数列单元测试卷 含答案
数列单元测试卷
数列单元测试卷1.已知等比数列{,384,3,}103==a a a n 中则该数列的通项n a = .2.设等比数列}{n a 的公比为q ,前n 项和为S n ,若S n+1,S n ,S n+2成等差数列,则q 的值为 .3. 等比数列{a n }的前n 项和S n =________;设a =a 11-q (q ≠1),则S n =________.4. 在等比数列{}a n 中,若S 4=1,S 8=3,则a 17+a 18+a 19+a 20的值为________.5. 已知{a n }是等比数列,a 2=2,a 5=14,则a 1a 2+a 2a 3+…+a n a n +1=________.6.已知n S 为等比数列{}n a 的前n 项和,364,243,362===n S a a ,则=n .7. 已知等比数列{a n }的公比q =2,a n =96,前n 项和S n =189,则这个数列共有________项,首项a 1=________. 8. 已知等比数列{a n }的首项为8,S n 是其前n 项的和,某同学经计算得S 2=20,S 3=36,S 4=65,后来该同学发现其中一个数算错了,则该数为________.9.等差数列}{n a 中,a 1=2,公差不为零,且a 1,a 3,a 11 恰好是某等比数列的前三项,那么该等比数列公比的值等于_______________________.10. 设等比数列{}a n 的前n 项和为S n ,已知S 4=1,S 8=17,则数列{}a n 的通项公式为________.11 . 已知等比数列{a n },a 2>a 3=1,则使不等式(a 1-1a 1)+(a 2-1a 2)+…+(a n -1a n)≥0成立的最大自然数n 为________.12. 如果lg x +lg x 2+…+lg x 10=110,那么lg x +lg 2x +…+lg 10x =________. 13.若数列{}n a 满足:1.2,111===+n a a a n n ,2,3….则=+++n a a a 21 .14.若互不相等的实数,,a b c 成等差数列,,,c a b 成等比数列,且310a b c ++=,则a = . 15. 已知nS 为等比数列{}n a 前n 项和,0>n a ,80=nS ,65602=n S ,前n 项中的数值最大的项为54,求100S .16.{a n }为等差数列,{b n }为等比数列,a 1=b 1 =1, a 2+a 4 =b 3,b 2b 4=a 3.分别求出{a n }及{b n }的前10项的和S 10及T 10.17.已知S n 是等比数列{a n }的前n 项和,S 3,S 9,S 6成等差数列,求证:a 2,a 8,a 5成等差数列.18.在等比数列{}n a 中,,400,60,364231>=+=n S a a a a 求n 的范围.19. 在等比数列{a n }中,S n 为前n 项和,a 1+a n =66,a 2a n -1=128,S n =126,求n 和公比q 的值.20.已知{a n }是首项为a 1,公比q (q ≠1)为正数的等比数列,其前n 项和为S n ,且有5S 2=4S 4,设b n =q +S n .(1)求q 的值;(2)数列{b n }能否为等比数列?若是,请求出a 1的值;若不是,请说明理由.21.(本小题满分16分)已知数列{a n }满足2122111()2222n n n na a a n N ++++⋅⋅⋅+=∈. (1) 求数列{a n }的通项公式;(2) 求数列{a n }的前n 项和S n .22.设数列{a n }是公差大于零的等差数列,已知a 1=2,a 3=a 22-10.(1)求数列{a n }的通项公式.(2)设数列{b n }是以函数y =4sin 2πx 的最小正周期为首项,以3为公比的等比数列,求数列{a n -b n }的前n 项和S n .数列单元测试卷参考答案: 1.3n 23-⨯; 2.2-;3. ⎩⎪⎨⎪⎧a 11-q n1-q q ≠1,na 1q =1.a -aq n4. 16 [提示] 由a 1⎝ ⎛⎭⎪⎫1-q 41-q =1,a 1⎝ ⎛⎭⎪⎫1-q 81-q =3,得1+q 4=3,q 4=2,所以a 17+a 18+a 19+a 20=a 1q 16+a 2q 16+a 3q 16+a 4q 16=q 16=24=16.5. 323⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫14n [提示] 由⎩⎪⎨⎪⎧a 1q =2,a 1q 4=14,解得⎩⎪⎨⎪⎧a 1=4,q =12.所以{a n a n +1}是首项为a 1a 2=8,公比为q 2=14的等比数列.6. 6[提示]3,12433151612==⎩⎨⎧⇒====q a q a a q a a 或3,11-=-=q a , 当3,11==q a 时,636431)31(1=⇒=--=n S n n ; 当3,11-=-=q a 时,[]n S nn ⇒=+---=36431)3(11无整数解. 7. 6 3 [提示] 由189=S n =a 1(2n-1),96=a 1·2n -1,得a 1=3,n =6.8. S 3 9.4 10.-1n·2n -15或2n -115 [提示] 设公比为q ,易知q ≠1.由S 4=1,S 8=17,得a 11-q 41-q =1,a 11-q 81-q=17,相除,得q 4+1=17,q =±2.当q =2时,a 1=115,a n =2n -115;当q =-2时,a 1=-15,a n =-1n·2n -15. 11. n =5 [提示] 由a 1+a 2+…+a n ≥1a 1+1a 2+…+1a n ,得a 11-q n 1-q ≥1a 1⎝ ⎛⎭⎪⎫1-1q n 1-1q.又由a 2>a 3=1,得0<q <1且a 1=1q2.代入可得q5-n≤1.又 0<q <1, ∴ n ≤5.12. 2046 [提示] 由题意,得lg x +lg 2x +…+lg 10x =2×1-2101-2=211-2=2046.13.12n - 14.-415. 由0>n a ,80=n S ,65602=n S ,知1≠q ,∴.65601)1(,801)1(2121=--==--=qq a S q q a S n n n n ∴81821122=⇒=--=nn n n n q q q S S , ∴1>q .又 前n 项中的数值最大的项为5411==-n n q a a ,∴321=q a . ∴ .133,21001001-=⇒==S q a16.∵ {a n }为等差数列,{b n }为等比数列, ∴ a 2+a 4=2a 3,b 3b 4=b 32. 而已知a 2+a 4=b 3,b 3b 4=a 3, ∴ b 3=2a 3,a 3=b 32. ∵ b 3≠0, ∴ b 3=12,a 3=14.由 a 1=1,a 3= 14 知{a n }的公差d =-38.∴ S 10=10a 1+10×92d =-558.由b 1=1,b 3= 12 知{b n }的公比为q =22或q =-22. 当q =22时,T 10=b 1(1-q 10)1-q =3132(2+2);当q =-22时,T 10=b 1(1-q 10)1-q =3132(2-2)17. 显然q ≠1,由S 3+S 6=2S 9,得a 11-q (1-q 3)+a 11-q (1-q 6)=2a 11-q (1-q 9), ∴ 1+1+q 3=2(1+q 3+q 6),2q 6+q 3=0. ∴ q 3=-12.∴ a 2+a 5=a 2+a 2q 3=a 2(1+q 3)=a 2⎝ ⎛⎭⎪⎫1-12=12a 2.a 8=a 2q 6=a 2⎝ ⎛⎭⎪⎫-122=14a 2.∴ a 2+a 5=2a 8.∴ a 2,a 8,a 5成等差数列.18. 22213222236,(1)60,0,6,110,3,a a a a q a a q q ==+=>=+==±当3q =时,12(13)2,400,3401,6,13nn n a S n n N -==>>≥∈-;当3q =-时,12[1(3)]2,400,(3)801,8,1(3)nn na S n n ---=-=>->≥--为偶数;∴为偶数且n n ,8≥.19. 在等比数列{a n }中,a 1·a n =a 2·a n -1=128.又a 1+a n =66,解得⎩⎪⎨⎪⎧a 1=2,a n =64或⎩⎪⎨⎪⎧a 1=64,a n =2.若a 1=2,a n =64,S n =126,则qn -1=32,1-q n=63(1-q ).将q n=32q 代入1-q n=63(1-q ),得q =2,n =6. 若a 1=64,a n =2,S n =126,则qn -1=132,32(1-q n)=63(1-q ). 将q n =q 32代入32(1-q n)=63(1-q ),得q =12,n =6.20. (1)由5S 2=4S 4,得 5a 11-q 21-q =4a 11-q 41-q,∴ 5(1-q 2)=4(1-q 4). ∴ q 2=14.又 q >0, ∴ q =12.(2)S n =a 11-q n 1-q =2a 1-a 1⎝ ⎛⎭⎪⎫12n -1,b n =q +S n =12+2a 1-a 1⎝ ⎛⎭⎪⎫12n -1.若{b n }成等比数列,则12+2a 1=0,∴ a 1=-14.此时b n =⎝ ⎛⎭⎪⎫12n +1,b n +1b n =⎝ ⎛⎭⎪⎫12n +2⎝ ⎛⎭⎪⎫12n +1=12. ∴ {b n }成等比数列.故存在实数a 1=-14,使{b n }成等比数列.21.解:(1)n=1时,2111122a +=,得12a =;………………………2分n ≥2时,21221112222n n n na a a +++⋅⋅⋅+=,①2212121111(1)(1)22222n n n n n na a a ---+--++⋅⋅⋅+==,② ①-②得12nn a n =,2nn a n =⋅, 故2,12,2n nn a n n =⎧=⎨⋅≥⎩,即2n n a n =⋅(n N *∈)………………………8分 (2)1212222nn S n =⨯+⨯++⋅ ③23121222(1)22n n n S n n +=⨯+⨯++-⋅+⋅ ④③-④得1231121212122nn n S n +-=⨯+⨯+⨯++⋅-⋅ ……………12分112(12)2(1)2212n n n n n ++-=-⋅=-⋅--……………14分故1(1)22n n S n +=-⋅+……………16分22.【解】 (1)设数列{a n }的公差为d ,则⎩⎪⎨⎪⎧a 1=2,a 1+2d =(a 1+d )2-10,解得d =2或d =-4(舍), 所以a n =2+(n -1)×2=2n . (2)因为y =4sin 2πx =4×1-cos 2πx 2=-2cos 2πx +2,其最小正周期为2π2π=1,故首项为1,因为公比为3,从而b n =3n -1,所以a n -b n =2n -3n -1,故S n =(2-30)+(4-31)+…+(2n -3n -1)=(2+2n )n 2-1-3n 1-3=n 2+n +12-3n 2.。
(15)“ 数列”单元测试题
北大附中广州实验学校2008—2009高三第一轮复习“数列”单元测试题一、选择题:(每小题5分,计50分)1. n 285(A)4 (B)5 (C)6 (D)72.(2008福建理)设{a n }是公比为正数的等比数列,若11=a ,a 5=16,则数列{a n }前7项的和为( )A.63B.64C.127D.1283.(2007辽宁文、理)设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++=( )A .63B .45C .36D .274、(2008海南、宁夏文、理)设等比数列{}n a 的公比2q =, 前n 项和为n S ,则42S a =( ) A. 2B. 4C. 152D. 1725.(1994全国文、理)某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个).经过3个小时,这种细菌由1个可繁殖成-( )A.511个B.512个C.1023个D.1024个6.(2001天津、江西、山西文、理)若S n 是数列{a n }的前n 项和,且,2n S n =则}{n a 是( ) (A )等比数列,但不是等差数列 (B )等差数列,但不是等比数列 (C )等差数列,而且也是等比数列 (D )既非等比数列又非等差数列7.(2003全国文、天津文、广东、辽宁)等差数列{}n a 中,已知31a 1=,4a a 52=+,33a n =,则n 为( )(A )48 (B )49 (C )50(D )518.(2006北京文)如果-1,a,b,c ,-9成等比数列,那么( )(A )b =3,ac =9 (B)b =-3,ac =9 (C)b =3,ac =-9 (D)b =-3,ac =-99.(2004春招安徽文、理)已知数列}{n a 满足01a =,011n n a a a a -=+++ (1n ≥),则当1n ≥时,n a =( ) (A )2n (B )(1)2n n + (C )12-n (D )12-n10.(2006江西文)在各项均不为零的等差数列{}n a 中,若2110(2)n n n a a a n +--+=≥,则214n S n --=( ) A.2-B.0C.1D.211.(2007北京文)若数列{}n a 的前n 项和210(123)n S n n n =-= ,,,,则此数列的通项公式为 .12.(2006重庆理)在数列{a n }中,若a 1=1,a n +1=2a n +3 (n ≥1),则该数列的通项a n =_________.13.(2007江西理)已知数列{a n }对于任意p ,q ∈N *,有a p +a q =a p+q ,若a 1=91,则a 36= .14.(2004春招上海)根据下列5个图形及相应点的个数的变化规律,试猜测第n 个图中有_____ _________________个点.三、解答题:(15、16题各12分,其余题目各14分)15.(2008浙江文)已知数列{}n x 的首项13x =,通项2n n x p nq =+(,,n N p q *∈为常数),且145,,x x x 成等差数列,求: (Ⅰ),p q 的值; (Ⅱ)数列{}n x 的前n 项的和n S 的公式。
数列单元能力测试(一)doc
数列单元能力测试(一)命题人 蒋红伟一、选择题(5×10=50分)1.在等比数列{}n a 中,953,16,4a a a 则===( ) A .256 B .-256 C .128 D .-1282.设{}n a 是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是( ) A .1 B .2 C .4 D .63.设数列11,,321,211++⋅⋅⋅++n n ,n n S S n 则项和为的前,⋅⋅⋅等于( ) A .n n -+1 B .n n ++1 C .11-+n D .11++n 4.12+与12-,两数的等比中项是( ) A .1 B .1- C .1± D .21 5.等差数列{}n a 的各项都是负数且8328232a a a a ++=9,那么它的前10项和n S 等于( )A .-9B .-11C .-13D .-156.等差数列{}n a 中,2=d ,且431,,a a a 成等比数列,则=2a ( ) A .4-B .6-C .8-D .10-7.若数列{a n }的通项公式为a n =n (n -1)·…·2·110n,则{a n }为( ) A .递增数列 B .递减数列 C .从某项后为递减 D .从某项后为递增8.已知{}n a 满足对一切正整数n 均有n n a a >+1且n n a n λ+=2恒成立,则实数λ的范围是( ) A .0>λ B .0<λ C .1->λ D .3->λ 9.数列{}n a 的通项公式为)34()1(1--=-n a n n ,则=100S ( ) A .-200 B .200 C .400 D .-40010.设502,1,,a a a ⋅⋅⋅是从-1,0,1这三个整数中取值的数列,若95021=+⋅⋅⋅++a a a 且21)1(+a +107)1()1(25022=++⋅⋅⋅++a a ,则,,,21⋅⋅⋅a a 50a 中有0的个数为( )A .10B .11C .12D .13二、填空题(5×5=25分)11.在等比数列{}n a 中, 若,15,393==a a 则15a =___________12.等差数列{}n a 中50,102010==S S ,则30S =13.已知等差数列{}n a 的前17项和,5117=S 则=+-+-1311975a a a a a 14.已知数列{a n }的通项公式n a n n +=2,则其前n 项和=n S15..已知函数f (x )对任意x ∈R ,都有f (x )=1-f (1-x ),则f (-2)+f (-1)+f (0)+f (1)+f (2)+f (3)=___三、解答题(75分)16.(13分)等比数列{}n a 共有偶数项,且所有项之和是奇数项之和的3倍,前3项之积等于27,求这个等比数列的通项公式17.(13分){}n a 是公差为1的等差数列,{}n b 是公比为2的等比数列,n n Q P 、分别是{}n a 、{}n b 的前n 项和且45,41036+==Q P b a (1)求{}n a 的通项公式(2)若6b P n >,求n 的取值范围18.(本小题满分13分) (2012重庆文)已知{}n a 为等差数列,且13248,12,a a a a +=+=(1)求数列{}n a 的通项公式;(2)记{}n a 的前n 项和为n S ,若12,,k k a a S +成等比数列,求正整数k 的值.19.(12分)已知公差大于零的等差数列{}n a 的前n 项和为n S ,且满足22,1175243=+=⋅a a a a (1)求通项n a(2)若数列{}n b 是等差数列且cn S b nn +=,求非零常数c (3)求)()36()(1++∈⋅+=N n b n b n f n n的最大值20.(12分)已知数列{}n a 的各项均为正整数,且满足11),(22521=∈+-=++a N n na a a n n n 又(1)求4321,,,a a a a 的值并由此推测出{}n a 的通项公式(不要求证明) (2)设n n n S a b ,,11-==n b b b +⋅⋅⋅++21,求n S21.(12分)某渔业公司年初用98万元购买一艘捕鱼船,第一年各种费用为12万元,以后每年都增加4万元,每年捕鱼收益50万元. (1)问第几年开始获利?(2)若干年后,有两种处理方案:方案一:年平均获利最大时,以26万元出售该渔船;方案二:总纯收入获利最大时,以8万元出售该渔船.问哪种方案合算?数列单元能力测试(一)参考答案ABCCD BDDAB11.75 12.120 13.3 14. 2)1(221++-+n n n 15.3 16.解:设数列共有2n 项,奇数项和为1S ;由已知21111332,,n S S S qS S q =∴+=∴= 又()3121113327323222,,,.n n n a qa q a a --=∴=∴==⋅=⋅17.(1)2+=n a n (2)10≥n18. (Ⅰ)na =2n (Ⅱ)6k =【解析】(Ⅰ)设数列{}n a 的公差为d,由题意知112282412a d a d +=⎧⎨+=⎩ 解得12,2a d ==所以1(1)22(1)2n a a n d n n =+-=+-= (Ⅱ)由(Ⅰ)可得1()(22)(1)22n n a a n n nS n n ++===+ 因12,,k k a a S + 成等比数列,所以212k k a a S += 从而2(2)2(2)(3)k k k =++ ,即 2560k k --=解得6k = 或1k =-(舍去),因此6k = . 19.(1)34-=n a n (2)21-=c (3)491 20.(1)12+=n a n (2)1-21. 解:(1)由题意知,每年的费用是以12为首项,4为公差的等差数列.设纯收入与年数n 的关系为f (n ),则++-=1612[50)(n n f …9840298)]48(2-+-=-++n n n .由题知获利即为f (n )>0,由0984022>-+-n n ,得-10511051+<<n .∵n ∈N ,∴n =3,4,5,…,17.即第3年开始获利. (2)方案一:年平均收入)49(240)(nn n n f +-==. 由于1449249=⋅≥+nn n n ,当且仅当n =7时取“=”号.∴ 1214240)(=⨯-≤n n f (万元). 即前7年年平均收益最大,此时总收益为12×7+26=110(万元). 方案二:f (n )=22n -+40n -98=-22)10(-n +102.当n =10时,f (n )取最大值102,此时总收益为102+8=110(万元). 比较如上两种方案,总收益均为110万元,而方案一中n =7,故选方案一.。
中职数列单元测试题及答案
中职数列单元测试题及答案一、选择题(每题2分,共10分)1. 等差数列的通项公式是:A. \( a_n = a_1 + (n-1)d \)B. \( a_n = a_1 + nd \)C. \( a_n = a_1 + (n-1) \times 2d \)D. \( a_n = a_1 + n \times 2d \)2. 等比数列的前n项和公式是:A. \( S_n = a_1 \times \frac{1 - r^n}{1 - r} \)B. \( S_n = a_1 \times \frac{1 - r^n}{r - 1} \)C. \( S_n = a_1 \times \frac{1 - r^n}{1 + r} \)D. \( S_n = a_1 \times \frac{1 - r^n}{r + 1} \)3. 已知等差数列的第3项为6,第5项为10,求第1项a1和公差d:A. \( a_1 = 2, d = 2 \)B. \( a_1 = 4, d = 1 \)C. \( a_1 = 2, d = 1 \)D. \( a_1 = 4, d = 2 \)4. 等比数列中,若第3项为8,第5项为32,则该数列的公比r为:A. 2B. 4C. 8D. 165. 一个数列的前5项分别为1, 3, 6, 10, 15,这个数列是:A. 等差数列B. 等比数列C. 既不是等差数列也不是等比数列D. 无法确定答案:1-5 A B A B C二、填空题(每题2分,共10分)6. 等差数列中,若第4项为-1,第7项为6,则第10项为________。
7. 等比数列中,若首项为2,公比为3,第5项为__________。
8. 已知数列{an}的通项公式为an = 2n - 1,求第6项a6的值为________。
9. 等差数列的前n项和公式为Sn = n(a1 + an)/2,若S5 = 40,a1 = 4,求第5项a5的值为________。
(完整版)数列单元测试卷含答案
数列单元测试卷注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.2.答题前,考生务必将自己的姓名、准考证号等信息填涂在答卷相应位置.第Ⅰ卷(选择题)一.选择题:本大题共12小题,每小题5分,共60分。
每小题给出的四个选项中,只有一项是符合题目要求的.1.数列3,5,9,17,33,…的通项公式a n等于( )A.2n B.2n+1 C.2n-1 D.2n+12.下列四个数列中,既是无穷数列又是递增数列的是( )A.1,12,13,14,…B.-1,2,-3,4,…C.-1,-12,-14,-18,…D.1,2,3,…,n3..记等差数列的前n项和为S n,若a1=1/2,S4=20,则该数列的公差d=________.( ) A.2 B.3 C.6 D.74.在数列{a n}中,a1=2,2a n+1-2a n=1,则a101的值为( )A.49 B.50 C.51 D.525.等差数列{a n}的公差不为零,首项a1=1,a2是a1和a5的等比中项,则数列的前10项之和是( )A.90 B.100 C.145 D.1906.公比为2的等比数列{a n}的各项都是正数,且a3a11=16,则a5=( )A.1 B.2 C.4 D.87.等差数列{a n }中,a 2+a 5+a 8=9,那么关于x 的方程:x 2+(a 4+a 6)x +10=0( ) A .无实根B.有两个相等实根 C .有两个不等实根 D .不能确定有无实根8.已知数列{a n }中,a 3=2,a 7=1,又数列⎩⎨⎧⎭⎬⎫11+a n 是等差数列,则a 11等于( ) A .0 B.12 C.23 D .-19.等比数列{a n }的通项为a n =2·3n -1,现把每相邻两项之间都插入两个数,构成一个新的数列{b n },那么162是新数列{b n }的( )A .第5项 B.第12项 C .第13项 D .第6项10.设数列{a n }是以2为首项,1为公差的等差数列,{b n }是以1为首项,2为公比的等比数列,则A .1 033 B.1 034 C .2 057 D .2 05811.设n S 为等差数列{}n a 的前n 项和,且28,171==S a .记[]n n a b lg =,其中[]x 表示不超过x 的最大整数,如[]09.0=,[]199lg =.则b 11的值为( ) A.11 B.1 C. 约等于1 D.212.我们把1,3,6,10,15,…这些数叫做三角形数,因为这些数目的点可以排成一个正三角形,如下图所示:则第七个三角形数是( )A .27 B.28 C .29 D .30第II 卷(非选择题)二、填空题(本题共4小题,每小题5分,共20分)13.若数列{a n }满足:a 1=1,a n +1=2a n (n ∈N *),则前8项的和S 8=________(用数字作答).14.数列{a n }满足a 1=1,a n =a n -1+n (n ≥2),则a 5=________.15.已知数列{a n }的前n 项和S n =-2n 2+n +2.则{a n }的通项公式a n =________16.在等差数列{a n }中,其前n 项的和为S n ,且S 6<S 7,S 7>S 8,有下列四个命题: ①此数列的公差d <0; ②S 9一定小于S 6; ③a 7是各项中最大的一项; ④S 7一定是S n 中的最大项.其中正确的命题是________.(填入所有正确命题的序号)三.解答题(共70分,解答应写出必要的文字说明、证明过程或演算步骤)17.(12分) (1) (全国卷)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,求S n(2) 已知{b n }是各项都是正数的等比数列,若b 1=1,且b 2,12b 3,2b 1成等差数列,求数列{b n }的通项公式.18.(12分)等比数列{a n }中,已知a 1=2,a 4=16,(1)求数列{a n }的通项公式; (2)若a 3,a 5分别为等差数列{b n }的第3项和第5项,试求数列{b n }的通项公式及前n 项和S n .19. (12分)已知等差数列{a n }前三项的和为-3,前三项的积为8. (1)求等差数列{a n }的通项公式;(2)若a 2,a 3,a 1成等比数列,求数列{|a n |}的前10项和.20.(12分)数列{a n }的前n 项和为S n ,数列{b n }中,b 1=a 1,b n =a n -a n -1(n ≥2),若a n +S n =n ,c n =a n -1.(1)求证:数列{c n }是等比数列; (2)求数列{b n }的通项公式.21.(12分)(全国卷)设数列{}n a 满足+3+…+(2n -1) =2n ,.(1)求{}n a 的通项公式; (2)求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和.22.(12分)数列{a n }满足a 1=1,a n +1=2n +1a na n +2n(n ∈N *).(1)证明:数列{2na n}是等差数列;(2)求数列{a n }的通项公式a n ;(3)设b n =n (n +1)a n ,求数列{b n }的前n 项和S n .数列单元测试卷(解答)一、选择题(共12小题,每小题5分,共60分)1.数列3,5,9,17,33,…的通项公式a n等于( )A.2n B.2n+1 C.2n-1 D.2n+1解析:选B 由于3=2+1,5=22+1,9=23+1,…,所以通项公式是a n=2n+1,故选B. 2.下列四个数列中,既是无穷数列又是递增数列的是( )A.1,12,13,14,…B.-1,2,-3,4,…C.-1,-12,-14,-18,…D.1,2,3,…,n解析:选C A为递减数列,B为摆动数列,D为有穷数列.3.记等差数列的前n项和为S n,若a1=1/2,S4=20,则该数列的公差d=________.( ) A.2 B.3 C.6 D.7解析:选B S4-S2=a3+a4=20-4=16,∴a3+a4-S2=(a3-a1)+(a4-a2)=4d=16-4=12,∴d=3.4.在数列{a n}中,a1=2,2a n+1-2a n=1,则a101的值为( )A.49 B.50 C.51 D.52解析:选D ∵2a n+1-2a n=1,∴a n+1-a n=12,∴数列{a n}是首项a1=2,公差d=12的等差数列,∴a101=2+12(101-1)=52.5.等差数列{a n}的公差不为零,首项a1=1,a2是a1和a5的等比中项,则数列的前10项之和是( )A.90 B.100 C.145 D.190解析:选B 设公差为d , ∴(1+d )2=1×(1+4d ), ∵d ≠0,∴d =2,从而S 10=100.6.公比为2的等比数列{a n }的各项都是正数,且a 3a 11=16,则a 5=( ) A .1 B.2 C .4 D .8解析:选A 因为a 3a 11=a 27,又数列{a n }的各项都是正数,所以解得a 7=4,由a 7=a 5·22=4a 5,求得a 5=1.7.等差数列{a n }中,a 2+a 5+a 8=9,那么关于x 的方程:x 2+(a 4+a 6)x +10=0( ) A .无实根B.有两个相等实根 C .有两个不等实根D .不能确定有无实根解析:选A 由于a 4+a 6=a 2+a 8=2a 5,即3a 5=9, ∴a 5=3,方程为x 2+6x +10=0,无实数解.8.已知数列{a n }中,a 3=2,a 7=1,又数列⎩⎨⎧⎭⎬⎫11+a n 是等差数列,则a 11等于( ) A .0 B.12 C.23 D .-1解析:选B 设数列{b n }的通项b n =11+a n ,因{b n }为等差数列,b 3=11+a 3=13,b 7=11+a 7=12,公差d =b 7-b 34=124, ∴b 11=b 3+(11-3)d =13+8×124=23,即得1+a 11=32,a 11=12.9.等比数列{a n }的通项为a n =2·3n -1,现把每相邻两项之间都插入两个数,构成一个新的数列{b n },那么162是新数列{b n }的( )A .第5项 B.第12项 C .第13项 D .第6项解析:选C 162是数列{a n }的第5项,则它是新数列{b n }的第5+(5-1)×2=13项.10.设数列{a n }是以2为首项,1为公差的等差数列,{b n }是以1为首项,2为公比的等比数列,则A .1 033 B.1 034 C .2 057 D .2 058 解析:选A 由已知可得a n =n +1,b n =2n -1,于是ab n =b n +1, 因此(b 1+1)+(b 2+1)+…+(b 10+1)=b 1+b 2+…+b 10+10=20+21+…+29+10 =1-2101-2+10=1 033.11.设n S 为等差数列{}n a 的前n 项和,且28,171==S a .记[]n n a b lg =,其中[]x 表示不超过x 的最大整数,如[]09.0=,[]199lg =.则b 11的值为( ) A.11 B.1 C. 约等于1 D.2解析:设{}n a 的公差为d ,据已知有1×72128d +=, 解得 1.d =所以{}n a 的通项公式为.n a n = b 11=[lg11 ]=112.我们把1,3,6,10,15,…这些数叫做三角形数,因为这些数目的点可以排成一个正三角形,如下图所示:则第七个三角形数是( )A .27 B.28 C .29 D .30解析:选 B 法一:∵a 1=1,a 2=3,a 3=6,a 4=10,a 5=15,a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,a 5-a 4=5,∴a 6-a 5=6,a 6=21,a 7-a 6=7,a 7=28. 