e e e e e xg 25252323222 )(51)(31)(121)(000000ππππππππππ∑=++++-++=--- ,sin λθn d =),2,1,0( ±±=n ,sin 0λλθnf d n f x =='≈λf xnf f '==0从光学眼光看),(y x g 代表一波前函数,线性相因子)(2y f x f i y x e+π代表—平面波成分,(y x f f ,)代表一空间频率,对应一特定方向的平面波.于是,积分式(******)表明,任一波前可以分解为一系列不同空间频率的平面波前成分的叠加.对于非周期函数,空间频率(y x f f ,)的取值不是离散的,而是连续的,存在于(∞∞-,).因此,在(y x f f ,)一(y y x x df f df f ++,)频率间隔中,平面波成分的振幅系数dA 表示为这给出了谱函数G(y x f f ,)的光学意义一一频率空间中单位频率间隔的振幅系数,即振幅的谱密度函数,简称频谱。
信息光学第二章习题答案
自由空间传输只是附加了空间频率相关的相位,相
对振幅分布不变。
当
时, f
2 x
fy2
1 2
H
fx, fy
0 。这说明该系统是一个低
通滤波器。
其截止频率为:0
f
2 x
fy2
1
2.6、光场从入射面经自由空间传输至某一距 离后,在观测面上某点得到零强度分布。现 在入射面上先后放置两互补衍射屏,试问在 观测点处先后所得的强度有什么关系?说明 理由。
x0 z
y0
z
2
解:用单位振幅的单色平面波垂直照明模块,其 透射光场为:
Ut x, y t1 xt2 y
夫琅和费衍射远场光场分布为:
U (x0,
y0 )
1
i z
e e ikz
i
k 2z
[
x02
y02
]
{Ut (x,
y)}
1
i z
e e ikz
1 2
t20t1' 0
e e i2 fxx i2 fxx
1 4
t1'0t2' 0
ei2
f x x 2
fy y
ei2
f x x 2
fy y
ei2
f x x 2
f y y
ei2
f x x 2
f y y
2.4、试阐述傅里叶自成像与一般几何成像 的不同。
x02
y02
)
i z
Xf x
信息光学2
f ( x , y ) ∗ g ( x , y )= ∫ ∫− ∞ g (ξ ,η ) f ( x − ξ , y − η ) dξ dη
两个复函数f(x,y),g(x,y)的互相关: 的互相关: 两个复函数 的互相关
∞
= ∫∫ g (ξ ,η ) f * (ξ − x,η − y )dξdη f ( x, y )★g ( x, y ) ∞
e ff ( x, y ) ≤ e ff (0,0)
1-5 傅立叶变换的基本概念 - 傅立叶分析是广泛应用于物理学和各工程学科的重要数学工具。 傅立叶分析是广泛应用于物理学和各工程学科的重要数学工具。 1.二维傅立叶变换的定义 二维傅立叶变换的定义 复函数f(x,y)的傅立叶变换定义为: 的傅立叶变换定义为: 复函数 的傅立叶变换定义为
证明: 证明:
f ( x )★ g ( x ) = f ( − x ) ∗ g ( x )
*
= g ( x) ∗ f * (− x) = g * ( − x )★ f * ( − x )
2.自相关 自相关 当f(x,y)=g(x,y)时,互相关称为函数的自相关: = 时 互相关称为函数的自相关:
e ff ( x, y ) = ∫∫ f * (ξ ,η ) f ( x + ξ , y + η )dξdη
4.虚、实、奇、偶函数傅立叶变换的性质 虚 复函数f(x,y)的傅立叶变换可写为: 复函数 的傅立叶变换可写为: 的傅立叶变换可写为
F( fx, f y ) = ∫ ∫
∞
−∞
f ( x, y )e
−i 2π ( f x x + f y y )
dxdy
= ∫∫
∞
−∞
f ( x, y ) cos[2π ( f x x + f y y )]dxdy −
陈家璧版_光学信息技术原理及应用习题解答(1-2章)
第一章习题1.1 已知不变线性系统的输入为()()x x g com b = 系统的传递函数⎪⎭⎫⎝⎛b f Λ。
若b 取(1)50=.b (2)51=.b ,求系统的输出()x g '。
并画出输出函数及其频谱的图形。
答:(1)()(){}1==x x g δF 图形从略,(2)()()()()()x s co f f δf δx g x x x πδ232+1=⎭⎬⎫⎩⎨⎧1+31+1-31+=F 图形从略。
1.2若限带函数()y x,f 的傅里叶变换在长度L 为宽度W 的矩形之外恒为零, (1)如果L a 1<,Wb 1<,试证明()()y x f y x f b x a x ab ,,sinc sinc =*⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛1 证明:(){}(){}(){}()()(){}(){}()y x,f b x sinc a x sinc ab bf af rect y x f y x,f bf af rect y x f Wf L f rect y x f y x,f y x y x yx *⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛1==∴=⎪⎪⎭⎫⎝⎛=,,F F ,,F ,,F F 1-(2)如果L a 1>, Wb 1>,还能得出以上结论吗? 答:不能。
