数列单元测试卷-含答案

合集下载

数列单元测试卷

数列单元测试卷

数列单元测试卷1.已知等比数列{,384,3,}103==a a a n 中则该数列的通项n a = .2.设等比数列}{n a 的公比为q ,前n 项和为S n ,若S n+1,S n ,S n+2成等差数列,则q 的值为 .3. 等比数列{a n }的前n 项和S n =________;设a =a 11-q (q ≠1),则S n =________.4. 在等比数列{}a n 中,若S 4=1,S 8=3,则a 17+a 18+a 19+a 20的值为________.5. 已知{a n }是等比数列,a 2=2,a 5=14,则a 1a 2+a 2a 3+…+a n a n +1=________.6.已知n S 为等比数列{}n a 的前n 项和,364,243,362===n S a a ,则=n .7. 已知等比数列{a n }的公比q =2,a n =96,前n 项和S n =189,则这个数列共有________项,首项a 1=________. 8. 已知等比数列{a n }的首项为8,S n 是其前n 项的和,某同学经计算得S 2=20,S 3=36,S 4=65,后来该同学发现其中一个数算错了,则该数为________.9.等差数列}{n a 中,a 1=2,公差不为零,且a 1,a 3,a 11 恰好是某等比数列的前三项,那么该等比数列公比的值等于_______________________.10. 设等比数列{}a n 的前n 项和为S n ,已知S 4=1,S 8=17,则数列{}a n 的通项公式为________.11 . 已知等比数列{a n },a 2>a 3=1,则使不等式(a 1-1a 1)+(a 2-1a 2)+…+(a n -1a n)≥0成立的最大自然数n 为________.12. 如果lg x +lg x 2+…+lg x 10=110,那么lg x +lg 2x +…+lg 10x =________. 13.若数列{}n a 满足:1.2,111===+n a a a n n ,2,3….则=+++n a a a 21 .14.若互不相等的实数,,a b c 成等差数列,,,c a b 成等比数列,且310a b c ++=,则a = . 15. 已知nS 为等比数列{}n a 前n 项和,0>n a ,80=nS ,65602=n S ,前n 项中的数值最大的项为54,求100S .16.{a n }为等差数列,{b n }为等比数列,a 1=b 1 =1, a 2+a 4 =b 3,b 2b 4=a 3.分别求出{a n }及{b n }的前10项的和S 10及T 10.17.已知S n 是等比数列{a n }的前n 项和,S 3,S 9,S 6成等差数列,求证:a 2,a 8,a 5成等差数列.18.在等比数列{}n a 中,,400,60,364231>=+=n S a a a a 求n 的范围.19. 在等比数列{a n }中,S n 为前n 项和,a 1+a n =66,a 2a n -1=128,S n =126,求n 和公比q 的值.20.已知{a n }是首项为a 1,公比q (q ≠1)为正数的等比数列,其前n 项和为S n ,且有5S 2=4S 4,设b n =q +S n .(1)求q 的值;(2)数列{b n }能否为等比数列?若是,请求出a 1的值;若不是,请说明理由.21.(本小题满分16分)已知数列{a n }满足2122111()2222n n n na a a n N ++++⋅⋅⋅+=∈. (1) 求数列{a n }的通项公式;(2) 求数列{a n }的前n 项和S n .22.设数列{a n }是公差大于零的等差数列,已知a 1=2,a 3=a 22-10.(1)求数列{a n }的通项公式.(2)设数列{b n }是以函数y =4sin 2πx 的最小正周期为首项,以3为公比的等比数列,求数列{a n -b n }的前n 项和S n .数列单元测试卷参考答案: 1.3n 23-⨯; 2.2-;3. ⎩⎪⎨⎪⎧a 11-q n1-q q ≠1,na 1q =1.a -aq n4. 16 [提示] 由a 1⎝ ⎛⎭⎪⎫1-q 41-q =1,a 1⎝ ⎛⎭⎪⎫1-q 81-q =3,得1+q 4=3,q 4=2,所以a 17+a 18+a 19+a 20=a 1q 16+a 2q 16+a 3q 16+a 4q 16=q 16=24=16.5. 323⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫14n [提示] 由⎩⎪⎨⎪⎧a 1q =2,a 1q 4=14,解得⎩⎪⎨⎪⎧a 1=4,q =12.所以{a n a n +1}是首项为a 1a 2=8,公比为q 2=14的等比数列.6. 6[提示]3,12433151612==⎩⎨⎧⇒====q a q a a q a a 或3,11-=-=q a , 当3,11==q a 时,636431)31(1=⇒=--=n S n n ; 当3,11-=-=q a 时,[]n S nn ⇒=+---=36431)3(11无整数解. 7. 6 3 [提示] 由189=S n =a 1(2n-1),96=a 1·2n -1,得a 1=3,n =6.8. S 3 9.4 10.-1n·2n -15或2n -115 [提示] 设公比为q ,易知q ≠1.由S 4=1,S 8=17,得a 11-q 41-q =1,a 11-q 81-q=17,相除,得q 4+1=17,q =±2.当q =2时,a 1=115,a n =2n -115;当q =-2时,a 1=-15,a n =-1n·2n -15. 11. n =5 [提示] 由a 1+a 2+…+a n ≥1a 1+1a 2+…+1a n ,得a 11-q n 1-q ≥1a 1⎝ ⎛⎭⎪⎫1-1q n 1-1q.又由a 2>a 3=1,得0<q <1且a 1=1q2.代入可得q5-n≤1.又 0<q <1, ∴ n ≤5.12. 2046 [提示] 由题意,得lg x +lg 2x +…+lg 10x =2×1-2101-2=211-2=2046.13.12n - 14.-415. 由0>n a ,80=n S ,65602=n S ,知1≠q ,∴.65601)1(,801)1(2121=--==--=qq a S q q a S n n n n ∴81821122=⇒=--=nn n n n q q q S S , ∴1>q .又 前n 项中的数值最大的项为5411==-n n q a a ,∴321=q a . ∴ .133,21001001-=⇒==S q a16.∵ {a n }为等差数列,{b n }为等比数列, ∴ a 2+a 4=2a 3,b 3b 4=b 32. 而已知a 2+a 4=b 3,b 3b 4=a 3, ∴ b 3=2a 3,a 3=b 32. ∵ b 3≠0, ∴ b 3=12,a 3=14.由 a 1=1,a 3= 14 知{a n }的公差d =-38.∴ S 10=10a 1+10×92d =-558.由b 1=1,b 3= 12 知{b n }的公比为q =22或q =-22. 当q =22时,T 10=b 1(1-q 10)1-q =3132(2+2);当q =-22时,T 10=b 1(1-q 10)1-q =3132(2-2)17. 显然q ≠1,由S 3+S 6=2S 9,得a 11-q (1-q 3)+a 11-q (1-q 6)=2a 11-q (1-q 9), ∴ 1+1+q 3=2(1+q 3+q 6),2q 6+q 3=0. ∴ q 3=-12.∴ a 2+a 5=a 2+a 2q 3=a 2(1+q 3)=a 2⎝ ⎛⎭⎪⎫1-12=12a 2.a 8=a 2q 6=a 2⎝ ⎛⎭⎪⎫-122=14a 2.∴ a 2+a 5=2a 8.∴ a 2,a 8,a 5成等差数列.18. 22213222236,(1)60,0,6,110,3,a a a a q a a q q ==+=>=+==±当3q =时,12(13)2,400,3401,6,13nn n a S n n N -==>>≥∈-;当3q =-时,12[1(3)]2,400,(3)801,8,1(3)nn na S n n ---=-=>->≥--为偶数;∴为偶数且n n ,8≥.19. 在等比数列{a n }中,a 1·a n =a 2·a n -1=128.又a 1+a n =66,解得⎩⎪⎨⎪⎧a 1=2,a n =64或⎩⎪⎨⎪⎧a 1=64,a n =2.若a 1=2,a n =64,S n =126,则qn -1=32,1-q n=63(1-q ).将q n=32q 代入1-q n=63(1-q ),得q =2,n =6. 若a 1=64,a n =2,S n =126,则qn -1=132,32(1-q n)=63(1-q ). 将q n =q 32代入32(1-q n)=63(1-q ),得q =12,n =6.20. (1)由5S 2=4S 4,得 5a 11-q 21-q =4a 11-q 41-q,∴ 5(1-q 2)=4(1-q 4). ∴ q 2=14.又 q >0, ∴ q =12.(2)S n =a 11-q n 1-q =2a 1-a 1⎝ ⎛⎭⎪⎫12n -1,b n =q +S n =12+2a 1-a 1⎝ ⎛⎭⎪⎫12n -1.若{b n }成等比数列,则12+2a 1=0,∴ a 1=-14.此时b n =⎝ ⎛⎭⎪⎫12n +1,b n +1b n =⎝ ⎛⎭⎪⎫12n +2⎝ ⎛⎭⎪⎫12n +1=12. ∴ {b n }成等比数列.故存在实数a 1=-14,使{b n }成等比数列.21.解:(1)n=1时,2111122a +=,得12a =;………………………2分n ≥2时,21221112222n n n na a a +++⋅⋅⋅+=,①2212121111(1)(1)22222n n n n n na a a ---+--++⋅⋅⋅+==,② ①-②得12nn a n =,2nn a n =⋅, 故2,12,2n nn a n n =⎧=⎨⋅≥⎩,即2n n a n =⋅(n N *∈)………………………8分 (2)1212222nn S n =⨯+⨯++⋅ ③23121222(1)22n n n S n n +=⨯+⨯++-⋅+⋅ ④③-④得1231121212122nn n S n +-=⨯+⨯+⨯++⋅-⋅ ……………12分112(12)2(1)2212n n n n n ++-=-⋅=-⋅--……………14分故1(1)22n n S n +=-⋅+……………16分22.【解】 (1)设数列{a n }的公差为d ,则⎩⎪⎨⎪⎧a 1=2,a 1+2d =(a 1+d )2-10,解得d =2或d =-4(舍), 所以a n =2+(n -1)×2=2n . (2)因为y =4sin 2πx =4×1-cos 2πx 2=-2cos 2πx +2,其最小正周期为2π2π=1,故首项为1,因为公比为3,从而b n =3n -1,所以a n -b n =2n -3n -1,故S n =(2-30)+(4-31)+…+(2n -3n -1)=(2+2n )n 2-1-3n 1-3=n 2+n +12-3n 2.。

(15)“ 数列”单元测试题

(15)“ 数列”单元测试题

北大附中广州实验学校2008—2009高三第一轮复习“数列”单元测试题一、选择题:(每小题5分,计50分)1. n 285(A)4 (B)5 (C)6 (D)72.(2008福建理)设{a n }是公比为正数的等比数列,若11=a ,a 5=16,则数列{a n }前7项的和为( )A.63B.64C.127D.1283.(2007辽宁文、理)设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++=( )A .63B .45C .36D .274、(2008海南、宁夏文、理)设等比数列{}n a 的公比2q =, 前n 项和为n S ,则42S a =( ) A. 2B. 4C. 152D. 1725.(1994全国文、理)某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个).经过3个小时,这种细菌由1个可繁殖成-( )A.511个B.512个C.1023个D.1024个6.(2001天津、江西、山西文、理)若S n 是数列{a n }的前n 项和,且,2n S n =则}{n a 是( ) (A )等比数列,但不是等差数列 (B )等差数列,但不是等比数列 (C )等差数列,而且也是等比数列 (D )既非等比数列又非等差数列7.(2003全国文、天津文、广东、辽宁)等差数列{}n a 中,已知31a 1=,4a a 52=+,33a n =,则n 为( )(A )48 (B )49 (C )50(D )518.(2006北京文)如果-1,a,b,c ,-9成等比数列,那么( )(A )b =3,ac =9 (B)b =-3,ac =9 (C)b =3,ac =-9 (D)b =-3,ac =-99.(2004春招安徽文、理)已知数列}{n a 满足01a =,011n n a a a a -=+++ (1n ≥),则当1n ≥时,n a =( ) (A )2n (B )(1)2n n + (C )12-n (D )12-n10.(2006江西文)在各项均不为零的等差数列{}n a 中,若2110(2)n n n a a a n +--+=≥,则214n S n --=( ) A.2-B.0C.1D.211.(2007北京文)若数列{}n a 的前n 项和210(123)n S n n n =-= ,,,,则此数列的通项公式为 .12.(2006重庆理)在数列{a n }中,若a 1=1,a n +1=2a n +3 (n ≥1),则该数列的通项a n =_________.13.(2007江西理)已知数列{a n }对于任意p ,q ∈N *,有a p +a q =a p+q ,若a 1=91,则a 36= .14.(2004春招上海)根据下列5个图形及相应点的个数的变化规律,试猜测第n 个图中有_____ _________________个点.三、解答题:(15、16题各12分,其余题目各14分)15.(2008浙江文)已知数列{}n x 的首项13x =,通项2n n x p nq =+(,,n N p q *∈为常数),且145,,x x x 成等差数列,求: (Ⅰ),p q 的值; (Ⅱ)数列{}n x 的前n 项的和n S 的公式。

《数列》单元测试题(含答案解析)

《数列》单元测试题(含答案解析)

《数列》单元练习试题一、选择题1.已知数列}{n a 的通项公式432--=n n a n (∈n N *),则4a 等于( )(A )1 (B )2 (C )3 (D )02.一个等差数列的第5项等于10,前3项的和等于3,那么( )(A )它的首项是2-,公差是3 (B )它的首项是2,公差是3- (C )它的首项是3-,公差是2 (D )它的首项是3,公差是2- 3.设等比数列}{n a 的公比2=q ,前n 项和为n S ,则=24a S ( ) (A )2 (B )4 (C )215 (D )2174.设数列{}n a 是等差数列,且62-=a ,68=a ,n S 是数列{}n a 的前n 项和,则( )(A )54S S < (B )54S S = (C )56S S < (D )56S S = 5.已知数列}{n a 满足01=a ,1331+-=+n n n a a a (∈n N *),则=20a ( )(A )0 (B )3- (C )3 (D )236.等差数列{}n a 的前m 项和为30,前m 2项和为100,则它的前m 3项和为( )(A )130 (B )170 (C )210 (D )2607.已知1a ,2a ,…,8a 为各项都大于零的等比数列,公比1≠q ,则( )(A )5481a a a a +>+ (B )5481a a a a +<+(C )5481a a a a +=+ (D )81a a +和54a a +的大小关系不能由已知条件确定 8.若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( )(A )13项 (B )12项 (C )11项 (D )10项9.设}{n a 是由正数组成的等比数列,公比2=q ,且30303212=⋅⋅⋅⋅a a a a ,那么30963a a a a ⋅⋅⋅⋅ 等于( )(A )210(B )220(C )216(D )21510.古希腊人常用小石子在沙滩上摆成各种形状来研究数,比如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16,…这样的数为正方形数.下列数中既是三角形数又是正方形数的是( )二、填空题11.已知等差数列}{n a 的公差0≠d ,且1a ,3a ,9a 成等比数列,则1042931a a a a a a ++++的值是.12.等比数列}{n a 的公比0>q .已知12=a ,n n n a a a 612=+++,则}{n a 的前4项和=4S . 13.在通常情况下,从地面到10km 高空,高度每增加1km ,气温就下降某一固定值.如果1km 高度的气温是8.5℃,5km 高度的气温是-17.5℃,那么3km 高度的气温是℃. 14.设21=a ,121+=+n n a a ,21n n n a b a +=-,∈n N *,则数列}{n b 的通项公式=n b . 15.设等差数列}{n a 的前n 项和为n S ,则4S ,48S S -,812S S -,1216S S -成等差数列.类比以上结论有:设等比数列}{n b 的前n 项积为n T ,则4T ,,,1216T T 成等比数列. 三、解答题16.已知}{n a 是一个等差数列,且12=a ,55-=a .(Ⅰ)求}{n a 的通项n a ;(Ⅱ)求}{n a 的前n 项和n S 的最大值.17.等比数列}{n a 的前n 项和为n S ,已知1S ,3S ,2S 成等差数列.(Ⅰ)求}{n a 的公比q ; (Ⅱ)若331=-a a ,求n S .18.甲、乙两物体分别从相距70m 的两处同时相向运动.甲第1分钟走2m ,以后每分钟比前1分钟多走1m ,乙每分钟走5m .(Ⅰ)甲、乙开始运动后几分钟相遇?(Ⅱ)如果甲、乙到达对方起点后立即折返,甲继续每分钟比前1分钟多走1m ,乙继续每分钟走5m ,那么开始运动几分钟后第二次相遇?19.设数列}{n a 满足333313221n a a a a n n =++++- ,∈n N *. (Ⅰ)求数列}{n a 的通项;(Ⅱ)设nn a nb =,求数列}{n b 的前n 项和n S .20.设数列}{n a 的前n 项和为n S ,已知11=a ,241+=+n n a S .(Ⅰ)设n n n a a b 21-=+,证明数列}{n b 是等比数列; (Ⅱ)求数列}{n a 的通项公式.21.已知数列{}n a 中,12a =,23a =,其前n 项和n S 满足1121n n n S S S +-+=+(2n ≥,*n ∈N ).(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设n an n n b 2)1(41⋅-+=-λ(λ为非零整数,*n ∈N ),试确定λ的值,使得对任意*n ∈N ,都有n n b b >+1成立.数列测试题一、选择题(每小题5分,共60分)1.等差数列{a n }中,若a 2+a 8=16,a 4=6,则公差d 的值是( )A .1B .2C .-1D .-22.在等比数列{a n }中,已知a 3=2,a 15=8,则a 9等于( )A .±4B .4C .-4D .163.数列{a n }中,对所有的正整数n 都有a 1·a 2·a 3…a n =n 2,则a 3+a 5=( )A.6116B.259C.2519D.31154.已知-9,a 1,a 2,-1四个实数成等差数列,-9,b 1,b 2,b 3,-1五个实数成等比数列,则b 2(a 2-a 1)=( )A .8B .-8C .±8D.985.等差数列{a n }的前n 项和为S n ,若a 2+a 7+a 12=30,则S 13的值是( )A .130B .65C .70D .756.设等差数列{a n }的前n 项和为S n .若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( )A .6B .7C .8D .97.已知{a n }为等差数列,其公差为-2,且a 7是a 3与a 9的等比中项,S n 为{a n }的前n 项和,n ∈N +,则S 10的值为( )8.等比数列{a n }是递减数列,前n 项的积为T n ,若T 13=4T 9,则a 8a 15=( )A .±2B .±4 C.2D .49.首项为-24的等差数列,从第10项开始为正数,则公差d 的取值围是( ) A .d >83 B .d <3C.83≤d <3D.83<d ≤3 10.等比数列{}n a 中,首项为1a ,公比为 q ,则下列条件中,使{}n a 一定为递减数列的条件是( ) A .1q < B 、10,1a q >< C 、10,01a q ><<或10,1a q <> D 、1q >11. 已知等差数列{}n a 共有21n +项,所有奇数项之和为130,所有偶数项之和为120,则n 等于( )A.9B.10C.11D.12 12.设函数f (x )满足f (n +1)=2)(2nn f + (n ∈N +),且f (1)=2,则f (20)为( ) A .95B .97C .105D .192二、填空题(每小题5分,共20分.把答案填在题中的横线上)13.已知等差数列{a n }满足:a 1=2,a 3=6.若将a 1,a 4,a 5都加上同一个数,所得的三个数依次成等比数列,则所加的这个数为________. 14.已知数列{a n } 中,a 1=1且31111+=+n n a a (n ∈ N +),则a 10= 15.在数列{a n }中,a 1=1,a 2=2,且满足)2)(1(31≥-=+-n n a a n n ,则数列{a n }的通项公式为=n a 16.已知数列满足:a 1=1,a n +1=a na n +2,(n ∈N *),若b n +1=(n -λ)⎝ ⎛⎭⎪⎫1a n +1,b 1=-λ,且数列{b n }是单调递增数列,则实数λ的取值围为三、解答题(本大题共70分.解答应写出必要的文字说明、证明过程或演算步骤) 17.(10分)在数列{a n }中,a 1=8,a 4=2,且满足a n +2-2a n +1+a n =0(n ∈N +). (1)求数列{a n }的通项公式;(2)求数列{a n }的前20项和为S 20.18.(12分)已知数列}{n a 前n 项和n n S n 272-=,(1)求|}{|n a 的前11项和11T ;(2) 求|}{|n a 的前22项和22T ;19.(12分)已知数列}{n a 各项均为正数,前n 项和为S n ,且满足2S n =2n a + n -4(n ∈N +). (1)求证:数列}{n a 为等差数列;(2)求数列}{n a 的前n 项和S n .20.(12分)数列{}n a 的前n 项和记为n S ,()111,211n n a a S n +==+≥. (1)求{}n a 的通项公式;(2)等差数列{}n b 的各项为正,其前n 项和为n T ,且315T =,又112233,,a b a b a b +++成等比数列,求n T .21.(12分)已知数列{a n },{b n }满足a 1=2,2a n =1+a n a n +1,b n =a n -1(b n ≠0). (1)求证数列{1b n}是等差数列;(2)令11+=n n a c ,求数列{n c }的通项公式.22.(12分)在等差数列{}n a 中,已知公差2d =,2a 是1a 与4a 的等比中项. (1)求数列{}n a 的通项公式;(2)设(1)2n n n b a +=,记1234(1)nn n T b b b b b =-+-+-+-…,求n T .《数列》单元测试题 参考答案 一、选择题1.D 2.A 3.C 4.B5.B 6.C 7.A 8.A 9.B 10.C 二、填空题11.1613 12.21513.-4.5 14.12+n 15.48T T ,812T T 三、解答题16.(Ⅰ)设}{n a 的公差为d ,则⎩⎨⎧-=+=+.54,111d a d a 解得⎩⎨⎧-==.2,31d a ∴52)2()1(3+-=-⨯-+=n n a n .(Ⅱ)4)2(4)2(2)1(322+--=+-=-⨯-+=n n n n n n S n .∴当2=n 时,n S 取得最大值4.17.(Ⅰ)依题意,有3212S S S =+,∴)(2)(2111111q a q a a q a a a ++=++,由于01≠a ,故022=+q q ,又0≠q ,从而21-=q . (Ⅱ)由已知,得3)21(211=--a a ,故41=a ,从而])21(1[38)21(1])21(1[4n n n S --=----⨯=.18.(Ⅰ)设n 分钟后第1次相遇,依题意,有7052)1(2=+-+n n n n , 整理,得0140132=-+n n ,解得7=n ,20-=n (舍去). 第1次相遇是在开始运动后7分钟. (Ⅱ)设n 分钟后第2次相遇,依题意,有70352)1(2⨯=+-+n n n n , 整理,得0420132=-+n n ,解得15=n ,28-=n (舍去). 第2次相遇是在开始运动后15分钟.19.(Ⅰ)∵333313221na a a a n n =++++- ,① ∴当2≥n 时,31333123221-=++++--n a a a a n n . ② 由①-②,得3131=-n n a ,n n a 31=.在①中,令1=n ,得311=a .∴n n a 31=,∈n N *. (Ⅱ)∵nn a n b =,∴n n n b 3⋅=,∴nn n S 33332332⋅++⨯+⨯+= ,③ ∴14323333233+⋅++⨯+⨯+=n n n S . ④即31)31(3321---⋅=+n n n n S ,∴4343)12(1+-=+n n n S . 20.(Ⅰ)由11=a ,241+=+n n a S ,有24121+=+a a a ,∴52312=+=a a ,∴32121=-=a a b .∵241+=+n n a S ,①∴241+=-n n a S (2≥n ), ②由①-②,得1144-+-=n n n a a a ,∴)2(2211-+-=-n n n n a a a a ,∵n n n a a b 21-=+,∴12-=n n b b ,∴数列}{n b 是首项为3,公比为2的等比数列.(Ⅱ)由(Ⅰ),得11232-+⋅=-=n n n n a a b ,∴432211=-++n n n n a a , ∴数列}2{nn a 是首项为21,公差为43的等差数列, ∴414343)1(212-=⨯-+=n n a nn ,∴22)13(-⋅-=n n n a . 21.(Ⅰ)由已知,得()()111n n n n S S S S +----=(2n ≥,*n ∈N ),即11n n a a +-=(2n ≥,*n ∈N ),且211a a -=,∴数列{}n a 是以12a =为首项,1为公差的等差数列,∴1n a n =+.(Ⅱ)∵1n a n =+,∴114(1)2n n n n b λ-+=+-⋅,要使n n b b >+1恒成立,∴()()112114412120n n n n n n n n b b λλ-++++-=-+-⋅--⋅>恒成立, ∴()11343120n nn λ-+⋅-⋅->恒成立,∴()1112n n λ---<恒成立.(ⅰ)当n 为奇数时,即12n λ-<恒成立,当且仅当1n =时,12n -有最小值为1,∴1λ<.(ⅱ)当n 为偶数时,即12n λ->-恒成立,当且仅当2n =时,12n --有最大值2-,∴2λ>-.∴21λ-<<,又λ为非零整数,则1λ=-.综上所述,存在1λ=-,使得对任意*n ∈N ,都有1n n b b +>.数列试题答案1---12:BBAB AAD C DCDB13---16:-11,41,⎪⎪⎩⎪⎪⎨⎧--=)(223)(213为偶数为奇数n n n n a n ,λ<2 17.解:(1)∵数列{a n }满足a n +2-2a n +1+a n =0,∴数列{a n }为等差数列,设公差为d .∴a 4=a 1+3d ,d 2-8=-2.∴a =a +(n -1)d =8-2(n -1)=10-2n .(2) S =)9(n n -得S = -22018.解:n n S n 272-=282-=∴n a n ∴当14<n 时,0<n a 14≥n 时0≥n a(1)||||||112111a a a T +++= 176)(11111=-=++-=S a a (2)|)||(|)||||(|2214132122a a a a a T ++++++=2215141321)(a a a a a a +++++++-= 132213S S S -+-=25421322=-=S S19.(1)证明:当n=1时,有2a 1=+1-4,即-2a 1-3=0,解得a 1=3(a 1=-1舍去). 当n ≥2时,有2S n-1=+n-5,又2S n =+n-4,两式相减得2a n =-+1,即-2a n +1=,也即(a n -1)2=,因此a n -1=a n-1或a n -1=-a n-1.若a n -1=-a n-1,则a n +a n-1=1.而a 1=3,所以a 2=-2,这与数列{a n }的各项均为正数相矛盾, 所以a n -1=a n-1,即a n -a n-1=1,因此数列{a n }为等差数列.(2)解:由(1)知a 1=3,d=1,所以数列{a n }的通项公式a n =3+(n-1)×1=n+2,即a n =n+2.得252nn S n +=21.(1)证明:∵b n =a n -1,∴a n =b n +1.又∵2a n =1+a n a n +1,∴2(b n +1)=1+(b n +1)(b n +1+1).化简得:b n -b n +1=b n b n +1.∵b n ≠0,∴b n b n b n +1-b n +1b n b n +1=1.即1b n +1-1b n=1(n ∈N +). 又1b 1=1a 1-1=12-1=1,∴{1b n }是以1为首项,1为公差的等差数列. (2)∴1b n =1+(n -1)×1=n .∴b n =1n .∴a n =1n +1=n +1n.∴1211+=+=n na c n n。