法二:由图可知第n 个三角形数为n n +12,∴a 7=7×82=28.二、填空题(共4小题,每小题5分,共20分)13.若数列{a n }满足:a 1=1,a n +1=2a n (n ∈N *),则前8项的和S 8=________(用数字作答). 解析:由a 1=1,a n +1=2a n (n ∈N *)知{a n }是以1为首项,以2为公比的等比数列,由通项公式及前n 项和公式知S 8=a 11-q 81-q =1·1-281-2=255.答案: 25514.数列{a n }满足a 1=1,a n =a n -1+n (n ≥2),则a 5=________.解析:由a n =a n -1+n (n ≥2),得a n -a n -1=n .则a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,a 5-a 4=5,把各式相加,得a 5-a 1=2+3+4+5=14,∴a 5=14+a 1=14+1=15. 答案:1515.已知数列{a n }的前n 项和S n =-2n 2+n +2. 则{a n }的通项公式a n =________ [解] ∵S n =-2n 2+n +2,当n ≥2时,S n -1=-2(n -1)2+(n -1)+2 =-2n 2+5n -1, ∴a n =S n -S n -1=(-2n 2+n +2)-(-2n 2+5n -1) =-4n +3.又a 1=S 1=1,不满足a n =-4n +3, ∴数列{a n }的通项公式是a n =⎩⎪⎨⎪⎧1,n =1,-4n +3,n ≥2.16.在等差数列{a n }中,其前n 项的和为S n ,且S 6<S 7,S 7>S 8,有下列四个命题: ①此数列的公差d <0; ②S 9一定小于S 6; ③a 7是各项中最大的一项; ④S 7一定是S n 中的最大项.其中正确的命题是________.(填入所有正确命题的序号) 解析:∵S 7>S 6,即S 6<S 6+a 7, ∴a 7>0.同理可知a 8<0. ∴d =a 8-a 7<0.又∵S 9-S 6=a 7+a 8+a 9=3a 8<0, ∴S 9<S 6.∵数列{a n }为递减数列,且a 7>0,a 8<0, ∴可知S 7为S n 中的最大项. 答案:①②④三、解答题(共4小题,共50分)17.(12分) (1) (全国卷)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,求S n(2) 已知{b n }是各项都是正数的等比数列,若b 1=1,且b 2,12b 3,2b 1成等差数列,求数列{b n }的通项公式.解: (1)设等差数列首项为a 1,公差为d, 则a 4+a 5=2a 1+7d=24,① S 6=6a 1+d=6a 1+15d=48,②由①②得d=4.a 1=-2S N =-2n+n(n-1) ×4/2=2n 2-4n(2)由题意可设公比为q ,则q >0,由b 1=1,且b 2,12b 3,2b 1成等差数列得b 3=b 2+2b 1,∴q 2=2+q ,解得q =2或q =-1(舍去), 故数列{b n }的通项公式为b n =1×2n -1=2n -1.18.(12分)等比数列{a n }中,已知a 1=2,a 4=16,(1)求数列{a n }的通项公式; (2)若a 3,a 5分别为等差数列{b n }的第3项和第5项,试求数列{b n }的通项公式及前n 项和S n .解:(1)设{a n }的公比为q ,由已知得16=2q 3,解得q =2, ∴a n =2n.(2)由(1)得a 3=8,a 5=32,则b 3=8,b 5=32. 设{b n }的公差为d ,则有⎩⎪⎨⎪⎧b 1+2d =8, b 1+4d =32,解得⎩⎪⎨⎪⎧b 1=-16,d =12.从b n =-16+12(n -1)=12n -28, 所以数列{b n }的前n 项和S n =n -16+12n -282=6n 2-22n .19. (12分)已知等差数列{a n }前三项的和为-3,前三项的积为8. (1)求等差数列{a n }的通项公式;(2)若a 2,a 3,a 1成等比数列,求数列{|a n |}的前10项和. 解:(1)设等差数列{a n }的公差为d, 则a 2=a 1+d,a 3=a 1+2d, 由题意得解得或所以由等差数列通项公式可得a n =2-3(n-1)=-3n+5,或a n =-4+3(n-1)=3n-7. 故a n =-3n+5,或a n =3n-7.(2)当a n =-3n+5时,a 2,a 3,a 1分别为-1,-4,2,不成等比数列; 当a n =3n-7时,a 2,a 3,a 1分别为-1,2,-4,成等比数列,满足条件. 故|a n |=|3n-7|=记数列{|a n |}的前n 项和为S n . S 10=|a 1|+|a 2|+|a 3|+|a 4|+……+|a 10|=4+1+(3×3-7)+(3×4-7)+……+(3×10-7) =5+[2×8+8×7×3/2] =10520.(12分)数列{a n }的前n 项和为S n ,数列{b n }中,b 1=a 1,b n =a n -a n -1(n ≥2),若a n +S n =n ,c n =a n -1.(1)求证:数列{c n }是等比数列; (2)求数列{b n }的通项公式.解:(1)证明:∵a 1=S 1,a n +S n =n ①,∴a 1+S 1=1,得a 1=12. 又a n +1+S n +1=n +1②,①②两式相减得2(a n +1-1)=a n -1,即a n +1-1a n -1=12,也即c n +1c n =12, 故数列{c n }是等比数列. (2)∵c 1=a 1-1=-12, ∴c n =-12n ,a n =c n +1=1-12n , a n -1=1-12n -1.故当n ≥2时,b n =a n -a n -1=12n -1-12n =12n . 又b 1=a 1=12, 所以b n =12n . 21.(12分)(全国卷)设数列{}n a 满足+3+…+(2n -1) =2n ,. (1)求{}n a 的通项公式;(2)求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和. 解:(1)因为+3+…+(2n -1)=2n ,故当n ≥2时, +3+…+(-3) =2(n -1) 两式相减得(2n -1)=2所以= (n≥2)又因题设可得 =2.从而{} 的通项公式为 =.(2)记 {}的前n 项和为 ,由(1)知 = = - . 则 = - + - +…+ - = .22.(12分)数列{a n }满足a 1=1,a n +1=2n +1a n a n +2n (n ∈N *). (1)证明:数列{2n a n}是等差数列; (2)求数列{a n }的通项公式a n ;(3)设b n =n (n +1)a n ,求数列{b n }的前n 项和S n . 解:(1)证明:由已知可得a n +12n +1=a na n +2n , 即2n +1a n +1=2n a n+1,即2n +1a n +1-2na n =1. ∴数列{2n a n}是公差为1的等差数列. (2)由(1)知2na n =2a 1+(n -1)×1=n +1, ∴a n =2nn +1. (3)由(2)知b n =n ·2n . S n =1·2+2·22+3·23+…+n ·2n , 2S n =1·22+2·23+…+(n -1)·2n +n ·2n +1, 相减得-S n =2+22+23+…+2n -n ·2n +1 =21-2n 1-2-n ·2n +1 =2n +1-2-n ·2n +1,∴S n =(n -1)·2n +1+2.。
数列》单元测试题(附答案解析).doc
《数列》单元练习试题一、选择题1.已知数列{ a n}的通项公式a n n23n 4 ( n N*),则a4等于()(A)1(B)2(C)3(D)02.一个等差数列的第 5 项等于 10,前 3 项的和等于 3,那么()( A)它的首项是 2 ,公差是 3 ( B)它的首项是 2 ,公差是 3 ( C)它的首项是 3 ,公差是 2 ( D)它的首项是 3 ,公差是 2S4()3.设等比数列{ a n}的公比q 2,前n项和为S n,则a2(A)2 (B)4 (C)15(D)17 2 24.设数列a n是等差数列,且a2 6 , a8 6 , S n是数列 a n 的前 n 项和,则()(A)S4 S5 (B)S4 S5(C)S6 S5 (D)S6 S5a n 3N*),则a20 ()5.已知数列{ a n}满足a10,a n 1 ( n3a n 1(A)0 (B)3 (C) 3 ( D) 326.等差数列a n的前 m 项和为30,前2m项和为100,则它的前3m 项和为()( A) 130 ( B)170 ( C) 210 ( D) 2607.已知a1,a2,,a8为各项都大于零的等比数列,公比q 1 ,则()( A)a1 a8 a4 a5 ( B)a1 a8 a4 a5( C)a1 a8 a4 a5 ( D)a1 a8和 a4 a5的大小关系不能由已知条件确定8.若一个等差数列前 3 项的和为 34,最后 3 项的和为146,且所有项的和为390,则这个数列有()( A)13 项(B)12 项(C) 11 项(D)10 项9.设{ a n}是由正数组成的等比数列,公比q 2 ,且 a1 a2 a3a30 230,那么a3 a6 a9 a30等于()( A) 210 ( B) 220 ( C) 216 ( D)21510.古希腊人常用小石子在沙滩上摆成各种形状来研究数,比如:他们研究过图 1 中的 1,3,6, 10,,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的 1,4,9, 16,这样的数为正方形数.下列数中既是三角形数又是正方形数的是()( A) 289 ( B) 1024 (C) 1225 ( D)1378 二、填空题11.已知等差数列{ a n}的公差d 0 ,且a1,a3,a9成等比数列,则a1 a3 a9的值是.a2 a4 a1012.等比数列{ a n}的公比q 0 .已知 a2 1, a n 2 a n 1 6a n,则 { a n } 的前4项和 S4 .13.在通常情况下,从地面到10km 高空,高度每增加1km ,气温就下降某一固定值.如果1km 高度的气温是℃,5km 高度的气温是-℃,那么3km 高度的气温是℃.14.设a1 2 , a n 1 2 , b n a n 2, n N*,则数列{ b n}的通项公式b n .a n 1 a n 115.设等差数列{ a n}的前n项和为S n,则S4 , S8 S4, S12 S8, S16 S12成等差数列.类比以上结论有:设等比数列{ b n} 的前 n 项积为 T n,则 T4,,, T16 成等比数列.T12三、解答题16.已知{ a n}是一个等差数列,且a2 1 , a5 5 .(Ⅰ)求 { a n } 的通项 a n;(Ⅱ)求 { a n } 的前 n 项和 S n的最大值.17.等比数列{ a n}的前n项和为S n,已知S1,S3,S2成等差数列.(Ⅰ)求 { a n } 的公比q;(Ⅱ)若 a1a3 3 ,求 S n.18.甲、乙两物体分别从相距70m 的两处同时相向运动.甲第1 分钟走 2m,以后每分钟比前 1 分钟多走 1m,乙每分钟走5m.(Ⅰ)甲、乙开始运动后几分钟相遇(Ⅱ)如果甲、乙到达对方起点后立即折返,甲继续每分钟比前 1 分钟多走1m ,乙继续每分钟走 5m,那么开始运动几分钟后第二次相遇19.设数列{ a n}满足a13a232a3 3n 1 a n n, n N*.3(Ⅰ)求数列 { a n } 的通项;(Ⅱ)设 b nn,求数列 { b n } 的前 n 项和 S n.a n20.设数列{ a n } 的前n 项和为S n,已知a1 1 , S n 1 4a n 2 .(Ⅰ)设b n a n 1 2a n,证明数列{ b n } 是等比数列;(Ⅱ)求数列{ a n} 的通项公式.21.已知数列a n中,a1 2,a2 3,其前 n 项和S n满足Sn 1Sn 12Sn 1 n 2,n N* ).((Ⅰ)求数列a n 的通项公式;(Ⅱ)设 b n 4 n ( 1) n 1 2a n(为非零整数, n N *),试确定的值,使得对任意n N * ,都有 b n 1 b n成立.数列测试题一、选择题 (每小题 5 分,共 60 分)1.等差数列 {a n}中,若 a2+ a8= 16, a4= 6,则公差 d 的值是 ( )A.1 B. 2 C.- 1 D.- 22.在等比数列 {a n}中,已知a3= 2, a15= 8,则 a9等于 ( )A.± 4 B.4 C.- 4 D. 163.数列 {a n }中,对所有的正整数 n 都有 a1·a2·a3 a n= n2,则 a3+a 5= ( )4.已知- 9,a ,a ,- 1 四个实数成等差数列,-9,b ,b ,b ,- 1 五个实数成等比数列,则 b (a1 2 1 2 3 2 2- a1)= ()A.8 B.- 8 C.± 85.等差数列 {a n}的前 n 项和为 S n,若 a2+ a7+ a12= 30,则 S13 的值是 ( )A.130 B.65 C. 70 D. 756.设等差数列 {a }的前 n 项和为 S .若 a =- 11, a + a =- 6,则当 S 取最小值时, n 等于 ( ) n n 1 46 nA.6 B.7 C. 8 D. 97.已知 {a n }为等差数列,其公差为-2,且 a7是 a3与 a9的等比中项, S n为 {a n}的前 n 项和, n∈ N+,则 S10的值为 ( )A.- 110 B.- 90 C. 90 D.1108.等比数列 {a }是递减数列,前 n 项的积为 T ,若 T = 4T ,则 a a 15 =()nn139 8A .± 2B .± 4C .2D . 489.首项为- 24 的等差数列, 从第 10 项开始为正数, 则公差 d 的取值范围是 ( ) A .d>3B .d<38 C.3≤d<3 <d ≤310.等比数列 a n 中,首项为 a 1 ,公比为 q ,则下列条件中,使 a n 一定为递减数列的条件是().q 1、 a 1 0, q 1、 a 1 0,0q 1 或 a 10, q 1、 q1A BCD11. 已知等差数列 a n 共有 2n 1 项,所有奇数项之和为 130,所有偶数项之和为 120 ,则 n 等于( )A. 9B. 10C. 11D. 1212.设函数 f(x)满足 f(n + 1)= 2 f (n) n (n ∈ N + ),且 f(1)= 2,则 f(20)为 ()2A . 95B . 97C . 105D . 192二、填空题 (每小题 5 分,共 20 分.把答案填在题中的横线上 )13.已知等差数列 {a n }满足: a 1= 2,a 3= 6.若将 a 1,a 4,a 5 都加上同一个数,所得的三个数依次成等 比数列,则所加的这个数为________.14.已知数列 {a } 中 ,a =1 且1 1 (n ∈ N ),则 a =n11+ 10a n1a n315.在数列 {a n }中,a 1=1,a 2=2 ,且满足 a n a n13( n 1)( n 2) ,则数列 {a n }的通项公式为 a na n , (n ∈N*116.已知数列满足: 1= 1, a n + 1n +1=(n - λ)+ 1 , b 1na=a n + 2 ),若 ba n=- λ,且数列 {b }是单调递增数列,则实数 λ的取值范围为三、解答题 (本大题共 70 分.解答应写出必要的文字说明、证明过程或演算步骤 )17.( 10 分)在数列 {a n }中, a 1=8, a 4=2,且满足 a n +2- 2a n + 1+ a n =0(n ∈ N +). (1) 求数列 {a }的通项公式; (2)求数列 {a }的前 20 项和为 Snn 20.18. (12 分)已知数列{ a n}前n 项和 S n n 2 27n ,(1)求{| a n|}的前11项和T11;(2) 求{| a n|}的前 22 项和T22 ;2 (n∈N ).19. (12 分)已知数列 { a n } 各项均为正数 ,前 n 项和为 S ,且满足 2S = a n + n-4n n +(1)求证 :数列{ a n}为等差数列 ;(2)求数列{ a n}的前 n 项和 S n.20. (12 分 )数列a 的前 n 项和记为 S ,a11,a n 12S n 1 n 1.n n( 1)求a n的通项公式;( 2)等差数列b n的各项为正,其前n 项和为 T n,且 T315 ,又a1b1 , a2b2 , a3b3成等比数列,求 T n.nn1nn n + 1nn- 1(b n≠ 0).21. (12 分)已知数列 {a },{b }满足 a = 2, 2a = 1+ a a , b = a 1(1) 求证数列 { }是等差数列;b n(2) 令 c n1 ,求数列 { c n }的通项公式.a n122.( 12 分)在等差数列 { a n } 中,已知公差d2 , a 2 是 a 1 与 a 4 的等比中项 .(1) 求数列 { a n } 的通项公式;(2) 设 b na n( n 1) ,记Tnb 1 b 2 b 3 b 4( 1)n b n ,求 T n .2《数列》单元测试题 参考答案一、选择题1.D2.A3.C 4.B 5.B 6.C 7.A8.A 9. B 10.C二、填空题11. 1312. 1513.-14. 2n 115.T 8 ,T12162T 4T 8三、解答题16(. Ⅰ)设 { a n } 的公差为 d ,则a 1 d 1 ,a 13 ,∴ a n3 (n1)(2)2n 5 .a 14d解得2 .5 .d(Ⅱ)S n3n n( n 1) ( 2) n 24n( n2) 2 4 .∴当 n 2 时, S n 取得最大值 4.217.(Ⅰ)依题意,有 S 1S 22S 3 ,∴ a 1 (a 1 a 1q) 2( a 1 a 1q a 1q 2 ) ,由于 a 10 ,故 2q 2q 0 ,又 q 0 ,从而 q1 . 214 [1 ( 1) n ] 81(Ⅱ)由已知,得 a 1a 1 ( ) 23 ,故 a 14 ,从而 S n2n ] .21[1 ()1(32)218.(Ⅰ)设 n 分钟后第 1 次相遇,依题意,有 2nn(n1)5n 70 ,2整理,得 n 213n 140 0 ,解得 n 7 , n20 (舍去).第 1 次相遇是在开始运动后7 分钟.(Ⅱ)设 n 分钟后第 2 次相遇,依题意,有2nn( n 1) 5n3 70 ,2整理,得 n 213 n 420 0 ,解得 n 15 , n28 (舍去).第 2 次相遇是在开始运动后15 分钟.19.( Ⅰ)∵ a 1 3a 2 32 a 33n 1 a n n ,①3∴当 n 2时, a 13a 2 32 a 33n 2 a n 1 n 1 .②3由① -② ,得3 n 1 1 ,a n1,得 a 11 a nn .在① 中,令 n 1.∴ a n333( Ⅱ )∵ b nn,∴ b n n 3n ,∴ S n32323 33n 3n ,a n∴ 3S n32 2 333 34n 3n 1 . ④由④ -③ ,得 2Sn 3n 1(3 32333n ) ,n13n ,nN * .③即 2S n n 3n 13(1 3n ) ,∴ S n(2n 1)3n 13 .1 34 420.( Ⅰ)由 a 1 1 , S n 14a n 2 ,有 a 1 a 24a 12 ,∴ a 2 3a 1 2 5 ,∴ b 1a 2 2a 1 3 .∵ S n 1 4a n2 ,①∴ S n4a n 12 ( n 2),②由 ① -② ,得 a n 1 4a n4a n 1 ,∴ a n 1 2a n 2(a n 2a n 1 ) ,∵ b na n 1 2a n ,∴b n2b n 1 ,∴数列 { b n } 是首项为 3 ,公比为 2 的等比数列.( Ⅱ )由( Ⅰ ),得 b na n2a n32 n 1a n 1 a n3 ,1,∴2n42n1a n } 是首项为 1 ,公差为 3的等差数列,∴数列 {242n∴a n1 (n1)3 31,∴ a n (3n1) 2 n 2 .2n2 4n4 421.(Ⅰ)由已知,得S n1S nS n S n 1 1( n 2 , n N * ),即 a n 1 a n 1 ( n2 , n N * ),且 a 2 a 1 1 ,∴数列 a n 是以 a 1 2 为首项, 1为公差的等差数列,∴a n n 1.(Ⅱ) ∵a nn1, ∴ b4n ( 1)n 12n 1 ,要使 bn 1b n 恒成立,n∴ b nb n 4n 1 4n1 n2n 2n 12n 10 恒成立,11∴ 3 4n3n 10 恒成立,∴1 n 12n 1 恒成立.12n 1(ⅰ)当 n 为奇数时,即2 n 1恒成立,当且仅当nn1有最小值为 , ∴1 .1时, 2 1(ⅱ)当 n 为偶数时,即2n 1 恒成立,当且仅当 n 2 时, 2n 1有最大值 2 , ∴2 .∴21,又 为非零整数,则1 .综上所述,存在1 ,使得对任意 n N * ,都有b n 1 b n .数列试题答案1--- 12: BBABAAD C DCDB3n 1 为奇数 )a n2 (n113---16 :- 11,,3n 2, λ<24为偶数2 (n)17.解: (1)∵数列 {a }满足 a- 2a +a = 0,∴ 数列 {a }为等差数列,设公差为 d.∴ a =a + 3d ,nn + 2n + 1nn412-8=- 2.∴ a n1n 20d = 3= a + (n - 1)d = 8- 2(n - 1)=10- 2n.(2) S = n(9 n) 得 S = - 22018.解: S nn 2 27 na n 2n 28 ∴当 n 14 时, a nn 14 时 a n 0(1) T 11 | a 1 | | a 2 | | a 11 |(a 1a 11 ) S 11 176(2) T 22(| a 1 | | a 2 | | a 13 |) ( a 14 || a 22 |)( a 1a 2a 13)a14 a15a22S13S22S 13S222S 1325419.(1) 证明 :当 n=1 时 ,有 2a =+1-4,即 -2a-3=0,解得 a =3( a =-1 舍去 ).[来源 :学11 1 1当 n ≥2时 ,有 2S n-1= +n-5,又 2S n = +n-4,两式相减得 2a n = - +1,即 -2a n +1=,也即 (a n -1)2 =,因此 a n -1=a n-1 或 a n -1=-a n-1 .若 a n -1=-a n-1,则 a n +a n-1=1.而 a 1 =3,所以 a 2 =-2,这与数列 {a n }的各项均为正数相矛盾 ,所以 a n -1=a n-1,即 a n -a n-1=1,因此数列 {a n }为等差数列 .(2) 解:由(1)知 a 1=3,d=1,所以数列 {a n }的通项公式 a n =3+(n-1)× 1=n+2,即a n=n+2.n 25n 得 S n221.(1) 证明: ∵ b = a -1,∴ a = b + 1.又 ∵2a = 1+a a, ∴ 2(b + 1)= 1+ (b + 1)(b+ 1).化简nnnnnn n + 1 nnn + 1得: b+ + b n - b n + 1 =1.即 1 - 1= 1(n ∈N + ).n - b n1= b n b n1.∵ b n ≠0, ∴ n n +1n n +1n + 1b nb bb bb又 1=1 =1=1, ∴{ 1 }是以 1 为首项, 1 为公差的等差数列.b 11b na - 1 2-1(2) ∴ 1 = 1+ (n - 1) 1 1 + 1= n + 1 .∴ c n1 n ×1=n.∴ b n =.∴ a n = n a n 1 2n 1b n n n。
第二章数列单元综合测试(人教A版必修5)
第二章数列单元综合测试时间:120分钟 分值:150分第Ⅰ卷(选择题,共60分)1.数列{2n +1}的第40项a 40等于( ) A .9 B .10 C .40D .41解析:a 40=2×40+1=81=9.答案:A2.等差数列{2-3n }中,公差d 等于( ) A .2 B .3 C .-1D .-3解析:设a n =2-3n ,则an +1-a n =[2-3(n +1)]-(2-3n )=-3. 答案:D3.数列{a n }的通项公式是a n =2n ,S n 是数列{a n }的前n 项和,则S 10等于( )A .10B .210C .210-2D .211-2解析:∴数列{a n }是公比为2的等比数列且a 1=2.答案:D4.在等差数列{a n }中,前n 项和为S n ,若a 7=5,S 7=21,那么S 10等于( ) A .55 B .40 C .35D .70解析:设公差为d ,则⎩⎪⎨⎪⎧a 1+6d =5,7a 1+21d =21,解得d =23,a 1=1,则S 10=10a 1+45d =40. 答案:B5.等比数列{a n }的前n 项和为S n ,且4a 1,2a 2,a 3成等差数列.若a 1=1,则S 4等于( ) A .7 B .8 C .15D .16解析:设公比为q ,由于4a 1,2a 2,a 3成等差数列, 则4a 2=4a 1+a 3,所以4q =4+q 2,解得q =2. 所以S 4=a 1(1-q 4)1-q =1-241-2=15.答案:C6.等差数列{a n }的前n 项和为S n, 若a 3+a 17=10,则S 19的值是( ) A .55 B .95 C .100D .不确定解析:a 3+a 17=a 1+a 19,∴S 19=19(a 1+a 19)2=192×10=95.答案:B7.设{a n }是公差为正数的等差数列,若a 1+a 2+a 3=15,a 1a 2a 3=80,则a 11+a 12+a 13=( )A .120B .105C .90D .75解析:{a n }是公差为正数的等差数列,若a 1+a 2+a 3=15,即3a 2=15,则a 2=5. 又a 1a 2a 3=80,∴a 1a 3=(5-d )(5+d )=16,∴d =3.答案:B8.一个只有有限项的等差数列,它前5项的和为34,最后5项的和为146,所有项的和为234,则它的第7项等于( )A .22B .21C .19D .18解析:设该数列有n 项,且首项为a 1,末项为a n, 公差为d .则依题意有⎩⎪⎨⎪⎧5a 1+10d =34,①5a n -10d =146,②a 1+an2·n =234,③①+②可得a 1+a n =36.代入③得n =13.从而有a 1+a 13=36. 又所求项a 7恰为该数列的中间项,∴a 7=a 1+a 132=362=18.故选D.答案:D9.三个不同的实数a ,b ,c 成等差数列,又a ,c ,b 成等比数列,则ab 等于( )A .-2B .2C .-4D .4解析:∵2b =a +c ,∴c =2b -a .∵c 2=ab ,∴a 2-5ab +4b 2=0,∴a =b (舍去)或a =4b ,∴a b=4. 答案:D10.已知等比数列{a n }满足a n >0,n =1,2,…,且a 5·a 2n -5=22n (n ≥3),则当n ≥1时,log 2a 1+log 2a 3+…+log 2a 2n -1等于( )A .n (2n -1)B .(n +1)2C .n 2D .(n -1)2解析:设公比为q ,答案:C11.在一直线上共插有13面小旗,相邻两面小旗之间距离为10 m ,在第一面小旗处有一个人,把小旗全部集中到一面小旗的位置上,每次只能拿一面小旗,要使他走的路程最短,应集中到哪一面小旗的位置上( )A .7B .6C .5D .4解析:图1如图1所示,设将旗集中到第x 面小旗处,则从第一面旗到第x 面旗共走路程为10(x-1)m ,然后回到第二面旗处再到第x 面处的路程是20(x -2)m ,…,从第x -1面到第x 面来回共20 m ,从第x 面处到第x +1面处路程为20 m ,从第x 面到第x +2面处的路程为20×2 m ,….总共的路程为s =10(x -1)+20(x -2)+20(x -3)+…+20×1+20×1+20×2+…+20×(13-x )=10(x -1)+20·(x -2)(x -1)2+20·(13-x )(14-x )2=10[(x -1)+(x -2)(x -1)+(13-x )(14-x )]=10(2x 2-29x +183)=20(x -294)2+31154.∵x ∈N *,∴当x =7时,s 有最小值为780 m , 即将旗集中到第7面小旗处,所走的路程最短. 答案:A12.若数列{a n }是等差数列,首项a 1>0,a 2007+a 2008>0,a 2007·a 2008<0,则使前n 项和S n >0成立的最大自然数n 是( )A .4013B .4014C .4015D .4016解析:由已知a 1>0,a 2007·a 2008<0,可得数列{a n }为递减数列,即d <0,a 2007>0,a 2008<0.利用等差数列的性质及前n 项和公式可得所以使前n 项和S n >0成立的最大自然数n 是4014,选B. 答案:B第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.数列{a n }中的前n 项和S n =n 2-2n +2,则通项公式a n =________. 解析:当n =1时,a 1=S 1=1;当n >1时,a n =S n -S n -1=(n 2-2n +2)-[(n -1)2-2(n -1)+2]=2n -3. 又n =1时,2n -3≠a 1,所以有a n =⎩⎪⎨⎪⎧1,n =1,2n -3,n >1.答案:a n =⎩⎪⎨⎪⎧1,n =1,2n -3,n >114.设{a n }为公比q >1的等比数列,若a 2006和a 2007是方程4x 2-8x +3=0的两根,则a 2008+a 2009=________.解析:方程4x 2-8x +3=0的两根是12和32,答案:1815.等差数列{a n }中,若S 12=8S 4,且d ≠0,则a 1d等于________.解析:∵S 12=12a 1+66d ,S 4=4a 1+6d ,又S 12=8S 4,∴12a 1+66d =32a 1+48d .∴20a 1=18d ,∴a 1d =1820=910.答案:91016.用[x ]表示不超过x 的最大整数,如[0.78]=0,[3.01]=3,如果定义数列{x n }的通项公式为x n =[n5](n ∈N *),则x 1+x 2+…+x 5n =________.解析:x 5n =[5n5]=[n ]=n ,则x 1+x 2+…+x 5n =5[x 5+x 10+x 15+…+x 5(n -1)]+x 5n =5(1+2+…+n -1)+n =52n 2-32n .答案:52n 2-32n三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(本小题10分)三个数成等比数列,其积为512,如果第一个数与第三个数各减2,则成等差数列.求这三个数.解:设三数为aq,a ,aq .由题意,得⎩⎪⎨⎪⎧a 3=512,(a q -2)+(aq -2)=2a , 解得⎩⎪⎨⎪⎧a =8,q =2或⎩⎪⎨⎪⎧a =8,q =12.所以这三个数为4,8,16或16,8,4.18.(本小题12分)求和:(a -1)+(a 2-2)+…+(a n -n ),a ≠0. 解:原式=(a +a 2+…+a n )-(1+2+…+n )=(a +a 2+…+a n )-n (n +1)2=⎩⎪⎨⎪⎧a (1-a n )1-a-n (n +1)2(a ≠1),n -n 22(a =1).19.(本小题12分)已知数列{a n }是等差数列,a 2=6,a 5=18;数列{b n }的前n 项和是T n ,且T n +12b n =1.(1)求数列{a n }的通项公式; (2)求证:数列{b n }是等比数列. 解:(1)设{a n }的公差为d ,∴⎩⎪⎨⎪⎧a 1+d =6,a 1+4d =18,解得a 1=2,d =4. ∴a n =2+4(n -1)=4n -2.(2)证明:当n =1时,b 1=T 1,由T 1+12b 1=1,得b 1=23.当n ≥2时,∵T n =1-12b n ,Tn -1=1-12b n -1,∴T n -T n -1=12(bn -1-b n ).∴b n =12(b n -1-b n ).∴b n =13b n -1. ∴{b n }是以23为首项,13为公比的等比数列.20.(本小题12分)假设某市2007年新建住房400万平方米,其中有250万平方米是中低价房.预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米.那么,到哪一年底,该市历年所建中低价房的累计面积(以2007年为累计的第一年)等于4750万平方米?解:设n 年后该市每年所建中低价房的面积为a n , 由题意可知{a n }是等差数列,其中a 1=250,d =50,则S n =250n +n (n -1)2×50=25n 2+225n .令25n 2+225n =4750,即n 2+9n -190=0, 解得n =-19或n =10. 又n 是正整数,∴n =10.到2016年底,该市历年所建中低价房的累计面积等于4750万平方米. 21.(本小题12分)设a 1=1,a 2=53,an +2=53an +1-23a n (n ∈N *).(1)令b n =an +1-a n (n ∈N *),求数列{b n }的通项公式;(2)求数列{na n }的前n 项和S n .解:(1)因为b n +1=a n +2-a n +1=53a n +1-23a n -a n +1=23(a n +1-a n )=23b n ,所以数列{b n }是首项为b 1=a 2-a 1=23,公比为23的等比数列,所以b n =(23)n (n =1,2,…).22.(本小题12分)将数列{a n }中的所有项按每一行比上一行多一项的规则排成如下数表:a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 a 10记表中的第一列数a 1,a 2,a 4,a 7,…构成的数列为{b n },b 1=a 1=1.S n 为数列{b n }的前n 项和,且满足2b nb n S n -S 2n=1(n ≥2).(1)证明数列{1S n}成等差数列,并求数列{b n }的通项公式;(2)上表中,若从第三行起,每一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当a 81=-491时,求上表中第k (k ≥3)行所有项的和.解:(1)证明:由已知,当n ≥2时,2b nb n S n -S 2n=1,又因为S n =b 1+b 2+…+b n ,又因为S 1=b 1=a 1=1,所以数列{1S n }是首项为1,公差为12的等差数列.由上可知1S n =1+12(n -1)=n +12,即S n =2n +1.所以当n ≥2时,b n =S n -S n -1=2n +1-2n =-2n (n +1). 因此b n =⎩⎪⎨⎪⎧1,n =1,-2n (n +1),n ≥2. (2)设题表中从第三行起,每行的公比都为q ,且q >0.因为1+2+…+12=12×132=78,所以表中第1行至第12行共含有数列{a n }的前78项.故a 81在表中第13行第三列,因此a 81=b 13·q 2=-491.又b 13=-213×14,所以q =2.记表中第k (k ≥3)行所有项的和为S ,即S =b k (1-q k )1-q =-2k (k +1)·1-2k 1-2=2k (k +1)(1-2k )(k ≥3).。
