2015年重庆中考数学填空第18题几何压轴题 祝老师
2015年中考数学压轴题分析与解答
2015年中考数学压轴题分析与解答案1.如图,在平面直角坐标系中,已知点A(8,1),B(0,﹣3),反比例函数y=(x>0)的图象经过点A,动直线x=t(0<t<8)与反比例函数的图象交于点M,与直线AB交于点N.(1)求k的值;(2)求△BMN面积的最大值;(3)若MA⊥AB,求t的值.考点:反比例函数综合题.分析:(1)把点A坐标代入y=(x>0),即可求出k的值;(2)先求出直线AB的解析式,设M(t,),N(t,t﹣3),则MN=﹣t+3,由三角形的面积公式得出△BMN的面积是t的二次函数,即可得出面积的最大值;(3)求出直线AM的解析式,由反比例函数解析式和直线AM的解析式组成方程组,解方程组求出M的坐标,即可得出结果.解答:解:(1)把点A(8,1)代入反比例函数y=(x>0)得:k=1×8=8,y=,∴k=8;(2)设直线AB的解析式为:y=kx+b,根据题意得:,解得:k=,b=﹣3,∴直线AB的解析式为:y=x﹣3;设M(t,),N(t,t﹣3),则MN=﹣t+3,∴△BMN的面积S=(﹣t+3)t=﹣t2+t+4=﹣(t﹣3)2+,∴△BMN的面积S是t的二次函数,∵﹣<0,∴S有最大值,当t=3时,△BMN的面积的最大值为;(3)∵MA⊥AB,∴设直线MA的解析式为:y=﹣2x+c,把点A(8,1)代入得:c=17,∴直线AM的解析式为:y=﹣2x+17,解方程组得:或(舍去),∴M的坐标为(,16),∴t=.点评:本题是反比例函数综合题目,考查了用待定系数法求反比例函数和一次函数的解析式、二次函数的最值问题、垂线的性质等知识;本题难度较大,综合性强,特别是(3)中,需要确定一次函数的解析式,由反比例函数解析式和直线AM的解析式组成方程组,解方程组才能得出结果.2.已知:⊙O上两个定点A,B和两个动点C,D,AC与BD交于点E.(1)如图1,求证:EA•EC=EB•ED;(2)如图2,若=,AD是⊙O的直径,求证:AD•AC=2BD•BC;(3)如图3,若AC⊥BD,点O到AD的距离为2,求BC的长.考点:圆的综合题.分析:(1)根据同弧所对的圆周角相等得到角相等,从而证得三角形相似,于是得到结论;(2)如图2,连接CD,OB交AC于点F由B是弧AC的中点得到∠BAC=∠ADB=∠ACB,且AF=CF=0.5AC.证得△CBF∽△ABD.即可得到结论;(3)如图3,连接AO并延长交⊙O于F,连接DF得到AF为⊙O的直径于是得到∠ADF=90°,过O作OH⊥AD于H,根据三角形的中位线定理得到DF=2OH=4,通过△ABE∽△ADF,得到1=∠2,于是结论可得.解答:(1)证明:∵∠EAD=∠EBC,∠BCE=∠ADE,∴△AED∽△BEC,∴,∴EA•EC=EB•ED;(2)证明:如图2,连接CD,OB交AC于点F∵B是弧AC的中点,∴∠BAC=∠ADB=∠ACB,且AF=CF=0.5AC.又∵AD为⊙O直径,∴∠ABC=90°,又∠CFB=90°.∴△CBF∽△ABD.∴,故CF•AD=BD•BC.∴AC•AD=2BD•CD;(3)解:如图3,连接AO并延长交⊙O于F,连接DF,∴AF为⊙O的直径,∴∠ADF=90°,过O作OH⊥AD于H,∴AH=DH,OH∥DF,∵AO=OF,∴DF=2OH=4,∵AC⊥BD,∴∠AEB=∠ADF=90°,∵∠ABD=∠F,∴△ABE∽△ADF,∴∠1=∠2,∴,∴BC=DF=4.点评:本题考查了圆周角定理,垂径定理,相似三角形的判定和性质,三角形的中位线的性质,正确作出辅助线是解题的关键.3.如图,在平面直角坐标系中,正方形ABCD和正方形DEFG的边长分别为2a,2b,点A,D,G在y轴上,坐标原点O为AD的中点,抛物线y=mx2过C,F两点,连接FD并延长交抛物线于点M.