数列单元能力测试(一)doc

数列单元能力测试(一)doc

数列单元能力测试(一)命题人 蒋红伟一、选择题(5×10=50分)1.在等比数列{}n a 中,953,16,4a a a 则===( ) A .256 B .-256 C .128 D .-1282.设{}n a 是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是( ) A .1 B .2 C .4 D .63.设数列11,,321,211++⋅⋅⋅++n n ,n n S S n 则项和为的前,⋅⋅⋅等于( ) A .n n -+1 B .n n ++1 C .11-+n D .11++n 4.12+与12-,两数的等比中项是( ) A .1 B .1- C .1± D .21 5.等差数列{}n a 的各项都是负数且8328232a a a a ++=9,那么它的前10项和n S 等于( )A .-9B .-11C .-13D .-156.等差数列{}n a 中,2=d ,且431,,a a a 成等比数列,则=2a ( ) A .4-B .6-C .8-D .10-7.若数列{a n }的通项公式为a n =n (n -1)·…·2·110n,则{a n }为( ) A .递增数列 B .递减数列 C .从某项后为递减 D .从某项后为递增8.已知{}n a 满足对一切正整数n 均有n n a a >+1且n n a n λ+=2恒成立,则实数λ的范围是( ) A .0>λ B .0<λ C .1->λ D .3->λ 9.数列{}n a 的通项公式为)34()1(1--=-n a n n ,则=100S ( ) A .-200 B .200 C .400 D .-40010.设502,1,,a a a ⋅⋅⋅是从-1,0,1这三个整数中取值的数列,若95021=+⋅⋅⋅++a a a 且21)1(+a +107)1()1(25022=++⋅⋅⋅++a a ,则,,,21⋅⋅⋅a a 50a 中有0的个数为( )A .10B .11C .12D .13二、填空题(5×5=25分)11.在等比数列{}n a 中, 若,15,393==a a 则15a =___________12.等差数列{}n a 中50,102010==S S ,则30S =13.已知等差数列{}n a 的前17项和,5117=S 则=+-+-1311975a a a a a 14.已知数列{a n }的通项公式n a n n +=2,则其前n 项和=n S15..已知函数f (x )对任意x ∈R ,都有f (x )=1-f (1-x ),则f (-2)+f (-1)+f (0)+f (1)+f (2)+f (3)=___三、解答题(75分)16.(13分)等比数列{}n a 共有偶数项,且所有项之和是奇数项之和的3倍,前3项之积等于27,求这个等比数列的通项公式17.(13分){}n a 是公差为1的等差数列,{}n b 是公比为2的等比数列,n n Q P 、分别是{}n a 、{}n b 的前n 项和且45,41036+==Q P b a (1)求{}n a 的通项公式(2)若6b P n >,求n 的取值范围18.(本小题满分13分) (2012重庆文)已知{}n a 为等差数列,且13248,12,a a a a +=+=(1)求数列{}n a 的通项公式;(2)记{}n a 的前n 项和为n S ,若12,,k k a a S +成等比数列,求正整数k 的值.19.(12分)已知公差大于零的等差数列{}n a 的前n 项和为n S ,且满足22,1175243=+=⋅a a a a (1)求通项n a(2)若数列{}n b 是等差数列且cn S b nn +=,求非零常数c (3)求)()36()(1++∈⋅+=N n b n b n f n n的最大值20.(12分)已知数列{}n a 的各项均为正整数,且满足11),(22521=∈+-=++a N n na a a n n n 又(1)求4321,,,a a a a 的值并由此推测出{}n a 的通项公式(不要求证明) (2)设n n n S a b ,,11-==n b b b +⋅⋅⋅++21,求n S21.(12分)某渔业公司年初用98万元购买一艘捕鱼船,第一年各种费用为12万元,以后每年都增加4万元,每年捕鱼收益50万元. (1)问第几年开始获利?(2)若干年后,有两种处理方案:方案一:年平均获利最大时,以26万元出售该渔船;方案二:总纯收入获利最大时,以8万元出售该渔船.问哪种方案合算?数列单元能力测试(一)参考答案ABCCD BDDAB11.75 12.120 13.3 14. 2)1(221++-+n n n 15.3 16.解:设数列共有2n 项,奇数项和为1S ;由已知21111332,,n S S S qS S q =∴+=∴= 又()3121113327323222,,,.n n n a qa q a a --=∴=∴==⋅=⋅17.(1)2+=n a n (2)10≥n18. (Ⅰ)na =2n (Ⅱ)6k =【解析】(Ⅰ)设数列{}n a 的公差为d,由题意知112282412a d a d +=⎧⎨+=⎩ 解得12,2a d ==所以1(1)22(1)2n a a n d n n =+-=+-= (Ⅱ)由(Ⅰ)可得1()(22)(1)22n n a a n n nS n n ++===+ 因12,,k k a a S + 成等比数列,所以212k k a a S += 从而2(2)2(2)(3)k k k =++ ,即 2560k k --=解得6k = 或1k =-(舍去),因此6k = . 19.(1)34-=n a n (2)21-=c (3)491 20.(1)12+=n a n (2)1-21. 解:(1)由题意知,每年的费用是以12为首项,4为公差的等差数列.设纯收入与年数n 的关系为f (n ),则++-=1612[50)(n n f …9840298)]48(2-+-=-++n n n .由题知获利即为f (n )>0,由0984022>-+-n n ,得-10511051+<<n .∵n ∈N ,∴n =3,4,5,…,17.即第3年开始获利. (2)方案一:年平均收入)49(240)(nn n n f +-==. 由于1449249=⋅≥+nn n n ,当且仅当n =7时取“=”号.∴ 1214240)(=⨯-≤n n f (万元). 即前7年年平均收益最大,此时总收益为12×7+26=110(万元). 方案二:f (n )=22n -+40n -98=-22)10(-n +102.当n =10时,f (n )取最大值102,此时总收益为102+8=110(万元). 比较如上两种方案,总收益均为110万元,而方案一中n =7,故选方案一.。

中职数列单元测试题及答案

中职数列单元测试题及答案

中职数列单元测试题及答案一、选择题(每题2分,共10分)1. 等差数列的通项公式是:A. \( a_n = a_1 + (n-1)d \)B. \( a_n = a_1 + nd \)C. \( a_n = a_1 + (n-1) \times 2d \)D. \( a_n = a_1 + n \times 2d \)2. 等比数列的前n项和公式是:A. \( S_n = a_1 \times \frac{1 - r^n}{1 - r} \)B. \( S_n = a_1 \times \frac{1 - r^n}{r - 1} \)C. \( S_n = a_1 \times \frac{1 - r^n}{1 + r} \)D. \( S_n = a_1 \times \frac{1 - r^n}{r + 1} \)3. 已知等差数列的第3项为6,第5项为10,求第1项a1和公差d:A. \( a_1 = 2, d = 2 \)B. \( a_1 = 4, d = 1 \)C. \( a_1 = 2, d = 1 \)D. \( a_1 = 4, d = 2 \)4. 等比数列中,若第3项为8,第5项为32,则该数列的公比r为:A. 2B. 4C. 8D. 165. 一个数列的前5项分别为1, 3, 6, 10, 15,这个数列是:A. 等差数列B. 等比数列C. 既不是等差数列也不是等比数列D. 无法确定答案:1-5 A B A B C二、填空题(每题2分,共10分)6. 等差数列中,若第4项为-1,第7项为6,则第10项为________。

7. 等比数列中,若首项为2,公比为3,第5项为__________。

8. 已知数列{an}的通项公式为an = 2n - 1,求第6项a6的值为________。

9. 等差数列的前n项和公式为Sn = n(a1 + an)/2,若S5 = 40,a1 = 4,求第5项a5的值为________。

(完整版)数列单元测试卷含答案

(完整版)数列单元测试卷含答案

数列单元测试卷注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.2.答题前,考生务必将自己的姓名、准考证号等信息填涂在答卷相应位置.第Ⅰ卷(选择题)一.选择题:本大题共12小题,每小题5分,共60分。

每小题给出的四个选项中,只有一项是符合题目要求的.1.数列3,5,9,17,33,…的通项公式a n等于( )A.2n B.2n+1 C.2n-1 D.2n+12.下列四个数列中,既是无穷数列又是递增数列的是( )A.1,12,13,14,…B.-1,2,-3,4,…C.-1,-12,-14,-18,…D.1,2,3,…,n3..记等差数列的前n项和为S n,若a1=1/2,S4=20,则该数列的公差d=________.( ) A.2 B.3 C.6 D.74.在数列{a n}中,a1=2,2a n+1-2a n=1,则a101的值为( )A.49 B.50 C.51 D.525.等差数列{a n}的公差不为零,首项a1=1,a2是a1和a5的等比中项,则数列的前10项之和是( )A.90 B.100 C.145 D.1906.公比为2的等比数列{a n}的各项都是正数,且a3a11=16,则a5=( )A.1 B.2 C.4 D.87.等差数列{a n }中,a 2+a 5+a 8=9,那么关于x 的方程:x 2+(a 4+a 6)x +10=0( ) A .无实根B.有两个相等实根 C .有两个不等实根 D .不能确定有无实根8.已知数列{a n }中,a 3=2,a 7=1,又数列⎩⎨⎧⎭⎬⎫11+a n 是等差数列,则a 11等于( ) A .0 B.12 C.23 D .-19.等比数列{a n }的通项为a n =2·3n -1,现把每相邻两项之间都插入两个数,构成一个新的数列{b n },那么162是新数列{b n }的( )A .第5项 B.第12项 C .第13项 D .第6项10.设数列{a n }是以2为首项,1为公差的等差数列,{b n }是以1为首项,2为公比的等比数列,则A .1 033 B.1 034 C .2 057 D .2 05811.设n S 为等差数列{}n a 的前n 项和,且28,171==S a .记[]n n a b lg =,其中[]x 表示不超过x 的最大整数,如[]09.0=,[]199lg =.则b 11的值为( ) A.11 B.1 C. 约等于1 D.212.我们把1,3,6,10,15,…这些数叫做三角形数,因为这些数目的点可以排成一个正三角形,如下图所示:则第七个三角形数是( )A .27 B.28 C .29 D .30第II 卷(非选择题)二、填空题(本题共4小题,每小题5分,共20分)13.若数列{a n }满足:a 1=1,a n +1=2a n (n ∈N *),则前8项的和S 8=________(用数字作答).14.数列{a n }满足a 1=1,a n =a n -1+n (n ≥2),则a 5=________.15.已知数列{a n }的前n 项和S n =-2n 2+n +2.则{a n }的通项公式a n =________16.在等差数列{a n }中,其前n 项的和为S n ,且S 6<S 7,S 7>S 8,有下列四个命题: ①此数列的公差d <0; ②S 9一定小于S 6; ③a 7是各项中最大的一项; ④S 7一定是S n 中的最大项.其中正确的命题是________.(填入所有正确命题的序号)三.解答题(共70分,解答应写出必要的文字说明、证明过程或演算步骤)17.(12分) (1) (全国卷)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,求S n(2) 已知{b n }是各项都是正数的等比数列,若b 1=1,且b 2,12b 3,2b 1成等差数列,求数列{b n }的通项公式.18.(12分)等比数列{a n }中,已知a 1=2,a 4=16,(1)求数列{a n }的通项公式; (2)若a 3,a 5分别为等差数列{b n }的第3项和第5项,试求数列{b n }的通项公式及前n 项和S n .19. (12分)已知等差数列{a n }前三项的和为-3,前三项的积为8. (1)求等差数列{a n }的通项公式;(2)若a 2,a 3,a 1成等比数列,求数列{|a n |}的前10项和.20.(12分)数列{a n }的前n 项和为S n ,数列{b n }中,b 1=a 1,b n =a n -a n -1(n ≥2),若a n +S n =n ,c n =a n -1.(1)求证:数列{c n }是等比数列; (2)求数列{b n }的通项公式.21.(12分)(全国卷)设数列{}n a 满足+3+…+(2n -1) =2n ,.(1)求{}n a 的通项公式; (2)求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和.22.(12分)数列{a n }满足a 1=1,a n +1=2n +1a na n +2n(n ∈N *).(1)证明:数列{2na n}是等差数列;(2)求数列{a n }的通项公式a n ;(3)设b n =n (n +1)a n ,求数列{b n }的前n 项和S n .数列单元测试卷(解答)一、选择题(共12小题,每小题5分,共60分)1.数列3,5,9,17,33,…的通项公式a n等于( )A.2n B.2n+1 C.2n-1 D.2n+1解析:选B 由于3=2+1,5=22+1,9=23+1,…,所以通项公式是a n=2n+1,故选B. 2.下列四个数列中,既是无穷数列又是递增数列的是( )A.1,12,13,14,…B.-1,2,-3,4,…C.-1,-12,-14,-18,…D.1,2,3,…,n解析:选C A为递减数列,B为摆动数列,D为有穷数列.3.记等差数列的前n项和为S n,若a1=1/2,S4=20,则该数列的公差d=________.( ) A.2 B.3 C.6 D.7解析:选B S4-S2=a3+a4=20-4=16,∴a3+a4-S2=(a3-a1)+(a4-a2)=4d=16-4=12,∴d=3.4.在数列{a n}中,a1=2,2a n+1-2a n=1,则a101的值为( )A.49 B.50 C.51 D.52解析:选D ∵2a n+1-2a n=1,∴a n+1-a n=12,∴数列{a n}是首项a1=2,公差d=12的等差数列,∴a101=2+12(101-1)=52.5.等差数列{a n}的公差不为零,首项a1=1,a2是a1和a5的等比中项,则数列的前10项之和是( )A.90 B.100 C.145 D.190解析:选B 设公差为d , ∴(1+d )2=1×(1+4d ), ∵d ≠0,∴d =2,从而S 10=100.6.公比为2的等比数列{a n }的各项都是正数,且a 3a 11=16,则a 5=( ) A .1 B.2 C .4 D .8解析:选A 因为a 3a 11=a 27,又数列{a n }的各项都是正数,所以解得a 7=4,由a 7=a 5·22=4a 5,求得a 5=1.7.等差数列{a n }中,a 2+a 5+a 8=9,那么关于x 的方程:x 2+(a 4+a 6)x +10=0( ) A .无实根B.有两个相等实根 C .有两个不等实根D .不能确定有无实根解析:选A 由于a 4+a 6=a 2+a 8=2a 5,即3a 5=9, ∴a 5=3,方程为x 2+6x +10=0,无实数解.8.已知数列{a n }中,a 3=2,a 7=1,又数列⎩⎨⎧⎭⎬⎫11+a n 是等差数列,则a 11等于( ) A .0 B.12 C.23 D .-1解析:选B 设数列{b n }的通项b n =11+a n ,因{b n }为等差数列,b 3=11+a 3=13,b 7=11+a 7=12,公差d =b 7-b 34=124, ∴b 11=b 3+(11-3)d =13+8×124=23,即得1+a 11=32,a 11=12.9.等比数列{a n }的通项为a n =2·3n -1,现把每相邻两项之间都插入两个数,构成一个新的数列{b n },那么162是新数列{b n }的( )A .第5项 B.第12项 C .第13项 D .第6项解析:选C 162是数列{a n }的第5项,则它是新数列{b n }的第5+(5-1)×2=13项.10.设数列{a n }是以2为首项,1为公差的等差数列,{b n }是以1为首项,2为公比的等比数列,则A .1 033 B.1 034 C .2 057 D .2 058 解析:选A 由已知可得a n =n +1,b n =2n -1,于是ab n =b n +1, 因此(b 1+1)+(b 2+1)+…+(b 10+1)=b 1+b 2+…+b 10+10=20+21+…+29+10 =1-2101-2+10=1 033.11.设n S 为等差数列{}n a 的前n 项和,且28,171==S a .记[]n n a b lg =,其中[]x 表示不超过x 的最大整数,如[]09.0=,[]199lg =.则b 11的值为( ) A.11 B.1 C. 约等于1 D.2解析:设{}n a 的公差为d ,据已知有1×72128d +=, 解得 1.d =所以{}n a 的通项公式为.n a n = b 11=[lg11 ]=112.我们把1,3,6,10,15,…这些数叫做三角形数,因为这些数目的点可以排成一个正三角形,如下图所示:则第七个三角形数是( )A .27 B.28 C .29 D .30解析:选 B 法一:∵a 1=1,a 2=3,a 3=6,a 4=10,a 5=15,a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,a 5-a 4=5,∴a 6-a 5=6,a 6=21,a 7-a 6=7,a 7=28. 法二:由图可知第n 个三角形数为n n +12,∴a 7=7×82=28.二、填空题(共4小题,每小题5分,共20分)13.若数列{a n }满足:a 1=1,a n +1=2a n (n ∈N *),则前8项的和S 8=________(用数字作答). 解析:由a 1=1,a n +1=2a n (n ∈N *)知{a n }是以1为首项,以2为公比的等比数列,由通项公式及前n 项和公式知S 8=a 11-q 81-q =1·1-281-2=255.答案: 25514.数列{a n }满足a 1=1,a n =a n -1+n (n ≥2),则a 5=________.解析:由a n =a n -1+n (n ≥2),得a n -a n -1=n .则a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,a 5-a 4=5,把各式相加,得a 5-a 1=2+3+4+5=14,∴a 5=14+a 1=14+1=15. 答案:1515.已知数列{a n }的前n 项和S n =-2n 2+n +2. 则{a n }的通项公式a n =________ [解] ∵S n =-2n 2+n +2,当n ≥2时,S n -1=-2(n -1)2+(n -1)+2 =-2n 2+5n -1, ∴a n =S n -S n -1=(-2n 2+n +2)-(-2n 2+5n -1) =-4n +3.又a 1=S 1=1,不满足a n =-4n +3, ∴数列{a n }的通项公式是a n =⎩⎪⎨⎪⎧1,n =1,-4n +3,n ≥2.16.在等差数列{a n }中,其前n 项的和为S n ,且S 6<S 7,S 7>S 8,有下列四个命题: ①此数列的公差d <0; ②S 9一定小于S 6; ③a 7是各项中最大的一项; ④S 7一定是S n 中的最大项.其中正确的命题是________.(填入所有正确命题的序号) 解析:∵S 7>S 6,即S 6<S 6+a 7, ∴a 7>0.同理可知a 8<0. ∴d =a 8-a 7<0.又∵S 9-S 6=a 7+a 8+a 9=3a 8<0, ∴S 9<S 6.∵数列{a n }为递减数列,且a 7>0,a 8<0, ∴可知S 7为S n 中的最大项. 答案:①②④三、解答题(共4小题,共50分)17.(12分) (1) (全国卷)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,求S n(2) 已知{b n }是各项都是正数的等比数列,若b 1=1,且b 2,12b 3,2b 1成等差数列,求数列{b n }的通项公式.解: (1)设等差数列首项为a 1,公差为d, 则a 4+a 5=2a 1+7d=24,① S 6=6a 1+d=6a 1+15d=48,②由①②得d=4.a 1=-2S N =-2n+n(n-1) ×4/2=2n 2-4n(2)由题意可设公比为q ,则q >0,由b 1=1,且b 2,12b 3,2b 1成等差数列得b 3=b 2+2b 1,∴q 2=2+q ,解得q =2或q =-1(舍去), 故数列{b n }的通项公式为b n =1×2n -1=2n -1.18.(12分)等比数列{a n }中,已知a 1=2,a 4=16,(1)求数列{a n }的通项公式; (2)若a 3,a 5分别为等差数列{b n }的第3项和第5项,试求数列{b n }的通项公式及前n 项和S n .解:(1)设{a n }的公比为q ,由已知得16=2q 3,解得q =2, ∴a n =2n.(2)由(1)得a 3=8,a 5=32,则b 3=8,b 5=32. 设{b n }的公差为d ,则有⎩⎪⎨⎪⎧b 1+2d =8, b 1+4d =32,解得⎩⎪⎨⎪⎧b 1=-16,d =12.从b n =-16+12(n -1)=12n -28, 所以数列{b n }的前n 项和S n =n -16+12n -282=6n 2-22n .19. (12分)已知等差数列{a n }前三项的和为-3,前三项的积为8. (1)求等差数列{a n }的通项公式;(2)若a 2,a 3,a 1成等比数列,求数列{|a n |}的前10项和. 解:(1)设等差数列{a n }的公差为d, 则a 2=a 1+d,a 3=a 1+2d, 由题意得解得或所以由等差数列通项公式可得a n =2-3(n-1)=-3n+5,或a n =-4+3(n-1)=3n-7. 故a n =-3n+5,或a n =3n-7.(2)当a n =-3n+5时,a 2,a 3,a 1分别为-1,-4,2,不成等比数列; 当a n =3n-7时,a 2,a 3,a 1分别为-1,2,-4,成等比数列,满足条件. 故|a n |=|3n-7|=记数列{|a n |}的前n 项和为S n . S 10=|a 1|+|a 2|+|a 3|+|a 4|+……+|a 10|=4+1+(3×3-7)+(3×4-7)+……+(3×10-7) =5+[2×8+8×7×3/2] =10520.(12分)数列{a n }的前n 项和为S n ,数列{b n }中,b 1=a 1,b n =a n -a n -1(n ≥2),若a n +S n =n ,c n =a n -1.(1)求证:数列{c n }是等比数列; (2)求数列{b n }的通项公式.解:(1)证明:∵a 1=S 1,a n +S n =n ①,∴a 1+S 1=1,得a 1=12. 又a n +1+S n +1=n +1②,①②两式相减得2(a n +1-1)=a n -1,即a n +1-1a n -1=12,也即c n +1c n =12, 故数列{c n }是等比数列. (2)∵c 1=a 1-1=-12, ∴c n =-12n ,a n =c n +1=1-12n , a n -1=1-12n -1.故当n ≥2时,b n =a n -a n -1=12n -1-12n =12n . 又b 1=a 1=12, 所以b n =12n . 21.(12分)(全国卷)设数列{}n a 满足+3+…+(2n -1) =2n ,. (1)求{}n a 的通项公式;(2)求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和. 解:(1)因为+3+…+(2n -1)=2n ,故当n ≥2时, +3+…+(-3) =2(n -1) 两式相减得(2n -1)=2所以= (n≥2)又因题设可得 =2.从而{} 的通项公式为 =.(2)记 {}的前n 项和为 ,由(1)知 = = - . 则 = - + - +…+ - = .22.(12分)数列{a n }满足a 1=1,a n +1=2n +1a n a n +2n (n ∈N *). (1)证明:数列{2n a n}是等差数列; (2)求数列{a n }的通项公式a n ;(3)设b n =n (n +1)a n ,求数列{b n }的前n 项和S n . 解:(1)证明:由已知可得a n +12n +1=a na n +2n , 即2n +1a n +1=2n a n+1,即2n +1a n +1-2na n =1. ∴数列{2n a n}是公差为1的等差数列. (2)由(1)知2na n =2a 1+(n -1)×1=n +1, ∴a n =2nn +1. (3)由(2)知b n =n ·2n . S n =1·2+2·22+3·23+…+n ·2n , 2S n =1·22+2·23+…+(n -1)·2n +n ·2n +1, 相减得-S n =2+22+23+…+2n -n ·2n +1 =21-2n 1-2-n ·2n +1 =2n +1-2-n ·2n +1,∴S n =(n -1)·2n +1+2.。