数列单元测试题及答案解析
数列单元测试题及答案解析一、选择题1. 已知等差数列的首项为a1=3,公差为d=2,求第10项的值。
A. 23B. 25C. 27D. 292. 等比数列的首项为a1=2,公比为r=3,求第5项的值。
A. 162B. 243B. 324D. 4863. 一个数列的前5项为1, 3, 6, 10, 15,这个数列是:A. 等差数列B. 等比数列C. 既不是等差数列也不是等比数列D. 无法判断二、填空题4. 等差数列的前n项和公式为:S_n = _______。
5. 等比数列的前n项和公式为:S_n = _______。
三、解答题6. 已知等差数列的前10项和为S10=185,求公差d。
7. 已知等比数列的前3项和为S3=28,首项a1=2,求公比r。
四、证明题8. 证明:等差数列中,任意两项的等差中项等于它们的算术平均数。
答案解析:一、选择题1. 答案:A。
解析:根据等差数列的通项公式an = a1 + (n-1)d,代入n=10,得a10 = 3 + 9*2 = 21。
2. 答案:B。
解析:根据等比数列的通项公式an = a1 * r^(n-1),代入n=5,得a5 = 2 * 3^4 = 243。
3. 答案:C。
解析:数列1, 3, 6, 10, 15不是等差也不是等比数列,因为相邻两项的差和比值都不是常数。
二、填空题4. 答案:S_n = n/2 * (2a1 + (n-1)d)。
解析:等差数列前n项和的公式。
5. 答案:S_n = a1 * (1 - r^n) / (1 - r),当r≠1时。
解析:等比数列前n项和的公式。
三、解答题6. 解:根据等差数列前n项和的公式,S10 = 10/2 * (2*3 + 9d) = 185,解得d = 3。
7. 解:根据等比数列前n项和的公式,S3 = a1 * (1 - r^3) / (1 - r) = 28,代入a1=2,解得r = 3。
四、证明题8. 证明:设等差数列中任意两项为an和am,它们的等差中项为a,即a = (an + am) / 2。
高二数列单元测试题及答案
高二数列单元测试题及答案一、选择题(每题3分,共15分)1. 已知数列{an}是等差数列,且a3=5,a5=9,则a7的值为:A. 13B. 11B. 9D. 72. 等比数列{bn}的首项b1=2,公比q=3,求该数列的第5项b5:A. 486B. 243C. 81D. 1623. 已知数列{cn}的前n项和S(n)=n^2,求第5项c5:A. 14B. 15C. 16D. 174. 若数列{dn}满足d1=1,且对于任意的n≥2,有dn=2dn-1+1,该数列为:A. 等差数列B. 等比数列C. 非等差也非等比数列D. 几何数列5. 对于数列{en},若e1=2,且en+1=en+n,求e5的值:A. 12B. 14C. 16D. 18二、填空题(每题4分,共20分)6. 已知数列{fn}是等差数列,且f1=3,f3=9,求公差d。
__________7. 已知数列{gn}是等比数列,且g1=8,g3=64,求公比q。
__________8. 若数列{hn}的前n项和S(n)=n^2+n,求第3项h3。
__________9. 已知数列{in}满足i1=1,且对于任意的n≥2,有in=in-1+n,求i3的值。
__________10. 若数列{jn}的前n项和S(n)=n^3,求第2项j2。
__________三、解答题(每题10分,共30分)11. 已知数列{kn}是等差数列,首项k1=1,公差d=2,求数列的前10项和S(10)。
12. 已知数列{ln}是等比数列,首项l1=1,公比q=4,求数列的前5项和S(5)。
13. 已知数列{mn}的前n项和S(n)=2n^2-n,求数列的第n项mn。
四、综合题(每题25分,共25分)14. 某工厂生产的产品数量按照等差数列增长,若第1年生产100件,每年增长50件。
求第5年的产量,并求前5年的总产量。
答案:一、选择题1. A2. C3. B4. A5. B二、填空题6. d=27. q=48. h3=109. i3=510. j2=9三、解答题11. S(10)=10×1+(10×9)/2×2=11012. S(5)=1+4+16+64+256=34113. mn=2n^2-n-1四、综合题14. 第5年产量为100+4×50=250件,前5年总产量为100+150+200+250+300=1000件。
(完整版)高三数学第一轮复习单元测试--数列
高三数学第一轮复习单元测试(2)— 《数列》一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若互不相等的实数a 、b 、c 成等差数列,c 、a 、b 成等比数列,且103=++c b a , 则a = ( )A .4B .2C .-2D .-42.已知等差数列共有10项,其中奇数项之和15,偶数项之和为30,则其公差是 ( ) A .5 B .4 C .3 D .2 3.在等差数列{}n a 中,已知1232,13,a a a =+=则456a a a ++等于 ( )A .40B .42C .43D .454.在等差数列{a n }中,若a a+a b =12,S N 是数列{a n }的前n 项和,则S N 的值为 ( ) A .48 B .54 C .60 D .665.设S n 是等差数列{a n }的前n 项和,若S 3S 6=13,则S 6S 12= ( )A .310B .13C .18D .196.设{}n a 是公差为正数的等差数列,若12315a a a ++=,12380a a a =,则111213a a a ++=( )A .120B .105C .90D .757.已知等差数列{a n }的前n 项和为S n ,若a a 2001+=,且A 、B 、C 三点共线 (该直线不过原点O ),则S 200= ( )A .100B .101C .200D .2018.在等比数列{}n a 中,12a =,前n 项和为n S ,若数列{}1n a +也是等比数列,则n S 等于( )A .122n +- B .3n C .2n D .31n -9.设4710310()22222()n f n n N +=+++++∈L ,则()f n 等于( )A .2(81)7n- B .12(81)7n +- C .32(81)7n +- D .42(81)7n +- 10.弹子跳棋共有60棵大小相同的球形弹子,现在棋盘上将它叠成正四面体球垛,使剩下的弹子尽可能的少,那么剩下的弹子有 ( ) A .3 B .4 C .8 D .9 11.设数列{}n a 的前n 项和为n S ,令12nn S S S T n+++=L ,称n T 为数列1a ,2a ,……,n a 的“理想数”,已知数列1a ,2a ,……,500a 的“理想数”为2004,那么数列2, 1a ,2a ,……,500a 的“理想数”为 ( )A .2002B .2004C .2006D .200812.已知数列{}n a 对任意的*p q ∈N ,满足p q p q a a a +=+,且26a =-,那么10a 等于( )A .165-B .33-C .30-D .21-二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上. 13.数列{a n }中,若a 1=1,a n +1=2a n +3 (n ≥1),则该数列的通项a n = .14.=⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=1110113112111,244)(f f f f x f xx Λ则设 . 15.在德国不莱梅举行的第48届世乒赛期间,某商场橱窗里用同样的乒乓球堆成若干准“正 三棱锥”形的展品,其中第一堆只有一层, 就一个乒乓球;第2、3、4、…堆最底层(第 一层)分别按右图所示方式固定摆放.从第一 层开始,每层的小球自然垒放在下一层之上,第n 堆第n 层就放一个乒乓球,以)(n f 表示第n 堆的乒乓球总数,则=)3(f ;=)(n f (答案用n 表示).16.已知整数对排列如下()()()()()()()()()()()()Λ,4,2,5,1,1,4,2,3,3,2,4,1,1,3,2,23,1,1,2,2,1,1,1, 则第60个整数对是_______________.三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)数列{a n }的前n 项和记为S n ,()111,211n n a a S n +==+≥(1)求{a n }的通项公式;(2)等差数列{b n }的各项为正,其前n 项和为T n ,且315T =,又112233,,a b a b a b +++成等比数列,求T n 18.(本小题满分12分) 设数列}{n a 、}{n b 、}{n c 满足:2+-=n n n a a b ,2132++++=n n n n a a a c (n =1,2,3,…),证明:}{n a 为等差数列的充分必要条件是}{n c 为等差数列且1+≤n n b b (n =1,2,3,…)19.(本小题满分12分)已知数列3021,,,a a a Λ,其中1021,,,a a a Λ是首项为1,公差为1的等差数列;201110,,,a a a Λ是公差为d 的等差数列;302120,,,a a a Λ是公差为2d 的等差数列(0≠d ). (1)若4020=a ,求d ;(2)试写出30a 关于d 的关系式,并求30a 的取值范围;(3)续写已知数列,使得403130,,,a a a Λ是公差为3d 的等差数列,……,依次类推,把已知数列推广为无穷数列. 提出同(2)类似的问题((2)应当作为特例),并进行研究,你能得到什么样的结论? 20.(本小题满分12分) 某市去年11份曾发生流感,据统计,11月1日该市新的流感病毒感染者有20人,此后,每天的新感染者平均比前一天的新感染者增加50人,由于该市医疗部门采取措施,使该种病毒的传播得到控制,从某天起,每天的新感染者平均比前一天的新感染者减少30人,到11月30日止,该市在这30日内感染该病毒的患者总共8670人,问11月几日,该市感染此病毒的新患者人数最多?并求这一天的新患者人数. 21.(本小题满分12分)等差数列{}n a 中,12a =,公差d 是自然数,等比数列{}n b 中,1122,b a b a ==.(Ⅰ)试找出一个d 的值,使{}n b 的所有项都是{}n a 中的项;再找出一个d 的值,使{}n b 的项不都是{}n a 中的项(不必证明);(Ⅱ)判断4d =时,是否{}n b 所有的项都是{}n a 中的项, 并证明你的结论;(Ⅲ)探索当且仅当d 取怎样的自然数时,{}n b 的所有项都是{}n a 中的项,并说明理由. 22.(本小题满分14分)已知数列{n a }中,112--=n n a a (n ≥2,+∈N n ),(1)若531=a ,数列}{n b 满足11-=n n a b (+∈N n ),求证数列{n b }是等差数列; (2)若531=a ,求数列{n a }中的最大项与最小项,并说明理由; (3)(理做文不做)若211<<a ,试证明:211<<<+n n a a .参考答案(2)1.D .依题意有22,,310.a c b bc a a b c +=⎧⎪=⎨⎪++=⎩4,2,8.a b c =-⎧⎪=⎨⎪=⎩2.C . 3302551520511=⇒⎩⎨⎧=+=+d d a d a ,故选C . 3.B . ∵等差数列{}n a 中12a =,2313a a += ∴公差3d =. ∴45613345a a a a d d d ++=+++=1312a d +=42. 4.B . 因为461912a a a a +=+=,所以1999()2a a S +==54,故选B . 5.A . 由等差数列的求和公式可得31161331,26153S a d a d S a d +===+可得且0d ≠ 所以6112161527312669010S a d d S a d d +===+,故选A . 6.B .12322153155a a a a a ++=⇒=⇒=,()()1232228080a a a a d a a d =⇒-+=,将25a =代入,得3d =,从而()()11121312233103530105a a a a a d ++==+=⨯+=.选B .7.A . 依题意,a 1+a 200=1,故选A .8.C .因数列{}n a 为等比,则12n n a q -=,因数列{}1n a +也是等比数列,则22121122212(1)(1)(1)22(12)01n n n n n n n n n n n n n a a a a a a a a a a a a a q q q +++++++++=++⇒+=++⇒+=⇒+-=⇒=即2n a =,所以2n S n =,故选择答案C .9.D . f (n )=3(1)432[12]2(81)127n n ++-=--,选D . 10.B . 正四面体的特征和题设构造过程,第k 层为k 个连续自然数的和,化简通项再裂项用公式求和.依题设第k层正四面体为(),k k k k k 2213212+=+=++++Λ则前k 层共有()()()()6062121212121222≤++=+++++++k k k k k L ,k 最大为6,剩4,选B .11.A .认识信息,理解理想数的意义有,20025014984995002501,5004984995002004500321500321=+++++⨯∴++++=a a a a a a a a ΛΛ,选A .12.C .由已知4a =2a +2a = -12,8a =4a +4a =-24,10a =8a +2a = -30,选C .13.由112332(3)n n n n a a a a ++=+⇔+=+,即133n n a a +++=2,所以数列{n a +3}是以(1a +3)为首项,以2为公比的等比数列,故n a +3=(1a +3)12n -,n a =12n +-3. 14.由()()11=+-x f x f ,整体求和所求值为5.15.2)1()()(111211+==-++-+=⇒+=--+n n a a a a a a n a a n n n n n ΛΛ )(n f 的规律由)2(2)1()1()(≥+==--n n n a n f n f n ,所以22)1()(223)2()3(222)1()2(1)1(222+=--+=-+=-=n n f n f f f f f f Λ所以)]321()321[(21)(222n n n f +++++++++=ΛΛ 6)2)(1(]2)1(6)12)(1([21++=++++=n n n n n n n n 16.观察整数对的特点,整数对和为2的1个,和为3的2个,和为4的3个,和为5的4个,和n 为的 n -1个,于是,借助()21321+=++++n n n Λ估算,取n=10,则第55个整数对为()1,11,注意横坐标递增,纵坐标递减的特点,第60个整数对为()7,517.(1)由121n n a S +=+可得()1212n n a S n -=+≥,两式相减得()112,32n n n n n a a a a a n ++-==≥ 又21213a S =+= ∴213a a = 故{a n }是首项为1,公比为3得等比数列 ∴13n n a -=. (2)设{b n }的公差为d ,由315T =得,可得12315b b b ++=,可得25b =, 故可设135,5b d b d =-=+又1231,3,9a a a ===由题意可得()()()2515953d d -+++=+解得122,10d d == ∵等差数列{b n }的各项为正,∴0d >,∴2d = ∴()213222n n n T n n n-=+⨯=+18.ο1必要性:设数列}{n a 是公差为1d 的等差数列,则:--=-+++)(311n n n n a a b b )(2+-n n a a =--+)(1n n a a )(23++-n n a a =1d -1d =0,∴1+≤n n b b (n =1,2,3,…)成立; 又2)(11+-=-++n n n n a a c c )(12++-n n a a )(323++-+n n a a =61d (常数)(n =1,2,3,…) ∴数列}{n c 为等差数列.ο2充分性:设数列}{n c 是公差为2d 的等差数列,且1+≤n n b b (n =1,2,3,…), ∵2132++++=n n n n a a a c ……① ∴432232++++++=n n n n a a a c ……②①-②得:)(22++-=-n n n n a a c c )(231++-+n n a a )(342++-+n n a a =2132++++n n n b b b ∵+-=-++)(12n n n n c c c c 2212)(d c c n n -=-++∴2132++++n n n b b b 22d -=……③ 从而有32132+++++n n n b b b 22d -=……④ ④-③得:0)(3)(2)(23121=-+-+-+++++n n n n n n b b b b b b ……⑤ ∵0)(1≥-+n n b b ,012≥-++n n b b ,023≥-++n n b b , ∴由⑤得:01=-+n n b b (n =1,2,3,…),由此,不妨设3d b n =(n =1,2,3,…),则2+-n n a a 3d =(常数) 故312132432d a a a a a c n n n n n n -+=++=+++……⑥ 从而3211324d a a c n n n -+=+++31524d a a n n -+=+……⑦ ⑦-⑥得:3112)(2d a a c c n n n n --=-++,故311)(21d c c a a n n n n +-=-++3221d d +=(常数)(n =1,2,3,…), ∴数列}{n a 为等差数列.综上所述:}{n a 为等差数列的充分必要条件是}{n c 为等差数列且1+≤n n b b (n =1,2,3,…). 19.(1)3,401010.102010=∴=+==d d a a . (2)())0(11010222030≠++=+=d d d d a a , ⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫ ⎝⎛+=432110230d a ,当),0()0,(∞+∞-∈Y d 时,[)307.5,a ∈+∞.(3)所给数列可推广为无穷数列{}n a ,其中1021,,,a a a Λ是首项为1,公差为1的等差数列,当1≥n时,数列)1(1011010,,,++n n n a a a Λ是公差为n d 的等差数列.研究的问题可以是:试写出)1(10+n a 关于d 的关系式,并求)1(10+n a 的取值范围. 研究的结论可以是:由()323304011010d d d d a a +++=+=, 依次类推可得 ()⎪⎩⎪⎨⎧=+≠--⨯=+++=++.1),1(10,1,11101101)1(10d n d d d d d a n nn Λ 当0>d 时,)1(10+n a 的取值范围为),10(∞+等.20.设第n 天新患者人数最多,则从n+1天起该市医疗部门采取措施,于是,前n 天流感病毒感染者总人数,构成一个首项为20,公差为50的等差数列的n 项和,()()N n ,n n n n n n S n∈≤≤-=⨯-+=3015255021202,而后30-n 天的流感病毒感染者总人数,构成一个首项为()60503050120-=-⨯-+n n ,公差为30,项数为30-n 的等差数列的和,()()()()(),n n n n n n Tn148502445653026050306050302-+-=-⨯--+--=依题设构建方程有,(),n n n n ,T S n n 867014850244565525867022=-+-+-∴=+化简,120588612=∴=+-n ,n n 或49=n (舍),第12天的新的患者人数为 20+(12-1)·50=570人.故11月12日,该市感染此病毒的新患者人数最多,新患者人数为570人.21.(1)0d =时,{}n a 的项都是{}n b 中的项;(任一非负偶数均可); 1d =时,{}n a 的项不都是{}n b 中的项.(任一正奇数均可); (2) 4d =时,422(21),n a n n =-=-123n n b -=⨯131 2(21)2n m a -+=⨯-=131(2n m -+=为正整数),{}n b 的项一定都是{}n a 中的项 (3)当且仅当d 取2(*)k k ∈N (即非负偶数)时,{}n b 的项都是{}n a 中的项. 理由是:①当2(*)d k k =∈N 时,2(1)22[1(1)],n a n k n k =+-⋅=+-⋅2n >时,11122112(1)2(C C 1)n n n n n n n b k k k k ------=⋅+=++⋅⋅⋅++,其中112211C C n n n n n k k k-----++⋅⋅⋅+ 是k 的非负整数倍,设为Ak (*A ∈N ),只要取1m A =+即(m 为正整数)即可得n m b a =, 即{}n b 的项都是{}n a 中的项;②当21,()d k k =+∈N 时,23(23)2k b +=不是整数,也不可能是{}n a 的项. 22.(1)1111111121n n n n n a b a a a ---===----,而1111-=--n n a b ,∴11111111=-=-=-----n n n n n a a a b b .)(+∈N n∴{n b }是首项为251111-=-=a b ,公差为1的等差数列. (2)依题意有nn b a 11=-,而5.31)1(25-=-+-=⋅n n b n ,∴5.311-=-n a n .对于函数5.31-=x y ,在x >3.5时,y >0,0)5.3(12<--=x y',在(3.5,∞+) 上为减函数. 故当n =4时,5.311-+=n a n 取最大值3. 而函数5.31-=x y 在x <3.5时,y <0, 0)5.3(12<--=x y',在(∞-,3.5)上也为减函数.故当n =3时,取最小值,3a =-1. (3)先用数学归纳法证明21<<n a ,再证明n n a a <+1. ①当1=n 时,211<<a 成立; ②假设当k n =时命题成立,即21<<k a ,当1+=k n 时,1121<<ka )23,1(121∈-=⇒+kk a a ⇒211<<+k a 故当1+=k n 时也成立,综合①②有,命题对任意+∈N n 时成立,即21<<n a . (也可设x x f 12)(-=(1≤x ≤2),则01)(2'>=xx f , 故=1)1(f 223)2()(1<=<=<+f a f a k k ).下证: n n a a <+10122)1(21=⋅-<+-=-+kk k k n n a a a a a a ⇒n n a a <+1.。
(常考题)人教版高中数学选修二第一单元《数列》测试(含答案解析)(4)
一、选择题1.已知数列{}n a 中,12a =,111(2)n n a n a -=-≥,则2021a 等于( ) A .1-B .12-C .12D .22.首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,现有下列4个命题,其中正确的命题的个数是( )①若100S =,则280S S +=;②若412S S =,则使0n S >的最大的n 为15;③若150S >,160S <,则{}n S 中8S 最大;④若78S S <,则89S S <.A .1个B .2个C .3个D .4个3.已知数列{}n a 满足2122111,16,2n n n a a a a a ++===则数列{}n a 的最大项为( ) A .92B .102C .8182D .1124.已知等差数列{}n a 前n 项和为n S ,且351024a a a ++=,则13S 的值为( ) A .8B .13C .26D .1625.已知数列{}n a 满足11a =,122n n a a n n+=++,则10a =( ) A .259B .145 C .3111D .1766.已知正项等比数列{}n a 的公比不为1,n T 为其前n 项积,若20172021T T =,则20202021ln ln a a =( ) A .1:3B .3:1C .3:5D .5:37.已知等比数列{}n a 的前n 项和为S n ,则下列命题一定正确的是( ) A .若S 2021>0,则a 3+a 1>0 B .若S 2020>0,则a 3+a 1>0 C .若S 2021>0,则a 2+a 4>0D .若S 2020>0,则a 2+a 4>08.两等差数列{}n a 和{}n b ,前n 项和分别为n S ,n T ,且723n n S n T n +=+,则220715a ab b ++的值为( ) A .14924B .7914C .165D .51109.设n S 是等差数列{}n a 的前n 项和,若535,9a a =则95S S =( ) A .1B .1-C .2D .1210.函数()2cos 2f x x x =-{}n a ,则3a =( ) A .1312πB .54π C .1712πD .76π 11.已知数列{}n a 是等比数列,11a >,且前n 项和n S 满足11lim n n S a →∞=,那么1a 的取值范围是( ) A.(B .()1,4C .()1,2D .()1,+∞12.已知等比数列{}141,1,8n a a a ==,且12231n n a a a a a a k ++++<,则k 的取值范围是( ) A .12,23⎡⎤⎢⎥⎣⎦B .1,2⎡⎫+∞⎪⎢⎣⎭C .12,23⎡⎫⎪⎢⎣⎭D .2,3⎡⎫+∞⎪⎢⎣⎭二、填空题13.数列{}n a 满足2121231722222n n a a a a n n -+++⋅⋅⋅+=-,若对任意0λ>,所有的正整数n 都有22n k a λλ-+>成立,则实数k 的取值范围是_________.14.将正整数12分解成两个正整数的乘积有112⨯,26⨯,34⨯,三种,其中34⨯是这三种分解中两数差的绝对值最小的,我们称34⨯为12的最佳分解,当(),,p q p q p N q N **⨯≤∈∈是正整数n 的最佳分解时,我们定义函数()f n q p =-,例如(12)431f =-=,则数列(){}3nf 的前2020项和为______.15.设数列{}n a 是以4为首项,12为公比的等比数列,其前n 项和为{}n S ,则{}n S 的前n 项和为_________.16.计算:111113355720192021++++=⨯⨯⨯⨯__________.17.已知{}{},n n a b 均为等差数列,其前n 项和分别为,n n S T ,且233n n S n T n -=+,则55a b =________.18.已知等差数列{}n a 的前n 项和n S 满足318S =,3180n S -=,270n S =,则n =________.19.数列{}n a 满足, 123231111212222n na a a a n ++++=+,写出数列{}n a 的通项公式__________.20.正项数列{}n a 的前n 项和为n S ,且()22n nn S a a n N *++∈,设()2112n n n na c S +=-⋅,则数列{}n c 的前2019项的和为___________.三、解答题21.设数列{}n a 的前n 项和为n S ,已知()*214,21n n S a S n N +==+∈.数列{}nb 是首项为1a ,公差不为零的等差数列,且127,,b b b 成等比数列. (1)求数列{}n a 和{}n b 的通项公式; (2)若nn nb c a =,数列{}n c 的前n 项和为n T ,且n T m <恒成立,求m 的取值范围. 22.已知数列{a n }的前n 项和S n =3n +1-t ,求证:数列{a n }是等比数列的充要条件为t =3.23.已知正项数列{}n a 满足2220n n a na n --=,数列(){}12n nn aa -⋅+的前n 项和为n S .(1)求数列{}n a 的通项公式; (2)求n S .24.设数列{}n a 的前n 项和为n S ,且12n n S a +=. (1)求数列{}n a 的通项公式; (2)设21nn b a n =+,求数列{}n b 的前n 项和n T . 25.已知数列{}n a 的前n 项和为n S ,点(),n n a s 在直线22y x =-,上n *∈N . (1)求{}n a 的通项公式;(2)若n n b n a =+,求数列{}n b 的前n 项和n T .26.已知各项都是正数的数列{}n a 的前n 项和为n S ,212n n n S a a =+,*n ∈N . (1)求数列{}n a 的通项公式.(2)设数列{}n b 满足:11b =,()122n n n b b a n --=≥,数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和n T .求证:2n T <.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C【分析】先计算出{}n a 的前几项,然后分析{}n a 的周期性,根据周期可将2021a 转化为2a ,结合12a =求解出结果.