(1)若a=1,求m和b的值;(2)求的值;(3)判断以FM为直径的圆与AB所在直线的位置关系,并说明理由.考点:二次函数综合题.分析:(1)由a=1,根据正方形的性质及已知条件得出C(2,1).将C点坐标代入y=mx2,求出m=,则抛物线解析式为y=x2,再将F(2b,2b+1)代入y=x2,即可求出b的值;(2)由正方形ABCD的边长为2a,坐标原点O为AD的中点,得出C(2a,a).将C点坐标代入y=mx2,求出m=,则抛物线解析式为y=x2,再将F(2b,2b+a)代入y=x2,整理得出方程b2﹣2ab﹣a2=0,把a看作常数,利用求根公式得出b=(1±)a(负值舍去),那么=1+;(3)先利用待定系数法求出直线FD的解析式为y=x+a.再求出M点坐标为(2a﹣2a,3a﹣2a).又F(2a+2a,3a+2a),利用中点坐标公式得到以FM为直径的圆的圆心O′的坐标为(2a,3a),再求出O′到直线AB(y=﹣a)的距离d的值,以FM为直径的圆的半径r的值,由d=r,根据直线与圆的位置关系可得以FM为直径的圆与AB所在直线相切.解答:解:(1)∵a=1,∴正方形ABCD的边长为2,∵坐标原点O为AD的中点,∴C(2,1).∵抛物线y=mx2过C点,∴1=4m,解得m=,∴抛物线解析式为y=x2,将F(2b,2b+1)代入y=x2,得2b+1=×(2b)2,b=1±(负值舍去).故m=,b=1+;(2)∵正方形ABCD的边长为2a,坐标原点O为AD的中点,∴C(2a,a).∵抛物线y=mx2过C点,∴a=m•4a2,解得m=,∴抛物线解析式为y=x2,将F(2b,2b+a)代入y=x2,得2b+a=×(2b)2,整理得b2﹣2ab﹣a2=0,解得b=(1±)a(负值舍去),∴=1+;(3)以FM为直径的圆与AB所在直线相切.理由如下:∵D(0,a),∴可设直线FD的解析式为y=kx+a,∵F(2b,2b+a),∴2b+a=k•2b+a,解得k=1,∴直线FD的解析式为y=x+a.将y=x+a代入y=x2,得x+a=x2,解得x=2a±2a(正值舍去),∴M点坐标为(2a﹣2a,3a﹣2a).∵F(2b,2b+a),b=(1+)a,∴F(2a+2a,3a+2a),∴以FM为直径的圆的圆心O′的坐标为(2a,3a),∴O′到直线AB(y=﹣a)的距离d=3a﹣(﹣a)=4a,∵以FM为直径的圆的半径r=O′F==4a,∴d=r,∴以FM为直径的圆与AB所在直线相切.点评:本题是二次函数的综合题型,其中涉及到正方形的性质,待定系数法求二次函数、一次函数的解析式,一元二次方程的求根公式,直线与抛物线交点坐标的求法,直线与圆的位置关系.综合性较强,难度适中.正确求出抛物线的解析式是解题的关键.。
中考数学---几何选择填空压轴题精选1
中考数学---几何选择填空压轴题精选1一.选择题:1.如下图1,点O为正方形ABCD的中心,BE平分∠DBC交DC于点E,延长BC到点F,使FC=EC,连接DF交BE的延长线于点H,连接OH交DC于点G,连接HC.则以下四个结论中正确结论的个数为()①OH=BF;②∠CHF=45°;③GH=BC;④DH2=HE•HB.A. 1个B. 2个C. 3个D. 4个2、如上图2,梯形ABCD中,AD∥BC,,∠ABC=45°,AE⊥BC于点E,BF⊥AC于点F,交AE于点G,AD=BE,连接DG、CG.以下结论:①△BEG≌△AEC;②∠GAC=∠GCA;③DG=DC;④G为AE中点时,△AGC的面积有最大值.其中正确的结论有()A. 1个B. 2个C. 3个D. 4个3.如上图3,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G下列结论:①EC=2DG;②∠GDH=∠GHD;③S△CDG=S▭DHGE;④图中有8个等腰三角形.其中正确的是()A.①③ B.②④ C.①④ D.②③4.