数列》单元测试题(附答案解析).doc

数列》单元测试题(附答案解析).doc

《数列》单元练习试题一、选择题1.已知数列{ a n}的通项公式a n n23n 4 ( n N*),则a4等于()(A)1(B)2(C)3(D)02.一个等差数列的第 5 项等于 10,前 3 项的和等于 3,那么()( A)它的首项是 2 ,公差是 3 ( B)它的首项是 2 ,公差是 3 ( C)它的首项是 3 ,公差是 2 ( D)它的首项是 3 ,公差是 2S4()3.设等比数列{ a n}的公比q 2,前n项和为S n,则a2(A)2 (B)4 (C)15(D)17 2 24.设数列a n是等差数列,且a2 6 , a8 6 , S n是数列 a n 的前 n 项和,则()(A)S4 S5 (B)S4 S5(C)S6 S5 (D)S6 S5a n 3N*),则a20 ()5.已知数列{ a n}满足a10,a n 1 ( n3a n 1(A)0 (B)3 (C) 3 ( D) 326.等差数列a n的前 m 项和为30,前2m项和为100,则它的前3m 项和为()( A) 130 ( B)170 ( C) 210 ( D) 2607.已知a1,a2,,a8为各项都大于零的等比数列,公比q 1 ,则()( A)a1 a8 a4 a5 ( B)a1 a8 a4 a5( C)a1 a8 a4 a5 ( D)a1 a8和 a4 a5的大小关系不能由已知条件确定8.若一个等差数列前 3 项的和为 34,最后 3 项的和为146,且所有项的和为390,则这个数列有()( A)13 项(B)12 项(C) 11 项(D)10 项9.设{ a n}是由正数组成的等比数列,公比q 2 ,且 a1 a2 a3a30 230,那么a3 a6 a9 a30等于()( A) 210 ( B) 220 ( C) 216 ( D)21510.古希腊人常用小石子在沙滩上摆成各种形状来研究数,比如:他们研究过图 1 中的 1,3,6, 10,,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的 1,4,9, 16,这样的数为正方形数.下列数中既是三角形数又是正方形数的是()( A) 289 ( B) 1024 (C) 1225 ( D)1378 二、填空题11.已知等差数列{ a n}的公差d 0 ,且a1,a3,a9成等比数列,则a1 a3 a9的值是.a2 a4 a1012.等比数列{ a n}的公比q 0 .已知 a2 1, a n 2 a n 1 6a n,则 { a n } 的前4项和 S4 .13.在通常情况下,从地面到10km 高空,高度每增加1km ,气温就下降某一固定值.如果1km 高度的气温是℃,5km 高度的气温是-℃,那么3km 高度的气温是℃.14.设a1 2 , a n 1 2 , b n a n 2, n N*,则数列{ b n}的通项公式b n .a n 1 a n 115.设等差数列{ a n}的前n项和为S n,则S4 , S8 S4, S12 S8, S16 S12成等差数列.类比以上结论有:设等比数列{ b n} 的前 n 项积为 T n,则 T4,,, T16 成等比数列.T12三、解答题16.已知{ a n}是一个等差数列,且a2 1 , a5 5 .(Ⅰ)求 { a n } 的通项 a n;(Ⅱ)求 { a n } 的前 n 项和 S n的最大值.17.等比数列{ a n}的前n项和为S n,已知S1,S3,S2成等差数列.(Ⅰ)求 { a n } 的公比q;(Ⅱ)若 a1a3 3 ,求 S n.18.甲、乙两物体分别从相距70m 的两处同时相向运动.甲第1 分钟走 2m,以后每分钟比前 1 分钟多走 1m,乙每分钟走5m.(Ⅰ)甲、乙开始运动后几分钟相遇(Ⅱ)如果甲、乙到达对方起点后立即折返,甲继续每分钟比前 1 分钟多走1m ,乙继续每分钟走 5m,那么开始运动几分钟后第二次相遇19.设数列{ a n}满足a13a232a3 3n 1 a n n, n N*.3(Ⅰ)求数列 { a n } 的通项;(Ⅱ)设 b nn,求数列 { b n } 的前 n 项和 S n.a n20.设数列{ a n } 的前n 项和为S n,已知a1 1 , S n 1 4a n 2 .(Ⅰ)设b n a n 1 2a n,证明数列{ b n } 是等比数列;(Ⅱ)求数列{ a n} 的通项公式.21.已知数列a n中,a1 2,a2 3,其前 n 项和S n满足Sn 1Sn 12Sn 1 n 2,n N* ).((Ⅰ)求数列a n 的通项公式;(Ⅱ)设 b n 4 n ( 1) n 1 2a n(为非零整数, n N *),试确定的值,使得对任意n N * ,都有 b n 1 b n成立.数列测试题一、选择题 (每小题 5 分,共 60 分)1.等差数列 {a n}中,若 a2+ a8= 16, a4= 6,则公差 d 的值是 ( )A.1 B. 2 C.- 1 D.- 22.在等比数列 {a n}中,已知a3= 2, a15= 8,则 a9等于 ( )A.± 4 B.4 C.- 4 D. 163.数列 {a n }中,对所有的正整数 n 都有 a1·a2·a3 a n= n2,则 a3+a 5= ( )4.已知- 9,a ,a ,- 1 四个实数成等差数列,-9,b ,b ,b ,- 1 五个实数成等比数列,则 b (a1 2 1 2 3 2 2- a1)= ()A.8 B.- 8 C.± 85.等差数列 {a n}的前 n 项和为 S n,若 a2+ a7+ a12= 30,则 S13 的值是 ( )A.130 B.65 C. 70 D. 756.设等差数列 {a }的前 n 项和为 S .若 a =- 11, a + a =- 6,则当 S 取最小值时, n 等于 ( ) n n 1 46 nA.6 B.7 C. 8 D. 97.已知 {a n }为等差数列,其公差为-2,且 a7是 a3与 a9的等比中项, S n为 {a n}的前 n 项和, n∈ N+,则 S10的值为 ( )A.- 110 B.- 90 C. 90 D.1108.等比数列 {a }是递减数列,前 n 项的积为 T ,若 T = 4T ,则 a a 15 =()nn139 8A .± 2B .± 4C .2D . 489.首项为- 24 的等差数列, 从第 10 项开始为正数, 则公差 d 的取值范围是 ( ) A .d>3B .d<38 C.3≤d<3 <d ≤310.等比数列 a n 中,首项为 a 1 ,公比为 q ,则下列条件中,使 a n 一定为递减数列的条件是().q 1、 a 1 0, q 1、 a 1 0,0q 1 或 a 10, q 1、 q1A BCD11. 已知等差数列 a n 共有 2n 1 项,所有奇数项之和为 130,所有偶数项之和为 120 ,则 n 等于( )A. 9B. 10C. 11D. 1212.设函数 f(x)满足 f(n + 1)= 2 f (n) n (n ∈ N + ),且 f(1)= 2,则 f(20)为 ()2A . 95B . 97C . 105D . 192二、填空题 (每小题 5 分,共 20 分.把答案填在题中的横线上 )13.已知等差数列 {a n }满足: a 1= 2,a 3= 6.若将 a 1,a 4,a 5 都加上同一个数,所得的三个数依次成等 比数列,则所加的这个数为________.14.已知数列 {a } 中 ,a =1 且1 1 (n ∈ N ),则 a =n11+ 10a n1a n315.在数列 {a n }中,a 1=1,a 2=2 ,且满足 a n a n13( n 1)( n 2) ,则数列 {a n }的通项公式为 a na n , (n ∈N*116.已知数列满足: 1= 1, a n + 1n +1=(n - λ)+ 1 , b 1na=a n + 2 ),若 ba n=- λ,且数列 {b }是单调递增数列,则实数 λ的取值范围为三、解答题 (本大题共 70 分.解答应写出必要的文字说明、证明过程或演算步骤 )17.( 10 分)在数列 {a n }中, a 1=8, a 4=2,且满足 a n +2- 2a n + 1+ a n =0(n ∈ N +). (1) 求数列 {a }的通项公式; (2)求数列 {a }的前 20 项和为 Snn 20.18. (12 分)已知数列{ a n}前n 项和 S n n 2 27n ,(1)求{| a n|}的前11项和T11;(2) 求{| a n|}的前 22 项和T22 ;2 (n∈N ).19. (12 分)已知数列 { a n } 各项均为正数 ,前 n 项和为 S ,且满足 2S = a n + n-4n n +(1)求证 :数列{ a n}为等差数列 ;(2)求数列{ a n}的前 n 项和 S n.20. (12 分 )数列a 的前 n 项和记为 S ,a11,a n 12S n 1 n 1.n n( 1)求a n的通项公式;( 2)等差数列b n的各项为正,其前n 项和为 T n,且 T315 ,又a1b1 , a2b2 , a3b3成等比数列,求 T n.nn1nn n + 1nn- 1(b n≠ 0).21. (12 分)已知数列 {a },{b }满足 a = 2, 2a = 1+ a a , b = a 1(1) 求证数列 { }是等差数列;b n(2) 令 c n1 ,求数列 { c n }的通项公式.a n122.( 12 分)在等差数列 { a n } 中,已知公差d2 , a 2 是 a 1 与 a 4 的等比中项 .(1) 求数列 { a n } 的通项公式;(2) 设 b na n( n 1) ,记Tnb 1 b 2 b 3 b 4( 1)n b n ,求 T n .2《数列》单元测试题 参考答案一、选择题1.D2.A3.C 4.B 5.B 6.C 7.A8.A 9. B 10.C二、填空题11. 1312. 1513.-14. 2n 115.T 8 ,T12162T 4T 8三、解答题16(. Ⅰ)设 { a n } 的公差为 d ,则a 1 d 1 ,a 13 ,∴ a n3 (n1)(2)2n 5 .a 14d解得2 .5 .d(Ⅱ)S n3n n( n 1) ( 2) n 24n( n2) 2 4 .∴当 n 2 时, S n 取得最大值 4.217.(Ⅰ)依题意,有 S 1S 22S 3 ,∴ a 1 (a 1 a 1q) 2( a 1 a 1q a 1q 2 ) ,由于 a 10 ,故 2q 2q 0 ,又 q 0 ,从而 q1 . 214 [1 ( 1) n ] 81(Ⅱ)由已知,得 a 1a 1 ( ) 23 ,故 a 14 ,从而 S n2n ] .21[1 ()1(32)218.(Ⅰ)设 n 分钟后第 1 次相遇,依题意,有 2nn(n1)5n 70 ,2整理,得 n 213n 140 0 ,解得 n 7 , n20 (舍去).第 1 次相遇是在开始运动后7 分钟.(Ⅱ)设 n 分钟后第 2 次相遇,依题意,有2nn( n 1) 5n3 70 ,2整理,得 n 213 n 420 0 ,解得 n 15 , n28 (舍去).第 2 次相遇是在开始运动后15 分钟.19.( Ⅰ)∵ a 1 3a 2 32 a 33n 1 a n n ,①3∴当 n 2时, a 13a 2 32 a 33n 2 a n 1 n 1 .②3由① -② ,得3 n 1 1 ,a n1,得 a 11 a nn .在① 中,令 n 1.∴ a n333( Ⅱ )∵ b nn,∴ b n n 3n ,∴ S n32323 33n 3n ,a n∴ 3S n32 2 333 34n 3n 1 . ④由④ -③ ,得 2Sn 3n 1(3 32333n ) ,n13n ,nN * .③即 2S n n 3n 13(1 3n ) ,∴ S n(2n 1)3n 13 .1 34 420.( Ⅰ)由 a 1 1 , S n 14a n 2 ,有 a 1 a 24a 12 ,∴ a 2 3a 1 2 5 ,∴ b 1a 2 2a 1 3 .∵ S n 1 4a n2 ,①∴ S n4a n 12 ( n 2),②由 ① -② ,得 a n 1 4a n4a n 1 ,∴ a n 1 2a n 2(a n 2a n 1 ) ,∵ b na n 1 2a n ,∴b n2b n 1 ,∴数列 { b n } 是首项为 3 ,公比为 2 的等比数列.( Ⅱ )由( Ⅰ ),得 b na n2a n32 n 1a n 1 a n3 ,1,∴2n42n1a n } 是首项为 1 ,公差为 3的等差数列,∴数列 {242n∴a n1 (n1)3 31,∴ a n (3n1) 2 n 2 .2n2 4n4 421.(Ⅰ)由已知,得S n1S nS n S n 1 1( n 2 , n N * ),即 a n 1 a n 1 ( n2 , n N * ),且 a 2 a 1 1 ,∴数列 a n 是以 a 1 2 为首项, 1为公差的等差数列,∴a n n 1.(Ⅱ) ∵a nn1, ∴ b4n ( 1)n 12n 1 ,要使 bn 1b n 恒成立,n∴ b nb n 4n 1 4n1 n2n 2n 12n 10 恒成立,11∴ 3 4n3n 10 恒成立,∴1 n 12n 1 恒成立.12n 1(ⅰ)当 n 为奇数时,即2 n 1恒成立,当且仅当nn1有最小值为 , ∴1 .1时, 2 1(ⅱ)当 n 为偶数时,即2n 1 恒成立,当且仅当 n 2 时, 2n 1有最大值 2 , ∴2 .∴21,又 为非零整数,则1 .综上所述,存在1 ,使得对任意 n N * ,都有b n 1 b n .数列试题答案1--- 12: BBABAAD C DCDB3n 1 为奇数 )a n2 (n113---16 :- 11,,3n 2, λ<24为偶数2 (n)17.解: (1)∵数列 {a }满足 a- 2a +a = 0,∴ 数列 {a }为等差数列,设公差为 d.∴ a =a + 3d ,nn + 2n + 1nn412-8=- 2.∴ a n1n 20d = 3= a + (n - 1)d = 8- 2(n - 1)=10- 2n.(2) S = n(9 n) 得 S = - 22018.解: S nn 2 27 na n 2n 28 ∴当 n 14 时, a nn 14 时 a n 0(1) T 11 | a 1 | | a 2 | | a 11 |(a 1a 11 ) S 11 176(2) T 22(| a 1 | | a 2 | | a 13 |) ( a 14 || a 22 |)( a 1a 2a 13)a14 a15a22S13S22S 13S222S 1325419.(1) 证明 :当 n=1 时 ,有 2a =+1-4,即 -2a-3=0,解得 a =3( a =-1 舍去 ).[来源 :学11 1 1当 n ≥2时 ,有 2S n-1= +n-5,又 2S n = +n-4,两式相减得 2a n = - +1,即 -2a n +1=,也即 (a n -1)2 =,因此 a n -1=a n-1 或 a n -1=-a n-1 .若 a n -1=-a n-1,则 a n +a n-1=1.而 a 1 =3,所以 a 2 =-2,这与数列 {a n }的各项均为正数相矛盾 ,所以 a n -1=a n-1,即 a n -a n-1=1,因此数列 {a n }为等差数列 .(2) 解:由(1)知 a 1=3,d=1,所以数列 {a n }的通项公式 a n =3+(n-1)× 1=n+2,即a n=n+2.n 25n 得 S n221.(1) 证明: ∵ b = a -1,∴ a = b + 1.又 ∵2a = 1+a a, ∴ 2(b + 1)= 1+ (b + 1)(b+ 1).化简nnnnnn n + 1 nnn + 1得: b+ + b n - b n + 1 =1.即 1 - 1= 1(n ∈N + ).n - b n1= b n b n1.∵ b n ≠0, ∴ n n +1n n +1n + 1b nb bb bb又 1=1 =1=1, ∴{ 1 }是以 1 为首项, 1 为公差的等差数列.b 11b na - 1 2-1(2) ∴ 1 = 1+ (n - 1) 1 1 + 1= n + 1 .∴ c n1 n ×1=n.∴ b n =.∴ a n = n a n 1 2n 1b n n n。

数列单元测试题及答案解析

数列单元测试题及答案解析

数列单元测试题及答案解析一、选择题1. 已知等差数列的首项为a1=3,公差为d=2,求第10项的值。

A. 23B. 25C. 27D. 292. 等比数列的首项为a1=2,公比为r=3,求第5项的值。

A. 162B. 243B. 324D. 4863. 一个数列的前5项为1, 3, 6, 10, 15,这个数列是:A. 等差数列B. 等比数列C. 既不是等差数列也不是等比数列D. 无法判断二、填空题4. 等差数列的前n项和公式为:S_n = _______。

5. 等比数列的前n项和公式为:S_n = _______。

三、解答题6. 已知等差数列的前10项和为S10=185,求公差d。

7. 已知等比数列的前3项和为S3=28,首项a1=2,求公比r。

四、证明题8. 证明:等差数列中,任意两项的等差中项等于它们的算术平均数。

答案解析:一、选择题1. 答案:A。

解析:根据等差数列的通项公式an = a1 + (n-1)d,代入n=10,得a10 = 3 + 9*2 = 21。

2. 答案:B。

解析:根据等比数列的通项公式an = a1 * r^(n-1),代入n=5,得a5 = 2 * 3^4 = 243。

3. 答案:C。

解析:数列1, 3, 6, 10, 15不是等差也不是等比数列,因为相邻两项的差和比值都不是常数。

二、填空题4. 答案:S_n = n/2 * (2a1 + (n-1)d)。

解析:等差数列前n项和的公式。

5. 答案:S_n = a1 * (1 - r^n) / (1 - r),当r≠1时。

解析:等比数列前n项和的公式。

三、解答题6. 解:根据等差数列前n项和的公式,S10 = 10/2 * (2*3 + 9d) = 185,解得d = 3。

7. 解:根据等比数列前n项和的公式,S3 = a1 * (1 - r^3) / (1 - r) = 28,代入a1=2,解得r = 3。

四、证明题8. 证明:设等差数列中任意两项为an和am,它们的等差中项为a,即a = (an + am) / 2。

高二数列单元测试题及答案

高二数列单元测试题及答案

高二数列单元测试题及答案一、选择题(每题3分,共15分)1. 已知数列{an}是等差数列,且a3=5,a5=9,则a7的值为:A. 13B. 11B. 9D. 72. 等比数列{bn}的首项b1=2,公比q=3,求该数列的第5项b5:A. 486B. 243C. 81D. 1623. 已知数列{cn}的前n项和S(n)=n^2,求第5项c5:A. 14B. 15C. 16D. 174. 若数列{dn}满足d1=1,且对于任意的n≥2,有dn=2dn-1+1,该数列为:A. 等差数列B. 等比数列C. 非等差也非等比数列D. 几何数列5. 对于数列{en},若e1=2,且en+1=en+n,求e5的值:A. 12B. 14C. 16D. 18二、填空题(每题4分,共20分)6. 已知数列{fn}是等差数列,且f1=3,f3=9,求公差d。

__________7. 已知数列{gn}是等比数列,且g1=8,g3=64,求公比q。

__________8. 若数列{hn}的前n项和S(n)=n^2+n,求第3项h3。

__________9. 已知数列{in}满足i1=1,且对于任意的n≥2,有in=in-1+n,求i3的值。

__________10. 若数列{jn}的前n项和S(n)=n^3,求第2项j2。

__________三、解答题(每题10分,共30分)11. 已知数列{kn}是等差数列,首项k1=1,公差d=2,求数列的前10项和S(10)。

12. 已知数列{ln}是等比数列,首项l1=1,公比q=4,求数列的前5项和S(5)。

13. 已知数列{mn}的前n项和S(n)=2n^2-n,求数列的第n项mn。

四、综合题(每题25分,共25分)14. 某工厂生产的产品数量按照等差数列增长,若第1年生产100件,每年增长50件。

求第5年的产量,并求前5年的总产量。

答案:一、选择题1. A2. C3. B4. A5. B二、填空题6. d=27. q=48. h3=109. i3=510. j2=9三、解答题11. S(10)=10×1+(10×9)/2×2=11012. S(5)=1+4+16+64+256=34113. mn=2n^2-n-1四、综合题14. 第5年产量为100+4×50=250件,前5年总产量为100+150+200+250+300=1000件。