【详解】因为12a =,所以23412311111,11,12,......2a a a a a a =-==-=-=-= 所以3211111111111111111111n n nn n n n na a a a a a a a +++-=-=-=-=-=-=------, 所以{}n a 是周期为3的周期数列,所以20213673+2212a a a ⨯===, 故选:C. 【点睛】思路点睛:根据递推公式证明数列{}n a 为周期数列的步骤:(1)先根据已知条件写出数列{}n a 的前几项,直至出现数列中项循环,判断循环的项包含的项数A ;(2)证明()*n A n a a A N+=∈,则可说明数列{}na 是周期为A 的数列.2.B解析:B 【分析】①②③根据条件可分析数列是首项为正数,公差小于0的等差数列,所以存在*n N ∈,使10n n a a +≥⎧⎨≤⎩,再结合等差数列的前n 项和公式判断选项;④利用公式1n n n S S a --=()2n ≥,判断选项.【详解】 ①若100S =,则()()110561010022a a a a ++==,因为数列是首项为正数,公差不为0的等差数列,所以50a >,60a <,那么()()()()18281212458402a a S S a a a a a a ++=++=+++>,故①不成立; ②若412S S =,则()124561289...40S S a a a a a -=+++=+=,因为数列是首项为正数,公差不为0的等差数列,所以80a >,90a <,()115158151502a a S a +==>,()()11689161616022a a a a S ++===,则使0n S >的最大的n 为15,故②成立; ③()115158151502a a S a +==>,()()116168916802a a S a a +==+<,则90a <,因为数列是首项为正数,公差不为0的等差数列,所以{}n S 中的最大项是8S ,故③正确; ④若78S S <,则8780S S a -=>,但989S S a -=,不确定9a 的正负,故④不正确. 故选:B 【点睛】方法点睛:一般等差数列前n 项和的最值的常用方法包含:1.单调性法,利用等差数列的单调性,求出其正负转折项,便可求得等差数列前n 项和的最值;2.利用二次函数的性质求最值,公差不为0的等差数列{}n a 的前n 项和2n S An Bn =+(,A B 为常数)为关于n的二次函数,利用二次函数的性质解决最值问题.3.B解析:B 【分析】本题先根据递推公式进行转化得到21112n n n n a a a a +++=.然后令1n n na b a +=,可得出数列{}n b 是等比数列.即11322nn n a a +⎛⎫= ⎪⎝⎭.然后用累乘法可求出数列{}n a 的通项公式,根据通项公式及二次函数的知识可得数列{}n a 的最大项. 【详解】解:由题意,可知: 21112n n n na a a a +++=. 令1n n n ab a +=,则112n n b b +=. 21116a b a ==, ∴数列{}n b 是以16为首项,12为公比的等比数列. 111163222n nn b -⎛⎫⎛⎫∴== ⎪⎪⎝⎭⎝⎭.∴11322nn n a a +⎛⎫= ⎪⎝⎭. ∴1211322aa ⎛⎫= ⎪⎝⎭,2321322a a ⎛⎫= ⎪⎝⎭,111322n n n a a --⎛⎫= ⎪⎝⎭.各项相乘,可得: 12111111(32)222n n na a --⎛⎫⎛⎫⎛⎫=⋯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(1)2511()22n n n --⎛⎫= ⎪⎝⎭ 2115(1)221122n n n ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭211552212n n n --+⎛⎫= ⎪⎝⎭21(1110)212n n -+⎛⎫= ⎪⎝⎭.令2()1110f n n n =-+,则,根据二次函数的知识,可知:当5n =或6n =时,()f n 取得最小值. ()2551151020f =-⨯+=-,()2661161020f =-⨯+=-,()f n ∴的最小值为20-.∴211(1110)(20)1022101112222n n -+⨯--⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.∴数列{}n a 的最大项为102.故选:B . 【点睛】本题主要考查根据递推公式得出通项公式,构造新数列的方法,累乘法通项公式的应用,以及利用二次函数思想求最值;4.B解析:B 【分析】先利用等差数列的下标和性质将35102a a a ++转化为()410724a a a +=,再根据()11313713132a a S a +==求解出结果.因为()351041072244a a a a a a ++=+==,所以71a =,又()1131371313131132a a S a +===⨯=, 故选:B. 【点睛】结论点睛:等差、等比数列的下标和性质:若()*2,,,,m n p q t m n p q t N +=+=∈,(1)当{}n a 为等差数列,则有2m n p q t a a a a a +=+=; (2)当{}n a 为等比数列,则有2m n p q t a a a a a ⋅=⋅=.5.B解析:B 【分析】 由122n n a a n n +=++转化为11121n n a a n n +⎛⎫-=- ⎪+⎝⎭,利用叠加法,求得23na n =-,即可求解. 【详解】 由122n n a a n n +=++,可得12112(1)1n n a a n n n n +⎛⎫-==- ⎪++⎝⎭, 所以()()()()11223211n n n n n n n a a a a a a a a a a -----=-+-+-++-+11111111222*********n n n n n n ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-+ ⎪ ⎪ ⎪ ⎪-----⎝⎭⎝⎭⎝⎭⎝⎭122113n n ⎛⎫=-+=- ⎪⎝⎭,所以102143105a =-=. 故选:B. 【点睛】数列的通项公式的常见求法:对于递推关系式可转化为1()n n a a f n +-=的数列,通常采用叠加法(逐差相加法)求其通项公式;对于递推关系式可转化为1()n na f n a +=的数列,并且容易求数列{()}f n 前n 项积时,通常采用累乘法求其通项公式; 对于递推关系式形如1n n a pa q +=+的数列,可采用构造法求解数列的通项公式.6.A解析:A由20172021T T =得20182019202020211a a a a =,由等比数列性质得20182021201920201a a a a ==,这样可把2020a 和2021a 用q 表示出来后,可求得20202021ln ln a a . 【详解】{}n a 是正项等比数列,0n a >,0n T ≠,*n N ∈,所以由2017202120172018201920202021T T T a a a a ==⋅,得20182019202020211a a a a =, 所以20182021201920201a a a a ==,设{}n a 公比为q ,1q ≠,22021201820213()1a a a q ==,2202020192020()1a a a q==,即322021a q =,122020a q =,所以1220203202121ln ln ln 123ln 3ln ln 2qa q a q q ===. 故选:A . 【点睛】本题考查等比数列的性质,解题关键是利用等比数列性质化简已知条件,然后用公比q 表示出相应的项后可得结论.7.A解析:A 【分析】根据等比数列的求和公式及通项公式,可分析出答案. 【详解】等比数列{}n a 的前n 项和为n S ,当1q ≠时,202112021(1)01a q S q-=>-,因为20211q-与1q -同号,所以10a >,所以2131(1)0a a a q +=+>,当1q =时,2021120210S a =>,所以10a >,所以1311120a a a a a +=+=>, 综上,当20210S >时,130a a +>, 故选:A易错点点睛:利用等比数列求和公式时,一定要分析公比是否为1,否则容易引起错误,本题需要讨论两种情况.8.A解析:A 【分析】在{}n a 为等差数列中,当(m n p q m +=+,n ,p ,)q N +∈时,m n p q a a a a +=+.所以结合此性质可得:2202171521a a Sb b T +=+,再根据题意得到答案.【详解】解:在{}n a 为等差数列中,当(m n p q m +=+,n ,p ,)q N +∈时,m n p q a a a a +=+.所以1212202171521121121()2121()2a a a a Sb b T b b ⨯+⨯+==+⨯+⨯, 又因为723n n S n T n +=+, 所以22071514924a ab b +=+. 故选:A . 【点睛】本题主要考查等差数列的下标和性质,属于中档题.9.A解析:A 【分析】利用等差数列的前n 项和公式和等差数列的性质可得结果. 【详解】在等差数列{a n }中,由5359a a =,得()()9955115392199555952a a S a a a S a +==⨯=⨯=+ 故选:A 【点睛】本题考查等差数列的性质,考查等差数列的前n 项和,是基础题.10.B解析:B 【分析】先将函数化简为()2sin 26f x x π⎛⎫=-⎪⎝⎭4x k ππ=+或512x k ππ=+,k Z ∈,再求3a 即可. 【详解】 解:∵()2cos 22sin 26f x x x x π⎛⎫=-=-- ⎪⎝⎭∴ 令()0f x =得:2263x k πππ-=+或22263x k πππ-=+,k Z ∈, ∴4x k ππ=+或512x k ππ=+,k Z ∈, ∴ 正数零点从小到大构成数列为:12355,,,4124a a a πππ===故选:B. 【点睛】本题考查三角函数的性质,数列的概念,考查数学运算求解能力,是中档题.11.A解析:A 【分析】设等比数列{}n a 的公比为q ,可知10q -<<或01q <<,计算出111lim 1n n a S q a →∞==-,可得出q 关于1a 的表达式,结合q 的范围,可解出1a 的取值范围. 【详解】设等比数列{}n a 的公比为q ,由于11lim n n S a →∞=,则10q -<<或01q <<, ()111n n a q S q-=-,则()11111lim lim11n n n n a q a S qq a →∞→∞-===--,得211q a =-. ①若10q -<<,则21110a -<-<,即2112a <<,11a >,解得1a <<; ②当01q <<,则21011a <-<,得2101a <<,11a >,则2101a <<不成立.综上所述,1a的取值范围是(. 故选A. 【点睛】本题考查利用极限求等比数列首项的取值范围,解题的关键就是得出公比与首项的关系,结合公比的取值范围得出关于首项的不等式,考查运算求解能力,属于中等题.12.D解析:D 【分析】设等比数列{}n a 的公比为q ,由11a =,418a =,可得318q =,解得q .可得n a .可得1124n n na a +=⨯.利用等比数列的求和公式及其数列的单调性即可得出. 【详解】解:设等比数列{}n a 的公比为q ,11a =,418a =, 318q ∴=,解得12q =. 11111()()22n n n a --=⨯=.12111111()()()22224n n n n n n a a --+∴===⨯.12231211(1)111212442()2(1)144434314n n n n na a a a a a +-∴++⋯+=++⋯⋯+=⨯=-<-. 12231n n a a a a a a k +++⋯+<,23k. k ∴的取值范围是:2,3⎡⎫+∞⎪⎢⎣⎭.故选:D . 【点睛】本题考查了数列递推关系、等比数列的通项公式与求和公式、数列的单调性,考查了推理能力与计算能力,属于中档题.二、填空题13.【分析】记设根据即可求出从而得到再根据题意可得分参利用基本不等式即可求出实数k 的取值范围【详解】记设当时;当时当时也满足上式所以即显然当时当时因此的最大值若存在必为正值当时因为当且仅当时取等号所以的解析:,2⎛-∞ ⎝⎭【分析】记12n n n b a -=,设21212317222222n n n S a a a a n n -=+++⋅⋅⋅+=-, 根据1112n n n S n b S S n -=⎧=⎨-≥⎩即可求出n b ,从而得到n a ,再根据题意可得()m 2ax 2n k a λλ-+>,分参利用基本不等式即可求出实数k 的取值范围.【详解】记12n n n b a -=,设21212317222222n n n S a a a a n n -=+++⋅⋅⋅+=-, 当1n =时,117322b =-=-; 当2n ≥时,()()21217171142222n n n b S n S n n n n -⎡⎤-----=-⎢⎥⎣⎦=-=. 当1n =时,13b =-也满足上式,所以()*4n b n n N =-∈,即142n n n a --=. 显然当3n ≤时,0n a <,40a =,当5n ≥时,0n a >,因此n a 的最大值若存在,必为正值.当5n ≥时,()1324n n a n a n +-=-,因为()151024n n a na n +--=≤-,当且仅当5n =时取等号. 所以n a 的最大值为116.故()m 2ax 1126n k a λλ>=-+,变形得,3116k λλ<+,而31162λλ+≥=,当且仅当λ=时取等号,所以k <.故答案为:,2⎛-∞ ⎝⎭.【点睛】本题主要考查n S 与n a 的关系1112n nn S n a S S n -=⎧=⎨-≥⎩应用,不等式恒成立问题的解法应用,以及基本不等式的应用,意在考查学生的转化能力和数学运算能力,属于中档题.解题关键是记12n n n b a -=,设21212317222222n n n S a a a a n n -=+++⋅⋅⋅+=-,利用通项n b 与前n 项和n S 的关系1112n nn Sn b S S n -=⎧=⎨-≥⎩求出通项n b ,再利用数列的单调性进而求出数列中的最大值,由基本不等式解出.14.【分析】先通过归纳得再利用等比数列求和得解【详解】由题意得归纳得则故答案为:【点睛】关键点睛:解答本题的关键在通过特殊值归纳出归纳出这个结论之后后面利用等比数列求和就迎刃而解了 解析:101031-【分析】 先通过归纳得()()2111233323,3330k kk k k k k f f ---=-=⨯=-=,再利用等比数列求和得解. 【详解】由题意得()()232(3)312,3330,333236f f f =-==-==-=⨯=,()4223330f =-=,归纳得()()2111233323,3330k kk k kkkf f ---=-=⨯=-=,则()()()()()()232020352019(3)333(3)333f f f f f f f f ++++=++++012100923232323=⨯+⨯+⨯++⨯()10101210091010132333323113-=⨯++++=⨯=--.故答案为:101031- 【点睛】关键点睛:解答本题的关键在通过特殊值归纳出()()2111233323,3330k k k k k k k f f ---=-=⨯=-=,归纳出这个结论之后,后面利用等比数列求和就迎刃而解了.15.【分析】先根据题意得由于数列是以为首项为公比的等比数列进而利用分组求和法求和即可得答案【详解】解:由等比数列的前项和公式得由于数列是以为首项为公比的等比数列设的前项和则故答案为:【点睛】本题考查等比 解析:3288n n -+-【分析】先根据题意得382nn S -=-,由于数列{}32n-是以4为首项,12为公比的等比数列,进而利用分组求和法求和即可得答案. 【详解】解:由等比数列的前n 项和公式得()13141121818211212n n n n n a q S q -⎡⎤⎛⎫-⎢⎥⎪-⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦===-=-⎢⎥ ⎪-⎝⎭⎢⎥⎣⎦-,由于数列{}32n-是以4为首项,12为公比的等比数列, 设{}n S 的前n 项和n T ,则31412188812881212n nn nT n n n -⎡⎤⎛⎫-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦=-=--=+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-. 故答案为:3288n n -+- 【点睛】本题考查等比数列求和,分组求和,考查运算能力,是基础题.本题解题的关键是求出382n n S -=-,再结合数列{}32n -是以4为首项,12为公比的等比数列,再次求和即可. 16.【分析】用裂项相消法求和【详解】故答案为:【点睛】本题考查裂项相消法求和数列求和的常用方法:设数列是等差数列是等比数列(1)公式法:等差数列或等比数列的求和直接应用公式求和;(2)错位相减法:数列的 解析:10102021【分析】用裂项相消法求和. 【详解】111111111111(1)()()1335572019202123235220192021++++=-+-++-⨯⨯⨯⨯111010(1)220212021=-=. 故答案为:10102021.【点睛】本题考查裂项相消法求和.数列求和的常用方法:设数列{}n a 是等差数列,{}n b 是等比数列,(1)公式法:等差数列或等比数列的求和直接应用公式求和; (2)错位相减法:数列{}n n a b 的前n 项和应用错位相减法; (3)裂项相消法;数列1{}n n ka a +(k 为常数,0n a ≠)的前n 项和用裂项相消法; (4)分组(并项)求和法:数列{}n n pa qb +用分组求和法,如果数列中的项出现正负相间等特征时可能用用并项求和法;(5)倒序相加法:满足m n m a a A -+=(A 为常数)的数列,需用倒序相加法求和.17.【分析】根据等差数列的前n 项和公式有结合已知条件令即可得进而求【详解】∵均为等差数列令公差分别为则有∴令则有∴故答案为:【点睛】思路点睛:利用等差数列的前n 项和公式结合等差数列通项公式的特点合理假设解析:54【分析】根据等差数列的前n 项和公式有11(1)2n n n S na d -=+,12(1)2n n n T nb d -=+,结合已知条件,令122,1d d ==即可得11,a b ,进而求55a b . 【详解】∵{}{},n n a b 均为等差数列,令公差分别为12,d d ,则有11(1)2n n n S na d -=+,12(1)2n n n T nb d -=+, ∴11121222323n n S nd a d n T nd b d n +--==+-+,令122,1d d ==,则有111,22a b =-=, ∴5115124544a a db b d +==+, 故答案为:54【点睛】思路点睛:利用等差数列的前n 项和公式,结合等差数列通项公式的特点合理假设即可得到数列的基本量11(1)2n n n S na d -=+,12(1)2n n n T nb d -=+,则有11121222n n S nd a d T nd b d +-=+-.结合已知233n n S n T n -=+,假设122,1d d ==,即可求11,a b . 18.15【分析】根据等差数列的前项和与等差数列的性质求解【详解】因为所以又所以故解得故答案为:15【点睛】本题考查等差数列的前项和等差数列的性质利用等差数列的性质求解可以减少计算量解析:15 【分析】根据等差数列的前n 项和与等差数列的性质求解, 【详解】因为32318S a ==,所以26a =,又2311390n n n n n n a a S S a a ----=++-==, 所以130n a -=.故()()12127022n n n n a a n a a S -++===,解得15n =. 故答案为:15. 【点睛】本题考查等差数列的前n 项和,等差数列的性质,利用等差数列的性质求解可以减少计算量.19.【分析】当时有作差可求出再验证是否成立即可得出答案【详解】当时由所以—可得所以当时所以不满足上式所以故答案为:【点睛】本题主要考查数列通项公式的求法做题的关键是掌握属于中档题解析:16,12,2n n n a n +=⎧=⎨≥⎩【分析】当2n ≥时,有()12312311111211212222n n a a a a n n --+++=-+=+-,作差可求出12n n a +=,再验证1a 是否成立,即可得出答案.【详解】当2n ≥时,由123231111212222n na a a a n ++++=+, 所以()12312311111211212222n n a a a a n n --+++=-+=+-, —可得()1212122n n a n n =+--=,所以1222n n n a +⋅==, 当1n =时,112132a =+=,所以16a =,不满足上式,所以16,12,2n n n a n +=⎧=⎨≥⎩. 故答案为: 16,12,2n n n a n +=⎧=⎨≥⎩【点睛】本题主要考查数列通项公式的求法,做题的关键是掌握1n n n a S S -=-,属于中档题.20.【分析】直接利用递推关系式求出数列的通项公式进一步利用裂项相消法求出数列的和【详解】解:正项数列的前项和为①则②②-①得:整理得:当时解得:所以:数列是以1为首项1为公差的等差数列则所以:则:数列的 解析:20212020-【分析】直接利用递推关系式求出数列的通项公式,进一步利用裂项相消法求出数列的和. 【详解】解:正项数列{}n a 的前n 项和为n S ,22()n nn S a a n N *=+∈①, 则221112n n n n n a a a a a +++=-+-②,②-①得:221112n n n n n a a a a a +++=-+-,整理得:11n n a a +-=,当1n =时,21112S a a =+,解得:11a =,所以:数列{}n a 是以1为首项,1为公差的等差数列. 则11n a n n =+-=,所以:2(1)22n n n n nS ++==. 则:()()21111121nn n n n a c S n n +⎛⎫=-=-+ ⎪+⎝⎭,数列{}n c 的前2019项的和为:201911111122320192020T ⎛⎫⎛⎫⎛⎫=-++++⋅⋅⋅-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,112020=--, 20212020=-. 故答案为:20212020- 【点睛】本题考查的知识要点:数列的通项公式的求法及应用,裂项相消法在数列求和中的应用,属于中档题.三、解答题21.(1)13-=n n a ,43n b n =-;(2)9+2⎡⎫∞⎪⎢⎣⎭,. 【分析】(1)运用数列的递推式和等比数列的通项公式可得{}n a ,再由等差数列的通项公式以及等比的定义,解方程可得公差,进而得到所求通项公式;(2)利用错位相减法求出()34391223nn n T +⎛⎫=- ⎪⎝⎭,易得92n T <,进而可得结果. 【详解】(1)∵()*121n n a S n N+=+∈,当2n ≥时,121n n a S -=+,两式相减化简可得:13n n a a +=, 即数列{}n a 是以3为公比的等比数列,又∵24S =,∴1134a a +=,解得14a =,即13-=n n a , 设数列{}n b 的公差为d ,111b a ==,∵127,,b b b 成等比数列,∴()()21161d d ⨯+=+, 解得4d =或0d =(舍去),即43n b n =-, ∴数列{}n a 和{}n b 的通项公式为13-=n n a ,43n b n =-. (2)由(1)得1433n n n n b n c a --==, ∴()0121111159433333n n T n -⎛⎫⎛⎫⎛⎫⎛⎫=+⨯+⨯++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,()12311111594333333nn T n ⎛⎫⎛⎫⎛⎫⎛⎫=+⨯+⨯++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,两式相减得:()1212111114444333333n nn T n -⎛⎫⎛⎫⎛⎫⎛⎫=+⨯+⨯++⨯-- ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭()13433nn ⎛⎫=-+ ⎪⎝⎭∴()34391223nn n T +⎛⎫=- ⎪⎝⎭,即有92n T <恒成立, n T m <恒成立,可得92m ≥, 即m 的范围是9+2⎡⎫∞⎪⎢⎣⎭,. 【点睛】一般地,如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n ·b n }的前n 项和时,可采用错位相减法求和,一般是和式两边同乘以等比数列{b n }的公比,然后作差求解. 22.证明见解析. 【分析】由定义法分别结合n a 和n S 的关系分别证明充分性和必要性成立即可. 【详解】当n =1时,S 1=32-t =9-t , 当n ≥2时,由S n =3n +1-t 得S n -1=3n -t , 两式相减得a n =3n +1-3n =2·3n (n ≥2), (1)充分性已知t =3,此时S 1=32-t =9-3=6,令n =1,得a 1=2·31=6=S 1,所以a n =2·3n (n ∈N *) 所以13n na a +=,所以数列{a n }是等比数列. (2)必要性因为数列{a n }是等比数列,所以a 1=2·31=6, 又因为S 1=9-t ,所以9-t =6,所以t =3, 综上所述:数列{a n }是等比数列的充要条件为t =3. 【点睛】关键点睛:本题考查等比数列的判断和证明,解题的关键是利用n a 和n S 的关系得出()232n n a n =⋅≥,再根据充分必要的定义证明.23.(1)2n a n =;(2)()()123?216n n S n n n +=-+++. 【分析】(1)由已知得()()20n n a n a n -+=且0n a >,即可得通项公式.(2)由(1)有()()122122nnn n a a n n -⋅+=-⋅+,利用分组、错位相减法求n S .【详解】(1)由2220n n a na n --=得()()20n n a n a n -+=,又{}n a 为正项数列,∴2n a n =.(2)由(1)知()()122122nnn n a a n n -⋅+=-⋅+,令n T 为数列(){}212nn -⋅的前n 项和,则()123123252212n nTn =⨯+⨯+⨯+⋅⋅⋅+-⨯,∴()23412123252212n n T n +=⨯+⨯+⨯+⋅⋅⋅+-⨯,两式相减,得()123112222222212nn n T n +-=⨯+⨯+⨯+⋅⋅⋅+⨯--⨯,所以()()2112212221212n n nT n ++⨯⨯--=+--⨯-,所以()12326n n T n +=-⨯+,令n B 为数列{}2n 的前n 项和,则()()1212n n n B n n +=⨯=+, 所以()()123216n n n n S T B n n n +=+=-⨯+++.【点睛】 关键点点睛:(1)由已知方程,将n a 作为未知数求正解,即为数列通项公式. (2)将所得数列分为(){}212nn -⋅、{}2n 两组分别求和,应用错位相减、等差数列前n项和公式求n S . 24.(1)12n n a ;(2)12n n T n +=⋅.【分析】(1)由1(2)n n n a S S n -=-≥得出数列{}n a 是等比数列,(先求出10a ≠),可得通项公式;(2)由(1)得n b ,用错位相减法求和. 【详解】解:(1)当1n =时,1112S a +=,解得11a =. 因为21n n S a =-,①所以当2n ≥时,1121n n S a --=-,②①-②得,1122n n n n S S a a ---=-,所以12n n a a -=. 故数列{}n a 是首项为1,公比为2的等比数列,其通项公式为12n n a .(2)由题知,(1)2nn b n =+⋅,所以123223242(1)2nn T n =⨯+⨯+⨯+⋯++,③23412223242(1)2n n T n +=⨯+⨯+⨯+⋯++,④③-④得,()123122222(1)2nn n T n +-=++++⋯+-+()112122(1)2212n n n n n ++⨯-=+-+=-⋅-.所以12n n T n +=⋅.【点睛】方法点睛:本题考查求等比数列的通项公式,考查错位相减法求和.数列求和的常用方法:(1)公式法;(2)错位相减法;(3)裂项相消法;(4)分组(并项)求和法;(5)倒序相加法.25.(1)2nn a =;(2)1(1)222n n n n T ++=+-. 【分析】(1)利用公式11,1=,2n n n S n a S S n -=⎧⎨-≥⎩求{}n a 的通项公式;(2)由题得2nn b n =+,再利用分组求和求数列{}n b 的前n 项和n T .【详解】解:(1)∵点(),n n a S 在直线22y x =-上,n *∈N , ∴22n n S a =-.当1n =时,1122a a =-,则12a =, 当2n 时,22n n S a =-,1122n n S a --=-. 两式相减,得122n n n a a a -=-,所以12n n a a -=. 所以{}n a 是以首项为2,公比为2等比数列,所以2nn a =.(2)2nn b n =+,()23(123)2222n n T n =+++⋯++++++,所以1(1)222n n n n T ++=+-. 【点睛】方法点睛:数列求和常用的方法有:(1)公式法;(2)错位相减法;(3)裂项相消法;(4)分组求和法;(5)倒序相加法.要根据数列的通项特征选择合适的方法求解. 26.(1)12n a n =;(2)证明见解析. 【分析】(1)212n n n S a a =+,*n N ∈.2n 时,利用1n n n a S S -=-,及其等差数列的通项公式即可得出. (2)11b =,12(2)n n n b b a n n --==,利用112211()()()n n n n n b b b b b b b b ---=-+-+⋯⋯+-+,及其裂项求和方法即可得出n T .进而证明结论.【详解】解:(1)①当1n =时, 得211112S a a =+,211112a a a ∴=+ ∴112a =或0(舍去); ②当2n ≥时,211112n n n S a a ---=+, ∴221111122n n n n n n n a S S a a a a ---=-=+-- 221111022n n n n a a a a --∴---= ()()()111102n n n n n n a a a a a a ---∴-+-+= ()11102n n n n a a a a --⎛⎫∴+--= ⎪⎝⎭. 又∵{}n a 各项为正, ∴1102n n a a ---=,112n n a a -∴-= ∴{}n a 为首项是12,公差是12的等差数列, ∴()1112n a a n d n =+-=. (2)由题得,1n n b b n --=121n n b b n --∴-=-┇323b b ∴-=212b b ∴-=,所有式子相加,得1231n b b n n -=++⋅⋅⋅+-+()()212222n n n n -++-==. 又∵11b =,∴22n n n b +=, ∴()212211211n b n n n n n n ⎛⎫===- ⎪+++⎝⎭, ∴111111212231n T n n ⎛⎫=-+-+⋅⋅⋅+- ⎪+⎝⎭ 1221211n n ⎛⎫=-=- ⎪++⎝⎭. 又∵10n +>,∴2n T <.【点睛】数列求和的方法技巧(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和.(2)错位相减:用于等差数列与等比数列的积数列的求和.(3)分组求和:用于若干个等差或等比数列的和或差数列的求和.。
高考数学 数列单元测试卷及答案 试题
(文)P1(a1,b1),P2(a2,b2),…,Pn(an,bn)(n∈N*)都在函数y=log x的图象上.