如下图1,矩形ABCD的面积为5,它的两条对角线交于点O1,以AB,AO1为两邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交BD于点02,同样以AB,AO2为两邻边作平行四边形ABC2O2.…,依此类推,则平行四边形ABC2009O2009的面积为()A.B. C. D.5、如上图2,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论:①PM=PN;②;③△PMN为等边三角形;④当∠ABC=45°时,BN=PC.其中正确的个数是()A.1个 B.2个 C.3个 D.4个6.Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.下图1,下列结论:①(BE+CF)=BC;②S△AEF ≤S△ABC;③S四边形AEDF=AD•EF;④AD≥EF;⑤AD与EF可能互相平分,其中正确结论的个数是()A.1个B.2个C.3个D.4个7.如上图2,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后折痕DE分别交AB、AC于点E、G,连接GF.下列结论①∠ADG=22.5°;②tan∠AED=2;③S△AGD =S△OGD;④四边形AEFG是菱形;⑤BE=2OG.其中正确的结论有()A.①④⑤B.①②④C.③④⑤D.②③④8.如上图3,正方形ABCD中,O为BD中点,以BC为边向正方形内作等边△BCE,连接并延长AE 交CD于F,连接BD分别交CE、AF于G、H,下列结论:①∠CEH=45°;②GF∥DE;③2OH+DH=BD;④BG=DG;⑤.其中正确的结论是()A.①②③B.①②④C.①②⑤D.②④⑤9.如下图1,在正方形ABCD中,AB=4,E为CD上一动点,AE交BD于F,过F作FH⊥AE于H,过H作GH⊥BD于G,下列有四个结论:①AF=FH,②∠HAE=45°,③BD=2FG,④△CEH的周长为定值,其中正确的结论有()A.①②③B.①②④C.①③④D.①②③④10.正方形ABCD、正方形BEFG和正方形RKPF的位置如上图2所示,点G在线段DK上,正方形BEFG 的边长为4,则△DEK的面积为()A. 10B. 12C. 14D. 16二.填空题1.如下图1,观察图中菱形的个数:图1中有1个菱形,图2中有5个菱形,图3中有14个菱形, 图4中有30个菱形…,则第6个图中菱形的个数是 个.2.如下图2,在△ABC 中,∠A=α.∠ABC 与∠ACD 的平分线交于点A 1,得∠A 1; ∠A 1BC 与∠A 1CD 的平分线相交于点A 2,得∠A 2; …;∠A 2011BC 与∠A 2011CD 的平分线相交于点A 2012,得∠A 2012,则∠A 2012= .3.如下图1,已知Rt △ABC 中,AC=3,BC=4,过直角顶点C 作CA 1⊥AB ,垂足为A 1,再过A 1作A 1C 1⊥BC ,垂足为C 1,过C 1作C 1A 2⊥AB ,垂足为A 2,再过A 2作A 2C 2⊥BC ,垂足为C 2,…,这样一直做下去,得到了一组线段CA 1,A 1C 1,C 1A 2,…,则CA 1= ,= .4、如上图2,点A 1,A 2,A 3,A 4,…,A n 在射线OA 上,点B 1,B 2,B 3,…,B n ﹣1在射线OB 上, 且A 1B 1∥A 2B 2∥A 3B 3∥…∥A n ﹣1B n ﹣1,A 2B 1∥A 3B 2∥A 4B 3∥…∥A n B n ﹣1,△A 1A 2B 1,△A 2A 3B 2,…,△A n ﹣1A n B n ﹣1为阴影三角形,若△A 2B 1B 2,△A 3B 2B 3的面积分别为1、4,则△A 1A 2B 1的面为 ; 面积小于2011的阴影三角形共有 个. 5、如下图1,已知点A 1(a ,1)在直线l :上,以点A 1为圆心,以为半径画弧,交x 轴于点B 1、B 2,过点B 2作A 1B 1的平行线交直线l 于点A 2,在x 轴上取一点B 3,使得A 2B 3=A 2B 2,再过点B 3作A 2B 2的平行线交直线l 于点A 3,在x 轴上取一点B 4,使得A 3B 4=A 3B 3,按此规律继续作下去, 则①a= ;②△A 4B 4B 5的面积是 .6、如下图,在梯形ABCD中,AD∥BC,EA⊥AD,M是AE上一点,F、G分别是AB、CM的中点,且∠BAE=∠MCE,∠MBE=45°,则给出以下五个结论:①AB=CM;②A E⊥BC;③∠BMC=90°;④EF=EG;⑤△BMC是等腰直角三角形.上述结论中始终正确的序号有.7、如图,边长为1的菱形ABCD中,∠DAB=60度.连接对角线AC,以AC为边作第二个菱形ACC1D1,使∠D1AC=60°;连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°;…,按此规律所作的第n个菱形的边长为.8、如图,将矩形ABCD的四个角向内折起,恰好拼成一个既无缝隙又无重叠的四边形EFGH,若EH=3,EF=4,那么线段AD与AB的比等于.9.如图,E、F分别是平行四边形ABCD的边AB、CD上的点,AF与DE相交于点P,BF与CE相交于点Q,若S△APD =15cm2,S△BQC=25cm2,则阴影部分的面积为cm2.中考数学---几何选择填空压轴题精选1答案一.选择题:1、解:作EJ⊥BD于J,连接EF①∵BE平分∠DBC ∴EC=EJ,∴△DJE≌△ECF ∴DE=FE∴∠HEF=45°+22.5°=67.5°∴∠HFE==22.5°∴∠EHF=180°﹣67.5°﹣22.5°=90°∵DH=HF,OH是△DBF的中位线∴OH∥BF ∴OH=BF②∵四边形ABCD是正方形,BE是∠DBC的平分线,∴BC=CD,∠BCD=∠DCF,∠EBC=22.5°,∵CE=CF,∴Rt△BCE≌Rt△DCF,∴∠EBC=∠CDF=22.5°,∴∠BFH=90°﹣∠CDF=90°﹣22.5°=67.5°,∵OH是△DBF的中位线,CD⊥AF,∴OH是CD的垂直平分线,∴DH=CH,∴∠CDF=∠DCH=22.5°,∴∠HCF=90°﹣∠DCH=90°﹣22.5°=67.5°,∴∠CHF=180°﹣∠HCF﹣∠BFH=180°﹣67.5°﹣67.5°=45°,故②正确;③∵OH是△BFD的中位线,∴DG=CG=BC,GH=CF,∵CE=CF,∴GH=CF=CE∵CE<CG=BC,∴GH<BC,故此结论不成立;④∵∠DBE=45°,BE是∠DBF的平分线,∴∠DBH=22.5°,由②知∠HBC=∠CDF=22.5°,∴∠DBH=∠CDF,∵∠BHD=∠BHD,∴△DHE∽△BHD,∴=∴DH=HE•HB,故④成立;所以①②④正确.故选C.(第5题图)2、解:根据BE=AE,∠GBE=∠CAE,∠BEG=∠CEA可判定①△BEG≌△AEC;用反证法证明②∠GAC≠∠GCA,假设∠GAC=∠GCA,则有△AGC为等腰三角形,F为AC的中点,又BF⊥AC,可证得AB=BC,与题设不符;由①知△BEG≌△AEC 所以GE=CE 连接ED、四边形ABED为平行四边形,∵∠ABC=45°,AE⊥BC于点E,∴∠GED=∠CED=45°,∴△GED≌△CED,∴DG=DC;④设AG为X,则易求出GE=EC=2﹣X 因此,S△AGC =SAEC﹣SGEC=﹣+x=﹣(x2﹣2x)=﹣(x2﹣2x+1﹣1)=﹣(x﹣1)2+,当X取1时,面积最大,所以AG等于1,所以G是AE中点,故G为AE中点时,GF最长,故此时△AGC的面积有最大值.故正确的个数有3个.