数列的概念单元测试题+答案 百度文库

数列的概念单元测试题+答案 百度文库

一、数列的概念选择题1.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为3,4,6,9,13,18,24,则该数列的第19项为( ) A .174B .184C .188D .1602.已知数列{}n a 满足1221n n n a a a ++=+,n *∈N ,若1102a <<,则( ) A .8972a a a +< B .91082a a a +> C .6978a a a a +>+D .71089a a a a +>+3.已知数列{}n a ,若()12*Nn n n a a a n ++=+∈,则称数列{}na 为“凸数列”.已知数列{}nb 为“凸数列”,且11b =,22b =-,则数列{}n b 的前2020项和为( ) A .5B .5-C .0D .1-4.在数列{}n a 中,11a =,对于任意自然数n ,都有12nn n a a n +=+⋅,则15a =( )A .151422⋅+B .141322⋅+C .151423⋅+D .151323⋅+5.已知数列{}n a 的通项公式为23nn a n ⎛⎫= ⎪⎝⎭,则数列{}n a 中的最大项为( ) A .89B .23C .6481D .1252436.已知数列{}n a 满足11a =,()*11nn n a a n N a +=∈+,则2020a =( ) A .12018B .12019 C .12020D .120217.数列{}n a 满足 112a =,111n n a a +=-,则2018a 等于( )A .12B .-1C .2D .38.删去正整数1,2,3,4,5,…中的所有完全平方数与立方数(如4,8),得到一个新数列,则这个数列的第2020项是( ) A .2072B .2073C .2074D .20759.设()f x 是定义在R 上恒不为零的函数,且对任意的实数x 、y R ∈,都有()()()f x f y f x y ⋅=+,若112a =,()()*n a f n n N =∈,则数列{}n a 的前n 项和n S 应满足( )A .1324n S ≤< B .314n S ≤< C .102n S <≤D .112n S ≤< 10.已知数列{}n a 中,11a =,122nn n a a a +=+,则5a 等于( ) A .25B .13 C .23D .1211.已知数列{}n a 的前5项为:12a =,232a =,343a =,454a =,565a =,可归纳得数列{}n a 的通项公式可能为( ) A .1+=n n a nB .21n n a n +=+ C .3132n n a n -=-D .221n na n =- 12.已知数列{a n }满足112,0,2121, 1.2n n n n n a a a a a +⎧≤<⎪⎪=⎨⎪-≤<⎪⎩若a 1=35,则a 2019 = ( )A .15B .25C .35D .4513.设n a 表示421167n n +的个位数字,则数列{}n a 的第38项至第69项之和383969a a a ++⋅⋅⋅+=( )A .180B .160C .150D .14014.已知数列{}n a 满足:113a =,1(1)21n n n a na n ++-=+,*n N ∈,则下列说法正确的是( ) A .1n n a a +≥ B .1n n a a +≤C .数列{}n a 的最小项为3a 和4aD .数列{}n a 的最大项为3a 和4a 15.已知在数列{}n a 中,112,1n n na a a n +==+,则2020a 的值为( ) A .12020B .12019 C .11010 D .1100916.数列{}n a 满足1111,(2)2n nn a a a n a --==≥+,则5a 的值为( ) A .18B .17C .131D .1617.设数列{}n a 的通项公式为2n n a n+=,要使它的前n 项的乘积大于36,则n 的最小值为( ) A .6 B .7C .8D .918.数列12,16,112,120,…的一个通项公式是( ) A .()11n a n n =-B .()1221n a n n =-C .111n a n n =-+ D .11n a n=-19.在数列{}n a 中,已知13a =,26a =,且21n n n a a a ++=-,则2020a =( ) A .-6 B .6 C .-3D .320.数列{}n a 的前n 项和记为n S ,()*11N ,2n n n a a a n n ++=-∈≥,12018a =,22017a =,则100S =( )A .2016B .2017C .2018D .2019二、多选题21.已知数列{}n a 满足()*111n na n N a +=-∈,且12a =,则( ) A .31a =- B .201912a =C .332S =D . 2 01920192S =22.黄金螺旋线又名等角螺线,是自然界最美的鬼斧神工.在一个黄金矩形(宽长比约等于0.618)里先以宽为边长做正方形,然后在剩下小的矩形里以其宽为边长做正方形,如此循环下去,再在每个正方形里画出一段四分之一圆弧,最后顺次连接,就可得到一条“黄金螺旋线”.达·芬奇的《蒙娜丽莎》,希腊雅典卫城的帕特农神庙等都符合这个曲线.现将每一段黄金螺旋线与其所在的正方形所围成的扇形半径设为a n (n ∈N *),数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3).再将扇形面积设为b n (n ∈N *),则( )A .4(b 2020-b 2019)=πa 2018·a 2021B .a 1+a 2+a 3+…+a 2019=a 2021-1C .a 12+a 22+a 32…+(a 2020)2=2a 2019·a 2021D .a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2=023.著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记S n 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a = B .733S =C .135********a a a a a ++++=D .22212201920202019a a a a a +++= 24.已知数列{}n a 满足112a =-,111n na a +=-,则下列各数是{}n a 的项的有( )A .2-B .23C .32D .325.已知数列{}n a 的前n 项和为()0n n S S ≠,且满足11140(2),4n n n a S S n a -+=≥=,则下列说法正确的是( ) A .数列{}n a 的前n 项和为1S 4n n= B .数列{}n a 的通项公式为14(1)n a n n =+C .数列{}n a 为递增数列D .数列1{}nS 为递增数列 26.首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,则下列4个命题中正确的有( )A .若100S =,则50a >,60a <;B .若412S S =,则使0n S >的最大的n 为15;C .若150S >,160S <,则{}n S 中7S 最大;D .若89S S <,则78S S <. 27.已知数列{}2nna n +是首项为1,公差为d 的等差数列,则下列判断正确的是( ) A .a 1=3 B .若d =1,则a n =n 2+2n C .a 2可能为6D .a 1,a 2,a 3可能成等差数列28.已知等差数列{}n a 的公差不为0,其前n 项和为n S ,且12a 、8S 、9S 成等差数列,则下列四个选项中正确的有( ) A .59823a a S +=B .27S S =C .5S 最小D .50a =29.记n S 为等差数列{}n a 的前n 项和.已知450,5S a ==,则( ) A .25n a n =-B .310na nC .228n S n n =- D .24n S n n =-30.已知无穷等差数列{}n a 的前n 项和为n S ,67S S <,且78S S >,则( ) A .在数列{}n a 中,1a 最大B .在数列{}n a 中,3a 或4a 最大C .310S S =D .当8n ≥时,0n a <31.已知无穷等差数列{}n a 的前n 项和为n S ,67S S <,且78S S >,则( ) A .在数列{}n a 中,1a 最大 B .在数列{}n a 中,3a 或4a 最大 C .310S S =D .当8n ≥时,0n a <32.已知等差数列{}n a 的前n 项和为n S ()*n N ∈,公差0d ≠,690S=,7a 是3a 与9a 的等比中项,则下列选项正确的是( ) A .2d =-B .120a =-C .当且仅当10n =时,n S 取最大值D .当0nS <时,n 的最小值为2233.设等差数列{}n a 的前n 项和为n S ,公差为d .已知312a =,120S >,70a <则( ) A .60a >B .数列1n a ⎧⎫⎨⎬⎩⎭是递增数列 C .0n S <时,n 的最小值为13D .数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项34.首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,现有下列4个命题中正确的有( )A .若100S =,则280S S +=;B .若412S S =,则使0n S >的最大的n 为15C .若150S >,160S <,则{}n S 中8S 最大D .若78S S <,则89S S <35.等差数列{}n a 的前n 项和为n S ,1385a a S +=,则下列结论一定正确的是( ) A .100a = B .当9n =或10时,n S 取最大值 C .911a a <D .613S S =【参考答案】***试卷处理标记,请不要删除一、数列的概念选择题 1.A解析:A 【分析】根据已知条件求得11n n n a a -=--,利用累加法求得19a . 【详解】 依题意:3,4,6,9,13,18,24,1,2,3,4,5,6,所以11n n n a a -=--(2n ≥),且13a =, 所以()()()112211n n n n n a a a a a a a a ---=-+-++-+()()12213n n =-+-++++()()()11113322n n n n -+--=+=+.所以19191831742a ⨯=+=. 故选:A 【点睛】本小题主要考查累加法,属于中档题.2.C解析:C 【分析】 由递推公式1221n n n a a a ++=+得出25445n n n a a a ++=+,计算出25,24a ⎛⎫∈ ⎪⎝⎭,利用递推公式推导得出()0,1n a ∈(n 为正奇数),1n a >(n 为正偶数),利用定义判断出数列{}()21n a n N *-∈和{}()2n a n N *∈的单调性,进而可得出结论.【详解】()()113212132221212221n n n n n n a a a a a a ++++===++++,110,2a ⎛⎫∈ ⎪⎝⎭,25,24a ⎛⎫∴∈ ⎪⎝⎭, ()()121259245221545944221454544452121n n n n n n n n n n n n a a a a a a a a a a a a ++++++-+++=====-+++++⨯++,且()2241544545n n n n n n n a a a a a a a +-+-=-=++,()212122121n n n n n n n a a a a a a a +-+-=-=++. 110,2a ⎛⎫∈ ⎪⎝⎭,则101a <<,则()()3590,14445n a a =-∈+,如此继续可得知()()210,1n a n N *-∈∈,则()22121212141=045n n n n a aa a -+---->+,所以,数列{}()21n a n N *-∈单调递增;同理可知,()21na n N *>∈,数列{}()2na n N *∈单调递减.对于A 选项,78a a <且79a a <,8972a a a ∴+>,A 选项错误; 对于B 选项,89a a >且108a a <,则91082a a a +<,B 选项错误; 对于C 选项,68a a >,97a a >,则6978a a a a +>+,C 选项正确; 对于D 选项,79a a <,108a a <,则71098a a a a +<+,D 选项错误. 故选:C. 【点睛】本题考查数列不等式的判断,涉及数列递推公式的应用,解题的关键就是推导出数列{}()21n a n N *-∈和{}()2n a n N *∈的单调性,考查推理能力,属于难题.3.B解析:B 【分析】根据数列的递推关系可求得数{}n b 的周期为6,即可求得数列{}n b 的前2020项和. 【详解】()*21N n n n b b b n ++=-∈,且11b =,22b =-, ∴345673,1,2,3,1,b b b b b =-=-=== ∴{}n b 是以6为周期的周期数列,且60S =,∴20203366412345S S b b b b ⨯+==+++=-,故选:B. 【点睛】本题考查数列的新定义、数列求和,考查运算求解能力,求解时注意通过计算数列的前6项,得到数列的周期.4.D解析:D 【分析】在数列的递推公式中依次取1,2,3,1n n =- ,得1n -个等式,累加后再利用错位相减法求15a . 【详解】12n n n a a n +=+⋅, 12n n n a a n +-=⋅,12112a a ∴-=⋅, 23222a a -=⋅,34332a a -=⋅11(1)2n n n a a n ---=-⋅,以上1n -个等式,累加得12311122232(1)2n n a a n --=⋅+⋅+⋅++-⋅①又2341122122232(2)2(1)2n n n a a n n --=⋅+⋅+⋅++-⋅+-⋅②①- ②得23112222(1)2n n n a a n --=++++--⋅12(12)(1)2(2)2212n n n n n --=--⋅=-⋅--,(2)23n n a n ∴=-⋅+ ,151515(152)231323a ∴=-⋅+=⋅+,故选:D 【点睛】本题主要考查了累加法求数列通项,乘公比错位相减法求数列的和,由通项公式求数列中的项,属于中档题.5.A解析:A 【分析】由12233nn n n a a +-⎛⎫-=⋅ ⎪⎝⎭,当n <2时,a n +1-a n >0,当n <2时,a n +1-a n >0,从而可得到n =2时,a n 最大. 【详解】解:112222(1)3333n n nn n n a a n n ++-⎛⎫⎛⎫⎛⎫-=+-=⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 当n <2时,a n +1-a n >0,即a n +1>a n ;当n =2时,a n +1-a n =0,即a n +1=a n ; 当n >2时,a n +1-a n <0,即a n +1<a n . 所以a 1<a 2=a 3,a 3>a 4>a 5>…>a n ,所以数列{}n a 中的最大项为a 2或a 3,且2328239a a ⎛⎫==⨯= ⎪⎝⎭. 故选:A . 【点睛】此题考查数列的函数性质:最值问题,属于基础题.6.C【分析】根据数列的递推关系,利用取倒数法进行转化,构造等差数列,结合等差数列的性质求出通项公式即可. 【详解】 解:11nn n a a a +=+, ∴两边同时取倒数得11111n n n na a a a ++==+, 即1111n na a ,即数列1n a ⎧⎫⎨⎬⎩⎭是公差1d =的等差数列,首项为111a .则11(1)1nn n a =+-⨯=, 得1n a n=, 则202012020a =, 故选:C 【点睛】本题主要考查数列通项公式的求解,结合数列递推关系,利用取倒数法以及构造法构造等差数列是解决本题的关键.考查学生的运算和转化能力,属于基础题.7.B解析:B 【分析】先通过列举找到数列的周期,再求2018a . 【详解】n=1时,234511121,1(1)2,1,121,22a a a a =-=-=--==-==-=- 所以数列的周期是3,所以2018(36722)21a a a ⨯+===-. 故选:B 【点睛】本题主要考查数列的递推公式和数列的周期,意在考查学生对这些知识的掌握水平和分析推理能力.8.C解析:C由于数列22221,2,3,2,5,6,7,8,3,45⋯共有2025项,其中有45个平方数,12个立方数,有3个既是平方数,又是立方数的数,所以还剩余20254512+31971--=项,所以去掉平方数和立方数后,第2020项是在2025后的第()20201971=49-个数,从而求得结果. 【详解】∵2452025=,2462116=,20202025<,所以从数列22221,2,3,2,5,6,7,8,3,45⋯中去掉45个平方数,因为331217282025132197=<<=,所以从数列22221,2,3,2,5,6,7,8,3,45⋯中去掉12个立方数,又66320254<<,所以在从数列22221,2,3,2,5,6,7,8,3,45⋯中有3个数即是平方数, 又是立方数的数,重复去掉了3个即是平方数,又是立方数的数, 所以从数列22221,2,3,2,5,6,7,8,3,45⋯中去掉平方数和立方数后还有20254512+31971--=项,此时距2020项还差2020197149-=项, 所以这个数列的第2020项是2025492074+=, 故选:C. 【点睛】本题考查学生的实践创新能力,解决该题的关键是找出第2020项的大概位置,所以只要弄明白在数列22221,2,3,2,5,6,7,8,3,45⋯去掉哪些项,去掉多少项,问题便迎刃而解,属于中档题.9.D解析:D 【分析】根据题意得出1112n n n a a a a +==,从而可知数列{}n a 为等比数列,确定该等比数列的首项和公比,可计算出n S ,然后利用数列{}n S 的单调性可得出n S 的取值范围. 【详解】取1x =,()y n n N*=∈,由题意可得()()()111112n n n a f n f f n a a a +=+=⋅==, 112n n a a +∴=,所以,数列{}n a 是以12为首项,以12为公比的等比数列, 11112211212n n n S ⎛⎫- ⎪⎝⎭∴==--,所以,数列{}n S 为单调递增数列,则11n S S ≤<,即112n S ≤<. 故选:D.本题考查等比数列前n 项和范围的求解,解题的关键就是判断出数列{}n a 是等比数列,考查推理能力与计算能力,属于中等题.10.B解析:B 【分析】根据数列{}n a 的递推公式逐项可计算出5a 的值. 【详解】在数列{}n a 中,11a =,122n n n a a a +=+,则12122122123a a a ⨯===++,2322221322223a a a ⨯===++, 3431222212522a a a ⨯===++,4542221522325a a a ⨯===++. 故选:B. 【点睛】本题考查利用递推公式写出数列中的项,考查计算能力,属于基础题.11.A解析:A 【分析】将前五项的分母整理为1,2,3,4,5,则其分子为2,3,4,5,6,据此归纳即可. 【详解】 因为12a =,232a =,343a =,454a =,565a =,故可得1223,12a a ==, 343a =,454a =,565a =, 故可归纳得1+=n n a n. 故选:A. 【点睛】本题考查简单数列通项公式的归纳总结,属基础题.12.B解析:B 【分析】根据数列的递推公式,得到数列的取值具备周期性,即可得到结论.∵112,02121,12n n n n n a a a a a +⎧≤<⎪⎪=⎨⎪-≤<⎪⎩,又∵a 135=,∴a 2=2a 1﹣1=235⨯-115=,a 3=2a 225=, a 4=2a 3=22455⨯=, a 5=2a 4﹣1=245⨯-135=, 故数列的取值具备周期性,周期数是4, 则2019a =50443a ⨯+=325a =, 故选B . 【点睛】本题主要考查数列项的计算,根据数列的递推关系是解决本题的关键.根据递推关系求出数列的取值具备周期性是解决本题的突破口.13.B解析:B 【分析】根据题意可得n a 为421167n n +的个位数为27n n +的个位数,而2n 的个位是以2,4,8,6为周期,7n 的个位数是以7,9,3,1为周期,即可求和. 【详解】由n a 为421167n n +的个位数, 可得n a 为27n n +的个位数, 而2n 的个位是以2,4,8,6为周期,7n 的个位数是以7,9,3,1为周期,所以27n n +的个位数是以9,3,1,7为周期, 即421167n n +的个位数是以9,3,1,7为周期, 第38项至第69项共32项,共8个周期, 所以383969a a a ++⋅⋅⋅+=8(9317)160⨯+++=. 故选:B14.C解析:C 【分析】令n n b na =,由已知得121n n b b n +-=+运用累加法得2+12n b n =,从而可得12+n a n n=,作差得()()()+13+4+1n n a n n a n n -=-,从而可得12345>>n a a a a a a =<<<,由此可得选项. 【详解】令n n b na =,则121n n b b n +-=+,又113a =,所以113b =,213b b -=,325b b -=, ,121n n b b n --=-, 所以累加得()()213+2113++122nn n b n --==,所以2+1212+n nb n an n n n===, 所以()()()()+13+41212+1+++1+1n n n n a a n n n n n n -⎛⎫-=-= ⎪⎝⎭,所以当3n <时,+1n n a a <,当3n =时,+1n n a a =,即34a a =,当>3n 时,+1>n n a a , 即12345>>n a a a a a a =<<<,所以数列{}n a 的最小项为3a 和4a ,故选:C. 【点睛】本题考查构造新数列,运用累加法求数列的通项,以及运用作差法判断差的正负得出数列的增减性,属于中档题.15.C解析:C 【分析】由累乘法可求得2n a n=,即可求出. 【详解】11n n n a a n +=+,即11n n a n a n +=+, 12321123211232121232n n n n n n n a a a a a n n n a a a a a a a n n n --------∴=⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⨯--2n=, 20202120201010a ∴==. 故选:C.16.C解析:C 【分析】根据条件依次算出2a 、3a 、4a 、5a 即可. 【详解】 因为1111,(2)2n n n a a a n a --==≥+,所以211123a ==+,31131723a ==+,411711527a ==+,51115131215a ==+ 故选:C 17.C解析:C 【分析】先求出数列{}n a 的前n 项的乘积为n D ,令0n D >解不等式,结合*n N ∈,即可求解. 【详解】记数列{}n a 的前n 项的乘积为n D ,则()()12112451232312n n n n n n n D a a a a n n -++++=⋅⋅=⨯⨯⨯⨯⨯=- 依题意有()()12362n n ++>整理得()()23707100n n n n +-=-+> 解得:7n >,因为*n N ∈,所以min 8n =, 故选:C18.C解析:C 【分析】根据选项进行逐一验证,可得答案. 【详解】 选项A. ()11n a n n =-,当1n =时,无意义.所以A 不正确.选项B. ()1221n a n n =-,当2n =时,()211122221126a ==≠⨯⨯⨯-,故B 不正确. 选项C.11122=-,111162323==-⨯,1111123434==-⨯,1111204545==-⨯ 所以111n a n n =-+满足.故C 正确. 选项D. 11n a n =-,当1n =时, 1111012a =-=≠,故D 不正确. 故选:C19.C解析:C【分析】根据题设条件,得到数列{}n a 是以6项为周期的数列,其中1234560a a a a a a +++++=,再由2020336644a a a ⨯+==,即可求解.【详解】由题意,数列{}n a 中,13a =,26a =,且21n n n a a a ++=-, 可得3214325436547653,3,6,3,3,a a a a a a a a a a a a a a a =-==-=-=-=-=-=-=-=,可得数列{}n a 是以6项为周期的数列,其中1234560a a a a a a +++++=, 所以20203366443a a a ⨯+===-. 故选:C. 【点睛】本题主要考查了数列的递推关系式,以及数列的周期性的应用,其中解答中得出数列的周期性是解答的关键,着重考查了推理与运算能力,属于基础题.20.A解析:A 【分析】根据题意,由数列的递推公式求出数列的前8项,分析可得数列{}n a 是周期为6的数列,且1234560a a a a a a +++++=,进而可得1001234S a a a a =+++,计算即可得答案. 【详解】解:因为12018a =,22017a =,()*11N ,2n n n a a a n n +-=-∈≥,则321201720181a a a =-=-=-, 432(1)20172018a a a =-=--=-, 543(2018)(1)2017a a a =-=---=-, 654(2017)(2018)1a a a =-=---=, 76511(2017)2018a a a a =-=--==, 8762201812017a a a a =-=-==,…,所以数列{}n a 是周期数列,周期为6, 因为12560a a a a ++⋅⋅⋅++=,所以()100125697989910016S a a a a a a a a =++⋅⋅⋅++++++12342016a a a a =+++=.故选:A . 【点睛】本题考查数列的递推公式的应用,关键是分析数列各项变化的规律,属于基础题.二、多选题21.ACD 【分析】先计算出数列的前几项,判断AC ,然后再寻找规律判断BD . 【详解】由题意,,A 正确,,C 正确; ,∴数列是周期数列,周期为3. ,B 错; ,D 正确. 故选:ACD . 【点睛】 本解析:ACD 【分析】先计算出数列的前几项,判断AC ,然后再寻找规律判断BD . 【详解】由题意211122a =-=,311112a =-=-,A 正确,3132122S =+-=,C 正确;41121a =-=-,∴数列{}n a 是周期数列,周期为3. 2019367331a a a ⨯===-,B 错;20193201967322S =⨯=,D 正确.故选:ACD . 【点睛】本题考查由数列的递推式求数列的项与和,解题关键是求出数列的前几项后归纳出数列的性质:周期性,然后利用周期函数的定义求解.22.ABD 【分析】对于A ,由题意得bn =an2,然后化简4(b2020-b2019)可得结果;对于B ,利用累加法求解即可;对于C ,数列{an}满足a1=a2=1,an =an -1+an -2 (n≥3解析:ABD 【分析】对于A ,由题意得b n =4πa n 2,然后化简4(b 2020-b 2019)可得结果;对于B ,利用累加法求解即可;对于C ,数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),即a n -1=a n -2-a n ,两边同乘a n -1 ,可得a n -12=a n -1 a n -2-a n -1 a n ,然后累加求解;对于D ,由题意a n -1=a n -a n -2,则a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2,化简可得结果 【详解】由题意得b n =4πa n 2,则4(b 2020-b 2019)=4(4πa 20202-4πa 20192)=π(a 2020+a 2019)(a 2020-a 2019)=πa 2018·a 2021,则选项A 正确; 又数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),所以a n -2=a n -a n -1(n ≥3),a 1+a 2+a 3+…+a 2019=(a 3-a 2)+(a 4-a 3)+(a 5-a 4)+…+(a 2021-a 2020)=a 2021-a 2=a 2021-1,则选项B 正确;数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),即a n -1=a n -2-a n ,两边同乘a n -1 ,可得a n-12=a n -1 a n -2-a n -1 a n ,则a 12+a 22+a 32…+(a 2020)2=a 12+(a 2a 1-a 2a 3)+(a 3a 2-a 3a 4)+…+(a 2020a 2019-a 2020a 2021)=a 12-a 2020a 2021=1-a 2020a 2021,则选项C 错误;由题意a n -1=a n -a n -2,则a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2=a 2019·(a 2021-a 2019)+a 2020·(a 2018-a 2020)=a 2019·a 2020+a 2020·(-a 2019)=0,则选项D 正确; 故选:ABD. 【点睛】此题考查数列的递推式的应用,考查累加法的应用,考查计算能力,属于中档题23.ABD 【分析】根据,,,计算可知正确;根据,,,,,,累加可知不正确;根据,,,,,,累加可知正确. 【详解】依题意可知,,,, ,,,,故正确; ,所以,故正确; 由,,,,,, 可得,故不解析:ABD 【分析】根据11a =,21a =,21n n n a a a ++=+,计算可知,A B 正确;根据12a a =,342a a a =-,564a a a =-,786a a a =-,,201920202018a a a =-,累加可知C 不正确;根据2121a a a =,222312312()a a a a a a a a =-=-,233423423()a a a a a a a a =-=-,244534534()a a a a a a a a =-=-,,220192019202020182019202020182019()a a a a a a a a =-=-,累加可知D 正确. 【详解】依题意可知,11a =,21a =,21n n n a a a ++=+,312112a a a =+=+=,423123a a a =+=+=,534235a a a =+=+=,645358a a a =+=+=,故A 正确; 7565813a a a =+=+=,所以712345671123581333S a a a a a a a =++++++=++++++=,故B 正确;由12a a =,342a a a =-,564a a a =-,786a a a =-,,201920202018a a a =-,可得13572019a a a a a +++++=242648620202018a a a a a a a a a +-+-+-++-2020a =,故C 不正确;2121a a a =,222312312()a a a a a a a a =-=-,233423423()a a a a a a a a =-=-,244534534()a a a a a a a a =-=-,,220192019202020182019202020182019()a a a a a a a a =-=-,所以2222212342019a a a a a +++++122312342345342019202020182019a a a a a a a a a a a a a a a a a a =+-+-+-+- 20192020a a =,所以22212201920202019a a a a a +++=,故D 正确. 故选:ABD. 【点睛】本题考查了数列的递推公式,考查了累加法,属于中档题.24.BD 【分析】根据递推关系式找出规律,可得数列是周期为3的周期数列,从而可求解结论. 【详解】 因为数列满足,, ; ; ;数列是周期为3的数列,且前3项为,,3; 故选:. 【点睛】 本题主要解析:BD 【分析】根据递推关系式找出规律,可得数列是周期为3的周期数列,从而可求解结论.【详解】因为数列{}n a 满足112a =-,111n n a a +=-,212131()2a ∴==--;32131a a ==-; 4131112a a a ==-=-; ∴数列{}n a 是周期为3的数列,且前3项为12-,23,3; 故选:BD . 【点睛】本题主要考查数列递推关系式的应用,考查数列的周期性,解题的关键在于求出数列的规律,属于基础题.25.AD 【分析】先根据和项与通项关系化简条件,再构造等差数列,利用等差数列定义与通项公式求,最后根据和项与通项关系得. 【详解】因此数列为以为首项,为公差的等差数列,也是递增数列,即D 正确;解析:AD 【分析】先根据和项与通项关系化简条件,再构造等差数列,利用等差数列定义与通项公式求S n ,最后根据和项与通项关系得n a . 【详解】11140(2),40n n n n n n n a S S n S S S S ---+=≥∴-+= 11104n n n S S S -≠∴-= 因此数列1{}n S 为以114S =为首项,4为公差的等差数列,也是递增数列,即D 正确; 所以1144(1)44n n n n S S n=+-=∴=,即A 正确;当2n ≥时111144(1)4(1)n n n a S S n n n n -=-=-=--- 所以1,141,24(1)n n a n n n ⎧=⎪⎪=⎨⎪-≥-⎪⎩,即B ,C 不正确;故选:AD 【点睛】本题考查由和项求通项、等差数列定义与通项公式以及数列单调性,考查基本分析论证与求解能力,属中档题.26.ABD 【分析】利用等差数列的求和公式及等差数列的性质,逐一检验选项,即可得答案. 【详解】对于A :因为正数,公差不为0,且,所以公差, 所以,即,根据等差数列的性质可得,又, 所以,,故A 正解析:ABD 【分析】利用等差数列的求和公式及等差数列的性质,逐一检验选项,即可得答案. 【详解】对于A :因为正数,公差不为0,且100S =,所以公差0d <, 所以1101010()02a a S +==,即1100a a +=, 根据等差数列的性质可得561100a a a a +=+=,又0d <, 所以50a >,60a <,故A 正确; 对于B :因为412S S =,则1240S S -=,所以561112894()0a a a a a a ++⋅⋅⋅++=+=,又10a >, 所以890,0a a ><, 所以115815815()15215022a a a S a +⨯===>,116891616()16()022a a a a S ++===, 所以使0n S >的最大的n 为15,故B 正确; 对于C :因为115815815()15215022a a a S a +⨯===>,则80a >, 116891616()16()022a a a a S ++===,则890a a +=,即90a <,所以则{}n S 中8S 最大,故C 错误;对于D :因为89S S <,则9980S a S =->,又10a >, 所以8870a S S =->,即87S S >,故D 正确, 故选:ABD 【点睛】解题的关键是先判断d 的正负,再根据等差数列的性质,对求和公式进行变形,求得项的正负,再分析和判断,考查等差数列性质的灵活应用,属中档题.27.ACD 【分析】利用等差数列的性质和通项公式,逐个选项进行判断即可求解 【详解】因为,,所以a1=3,an =[1+(n-1)d](n+2n).若d =1,则an =n(n+2n);若d =0,则a2=解析:ACD 【分析】利用等差数列的性质和通项公式,逐个选项进行判断即可求解 【详解】 因为1112a =+,1(1)2n n a n d n =+-+,所以a 1=3,a n =[1+(n -1)d ](n +2n ).若d =1,则a n =n (n +2n );若d =0,则a 2=6.因为a 2=6+6d ,a 3=11+22d ,所以若a 1,a 2,a 3成等差数列,则a 1+a 3=a 2,即14+22d =12+12d ,解得15d =-. 故选ACD28.BD 【分析】设等差数列的公差为,根据条件、、成等差数列可求得与的等量关系,可得出、的表达式,进而可判断各选项的正误. 【详解】设等差数列的公差为,则,, 因为、、成等差数列,则,即, 解得,,解析:BD 【分析】设等差数列{}n a 的公差为d ,根据条件12a 、8S 、9S 成等差数列可求得1a 与d 的等量关系,可得出n a 、n S 的表达式,进而可判断各选项的正误. 【详解】设等差数列{}n a 的公差为d ,则8118788282S a d a d ⨯=+=+,9119899362S a d a d ⨯=+=+, 因为12a 、8S 、9S 成等差数列,则81922S a S =+,即11116562936a d a a d +=++,解得14a d =-,()()115n a a n d n d ∴=+-=-,()()219122n n n d n n d S na --=+=. 对于A 选项,59233412a a d d +=⨯=,()2888942d S d -⨯==-,A 选项错误; 对于B 选项,()2229272d Sd -⨯==-,()2779772d Sd -⨯==-,B 选项正确;对于C 选项,()2298192224n d d S n n n ⎡⎤⎛⎫=-=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.若0d >,则4S 或5S 最小;若0d <,则4S 或5S 最大.C 选项错误; 对于D 选项,50a =,D 选项正确. 故选:BD. 【点睛】在解有关等差数列的问题时可以考虑化归为a 1和d 等基本量,通过建立方程(组)获得解,另外在求解等差数列前n 项和n S 的最值时,一般利用二次函数的基本性质或者数列的单调性来求解.29.AD 【分析】设等差数列的公差为,根据已知得,进而得,故,. 【详解】解:设等差数列的公差为,因为所以根据等差数列前项和公式和通项公式得:, 解方程组得:, 所以,. 故选:AD.解析:AD 【分析】设等差数列{}n a 的公差为d ,根据已知得1145460a d a d +=⎧⎨+=⎩,进而得13,2a d =-=,故25n a n =-,24n S n n =-.【详解】解:设等差数列{}n a 的公差为d ,因为450,5S a == 所以根据等差数列前n 项和公式和通项公式得:1145460a d a d +=⎧⎨+=⎩,解方程组得:13,2a d =-=,所以()31225n a n n =-+-⨯=-,24n S n n =-.故选:AD.30.AD 【分析】利用等差数列的通项公式可以求,,即可求公差,然后根据等差数列的性质判断四个选项是否正确. 【详解】 因为,所以 , 因为,所以, 所以等差数列公差, 所以是递减数列, 故最大,选项A解析:AD 【分析】利用等差数列的通项公式可以求70a >,80a <,即可求公差0d <,然后根据等差数列的性质判断四个选项是否正确. 【详解】因为67S S <,所以7670S S a -=> , 因为78S S >,所以8780S S a -=<, 所以等差数列{}n a 公差870d a a =-<, 所以{}n a 是递减数列,故1a 最大,选项A 正确;选项B 不正确;10345678910770S S a a a a a a a a -=++++++=>,所以310S S ≠,故选项C 不正确;当8n ≥时,80n a a ≤<,即0n a <,故选项D 正确; 故选:AD 【点睛】本题主要考查了等差数列的性质和前n 项和n S ,属于基础题.31.AD 【分析】由已知得到,进而得到,从而对ABD 作出判定.对于C,利用等差数列的和与项的关系可等价转化为,可知不一定成立,从而判定C 错误. 【详解】 由已知得:,结合等差数列的性质可知,,该等差解析:AD 【分析】由已知得到780,0a a ><,进而得到0d <,从而对ABD 作出判定.对于C,利用等差数列的和与项的关系可等价转化为160a d +=,可知不一定成立,从而判定C 错误. 【详解】由已知得:780,0a a ><,结合等差数列的性质可知,0d <,该等差数列是单调递减的数列, ∴A 正确,B 错误,D 正确,310S S =,等价于1030S S -=,即45100a a a ++⋯+=,等价于4100a a +=,即160a d +=,这在已知条件中是没有的,故C 错误. 故选:AD. 【点睛】本题考查等差数列的性质和前n 项和,属基础题,关键在于掌握和与项的关系.32.AD 【分析】运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由二次函数的配方法,结合n 为正整数,可判断C ;由解不等式可判断D . 【详解】等差数列的前n 项和为,公差,由,可解析:AD 【分析】运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由二次函数的配方法,结合n 为正整数,可判断C ;由0n S <解不等式可判断D .【详解】等差数列{}n a 的前n 项和为n S ,公差0d ≠,由690S =,可得161590a d +=,即12530a d +=,①由7a 是3a 与9a 的等比中项,得2739a a a =,即()()()2111628a d a d a d +=++,化为1100a d +=,②由①②解得120a =,2d =-,则202(1)222n a n n =--=-,21(20222)212n S n n n n =+-=-,由22144124n S n ⎛⎫=--+ ⎪⎝⎭,可得10n =或11时,n S 取得最大值110; 由2102n S n n -<=,解得21n >,则n 的最小值为22.故选:AD 【点睛】本题考查等差数列的通项公式和求和公式,以及等比中项的性质,二次函数的最值求法,考查方程思想和运算能力,属于中档题.33.ACD 【分析】由已知得,又,所以,可判断A ;由已知得出,且,得出时,,时,,又,可得出在上单调递增,在上单调递增,可判断B ;由,可判断C ;判断 ,的符号, 的单调性可判断D ; 【详解】 由已知解析:ACD 【分析】 由已知得()()612112712+12+220a a a a S ==>,又70a <,所以6>0a ,可判断A ;由已知得出2437d -<<-,且()12+3n a n d =-,得出[]1,6n ∈时,>0n a ,7n ≥时,0n a <,又()1112+3n a n d =-,可得出1na 在1,6n n N上单调递增,1na 在7n nN ,上单调递增,可判断B ;由()313117713+12203213a a a S a ⨯==<=,可判断C ;判断 n a ,n S 的符号, n a 的单调性可判断D ; 【详解】由已知得311+212,122d a a a d ===-,()()612112712+12+220a a a a S ==>,又70a <,所以6>0a ,故A 正确;由7161671+612+40+512+3>0+2+1124+7>0a a d d a a d d a a a d d ==<⎧⎪==⎨⎪==⎩,解得2437d -<<-,又()()3+312+3n a n d n d a =-=-,当[]1,6n ∈时,>0n a ,7n ≥时,0n a <,又()1112+3n a n d=-,所以[]1,6n ∈时,1>0na ,7n ≥时,10n a <,所以1na 在1,6n n N上单调递增,1na 在7n n N ,上单调递增,所以数列1n a ⎧⎫⎨⎬⎩⎭不是递增数列,故B 不正确; 由于()313117713+12203213a a a S a ⨯==<=,而120S >,所以0n S <时,n 的最小值为13,故C 选项正确 ;当[]1,6n ∈时,>0n a ,7n ≥时,0n a <,当[]1,12n ∈时,>0n S ,13n ≥时,0nS <,所以当[]7,12n ∈时,0n a <,>0n S ,0nnS a <,[]712n ∈,时,n a 为递增数列,n S 为正数且为递减数列,所以数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项,故D 正确;【点睛】本题考查等差数列的公差,项的符号,数列的单调性,数列的最值项,属于较难题.34.BC 【分析】根据等差数列的性质,以及等差数列的求和公式,逐项判断,即可得答案. 【详解】 A 选项,若,则, 那么.故A 不正确; B 选项,若,则,又因为,所以前8项为正,从第9项开始为负, 因为解析:BC 【分析】根据等差数列的性质,以及等差数列的求和公式,逐项判断,即可得答案. 【详解】A 选项,若1011091002S a d ⨯=+=,则1290a d +=, 那么()()2811128281029160S S a d a d a d d +=+++=+=-≠.故A 不正确; B 选项,若412S S =,则()5611128940a a a a a a ++++=+=,又因为10a >,所以前8项为正,从第9项开始为负,因为()()116168916802a a S a a +==+=, 所以使0n S >的最大的n 为15.故B 正确; C 选项,若()115158151502a a S a +==>,()()116168916802a a S a a +==+<, 则80a >,90a <,则{}n S 中8S 最大.故C 正确;D 选项,若78S S <,则80a >,而989S S a -=,不能判断9a 正负情况.故D 不正确. 故选:BC . 【点睛】本题考查等差数列性质的应用,涉及等差数列的求和公式,属于常考题型.35.AD 【分析】由求出,即,由此表示出、、、,可判断C 、D 两选项;当时,,有最小值,故B 错误. 【详解】解:,,故正确A.由,当时,,有最小值,故B 错误. ,所以,故C 错误. ,,故D 正确.解析:AD 【分析】由1385a a S +=求出100a =,即19a d =-,由此表示出9a 、11a 、6S 、13S ,可判断C 、D 两选项;当0d >时,10a <,n S 有最小值,故B 错误. 【详解】解:1385a a S +=,111110875108,90,02da a d a a d a ⨯++=++==,故正确A. 由190a d +=,当0d >时,10a <,n S 有最小值,故B 错误.9101110,a a d d a a d d =-==+=,所以911a a =,故C 错误.61656+5415392dS a d d d ⨯==-+=-, 131131213+11778392dS a d d d ⨯==-+=-,故D 正确. 故选:AD 【点睛】考查等差数列的有关量的计算以及性质,基础题.。