(1)假设数列{bn}是等差数列,求证数列{an}是等比数列;
三、解答题(本大题一一共6小题,一共70分)
17.(本小题满分是10分)数列{an}是首项a1=4的等比数列,且S3,S2,S4成等差数列.
(1)求数列{an}的通项公式;
(2)设bn=log2|an|,Tn为数列{ }的前n项和,求Tn.
解:(1)当q=1时,S3=12,S2=8,S4=16,不成等差数列.
∴n0=2021或者(huòzhě)2021.
(文)(1)∵an+1-2an=0,
∴a3=2a2,a4=2a3,又a3+2是a2、a4的等差中项,
∴a1=2,a2=4,
∴数列(shùliè){an}是以2为首项,2为公比的等比数列(děnɡ bǐ shù liè),那么
an=2n.
(2)∵Sn=2n+1-2,又bn=log2(Sn+2),∴bn=n+1.
12.数列{an}满足an+1= + ,且a1= ,那么该数列的前2021项的和等于()
A. B.3015
C.1005D.2021
答案:A
解析:因为a1= ,又an+1= + ,所以a2=1,
从而(cóng ér)a3= ,a4=1,
即得an= ,故数列(shùliè)的前2021项的和等于S2021=1005(1+ )= .应选(yīnɡ xuǎn)A.
3.设Sn是公差不为0的等差数列{an}的前n项和,且S1,S2,S4成等比数列,那么 等于()
高中数学选择性必修二 第四章 数列单元测试(基础卷)(含答案)
第四章 数列 单元过关检测 基础A 卷解析版学校:___________姓名:___________班级:___________考号:___________ 题型:8(单选)+4(多选)+4(填空)+6(解答),满分150分,时间:120分钟一、单选题1.已知数列{a n }的前4项为:l ,−12,13,−14,则数列{a n }的通项公式可能为( ) A .a n =1n B .a n =−1nC .a n =(−1)n nD .a n =(−1)n−1n【答案】D 【解析】 【分析】分母与项数一样,分子都是1,正负号相间出现,依此可得通项公式 【详解】正负相间用(−1)n−1表示,∴a n =(−1)n−1n.故选D . 【点睛】本题考查数列的通项公式,属于基础题,关键是寻找规律,寻找与项数有关的规律. 2.记n S 为等差数列{}n a 的前n 项和,若33a =,621S =,则数列{}n a 的公差为( ) A .1 B .-1C .2D .-2【答案】A【分析】利用等差数列{a n }的前n 项和与通项公式列方程组,求出首项和公差,由此能求出数列{a n }的公差. 【详解】∴S n 为等差数列{a n }的前n 项和,a 3∴3∴S 6∴21∴∴316123656212a a d S a d =+=⎧⎪⎨⨯=+=⎪⎩∴ 解得a 1∴1∴d ∴1∴ ∴数列{a n }的公差为1. 故选A ∴ 【点睛】本题考查数列的公差的求法,考查等差数列的前n 项和公式等基础知识,考查运算求解能力,是基础题.3.已知数列{}n a ,满足111n n a a +=-,若112a =,则2019a =( ) A .2 B .12C .1-D .12-【答案】C 【分析】利用递推公式计算出数列{}n a 的前几项,找出数列{}n a 的周期,然后利用周期性求出2019a 的值. 【详解】111n n a a +=-,且112a =,211121112a a ∴===--,32111112a a ===---, 111a ===,所以,()a a n N *=∈,则数列{}n a 是以3为周期的周期数列,20193672331a a a ⨯+===-∴. 故选C. 【点睛】本题考查利用数列递推公式求数列中的项,推导出数列的周期是解本题的关键,考查分析问题和解决问题的能力,属于中等题.4.在等比数列{}n a 中,6124146,5a a a a ⋅=+=,则255a a =( ) A .94或49B .32C .32或23 D .32或94【答案】A 【分析】根据等比数列的性质得6124146a a a a ⋅=⋅=,又由4145a a +=,联立方程组,解得414,a a 的值,分类讨论求解,即可得到答案. 【详解】由题意,根据等比数列的性质,可得6124146a a a a ⋅=⋅=,又由4145a a +=,联立方程组,解得41423a a =⎧⎨=⎩或41432a a =⎧⎨=⎩,当41423a a =⎧⎨=⎩时,则1014432a q a ==,此时201022559()4a q q a ===;当41432a a =⎧⎨=⎩时,则1014423a q a ==,此时201022554()9a q q a ===,故选A. 【点睛】值是解答的关键,着重考查了运算与求解能力,属于基础题. 5.等比数列{}n a 中( ) A .若12a a <,则45a a <B .若12a a <,则34a a <C .若32S S >,则12a a <D .若32S S >,则12a a >【答案】B 【分析】根据等比数列的通项公式及求和公式,等比数列的公比分析即可求出答案. 【详解】等比数列{}n a 中,20q >,∴当12a a <时,可得2212a q a q <,及34a a <,故B 正确;但341a a q =和352a a q =不能判断大小(3q 正负不确定),故A 错误;当32S S >时,则12312+++a a a a a >,可得30a >,即210a q >,可得10a >,由于q 不确定,不能确定12,a a 的大小,故CD 错误. 故选:B. 【点睛】本题考查等比数列通项公式和求和公式的应用,属于基础题.6.两等差数列{}n a 和{}n b ,前n 项和分别为n S ,n T ,且723n n S n T n +=+,则220715a ab b ++的值为( ) A .14924B .7914C .165D .5110【分析】在{}n a 为等差数列中,当(m n p q m +=+,n ,p ,)q N +∈时,m n p q a a a a +=+.所以结合此性质可得:2202171521a a Sb b T +=+,再根据题意得到答案.【详解】解:在{}n a 为等差数列中,当(m n p q m +=+,n ,p ,)q N +∈时,m n p q a a a a +=+.所以1212202171521121121()2121()2a a a a Sb b T b b ⨯+⨯+==+⨯+⨯,又因为723n n S n T n +=+, 所以22071514924a ab b +=+.故选:A . 【点睛】本题主要考查等差数列的下标和性质,属于中档题.7.函数()2cos 2f x x x =-的正数零点从小到大构成数列{}n a ,则3a =( )A .1312π B .54π C .1712πD .76π 【答案】B 【分析】先将函数化简为()2sin 26f x x π⎛⎫=- ⎪⎝⎭再解函数零点得4x k ππ=+或512x k ππ=+,k Z ∈,再求3a 即可. 【详解】解:∵()2cos 22sin 26f x x x x π⎛⎫=--=- ⎪⎝⎭∴ 令()0f x =得:2263x k πππ-=+或22263x k πππ-=+,k Z ∈, ∴4x k ππ=+或512x k ππ=+,k Z ∈,∴ 正数零点从小到大构成数列为:12355,,,4124a a a πππ===故选:B. 【点睛】本题考查三角函数的性质,数列的概念,考查数学运算求解能力,是中档题.8.已知函数3()13xxf x =+(x ∈R ),正项等比数列{}n a 满足501a =,则 1299(ln )(ln )(ln )f a f a f a +++=A .99B .101C .992D .1012【答案】C 【详解】因为函数31()()()11331x x xf x f x f x ---==∴+-=++(x ∈R ), 正项等比数列{}n a 满足2501995011a a a a =∴==,9921ln ln ln ln ...0a a a a +=+=则1299(ln )(ln )(ln )f a f a f a +++=992,选C二、多选题A .{}n a 可能为等差数列B .{}n a 可能为等比数列C .{}n a 中一定存在连续三项构成等差数列D .{}n a 中一定存在连续三项构成等比数列 【答案】AC 【分析】由2n S an bn c =++可求得n a 的表达式,利用定义判定得出答案.【详解】当1n =时,11a S a b c ==++.当2n ≥时,()()221112n n n a S S an bn c a n b n c an a b -=-=++-----=-+. 当1n =时,上式=+a b .所以若{}n a 是等差数列,则0.a b a b c c +=++∴=所以当0c 时,{}n a 是等差数列,不可能是等比数列;当0c ≠时,{}n a 从第二项开始是等差数列. 故选:AC 【点睛】本题只要考查等差数列前n 项和n S 与通项公式n a 的关系,利用n S 求通项公式,属于基础题. 10.已知数列{}n a 的首项为4,且满足()*12(1)0n n n a na n N++-=∈,则( )A .n a n ⎧⎫⎨⎬⎩⎭为等差数列B .{}n a 为递增数列C .{}n a 的前n 项和1(1)24n n S n +=-⋅+D .12n n a +⎧⎫⎨⎬⎩⎭的前n 项和22n n n T +=【答案】BD 【分析】由12(1)0n n n a na ++-=得121n n a a n n +=⨯+,所以可知数列n a n ⎧⎫⎨⎬⎩⎭是等比数列,从而可求出12n n a n +=⋅,可得数列{}n a 为递增数列,利用错位相减法可求得{}n a 的前n 项和,由于111222n nn n a n n +++⋅==,从而利用等差数列的求和公式可求出数列12n n a +⎧⎫⎨⎬⎩⎭的前n 项和.【详解】由12(1)0n n n a na ++-=得121n n a a n n +=⨯+,所以n a n ⎧⎫⎨⎬⎩⎭是以1141a a ==为首项,2为公比的 等比数列,故A 错误;因为11422n n na n-+=⨯=,所以12n n a n +=⋅,显然递增,故B 正确; 因为23112222n n S n +=⨯+⨯++⋅,342212222n n S n +=⨯+⨯++⋅,所以231212222n n n S n ++-=⨯+++-⋅()22212212nn n +-=-⋅-,故2(1)24n n S n +=-⨯+,故C 错误;因为111222n n n n a n n +++⋅==,所以12n n a +⎧⎫⎨⎬⎩⎭的前n 项和2(1)22n n n n n T ++==, 故D 正确. 故选:BD本题考查等差数列、等比数列的综合应用,涉及到递推公式求通项,错位相减法求数列的和,等差数列前n 项和等,考查学生的数学运算能力,是一道中档题.11.已知无穷等差数列{}n a 的前n 项和为n S ,67S S <,且78S S >,则( ) A .在数列{}n a 中,1a 最大 B .在数列{}n a 中,3a 或4a 最大 C .310S S =D .当8n ≥时,0n a <【答案】AD 【分析】由已知得到780,0a a ><,进而得到0d <,从而对ABD 作出判定.对于C,利用等差数列的和与项的关系可等价转化为160a d +=,可知不一定成立,从而判定C 错误. 【详解】由已知得:780,0a a ><,结合等差数列的性质可知,0d <,该等差数列是单调递减的数列, ∴A 正确,B 错误,D 正确,310S S =,等价于1030S S -=,即45100a a a ++⋯+=,等价于4100a a +=,即160a d +=,这在已知条件中是没有的,故C 错误. 故选:AD. 【点睛】本题考查等差数列的性质和前n 项和,属基础题,关键在于掌握和与项的关系.12.将2n 个数排成n 行n 列的一个数阵,如图:该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中0m >).已知112a =,1a a =+,记这2n 个数的和为S .下列结论正确的有( )1112131.n a a a a ⋯⋯ 2122232.n a a a a ⋯⋯ 3132333.n a a a a ⋯⋯……123.n n n nn a a a a ⋯⋯A .3m =B .767173a =⨯C .()1313j ij a i -=-⨯ D .()()131314n S n n =+- 【答案】ACD 【分析】根据等差数列和等比数列通项公式,结合13611a a =+可求得m ,同时确定67a 、ij a 的值、得到,,A B C 的正误;首先利用等比数列求和公式求得第i 行n 个数的和,再结合等差求和公式得到D 的正误. 【详解】对于A ,2213112a a m m =⋅=,6111525a a m m =+=+,2235m m ∴=+,又0m >,3m ∴=,A 正确;对于B ,612517a m =+=,666761173a a m ∴=⋅=⨯,B 错误;对于C ,()111131i a a i m i =+-=-,()111313j j ij i a a mi --∴=⋅=-⋅,C 正确;对于D ,第i 行n 个数的和()()()()()1131133131122n n n i a m i i S m-----'===--,()()()()()()3111131258313131312224n n nn n S n n n +∴=-⨯+++⋅⋅⋅+-=-⨯=+-⎡⎤⎣⎦,D 正确. 故选:ACD .本题考查数列中的新定义问题,解题关键是能够灵活应用等差和等比数列的通项公式和求和公式,将新定义的数阵转化为等差和等比数列的问题来进行求解.三、填空题13.已知{}n a 为等差数列,135246105,99a a a a a a ++=++=,{}n a 前n 项和n S 取得最大值时n 的值为___________. 【答案】20 【分析】先由条件求出1,a d ,算出n S ,然后利用二次函数的知识求出即可 【详解】设{}n a 的公差为d ,由题意得135********d a a a a d a a ++++==++即1235a d +=,①2461113599a a a a d a d a d ++=+++++=即1333a d +=,②由①②联立得139,2a d ==-所以()()22139(2)40204002n S n n n n n n -=+⨯-=-+=--+故当20n =时,n S 取得最大值400 故答案为:20等差数列的n S 是关于n 的二次函数,但要注意n 只能取正整数.14.《九章算术》中有一个“两鼠穿墙”的问题:“今有垣厚五尺,两鼠对穿.大鼠日一尺,小鼠亦日一尺.大鼠日自倍,小鼠日自半.问几何日相逢?各穿几何?”其大意为:“今有一堵墙厚五尺,两只老鼠从墙的两边沿一条直线相对打洞穿墙,大老鼠第一天打洞1尺,以后每天是前一天的2倍;小老鼠第一天也打洞1尺,以后每天是前一天的12.问大、小老鼠几天后相遇?各自打洞几尺?”如果墙足够厚,S n 为前n 天两只老鼠打洞长度之和,则S n =_____尺.【答案】2n +1﹣21﹣n【分析】写出两只老鼠打洞的通项公式,利用分组求和即可得解. 【详解】根据题意大老鼠第n 天打洞12n na 尺,小老鼠第n 天打洞112n n b -⎛⎫= ⎪⎝⎭尺,所以11111242122n n n S --⎛⎫=+++⋅⋅⋅++++⋅⋅⋅+ ⎪⎝⎭111221112nn ⎛⎫- ⎪-⎝⎭=+--112122n n -⎛⎫=-+- ⎪⎝⎭1212n n -=+-故答案为:1212n n -+- 【点睛】此题考查等比数列的辨析,写出通项公式,根据求和公式求和,关键在于熟练掌握相关公式,涉及分组求和.15.我国古代,9是数字之极,代表尊贵之意,所以中国古代皇家建筑中包含许多与9相关的设计.例如,北京天坛圆丘的底面由扇环形的石板铺成(如图),最高一层是一块天心石,围绕它的第一圈有9块石板,从第二圈开始,每一圈比前一圈多9块,共有9圈,则前9圈的石板总数是__________.【答案】405 【分析】前9圈的石板数依次组成一个首项为9,公差为9的等差数列,9989994052S ⨯=⨯+⨯= 16.如图,互不相同的点12,,,n A A A 和12,,,,n B B B 分别在角O 的两条边上,所有n n A B 相互平行,且所有梯形11n n n n A B B A ++的面积均相等.设n n OA a =.若11a =,22a =,则数列{}n a 的通项公式是________.【答案】n a =【分析】根据三角形相似和所有梯形11n n n n A B B A ++的面积均相等,找到与n a 相关的递推公式,再由递推公式求得通项公式. 【详解】由于11//,n n n n A B A B ++ 所以11,n n n n OA B OA B ++梯形11n n n n A B B A ++ 的面积为11n n OA B ++∆的面积減去n n OA B △的面积,2222i i j jOA B i i OA B j jS OA a SOA a == 则可得 222211,n n n n a a a a +--=- 即递推公式为222112,n n n a a a +-=+故2{}n a 为等差数列,且公差d =2221a a -3=,故21(1)332n a n n =+-⨯=-,得n a =故答案为: n a 【点睛】本题主要考查数列在平面几何中的应用,根据几何关系寻找递推有关系是解决问题的关键,属于中档题.四、解答题17.设等差数列{}n a 的前n 项的和为n S ,且462S =-,675S =-,求: (1)求{}n a 的通项公式n a ; (2)求数列{}n a 的前14项和.【答案】(1)323n a n =-;(2)147. 【分析】(1)由已知条件列出关于1,a d 的方程组,求出1,a d 可得到n a ;(2)由通项公式n a 先判断数列{}n a 中项的正负,然后再化简数列{}n a 中的项,即可求出结果. 【详解】解:(1)设等差数列{}n a 的公差为d ,依题意得11434622656752a d a d ⨯⎧+=-⎪⎪⎨⨯⎪+=-⎪⎩,解得120,3a d =-=,∴()2013323n a n n =-+-⨯=-; (2)∵323n a n =-,∴由0n a <得8n <,22(20323)3433432222n n n n n S n n -+--===-∴123141278141472a a a a a a a a a S S ++++=----+++=-223433431414772222⎛⎫=⨯-⨯-⨯-⨯ ⎪⎝⎭()()7424372143147=---=.【点睛】此题考查等差数列的基本量计算,考查计算能力,属于基础题. 18.数列{}n a 满足11a =,22a =,2122n n n a a a ++=-+ (1)设1n n n b a a +=-,证明数列{}n b 是等差数列(2)求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n S .【答案】(1)证明过程见详解;(2)21n nS n =+. 【分析】(1)先化简得到()()2112n n n n a a a a +++---=即12n n b b ,再求得1211b a a =-=,最后判断数列{}n b 是以1为首项,以2为公差的等差数列.(2)先求出数列{}n b 的通项公式21n b n =-,再运用“裂项相消法”求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和nS 即可. 【详解】解:(1)因为2122n n n a a a ++=-+,所以()()2112n n n n a a a a +++---= 因为1n n n b a a +=-,所以12nn b b ,且1211b a a =-=所以数列{}n b 是以1为首项,以2为公差的等差数列. (2)由(1)的()11221n b n n =+-⨯=-,所以()()111111212122121n n b b n n n n +⎛⎫==- ⎪-+-+⎝⎭所以12233411111n n n S b b b b b b b b +=++++11111111111121323525722121n n ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭⎝⎭111.22121n n n ⎛⎫=-= ⎪++⎝⎭ 【点睛】本题考查利用定义求等差数列的通项公式、根据递推关系判断数列是等差数列、根据“裂项相消法”求和,还考查了转化的数学思维方式,是基础题.19.在①112n n a a +=-,②116n n a a +-=-,③18n n a a n +=+-这三个条件中任选一个,补充在下面的问题中,若问题中的n S 存在最大值,则求出最大值;若问题中的n S 不存在最大值,请说明理由.问题:设n S 是数列{}n a 的前n 项和,且14a =,__________,求{}n a 的通项公式,并判断n S 是否存在最大值.注:如果选择多个条件分别解答,按第一个解答计分. 【答案】答案见解析 【分析】若选①,求出数列{}n a 是首项为4,公比为12-的等比数列,求出通项公式和前n 项和,通过讨论n 的奇偶性,求出其最大值即可;若选②,求出数列{}n a 是首项为4,公差为16-的等差数列,求出通项公式和前n 项和,求出其最大值即可;若选③,求出217242n n n a -+=,当16n ≥时,0n a >,故n S 不存在最大值.【详解】 解:选①因为112n n a a +=-,14a =,所以{}n a 是首项为4.公比为12-的等比数列, 所1211422n n n a --⎛⎫⎛⎫=⨯-=- ⎪⎪⎝⎭⎝⎭.当n 为奇数时,141281113212n n nS ⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦==+ ⎪⎝⎭+,因为81132n ⎛⎫+ ⎪⎝⎭随着n 的增加而减少,所以此时n S 的最大值为14S =. 当n 为偶数时,81132n nS ⎛⎫=-⎪⎝⎭, 且81814323n n S ⎛⎫=-<<⎪⎝⎭ 综上,n S 存在最大值,且最大值为4. 选②因为116n n a a +-=-,14a =.所以{}n a 是首项为4,公差为16-的等差数列, 所以11254(1)666n a n n ⎛⎫=+--=-+ ⎪⎝⎭. 由125066n -+≥得25n ≤, 所以n S 存在最大值.且最大值为25S (或24S ),因为25252412545026S ⨯⎛⎫=⨯+⨯-= ⎪⎝⎭,所以n S 的最大值为50. 选③因为18n n a a n +=+-,所以18n n a a n +-=-,所以217a a -=-,326a a -=-,…19n n a a n --=-,则2121321(79)(1)171622n n n n n n n a a a a a a a a --+---+=-+-+=-+-=, 又14a =,所以217242n n n a -+=. 当16n ≥时,0n a >,故n S 不存在最大值. 【点睛】此题考查数列的通项公式和求和公式,考查等差数列和等比数列的性质,属于基础题 20.已知数列{}n a 的前n 项和为n S ,满足22n n S a =-. (1)求数列{}n a 的通项公式;(2)设()21n n b n a =-,求数列{}n b 的前n 项和n T .【答案】(1)2nn a =;(2)()12326n n T n +=-⨯+【分析】(1)利用1(2)n n n a S S n -=-≥,11a S =,可得{}n a 为等比数列,利用等比数列的通项公式即可求得通项公式n a ;(2)利用错位相减法求和即可求n T . 【详解】(1)当1n =时,11122a S a ==-,解得12a =,当1n >时,由22n n S a =-可得1122n n S a --=-,1n >两式相减可得122n n n a a a -=-,即12nn a a -=, 所以{}n a 是以2为首项,以2为公比的等比数列,所以1222n nn a -=⋅=(2)由(1)(21)2nn b n =-⋅,23123252(21)2n n T n =⨯+⨯+⨯++-⋅,则23412123252(23)2(21)2n n n T n n +=⨯+⨯+⨯++-⨯+-⨯,两式相减得2312222222(21)2n n n T n +-=+⨯+⨯++⨯--⨯()112118(12)2(21)226(21)2232612n n n n n n n n -++++-=+--⨯=---⨯=--⋅--,所以()12326n n T n +=-⨯+.【点睛】 方法点睛:由数列前n 项和求通项公式时,一般根据11,2,1n n n S S n a S n --≥⎧=⎨=⎩求解,考查学生的计算能力.21.已知数列{}n a 的前n 项和为23122n S n n =-. (1)求数列{}n a 的通项公式;(2)数列[]lg n n b a =,[]x 表示不超过x 的最大整数,求{}n b 的前1000项和1000T . 【答案】(1)32n a n =-;(2)10002631T =. 【分析】(1)利用1n n n a S S -=-可求出; (2)根据数列特点采用分组求和法求解. 【详解】(1)当1n =时,111a S ==,当2n ≥时,()()221313111322222n n n a S S n n n n n -⎡⎤=-=-----=-⎢⎥⎣⎦,将1n =代入上式验证显然适合,所以32n a n =-. (2)因为410a =,34100a =,3341000a =,333410000a =,所以0,131,4332,343333,3341000n n n b n n ≤≤⎧⎪≤≤⎪=⎨≤≤⎪⎪≤≤⎩, 所以100003130230036672631T =⨯+⨯+⨯+⨯=.【点睛】本题考查n a 和n S 的关系,考查分组求和法,属于基础题. 22.在①535S =,②13310a a +=,③113n a n a +=+这三个条件中任选一个,补充在下面问题中并作答.已知{}n a 是各项均为正数的等差数列,其前n 项和为n S ,________,且1a ,412a ,9a 成等比数列. (1)求数列{}n a 的通项公式;(2)设()1n n n b a =-,求1ni i b =∑.【答案】(1)32n a n =-;(2)13,213,2n i i n n b n n =⎧⎪⎪=⎨-⎪⎪⎩∑是偶数是奇数 【分析】(1)利用1a ,412a ,9a 成等比数列∴可得221132690a a d d +-=, 若选①:由535S =得:127a d +=,即可解出1a 和d 的值,即可求出{}n a 的通项公式; 若选②:由13310a a +=可得152d a =-,即可解出1a 和d 的值,即可求出{}n a 的通项公式; 若选③:由113n a n a +=+,可表示出419a a =+,9124a a =+,结合1a ,412a ,9a 成等比数列∴即可解出1a 和d 的值,即可求出{}n a 的通项公式; (2)由(1)可得()()132n n b n =--,分n 为奇数和偶数,利用并项求和即可求解.【详解】 {}n a 是各项均为正数的等差数列,1a ,412a ,9a 成等比数列. 所以241914a a a =⋅,即()()2111348a d a a d +=⋅+, 整理可得221132690a a d d +-=,若选①:535S =,则1545352a d ⨯+=,即127a d +=, 由127a d +=可得172a d =-代入221132690a a d d +-=可得:2230d d --=,解得3d =或1d =-(舍) 所以11a =,所以()11332n a n n =+-⨯=-,若选②:13310a a +=,即152d a =-,代入221132690a a d d +-=得:2111762450a a -+=,即 ()()11117450a a --=解得:113a d =⎧⎨=⎩或145175017a d ⎧=⎪⎪⎨⎪=-<⎪⎩不符合题意; 若选③:113n a n a +=+,则419a a =+,9124a a =+, 代入241914a a a =⋅可得21126270a a +-= 解得:113a d =⎧⎨=⎩或1273a d =-⎧⎨=⎩不符合题意;综上所述:113a d =⎧⎨=⎩, 32n a n =-,(2)()()132n n b n =--, ()()()()()12311231111111n n n i n n i b a a a a a --==-+-+-+-+-∑ ()()()()114710135132n n n n -=-+-++--+-- 当n 为偶数时,13322n i i n n b ==⨯=∑, 当n 为奇数时,()11131322n i i n n b =--=-+-⨯=∑, 所以13,213,2n i i n n b n n =⎧⎪⎪=⎨-⎪⎪⎩∑是偶数是奇数. 【点睛】关键点点睛:本题得关键点是分别由条件①②③结合1a ,412a ,9a 成等比数列计算出1a 和d 的值,由{}n a 是各项均为正数的等差数列,所以10a >,0d >,第二问中()1n n n b a =-正负交错的数列求和,需要用奇偶并项求和,注意分n 为奇数和偶数讨论.。
新人教版高中数学选修二第一单元《数列》测试(包含答案解析)(4)