因为这时(){}(){}()y x yx bf af rect y x f Wf L f rect y x f ,,F ,,F ≠⎪⎪⎭⎫ ⎝⎛。
1.3 对一个空间不变线性系统,脉冲响应为()()()y x y x h δ77=sinc ,试用频域方法对下面每一个输入()y x f i ,,求其输出()y x g i ,。
(必要时,可取合理近似) (1)()x y x f π4=1cos ,答:()(){}(){}{}{}()(){}{}{}{}{}xcos x cos f rect x cos y 7x sin x cos y x h y x f y x g x πππδπ4=4=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛74=74==1-1-1-11-1F F F F F F F ,F ,F F ,(2)()()⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754=2y rect x rect x cos y x f π, 答:()(){}(){}{}()()(){}{}()()()()⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛77575⋅75*4=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754==1-1-11-2y rect x rect x cos f rect f sinc 75f sinc x cos y 7x sin y rect x rect x cos y x h y x f y x g x y x ππδπF F F F F ,F ,F F ,(3)()()[]⎪⎭⎫⎝⎛758+1=3x rect x cos y x f π,答: ()()[]()(){}(){}()()()()()()()()()()()(){}⎪⎭⎫ ⎝⎛75=75≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛7⎪⎭⎫ ⎝⎛75*⎪⎭⎫ ⎝⎛4+81+4-81+=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775*8+1=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛758+1=1-1-1-1-1-3x rect f 75f sinc f rect f 75f sinc f rect f δ75f sinc f f x f rect f δ75f sinc x cos y 7x sin x rect x cos y x g y x x y x x y x x x x y x δδδδδπδπF F F F F F F F ,(4)()()()()()y rect x rect x comb y x f 22*=4, 答:()()()()(){}()(){}{}()()()()()()()()()()()()(){}()()x π6cos x π2cos f f f f f f f f f f f rect f f δf f δf f δf f δf rect f sinc 2f sinc f f comb y 7x sin y rect x rect x comb y x g y x y x y x y x y x x y x y x y x y x x y x y x 1060-3180+250=3+0530-3-0530-1+1590+1-1590+=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛7⎪⎭⎫ ⎝⎛-3-2120-1+6370+1-6370+41=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛7⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛2⎪⎭⎫ ⎝⎛41=722*=1-1-1-1-2...,.,.,.,.,F ,.,.,.,F F F F F ,δδδδ0.25δδδ1.4 给定一个不变线性系统,输入函数为有限延伸的三角波 ()()x x rect x comb x g i Λ*⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛50⎪⎭⎫ ⎝⎛331=对下述传递函数利用图解方法确定系统的输出。
光学信息技术原理及应用(第二版)课后答案汇总
第一章 习题解答1.1 已知不变线性系统的输入为()()x x g c o m b =系统的传递函数⎪⎭⎫⎝⎛b f Λ。
若b 取(1)50=.b (2)51=.b ,求系统的输出()x g '。