等比数列单元测试题+答案

等比数列单元测试题+答案

一、等比数列选择题1.已知等比数列{}n a 的前n 项和的乘积记为n T ,若29512T T ==,则n T 的最大值为( ) A .152 B .142 C .132 D .1222.已知等比数列{a n }中,有a 3a 11=4a 7,数列{b n }是等差数列,且b 7=a 7,则b 5+b 9=( ) A .4B .5C .8D .153.已知数列{}n a 中,其前n 项和为n S ,且满足2n n S a =-,数列{}2n a 的前n 项和为n T ,若2(1)0n n n S T λ-->对*n N ∈恒成立,则实数λ的取值范围是( )A .()3,+∞B .()1,3-C .93,5⎛⎫ ⎪⎝⎭D .91,5⎛⎫- ⎪⎝⎭4.等比数列{}n a 中11a =,且14a ,22a ,3a 成等差数列,则()*na n N n∈的最小值为( ) A .1625B .49C .12D .15.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它前一个单音的频率的比都等于六个单音的频率为f ,则( ) A .第四个单音的频率为1122f - B .第三个单音的频率为142f - C .第五个单音的频率为162fD .第八个单音的频率为1122f6.等差数列{}n a 的首项为1,公差不为0.若2a 、3a 、6a 成等比数列,则{}n a 的前6项的和为( ) A .24-B .3-C .3D .87.等比数列{}n a 的各项均为正数,且101010113a a =.则313232020log log log a a a +++=( ) A .3B .505C .1010D .20208.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件11a >,667711,01a a a a -><-,则下列结论正确的是( ) A .681a a >B .01q <<C .n S 的最大值为7SD .n T 的最大值为7T9.已知等比数列{}n a 的前n 项和为,n S 且639S S =,则42aa 的值为( )AB .2C.D .410.已知数列{}n a ,{}n b 满足12a =,10.2b =,111233n n n a b a ++=+,11344n n n b a b +=+,则使0.01n n a b -<成立的最小正整数n 为( ) A .5B .7C .9D .1111.在等比数列{}n a 中,首项11,2a =11,,232n q a ==则项数n 为( ) A .3B .4C .5D .612.正项等比数列{}n a 满足2237610216a a a a a ++=,则28a a +=( ) A .1 B .2C .4D .813.已知q 为等比数列{}n a 的公比,且1212a a =-,314a =,则q =( ) A .1- B .4C .12-D .12±14.在各项均为正数的等比数列{}n a 中,226598225a a a a ++=,则113a a 的最大值是( ) A .25B .254C .5D .2515..在等比数列{}n a 中,若11a =,54a =,则3a =( ) A .2B .2或2-C .2-D16.设等差数列{}n a 的公差10,4≠=d a d ,若k a 是1a 与2k a 的等比中项,则k =( ) A .3或6 B .3 或-1 C .6D .317.已知等比数列{}n a 的通项公式为2*3()n n a n N +=∈,则该数列的公比是( )A .19B .9C .13D .318.已知1,a ,x ,b ,16这五个实数成等比数列,则x 的值为( ) A .4B .-4C .±4D .不确定19.已知等比数列的公比为2,其前n 项和为n S ,则33S a =( ) A .2B .4C .74 D .15820.在数列{}n a 中,32a =,12n n a a +=,则5a =( ) A .32B .16C .8D .4二、多选题21.题目文件丢失! 22.题目文件丢失!23.设首项为1的数列{}n a 的前n 项和为n S ,已知121n n S S n +=+-,则下列结论正确的是( )A .数列{}n a 为等比数列B .数列{}n S n +为等比数列C .数列{}n a 中10511a =D .数列{}2n S 的前n 项和为2224n n n +---24.若数列{}n a 的前n 项和是n S ,且22n n S a =-,数列{}n b 满足2log n n b a =,则下列选项正确的为( ) A .数列{}n a 是等差数列B .2nn a =C .数列{}2na 的前n 项和为21223n +-D .数列11n n b b +⎧⎫⎨⎬⋅⎩⎭的前n 项和为n T ,则1n T <25.已知正项等比数列{}n a 的前n 项和为n S ,若31a =,135111214a a a ++=,则( ) A .{}n a 必是递减数列 B .5314S =C .公比4q =或14D .14a =或1426.设{}n a 是无穷数列,1n n n A a a +=+,()1,2,n =,则下面给出的四个判断中,正确的有( )A .若{}n a 是等差数列,则{}n A 是等差数列B .若{}n A 是等差数列,则{}n a 是等差数列C .若{}n a 是等比数列,则{}n A 是等比数列D .若{}n A 是等差数列,则{}2n a 都是等差数列27.数列{}n a 对任意的正整数n 均有212n n n a a a ++=,若22a =,48a =,则10S 的可能值为( ) A .1023B .341C .1024D .34228.在《增减算法统宗》中有这样一则故事:“三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关”.则下列说法正确的是( ) A .此人第六天只走了5里路B .此人第一天走的路程比后五天走的路程多6里C .此人第二天走的路程比全程的14还多1.5里 D .此人走的前三天路程之和是后三天路程之和的8倍29.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件11a >,671a a >,67101a a -<-,则下列结论正确的是( ) A .01q <<B .8601a a <<C .n S 的最大值为7SD .n T 的最大值为6T30.设首项为1的数列{}n a 的前n 项和为n S ,已知121n n S S n +=+-,则下列结论正确的是( )A .数列{}n S n +为等比数列B .数列{}n a 的通项公式为121n n a -=-C .数列{}1n a +为等比数列D .数列{}2n S 的前n 项和为2224n n n +---31.记单调递增的等比数列{}n a 的前n 项和为n S ,若2410a a +=,23464a a a =,则( )A .112n n n S S ++-=B .12n naC .21nn S =- D .121n n S -=-32.已知数列{}n a 的前n 项和为S n ,22n n S a =-,若存在两项m a ,n a ,使得64m n a a =,则( )A .数列{}n a 为等差数列B .数列{}n a 为等比数列C .22212413nn a a a -+++=D .m n +为定值33.定义在()(),00,-∞⋃+∞上的函数()f x ,如果对于任意给定的等比数列{}n a ,数列(){}nf a 仍是等比数列,则称()f x 为“保等比数列函数”.现有定义在()(),00,-∞⋃+∞上的四个函数中,是“保等比数列函数”的为( )A .()2f x x =B .()2xf x =C .()f x =D .()ln f x x =34.已知数列{a n }为等差数列,首项为1,公差为2,数列{b n }为等比数列,首项为1,公比为2,设n n b c a =,T n 为数列{c n }的前n 项和,则当T n <2019时,n 的取值可以是下面选项中的( ) A .8B .9C .10D .1135.对于数列{}n a ,若存在数列{}n b 满足1n n nb a a =-(*n ∈N ),则称数列{}n b 是{}n a 的“倒差数列”,下列关于“倒差数列”描述正确的是( ) A .若数列{}n a 是单增数列,但其“倒差数列”不一定是单增数列;B .若31n a n =-,则其“倒差数列”有最大值;C .若31n a n =-,则其“倒差数列”有最小值;D .若112nn a ⎛⎫=-- ⎪⎝⎭,则其“倒差数列”有最大值.【参考答案】***试卷处理标记,请不要删除一、等比数列选择题 1.A 【分析】根据29T T =得到761a =,再由2121512a a a q ==,求得1,a q 即可.【详解】设等比数列{}n a 的公比为q ,由29T T =得:761a =, 故61a =,即511a q =. 又2121512a a a q ==,所以91512q =, 故12q =, 所以()()211122123411...2n n n n n n n T a a a a a a q--⎛⎫=== ⎪⎝⎭,所以n T 的最大值为15652T T ==.故选:A. 2.C 【分析】由等比中项,根据a 3a 11=4a 7求得a 7,进而求得b 7,再利用等差中项求解. 【详解】 ∵a 3a 11=4a 7, ∴27a =4a 7, ∵a 7≠0,∴a 7=4, ∴b 7=4, ∴b 5+b 9=2b 7=8. 故选:C 3.D 【分析】由2n n S a =-利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,得到数列{}n a 是以1为首项,12为公比的等比数列,进而得到{}2n a 是以1为首项,14为公比的等比数列,利用等比数列前n 项和公式得到n S ,n T ,将2(1)0nn n S T λ-->恒成立,转化为()()321(1)210nnnλ---+>对*n N ∈恒成立,再分n 为偶数和n 为奇数讨论求解.【详解】当1n =时,112S a =-,得11a =; 当2n ≥时,由2n n S a =-, 得112n n S a --=-,两式相减得112n n a a -=, 所以数列{}n a 是以1为首项,12为公比的等比数列. 因为112n n a a -=, 所以22114n n a a -=. 又211a =,所以{}2n a 是以1为首项,14为公比的等比数列, 所以1112211212nn n S ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-,11414113414nnn T ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-, 由2(1)0n n n S T λ-->,得214141(1)10234n nnλ⎡⎤⎡⎤⎛⎫⎛⎫---⨯->⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦,所以221131(1)1022n nn λ⎡⎤⎡⎤⎛⎫⎛⎫---->⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦,所以211131(1)110222nn n nλ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫----+>⎢⎥⎢⎥⎢⎥ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦. 又*n N ∈,所以1102n⎛⎫-> ⎪⎝⎭,所以1131(1)1022n nnλ⎡⎤⎡⎤⎛⎫⎛⎫---+>⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦,即()()321(1)210nnnλ---+>对*n N ∈恒成立,当n 为偶数时,()()321210nnλ--+>,所以()()321321663212121nnn n n λ-+-<==-+++, 令6321n n b =-+,则数列{}n b 是递增数列,所以22693215λb <=-=+; 当n 为奇数时,()()321210nnλ-++>,所以()()321321663212121nnn n n λ-+--<==-+++,所以16332121λb -<=-=-=+, 所以1λ>-.综上,实数λ的取值范围是91,5⎛⎫- ⎪⎝⎭.故选:D. 【点睛】方法点睛:数列与不等式知识相结合的考查方式主要有三种:一是判断数列问题中的一些不等关系;二是以数列为载体,考查不等式的恒成立问题;三是考查与数列问题有关的不等式的证明.在解决这些问题时,往往转化为函数的最值问题. 4.D 【分析】首先设等比数列{}n a 的公比为(0)q q ≠,根据14a ,22a ,3a 成等差数列,列出等量关系式,求得2q ,比较()*na n N n∈相邻两项的大小,求得其最小值. 【详解】在等比数列{}n a 中,设公比(0)q q ≠, 当11a =时,有14a ,22a ,3a 成等差数列,所以21344a a a =+,即244q q =+,解得2q ,所以12n na ,所以12n n a n n-=, 12111n n a n n a n n++=≥+,当且仅当1n =时取等号, 所以当1n =或2n =时,()*n a n N n∈取得最小值1,故选:D. 【点睛】该题考查的是有关数列的问题,涉及到的知识点有等比数列的通项公式,三个数成等差数列的条件,求数列的最小项,属于简单题目. 5.B 【分析】根据题意得该单音构成公比为四、五、八项即可得答案. 【详解】解:根据题意得该单音构成公比为 因为第六个单音的频率为f ,141422f f -==.661122f f -==.所以第五个单音的频率为1122f =.所以第八个单音的频率为1262f f =故选:B. 6.A 【分析】根据等比中项的性质列方程,解方程求得公差d ,由此求得{}n a 的前6项的和. 【详解】设等差数列{}n a 的公差为d ,由2a 、3a 、6a 成等比数列可得2326a a a =,即2(12)(1)(15)d d d +=++,整理可得220d d +=,又公差不为0,则2d =-, 故{}n a 前6项的和为616(61)6(61)661(2)2422S a d ⨯-⨯-=+=⨯+⨯-=-. 故选:A7.C 【分析】利用等比数列的性质以及对数的运算即可求解. 【详解】由120202201932018101010113a a a a a a a a =====,所以313232020log log log a a a +++()10103101010113log log 31010a a ===.故选:C 8.B 【分析】根据11a >,667711,01a a a a -><-,分0q < ,1q ≥,01q <<讨论确定q 的范围,然后再逐项判断. 【详解】若0q <,因为11a >,所以670,0a a <>,则670a a ⋅<与671a a ⋅>矛盾, 若1q ≥,因为11a >,所以671,1a a >>,则67101a a ->-,与67101a a -<-矛盾, 所以01q <<,故B 正确;因为67101a a -<-,则6710a a >>>,所以()26870,1a a a =∈,故A 错误; 因为0n a >,01q <<,所以111n n a q a S q q=---单调递增,故C 错误; 因为7n ≥时,()0,1n a ∈,16n ≤≤时,1n a >,所以n T 的最大值为6T ,故D 错误; 故选:B 【点睛】关键点点睛:本题的关键是通过穷举法确定01q <<. 9.D 【分析】设等比数列{}n a 的公比为q ,由题得()4561238a a a a a a ++=++,进而得2q,故2424a q a ==. 【详解】解:设等比数列{}n a 的公比为q ,因为639S S =,所以639S S =, 所以6338S S S -=,即()4561238a a a a a a ++=++, 由于()3456123a a a qa a a ++=++,所以38q =,故2q ,所以2424a q a ==. 故选:D. 10.C 【分析】令n n n c a b =-,由111233n n n a b a ++=+,11344n n n b a b +=+可知数列{}n c 是首项为1.8,公比为12的等比数列,即11.812n n c -⎛⎫ ⎪⎝⎭=⨯,则110.0121.8n -⎛⎫< ⎪⎝⎭⨯,解不等式可得n 的最小值. 【详解】令n n n c a b =-,则11120.2 1.8c a b =-=-=111113131344444121233343n n n n n n n n n n nn c a b a b a b b a a a b ++++⎛⎫=-=+--=+-- ⎪⎝+⎭111222n n n a b c -== 所以数列{}n c 是首项为1.8,公比为12的等比数列,所以11.812n n c -⎛⎫ ⎪⎝⎭=⨯由0.01n n a b -<,即110.0121.8n -⎛⎫< ⎪⎝⎭⨯,整理得12180n ->由72128=,82256=,所以18n -=,即9n =故选:C. 【点睛】本题考查了等比数列及等比数列的通项公式,解题的关键是根据已知的数列递推关系式,利用等比数列的定义,得到数列{}n c 为等比数列,考查了学生的分析问题能力能力与运算求解能力,属于中档题. 11.C 【分析】根据等比数列的通项公式求解即可. 【详解】由题意可得等比数列通项5111122nn n a a q -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,则5n = 故选:C 12.C 【分析】利用等比数列的性质运算求解即可.根据题意,等比数列{}n a 满足2237610216a a a a a ++=, 则有222288216a a a a ++=,即()22816a a +=, 又由数列{}n a 为正项等比数列,故284a a +=. 故选:C . 13.C 【分析】利用等比通项公式直接代入计算,即可得答案; 【详解】()211142211111122211121644a a q a q q q q a q a q ⎧⎧=-=--⎪⎪⎪⎪⇒⇒=⇒=-⎨⎨⎪⎪=⋅=⎪⎪⎩⎩, 故选:C. 14.B 【分析】由等比数列的性质,求得685a a +=,再结合基本不等式,即可求得113a a 的最大值,得到答案. 【详解】由等比数列的性质,可得()2222265986688682225a a a a a a a a a a ++=++=+=,又因为0n a >,所以685a a +=,所以268113682524a a a a a a +⎛⎫=≤=⎪⎝⎭, 当且仅当6852a a ==时取等号. 故选:B . 15.A 【分析】由等比数列的性质可得2315a a a =⋅,且1a 与3a 同号,从而可求出3a 的值【详解】解:因为等比数列{}n a 中,11a =,54a =,所以23154a a a =⋅=,因为110a =>,所以30a >, 所以32a =, 故选:A 16.D由k a 是1a 与2k a 的等比中项及14a d =建立方程可解得k . 【详解】k a 是1a 与2k a 的等比中项212k k a a a ∴=,()()2111121a k d a a k d ⎡⎤∴+-=+-⎣⎦⎡⎤⎣⎦()()223423k d d k d ∴+=⨯+,3k ∴=.故选:D 【点睛】本题考查等差数列与等比数列的基础知识,属于基础题. 17.D 【分析】利用等比数列的通项公式求出1a 和2a ,利用21a a 求出公比即可 【详解】设公比为q ,等比数列{}n a 的通项公式为2*3()n n a n N +=∈,则31327a ==,42381a ==,213a q a ∴==, 故选:D 18.A 【分析】根据等比中项的性质有216x =,而由等比通项公式知2x q =,即可求得x 的值. 【详解】由题意知:216x =,且若令公比为q 时有20x q =>,∴4x =, 故选:A 19.C 【分析】利用等比数列的通项公式和前n 项和公式代入化简可得答案 【详解】解:因为等比数列的公比为2,所以31312311(12)7712244a S a a a a --===⋅, 故选:C 20.C 【分析】根据12n n a a +=,得到数列{}n a 是公比为2的等比数列求解. 【详解】 因为12n n a a +=, 所以12n na a +=, 所以数列{}n a 是公比为2的等比数列. 因为32a =,所以235328a a q ===. 故选:C二、多选题 21.无 22.无23.BCD 【分析】 由已知可得11222n n n n S n S nS n S n++++==++,结合等比数列的定义可判断B ;可得2n n S n =-,结合n a 和n S 的关系可求出{}n a 的通项公式,即可判断A ;由{}n a 的通项公式,可判断C ;由分组求和法结合等比数列和等差数列的前n 项和公式即可判断D . 【详解】因为121n n S S n +=+-,所以11222n n n n S n S nS n S n++++==++.又112S +=,所以数列{}n S n +是首项为2,公比为2的等比数列,故B 正确;所以2n n S n +=,则2nn S n =-.当2n ≥时,1121n n n n a S S --=-=-,但11121a -≠-,故A 错误;由当2n ≥时,121n n a -=-可得91021511a =-=,故C 正确;因为1222n n S n +=-,所以2311222...2221222...22n n S S S n ++++=-⨯+-⨯++-()()()23122412122...2212 (22412)2n n n n n n n n n ++--⎡⎤=+++-+++=-+=---⎢⎥-⎣⎦ 所以数列{}2n S 的前n 项和为2224n n n +---,故D 正确.故选:BCD . 【点睛】关键点点睛:在数列中,根据所给递推关系,得到等差等比数列是重难点,本题由121n n S S n +=+-可有目的性的构造为1122n n S S n n +++=+,进而得到11222n n n n S n S nS n S n++++==++,说明数列{}n S n +是等比数列,这是解决本题的关键所在,考查了推理运算能力,属于中档题, 24.BD 【分析】根据22n n S a =-,利用数列通项与前n 项和的关系得1,1,2n n S n a S n =⎧=⎨≥⎩,求得通项n a ,然后再根据选项求解逐项验证. 【详解】当1n =时,12a =,当2n ≥时,由22n n S a =-,得1122n n S a --=-, 两式相减得:12n n a a -=, 又212a a =,所以数列{}n a 是以2为首项,以2为公比的等比数列, 所以2n n a =,24nn a =,数列{}2na的前n 项和为()141444143n n nS +--'==-, 则22log log 2nn n b a n ===,所以()1111111n n b b n n n n +==-⋅⋅++,所以 1111111 (11123411)n T n n n =-+-++-=-<++, 故选:BD 【点睛】方法点睛:求数列的前n 项和的方法 (1)公式法:①等差数列的前n 项和公式,()()11122n n n a a n n S na d +-==+②等比数列的前n 项和公式()11,11,11nn na q S a q q q=⎧⎪=-⎨≠⎪-⎩;(2)分组转化法:把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.(3)裂项相消法:把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. (4)倒序相加法:把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广.(5)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列对应项之积构成的,则这个数列的前n 项和用错位相减法求解.(6)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解. 25.BD 【分析】设设等比数列{}n a 的公比为q ,则0q >,由已知得1112114a a ++=,解方程计算即可得答案. 【详解】解:设等比数列{}n a 的公比为q ,则0q >,因为21531a a a ==,2311a a q == , 所以51115135151511111112111114a a a a a a a a a a a a a ++=++=++=+=+++=, 解得1412a q =⎧⎪⎨=⎪⎩或1142.a q ⎧=⎪⎨⎪=⎩, 当14a =,12q =时,551413121412S ⎛⎫- ⎪⎝⎭==-,数列{}n a 是递减数列; 当114a =,2q 时,5314S =,数列{}n a 是递增数列; 综上,5314S =. 故选:BD. 【点睛】本题考查数列的等比数列的性质,等比数列的基本量计算,考查运算能力.解题的关键在于结合等比数列的性质将已知条件转化为1112114a a ++=,进而解方程计算. 26.AD 【分析】利用等差数列的通项公式以及定义可判断A 、B 、D ;利用等比数列的通项公式可判断B. 【详解】对于A ,若{}n a 是等差数列,设公差为d ,则()1111122n n n a n d a nd A a a a nd d +=+=+-++=+-, 则()()111222212n n A A a nd d a n d d d --=+--+--=⎡⎤⎣⎦, 所以{}n A 是等差数列,故A 正确; 对于B ,若{}n A 是等差数列,设公差为d ,()11111n n n n n n n n A a a a a a a A d +-+--=-=-+-=+,即数列{}n a 的偶数项成等差数列,奇数项成等差数列,故B 不正确,D 正确. 对于C ,若{}n a 是等比数列,设公比为q , 当1q ≠-时, 则11111n n n n n n n n n na q a A a a a qq a A a a --+--+=+++==, 当1q =-时,则10n n n A a a ++==,故{}n A 不是等比数列,故C 不正确; 故选:AD 【点睛】本题考查了等差数列的通项公式以及定义、等比数列的通项公式以及定义,属于基础题. 27.AB 【分析】首先可得数列{}n a 为等比数列,从而求出公比q 、1a ,再根据等比数列求和公式计算可得; 【详解】解:因为数列{}n a 对任意的正整数n 均有212n n n a a a ++=,所以数列{}n a 为等比数列,因为22a =,48a =,所以2424a q a ==,所以2q =±, 当2q时11a =,所以101012102312S -==-当2q =-时11a =-,所以()()()101011234112S -⨯--==--故选:AB 【点睛】本题考查等比数列的通项公式及求和公式的应用,属于基础题. 28.BCD 【分析】设此人第n 天走n a 里路,则{}n a 是首项为1a ,公比为12q = 的等比数列,由6=378S 求得首项,然后逐一分析四个选项得答案. 【详解】解:根据题意此人每天行走的路程成等比数列,设此人第n 天走n a 里路,则{}n a 是首项为1a ,公比为12q =的等比数列. 所以661161[1()](1)2=3781112a a q S q --==--,解得1192a =. 选项A:5561119262a a q ⎛⎫==⨯= ⎪⎝⎭,故A 错误, 选项B:由1192a =,则61378192186S a -=-=,又1921866-=,故B 正确. 选项C:211192962a a q ==⨯=,而6194.54S =,9694.5 1.5-=,故C 正确.选项D:2123111(1)192(1)33624a a a a q q ++=++=⨯++=, 则后3天走的路程为378336=42-, 而且336428÷=,故D 正确. 故选:BCD 【点睛】本题考查等比数列的性质,考查等比数列的前n 项和,是基础题. 29.ABD 【分析】先分析公比取值范围,即可判断A ,再根据等比数列性质判断B,最后根据项的性质判断C,D. 【详解】若0q <,则67670,00a a a a <>∴<与671a a >矛盾; 若1q ≥,则11a >∴671,1a a >>∴67101a a ->-与67101a a -<-矛盾; 因此01q <<,所以A 正确;667710101a a a a -<∴>>>-,因此2768(,1)0a a a =∈,即B 正确; 因为0n a >,所以n S 单调递增,即n S 的最大值不为7S ,C 错误;因为当7n ≥时,(0,1)n a ∈,当16n ≤≤时,(1,)n a ∈+∞,所以n T 的最大值为6T ,即D 正确; 故选:ABD 【点睛】本题考查等比数列相关性质,考查综合分析判断能力,属中档题. 30.AD 【分析】由已知可得11222n n n n S n S nS n S n++++==++,结合等比数列的定义可判断A ;可得2n n S n =-,结合n a 和n S 的关系可求出{}n a 的通项公式,即可判断B ;由1231,1,3a a a ===可判断C ;由分组求和法结合等比数列和等差数列的前n 项和公式即可判断D. 【详解】因为121n n S S n +=+-,所以11222n n n n S n S nS n S n++++==++.又112S +=,所以数列{}n S n +是首项为2,公比为2的等比数列,故A 正确;所以2n n S n +=,则2nn S n =-.当2n ≥时,1121n n n n a S S --=-=-,但11121a -≠-,故B 错误;由1231,1,3a a a ===可得12312,12,14a a a +=+=+=,即32211111a a a a ++≠++,故C 错; 因为1222n n S n +=-,所以2311222...2221222 (2)2n n S S S n ++++=-⨯+-⨯++-()()()23122412122...2212 (22412)2n n n n n n n n n ++--⎡⎤=+++-+++=-+=---⎢⎥-⎣⎦ 所以数列{}2n S 的前n 项和为2224n n n +---,故D 正确. 故选:AD . 【点睛】本题考查等比数列的定义,考查了数列通项公式的求解,考查了等差数列、等比数列的前n 项和,考查了分组求和.31.BC 【分析】先求得3a ,然后求得q ,进而求得1a ,由此求得1,,n n n n a S S S +-,进而判断出正确选项. 【详解】由23464a a a =得3334a =,则34a =.设等比数列{}n a 的公比为()0q q ≠,由2410a a +=,得4410q q+=,即22520q q -+=,解得2q或12q =.又因为数列{}n a 单调递增,所以2q,所以112810a a +=,解得11a =.所以12n na ,()1122112n nn S ⨯-==--,所以()1121212n n n n n S S ++-=---=.故选:BC 【点睛】本题考查等比数列的通项公式、等比数列的性质及前n 项和,属于中档题.32.BD由n S 和n a 的关系求出数列{}n a 为等比数列,所以选项A 错误,选项B 正确;利用等比数列前n 项和公式,求出 122212443n n a a a +-+++=,故选项C 错误,由等比数列的通项公式得到62642m n +==,所以选项D 正确. 【详解】由题意,当1n =时,1122S a =-,解得12a =, 当2n ≥时,1122n n S a --=-,所以()111222222n n n n n n n a S S a a a a ----=-=---=,所以12nn a a -=,数列{}n a 是以首项12a =,公比2q 的等比数列,2n n a =,故选项A 错误,选项B 正确; 数列{}2na 是以首项214a=,公比14q =的等比数列,所以()()21112221211414441143n n n na q a a a q +-⨯--+++===--,故选项C 错误;6222642m n m n m n a a +====,所以6m n +=为定值,故选项D 正确.故选:BD 【点睛】本题主要考查由n S 和n a 的关系求数列的通项公式,等比数列通项公式和前n 项和公式的应用,考查学生转化能力和计算能力,属于中档题. 33.AC 【分析】直接利用题目中“保等比数列函数”的性质,代入四个选项一一验证即可. 【详解】设等比数列{}n a 的公比为q .对于A ,则2221112()()n n n n n n f a a a q f a a a +++⎛⎫=== ⎪⎝⎭,故A 是“保等比数列函数”; 对于B ,则111()22()2n n nn a a a n a nf a f a ++-+==≠ 常数,故B 不是“保等比数列函数”; 对于C ,则1()()n n f a f a +===,故C 是“保等比数列函数”;对于D ,则11ln ln ln ln ln ()1()ln ln ln ln n n n n n n n n na a q a qq f a f a a a a a ++⋅+====+≠ 常数,故D 不是“保等比数列函数”. 故选:AC.本题考查等比数列的定义,考查推理能力,属于基础题. 34.AB 【分析】由已知分别写出等差数列与等比数列的通项公式,求得数列{c n }的通项公式,利用数列的分组求和法可得数列{c n }的前n 项和T n ,验证得答案. 【详解】由题意,a n =1+2(n ﹣1)=2n ﹣1,12n n b -=,n n b c a ==2•2n ﹣1﹣1=2n ﹣1,则数列{c n }为递增数列,其前n 项和T n =(21﹣1)+(22﹣1)+(23﹣1)+…+(2n ﹣1) =(21+22+ (2))﹣n ()21212n n -=-=-2n +1﹣2﹣n .当n =9时,T n =1013<2019; 当n =10时,T n =2036>2019. ∴n 的取值可以是8,9. 故选:AB 【点睛】本题考查了分组求和,考查了等差等比数列的通项公式、求和公式,考查了学生综合分析,转化划归,数学运算的能力,属于中档题. 35.ACD 【分析】根据新定义进行判断. 【详解】A .若数列{}n a 是单增数列,则11111111()(1)n n n n n n n n n n b b a a a a a a a a ------=--+=-+, 虽然有1n n a a ->,但当1110n n a a -+<时,1n n b a -<,因此{}n b 不一定是单增数列,A 正确;B .31n a n =-,则13131n b n n =---,易知{}n b 是递增数列,无最大值,B 错; C .31n a n =-,则13131n b n n =---,易知{}n b 是递增数列,有最小值,最小值为1b ,C 正确;D .若112nn a ⎛⎫=-- ⎪⎝⎭,则111()121()2n n n b =-----, 首先函数1y x x=-在(0,)+∞上是增函数,当n 为偶数时,11()(0,1)2n n a =-∈,∴10n n nb a a =-<, 当n 为奇数时,11()2n n a =+1>,显然n a 是递减的,因此1n n nb a a =-也是递减的, 即135b b b >>>,∴{}n b 的奇数项中有最大值为13250236b =-=>, ∴156b =是数列{}(*)n b n N ∈中的最大值.D 正确. 故选:ACD .【点睛】本题考查数列新定义,解题关键正确理解新定义,把问题转化为利用数列的单调性求最值.。