一、选择题1.已知正项数列{}n a 满足11a =,1111114n n n n a a a a ++⎛⎫⎛⎫+-=⎪⎪⎝⎭⎝⎭,数列{}n b 满足1111n n nb a a +=+,记{}n b 的前n 项和为n T ,则20T 的值为( ) A .1B .2C .3D .42.已知等比数列{}n a 的n 项和2n n S a =-,则22212n a a a +++=( )A .()221n -B .()1213n- C .41n -D .()1413n- 3.在等差数列{}n a 中,n S 为其前n 项和,若202020210,0S S <>,则下列判断错误的是( )A .数列{}n a 单调递增B .10100a <C .数列{}n a 前2020项最小D .10110a >4.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件11a >,667711,01a a a a -><-,则下列结论正确的是( ) A .681a a >B .01q <<C .n S 的最大值为7SD .n T 的最大值为7T5.已知数列{}n a 满足111n n n n a a a a ++-=+,且113a =,则{}n a 的前2021项之积为( ) A .23B .13C .2-D .3-6.已知数列{}n b 满足12122n n b n λ-⎛⎫=-- ⎪⎝⎭,若数列{}n b 是单调递减数列,则实数λ的取值范围是( )A .101,3B .110,23⎛⎫- ⎪⎝⎭C .(-1,1)D .1,12⎛⎫-⎪⎝⎭7.已知等比数列{}n a 的前n 项和为S n ,则下列命题一定正确的是( ) A .若S 2021>0,则a 3+a 1>0 B .若S 2020>0,则a 3+a 1>0 C .若S 2021>0,则a 2+a 4>0D .若S 2020>0,则a 2+a 4>08.两等差数列{}n a 和{}n b ,前n 项和分别为n S ,n T ,且723n n S n T n +=+,则220715a a b b ++的值为( )A .14924B .7914C .165D .51109.“跺积术”是由北宋科学家沈括在《梦溪笔谈》中首创,南宋数学家杨辉、元代数学家朱世杰丰富和发展的一类数列求和方法,有茭草垛、方垛、三角垛等.现有100根相同的圆柱形铅笔,某同学要将它们堆放成横截面为正三角形的垛,要求第一层为1根且从第二层起每一层比上一层多1根,并使得剩余的圆形铅笔根数最少,则剩余的铅笔的根数是( ) A .9B .10C .12D .1310.已知数列{}n a 的前n 项和22n S n n =+,那么它的通项公式是( )A .21n a n =-B .21n a n =+C .41n a n =-D .41n a n =+11.已知数列{}n a 是等比数列,11a >,且前n 项和n S 满足11lim n n S a →∞=,那么1a 的取值范围是( ) A.(B .()1,4C .()1,2D .()1,+∞12.在等差数列{}n a 中,若12336a a a ++=,11121384a a a ++=,则59a a +=( ) A .30B .35C .40D .45二、填空题13.数列{}n a 满足2121231722222n n a a a a n n -+++⋅⋅⋅+=-,若对任意0λ>,所有的正整数n 都有22n k a λλ-+>成立,则实数k 的取值范围是_________.14.将数列{2}n 与{32}n -的公共项从小到大排列得到数列{}n a ,则{}n a 的前n 项和n S =___.15.在数列{}n a 中,112a =,1n n a a n +=+,则na n的最小值为_________. 16.设n S 是数列{}n a 的前n 项和,13a =,当2n ≥时有1122n n n n n S S S S na --+-=,则使122021m S S S ≥成立的正整数m 的最小值为______.17.已知等差数列{}n a 的前n 项和n S 满足318S =,3180n S -=,270n S =,则n =________.18.已知{}n a 是等比数列,14a =,412a =,则12231n n a a a a a a +++⋅⋅⋅+=______. 19.若数列{}n a 满足11a =,且()*1111n nn a a N +∈-=,则 ①数列{}na e是等比数列;②满足不等式:1112n n a a +++≥ ③若函数()f x 在R 上单调递减,则数列(){}n f a 是单调递减数列; ④存在数列{}n a 中的连续三项,能组成三角形的三条边; ⑤满足等式:122311n n n a a a a a a n +++⋅⋅⋅+=+. 正确的序号是________20.已知首项为1a ,公比为q 的等比数列{}n a 满足443210q a a a ++++=,则首项1a 的取值范围是________.参考答案三、解答题21.数列{}n a 满足()1121nn n a a n ++-=-,n *∈N 且1a a =(a 为常数).(1)(i )当n 为偶数时,求4n n a a +-的值; (ii )求{}n a 的通顶公式;(2)设n S 是数列{}n a 的前n 项和,求证:48411114n S S S ++⋅⋅⋅+< 22.已知数列{}n a 的前n 项和n S 满足33n n S a =-,()*323log 1n n b a n N=+∈.(1)求数列{}n a ,{}n b 的通项公式;(2)记2n n n c a b λ=-,若数列{}n c 为递增数列,求λ的取值范围.23.数列{}n a 各项均为正数,其前n 项和为n S ,且满足221n n n a S a -=(1)求数列{}n a 的通项公式; (2)设4241n n b S =-,求数列{}n b 的前n 项和n T ,并求使21(3)6>-n T m m 对所有的*n N ∈都成立的最大正整数m 的值.24.在①535S =,②122114b b S -=,③35S T =这三个条件中任选一个,补充在下面问题中,并解答问题:已知正项等差数列{}n a 的公差是等差数列{}n b 的公差的两倍,设n S 、n T 分别为数列{}n a 、{}n b 的前n 项和,且13a =,23T =,________,设2n b n n c a =⋅,求{}n c 的前n 项和n A .注:如果选择多个条件分别解答,按第一个解答计分. 25.对于任意的*n N ∈,数列{}n a 满足1212121212121n n a n a a n ---++⋅⋅⋅+=++++.(1)求数列{}n a 的通项公式;(2)设数列{}n a 的前n 项和为n S ,求n S 26.已知数列{}n a 的前n 项和n S 满足11(0n n a a a S a--=>且1)a ≠.数列{}n b 满足lg n n n b a a =.(1)当10a =时,求数列{}n b 的前n 项和n T ; (2)若对一切n *∈N 都有1n n b b +<,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】 由题意可得221114n na a +-=,运用等差数列的通项公式可得2143n n a =-,求得14n b =,然后利用裂项相消求和法可求得结果【详解】解:由11a =,1111114n n n n a a a a ++⎛⎫⎛⎫+-= ⎪⎪⎝⎭⎝⎭,得221114n na a +-=, 所以数列21n a ⎧⎫⎨⎬⎩⎭是以4为公差,以1为首项的等差数列,所以2114(1)43nn n a =+-=-,因为0n a >,所以n a =,所以1111n n nb a a +=+=所以14n b ==,所以201220T b b b =++⋅⋅⋅+111339(91)244=++⋅⋅⋅+=⨯-=,故选:B 【点睛】关键点点睛:此题考查由数列的递推式求数列的前n 项和,解题的关键是由已知条件得221114n n a a +-=,从而数列21n a ⎧⎫⎨⎬⎩⎭是以4为公差,以1为首项的等差数列,进而可求n a =,14n b ==,然后利用裂项相消法可求得结果,考查计算能力和转化思想,属于中档题2.D解析:D 【分析】由n a 与n S 的关系可求得12n n a ,进而可判断出数列{}2n a 也为等比数列,确定该数列的首项和公比,利用等比数列的求和公式可求得所化简所求代数式.【详解】已知等比数列{}n a 的n 项和2n n S a =-. 当1n =时,112a S a ==-;当2n ≥时,()()111222nn n n n n a S S a a ---=-=---=.由于数列{}n a 为等比数列,则12a a =-满足12n na ,所以,022a -=,解得1a =,()12n n a n N -*∴=∈,则()221124n n na --==,2121444n n n n a a +-∴==,且211a =,所以,数列{}2n a 为等比数列,且首项为1,公比为4, 因此,222121441143n n na a a --+++==-. 故选:D. 【点睛】方法点睛:求数列通项公式常用的七种方法:(1)公式法:根据等差数列或等比数列的通项公式()11n a a n d +-=或11n n a a q -=进行求解;(2)前n 项和法:根据11,1,2n nn S n a S S n -=⎧=⎨-≥⎩进行求解;(3)n S 与n a 的关系式法:由n S 与n a 的关系式,类比出1n S -与1n a -的关系式,然后两式作差,最后检验出1a 是否满足用上面的方法求出的通项;(4)累加法:当数列{}n a 中有()1n n a a f n --=,即第n 项与第1n -项的差是个有规律的数列,就可以利用这种方法;(5)累乘法:当数列{}n a 中有()1nn a f n a -=,即第n 项与第1n -项的商是个有规律的数列,就可以利用这种方法;(6)构造法:①一次函数法:在数列{}n a 中,1n n a ka b -=+(k 、b 均为常数,且1k ≠,0k ≠).一般化方法:设()1n n a m k a m -+=+,得到()1b k m =-,1bm k =-,可得出数列1n b a k ⎧⎫+⎨⎬-⎩⎭是以k 的等比数列,可求出n a ;②取倒数法:这种方法适用于()112,n n n ka a n n N ma p*--=≥∈+(k 、m 、p 为常数,0m ≠),两边取倒数后,得到一个新的特殊(等差或等比)数列或类似于1n n a ka b-=+的式子;⑦1nn n a ba c +=+(b 、c 为常数且不为零,n *∈N )型的数列求通项n a ,方法是在等式的两边同时除以1n c +,得到一个1n n a ka b +=+型的数列,再利用⑥中的方法求解即可.3.C解析:C 【分析】结合等差数列的求和公式及等差数列的性质可得101010110,0a a <>,从而可求出公差的符号,进而可确定单调性,进而可确定和最小问题. 【详解】因为202020210,0S S <>,即()()12021202012020210,02022a a a a ++<>,所以12020120210,0a a a a +<+>.因为10101011120201011120210,20,a a a a a a a +=+<=+> 所以101010110,0a a <>,所以101110100d a a =->,所以数列{}n a 是单调递增数列, 前1010项和最小,所以C 错误. 故选:C . 【点睛】 关键点睛:本题的关键是由等差数列的求和公式对已知条件进行变形,整理出12020120210,0a a a a +<+>,再结合等差数列的性质求出101010110,0a a <>,确定公差后即可确定单调性及最值问题.4.B解析:B 【分析】根据11a >,667711,01a a a a -><-,分0q < ,1q ≥,01q <<讨论确定q 的范围,然后再逐项判断. 【详解】若0q <,因为11a >,所以670,0a a <>,则670a a ⋅<与671a a ⋅>矛盾,若1q ≥,因为11a >,所以671,1a a >>,则67101a a ->-,与67101a a -<-矛盾, 所以01q <<,故B 正确;因为67101a a -<-,则6710a a >>>,所以()26870,1a a a =∈,故A 错误; 因为0n a >,01q <<,所以111n n a q a S q q=---单调递增,故C 错误; 因为7n ≥时,()0,1n a ∈,16n ≤≤时,1n a >,所以n T 的最大值为6T ,故D 错误; 故选:B 【点睛】关键点点睛:本题的关键是通过穷举法确定01q <<.5.B解析:B 【分析】由111n n n n a a a a ++-=+,且113a =,可得:111n n n a a a ++=-,可得其周期性,进而得出结论. 【详解】因为111n n n n a a a a ++-=+,且113a =, 所以111nn na a a ++=-, 21132113a +∴==-,33a =-,412a =-,513a =,⋯⋯, 4n n a a +∴=.123411···2(3)()132a a a a ∴=⨯⨯--⋅⨯=.则{}n a 的前2021项之积50511133=⨯=.故选:B 【点睛】方法点睛:已知递推关系式求通项:(1)用代数的变形技巧整理变形,然后采用累加法、累乘法、迭代法、构造法或转化为基本数列(等差数列或等比数列)等方法求得通项公式.(2)通过具体的前几项找到其规律,如周期性等求解.6.A解析:A 【分析】由题1n n b b +>在n *∈N 恒成立,即16212nn λ⎛⎫-<+ ⎪⎝⎭,讨论n 为奇数和偶数时,再利用数列单调性即可求出. 【详解】数列{}n b 是单调递减数列,1n n b b +∴>在n *∈N 恒成立,即()122112+1222nn n n λλ-⎛⎫⎛⎫-->-- ⎪ ⎪⎝⎭⎝⎭恒成立,即16212nn λ⎛⎫-<+ ⎪⎝⎭, 当n 为奇数时,则()6212nn λ>-+⋅恒成立,()212n n -+⋅单调递减,1n ∴=时,()212n n -+⋅取得最大值为6-,66λ∴>-,解得1λ>-;当n 为偶数时,则()6212nn λ<+⋅恒成立,()212n n +⋅单调递增,2n ∴=时,()212n n +⋅取得最小值为20,620λ∴<,解得103λ<, 综上,1013λ-<<. 故选:A. 【点睛】关键点睛:本题考查已知数列单调性求参数,解题的关键由数列单调性得出16212nn λ⎛⎫-<+ ⎪⎝⎭恒成立,需要讨论n 为奇数和偶数时的情况,这也是容易出错的地方. 7.A解析:A 【分析】根据等比数列的求和公式及通项公式,可分析出答案. 【详解】等比数列{}n a 的前n 项和为n S ,当1q ≠时,202112021(1)01a q S q-=>-,因为20211q-与1q -同号,所以10a >,所以2131(1)0a a a q +=+>,当1q =时,2021120210S a =>,所以10a >,所以1311120a a a a a +=+=>, 综上,当20210S >时,130a a +>, 故选:A 【点睛】易错点点睛:利用等比数列求和公式时,一定要分析公比是否为1,否则容易引起错误,本题需要讨论两种情况.8.A解析:A 【分析】在{}n a 为等差数列中,当(m n p q m +=+,n ,p ,)q N +∈时,m n p q a a a a +=+.所以结合此性质可得:2202171521a a Sb b T +=+,再根据题意得到答案.【详解】解:在{}n a 为等差数列中,当(m n p q m +=+,n ,p ,)q N +∈时,m n p q a a a a +=+.所以1212202171521121121()2121()2a a a a Sb b T b b ⨯+⨯+==+⨯+⨯, 又因为723n n S n T n +=+, 所以22071514924a ab b +=+. 故选:A . 【点睛】本题主要考查等差数列的下标和性质,属于中档题.9.A解析:A 【分析】设只能堆放n 层,由已知得从最上层往下,每层铅笔数组成以首项为1、公差为1的等差数列,且余下的铅笔数小于1n +,根据等差数列的前n 项和公式可求得选项. 【详解】设只能堆放n 层,则从最上层往下,每层铅笔数组成以首项为1、公差为1的等差数列,且余下的铅笔数小于1n +, 于是()11002n n +≤,且()110012n n n +-<+,解得13n =,剩余的根数为131410092⨯-=. 故选:A. 【点睛】 本题考查数列的实际应用,关键在于将生活中的数据,转化为数列中的基本量,属于中档题.10.C解析:C 【解析】分类讨论:当1n =时,11213a S ==+=,当2n ≥时,221(2)2(1)141n n n a S S n n n n n -⎡⎤=-=+--+-=-⎣⎦, 且当1n =时:1414113n a -=⨯-== 据此可得,数列的通项公式为:41n a n =-. 本题选择C 选项.11.A解析:A 【分析】设等比数列{}n a 的公比为q ,可知10q -<<或01q <<,计算出111lim 1n n a S q a →∞==-,可得出q 关于1a 的表达式,结合q 的范围,可解出1a 的取值范围. 【详解】设等比数列{}n a 的公比为q ,由于11lim n n S a →∞=,则10q -<<或01q <<, ()111n n a q S q-=-,则()11111lim lim11n n n n a q a S qq a →∞→∞-===--,得211q a =-. ①若10q -<<,则21110a -<-<,即2112a <<,11a >,解得1a <<; ②当01q <<,则21011a <-<,得2101a <<,11a >,则2101a <<不成立.综上所述,1a的取值范围是(. 故选A.【点睛】本题考查利用极限求等比数列首项的取值范围,解题的关键就是得出公比与首项的关系,结合公比的取值范围得出关于首项的不等式,考查运算求解能力,属于中等题.12.C解析:C 【分析】利用等差数列性质,若++m n p q =,则++m n p q a a a a =及等差中项公式可求. 【详解】因为 12336a a a ++=,由等差中项公式,得2336a =, 同理11121384a a a ++=,得12384a =,2123+3=81036+42a a ∴=.212+=40a a ∴ 21529+=40a a a a ∴+=故选:C . 【点睛】本题考查等差数列性质与等差中项公式.(1)如果{}n a 为等差数列,若++m n p q =,则++m n p q a a a a = ()*m n p q N ∈,,,. (2){}n a 为等差数列,则有11n n n a a a =2-++.二、填空题13.【分析】记设根据即可求出从而得到再根据题意可得分参利用基本不等式即可求出实数k 的取值范围【详解】记设当时;当时当时也满足上式所以即显然当时当时因此的最大值若存在必为正值当时因为当且仅当时取等号所以的解析:⎛-∞ ⎝⎭ 【分析】记12n n n b a -=,设21212317222222n n n S a a a a n n -=+++⋅⋅⋅+=-, 根据1112n n n S n b S S n -=⎧=⎨-≥⎩即可求出n b ,从而得到n a ,再根据题意可得()m 2ax 2n k a λλ-+>,分参利用基本不等式即可求出实数k 的取值范围.【详解】记12n n n b a -=,设21212317222222n n n S a a a a n n -=+++⋅⋅⋅+=-, 当1n =时,117322b =-=-;当2n ≥时,()()21217171142222n n n b S n S n n n n -⎡⎤-----=-⎢⎥⎣⎦=-=. 当1n =时,13b =-也满足上式,所以()*4n b n n N =-∈,即142n n n a --=. 显然当3n ≤时,0n a <,40a =,当5n ≥时,0n a >,因此n a 的最大值若存在,必为正值.当5n ≥时,()1324n n a n a n +-=-,因为()151024n n a na n +--=≤-,当且仅当5n =时取等号. 所以n a 的最大值为116.故()m 2ax 1126n k a λλ>=-+,变形得,3116k λλ<+,而31162λλ+≥=,当且仅当4λ=时取等号,所以2k <.故答案为:⎛-∞ ⎝⎭. 【点睛】本题主要考查n S 与n a 的关系1112n nn S n a S S n -=⎧=⎨-≥⎩应用,不等式恒成立问题的解法应用,以及基本不等式的应用,意在考查学生的转化能力和数学运算能力,属于中档题.解题关键是记12n n n b a -=,设21212317222222n n n S a a a a n n -=+++⋅⋅⋅+=-,利用通项n b 与前n 项和n S 的关系1112n nn Sn b S S n -=⎧=⎨-≥⎩求出通项n b ,再利用数列的单调性进而求出数列中的最大值,由基本不等式解出.14.【分析】首先判断出数列与项的特征从而判断出两个数列公共项所构成新数列的首项以及公差利用等差数列的求和公式求得结果【详解】因为数列是以2为首项以2为公差的等差数列数列是以1首项以3为公差的等差数列所以 解析:23n n +【分析】首先判断出数列{2}n 与{}32n -项的特征,从而判断出两个数列公共项所构成新数列的首项以及公差,利用等差数列的求和公式求得结果. 【详解】因为数列{2}n 是以2为首项,以2为公差的等差数列, 数列{}32n -是以1首项,以3为公差的等差数列,所以这两个数列的公共项所构成的新数列{}n a 是以4为首项,以6为公差的等差数列,所以{}n a 的前n 项和2(1)4632n n n S n n n -=⋅+⋅=+, 故答案为:23n n +. 【点睛】关键点点睛:该题考查的是有关数列的问题,涉及到的知识点有两个等差数列的公共项构成新数列的特征,等差数列求和公式,属于中档题.15.【分析】由累加法求出数列的通项公式进而可得到的解析式再根据基本不等式可求得最小值【详解】解:即:…将这个式子累加可得:…即当时又又也适合上式由对勾函数的性质可知:当且仅当时取得最小值即时取得最小值又 解析:225【分析】由累加法求出数列{}n a 的通项公式,进而可得到na n的解析式,再根据基本不等式可求得na n最小值. 【详解】解:1n n a a n +=+,1n n a a n +∴-=,即:211a a -=,322a a -=,433a a -=,...,11(2,)n n a a n n n z ---≥∈=, 将这1n -个式子累加可得:1123n a a -=+++ (1)+12n n n --=, 即当2n ≥时,1(1)2n n n a a -=+, 又112a =,()2(1)2412=222n n n n n a n n z --+∴=+≥∈,,又112a =也适合上式,()2(1)2412=22n n n n n a n z --+∴=+∈224121=222n a n n n n n n -+∴=+-, 由对勾函数的性质可知:当且仅当12=2n n时取得最小值,即n =又n z ∈且45<<,44121942422a =+-=,551212252525a =+-= , 92225>, n a n ∴的最小值为:225. 故答案为:225. 【点睛】易错点点睛:运用累加法求数列通项时,注意验证首项是否满足,若不满足,则需要写成分段的形式.16.1010【分析】由与关系当时将代入条件等式得到数列为等差数列求出进而求出即可求出结论【详解】∵∴∴∴令则∴数列是以为首项公差的等差数列∴即∴∴由解得即正整数的最小值为故答案为:【点睛】方法点睛:本题解析:1010 【分析】由n S 与n a 关系,当2n ≥时,将1n n n a S S -=-代入条件等式,得到数列21{}nn S +为等差数列,求出n S ,进而求出12m S S S ,即可求出结论.【详解】∵1122n n n n n S S S S na --+-=, ∴()11122n n n n n n S S S S n S S ---+-=-, ∴()()1122121n n n n S S n S n S --=+--, ∴121212n n n n S S -+--=, 令21n nn b S +=,则()122n n b b n --=≥, ∴数列{}n b 是以111331b S a ===为首项,公差2d =的等差数列, ∴21n b n =-,即2121n n n S +=-,∴2121n n S n +=-, ∴12521321321m m S S S m m +=⨯⨯⨯=+-, 由212021m +≥,解得1010m ≥, 即正整数m 的最小值为1010. 故答案为: 1010. 【点睛】方法点睛:本题考查等差数列的通项公式,考查递推关系式,求通项公式的主要方法有: 观察法:若已知数列前若干项,通过观察分析,找出规律;公式法:已知数列是等差数列或等比数列,或者给出前n 项和与通项公式的关系; 累加法:形如()1n n a a f n +=+的递推数列; 累乘法:形如()1n n a a f n +=⋅的递推数列.17.15【分析】根据等差数列的前项和与等差数列的性质求解【详解】因为所以又所以故解得故答案为:15【点睛】本题考查等差数列的前项和等差数列的性质利用等差数列的性质求解可以减少计算量解析:15 【分析】根据等差数列的前n 项和与等差数列的性质求解, 【详解】因为32318S a ==,所以26a =,又2311390n n n n n n a a S S a a ----=++-==, 所以130n a -=.故()()12127022n n n n a a n a a S -++===,解得15n =. 故答案为:15. 【点睛】本题考查等差数列的前n 项和,等差数列的性质,利用等差数列的性质求解可以减少计算量.18.【分析】由等比数列的通项公式求得进而得到数列表示首项为公比为的等比数列结合等比数列的求和公式即可求解【详解】由题意等比数列中可得解得又由且即数列表示首项为公比为的等比数列所以故答案为:【点睛】本题主解析:321134n⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦【分析】由等比数列的通项公式,求得12q =,进而得到数列{}1n n a a +表示首项为8,公比为14的等比数列,结合等比数列的求和公式,即可求解. 【详解】由题意,等比数列{}n a 中,14a =,412a =,可得34218a q a ==,解得12q =, 又由2111114n n n n n n a a a q a a a ++--===,且21218a a a q ==, 即数列{}1n n a a +表示首项为8,公比为14的等比数列,所以1223118[1()]3214113414n n n n a a a a a a +⨯-⎡⎤⎛⎫++⋅⋅⋅+==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-. 故答案为:321134n⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.【点睛】本题主要考查了等比数列的定义及通项公式,以及等比数列的前n 项和公式的应用,其中解答中熟记等比数列的通项公式,以及等比数列的求和公式的应用,着重考查推理与运算能力,属于中档试题.19.②④⑤【分析】利用所给递推公式求出的通项公式由证明数列不是等比数列根据的单调性求出范围证明②正确根据复合函数的增减性判断规则说明③错误举出例子证明④正确利用裂项相消法求和证明⑤正确【详解】且数列是以解析:②④⑤ 【分析】利用所给递推公式求出{}n a 的通项公式,由3212b b b b ≠证明数列{}n a e 不是等比数列,根据1111(1)1n n a n a n +++=+++的单调性求出范围证明②正确,根据复合函数的增减性判断规则说明③错误,举出例子证明④正确,利用裂项相消法求和证明⑤正确. 【详解】()*1111n n a a n N +-=∈且111a ,∴数列1{}n a 是以1为首项,1为公差的等差数列,则()*1nn n N a =∈, ()*1n a n N n∴=∈. ①设1n n na b e e ==,则1132123,,b e b e b e ===,因为11326212,b b e e b b --==,所以3212b b b b ≠,因此数列{}na e 不是等比数列;②1111(1)1n n a n a n +++=+++,因为1(1)1y n n =+++在[1,)+∞上单调递增,所以115(1)2122n n ++≥+=+,②正确; ③因为若数列{}n a 是单调递减的数列,所以若函数()f x 在R 上单调递减,则数列(){}nf a 是单调递增数列;④234111,,234a a a ===即可构成三角形的三边,所以④正确; ⑤因为1111(1)1n n n n a n a n +==-++,所以1223111112111231n n n a a a a a a n n n +++⋅⋅⋅+=--=++-+++,⑤正确. 故答案为:②④⑤ 【点睛】本题考查由递推公式求数列的通项公式,用定义证明等比数列,复合函数的单调性,裂项相消法求和,属于中档题.20.【分析】利用等比数列通项公式可整理已知等式得到令可得到由函数的单调性可求得的取值范围【详解】由得:令则在上单调递减;在上单调递减;综上所述:的取值范围为故答案为:【点睛】本题考查函数值域的求解问题涉解析:[)2,2,3⎛⎤-∞-+∞ ⎥⎝⎦【分析】利用等比数列通项公式可整理已知等式得到211211q q a q q⎛⎫+- ⎪⎝⎭=-++,令1t q q =+可得到1111a t t =-+++,由函数的单调性可求得1a 的取值范围. 【详解】由443210q a a a ++++=得:43211110q a q a q a q ++++=,224213211211111q q q q q a q q q q q q q ⎛⎫+-+ ⎪+⎝⎭∴=-=-=-++++++. 令(][)1,22,t q q=+∈-∞-+∞,则()()2211211211111t t t a t t t t +-+--=-=-=-+++++, 111t t -+++在(],2-∞-上单调递减,12112a ∴≥+-=;111t t -+++在[)2,+∞上单调递减,1122133a ∴≤-++=-;综上所述:1a 的取值范围为[)2,2,3⎛⎤-∞-+∞ ⎥⎝⎦.故答案为:[)2,2,3⎛⎤-∞-+∞ ⎥⎝⎦.【点睛】本题考查函数值域的求解问题,涉及到等比数列通项公式的应用;关键是能够将1a 表示为关于q 的函数,利用分离常数法可确定函数的单调性,进而利用函数单调性求得函数的最值,从而得到所求的取值范围.