故选C.3、解:∵DF=BD,∴∠DFB=∠DBF,∵AD∥BC,DE=BC,∴∠DEC=∠DBC=45°,∴∠DEC=2∠EFB,∴∠EFB=22.5°,∠CGB=∠CBG=22.5°,∴CG=BC=DE,∵DE=DC,∴∠DEG=∠DCE,∵∠GHC=∠CDF+∠DFB=90°+22.5°=112.5°,∠DGE=180°﹣(∠BGD+∠EGF)=180°﹣(∠BGD+∠BGC),=180°﹣(180°﹣∠DCG)÷2=180°﹣(180°﹣45°)÷2=112.5°,∴∠GHC=∠DGE,∴△CHG≌△EGD,∴∠EDG=∠CGB=∠CBF,∴∠GDH=∠GHD,∴S△CDG =S▭DHGE.故选D.4、解:∵矩形ABCD的对角线互相平分,面积为5,∴平行四边形ABC1O1的面积为,∵平行四边形ABC1O1的对角线互相平分,∴平行四边形ABC2O2的面积为×=,…,依此类推,平行四边形ABC2009O2009的面积为.故选B.5、解:①∵BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,∴PM=BC,PN=BC,∴PM=PN,正确;②在△ABM与△ACN中,∵∠A=∠A,∠AMB=∠ANC=90°,∴△ABM∽△ACN,∴,正确;③∵∠A=60°,BM⊥AC于点M,CN⊥AB于点N,∴∠ABM=∠ACN=30°,在△ABC中,∠BCN+∠CBM═180°﹣60°﹣30°×2=60°,∵点P是BC的中点,BM⊥AC,CN⊥AB,∴PM=PN=PB=PC,∴∠BPN=2∠BCN,∠CPM=2∠CBM,∴∠BPN+∠CPM=2(∠BCN+∠CBM)=2×60°=120°,∴∠MPN=60°,∴△PMN是等边三角形,正确;(见上图)④当∠ABC=45°时,∵CN⊥AB于点N,∴∠BNC=90°,∠BCN=45°,∴BN=CN,∵P为BC边的中点,∴PN⊥BC,△BPN为等腰直角三角形;∴BN=PB=PC,正确.故选D.6、解:∵Rt△ABC中,AB=AC,点D为BC中点,∴∠C=∠BAD=45°,AD=BD=CD,∵∠MDN=90°,∴∠ADE+∠ADF=∠ADF+∠CDF=90°,∴∠ADE=∠CDF.在△AED与△CFD中,∵,∴△AED≌△CFD(ASA),∴AE=CF,在Rt△ABD中,BE+CF=BE+AE=AB==BD=BC.故①正确;设AB=AC=a,AE=CF=x,则AF=a﹣x.∵S△AEF =AE•AF=x(a﹣x)=﹣(x﹣a)2+a2,∴当x=a时,S△AEF有最大值a2,又∵S△ABC =×a2=a2,∴S△AEF≤S△ABC.故②正确;EF2=AE2+AF2=x2+(a﹣x)2=2(x﹣a)2+a2,∴当x=a时,EF2取得最小值a2,∴EF≥a(等号当且仅当x=a时成立),而AD=a,∴EF≥AD.故④错误;由①的证明知△AED≌△CFD,∴S四边形AEDF =S△AED+S△ADF=S△CFD+S△ADF=S△ADC=AD2,∵EF≥AD,∴AD•EF≥AD2,∴AD•EF>S四边形AEDF故③错误;当E、F分别为AB、AC的中点时,四边形AEDF为正方形,此时AD与EF互相平分.故⑤正确.综上所述,正确的有:①②⑤,共3个.故选C.7、解:∵四边形ABCD是正方形,∴∠GAD=∠ADO=45°,由折叠的性质可得:∠ADG=∠ADO=22.5°,故①正确.∵tan∠AED=,由折叠的性质可得:AE=EF,∠EFD=∠EAD=90°,∴AE=EF<BE,∴AE<AB,∴tan∠AED=>2,故②错误.∵∠AOB=90°,∴AG=FG>OG,△AGD与△OGD同高,∴S△AGD >S△OGD,故③错误.∵∠EFD=∠AOF=90°,∴EF∥AC,∴∠FEG=∠AGE,∵∠AGE=∠FGE,∴∠FEG=∠FGE,∴EF=GF,∵AE=EF,∴AE=GF,故④正确.∵AE=EF=GF,AG=GF,∴AE=EF=GF=AG,∴四边形AEFG是菱形,∴∠OGF=∠OAB=45°,∴EF=GF=OG,∴BE=EF=×OG=2OG.