高考数学 数列单元测试卷及答案 试题

高考数学 数列单元测试卷及答案 试题
(3)设Sn是数列{an}的前n项和,当n≥2时,Sn与(n+ )a是否有确定的大小关系?假设有,请加以证明,假设没有,请说明理由.
(文)P1(a1,b1),P2(a2,b2),…,Pn(an,bn)(n∈N*)都在函数y=log x的图象上.
(1)假设数列{bn}是等差数列,求证数列{an}是等比数列;
三、解答题(本大题一一共6小题,一共70分)
17.(本小题满分是10分)数列{an}是首项a1=4的等比数列,且S3,S2,S4成等差数列.
(1)求数列{an}的通项公式;
(2)设bn=log2|an|,Tn为数列{ }的前n项和,求Tn.
解:(1)当q=1时,S3=12,S2=8,S4=16,不成等差数列.
∴n0=2021或者(huòzhě)2021.
(文)(1)∵an+1-2an=0,
∴a3=2a2,a4=2a3,又a3+2是a2、a4的等差中项,
∴a1=2,a2=4,
∴数列(shùliè){an}是以2为首项,2为公比的等比数列(děnɡ bǐ shù liè),那么
an=2n.
(2)∵Sn=2n+1-2,又bn=log2(Sn+2),∴bn=n+1.
12.数列{an}满足an+1= + ,且a1= ,那么该数列的前2021项的和等于()
A. B.3015
C.1005D.2021
答案:A
解析:因为a1= ,又an+1= + ,所以a2=1,
从而(cóng ér)a3= ,a4=1,
即得an= ,故数列(shùliè)的前2021项的和等于S2021=1005(1+ )= .应选(yīnɡ xuǎn)A.
3.设Sn是公差不为0的等差数列{an}的前n项和,且S1,S2,S4成等比数列,那么 等于()

高中数学选择性必修二 第四章 数列单元测试(基础卷)(含答案)

高中数学选择性必修二 第四章 数列单元测试(基础卷)(含答案)

第四章 数列 单元过关检测 基础A 卷解析版学校:___________姓名:___________班级:___________考号:___________ 题型:8(单选)+4(多选)+4(填空)+6(解答),满分150分,时间:120分钟一、单选题1.已知数列{a n }的前4项为:l ,−12,13,−14,则数列{a n }的通项公式可能为( ) A .a n =1n B .a n =−1nC .a n =(−1)n nD .a n =(−1)n−1n【答案】D 【解析】 【分析】分母与项数一样,分子都是1,正负号相间出现,依此可得通项公式 【详解】正负相间用(−1)n−1表示,∴a n =(−1)n−1n.故选D . 【点睛】本题考查数列的通项公式,属于基础题,关键是寻找规律,寻找与项数有关的规律. 2.记n S 为等差数列{}n a 的前n 项和,若33a =,621S =,则数列{}n a 的公差为( ) A .1 B .-1C .2D .-2【答案】A【分析】利用等差数列{a n }的前n 项和与通项公式列方程组,求出首项和公差,由此能求出数列{a n }的公差. 【详解】∴S n 为等差数列{a n }的前n 项和,a 3∴3∴S 6∴21∴∴316123656212a a d S a d =+=⎧⎪⎨⨯=+=⎪⎩∴ 解得a 1∴1∴d ∴1∴ ∴数列{a n }的公差为1. 故选A ∴ 【点睛】本题考查数列的公差的求法,考查等差数列的前n 项和公式等基础知识,考查运算求解能力,是基础题.3.已知数列{}n a ,满足111n n a a +=-,若112a =,则2019a =( ) A .2 B .12C .1-D .12-【答案】C 【分析】利用递推公式计算出数列{}n a 的前几项,找出数列{}n a 的周期,然后利用周期性求出2019a 的值. 【详解】111n n a a +=-,且112a =,211121112a a ∴===--,32111112a a ===---, 111a ===,所以,()a a n N *=∈,则数列{}n a 是以3为周期的周期数列,20193672331a a a ⨯+===-∴. 故选C. 【点睛】本题考查利用数列递推公式求数列中的项,推导出数列的周期是解本题的关键,考查分析问题和解决问题的能力,属于中等题.4.在等比数列{}n a 中,6124146,5a a a a ⋅=+=,则255a a =( ) A .94或49B .32C .32或23 D .32或94【答案】A 【分析】根据等比数列的性质得6124146a a a a ⋅=⋅=,又由4145a a +=,联立方程组,解得414,a a 的值,分类讨论求解,即可得到答案. 【详解】由题意,根据等比数列的性质,可得6124146a a a a ⋅=⋅=,又由4145a a +=,联立方程组,解得41423a a =⎧⎨=⎩或41432a a =⎧⎨=⎩,当41423a a =⎧⎨=⎩时,则1014432a q a ==,此时201022559()4a q q a ===;当41432a a =⎧⎨=⎩时,则1014423a q a ==,此时201022554()9a q q a ===,故选A. 【点睛】值是解答的关键,着重考查了运算与求解能力,属于基础题. 5.等比数列{}n a 中( ) A .若12a a <,则45a a <B .若12a a <,则34a a <C .若32S S >,则12a a <D .若32S S >,则12a a >【答案】B 【分析】根据等比数列的通项公式及求和公式,等比数列的公比分析即可求出答案. 【详解】等比数列{}n a 中,20q >,∴当12a a <时,可得2212a q a q <,及34a a <,故B 正确;但341a a q =和352a a q =不能判断大小(3q 正负不确定),故A 错误;当32S S >时,则12312+++a a a a a >,可得30a >,即210a q >,可得10a >,由于q 不确定,不能确定12,a a 的大小,故CD 错误. 故选:B. 【点睛】本题考查等比数列通项公式和求和公式的应用,属于基础题.6.两等差数列{}n a 和{}n b ,前n 项和分别为n S ,n T ,且723n n S n T n +=+,则220715a ab b ++的值为( ) A .14924B .7914C .165D .5110【分析】在{}n a 为等差数列中,当(m n p q m +=+,n ,p ,)q N +∈时,m n p q a a a a +=+.所以结合此性质可得:2202171521a a Sb b T +=+,再根据题意得到答案.【详解】解:在{}n a 为等差数列中,当(m n p q m +=+,n ,p ,)q N +∈时,m n p q a a a a +=+.所以1212202171521121121()2121()2a a a a Sb b T b b ⨯+⨯+==+⨯+⨯,又因为723n n S n T n +=+, 所以22071514924a ab b +=+.故选:A . 【点睛】本题主要考查等差数列的下标和性质,属于中档题.7.函数()2cos 2f x x x =-的正数零点从小到大构成数列{}n a ,则3a =( )A .1312π B .54π C .1712πD .76π 【答案】B 【分析】先将函数化简为()2sin 26f x x π⎛⎫=- ⎪⎝⎭再解函数零点得4x k ππ=+或512x k ππ=+,k Z ∈,再求3a 即可. 【详解】解:∵()2cos 22sin 26f x x x x π⎛⎫=--=- ⎪⎝⎭∴ 令()0f x =得:2263x k πππ-=+或22263x k πππ-=+,k Z ∈, ∴4x k ππ=+或512x k ππ=+,k Z ∈,∴ 正数零点从小到大构成数列为:12355,,,4124a a a πππ===故选:B. 【点睛】本题考查三角函数的性质,数列的概念,考查数学运算求解能力,是中档题.8.已知函数3()13xxf x =+(x ∈R ),正项等比数列{}n a 满足501a =,则 1299(ln )(ln )(ln )f a f a f a +++=A .99B .101C .992D .1012【答案】C 【详解】因为函数31()()()11331x x xf x f x f x ---==∴+-=++(x ∈R ), 正项等比数列{}n a 满足2501995011a a a a =∴==,9921ln ln ln ln ...0a a a a +=+=则1299(ln )(ln )(ln )f a f a f a +++=992,选C二、多选题A .{}n a 可能为等差数列B .{}n a 可能为等比数列C .{}n a 中一定存在连续三项构成等差数列D .{}n a 中一定存在连续三项构成等比数列 【答案】AC 【分析】由2n S an bn c =++可求得n a 的表达式,利用定义判定得出答案.【详解】当1n =时,11a S a b c ==++.当2n ≥时,()()221112n n n a S S an bn c a n b n c an a b -=-=++-----=-+. 当1n =时,上式=+a b .所以若{}n a 是等差数列,则0.a b a b c c +=++∴=所以当0c 时,{}n a 是等差数列,不可能是等比数列;当0c ≠时,{}n a 从第二项开始是等差数列. 故选:AC 【点睛】本题只要考查等差数列前n 项和n S 与通项公式n a 的关系,利用n S 求通项公式,属于基础题. 10.已知数列{}n a 的首项为4,且满足()*12(1)0n n n a na n N++-=∈,则( )A .n a n ⎧⎫⎨⎬⎩⎭为等差数列B .{}n a 为递增数列C .{}n a 的前n 项和1(1)24n n S n +=-⋅+D .12n n a +⎧⎫⎨⎬⎩⎭的前n 项和22n n n T +=【答案】BD 【分析】由12(1)0n n n a na ++-=得121n n a a n n +=⨯+,所以可知数列n a n ⎧⎫⎨⎬⎩⎭是等比数列,从而可求出12n n a n +=⋅,可得数列{}n a 为递增数列,利用错位相减法可求得{}n a 的前n 项和,由于111222n nn n a n n +++⋅==,从而利用等差数列的求和公式可求出数列12n n a +⎧⎫⎨⎬⎩⎭的前n 项和.【详解】由12(1)0n n n a na ++-=得121n n a a n n +=⨯+,所以n a n ⎧⎫⎨⎬⎩⎭是以1141a a ==为首项,2为公比的 等比数列,故A 错误;因为11422n n na n-+=⨯=,所以12n n a n +=⋅,显然递增,故B 正确; 因为23112222n n S n +=⨯+⨯++⋅,342212222n n S n +=⨯+⨯++⋅,所以231212222n n n S n ++-=⨯+++-⋅()22212212nn n +-=-⋅-,故2(1)24n n S n +=-⨯+,故C 错误;因为111222n n n n a n n +++⋅==,所以12n n a +⎧⎫⎨⎬⎩⎭的前n 项和2(1)22n n n n n T ++==, 故D 正确. 故选:BD本题考查等差数列、等比数列的综合应用,涉及到递推公式求通项,错位相减法求数列的和,等差数列前n 项和等,考查学生的数学运算能力,是一道中档题.11.已知无穷等差数列{}n a 的前n 项和为n S ,67S S <,且78S S >,则( ) A .在数列{}n a 中,1a 最大 B .在数列{}n a 中,3a 或4a 最大 C .310S S =D .当8n ≥时,0n a <【答案】AD 【分析】由已知得到780,0a a ><,进而得到0d <,从而对ABD 作出判定.对于C,利用等差数列的和与项的关系可等价转化为160a d +=,可知不一定成立,从而判定C 错误. 【详解】由已知得:780,0a a ><,结合等差数列的性质可知,0d <,该等差数列是单调递减的数列, ∴A 正确,B 错误,D 正确,310S S =,等价于1030S S -=,即45100a a a ++⋯+=,等价于4100a a +=,即160a d +=,这在已知条件中是没有的,故C 错误. 故选:AD. 【点睛】本题考查等差数列的性质和前n 项和,属基础题,关键在于掌握和与项的关系.12.将2n 个数排成n 行n 列的一个数阵,如图:该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中0m >).已知112a =,1a a =+,记这2n 个数的和为S .下列结论正确的有( )1112131.n a a a a ⋯⋯ 2122232.n a a a a ⋯⋯ 3132333.n a a a a ⋯⋯……123.n n n nn a a a a ⋯⋯A .3m =B .767173a =⨯C .()1313j ij a i -=-⨯ D .()()131314n S n n =+- 【答案】ACD 【分析】根据等差数列和等比数列通项公式,结合13611a a =+可求得m ,同时确定67a 、ij a 的值、得到,,A B C 的正误;首先利用等比数列求和公式求得第i 行n 个数的和,再结合等差求和公式得到D 的正误. 【详解】对于A ,2213112a a m m =⋅=,6111525a a m m =+=+,2235m m ∴=+,又0m >,3m ∴=,A 正确;对于B ,612517a m =+=,666761173a a m ∴=⋅=⨯,B 错误;对于C ,()111131i a a i m i =+-=-,()111313j j ij i a a mi --∴=⋅=-⋅,C 正确;对于D ,第i 行n 个数的和()()()()()1131133131122n n n i a m i i S m-----'===--,()()()()()()3111131258313131312224n n nn n S n n n +∴=-⨯+++⋅⋅⋅+-=-⨯=+-⎡⎤⎣⎦,D 正确. 故选:ACD .本题考查数列中的新定义问题,解题关键是能够灵活应用等差和等比数列的通项公式和求和公式,将新定义的数阵转化为等差和等比数列的问题来进行求解.三、填空题13.已知{}n a 为等差数列,135246105,99a a a a a a ++=++=,{}n a 前n 项和n S 取得最大值时n 的值为___________. 【答案】20 【分析】先由条件求出1,a d ,算出n S ,然后利用二次函数的知识求出即可 【详解】设{}n a 的公差为d ,由题意得135********d a a a a d a a ++++==++即1235a d +=,①2461113599a a a a d a d a d ++=+++++=即1333a d +=,②由①②联立得139,2a d ==-所以()()22139(2)40204002n S n n n n n n -=+⨯-=-+=--+故当20n =时,n S 取得最大值400 故答案为:20等差数列的n S 是关于n 的二次函数,但要注意n 只能取正整数.14.《九章算术》中有一个“两鼠穿墙”的问题:“今有垣厚五尺,两鼠对穿.大鼠日一尺,小鼠亦日一尺.大鼠日自倍,小鼠日自半.问几何日相逢?各穿几何?”其大意为:“今有一堵墙厚五尺,两只老鼠从墙的两边沿一条直线相对打洞穿墙,大老鼠第一天打洞1尺,以后每天是前一天的2倍;小老鼠第一天也打洞1尺,以后每天是前一天的12.问大、小老鼠几天后相遇?各自打洞几尺?”如果墙足够厚,S n 为前n 天两只老鼠打洞长度之和,则S n =_____尺.【答案】2n +1﹣21﹣n【分析】写出两只老鼠打洞的通项公式,利用分组求和即可得解. 【详解】根据题意大老鼠第n 天打洞12n na 尺,小老鼠第n 天打洞112n n b -⎛⎫= ⎪⎝⎭尺,所以11111242122n n n S --⎛⎫=+++⋅⋅⋅++++⋅⋅⋅+ ⎪⎝⎭111221112nn ⎛⎫- ⎪-⎝⎭=+--112122n n -⎛⎫=-+- ⎪⎝⎭1212n n -=+-故答案为:1212n n -+- 【点睛】此题考查等比数列的辨析,写出通项公式,根据求和公式求和,关键在于熟练掌握相关公式,涉及分组求和.15.我国古代,9是数字之极,代表尊贵之意,所以中国古代皇家建筑中包含许多与9相关的设计.例如,北京天坛圆丘的底面由扇环形的石板铺成(如图),最高一层是一块天心石,围绕它的第一圈有9块石板,从第二圈开始,每一圈比前一圈多9块,共有9圈,则前9圈的石板总数是__________.【答案】405 【分析】前9圈的石板数依次组成一个首项为9,公差为9的等差数列,9989994052S ⨯=⨯+⨯= 16.如图,互不相同的点12,,,n A A A 和12,,,,n B B B 分别在角O 的两条边上,所有n n A B 相互平行,且所有梯形11n n n n A B B A ++的面积均相等.设n n OA a =.若11a =,22a =,则数列{}n a 的通项公式是________.【答案】n a =【分析】根据三角形相似和所有梯形11n n n n A B B A ++的面积均相等,找到与n a 相关的递推公式,再由递推公式求得通项公式. 【详解】由于11//,n n n n A B A B ++ 所以11,n n n n OA B OA B ++梯形11n n n n A B B A ++ 的面积为11n n OA B ++∆的面积減去n n OA B △的面积,2222i i j jOA B i i OA B j jS OA a SOA a == 则可得 222211,n n n n a a a a +--=- 即递推公式为222112,n n n a a a +-=+故2{}n a 为等差数列,且公差d =2221a a -3=,故21(1)332n a n n =+-⨯=-,得n a =故答案为: n a 【点睛】本题主要考查数列在平面几何中的应用,根据几何关系寻找递推有关系是解决问题的关键,属于中档题.四、解答题17.设等差数列{}n a 的前n 项的和为n S ,且462S =-,675S =-,求: (1)求{}n a 的通项公式n a ; (2)求数列{}n a 的前14项和.【答案】(1)323n a n =-;(2)147. 【分析】(1)由已知条件列出关于1,a d 的方程组,求出1,a d 可得到n a ;(2)由通项公式n a 先判断数列{}n a 中项的正负,然后再化简数列{}n a 中的项,即可求出结果. 【详解】解:(1)设等差数列{}n a 的公差为d ,依题意得11434622656752a d a d ⨯⎧+=-⎪⎪⎨⨯⎪+=-⎪⎩,解得120,3a d =-=,∴()2013323n a n n =-+-⨯=-; (2)∵323n a n =-,∴由0n a <得8n <,22(20323)3433432222n n n n n S n n -+--===-∴123141278141472a a a a a a a a a S S ++++=----+++=-223433431414772222⎛⎫=⨯-⨯-⨯-⨯ ⎪⎝⎭()()7424372143147=---=.【点睛】此题考查等差数列的基本量计算,考查计算能力,属于基础题. 18.数列{}n a 满足11a =,22a =,2122n n n a a a ++=-+ (1)设1n n n b a a +=-,证明数列{}n b 是等差数列(2)求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n S .【答案】(1)证明过程见详解;(2)21n nS n =+. 【分析】(1)先化简得到()()2112n n n n a a a a +++---=即12n n b b ,再求得1211b a a =-=,最后判断数列{}n b 是以1为首项,以2为公差的等差数列.(2)先求出数列{}n b 的通项公式21n b n =-,再运用“裂项相消法”求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和nS 即可. 【详解】解:(1)因为2122n n n a a a ++=-+,所以()()2112n n n n a a a a +++---= 因为1n n n b a a +=-,所以12nn b b ,且1211b a a =-=所以数列{}n b 是以1为首项,以2为公差的等差数列. (2)由(1)的()11221n b n n =+-⨯=-,所以()()111111212122121n n b b n n n n +⎛⎫==- ⎪-+-+⎝⎭所以12233411111n n n S b b b b b b b b +=++++11111111111121323525722121n n ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭⎝⎭111.22121n n n ⎛⎫=-= ⎪++⎝⎭ 【点睛】本题考查利用定义求等差数列的通项公式、根据递推关系判断数列是等差数列、根据“裂项相消法”求和,还考查了转化的数学思维方式,是基础题.19.在①112n n a a +=-,②116n n a a +-=-,③18n n a a n +=+-这三个条件中任选一个,补充在下面的问题中,若问题中的n S 存在最大值,则求出最大值;若问题中的n S 不存在最大值,请说明理由.问题:设n S 是数列{}n a 的前n 项和,且14a =,__________,求{}n a 的通项公式,并判断n S 是否存在最大值.注:如果选择多个条件分别解答,按第一个解答计分. 【答案】答案见解析 【分析】若选①,求出数列{}n a 是首项为4,公比为12-的等比数列,求出通项公式和前n 项和,通过讨论n 的奇偶性,求出其最大值即可;若选②,求出数列{}n a 是首项为4,公差为16-的等差数列,求出通项公式和前n 项和,求出其最大值即可;若选③,求出217242n n n a -+=,当16n ≥时,0n a >,故n S 不存在最大值.【详解】 解:选①因为112n n a a +=-,14a =,所以{}n a 是首项为4.公比为12-的等比数列, 所1211422n n n a --⎛⎫⎛⎫=⨯-=- ⎪⎪⎝⎭⎝⎭.当n 为奇数时,141281113212n n nS ⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦==+ ⎪⎝⎭+,因为81132n ⎛⎫+ ⎪⎝⎭随着n 的增加而减少,所以此时n S 的最大值为14S =. 当n 为偶数时,81132n nS ⎛⎫=-⎪⎝⎭, 且81814323n n S ⎛⎫=-<<⎪⎝⎭ 综上,n S 存在最大值,且最大值为4. 选②因为116n n a a +-=-,14a =.所以{}n a 是首项为4,公差为16-的等差数列, 所以11254(1)666n a n n ⎛⎫=+--=-+ ⎪⎝⎭. 由125066n -+≥得25n ≤, 所以n S 存在最大值.且最大值为25S (或24S ),因为25252412545026S ⨯⎛⎫=⨯+⨯-= ⎪⎝⎭,所以n S 的最大值为50. 选③因为18n n a a n +=+-,所以18n n a a n +-=-,所以217a a -=-,326a a -=-,…19n n a a n --=-,则2121321(79)(1)171622n n n n n n n a a a a a a a a --+---+=-+-+=-+-=, 又14a =,所以217242n n n a -+=. 当16n ≥时,0n a >,故n S 不存在最大值. 【点睛】此题考查数列的通项公式和求和公式,考查等差数列和等比数列的性质,属于基础题 20.已知数列{}n a 的前n 项和为n S ,满足22n n S a =-. (1)求数列{}n a 的通项公式;(2)设()21n n b n a =-,求数列{}n b 的前n 项和n T .【答案】(1)2nn a =;(2)()12326n n T n +=-⨯+【分析】(1)利用1(2)n n n a S S n -=-≥,11a S =,可得{}n a 为等比数列,利用等比数列的通项公式即可求得通项公式n a ;(2)利用错位相减法求和即可求n T . 【详解】(1)当1n =时,11122a S a ==-,解得12a =,当1n >时,由22n n S a =-可得1122n n S a --=-,1n >两式相减可得122n n n a a a -=-,即12nn a a -=, 所以{}n a 是以2为首项,以2为公比的等比数列,所以1222n nn a -=⋅=(2)由(1)(21)2nn b n =-⋅,23123252(21)2n n T n =⨯+⨯+⨯++-⋅,则23412123252(23)2(21)2n n n T n n +=⨯+⨯+⨯++-⨯+-⨯,两式相减得2312222222(21)2n n n T n +-=+⨯+⨯++⨯--⨯()112118(12)2(21)226(21)2232612n n n n n n n n -++++-=+--⨯=---⨯=--⋅--,所以()12326n n T n +=-⨯+.【点睛】 方法点睛:由数列前n 项和求通项公式时,一般根据11,2,1n n n S S n a S n --≥⎧=⎨=⎩求解,考查学生的计算能力.21.已知数列{}n a 的前n 项和为23122n S n n =-. (1)求数列{}n a 的通项公式;(2)数列[]lg n n b a =,[]x 表示不超过x 的最大整数,求{}n b 的前1000项和1000T . 【答案】(1)32n a n =-;(2)10002631T =. 【分析】(1)利用1n n n a S S -=-可求出; (2)根据数列特点采用分组求和法求解. 【详解】(1)当1n =时,111a S ==,当2n ≥时,()()221313111322222n n n a S S n n n n n -⎡⎤=-=-----=-⎢⎥⎣⎦,将1n =代入上式验证显然适合,所以32n a n =-. (2)因为410a =,34100a =,3341000a =,333410000a =,所以0,131,4332,343333,3341000n n n b n n ≤≤⎧⎪≤≤⎪=⎨≤≤⎪⎪≤≤⎩, 所以100003130230036672631T =⨯+⨯+⨯+⨯=.【点睛】本题考查n a 和n S 的关系,考查分组求和法,属于基础题. 22.在①535S =,②13310a a +=,③113n a n a +=+这三个条件中任选一个,补充在下面问题中并作答.已知{}n a 是各项均为正数的等差数列,其前n 项和为n S ,________,且1a ,412a ,9a 成等比数列. (1)求数列{}n a 的通项公式;(2)设()1n n n b a =-,求1ni i b =∑.【答案】(1)32n a n =-;(2)13,213,2n i i n n b n n =⎧⎪⎪=⎨-⎪⎪⎩∑是偶数是奇数 【分析】(1)利用1a ,412a ,9a 成等比数列∴可得221132690a a d d +-=, 若选①:由535S =得:127a d +=,即可解出1a 和d 的值,即可求出{}n a 的通项公式; 若选②:由13310a a +=可得152d a =-,即可解出1a 和d 的值,即可求出{}n a 的通项公式; 若选③:由113n a n a +=+,可表示出419a a =+,9124a a =+,结合1a ,412a ,9a 成等比数列∴即可解出1a 和d 的值,即可求出{}n a 的通项公式; (2)由(1)可得()()132n n b n =--,分n 为奇数和偶数,利用并项求和即可求解.【详解】 {}n a 是各项均为正数的等差数列,1a ,412a ,9a 成等比数列. 所以241914a a a =⋅,即()()2111348a d a a d +=⋅+, 整理可得221132690a a d d +-=,若选①:535S =,则1545352a d ⨯+=,即127a d +=, 由127a d +=可得172a d =-代入221132690a a d d +-=可得:2230d d --=,解得3d =或1d =-(舍) 所以11a =,所以()11332n a n n =+-⨯=-,若选②:13310a a +=,即152d a =-,代入221132690a a d d +-=得:2111762450a a -+=,即 ()()11117450a a --=解得:113a d =⎧⎨=⎩或145175017a d ⎧=⎪⎪⎨⎪=-<⎪⎩不符合题意; 若选③:113n a n a +=+,则419a a =+,9124a a =+, 代入241914a a a =⋅可得21126270a a +-= 解得:113a d =⎧⎨=⎩或1273a d =-⎧⎨=⎩不符合题意;综上所述:113a d =⎧⎨=⎩, 32n a n =-,(2)()()132n n b n =--, ()()()()()12311231111111n n n i n n i b a a a a a --==-+-+-+-+-∑ ()()()()114710135132n n n n -=-+-++--+-- 当n 为偶数时,13322n i i n n b ==⨯=∑, 当n 为奇数时,()11131322n i i n n b =--=-+-⨯=∑, 所以13,213,2n i i n n b n n =⎧⎪⎪=⎨-⎪⎪⎩∑是偶数是奇数. 【点睛】关键点点睛:本题得关键点是分别由条件①②③结合1a ,412a ,9a 成等比数列计算出1a 和d 的值,由{}n a 是各项均为正数的等差数列,所以10a >,0d >,第二问中()1n n n b a =-正负交错的数列求和,需要用奇偶并项求和,注意分n 为奇数和偶数讨论.。