三、解答题21.(1)(i )8;(ii )()()()(),4323,422,4121,4n a n k n a n k a a n k n a n k ⎧=-⎪+-=-⎪=⎨-=-⎪⎪--=⎩;(2)证明见解析. 【分析】(1)(i )推导出当n 为正偶数时,24n n a a n ++=,可得出+4248n n a a n ++=+,两式作差可得出结论成立;(ii )推导出当n 为正奇数时,4n n a a +=,求出2a 、3a 、4a ,对任意的k *∈N ,分43n k =-,42n k =-,41n k =-,4n k =四种情况讨论,结合等差数列的通项公式以及周期数列的定义可求得数列{}n a 的通项公式;(2)计算出4342414n n n n a a a a ---+++,可求得2482n S n n =+,利用放缩法得出4111142121n S n n ⎛⎫<- ⎪-+⎝⎭,结合裂项相消法可证得所证不等式成立. 【详解】(1)(i )当n 为正偶数时,121n n a a n ++=-,2121n n a a n ++-=+, 两式相加得24n n a a n ++=,① 可得+4248n n a a n ++=+,② ②-①得48n n a a +-=;(ii )当n 为正奇数时,121n n a a n +-=-,2121n n a a n +++=+, 两式作差得22n n a a ++=,所以,422n n a a +++=, 上述两个等式作差得4n n a a +=, 又211a a -=,则2111a a a =+=+,323a a +=,则3232a a a =-=-, 435a a -=,则4357a a a =+=-.对任意的k *∈N ,当43n k =-,则1n a a a ==; 当42n k =-时,()()()422811818722723n k a a a k a k a k a n a n -==+-=++-=+-=++-=+-;当41n k =-时,32n a a a ==-;当4n k =时,()()44817818121n k a a a k a k k a n a ==+-=-+-=--=--.综上所述,()()()(),4323,422,4121,4n a n k n a n k a a n k n a n k ⎧=-⎪+-=-⎪=⎨-=-⎪⎪--=⎩; (2)()434241424232241166n n n n a a a a a n a a n a n ---+++=+-+-+-+⨯--=-,()2410166822n n n S n n +-∴==+,()()2241111114212124241n S n n n n n ⎛⎫∴=<=- ⎪-++-⎝⎭, 所以,48411111111111111433521214214n S S S n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫++⋅⋅⋅+<-+-++-=-< ⎪ ⎪ ⎪ ⎪⎢⎥-++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦. 【点睛】方法点睛:证明数列不等式常用放缩法,常用的放缩公式如下:(1)()()21111211n n n n n n<=-≥--; (2)()()()211111211211n n n n n n ⎛⎫<=-≥ ⎪-+-+⎝⎭; (3)()()2221144112141212121214n n n n n n n ⎛⎫<===- ⎪--+-+⎝⎭-; (4()22n =<=≥.22.(1)32nn a ⎛⎫= ⎪⎝⎭,31n b n =+;(2)3136λ<.【分析】(1)利用1(2)n n n a S S n -=-≥求得数列{}n a 是等比数列,(10a ≠),得通项公式n a ,从而也得到n b ;(2)作差1n n c c +-,由10n n c c +->恒成立转化为13221815nn λ⎛⎫⎪⎝⎭<+对*n N ∀∈恒成立,引入()13221815nf n n ⎛⎫⎪⎝⎭=+,*n N ∈,从作商法求得{()}f n 的最小值即可得λ的范围.【详解】解:(1)当1n =时,1133S a =-,∴132a =, 当2n ≥时,()113333n n n n S S a a ---=---, 即133n n n a a a -=-,∴132n n a a -=,又10a ≠, 所以数列{}n a 为等比数列.∴1333222n nn a -⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭, 332233log 13log 1312nn n b a n ⎛⎫=+=+=+ ⎪⎝⎭.(2)()23312nn c n λ⎛⎫=-+ ⎪⎝⎭,因为数列{}n c 为递增数列, ∴()()()122133133431181502222n n nn n c c n n n λλλ++⎛⎫⎛⎫⎛⎫-=-+-++=-+> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭对*n N ∀∈恒成立,即13221815nn λ⎛⎫⎪⎝⎭<+对*n N ∀∈恒成立设()13221815nf n n ⎛⎫⎪⎝⎭=+,*n N ∈,()min f n λ<,()()()1133181511815222183318331322n n n f n n f n n n +⎛⎫+ ⎪++⎝⎭=⋅=++⎛⎫ ⎪⎝⎭,若()()11f n f n +>,则1821n >, ∴当n 2≥时,()()1f n f n +>; 当1n =时,()()21f f <.∴()()min 32136f n f ==, 即λ的取值范围为3136λ<. 【点睛】关键点点睛:本题考查求等比数列的通项公式,考查数列的单调性,不等式恒成立问题.数列的单调性与最值的求法一般有作差法或作商法.作差法是最基本的方法,而当n a 为幂的形式(或乘积形式)也可用作商法确定单调性,得最值.23.(1)=n a 2)3. 【分析】(1)根据题意,利用1(2)n n n a S S n -=-≥,化简整理,即可求得n a ,检验11a S =满足此式,即可求得数列{}n a 的通项公式;(2)由(1)可得2n S n =,代入即可求得n b 表达式,利用裂项相消法求和,即可求得nT 的表达式,根据n T 的单调性,可得123n T T ≥=,代入所求,利用一元二次不等式的解法,即可求得答案. 【详解】(1)∵221n n n a S a -=,∴当2n ≥时,2112()()1-----=n n n n n S S S S S ,整理得,2211(2)n n S S n --=≥,又211S =,∴数列{}2n S 为首项和公差都是1的等差数列.∴2n S n =,又0n S >,∴=n S ,∴2n ≥时,1-=-=n n n a S S 又111a S ==适合此式,∴数列{}n a 的通项公式为n a (2)∵42222114141(21)(21)2121n n b S n n n n n ====----+-+∴11111111335212121n T n n n =-+-++-=--++, ∴随着n 逐渐增大,n T 逐渐增大, ∴123n T T ≥=,依题意有,221(3)36>-m m ,即2340m m --<, 解得14-<<m ,故所求最大正整数m 的值为3 【点睛】解题的关键是熟练应用1(2)n n n a S S n -=-≥,根据不同条件,选择替换n a 或n S 进行求解,易错点为:需检验11a S =是否满足题意,若1a 不满足题意,需写成分段函数形式,考查分析理解,计算求值的能力,属中档题. 24.选择见解析;1(21)22n n A n +=-+.【分析】根据条件设{}n a 的公差为2d ,{}n b 的公差为d ,若选择条件①根据535S =,列式求d ,再代入数列{}n b 的基本量的计算,求数列{}n a 和{}n b 的通项公式,若选择条件②根据条件,解出数列{}n b 的基本量1b 和d ,以及求出数列{}n a 和{}n b 的通项公式,若选择条件③根据条件35S T =,以及13a =,23T =,组成方程组,求1b 和d ,这三个条件都根据基本量表示数列{}n a 和{}n b 的通项公式,并得到(21)2nn c n =+,利用错位相减法求和.【详解】不妨设{}n a 的公差为2d ,{}n b 的公差为d , 方案1:选条件①由题意得,123b d +=,54352352d ⨯⨯+⨯=, 解之得,11b =,1d =,则12(1)21,n n a a n n b n =+-=+=,则(21)2nn c n =+,123325272(21)2n n A n =⨯+⨯+⨯+⋯++,① 23412325272(21)2n n A n +=⨯+⨯+⨯+⋯++,②两式相减,整理得:1(21)22n n A n +=-+.方案2:选条件②由题意得123b d +=,()114(62)b b d d d +=+, 解得11b =,1d =或13b =,3d =-(舍去),则12(1)21n a a n n =+-=+,n b n =,则(21)2nn c n =+,123325272(21)2n n A n =⨯+⨯+⨯+⋯++,① 23412325272(21)2n n A n +=⨯+⨯+⨯+⋯++,②两式相减,整理得:1(21)22n n A n +=-+.方案3:选条件③由题意得,2335a b =,即()()113252a d b d +=+, 化简得,1549b d +=,212123T b b b d =+=+=, 联立方程组得,11b =,1d =, 则{}n a 的公差为2,{}n b 的公差为1,12(1)21n a a n n =+-=+,n b n =,则(21)2n n c n =+,123325272(21)2n n A n =⨯+⨯+⨯+⋯++,① 23412325272(21)2n n A n +=⨯+⨯+⨯+⋯++,②两式相减,整理得:1(21)22n n A n +=-+.【点睛】本题考查数列基本量计算,错位相减法求和,是一道结构不良题型,属于基础题型. 方法点睛:一般数列求和包含1.公式法,利用等差和等比数列的前n 项和公式求解;2.错位相减法求和,适用于等差数列乘以等比数列的数列求和;3.裂项相消法求和,适用于能变形为()()1n a f n f n =+-, 4.分组转化法求和,适用于n n n c a b =+;5.倒序相加法求和.25.(1)7,121,2n n n a n n =⎧=⎨++≥⎩;(2)217,1322,22n n n S n n n +=⎧⎪=⎨+++≥⎪⎩. 【分析】(1)根据11,1,2n nn S n a S S n -=⎧=⎨-≥⎩可求得结果;(2)当1n =时,117S a ==,当2n ≥时,分组后利用等差等比数列的求和公式可求得结果. 【详解】 (1)1212121212121n na n a a n ---++⋅⋅⋅+=++++①, 当2n ≥时,得()112121112212121n n a n a a n ------++⋅⋅⋅+=+++②. ①-②得121n na n -=+,∴()212nn a n n =++≥, 又11112721a a -=⇒=+不满足上式, 综上得7,121,2n nn a n n =⎧=⎨++≥⎩. (2)当1n =时,117S a ==, 当2n ≥时,23722123121nn S n =++++++++++()()()()212121271122n n n n ---+=+++--213222n n n +++=+,综上得,217,1322,22n n n S n n n +=⎧⎪=⎨+++≥⎪⎩. 【点睛】易错点点睛:第一问利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩求通项公式时,容易忽视1n =的情况造成错误;第二问求和是也容易忽视1n =的情况.26.(1)1(91)101081n n n T +-⋅+=;(2)10,(1,)2⎛⎫⋃+∞ ⎪⎝⎭.【分析】(1)由1n =得出1a a =,再令2n ≥,由11n n a a S a --=,得出11n n a S a a-=-,可推出 1111n n a S a a ---=-,两式相减得出1n n a a a -=,利用等比数列的通项公式得出数列{}n a 的通项公式,可求出数列{}n b 的通项公式,然后利用错位相减法求出数列{}n b 的前n 项和n T ;(2)由1n n b b +<得出()1lg 1lg n n na a n a a +<+,分两种情况1a >和01a <<讨论.①当1a >时,利用参变量分离法得出1na n >+,可得出1a >; ②当01a <<时,利用参变量分离法得出1n a n <+,可得出102a <<.综合①②得出实数a 的取值范围. 【详解】当1n =时,11a S =,1111a a a a--=,解得1a a =. 当2n ≥时,∵11n n a a S a--=, ∴11n n a S a a -=-,可得1111n n a S a a---=-, 上述两式相减得()111n n n n a S S a a a----=-, 即11n n n a a a a a --=-,所以1n n a a a -=. 所以数列{}n a 是首项为a ,公比为a 的等比数列, ∴1nn na a a a ,从而lg lg nn n n b a a na a ==.(1)当10a =时,10nn b n =⋅,∴2121021010nn n T b b n b n n =+++=+⋅++⋅, 则2311010210(1)1010nn n T n n n +=+⋅++-⋅+⋅,∴()23111010191010101010109n n n n nT n n n ++--=++++-⋅=-⋅,所以()1121010110(91)10109981n n n n n n T ++-⋅-⋅+=-=. (2)由1n n b b +<,可得1lg (1)lg n n na a n a a +<+.①当1a >时,由lg 0a >,可得1na n >+,()*11n n n <∈+N , ∴1a >,∴1na n >+,对一切*n ∈N 都成立,此时的解为1a >; ②当01a <<时,由lg 0a <,可得(1)n n a >+,∴1na n <+,()*1N 12n n n ≥∈+,01a <<, ∴01na n <<+,对一切*n ∈N 都成立, ∴102a <<. 由①,②可知,对一切*n ∈N 都有1n n b b +<的a 的取值范围是10,(1,)2⎛⎫⋃+∞ ⎪⎝⎭. 【点睛】本题考查利用前n 项和求通项,考查错位相减法求和以及数列不等式恒成立与参数问题,解题时要熟悉一些常见的求通项和数列求和方法,以及在数列不等式恒成立问题中,灵活利用参变量分离法简化计算,考查分类讨论数学思想,属于难题.。
2020届中职数学单元检测06《数列》-对口升学总复习题含答案
2020届中职数学对口升学总复习单元检测试题第六单元《数列》测试题一.选择题(本大题10小题,每小题3分,共30分)题号12345678910答案1.4和9的等比中项为()A.6B.6± C.13± D.-62.3,5,9,17,33,...的一个通项公式=n a ()A .n2B .1n 2+C .12n-D .12n+3.数列-3,3,-3,3,…的一个通项公式是()A .a n =3(-1)n+1B .a n =3(-1)nC .a n =3-(-1)nD .a n =3+(-1)n4.{a n }是首项a 1=4,公差为d =3的等差数列,如果a n =2020,则序号n 等于()A .671B .672C .673D .6745.在等差数列{a n }中,已知21a 9876543=++++++a a a a a a ,则a 2+a 10=()A 6B 7C 9D 116.在等比数列{a n }中,a 2=8,5a =64,,则公比q 为()A.8B.4C.3D.27.数列}{a n 的前n 项和为2n 2,则5a 的值为()A .18B .19C .20D .408.等比数列}{n a 中,===302010,30,10S S S 则()A 、50B 、60C 、70D 、909.两数的等差中项是15,等比中项为12,这两个数是()A .6,24B .12,18C .10,20D .16,1410.公比为2的等比数列{n a }的各项都是正数,且3a 11a =16,则5a =()A 1B2C4D8二.填空题(本大题8小题,每小题4分,共32分)(好老师教学精品资源)1.等比数列中76543214,1a a a a a a a a ⋅⋅⋅⋅⋅⋅=则=2.自然数数列前50个数的和是3.在等比数列{a n }中,a 1=12,a 4=-4,则公比q=________________________.4等比数列{}n a 中,已知121264a a a =,则46a a 的值为_________________.5.}{n a 为等比数列,且81a 92=⋅a ,则=+⋅⋅⋅++1032313log log log a a a _________________.6.等差数列中a 4=7,7S =_________________.7.⋅⋅⋅--,51,41,31,21的一个通项公式是_________________.8.等差数列}{n a 中,=++=++=++987654321a ,9,3a a a a a a a a 则_________________.三.解答题(本大题6小题,共38分)1.等差数列-3,-6,-9,...的第几项是-300?2.等比数列中,3,81,3a 1===q a n ,求n (6分)3.数列}{n a 中,n n a a a 3,111==+,求它的前n 项和(6分)4.等差数列{a n }中,168,48128==S S 求1a 和d (6分)5.数列{a n }的前n 项和为132n ++=n n S ,求该数列的通项公式n a .(6分)6.在等差数列{a n }中,已知74=a 与47=a ,解答下列问题:(1)求通项公式na (2)前n 项和n s 的最大值及n s 取得最大值时项数n 的值(8分)第六单元《数列》参考答案一.选择题(本大题10小题,每小题3分,共30分)题号12345678910答案BDBCADACAA二.填空题(本大题共8小题,每小题4分,共32分)1..2..3..4..5..6..7..8..三.解答题(本大题共6小题,共38分)1.1002.4;3.)(1321n-;4.1a =-8,d=4;5.⎩⎨⎧≥-==2,261,5a n n n n ;6.(1)11a +-=n n ;(2)当n=10或n=11时,n S 取到最大值为551225-211)1(a +⋅-=n n n 18204915第六单元《数列》答题卡一.选择题(本大题10小题,每小题3分,共30分)题号12345678910答案二.填空题(本大题共8小题,每小题4分,共32分)1..2..3..4..5..6..7..8.三.解答题(本大题共6小题,共38分)1.(6分)2.(6分)3.(6分)4.(6分)5.(6分)6.(8分)。
(完整版)数列单元测试题(含答案)
《数列》一、选择题(每小题3分,共33分)1、数列⋯--,924,715,58,1的一个通项公式是 ( )A .12)1(3++-=n nn a nnB .12)3()1(++-=n n n a nnC .121)1()1(2--+-=n n a n nD .12)2()1(++-=n n n a nn 2、已知数列{a n }的通项公式)(43*2N n n n a n ∈--=,则a 4等于( ). A 1 B 2 C 3 D 0 3、在等比数列}{n a 中,,8,1641=-=a a 则=7a ( )A 4-B 4±C 2-D 2± 4、已知等差数列}{n a 的公差为2,若1a ,3a ,4a 成等比数列,则2a 等于( ) A 4- B 6- C 8- D 10-5、等比数列{a n }的前3项的和等于首项的3倍,则该等比数列的公比为( )A .-2B .1C .-2或1D .2或-16、等差数列}a {n 中,已知前15项的和90S 15=,则8a 等于( ).A .245B .12C .445 D .67、已知等比数列{a n } 的前n 项和为S n ,若S 4=1,S 8=4,则a 13+a 14+a 15+a 16=( ).A .7B .16C .27D .648、一个三角形的三个内角A 、B 、C 成等差数列,那么()tan A C +的值是( )A B .C .D .不确定 9、若一个凸多边形的内角度数成等差数列,最小角为100°,最大角为140°,这个凸多边形的边数为( )A .6B .8C .10D .1210、在等比数列{a n }中4S =1,8S =3,则20191817a a a a +++的值是 ( )A .14B .16C .18D .2011、计算机的成本不断降低,若每隔3年计算机价格降低31,现在价格为8100元的计算机,9年后的价格可降为( ) A .2400元B .900元C .300元D .3600元二、填空题(每小题4分,共20分)12、已知等比数列{n a }中,1a =2,4a =54,则该等比数列的通项公式n a = 13、 等比数列的公比为2, 且前4项之和等于30, 那么前8项之和等于 14、数列11111,2,3,,,2482n n ++++……的前n 项和是 . 15、 黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案: 则第n 个图案中有白色地面砖_________________块.16、在数列{}n a 中,11a =,且对于任意自然数n ,都有1n n a a n +=+,则100a = 三、解答题17、(本小题满分8分)等差数列{}n a 中,已知33,4,31521==+=n a a a a ,试求n 的值18、(本小题满分8分)在等比数列{}n a 中,5162a =,公比3q =,前n 项和242n S =,求首项1a 和项数n .19、(本小题满分10分)已知:等差数列{n a }中,4a =14,前10项和18510=S . (1)求n a ;(2)将{n a }中的第2项,第4项,…,第n 2项按原来的顺序排成一个新数列,求此数列的前n 项和n G .20、(本小题满分10分)某城市2001年底人口为500万,人均住房面积为6 m 2,如果该城市每年人口平均增长率为1%,则从2002年起,每年平均需新增住房面积为多少万m 2,才能使2020年底该城市人均住房面积至少为24m 2?(可参考的数据1.0118=1.20,1.0119=1.21,1.0120=1.22).21、(本小题满分11分)已知等差数列{a n }的首项a 1=1,公差d >0,且第二项,第五项,第十四项分别是等比数列{b n }的第二项,第三项,第四项. (1)求数列{a n }与{b n }的通项公式; (2)设数列{c n }对任意自然数n ,均有1332211+=+⋯⋯+++n nn a b c b c b c b c , 求c 1+c 2+c 3+……+c 2006值.题号 1 2 3 4 5 6 7 8 9 10 11 答案 DDABCDCBABA12、3.2n-1 13、510 14、n (n+1)+1-2n 15、4n+2 16、4951 17、d=32,n=50 18、解:由已知,得51113162,(13)242,13n a a -⎧⋅=⎪⎨-=⎪-⎩①②由①得181162a =,解得 12a =.将12a =代入②得()21324213n =--,即 3243n =,解得 n =5.∴ 数列{}n a 的首项12a =,项数n =5. 19、解析:(1)、由41014185a S =⎧⎨=⎩ ∴ 11314,1101099185,2a d a d +=⎧⎪⎨+⋅⋅⋅=⎪⎩ 153a d =⎧⎨=⎩ 23+=∴n a n (2)、设新数列为{n b },由已知,223+⋅=n n bn n G n n n 2)12(62)2222(3321+-=+++++=∴ *)(,62231N n n n ∈-+⋅=+20.解 设从2002年起,每年平均需新增住房面积为x 万m 2,则由题设可得下列不等式19500619500(10.01)24x ⨯+≥⨯+⨯解得605x ≥.答:设从2002年起,每年平均需新增住房面积为605万m 2.21、解:(1)由题意得(a 1+d )(a 1+13d )=(a 1+4d )2(d >0) 解得d =2,∴a n =2n -1,b n =3n -1.(2)当n =1时,c 1=3 当n ≥2时,,1n n nna abc -=+ 132-⋅=n n c ,⎩⎨⎧≥⋅==-)2(32)1(31n n c n n22005200612200632323233c c c ∴++⋯+=+⨯+⨯+⋯+⨯=。
拉萨市选修二第一单元《数列》测试卷(含答案解析)
一、选择题1.设n S 是等比数列{}n a 的前n 项和,若423S S =,则64S S =( ) A .2B .73 C .310 D .12或2.已知无穷等比数列{}n a 的各项的和为3,且12a =,则2a =( ) A .13B .25C .23D .323.已知等差数列{}n a 前n 项和为n S ,且351024a a a ++=,则13S 的值为( ) A .8B .13C .26D .1624.已知数列{}n a 满足112a =,121n n a a n n +=++,则n a =( )A .312n- B .321n -+ C .111n -+ D .312n+ 5.已知定义在R 上的函数()f x 是奇函数,且满足3()(),(1)32f x f x f -=-=,数列{}n a 满足11a =,且21n nS a n n=-,(n S 为{}n a 的前n 项和,*)n N ∈,则56()()f a f a +=( )A .1B .3C .-3D .06.十九世纪下半叶集合论的创立,奠定了现代数学的基础.著名的“康托三分集”是数学理性思维的构造产物,具有典型的分形特征,其操作过程如下:将闭区间[0,1]均分为三段,去掉中间的区间段12(,)33,记为第一次操作;再将剩下的两个区间1[0,]3,2[,1]3分别均分为三段,并各自去掉中间的区间段,记为第二次操作;…,如此这样,每次在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷,剩下的区间集合即是“康托三分集”.若使去掉的各区间长度之和不小于910,则需要操作的次数n 的最小值为( )(参考数据:lg 20.3010=,lg30.4771=)A .4B .5C .6D .77.数列{}n a 是等差数列,51260a a =>,数列{}n b 满足123n n n n b a a a +++=,*n N ∈,设n S 为{}n b 的前n 项和,则当n S 取得最大值时,n 的值等于( )A .9B .10C .11D .128.已知正项数列{a n }的前n 项和为S n ,a 1>1,且6S n =a n 2+3a n +2.若对于任意实数a ∈[﹣2,2].不等式()2*1211+<+-∈+n a t at n N n 恒成立,则实数t 的取值范围为( ) A .(﹣∞,﹣2]∪[2,+∞) B .(﹣∞,﹣2]∪[1,+∞) C .(﹣∞,﹣1]∪[2,+∞) D .[﹣2,2]9.等比数列{} n a 的前n 项和为n S ,若63:3:1S S =,则93:S S =( ) A .4:1B .6:1C .7:1D .9:110.已知等差数列{}n a 中,50a >,470a a +<则{}n a 的前n 项和n S 的最大值为( ) A .4SB .5SC .6SD .7S11.设等比数列{}n a 的前n 项和为n S ,且510315S S ==,,则20S =( ) A .255B .375C .250D .20012.在公差不为零的等差数列{}n a 中,1a ,3a ,7a 依次成等比数列,前7项和为35,则数列{}n a 的通项n a 等于( ) A .nB .1n +C .21n -D .21n二、填空题13.数列{}n a 满足2121231722222n n a a a a n n -+++⋅⋅⋅+=-,若对任意0λ>,所有的正整数n 都有22n k a λλ-+>成立,则实数k 的取值范围是_________.14.数列{}n a 的前n 项和2n S n n =-+,则它的通项公式是n a =__________.15.设数列{}n a 是以4为首项,12为公比的等比数列,其前n 项和为{}n S ,则{}n S 的前n 项和为_________.16.将数列{2}n 与{32}n -的公共项从小到大排列得到数列{}n a ,则{}n a 的前n 项和n S =___.17.已知正项等比数列满足:,若存在两项使得,则的最小值为 .18.下表给出一个“直角三角形数阵”:满足每一列成等差数列,从第三行起,每一行的数成等比数列,且每一行的公比相等,记第i 行第j 列的数为(,)i j a (i ,j ∈N *),则(20,20)a =_____.19.根据下面的图形及相应的点数,写出点数构成的数列的一个通项公式n a =__________.20.等比数列{}n a 中,11a =,且2436a a a +=,则5a =________.三、解答题21.若数列{}n a ,12,a =且132n n a a +=+. (1)证明{}1n a +是等比数列; (2)设()131n n n a b n n +=⋅+,n T 是其前n 项和,求n T .22.设数列{}n a 的前n 项和为n S ,已知()*214,21n n S a S n N +==+∈.数列{}nb 是首项为1a ,公差不为零的等差数列,且127,,b b b 成等比数列. (1)求数列{}n a 和{}n b 的通项公式; (2)若nn nb c a =,数列{}n c 的前n 项和为n T ,且n T m <恒成立,求m 的取值范围. 