故⑤正确.∴其中正确结论的序号是:①④⑤.故选:A.8、解:①由∠ABC=90°,△BEC为等边三角形,△ABE为等腰三角形,∠AEB+∠BEC+∠CEH=180°,可求得∠CEH=45°,此结论正确;②由△EGD≌△DFE,EF=GD,再由△HDE为等腰三角形,∠DEH=30°,得出△HGF为等腰三角形,∠HFG=30°,可求得GF∥DE,此结论正确;③由图可知2(OH+HD)=2OD=BD,所以2OH+DH=BD此结论不正确;④如图,过点G作GM⊥CD垂足为M,GN⊥BC垂足为N,设GM=x,则GN=x,进一步利用勾股定理求得GD=x,BG=x,得出BG=GD,此结论不正确;⑤由图可知△BCE和△BCG同底不等高,它们的面积比即是两个三角形的高之比,由④可知△BCE的高为(x+x)和△BCG的高为x,因此S△BCE :S△BCG=(x+x):x=,此结论正确;故正确的结论有①②⑤.故选C.9、解:(1)连接FC,延长HF交AD于点L,∵BD为正方形ABCD的对角线,∴∠ADB=∠CDF=45°.∵AD=CD,DF=DF,∴△ADF≌△CDF.∴FC=AF,∠ECF=∠DAF.∵∠ALH+∠LAF=90°,∴∠LHC+∠DAF=90°.∵∠ECF=∠DAF,∴∠FHC=∠FCH,∴FH=FC.∴FH=AF.(上图2)(2)∵FH⊥AE,FH=AF,∴∠HAE=45°.(3)连接AC交BD于点O,可知:BD=2OA,(上图3)∵∠AFO+∠GFH=∠GHF+∠GFH,∴∠AFO=∠GHF.∵AF=HF,∠AOF=∠FGH=90°,∴△AOF≌△FGH.∴OA=GF.∵BD=2OA,∴BD=2FG.(4)延长AD至点M,使AD=DM,过点C作CI∥HL,则:LI=HC,根据△MEC≌△CIM,(见下图2)可得:CE=IM,同理,可得:AL=HE,∴HE+HC+EC=AL+LI+IM=AM=8.∴△CEH的周长为8,为定值.故(1)(2)(3)(4)结论都正确.故选D.10、解:如下图1,连DB,GE,FK,则DB∥GE∥FK,在梯形GDBE中,S△DGE =S△GEB(同底等高的两三角形面积相等),同理S△GKE=S△GFE.∴S阴影=S△DGE+S△GKE=S△GEB+S△GEF=S正方形GBEF=4×4=16 故选D.二.填空题:1、解:观察图形,发现规律:图1中有1个菱形,图2中有1+22=5个菱形,图3中有5+32=14个菱形,图4中有14+42=30个菱形,则第5个图中菱形的个数是30+52=55,第6个图中菱形的个数是55+62=91个.故答案为91.2、解:∵∠ABC与∠ACD的平分线交于点A1,∴∠A1BC=∠ABC,∠A1CD=∠ACD,根据三角形的外角性质,∠A+∠ABC=∠ACD,∠A1+∠A1BC=∠A1CD,∴∠A1+∠A1BC=∠A1+∠ABC=(∠A+∠ABC),整理得,∠A1=∠A=,同理可得,∠A2=∠A1=×=,…,∠A2012=.故答案为:.3、解:在Rt△ABC中,AC=3,BC=4,∴AB=,又因为CA1⊥AB,∴AB•CA1=AC•BC,即CA1===.∵C4A5⊥AB,∴△BA5C4∽△BCA,∴,∴==.所以应填和.4、解:由题意得,△A2B1B2∽△A3B2B3,∴==,==,又∵A1B1∥A2B2∥A3B3,∴===,==,∴OA1=A1A2,B1B2=B2B3继而可得出规律:A1A2=A2A3=A3A4…;B1B2=B2B3=B3B4…又△A2B1B2,△A3B2B3的面积分别为1、4,∴S△A1B1A2=,S△A2B2A3=2,继而可推出S△A3B3A4=8,S△A4B4A5=32,S△A5B5A6=128,S△A6B6A7=512,S△A7B7A8=2048,故可得小于2011的阴影三角形的有:△A1B1A2,△A2B2A3,△A3B3A4,△A4B4A5,△A5B5A6,△A6B6A7,共6个.