数列的概念单元测试题+答案百度文库

数列的概念单元测试题+答案百度文库

一、数列的概念选择题1.在数列{}n a 中,12a =,111n n a a -=-(2n ≥),则8a =( ) A .1-B .12C .1D .22.已知数列{}n a 满足11a =),2n N n *=∈≥,且()2cos3n n n a b n N π*=∈,则数列{}n b 的前18项和为( ) A .120B .174C .204-D .37323.在数列{}n a 中,11a =,11n n a a n +=++,设数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,若n S m<对一切正整数n 恒成立,则实数m 的取值范围为( )A .()3,+∞B .[)3,+∞C .()2,+∞D .[)2,+∞4.对于实数,[]x x 表示不超过x 的最大整数.已知正项数列{}n a 满足112n n n S a a ⎛⎫=+ ⎪⎝⎭,*n N ∈,其中n S 为数列{}n a 的前n 项和,则[][][]1240S S S +++=( )A .135B .141C .149D .1555.数列{}n a 满足()11121n n n a a n ++=-+-,则数列{}n a 的前48项和为( )A .1006B .1176C .1228D .23686.在数列{}n a 中,11a =,对于任意自然数n ,都有12nn n a a n +=+⋅,则15a =( )A .151422⋅+B .141322⋅+C .151423⋅+D .151323⋅+7.已知数列{}n a 的通项公式为23nn a n ⎛⎫= ⎪⎝⎭,则数列{}n a 中的最大项为( ) A .89B .23C .6481D .1252438.的一个通项公式是( )A.n a =B.n a =C.n a =D.n a =9.已知数列{}n a 满足: 12a =,111n na a +=-,设数列{}n a 的前n 项和为n S ,则2017S =( ) A .1007B .1008C .1009.5D .101010.在古希腊,毕达哥拉斯学派把1,3,6,10,15,21,28,36,45,…这些数叫做三角形数.设第n 个三角形数为n a ,则下面结论错误的是( ) A .1(1)n n a a n n --=> B .20210a = C .1024是三角形数D .123111121n n a a a a n +++⋯+=+ 11.数列{}:1,1,2,3,5,8,13,21,34,...,n F 成为斐波那契数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,该数列从第三项开始,每项等于其前两相邻两项之和,记该数{}n F 的前n 项和为n S ,则下列结论正确的是( )A .201920212S F =+B .201920211S F =-C .201920202S F =+D .201920201S F =-12.数列{}n a 满足12a =,1111n n n a a a ++-=+,则2019a =( ) A .3-B .12-C .13D .213.已知数列{}n a 的前n 项和为n S ,若*1n S n N n =∈,,则2a =( ) A .12-B .16-C .16D .1214.已知数列265n a n n =-+则该数列中最小项的序号是( )A .3B .4C .5D .615.已知数列{}n a 满足:113a =,1(1)21n n n a na n ++-=+,*n N ∈,则下列说法正确的是( ) A .1n n a a +≥ B .1n n a a +≤C .数列{}n a 的最小项为3a 和4aD .数列{}n a 的最大项为3a 和4a16.已知数列{}n a 满足111n n n n a a a a ++-=+,且113a =,则{}n a 的前2021项之积为( ) A .23B .13C .2-D .3-17.数列1111,,,57911--,…的通项公式可能是n a =( )A .1(1)32n n --+B .(1)32n n -+C .1(1)23n n --+D .(1)23nn -+18.已知数列{}n a 满足2122111,16,2n n n a a a a a ++===则数列{}n a 的最大项为( ) A .92B .102C .8182D .11219.在数列{}n a 中,11(1)1,2(2)nn n a a n a --==+≥,则3a =( ) A .0B .53C .73D .320.在数列{}n a 中,()1111,1(2)nn n a a n a --==+≥,则5a 等于A .32B .53 C .85D .23二、多选题21.已知数列{}n a 中,11a =,1111n n a a n n +⎛⎫-=+ ⎪⎝⎭,*n N ∈.若对于任意的[]1,2t ∈,不等式()22212na t a t a a n<--++-+恒成立,则实数a 可能为( ) A .-4B .-2C .0D .222.著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记S n 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a = B .733S =C .135********a a a a a ++++=D .22212201920202019a a a a a +++= 23.(多选题)已知数列{}n a 中,前n 项和为n S ,且23n n n S a +=,则1n n a a -的值不可能为( ) A .2B .5C .3D .424.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件11a >,667711,01a a a a -><-,则下列结论正确的是( ) A .01q <<B .681a a >C .n S 的最大值为7SD .n T 的最大值为6T25.已知等差数列{}n a 的前n 项和为n S ,公差为d ,且35a =,73a =,则( ) A .12d =B .12d =-C .918S =D .936S =26.已知数列{}2nna n +是首项为1,公差为d 的等差数列,则下列判断正确的是( ) A .a 1=3 B .若d =1,则a n =n 2+2n C .a 2可能为6D .a 1,a 2,a 3可能成等差数列27.朱世杰是元代著名数学家,他所著的《算学启蒙》是一部在中国乃至世界最早的科学普及著作.《算学启蒙》中涉及一些“堆垛”问题,主要利用“堆垛”研究数列以及数列的求和问题.现有100根相同的圆形铅笔,小明模仿“堆垛”问题,将它们全部堆放成纵断面为等腰梯形的“垛”,要求层数不小于2,且从最下面一层开始,每一层比上一层多1根,则该“等腰梯形垛”应堆放的层数可以是( ) A .4B .5C .7D .828.等差数列{}n a 中,n S 为其前n 项和,151115,a S S ==,则以下正确的是( )A .1d =-B .413a a =C .n S 的最大值为8SD .使得0n S >的最大整数15n =29.{} n a 是等差数列,公差为d ,前项和为n S ,若56S S <,678S S S =>,则下列结论正确的是( ) A .0d <B .70a =C .95S S >D .170S <30.在数列{}n a 中,若22*1(2,.n n a a p n n N p --=≥∈为常数),则称{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( ) A .若{}n a 是等差数列,则{}n a 是等方差数列 B .{(1)}n -是等方差数列C .若{}n a 是等方差数列,则{}()*,kn a k Nk ∈为常数)也是等方差数列D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列31.等差数列{}n a 的首项10a >,设其前n 项和为{}n S ,且611S S =,则( ) A .0d > B .0d <C .80a =D .n S 的最大值是8S 或者9S32.已知等差数列{}n a 的前n 项和为n S ()*n N ∈,公差0d ≠,690S=,7a 是3a 与9a 的等比中项,则下列选项正确的是( ) A .2d =-B .120a =-C .当且仅当10n =时,n S 取最大值D .当0nS <时,n 的最小值为2233.记n S 为等差数列{}n a 的前n 项和.已知535S =,411a =,则( ) A .45n a n =-B .23n a n =+C .223n S n n =-D .24n S n n =+34.设等差数列{}n a 的前n 项和为n S ,若39S =,47a =,则( )A .2n S n =B .223n S n n =-C .21n a n =-D .35n a n =-35.已知数列{}n a 是递增的等差数列,5105a a +=,6914a a ⋅=-.12n n n n b a a a ++=⋅⋅,数列{}n b 的前n 项和为n T ,下列结论正确的是( )A .320n a n =-B .325n a n =-+C .当4n =时,n T 取最小值D .当6n =时,n T 取最小值【参考答案】***试卷处理标记,请不要删除一、数列的概念选择题 1.B 解析:B 【分析】通过递推公式求出234,,a a a 可得数列{}n a 是周期数列,根据周期即可得答案. 【详解】 解:211111=1=22a a =--,3211121a a =-=-=-,4311112a a =-=+=, 则数列{}n a 周期数列,满足3n n a a -=,4n ≥85212a a a ∴===, 故选:B. 【点睛】本题考查数列的周期性,考查递推公式的应用,是基础题.2.B解析:B 【分析】将题干中的等式化简变形得211n n a n a n --⎛⎫= ⎪⎝⎭,利用累乘法可求得数列{}n a 的通项公式,由此计算出()32313k k k b b b k N *--++∈,进而可得出数列{}nb 的前18项和.【详解】)1,2n a n N n *--=∈≥,将此等式变形得211n n a n a n --⎛⎫= ⎪⎝⎭,由累乘法得22232121211211123n n n aa a n a a a a a n n--⎛⎫⎛⎫⎛⎫=⋅⋅=⨯⨯⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ()2cos3n n n a b n N π*=∈,22cos 3n n b n π∴=, ()()222323134232cos 231cos 29cos 233k k k b b b k k k k k k πππππ--⎛⎫⎛⎫∴++=--+--+ ⎪ ⎪⎝⎭⎝⎭592k =-,因此,数列{}n b 的前18项和为()591234566921151742⨯+++++-⨯=⨯-=. 故选:B. 【点睛】本题考查并项求和法,同时也涉及了利用累乘法求数列的通项,求出32313k k k b b b --++是解答的关键,考查计算能力,属于中等题.3.D解析:D 【分析】利用累加法求出数列{}n a 的通项公式,并利用裂项相消法求出n S ,求出n S 的取值范围,进而可得出实数m 的取值范围. 【详解】11n n a a n +=++,11n n a a n +∴-=+且11a =,由累加法可得()()()()12132111232n n n n n a a a a a a a a n -+=+-+-++-=++++=,()122211n a n n n n ∴==-++,22222222222311n S n n n ⎛⎫⎛⎫⎛⎫∴=-+-++-=-< ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭, 由于n S m <对一切正整数n 恒成立,2m ∴≥,因此,实数m 的取值范围是[)2,+∞.故选:D. 【点睛】本题考查数列不等式恒成立问题的求解,同时也考查了累加法求通项以及裂项求和法,考查计算能力,属于中等题.4.D解析:D 【分析】利用已知数列的前n 项和求其n S 得通项,再求[]n S 【详解】解:由于正项数列{}n a 满足112n n nS a a ⎛⎫=+⎪⎝⎭,*n N ∈, 所以当1n =时,得11a =,当2n ≥时,111111[()]22n n n n n n n S a S S a S S --⎛⎫=+=-+ ⎪-⎝⎭ 所以111n n n n S S S S ---=-,所以2=n S n ,因为各项为正项,所以=n S 因为[][][]1234851,1,[]1,[][]2S S S S S S =======,[]05911[][]3S S S ====,[]161724[][]4S S S ==== ,[]252635[][]5S S S ==== ,[]363740[][]6S S S ====.所以[][][]1240S S S +++=13+25+37+49+511+65=155⨯⨯⨯⨯⨯⨯,故选:D 【点睛】此题考查了数列的已知前n 项和求通项,考查了分析问题解决问题的能力,属于中档题.5.B解析:B 【分析】根据题意,可知()11121n n n a a n ++--=-,分别列出各项,再整理得出132a a +=,248a a +=,572a a +=,6824a a +=,,45472a a +=,4648184a a +=,可知,相邻的奇数项之和为2,相邻的偶数项之和为等差数列,首项为8,公差为16,利用分组求和法,即可求出{}n a 的前48项和. 【详解】解:由题可知,()11121n n n a a n ++=-+-,即:()11121n n n a a n ++--=-,则有:211a a -=,323a a +=,435a a -=,547a a +=,659a a -=,7611a a +=,8713a a -=,9815a a +=,,474691a a +=,484793a a -=.所以,132a a +=,248a a +=,572a a +=,6824a a +=,,45472a a +=,4648184a a +=,可知,相邻的奇数项之和为2,相邻的偶数项之和为等差数列,首项为8,公差为16, 设数列{}n a 的前48项和为48S , 则4812345645464748S a a a a a a a a a a =++++++++++,()()1357454724684648a a a a a a a a a a a a =+++++++++++++12111221281611762⨯=⨯+⨯+⨯=, 所以数列{}n a 的前48项和为:1176. 故选:B. 【点睛】本题考查数列的递推公式的应用,以及利用分组求和法求和,考查归纳思想和计算能力.6.D解析:D 【分析】在数列的递推公式中依次取1,2,3,1n n =- ,得1n -个等式,累加后再利用错位相减法求15a . 【详解】12n n n a a n +=+⋅, 12n n n a a n +-=⋅,12112a a ∴-=⋅, 23222a a -=⋅,34332a a -=⋅11(1)2n n n a a n ---=-⋅,以上1n -个等式,累加得12311122232(1)2n n a a n --=⋅+⋅+⋅++-⋅①又2341122122232(2)2(1)2n n n a a n n --=⋅+⋅+⋅++-⋅+-⋅②①- ②得23112222(1)2n n n a a n --=++++--⋅12(12)(1)2(2)2212n n n n n --=--⋅=-⋅--,(2)23n n a n ∴=-⋅+ ,151515(152)231323a ∴=-⋅+=⋅+,故选:D 【点睛】本题主要考查了累加法求数列通项,乘公比错位相减法求数列的和,由通项公式求数列中的项,属于中档题.7.A解析:A 【分析】由12233nn n n a a +-⎛⎫-=⋅ ⎪⎝⎭,当n <2时,a n +1-a n >0,当n <2时,a n +1-a n >0,从而可得到n =2时,a n 最大. 【详解】解:112222(1)3333n n nn n n a a n n ++-⎛⎫⎛⎫⎛⎫-=+-=⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 当n <2时,a n +1-a n >0,即a n +1>a n ;当n =2时,a n +1-a n =0,即a n +1=a n ; 当n >2时,a n +1-a n <0,即a n +1<a n . 所以a 1<a 2=a 3,a 3>a 4>a 5>…>a n ,所以数列{}n a 中的最大项为a 2或a 3,且2328239a a ⎛⎫==⨯= ⎪⎝⎭. 故选:A . 【点睛】此题考查数列的函数性质:最值问题,属于基础题.8.C解析:C 【分析】根据数列项的规律即可得到结论. 【详解】因为数列3,7,11,15⋯的一个通项公式为41n -,,⋯的一个通项公式是n a = 故选:C . 【点睛】本题主要考查数列通项公式的求法,利用条件找到项的规律是解决本题的关键.9.D解析:D 【分析】根据题设条件,可得数列{}n a 是以3为周期的数列,且3132122S =+-=,从而求得2017S 的值,得到答案. 【详解】由题意,数列{}n a 满足: 12a =,111n na a +=-, 可得234111,121,1(1)2,22a a a =-==-=-=--=,可得数列{}n a 是以3为周期的数列,且3132122S =+-= 所以20173672210102S =⨯+=. 故选:D. 【点睛】本题主要考查了数列的递推公式的应用,其中解答中得出数列{}n a 是以3为周期的数列,是解答的关键,着重考查了推理与运算能力,属于中档试题.10.C解析:C 【分析】对每一个选项逐一分析得解. 【详解】∵212a a -=,323a a -=,434a a -=,…,由此可归纳得1(1)n n a a n n --=>,故A 正确;将前面的所有项累加可得1(1)(2)(1)22n n n n n a a -++=+=,∴20210a =,故B 正确; 令(1)10242n n +=,此方程没有正整数解,故C 错误; 1211111111212231n a a a n n ⎡⎤⎛⎫⎛⎫⎛⎫+++=-+-++- ⎪ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦122111n n n ⎛⎫=-= ⎪++⎝⎭,故D 正确. 故选C 【点睛】本题主要考查累加法求通项,考查裂项相消法求和,意在考查学生对这些知识的理解掌握水平和分析推理能力.11.B解析:B 【分析】利用迭代法可得21123211n n n n n n n F F F F F F F F F ++---=+=+++++++,可得21n n F S +=+,代入2019n =即可求解.【详解】由题意可得该数列从第三项开始,每项等于其前两相邻两项之和, 则211112n n n n n n n n n n F F F F F F F F F F ++----=+=++=+++1211232n n n n n n n n n F F F F F F F F F -------=+++=++++=123211n n n n F F F F F F ---=+++++++,所以21n n F S +=+,令2019n =,可得201920211S F =-,故选:B 【点睛】关键点点睛:本题的关键点是理解数列新定义的含义得出21n n n F F F ++=+,利用迭代法得出21123211n n n n n n n F F F F F F F F F ++---=+=+++++++,进而得出21n n F S +=+.12.B解析:B 【分析】由递推关系,可求出{}n a 的前5项,从而可得出该数列的周期性,进而求出2019a 即可. 【详解】 由1111n n n a a a ++-=+,可得111nn n a a a ++=-,由12a =,可得23a =-,312a =-,413a =,52a =,由15a a =,可知数列{}n a 是周期数列,周期为4, 所以2019312a a ==-. 故选:B.13.A解析:A 【分析】令1n =得11a =,令2n =得21212S a a =+=可解得2a . 【详解】 因为1n S n =,所以11111a S ===, 因为21212S a a =+=,所以211122a =-=-. 故选:A14.A解析:A 【分析】首先将n a 化简为()234n a n =--,即可得到答案。

(必考题)高中数学选修二第一单元《数列》测试卷(有答案解析)

(必考题)高中数学选修二第一单元《数列》测试卷(有答案解析)

一、选择题1.已知数列{}n a ,{}n b 中满足()1231n n a a n ++=≥,110a =,1n n b a =-,若{}n b 前n 项之和为n S ,则满足不等式16170n S -<的最小整数n 是( ). A .8B .9C .11D .102.数列{}n a 中,112a =,()*,m n m n a a a m n +=∀∈N ,则6a =( ) A .116B .132C .164D .11283.首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,现有下列4个命题,其中正确的命题的个数是( )①若100S =,则280S S +=;②若412S S =,则使0n S >的最大的n 为15;③若150S >,160S <,则{}n S 中8S 最大;④若78S S <,则89S S <.A .1个B .2个C .3个D .4个4.在函数()y f x =的图像上有点列{},n n x y ,若数列{}n x 是等比数列,数列{}n y 是等差数列,则函数()y f x =的解析式可能是( ) A .3(4)f x x =+B .2()4f x x =C .3()4xf x ⎛⎫= ⎪⎝⎭D .4()log f x x =5.已知数列{}n a 的前n 项和()2*n S n n N =∈,则{}na 的通项公式为( )A .2n a n =B .21n a n =-C .32n a n =-D .1,12,2n n a n n =⎧=⎨≥⎩6.设等差数列{}n a 的前n 项和为*,n S n ∈N .若12130,0S S ><,则数列{}n a 的最小项是( ) A .第6项B .第7项C .第12项D .第13项 7.等比数列{}n a 的前n 项积为n T ,且满足11a >,10210310a a ->,102103101a a -<-,则使得1n T >成立的最大自然数n 的值为( )A .102B .203C .204D .2058.定义:在数列{}n a 中,若满足211n n n na a d a a +++-=( *,n N d ∈为常数),称{}n a 为“等差比数列”,已知在“等差比数列”{}n a 中,1231,3a a a ===,则20202018a a 等于( ) A .4×20162-1B .4×20172-1C .4×20182-1D .4×201829.删去正整数1,2,3,4,5,…中的所有完全平方数与立方数(如4,8),得到一个新数列,则这个数列的第2020项是( ) A .2072B .2073C .2074D .207510.已知等比数列{}n a 的前n 项和()232nn S λλ=+-⋅(λ为常数),则λ=( ) A .2-B .1-C .1D .211.已知数列{}n a 的前n 项和为n S ,且12a =,()*12n n n a S n N n++=∈,则n a =( ) A .()112n n -+B .2n n ⋅C .31n -D .123n n -⋅12.设等比数列{}n a 的前n 项和为n S ,且510315S S ==,,则20S =( ) A .255B .375C .250D .200二、填空题13.数列{}n a 的前n 项和2n S n n =-+,则它的通项公式是n a =__________.14.将正整数12分解成两个正整数的乘积有112⨯,26⨯,34⨯,三种,其中34⨯是这三种分解中两数差的绝对值最小的,我们称34⨯为12的最佳分解,当(),,p q p q p N q N **⨯≤∈∈是正整数n 的最佳分解时,我们定义函数()f n q p =-,例如(12)431f =-=,则数列(){}3nf 的前2020项和为______.15.已知、、A B C 三点共线 (O 在该直线外),数列{}n a 是等差数列,S n 是数列{}n a 的前n 项和.若12012OA a OB a OC =⋅+⋅,则2012S =____________.16.等差数列{}n a 中,若15939a a a ++=,371127a a a ++=,则数列{}n a 前11项的和为__________. 17.已知正项等比数列满足:,若存在两项使得,则的最小值为 .18.设数列{}n a 满足15a =,且对任意正整数n ,总有()()13344n n n a a a +++=+成立,则数列{}n a 的前2020项和为______.19.已知n S 为等差数列{}n a 的前n 项和,且675S S S >>,给出下列说法: ①6S 为n S 的最大值;②110S >;③120S <;④850S S ->.其中正确的是______.20.已知数列{}n a 中,11a =,()132,n n a a n n N *-=+≥∈,数列{}n b 满足11n n n b a a +=,*n N ∈,则()12lim n n b b b →∞++⋅⋅⋅+=________. 三、解答题21.已知{}n a 为等差数列,123,,a a a 分别是表第一、二、三行中的某一个数,且123,,a a a 中的任何两个数都不在表的同一列.请从①1,②1,③1的三个条件中选一个填入上表,使满足以上条件的数列{}n a 存在.并在此存在的数列{}n a 中,试解答下列两个问题: (1)求数列{}n a 的通项公式;(2)设数列2n n a ⎧⎫⎨⎬⎩⎭的前n 项和n S ,若不等式4nn S a λ+≥对任意的*n ∈N 都成立,求实数λ的最小值.22.在各项均为正数的等比数列{}n a 中,1212a a +=,34108a a +=, (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)记n n b na =,求数列{}n b 的前n 项和n S .23.数列{}n a 各项均为正数,其前n 项和为n S ,且满足221n n n a S a -=(1)求数列{}n a 的通项公式; (2)设4241n n b S =-,求数列{}n b 的前n 项和nT ,并求使21(3)6>-n T m m 对所有的*n N ∈都成立的最大正整数m 的值.24.已知数列{}n a 的前n 项和为n S ,12a =,()()31n n n S a n a -=-. (1)求n a ; (2)若数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求证:1n T <. 25.已知()f x =. (1)设11a =,()11n n f a a +=,求n a . (2)设22212,n n S a a a =+++,1nn n b S S +=-,且1223341n n n T b b b b b b b b +=⋅+⋅+⋅++⋅,问是否存在最小正整数m ,使得对任意*n N ∈,都有25n mT <成立.若存在,请求出m 的值;若不存在,请说明理由. 26.已知各项都是正数的数列{}n a 的前n 项和为n S ,212n n n S a a =+,*n ∈N . (1)求数列{}n a 的通项公式.(2)设数列{}n b 满足:11b =,()122n n n b b a n --=≥,数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和n T .求证:2n T <.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由123n n a a ++=可求得数列{}n a 的通项公式,进而求得数列{}n b ,表示出n S , 令16170n S -<,即可得到满足不等式16170n S -<的最小整数n . 【详解】解:由题意可知:123n n a a ++=, 即11322n n a a +=-+, 即()11112n n a a +-=--, 又110a =,119a ∴-=,即数列{}1n a -是以首项为9,公比为12-的等比数列, 11192n n a -⎛⎫∴-=⨯- ⎪⎝⎭,即11192n n a -⎛⎫=+⨯- ⎪⎝⎭,11192n n n b a -⎛⎫∴=-=⨯- ⎪⎝⎭,12111219661212n nn n S b b b ⎡⎤⎛⎫⨯--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦∴=++⋅⋅⋅+=⨯=-⨯- ⎪⎛⎫⎝⎭-- ⎪⎝⎭, 则111632170n n S --=⨯<, 即1112510n -⎛⎫<⎪⎝⎭, 又9112512⎛⎫= ⎪⎝⎭,∴满足不等式16170n S -<的最小整数19n -=, 即10n =. 故选:D. 【点睛】关键点点睛:本题解题的关键是利用构造法求出数列{}n a 的通项公式.2.C解析:C 【分析】由,m n 的任意性,令1m =,可得112n n a a +=,即数列{}n a 是首项为12,公比为12得等比数列,即可求出答案. 【详解】由于*,m n ∀∈N ,有m n m n a a a +=,且112a =令1m =,则1112n n n a a a a +==,即数列{}n a 是首项为12,公比为12得等比数列,所以111111222n n n n a a q --⎛⎫⎛⎫==⨯= ⎪⎪⎝⎭⎝⎭,故6611264a ⎛⎫==⎪⎝⎭ 故选:C. 【点睛】关键点点睛:本题考查等比数列,解题的关键是特殊值取法,由,m n 的任意性,令1m =,即可知数列{}n a 是等比数列,考查学生的分析解题能力与运算能力,属于一般题.3.B解析:B 【分析】①②③根据条件可分析数列是首项为正数,公差小于0的等差数列,所以存在*n N ∈,使100n n a a +≥⎧⎨≤⎩,再结合等差数列的前n 项和公式判断选项;④利用公式1n n n S S a --=()2n ≥,判断选项.【详解】 ①若100S =,则()()110561010022a a a a ++==,因为数列是首项为正数,公差不为0的等差数列,所以50a >,60a <,那么()()()()18281212458402a a S S a a a a a a ++=++=+++>,故①不成立; ②若412S S =,则()124561289...40S S a a a a a -=+++=+=,因为数列是首项为正数,公差不为0的等差数列,所以80a >,90a <,()115158151502a a S a +==>,()()11689161616022a a a a S ++===,则使0n S >的最大的n 为15,故②成立; ③()115158151502a a S a +==>,()()116168916802a a S a a +==+<,则90a <,因为数列是首项为正数,公差不为0的等差数列,所以{}n S 中的最大项是8S ,故③正确; ④若78S S <,则8780S S a -=>,但989S S a -=,不确定9a 的正负,故④不正确. 故选:B 【点睛】方法点睛:一般等差数列前n 项和的最值的常用方法包含:1.单调性法,利用等差数列的单调性,求出其正负转折项,便可求得等差数列前n 项和的最值;2.利用二次函数的性质求最值,公差不为0的等差数列{}n a 的前n 项和2n S An Bn =+(,A B 为常数)为关于n的二次函数,利用二次函数的性质解决最值问题.4.D解析:D 【分析】把点列代入函数解析式,根据{x n }是等比数列,可知1n nx x +为常数进而可求得1n n y y +-的结果为一个与n 无关的常数,可判断出{y n }是等差数列. 【详解】对于A ,函数3(4)f x x =+上的点列{x n ,y n },有y n =43n x +,由于{x n }是等比数列,所以1n nx x +为常数, 因此1n n y y +-=()()()()114343441n n n n n x x x x x q +++-+=-=-这是一个与n 有关的数,故{y n }不是等差数列;对于B ,函数2()4f x x =上的点列{x n ,y n },有y n =24n x ,由于{x n }是等比数列,所以1n nx x +为常数,因此1n n y y +-=()222214441n n n x x x q +-=-这是一个与n 有关的数,故{y n }不是等差数列;对于C ,函数3()4xf x ⎛⎫= ⎪⎝⎭上的点列{x n ,y n },有y n =3()4n x ,由于{x n }是等比数列,所以1n nx x +为常数, 因此1n n y y +-=133()()44n n x x+-=33()()144n qx⎡⎤-⎢⎥⎣⎦,这是一个与n 有关的数,故{y n }不是等差数列;对于D ,函数4()log f x x =上的点列{x n ,y n },有y n =4log n x,由于{x n }是等比数列,所以1n nx x +为常数, 因此1n n y y +-=114444log log log log n n n nx x x x q ++-==为常数,故{y n }是等差数列;故选:D . 【点睛】 方法点睛:判断数列是不是等差数列的方法:定义法,等差中项法.5.B解析:B 【分析】利用1n n n a S S -=-求出2n ≥时n a 的表达式,然后验证1a 的值是否适合,最后写出n a 的式子即可. 【详解】2n S n =,∴当2n ≥时,221(1)21n n n a S S n n n -=-=--=-,当1n =时,111a S ==,上式也成立,()*21n a n n N ∴=-∈,故选:B. 【点睛】易错点睛:本题考查数列通项公式的求解,涉及到的知识点有数列的项与和的关系,即11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,算出之后一定要判断1n =时对应的式子是否成立,最后求得结果,考查学生的分类思想与运算求解能力,属于基础题.6.B解析:B 【分析】可利用等差数列的前n 项和的性质,等差数列下标的性质进行判断即可 【详解】由题意12130,0S S ><及()()()12112671311371366,132S a a a a S a a a =+=+=+=,得6770,0a a a +><,所以6670,a a a >>,且公差0d <,所以7a ,最小.故选B .【点睛】等差数列的前n 项和n S 具有以下性质()2121n n S n a -=-,()21n n n S n a a +=+.7.C解析:C 【分析】由题意可得1021031a a >,1021031,1a a ><,利用等比数列的性质即可求解. 【详解】由10210310a a ->,即1021031a a >,则有21021a q ⨯>,即0q >。