23.已知等差数列{}n a 的前n 项和为n S ,若2512a a +=,424S S =. (1)求数列{}n a 的通项公式n a 及n S ; (2)若11n n n n a b S S ++=⋅,求数列{}n b 的前n 项和n T .24.已知数列{}n a 是等差数列,数列{}n b 是等比数列,且满足112a b ==,35730a a a ++=,2316b b a =.(1)求数列{}n a 与和{}n b 的通项公式;(2)设数列{}n a ,{}n b 的前n 项和分别为n S ,n T .①是否存在正整数k ,使得132k k k T T b +=++成立?若存在,求出k 的值,若不存在,请说明理由;②解关于n 的不等式n n S b ≥.25.已知数列{}n a 的前n 项和为n S ,点(),n n a s 在直线22y x =-,上n *∈N .(1)求{}n a 的通项公式;(2)若n n b n a =+,求数列{}n b 的前n 项和n T . 26.已知数列{}n a 满足1122n n n a a a +=+()N n *∈,11a =. (1)证明:数列1n a ⎧⎫⎨⎬⎩⎭为等差数列,并求数列{}n a 的通项公式.(2)若记n b 为满足不等式11122k nn a -⎛⎫⎛⎫<≤ ⎪ ⎪⎝⎭⎝⎭()N n *∈的正整数k 的个数,数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,求关于n 的不等式4032n S <的最大正整数解.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据等比数列的性质求解.在1q ≠-时,24264,,S S S S S --仍成等比数列. 【详解】设24,3S k S k ==,由数列{}n a 为等比数列(易知数列{}n a 的公比1q ≠-),得24264,,S S S S S --为等比数列又242,2S k S S k =-=644S S k ∴-= 67,S k ∴=647733S k S k ∴== 故选:B . 【点睛】结论点睛:数列{}n a 是等比数列,若0m S ≠,则232,,m m m m m S S S S S --成等比数列.简称等比数列的片断和仍成等比数列.注意{}n a 是等比数列与232,,m m m m m S S S S S --成等比数列之间不是充要条件.2.C解析:C 【分析】设等比数列的公比为q ,进而根据题意得()21lim lim31n n n n q S q→+∞→+∞-==-,且()0,1q ∈,从而解得13q =,故223a =【详解】解:设等比数列的公比为q ,显然1q ≠, 由于等比数列{}n a 中,12a = 所以等比数列{}n a 的前n 项和为:()()112111n n n a q q S qq--==--,因为无穷等比数列{}n a 的各项的和为3, 所以()21lim lim31n n n n q S q→+∞→+∞-==-,且()0,1q ∈,所以231q =-,解得13q =, 所以2123a a q ==. 故选:C. 【点睛】本题解题的关键在于根据题意将问题转化为()21lim lim31n n n n q S q→+∞→+∞-==-,且()0,1q ∈,进而根据极限得13q =,考查运算求解能力,是中档题. 3.B解析:B 【分析】先利用等差数列的下标和性质将35102a a a ++转化为()410724a a a +=,再根据()11313713132a a S a +==求解出结果.【详解】因为()351041072244a a a a a a ++=+==,所以71a =,又()1131371313131132a a S a +===⨯=, 故选:B. 【点睛】结论点睛:等差、等比数列的下标和性质:若()*2,,,,m n p q t m n p q t N+=+=∈,(1)当{}n a 为等差数列,则有2m n p q t a a a a a +=+=; (2)当{}n a 为等比数列,则有2m n p q t a a a a a ⋅=⋅=.4.A解析:A 【分析】利用已知条件得到121111n n a a n n n n +-==-++,再用累加法求出数列的通项,用裂项相消法求数的和. 【详解】 由121n n a a n n +=++得:121111n na a n n n n +-==-++, 即1111n n a a n n--=--, 所以()()()121321n n n a a a a a a a a -=+-+-++-111111*********n n n=+-+-++-=--. 故选:A . 【点睛】 方法点睛:递推公式求通项公式,有以下几种方法:型如:()1n n a a f n +-=的数列的递推公式,采用累加法求通项; 形如:()1n na f n a +=的数列的递推公式,采用累乘法求通项; 形如:1n n a pa q +=+ ()()10pq p -≠的递推公式,通过构造转化为()1n n a t p a t +-=-,构造数列{}n a t -是以1a t -为首项,p 为公比的等比数列,形如:1nn n a pa q +=+ ()()10pq p -≠的递推公式,两边同时除以1n q +,转化为1n n b mb t +=+的形式求通项公式;形如:11n n n n a a d a a ++=-,可通过取倒数转化为等差数列求通项公式.5.C解析:C 【分析】判断出()f x 的周期,求得{}n a 的通项公式,由此求得56()()f a f a +. 【详解】依题意定义在R 上的函数()f x 是奇函数,且满足3()()2f x f x -=,所以()333332222f x f x f x fx ⎛⎫⎛⎫⎛⎫⎛⎫+=---=--=-+ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭ ()()()32f x f x f x ⎛⎫=---=--= ⎪⎝⎭,所以()f x 是周期为3的周期函数.由21n n S a n n=-得2n n S a n =-①, 当1n =时,11a =,当2n ≥时,()1121n n S a n --=--②,①-②得11221,21n n n n n a a a a a --=--=+(2n ≥),所以21324354213,217,2115,2131a a a a a a a a =+==+==+==+=,652163a a =+=.所以56()()f a f a +=()()()()()()()316331013211013f f f f f f f +=⨯++⨯=+=--=-故选:C 【点睛】如果一个函数既是奇函数,图象又关于()0x a a =≠对称,则这个函数是周期函数,且周期为4a .6.C解析:C 【分析】依次求出第次去掉的区间长度之和,这个和构成一个等比数列,再求其前n 项和,列出不等式解之可得. 【详解】第一次操作去掉的区间长度为13;第二次操作去掉两个长度为19的区间,长度和为29;第三次操作去掉四个长度为127的区间,长度和为427;…第n 次操作去掉12n -个长度为13n 的区间,长度和为123n n -,于是进行了n 次操作后,所有去掉的区间长度之和为1122213933nn n n S -⎛⎫=++⋅⋅⋅+=- ⎪⎝⎭,由题意,902131n⎛⎫-≥ ⎪⎝⎭,即21lg lg1031n ≤=-,即()lg3lg21n -≥,解得:115.679lg3lg 20.47710.3010n ≥=≈--,又n 为整数,所以n 的最小值为6. 故选:C . 【点睛】本题以数学文化为背景,考查等比数列通项、前n 项和等知识及估算能力,属于中档题.7.D解析:D 【分析】由51260a a =>,得到首项和公差的关系以及公差的范围,然后求得通项公式,判断,n n a b 的正负,再利用通项与前n 项和关系求解.【详解】设数列{}n a 的公差为d , 因为51260a a =>,所以()1104116a a d d +=>+,即1625a d =-, 因为512a a >, 所以0d <,所以167(1)5n a n d n d a ⎛⎫=+-=-⎪⎝⎭, 当113n ≤≤时,0n a >,当14n ≥时,0n a <, 所以12101314...0...b b b b b >>>>>>>, 又因为()111213141215131405db b a a a a a a +=+=>, 所以1210S S >,故n S 中12S 最大 , 故选:D 【点睛】本题主要考查等差数列的通项公式以及数列前n 项和的最值问题,还考查逻辑推理的能力,属于中档题.8.A解析:A 【分析】根据a n 与S n 的关系,由6S n =a n 2+3a n +2,得6S n ﹣1=a n ﹣12+3a n ﹣1+2,两式相减整理得a n ﹣a n﹣1=3,由等差数列的定义求得a n 的通项公式,然后将不等式()2*1211+<+-∈+n a t at n N n 恒成立,转化为2t 2+at ﹣4≥0,对于任意的a ∈[﹣2,2],n ∈N *恒成立求解. 【详解】由6S n =a n 2+3a n +2,当n =1时,6a 1=a 12+3a 1+2.解得a 1=2, 当n ≥2时,6S n ﹣1=a n ﹣12+3a n ﹣1+2, 两式相减得6a n =a n 2+3a n ﹣(a n ﹣12+3a n ﹣1), 整理得(a n +a n ﹣1)(a n ﹣a n ﹣1﹣3)=0, 由a n >0,所以a n +a n ﹣1>0,所以a n ﹣a n ﹣1=3, 所以数列{a n }是以2为首项,3为公差的等差数列, 所以a n +1=2+3(n +1﹣1)=3n +2, 所以11n a n ++=321++n n =3﹣11n +<3, 因此原不等式转化为2t 2+at ﹣1≥3,对于任意的a ∈[﹣2,2],n ∈N *恒成立, 即为:2t 2+at ﹣4≥0,对于任意的a ∈[﹣2,2],n ∈N *恒成立, 设f (a )=2t 2+at ﹣4,a ∈[﹣2,2], 则f (2)≥0且f (﹣2)≥0,即有222020t t t t ⎧+-⎨--⎩,解得t ≥2或t ≤﹣2,则实数t 的取值范围是(﹣∞,﹣2]∪[2,+∞) 故选:A . 【点睛】本题主要考查数列与不等式的,a n 与S n 的关系,等差数列的定义,方程的根的分布问题,还考查了转化化归思想和运算求解的能力,属于中档题.9.C解析:C 【分析】利用等比数列前n 项和的性质k S ,2k k S S -,32k k S S -,43k k S S -,成等比数列求解.【详解】因为数列{} n a 为等比数列,则3S ,63S S -,96S S -成等比数列, 设3S m =,则63S m =,则632S S m -=,故633S S S -=96632S S S S -=-,所以964S S m -=,得到97S m =,所以937S S =. 故选:C. 【点睛】本题考查等比数列前n 项和性质的运用,难度一般,利用性质结论计算即可.10.B解析:B 【分析】根据50a >和470a a +<判断出数列的单调性,根据数列的单调性确定出n S 的最大值. 【详解】因为470a a +<,所以560a a +<,又因为50a >,所以60a <, 因为{}n a 为等差数列,所以650d a a =-<,所以{}n a 为单调递减数列, 所以n S 的最大值为5S , 故选:B. 【点睛】本题考查根据等差数列的单调性求解前n 项和的最大值,难度一般.求解等差数列前n 项和的最值,关键是分析等差数列的单调性,借助单调性可说明n S 有最大值还是最小值并且求解出对应结果.11.A解析:A 【分析】由等比数列的性质,510515102015,,,S S S S S S S ---仍是等比数列,先由51051510,,S S S S S --是等比数列求出15S ,再由10515102015,,S S S S S S ---是等比数列,可得20S . 【详解】由题得,51051510,,S S S S S --成等比数列,则有210551510()()S S S S S -=-,215123(15)S =-,解得1563S =,同理有215101052015()()()S S S S S S -=--,2204812(63)S =-,解得20255S =.故选:A 【点睛】本题考查等比数列前n 项和的性质,这道题也可以先由510315S S ==,求出数列的首项和公比q ,再由前n 项和公式直接得20S 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列单元测试卷注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.2.答题前,考生务必将自己的姓名、准考证号等信息填涂在答卷相应位置.第Ⅰ卷(选择题)一.选择题:本大题共12小题,每小题5分,共60分。
每小题给出的四个选项中,只有一项是符合题目要求的.1.数列3,5,9,17,33,…的通项公式a n等于( )A.2n B.2n+1 C.2n-1 D.2n+12.下列四个数列中,既是无穷数列又是递增数列的是( )A.1,12,13,14,…B.-1,2,-3,4,…C.-1,-12,-14,-18,…D.1,2,3,…,n3..记等差数列的前n项和为S n,若a1=1/2,S4=20,则该数列的公差d=________.( ) A.2 B.3 C.6 D.74.在数列{a n}中,a1=2,2a n+1-2a n=1,则a101的值为( )A.49 B.50 C.51 D.525.等差数列{a n}的公差不为零,首项a1=1,a2是a1和a5的等比中项,则数列的前10项之和是( )A.90 B.100 C.145 D.1906.公比为2的等比数列{a n}的各项都是正数,且a3a11=16,则a5=( )A.1 B.2 C.4 D.87.等差数列{a n }中,a 2+a 5+a 8=9,那么关于x 的方程:x 2+(a 4+a 6)x +10=0( ) A .无实根B.有两个相等实根 C .有两个不等实根 D .不能确定有无实根8.已知数列{a n }中,a 3=2,a 7=1,又数列⎩⎨⎧⎭⎬⎫11+a n 是等差数列,则a 11等于( ) A .0 B.12 C.23 D .-19.等比数列{a n }的通项为a n =2·3n -1,现把每相邻两项之间都插入两个数,构成一个新的数列{b n },那么162是新数列{b n }的( )A .第5项 B.第12项 C .第13项 D .第6项10.设数列{a n }是以2为首项,1为公差的等差数列,{b n }是以1为首项,2为公比的等比数列,则A .1 033 B.1 034 C .2 057 D .2 05811.设n S 为等差数列{}n a 的前n 项和,且28,171==S a .记[]n n a b lg =,其中[]x 表示不超过x 的最大整数,如[]09.0=,[]199lg =.则b 11的值为( ) A.11 B.1 C. 约等于1 D.212.我们把1,3,6,10,15,…这些数叫做三角形数,因为这些数目的点可以排成一个正三角形,如下图所示:则第七个三角形数是( )A .27 B.28 C .29 D .30第II 卷(非选择题)二、填空题(本题共4小题,每小题5分,共20分)13.若数列{a n }满足:a 1=1,a n +1=2a n (n ∈N *),则前8项的和S 8=________(用数字作答).14.数列{a n }满足a 1=1,a n =a n -1+n (n ≥2),则a 5=________.15.已知数列{a n }的前n 项和S n =-2n 2+n +2.则{a n }的通项公式a n =________16.在等差数列{a n }中,其前n 项的和为S n ,且S 6<S 7,S 7>S 8,有下列四个命题: ①此数列的公差d <0; ②S 9一定小于S 6; ③a 7是各项中最大的一项; ④S 7一定是S n 中的最大项.其中正确的命题是________.(填入所有正确命题的序号)三.解答题(共70分,解答应写出必要的文字说明、证明过程或演算步骤)17.(12分) (1) (全国卷)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,求S n(2) 已知{b n }是各项都是正数的等比数列,若b 1=1,且b 2,12b 3,2b 1成等差数列,求数列{b n }的通项公式.18.(12分)等比数列{a n }中,已知a 1=2,a 4=16,(1)求数列{a n }的通项公式; (2)若a 3,a 5分别为等差数列{b n }的第3项和第5项,试求数列{b n }的通项公式及前n 项和S n .19. (12分)已知等差数列{a n }前三项的和为-3,前三项的积为8. (1)求等差数列{a n }的通项公式;(2)若a 2,a 3,a 1成等比数列,求数列{|a n |}的前10项和.20.(12分)数列{a n }的前n 项和为S n ,数列{b n }中,b 1=a 1,b n =a n -a n -1(n ≥2),若a n +S n =n ,c n =a n -1.(1)求证:数列{c n }是等比数列; (2)求数列{b n }的通项公式.21.(12分)(全国卷)设数列{}n a 满足+3+…+(2n -1) =2n ,.(1)求{}n a 的通项公式; (2)求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和.22.(12分)数列{a n }满足a 1=1,a n +1=2n +1a na n +2n(n ∈N *).(1)证明:数列{2na n}是等差数列;(2)求数列{a n }的通项公式a n ;(3)设b n =n (n +1)a n ,求数列{b n }的前n 项和S n .数列单元测试卷(解答)一、选择题(共12小题,每小题5分,共60分)1.数列3,5,9,17,33,…的通项公式a n等于( )A.2n B.2n+1 C.2n-1 D.2n+1解析:选B 由于3=2+1,5=22+1,9=23+1,…,所以通项公式是a n=2n+1,故选B. 2.下列四个数列中,既是无穷数列又是递增数列的是( )A.1,12,13,14,…B.-1,2,-3,4,…C.-1,-12,-14,-18,…D.1,2,3,…,n解析:选C A为递减数列,B为摆动数列,D为有穷数列.3.记等差数列的前n项和为S n,若a1=1/2,S4=20,则该数列的公差d=________.( ) A.2 B.3 C.6 D.7解析:选B S4-S2=a3+a4=20-4=16,∴a3+a4-S2=(a3-a1)+(a4-a2)=4d=16-4=12,∴d=3.4.在数列{a n}中,a1=2,2a n+1-2a n=1,则a101的值为( )A.49 B.50 C.51 D.52解析:选D ∵2a n+1-2a n=1,∴a n+1-a n=12,∴数列{a n}是首项a1=2,公差d=12的等差数列,∴a101=2+12(101-1)=52.5.等差数列{a n}的公差不为零,首项a1=1,a2是a1和a5的等比中项,则数列的前10项之和是( )A.90 B.100 C.145 D.190解析:选B 设公差为d , ∴(1+d )2=1×(1+4d ), ∵d ≠0,∴d =2,从而S 10=100.6.公比为2的等比数列{a n }的各项都是正数,且a 3a 11=16,则a 5=( ) A .1 B.2 C .4 D .8解析:选A 因为a 3a 11=a 27,又数列{a n }的各项都是正数,所以解得a 7=4,由a 7=a 5·22=4a 5,求得a 5=1.7.等差数列{a n }中,a 2+a 5+a 8=9,那么关于x 的方程:x 2+(a 4+a 6)x +10=0( ) A .无实根B.有两个相等实根 C .有两个不等实根D .不能确定有无实根解析:选A 由于a 4+a 6=a 2+a 8=2a 5,即3a 5=9, ∴a 5=3,方程为x 2+6x +10=0,无实数解.8.已知数列{a n }中,a 3=2,a 7=1,又数列⎩⎨⎧⎭⎬⎫11+a n 是等差数列,则a 11等于( ) A .0 B.12 C.23 D .-1解析:选B 设数列{b n }的通项b n =11+a n ,因{b n }为等差数列,b 3=11+a 3=13,b 7=11+a 7=12,公差d =b 7-b 34=124, ∴b 11=b 3+(11-3)d =13+8×124=23,即得1+a 11=32,a 11=12.9.等比数列{a n }的通项为a n =2·3n -1,现把每相邻两项之间都插入两个数,构成一个新的数列{b n },那么162是新数列{b n }的( )A .第5项 B.第12项 C .第13项 D .第6项解析:选C 162是数列{a n }的第5项,则它是新数列{b n }的第5+(5-1)×2=13项.10.设数列{a n }是以2为首项,1为公差的等差数列,{b n }是以1为首项,2为公比的等比数列,则A .1 033 B.1 034 C .2 057 D .2 058 解析:选A 由已知可得a n =n +1,b n =2n -1,于是ab n =b n +1, 因此(b 1+1)+(b 2+1)+…+(b 10+1)=b 1+b 2+…+b 10+10=20+21+…+29+10 =1-2101-2+10=1 033.11.设n S 为等差数列{}n a 的前n 项和,且28,171==S a .记[]n n a b lg =,其中[]x 表示不超过x 的最大整数,如[]09.0=,[]199lg =.则b 11的值为( ) A.11 B.1 C. 约等于1 D.2解析:设{}n a 的公差为d ,据已知有1×72128d +=, 解得 1.d =所以{}n a 的通项公式为.n a n = b 11=[lg11 ]=112.我们把1,3,6,10,15,…这些数叫做三角形数,因为这些数目的点可以排成一个正三角形,如下图所示:则第七个三角形数是( )A .27 B.28 C .29 D .30解析:选 B 法一:∵a 1=1,a 2=3,a 3=6,a 4=10,a 5=15,a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,a 5-a 4=5,∴a 6-a 5=6,a 6=21,a 7-a 6=7,a 7=28. 法二:由图可知第n 个三角形数为n n +2,∴a 7=7×82=28.二、填空题(共4小题,每小题5分,共20分)13.若数列{a n }满足:a 1=1,a n +1=2a n (n ∈N *),则前8项的和S 8=________(用数字作答). 解析:由a 1=1,a n +1=2a n (n ∈N *)知{a n }是以1为首项,以2为公比的等比数列,由通项公式及前n 项和公式知S 8=a 1-q81-q=-281-2=255.答案: 25514.数列{a n }满足a 1=1,a n =a n -1+n (n ≥2),则a 5=________.解析:由a n =a n -1+n (n ≥2),得a n -a n -1=n .则a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,a 5-a 4=5,把各式相加,得a 5-a 1=2+3+4+5=14,∴a 5=14+a 1=14+1=15. 答案:1515.已知数列{a n }的前n 项和S n =-2n 2+n +2. 则{a n }的通项公式a n =________ [解] ∵S n =-2n 2+n +2,当n ≥2时,S n -1=-2(n -1)2+(n -1)+2 =-2n 2+5n -1, ∴a n =S n -S n -1=(-2n 2+n +2)-(-2n 2+5n -1) =-4n +3.又a 1=S 1=1,不满足a n =-4n +3, ∴数列{a n }的通项公式是a n =⎩⎪⎨⎪⎧1,n =1,-4n +3,n ≥2.16.在等差数列{a n }中,其前n 项的和为S n ,且S 6<S 7,S 7>S 8,有下列四个命题: ①此数列的公差d <0; ②S 9一定小于S 6; ③a 7是各项中最大的一项; ④S 7一定是S n 中的最大项.其中正确的命题是________.(填入所有正确命题的序号) 解析:∵S 7>S 6,即S 6<S 6+a 7,∴a 7>0.同理可知a 8<0. ∴d =a 8-a 7<0.又∵S 9-S 6=a 7+a 8+a 9=3a 8<0, ∴S 9<S 6.∵数列{a n }为递减数列,且a 7>0,a 8<0, ∴可知S 7为S n 中的最大项. 答案:①②④三、解答题(共4小题,共50分)17.(12分) (1) (全国卷)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,求S n(2) 已知{b n }是各项都是正数的等比数列,若b 1=1,且b 2,12b 3,2b 1成等差数列,求数列{b n }的通项公式.解: (1)设等差数列首项为a 1,公差为d, 则a 4+a 5=2a 1+7d=24,①S 6=6a 1+d=6a 1+15d=48,②由①②得d=4.a 1=-2S N =-2n+n(n-1) ×4/2=2n 2-4n(2)由题意可设公比为q ,则q >0,由b 1=1,且b 2,12b 3,2b 1成等差数列得b 3=b 2+2b 1,∴q 2=2+q ,解得q =2或q =-1(舍去), 故数列{b n }的通项公式为b n =1×2n -1=2n -1.18.(12分)等比数列{a n }中,已知a 1=2,a 4=16,(1)求数列{a n }的通项公式; (2)若a 3,a 5分别为等差数列{b n }的第3项和第5项,试求数列{b n }的通项公式及前n 项和S n .解:(1)设{a n }的公比为q ,由已知得16=2q 3,解得q =2, ∴a n =2n.(2)由(1)得a 3=8,a 5=32, 则b 3=8,b 5=32. 设{b n }的公差为d ,则有⎩⎪⎨⎪⎧b 1+2d =8, b 1+4d =32,解得⎩⎪⎨⎪⎧b 1=-16,d =12.从b n =-16+12(n -1)=12n -28, 所以数列{b n }的前n 项和S n =n -16+12n -2=6n 2-22n .19. (12分)已知等差数列{a n }前三项的和为-3,前三项的积为8. (1)求等差数列{a n }的通项公式;(2)若a 2,a 3,a 1成等比数列,求数列{|a n |}的前10项和. 解:(1)设等差数列{a n }的公差为d, 则a 2=a 1+d,a 3=a 1+2d,由题意得解得或所以由等差数列通项公式可得a n =2-3(n-1)=-3n+5,或a n =-4+3(n-1)=3n-7. 故a n =-3n+5,或a n =3n-7.(2)当a n =-3n+5时,a 2,a 3,a 1分别为-1,-4,2,不成等比数列; 当a n =3n-7时,a 2,a 3,a 1分别为-1,2,-4,成等比数列,满足条件. 故|a n |=|3n-7|=记数列{|a n |}的前n 项和为S n . S 10=|a 1|+|a 2|+|a 3|+|a 4|+……+|a 10|=4+1+(3×3-7)+(3×4-7)+……+(3×10-7) =5+[2×8+8×7×3/2] =10520.(12分)数列{a n }的前n 项和为S n ,数列{b n }中,b 1=a 1,b n =a n -a n -1(n ≥2),若a n +S n =n ,c n =a n -1.(1)求证:数列{c n }是等比数列; (2)求数列{b n }的通项公式.解:(1)证明:∵a 1=S 1,a n +S n =n ①, ∴a 1+S 1=1,得a 1=12.又a n +1+S n +1=n +1②,①②两式相减得2(a n +1-1)=a n -1,即a n +1-1a n -1=12,也即c n +1c n =12, 故数列{c n }是等比数列.(2)∵c 1=a 1-1=-12, ∴c n =-12n ,a n =c n +1=1-12n , a n -1=1-12n -1.故当n ≥2时,b n =a n -a n -1=12n -1-12n =12n . 又b 1=a 1=12, 所以b n =12n . 21.(12分)(全国卷)设数列{}n a 满足+3+…+(2n -1) =2n ,. (1)求{}n a 的通项公式;(2)求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和. 解:(1)因为+3+…+(2n -1)=2n ,故当n ≥2时,+3+…+(-3) =2(n -1) 两式相减得(2n -1)=2所以= (n≥2)又因题设可得 =2.从而{} 的通项公式为 =.(2)记 {}的前n 项和为 ,由(1)知 = = - .则 = - + - +…+ - = .22.(12分)数列{a n }满足a 1=1,a n +1=2n +1a n a n +2n (n ∈N *). (1)证明:数列{2n a n}是等差数列; (2)求数列{a n }的通项公式a n ;(3)设b n =n (n +1)a n ,求数列{b n }的前n 项和S n . 解:(1)证明:由已知可得a n +12n +1=a na n +2n , 即2n +1a n +1=2n a n+1,即2n +1a n +1-2na n =1. ∴数列{2n a n}是公差为1的等差数列. (2)由(1)知2na n =2a 1+(n -1)×1=n +1, ∴a n =2nn +1. (3)由(2)知b n =n ·2n . S n =1·2+2·22+3·23+…+n ·2n , 2S n =1·22+2·23+…+(n -1)·2n +n ·2n +1, 相减得-S n =2+22+23+…+2n -n ·2n +1 =-2n 1-2-n ·2n +1 =2n +1-2-n ·2n +1,∴S n =(n -1)·2n +1+2.。