故答案是:;6.5、解:如图所示:①将点A1(a,1)代入直线1中,可得,所以a=.②△A1B1B2的面积为:S==;因为△OA1B1∽△OA2B2,所以2A1B1=A2B2,又因为两线段平行,可知△A1B1B2∽△A2B2B3,所以△A2B2B3的面积为S1=4S;以此类推,△A4B4B5的面积等于64S=.6、解:∵梯形ABCD中,AD∥BC,EA⊥AD,∴AE⊥BC,即②正确.∵∠MBE=45°,∴BE=ME.在△ABE与△CME中,∵∠BAE=∠MCE,∠AEB=∠CEM=90°,BE=ME,∴△ABE≌△CME,∴AB=CM,即①正确.∵∠MCE=∠BAE=90°﹣∠ABE<90°﹣∠MBE=45°,∴∠MCE+∠MBC<90°,∴∠BMC>90°,即③⑤错误.∵∠AEB=∠CEM=90°,F、G分别是AB、CM的中点,∴EF=AB,EG=CM.又∵AB=CM,∴EF=EG,即④正确.故正确的是①②④.7、解:连接DB,∵四边形ABCD是菱形,∴AD=AB.AC⊥DB,∵∠DAB=60°,∴△ADB是等边三角形,∴DB=AD=1,∴BM=,∴AM==,∴AC=,同理可得AC1=AC=()2,AC2=AC1=3=()3,按此规律所作的第n个菱形的边长为()n﹣1故答案为()n﹣1.8、解:∵∠1=∠2,∠3=∠4,∴∠2+∠3=90°,∴∠HEF=90°,(见上图3)同理四边形EFGH的其它内角都是90°,∴四边形EFGH是矩形.∴EH=FG(矩形的对边相等);又∵∠1+∠4=90°,∠4+∠5=90°,∴∠1=∠5(等量代换),同理∠5=∠7=∠8,∴∠1=∠8,∴Rt△AHE≌Rt△CFG,∴AH=CF=FN,又∵HD=HN,∴AD=HF,在Rt△HEF中,EH=3,EF=4,根据勾股定理得HF=,∴HF=5,又∵HE•EF=HF•EM,∴EM=,又∵AE=EM=EB(折叠后A、B都落在M点上),∴AB=2EM=,∴AD:AB=5:=.故答案为:.9、解:如图,连接EF;∵△ADF与△DEF同底等高,∴S△ADF =S△DEF即S△ADF﹣S△DPF=S△DEF﹣S△DPF,即S△APD =S△EPF=15cm2,同理可得S△BQC=S△EFQ=25cm2,∴阴影部分的面积为S△EPF+S△EFQ=15+25=40cm2.故答案为40.。
重庆中考数学第18题专题1(几何部分)汇编
重庆中考数学第18题专题1(几何部分)1. 如图,在正方形ABCD和正方形DEFG中,点G在AD上,连接AC,BF交于点H,连接DH,若BC=4,DG=1,那么DH的长是.2.如图,在正方形ABCD中, E为AD中点,AH⊥BE于点H,连接CH并延长交AD于点F, CP ⊥CF交AD的延长线于点P,若EF=1,则DP的长为_________.3、如图,以RtABC△的斜边AB为一边在△ABC同侧作正方形ABEF.点O为AE与BF的交点,连接CO,若CA = 2,CO=22,那么CB的长为______________.4.如图,正方形ABCD的边长为3,延长CB至点M,使BM=1,连接AM,过点B 作BN⊥AM,垂足为N,O是对角线AC、BD的交点,连接ON,则ON的长为.5.如图,正方形ABCD的对角线AC、BD相交于点O,∠BAC的平分线交BD于点E,交BC于点F,点G是AD的中点,连接CG 交BD于点H,连接FO并延长FO交CG于点P,则PG:PC的值为_____________.6、如图,正方形ABCD中,点E、F、G分别为AB、BC、CD边上的点,EB=3cm,GC=4cm,连接EF、FG、GE恰好构成一个等边三角形,则正方形的边长为cm。