数列单元测试题答案

数列单元测试题答案

数 列 单 元 测 试 卷(时间:120分钟 满分:150分)第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分)1.等比数列{a n }的前n 项和为S n ,且4a 1,2a 2,a 3成等差数列,若a 1=1,则S 4=( )A .7B .8C .15D .162.设{a n }是公差为-2的等差数列,若a 1+a 4+a 7+…+a 97=50,则a 3+a 6+a 9+…+a 99等于( )A .82B .-82C .132D .-1323.已知数列{a n }中a 1=1以后各项由公式a n =a n -1+1n (n -1)(n ≥2)给出,则a 4=( )A.74 B .-74 C.47D .-474.已知{a n }是等差数列,a 4=15,S 5=55,则过点P (3,a 3),Q (4,a 4)的直线斜率为( )A .4 B.14 C .-4 D .-145.已知-9,a 1,a 2,-1成等差数列,-9,b 1,b 2,b 3,-1成等比数列,则(a 2-a 1)b 2等于( )A.98 B .-98C .8D .-8 6.等差数列{a n }的通项公式是a n =1-2n ,其前n 项和为S n ,则数列⎩⎨⎧⎭⎬⎫S n n 的前11项和为( )A .-45B .-50C .-55D .-667.已知等差数列{a n }中,|a 4|=|a 8|,公差d <0;S n 是数列{a n }的前n 项和,则( )A .S 5>S 6B .S 5<S 6C .S 6=0D .S 5=S 68.已知数列{a n }中,a 3=2,a 7=1,若⎩⎨⎧⎭⎬⎫1a n +1为等差数列,则a 11=( )A .0 B.12 C.23D .29.设M ⎝⎛⎭⎫cos π3x +cos π4x ,sin π3x +sin π4x (x ∈R )为坐标平面上一点,记f (x )=|OM →|2-2,且f (x )的图象与射线y =0(x ≥0)交点的横坐标由小到大依次组成数列{a n },则|a n +3-a n |=( )A .24πB .36πC .24D .36二、填空题:10.已知一个等比数列首项为1,项数是偶数,其奇数项之和为85,偶数项之和为170,则这个数列的项数为 。

数列单元测试

数列单元测试

人教新课标版(A )高二必修五第二章数列单元测试(时间:90分钟 满分:100分)一、选择题(每小题3分,共36分)1、已知{a n }是等差数列,且有48a a a a 111032=+++,则67a a +=( )A 、12B 、16C 、20D 、24 2、若等差数列的第一、二、三项依次是x1,x 65,1x 1+,那么这个等差数列的第101项是( ) A 、3150 B 、3213 C 、24 D 、3283、设等比数列{a n }的前n 项和为S n ,前n 项的倒数之和为T n ,则nn T S的值为( )A 、n 1a aB 、n1a aC 、nn n 1a aD 、nn 1aa ⎪⎪⎭⎫ ⎝⎛ 4、在等比数列中,已知首项为89,末项为31,公比为32,则该数列的各项之和为( ) A 、4 B 、2465 C 、89 D 、8195、在各项均为正数的等比数列{a n }中,若,9a a 76=则2313a log a log ++…+123113103a log a log a log ++等于( )A 、12B 、10C 、8D 、2+log 35 6、已知数列{a n }的前n 项和为3n n S =,则9876a a a a +++等于( ) A 、729B 、387C 、604D 、8547、如果数列{a n }的前n 项和1n 2n 8S 2n -+=,那么{a n }是( )A 、等差数列B 、等比数列C 、从第二项开始,以后各项成等差数列D 、从第二项开始,以后各项成等比数列 8、数列{a n }和{b n }是等差数列,其中100b a ,75b ,25a 10010011=+==,则数列}b a {n n +的前100项的和是( ) A 、0 B 、100 C 、10 000 D 、50 5009、一个等比数列的前3项之和为48,前6项之和为60,则前9项之和为( ) A 、108 B 、75 C 、63 D 、310、已知数列{a n }的前三项依次是,6,2,2-前n 项的和S n 是n 的二次函数,则a 100=( ) A 、390 B 、392 C 、394 D 、39611、数列1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,6,…第1000项等于( ) A 、42 B 、45 C 、48 D 、51 12、已知{a n }中,)2n (n 2a a ,2a 1n n 1≥=-=-,则a n 等于( ) A 、n n 2+B 、n n 2-C 、2nD 、2n 2二、填空题(每小题4分,共12分)13、等比数列{a n }的首项a 1=1,前n 项和为S n ,若3231S S 510=,则公比q 等于 。

2020届中职数学单元检测06《数列》-对口升学总复习题含答案

2020届中职数学单元检测06《数列》-对口升学总复习题含答案

2020届中职数学对口升学总复习单元检测试题第六单元《数列》测试题一.选择题(本大题10小题,每小题3分,共30分)题号12345678910答案1.4和9的等比中项为()A.6B.6± C.13± D.-62.3,5,9,17,33,...的一个通项公式=n a ()A .n2B .1n 2+C .12n-D .12n+3.数列-3,3,-3,3,…的一个通项公式是()A .a n =3(-1)n+1B .a n =3(-1)nC .a n =3-(-1)nD .a n =3+(-1)n4.{a n }是首项a 1=4,公差为d =3的等差数列,如果a n =2020,则序号n 等于()A .671B .672C .673D .6745.在等差数列{a n }中,已知21a 9876543=++++++a a a a a a ,则a 2+a 10=()A 6B 7C 9D 116.在等比数列{a n }中,a 2=8,5a =64,,则公比q 为()A.8B.4C.3D.27.数列}{a n 的前n 项和为2n 2,则5a 的值为()A .18B .19C .20D .408.等比数列}{n a 中,===302010,30,10S S S 则()A 、50B 、60C 、70D 、909.两数的等差中项是15,等比中项为12,这两个数是()A .6,24B .12,18C .10,20D .16,1410.公比为2的等比数列{n a }的各项都是正数,且3a 11a =16,则5a =()A 1B2C4D8二.填空题(本大题8小题,每小题4分,共32分)(好老师教学精品资源)1.等比数列中76543214,1a a a a a a a a ⋅⋅⋅⋅⋅⋅=则=2.自然数数列前50个数的和是3.在等比数列{a n }中,a 1=12,a 4=-4,则公比q=________________________.4等比数列{}n a 中,已知121264a a a =,则46a a 的值为_________________.5.}{n a 为等比数列,且81a 92=⋅a ,则=+⋅⋅⋅++1032313log log log a a a _________________.6.等差数列中a 4=7,7S =_________________.7.⋅⋅⋅--,51,41,31,21的一个通项公式是_________________.8.等差数列}{n a 中,=++=++=++987654321a ,9,3a a a a a a a a 则_________________.三.解答题(本大题6小题,共38分)1.等差数列-3,-6,-9,...的第几项是-300?2.等比数列中,3,81,3a 1===q a n ,求n (6分)3.数列}{n a 中,n n a a a 3,111==+,求它的前n 项和(6分)4.等差数列{a n }中,168,48128==S S 求1a 和d (6分)5.数列{a n }的前n 项和为132n ++=n n S ,求该数列的通项公式n a .(6分)6.在等差数列{a n }中,已知74=a 与47=a ,解答下列问题:(1)求通项公式na (2)前n 项和n s 的最大值及n s 取得最大值时项数n 的值(8分)第六单元《数列》参考答案一.选择题(本大题10小题,每小题3分,共30分)题号12345678910答案BDBCADACAA二.填空题(本大题共8小题,每小题4分,共32分)1..2..3..4..5..6..7..8..三.解答题(本大题共6小题,共38分)1.1002.4;3.)(1321n-;4.1a =-8,d=4;5.⎩⎨⎧≥-==2,261,5a n n n n ;6.(1)11a +-=n n ;(2)当n=10或n=11时,n S 取到最大值为551225-211)1(a +⋅-=n n n 18204915第六单元《数列》答题卡一.选择题(本大题10小题,每小题3分,共30分)题号12345678910答案二.填空题(本大题共8小题,每小题4分,共32分)1..2..3..4..5..6..7..8.三.解答题(本大题共6小题,共38分)1.(6分)2.(6分)3.(6分)4.(6分)5.(6分)6.(8分)。

(完整版)数列单元测试题(含答案)

(完整版)数列单元测试题(含答案)

《数列》一、选择题(每小题3分,共33分)1、数列⋯--,924,715,58,1的一个通项公式是 ( )A .12)1(3++-=n nn a nnB .12)3()1(++-=n n n a nnC .121)1()1(2--+-=n n a n nD .12)2()1(++-=n n n a nn 2、已知数列{a n }的通项公式)(43*2N n n n a n ∈--=,则a 4等于( ). A 1 B 2 C 3 D 0 3、在等比数列}{n a 中,,8,1641=-=a a 则=7a ( )A 4-B 4±C 2-D 2± 4、已知等差数列}{n a 的公差为2,若1a ,3a ,4a 成等比数列,则2a 等于( ) A 4- B 6- C 8- D 10-5、等比数列{a n }的前3项的和等于首项的3倍,则该等比数列的公比为( )A .-2B .1C .-2或1D .2或-16、等差数列}a {n 中,已知前15项的和90S 15=,则8a 等于( ).A .245B .12C .445 D .67、已知等比数列{a n } 的前n 项和为S n ,若S 4=1,S 8=4,则a 13+a 14+a 15+a 16=( ).A .7B .16C .27D .648、一个三角形的三个内角A 、B 、C 成等差数列,那么()tan A C +的值是( )A B .C .D .不确定 9、若一个凸多边形的内角度数成等差数列,最小角为100°,最大角为140°,这个凸多边形的边数为( )A .6B .8C .10D .1210、在等比数列{a n }中4S =1,8S =3,则20191817a a a a +++的值是 ( )A .14B .16C .18D .2011、计算机的成本不断降低,若每隔3年计算机价格降低31,现在价格为8100元的计算机,9年后的价格可降为( ) A .2400元B .900元C .300元D .3600元二、填空题(每小题4分,共20分)12、已知等比数列{n a }中,1a =2,4a =54,则该等比数列的通项公式n a = 13、 等比数列的公比为2, 且前4项之和等于30, 那么前8项之和等于 14、数列11111,2,3,,,2482n n ++++……的前n 项和是 . 15、 黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案: 则第n 个图案中有白色地面砖_________________块.16、在数列{}n a 中,11a =,且对于任意自然数n ,都有1n n a a n +=+,则100a = 三、解答题17、(本小题满分8分)等差数列{}n a 中,已知33,4,31521==+=n a a a a ,试求n 的值18、(本小题满分8分)在等比数列{}n a 中,5162a =,公比3q =,前n 项和242n S =,求首项1a 和项数n .19、(本小题满分10分)已知:等差数列{n a }中,4a =14,前10项和18510=S . (1)求n a ;(2)将{n a }中的第2项,第4项,…,第n 2项按原来的顺序排成一个新数列,求此数列的前n 项和n G .20、(本小题满分10分)某城市2001年底人口为500万,人均住房面积为6 m 2,如果该城市每年人口平均增长率为1%,则从2002年起,每年平均需新增住房面积为多少万m 2,才能使2020年底该城市人均住房面积至少为24m 2?(可参考的数据1.0118=1.20,1.0119=1.21,1.0120=1.22).21、(本小题满分11分)已知等差数列{a n }的首项a 1=1,公差d >0,且第二项,第五项,第十四项分别是等比数列{b n }的第二项,第三项,第四项. (1)求数列{a n }与{b n }的通项公式; (2)设数列{c n }对任意自然数n ,均有1332211+=+⋯⋯+++n nn a b c b c b c b c , 求c 1+c 2+c 3+……+c 2006值.题号 1 2 3 4 5 6 7 8 9 10 11 答案 DDABCDCBABA12、3.2n-1 13、510 14、n (n+1)+1-2n 15、4n+2 16、4951 17、d=32,n=50 18、解:由已知,得51113162,(13)242,13n a a -⎧⋅=⎪⎨-=⎪-⎩①②由①得181162a =,解得 12a =.将12a =代入②得()21324213n =--,即 3243n =,解得 n =5.∴ 数列{}n a 的首项12a =,项数n =5. 19、解析:(1)、由41014185a S =⎧⎨=⎩ ∴ 11314,1101099185,2a d a d +=⎧⎪⎨+⋅⋅⋅=⎪⎩ 153a d =⎧⎨=⎩ 23+=∴n a n (2)、设新数列为{n b },由已知,223+⋅=n n bn n G n n n 2)12(62)2222(3321+-=+++++=∴ *)(,62231N n n n ∈-+⋅=+20.解 设从2002年起,每年平均需新增住房面积为x 万m 2,则由题设可得下列不等式19500619500(10.01)24x ⨯+≥⨯+⨯解得605x ≥.答:设从2002年起,每年平均需新增住房面积为605万m 2.21、解:(1)由题意得(a 1+d )(a 1+13d )=(a 1+4d )2(d >0) 解得d =2,∴a n =2n -1,b n =3n -1.(2)当n =1时,c 1=3 当n ≥2时,,1n n nna abc -=+ 132-⋅=n n c ,⎩⎨⎧≥⋅==-)2(32)1(31n n c n n22005200612200632323233c c c ∴++⋯+=+⨯+⨯+⋯+⨯=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列单元测试卷注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.2.答题前,考生务必将自己的姓名、准考证号等信息填涂在答卷相应位置.第Ⅰ卷(选择题)一.选择题:本大题共12小题,每小题5分,共60分。

每小题给出的四个选项中,只有一项是符合题目要求的.1.数列3,5,9,17,33,…的通项公式a n等于( )A.2n B.2n+1 C.2n-1 D.2n+1。

2.下列四个数列中,既是无穷数列又是递增数列的是( )A.1,12,13,14,…B.-1,2,-3,4,…C.-1,-12,-14,-18,…D.1,2,3,…,n3..记等差数列的前n项和为S n,若a1=1/2,S4=20,则该数列的公差d=________.( )¥A.2 C.6 D.74.在数列{a n}中,a1=2,2a n+1-2a n=1,则a101的值为( )A.49 C.51 D.525.等差数列{a n}的公差不为零,首项a1=1,a2是a1和a5的等比中项,则数列的前10项之和是( )A.90 C.145 D.190…6.公比为2的等比数列{a n }的各项都是正数,且a 3a 11=16,则a 5=( ) A .1 C .4 D .87.等差数列{a n }中,a 2+a 5+a 8=9,那么关于x 的方程:x 2+(a 4+a 6)x +10=0( ) A .无实根B.有两个相等实根 C .有两个不等实根 D .不能确定有无实根8.已知数列{a n }中,a 3=2,a 7=1,又数列⎩⎨⎧⎭⎬⎫11+a n 是等差数列,则a 11等于( ) :A .0 D .-19.等比数列{a n }的通项为a n =2·3n -1,现把每相邻两项之间都插入两个数,构成一个新的数列{b n },那么162是新数列{b n }的( )A .第5项 B.第12项 C .第13项 D .第6项10.设数列{a n }是以2为首项,1为公差的等差数列,{b n }是以1为首项,2为公比的等比数列,则A .1 033 034 C .2 057 D .2 058《11.设n S 为等差数列{}n a 的前n 项和,且28,171==S a .记[]n n a b lg =,其中[]x 表示不超过x 的最大整数,如[]09.0=,[]199lg =.则b 11的值为( ) C. 约等于112.我们把1,3,6,10,15,…这些数叫做三角形数,因为这些数目的点可以排成一个正三角形,如下图所示:则第七个三角形数是( ) A .27 C .29 D .30<第II 卷(非选择题)二、填空题(本题共4小题,每小题5分,共20分)13.若数列{a n }满足:a 1=1,a n +1=2a n (n ∈N *),则前8项的和S 8=________(用数字作答).14.数列{a n }满足a 1=1,a n =a n -1+n (n ≥2),则a 5=________.!15.已知数列{a n }的前n 项和S n =-2n 2+n +2.则{a n }的通项公式a n =________16.在等差数列{a n }中,其前n 项的和为S n ,且S 6<S 7,S 7>S 8,有下列四个命题: ①此数列的公差d <0; ②S 9一定小于S 6; ③a 7是各项中最大的一项;④S 7一定是S n 中的最大项. #其中正确的命题是________.(填入所有正确命题的序号)三.解答题(共70分,解答应写出必要的文字说明、证明过程或演算步骤)17.(12分) (1) (全国卷)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,求S n(2) 已知{b n }是各项都是正数的等比数列,若b 1=1,且b 2,12b 3,2b 1成等差数列,求数列{b n }的通项公式.`18.(12分)等比数列{a n }中,已知a 1=2,a 4=16,(1)求数列{a n }的通项公式; (2)若a 3,a 5分别为等差数列{b n }的第3项和第5项,试求数列{b n }的通项公式及前n 项和S n .19. (12分)已知等差数列{a n }前三项的和为-3,前三项的积为8. (1)求等差数列{a n }的通项公式;(2)若a 2,a 3,a 1成等比数列,求数列{|a n |}的前10项和.20.(12分)数列{a n }的前n 项和为S n ,数列{b n }中,b 1=a 1,b n =a n -a n -1(n ≥2),若a n +S n =n ,c n =a n -1.(1)求证:数列{c n }是等比数列; (2)求数列{b n }的通项公式.、21.(12分)(全国卷)设数列{}n a 满足+3+…+(2n -1) =2n ,. (1)求{}n a 的通项公式;(2)求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和.,22.(12分)数列{a n }满足a 1=1,a n +1=2n +1a na n +2n(n ∈N *).(1)证明:数列{2na n}是等差数列;(2)求数列{a n }的通项公式a n ;{(3)设b n =n (n +1)a n ,求数列{b n }的前n 项和S n .数列单元测试卷(解答)一、选择题(共12小题,每小题5分,共60分)1.数列3,5,9,17,33,…的通项公式a n等于( )—A.2n B.2n+1 C.2n-1 D.2n+1解析:选B 由于3=2+1,5=22+1,9=23+1,…,所以通项公式是a n=2n+1,故选B. 2.下列四个数列中,既是无穷数列又是递增数列的是( )A.1,12,13,14,…B.-1,2,-3,4,…C.-1,-12,-14,-18,…D.1,2,3,…,n《解析:选C A为递减数列,B为摆动数列,D为有穷数列.3.记等差数列的前n项和为S n,若a1=1/2,S4=20,则该数列的公差d=________.( ) A.2 C.6 D.7解析:选B S4-S2=a3+a4=20-4=16,∴a3+a4-S2=(a3-a1)+(a4-a2)=4d=16-4=12,∴d=3.【4.在数列{a n}中,a1=2,2a n+1-2a n=1,则a101的值为( )A.49 C.51 D.52解析:选D ∵2a n+1-2a n=1,∴a n+1-a n=12,∴数列{a n}是首项a1=2,公差d=12的等差数列,∴a101=2+12(101-1)=52.5.等差数列{a n }的公差不为零,首项a 1=1,a 2是a 1和a 5的等比中项,则数列的前10项之和是( ) …A .90 C .145 D .190解析:选B 设公差为d , ∴(1+d )2=1×(1+4d ), ∵d ≠0,∴d =2,从而S 10=100.6.公比为2的等比数列{a n }的各项都是正数,且a 3a 11=16,则a 5=( )A .1 C .4 D .8 !解析:选A 因为a 3a 11=a 27,又数列{a n }的各项都是正数,所以解得a 7=4,由a 7=a 5·22=4a 5,求得a 5=1.7.等差数列{a n }中,a 2+a 5+a 8=9,那么关于x 的方程:x 2+(a 4+a 6)x +10=0( ) A .无实根B.有两个相等实根 C .有两个不等实根D .不能确定有无实根解析:选A 由于a 4+a 6=a 2+a 8=2a 5,即3a 5=9, ∴a 5=3,方程为x 2+6x +10=0,无实数解. }8.已知数列{a n }中,a 3=2,a 7=1,又数列⎩⎨⎧⎭⎬⎫11+a n 是等差数列,则a 11等于( ) A .0 D .-1 解析:选B 设数列{b n }的通项b n =11+a n ,因{b n }为等差数列,b 3=11+a 3=13,b 7=11+a 7=12,公差d =b 7-b 34=124, ∴b 11=b 3+(11-3)d =13+8×124=23,即得1+a 11=32,a 11=12.9.等比数列{a n }的通项为a n =2·3n -1,现把每相邻两项之间都插入两个数,构成一个新的数列{b n },那么162是新数列{b n }的( )A .第5项 B.第12项 C .第13项 D .第6项 %解析:选C 162是数列{a n }的第5项,则它是新数列{b n }的第5+(5-1)×2=13项.10.设数列{a n }是以2为首项,1为公差的等差数列,{b n }是以1为首项,2为公比的等比数列,则A .1 033 034 C .2 057 D .2 058 解析:选A 由已知可得a n =n +1,b n =2n -1,于是ab n =b n +1, 因此(b 1+1)+(b 2+1)+…+(b 10+1)=b 1+b 2+…+b 10+10=20+21+…+29+10 …=1-2101-2+10=1 033.11.设n S 为等差数列{}n a 的前n 项和,且28,171==S a .记[]n n a b lg =,其中[]x 表示不超过x 的最大整数,如[]09.0=,[]199lg =.则b 11的值为( ) C. 约等于1解析:设{}n a 的公差为d ,据已知有1×72128d +=, 解得 1.d =所以{}n a 的通项公式为.n a n = b 11=[lg11 ]=1—12.我们把1,3,6,10,15,…这些数叫做三角形数,因为这些数目的点可以排成一个正三角形,如下图所示:则第七个三角形数是( ) A .27 C .29 D .30解析:选 B 法一:∵a 1=1,a 2=3,a 3=6,a 4=10,a 5=15,a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,a 5-a 4=5,∴a 6-a 5=6,a 6=21,a 7-a 6=7,a 7=28. 法二:由图可知第n 个三角形数为n n +12,~∴a 7=7×82=28.二、填空题(共4小题,每小题5分,共20分)13.若数列{a n }满足:a 1=1,a n +1=2a n (n ∈N *),则前8项的和S 8=________(用数字作答). 解析:由a 1=1,a n +1=2a n (n ∈N *)知{a n }是以1为首项,以2为公比的等比数列,由通项公式及前n 项和公式知S 8=a 11-q 81-q =1·1-281-2=255.答案: 25514.数列{a n }满足a 1=1,a n =a n -1+n (n ≥2),则a 5=________.|解析:由a n =a n -1+n (n ≥2),得a n -a n -1=n .则a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,a 5-a 4=5,把各式相加,得a 5-a 1=2+3+4+5=14,∴a 5=14+a 1=14+1=15. 答案:1515.已知数列{a n }的前n 项和S n =-2n 2+n +2. 则{a n }的通项公式a n =________[解] ∵S n =-2n 2+n +2, '当n ≥2时,S n -1=-2(n -1)2+(n -1)+2 =-2n 2+5n -1, ∴a n =S n -S n -1=(-2n 2+n +2)-(-2n 2+5n -1) =-4n +3.又a 1=S 1=1,不满足a n =-4n +3, ∴数列{a n }的通项公式是a n =⎩⎪⎨⎪⎧1,n =1,-4n +3,n ≥2.!16.在等差数列{a n }中,其前n 项的和为S n ,且S 6<S 7,S 7>S 8,有下列四个命题: ①此数列的公差d <0; ②S 9一定小于S 6; ③a 7是各项中最大的一项; ④S 7一定是S n 中的最大项.其中正确的命题是________.(填入所有正确命题的序号) 解析:∵S 7>S 6,即S 6<S 6+a 7, }∴a 7>0.同理可知a 8<0. ∴d =a 8-a 7<0.又∵S 9-S 6=a 7+a 8+a 9=3a 8<0, ∴S 9<S 6.∵数列{a n }为递减数列,且a 7>0,a 8<0, ∴可知S 7为S n 中的最大项. 答案:①②④·三、解答题(共4小题,共50分)17.(12分) (1) (全国卷)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,求S n(2) 已知{b n }是各项都是正数的等比数列,若b 1=1,且b 2,12b 3,2b 1成等差数列,求数列{b n }的通项公式.解: (1)设等差数列首项为a 1,公差为d, 则a 4+a 5=2a 1+7d=24,① S 6=6a 1+d=6a 1+15d=48,②由①②得d==-2S N =-2n+n(n-1) ×4/2=2n 2-4n .(2)由题意可设公比为q ,则q >0,由b 1=1,且b 2,12b 3,2b 1成等差数列得b 3=b 2+2b 1,∴q 2=2+q ,解得q =2或q =-1(舍去), 故数列{b n }的通项公式为b n =1×2n -1=2n -1.18.(12分)等比数列{a n }中,已知a 1=2,a 4=16,、(1)求数列{a n }的通项公式; (2)若a 3,a 5分别为等差数列{b n }的第3项和第5项,试求数列{b n }的通项公式及前n 项和S n .解:(1)设{a n }的公比为q ,由已知得16=2q 3,解得q =2, ∴a n =2n.(2)由(1)得a 3=8,a 5=32, 则b 3=8,b 5=32. 设{b n }的公差为d ,则有⎩⎪⎨⎪⎧b 1+2d =8, b 1+4d =32,解得⎩⎪⎨⎪⎧b 1=-16,d =12.!从b n =-16+12(n -1)=12n -28, 所以数列{b n }的前n 项和S n =n -16+12n -282=6n 2-22n .19. (12分)已知等差数列{a n }前三项的和为-3,前三项的积为8. (1)求等差数列{a n }的通项公式;(2)若a 2,a 3,a 1成等比数列,求数列{|a n |}的前10项和. 解:(1)设等差数列{a n }的公差为d, :则a 2=a 1+d,a 3=a 1+2d, 由题意得解得或所以由等差数列通项公式可得a n =2-3(n-1)=-3n+5,或a n =-4+3(n-1)=3n-7. 故a n =-3n+5,或a n =3n-7.(2)当a n =-3n+5时,a 2,a 3,a 1分别为-1,-4,2,不成等比数列; 当a n =3n-7时,a 2,a 3,a 1分别为-1,2,-4,成等比数列,满足条件. ~故|a n |=|3n-7|=记数列{|a n |}的前n 项和为S n . S 10=|a 1|+|a 2|+|a 3|+|a 4|+……+|a 10|=4+1+(3×3-7)+(3×4-7)+……+(3×10-7) =5+[2×8+8×7×3/2]=10520.(12分)数列{a n }的前n 项和为S n ,数列{b n }中,b 1=a 1,b n =a n -a n -1(n ≥2),若a n +S n =n ,c n =a n -1.—(1)求证:数列{c n }是等比数列;(2)求数列{b n }的通项公式.解:(1)证明:∵a 1=S 1,a n +S n =n ①,∴a 1+S 1=1,得a 1=12. 又a n +1+S n +1=n +1②,①②两式相减得2(a n +1-1)=a n -1,即a n +1-1a n -1=12,也即c n +1c n =12, 故数列{c n }是等比数列.\(2)∵c 1=a 1-1=-12, ∴c n =-12n ,a n =c n +1=1-12n , a n -1=1-12n -1.故当n ≥2时,b n =a n -a n -1=12n -1-12n =12n . 又b 1=a 1=12, 所以b n =12n .21.(12分)(全国卷)设数列{}n a 满足+3+…+(2n -1) =2n ,.(1)求{}n a 的通项公式;(2)求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和. 解:(1)因为+3+…+(2n -1) =2n ,故当n ≥2时,+3+…+(-3) =2(n -1)两式相减得(2n -1)=2所以= (n≥2)又因题设可得 =2.从而{} 的通项公式为 =. (2)记 {}的前n 项和为 , 由(1)知 = = - . 则 = - + - +…+ - = .22.(12分)数列{a n }满足a 1=1,a n +1=2n +1a n a n +2n (n ∈N *). (1)证明:数列{2n a n}是等差数列; (2)求数列{a n }的通项公式a n ;(3)设b n =n (n +1)a n ,求数列{b n }的前n 项和S n . 解:(1)证明:由已知可得a n +12n +1=a na n +2n , 即2n +1a n +1=2n a n+1,即2n +1a n +1-2na n =1. ∴数列{2n a n}是公差为1的等差数列. (2)由(1)知2na n =2a 1+(n -1)×1=n +1, ∴a n =2nn +1. (3)由(2)知b n =n ·2n . S n =1·2+2·22+3·23+…+n ·2n , 2S n =1·22+2·23+…+(n -1)·2n +n ·2n +1, 相减得-S n =2+22+23+…+2n -n ·2n +1 =21-2n 1-2-n ·2n +1 =2n +1-2-n ·2n +1,∴S n =(n -1)·2n +1+2.。

相关文档
最新文档