并画出输出函数及其频谱的图形。
答:(1)()(){}1==x x g δF 图形从略, (2)()()()()()x s co f f δf δx g x x x πδ232+1=⎭⎬⎫⎩⎨⎧1+31+1-31+=F 图形从略。
1.2若限带函数()y x,f 的傅里叶变换在长度L 为宽度W 的矩形之外恒为零,(1) 如果L a 1<,Wb 1<,试证明()()y x f y x f b x a x ab ,,sinc sinc =*⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛1 证明:(){}(){}(){}()()(){}(){}()y x,f b x sinc a x sinc ab bf af rect y x f y x,f bf af rect y x f Wf L f rect y x f y x,f y x y x yx *⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛1==∴=⎪⎪⎭⎫⎝⎛=,,F F ,,F ,,F F 1-(2) 如果L a 1>, Wb 1>,还能得出以上结论吗?答:不能。
因为这时(){}(){}()y x yx bf af rect y x f W f L f rect y x f ,,F ,,F ≠⎪⎪⎭⎫⎝⎛。
1.3 对一个空间不变线性系统,脉冲响应为 ()()()y x y x h δ77=sinc ,试用频域方法对下面每一个输入()y x f i ,,求其输出()y x g i ,。
(必要时,可取合理近似) (1)()x y x f π4=1cos ,答:()(){}(){}{}{}()(){}{}{}{}{}xcos x cos f rect x cos y 7x sin x cos y x h y x f y x g x πππδπ4=4=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛74=74==1-1-1-11-1F F F F F F F ,F ,F F ,(2)()()⎪⎭⎫ ⎝⎛75⎪⎭⎫⎝⎛754=2y rect x rect x cos y x f π, 答:()(){}(){}{}()()(){}{}()()()()⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛77575⋅75*4=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754==1-1-11-2y rect x rect x cos f rect f sinc 75f sinc x cos y 7x sin y rect x rect x cos y x h y x f y x g x y x ππδπF F F F F ,F ,F F ,(3)()()[]⎪⎭⎫⎝⎛758+1=3x rect x cos y x f π, 答:()()[]()(){}(){}()()()()()()()()()()()(){}⎪⎭⎫ ⎝⎛75=75≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛7⎪⎭⎫ ⎝⎛75*⎪⎭⎫ ⎝⎛4+81+4-81+=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775*8+1=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛758+1=1-1-1-1-1-3x rect f 75f sinc f rect f 75f sinc f rect f δ75f sinc f f x f rect f δ75f sinc x cos y 7x sin x rect x cos y x g y x x y x x y x x x x y x δδδδδπδπF F F F F F F F ,(4)()()()()()y rect x rect x comby x f 22*=4, 答:()()()()(){}()(){}{}()()()()()()()()()()()()(){}()()x π6cos x π2cos f f f f f f f f f f f rect f f δf f δf f δf f δf rect f sinc 2f sinc f f com b y 7x sin y rect x rect x com by x g y x y x y x y x y x x yx y x y x y x x y x y x 1060-3180+250=3+0530-3-0530-1+1590+1-1590+=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛7⎪⎭⎫ ⎝⎛-3-2120-1+6370+1-6370+41=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛7⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛2⎪⎭⎫ ⎝⎛41=722*=1-1-1-1-2...,.,.,.,.,F ,.,.,.,F F F F F ,δδδδ0.25δδδ1.4 给定一个不变线性系统,输入函数为有限延伸的三角波()()x x rect x comb x g i Λ*⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛50⎪⎭⎫ ⎝⎛331= 对下述传递函数利用图解方法确定系统的输出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2 基尔霍夫衍射理论
2.2.1 惠更斯—菲涅耳原理和基尔霍夫衍射公式 “波前上的每一个面元都可以看作是一个次 级扰动中心,它们能产生球面子波”,并且, “后一时刻的波前的位置是所有这些子波前 的包络面。” ——《论光》,惠更斯 , 1690 “波前上任何一个未受阻挡的点都可以看作 是一个频率(或波长)与入射波相同的子波 源;在其后任何地点的光振动,就是这些子 波叠加的结果。” ——巴黎科学院,菲涅耳, 1818
x y x y x y
A f x , f y U x, y exp j 2 f x x f y y dxdy
其中,
fx
cos
fy
cos
平面上的复振幅分布U(x,y)看作频率不同的复指数分量的线性组合,各 频率分量的权重因子是A(x,y),而且
其中,
U x, y, z a exp jk x cos y cos z cos
(1)a 是常量振幅;
(2)cos、cos、cos 为传播方向 的方向余弦,而且有
cos2 cos2 cos2 1
2.1 光波的数学描述 对于如右图所示 的沿某一确定方向传播的平面波,在xy 平面上的复振幅为:
fy 1 0 Y
此时,xy平面上的复振幅分布可表示为
U x, y A exp j 2 f x x
即可用空间频率表示xy平面上的复振幅分布;空间频率与传播方向一一对应
*上式就是一个传播方向为(cos =x、cos=0)的单色平面波的复振幅表达式。
2.1 光波的数学描述
参考文献:
(1) W. Lauterborn, T.Kurz, M.Wiesenfeldt, Coherent optics, 北京:世界图书出版社,1998。 (2) Francis T.S.Yu(杨震寰), Suganda Jutamulia, Shizhou Yin, Introduction to information optics, Academic Press, UK. (可以在Netlibrary在线阅读) (3) Francis T.S.Yu,Suganda Jutamulia,Shizhou Yin,光 信息技术及应用,北京:电子工业出版社,2006(参考书2的中 译本)。 (4) Joseph W. Goodman著,秦克诚,刘培森,陈家璧,曹其智 译,傅立叶光学导论,北京:电子工业出版社,2006。 (5) 吕乃光,傅里叶光学,北京:机械工业出版社,2006。 (6) 陈家璧,苏显渝,光学信息技术原理及应用,北京:高等 教育出版社,2002。 (7) Edugene Hecht著,张存林改编,Optics,北京:高等教育 出版社,2005。 (8) 杨振寰著,母国光,羊国光, 庄松林译,光学信息处理, 天津:南开大学出版社,1986。 (9) 高玮,黄金哲,孙伟民,信息光学,哈尔滨:黑龙江教育 组垂直于x轴的平行线, 而且间距相等。由于等相位线上的振动相同,所以复振 幅在xy平面周期分布的空间周期可以用位相相差2的两 相邻等位相线的间隔X表示。
2.1 光波的数学描述 当 则有
kX cos 2
X 2 k cos cos
其中,为广波波长。空间周期的倒数即为空间频率,表示x方向单位长度内变化的周期 数,即 1 cos fx X 又因为等相位线平行于y轴,则y方向的空间频率为
u x, y, z, t Re a x, y, z e
Re a x, y, z e j x , y , z e j 2 t
式中,Re{ }表示对括号内复函数取实部。为简单,去掉“Re” 而直接用复指数函数表示简谐波的波函数,并定义一个新的物 理量: U x, y, z a x, y, z e j x, y , z 称之为单色平面波在P点的复振幅,它与时间t无关,仅是空间位 置坐标的函数。光强分布则为
平面波的空间频率是傅里叶光学中常用的基本物理量,透彻理解这个概念
的物理意义是非常重要的。 如下图,首先研究传播矢量位于x0z平面的简单情况,此时cos=0,
(1)xy平面上复振幅分布为
U x, y, z A exp jkx cos
(2)等位相线方程为
x cos C
a U P 0 e z
x x 2 y y 2 0 0 jk z 2z
2 2 x x0 y y0 a0 jkz j 2kz e e z
常量位相因子
二次位相因子
思考题:表征球面波 (1)若点光源位于x0y0平面的坐标原点,上式简化为什么? (2)会聚球面波在旁轴近似下的复振幅表达式是什么?
U P a0 jkr e r
Answer:
2.1 光波的数学描述
若点光源位于x0y0平面,则与其相距z(z>0)的xy平面上的光场分布 是什么?在z平面上:
r z 2 x x0 y y0 z
2 2
x x0 y y0 1
cos cos cos cos A , x U x, y exp j 2
y dxdy
此时,称A(cos/,cos/ )为xy平面上复振幅分布的角谱。
引入角谱的概念有助于进一步理解复振幅分解的物理意义: (1) 单色光波场中某一平面上的场分布可看作不同方向传播的单色平面波 的叠加; (2) 在叠加时各平面波成分有自己的振幅和常量相位,它们的值分别取决 于角谱的模和幅角。
则xy平面上的复振幅分布可表示为
U x, y A exp jk x cos y cos
U x, y A exp j 2 f x x f y y
2.1 光波的数学描述
2.1.5 复振幅分布的空间频谱(角谱)
利用傅里叶变换对位于单色光场中的xy平面上的复振幅分布进 行傅里叶分析,有 U x, y A f , f exp j 2 f x f y df df
I U UU
2
2.1 光波的数学描述
2.1.2 球面波
单色球面波在空间任意一点P所产生的复振幅为
U P
其中,
k 2
a0 jkr e r
为波数,表示单位长度上产生的相位变化; 表示观察点P(x,y,z)离开点光源的距离; 表示距点光源单位距离处的振幅。
r a0
思考题:对于会聚球面光波,复振幅表达式是什么?
U x, y, z a exp jkz cos exp jk x cos y cos a exp jkz 1 cos 2 cos 2 exp jk x cos y cos A exp jk x cos y cos
其中,
exp jk x cos y cos
称为平面波的位相因子。 思考题:等相位线是什么形式? Answer: 等位线方程为
x cos y cos C
不同C值所对应的等位相线是一些平行斜线,如右图所示。 周期分布特点
2.1 光波的数学描述 2.1.4 平面波的空间频率
U P c U P0 K
exp jkr ds r
其中,U(P0)是波面上任意一点P0的复振幅,U(P)是光场中任一观察点P的复振幅, r是P0到P的距离,是P0P和过P0点的元波面法线n的夹角,K()是与有关的倾斜 因子,C为常数。
2.2 基尔霍夫衍射理论
2
2
z2
对上式进行二项式展开,并考虑傍轴近似,上式可进一步简化为:
x x0 y y0 r z
2 2
2z
2.1 光波的数学描述 将简化式代入球面波复振幅表达式有:
U P a0 jkr e r
x x0 y y0 r z
2
2
2z
2.6、衍射光栅
2.1 光波的数学描述
2.1.1 单色光波场的复振幅表示
单色光波场中某点P(x,y,z)在t时刻的光振动u(x,y,z,t)可表示为
u x, y, z , t a x, y, z cos 2 t x, y, z
其中,v是光波的时间频率;a(x,y,z)和(x,y,z)分别是P点光振动 的振幅和初相位。根据欧拉公式,可将该波函数表示为复指数函数 取实部的形式: j 2 t x , y , z
exp j 2 f x x f y y
代表一个传播方向余弦为(cos =x、cos= y)的单色平面波。
因此复振幅分布也可以看作为不同方向传播的单色平面波分量 的线性叠加, A(x,y)则为复振幅分布U(x,y)的空间频谱。
1、光波的数学描述
A(x,y)也可用方向余弦表示
它研究以光为载体的信息的获取、信息的交换和处
理、信息的传递和传输,是信息科学的一个分支。
信息光学采用线性系统理论、傅里叶分析方法分析
各种光学现象。
第二章
标量衍射理论
引言
衍射现象 光波传播的规律 标量理论的条件 两种分析方法 最基本的光波形式
本章主要内容
2.1、光波的数学描述
2.2、基尔霍夫衍射理论 2.3、衍射的角谱理论 2.4、菲涅耳衍射 2.5、夫朗和费衍射
What is Information Optics 什么是信息光学