7.如图所示,在梯形ABCD中,AB∥CD,E是BC的中点,EF⊥AD于点F,AD=4,EF=5,则梯形ABCD的面积是.8、如图,正方形纸片ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别和AE、AF折叠,点B、D恰好都将在点G处,已知BE=1,则EF的长为.9、如图,Rt△ABC中,C= 90o,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=62,则另一直角边BC的长为.10、.如图,等腰Rt△ABC中,O为斜边AC的中点,∠CAB的平分线分别交BO,BC于点E,F,BP⊥AF于H,PC⊥BC,AE=1,PG= .11、如图,正方形ABCD中,P在对角线BD上,E在CB的延长线上,且PE=PC,过点P作PF⊥AE于点F,若BE=1,AB=3,则PF的长为。
2015年重庆中考数学填空第18题几何压轴题
1.(重庆一中)如图,正方形ABCD 中, E 为CD 中点,BF ⊥AE 于点F ,M 为CF上一点,将△BMF 绕点F 顺时针旋转得△GNF,M 的对应点N 恰在边AB 上, B的对应点G 恰在线段EA 延长线上,若2CM =,则DG 的长为__________. 2.(南开)如图,ABC ∆中,4AB AC ==,BAC ∠=120°,以A 为一个顶点的等边三角形ADE 绕点A 在BAC ∠内旋转,AD 、AE 所在的直线与BC 边分别交于点F 、G ,若点B 关于直线AD 的对称点为'B ,当'FG B ∆是以点G 为直角顶点的直角三角形时,BF 的长为______ _(1) (2)3.(南开)如图,E ,F 分别是边长为6的正方形ABCD 的边CD ,AD 上两点,且CE=DF ,连接CF ,BE 交于点M ,在MF 上截取MC MN =,连接AN ,若CM FN 34=,则AN 的长度为 4.(育才)如图,已知:正方形ABCD 的边长为1,点E 、 F 分别在AC 、DC 上,若EC=BC ,EF ⊥BE,BF 与EC 相交于G ,则BG 与GF 的乘积为_______(3) (4)5.(巴蜀)如图,AC 、BD 是正方形ABCD 的对角线,点F 在边AD 上,AF =DF =4cm ,DF 是正方形DEFG 的一条对角线,CG 的延长线交AE 于点P ,连接GA 、GC 、GE ,则线段PE 的长为 cm.(结果保留无理数)6.(联中)如图,以Rt ABC △的斜边AB 为一边在ABC ∆同侧作正方形ABEF .点O 为AE 与BF 的交点,连接CO ,若CA = 2,CO =,那么CB 的长为______________.(5) (6)7.(万州)如图,等腰Rt △ABC 中,O 为斜边AC 的中点,∠CAB 的平分线分别交BO ,BC 于点E ,F ,BP ⊥AF 于H ,PC ⊥BC ,AE=1, PG= .8.(八中)如图,正方形ABCD 中,P 在对角线BD 上,E 在CB 的延长线上,且PE PC =,过点P 作PF AE F ⊥于点,1,3BE AB PF ==若,则的长为 .(7) (8)OFECBABCE。
2015年中考数学压轴题及答案汇总
2015中考压轴题突破 训练⽬标 熟悉题型结构,辨识题⽬类型,调⽤解题⽅法; 书写框架明晰,踩点得分(完整、快速、简洁)。
题型结构及解题⽅法 压轴题综合性强,知识⾼度融合,侧重考查学⽣对知识的综合运⽤能⼒,对问题背景的研究能⼒以及对数学模型和套路的调⽤整合能⼒。
考查要点常考类型举例题型特征解题⽅法 问题背景研究求坐标或函数解析式,求⾓度或线段长已知点坐标、解析式或⼏何图形的部分信息研究坐标、解析式,研究边、⾓,特殊图形。
模型套路调⽤求⾯积、周长的函数关系式,并求最值速度已知,所求关系式和运动时间相关分段:动点转折分段、图形碰撞分段; 利⽤动点路程表达线段长; 设计⽅案表达关系式。
坐标系下,所求关系式和坐标相关利⽤坐标及横平竖直线段长; 分类:根据线段表达不同分类; 设计⽅案表达⾯积或周长。
求线段和(差)的最值有定点(线)、不变量或不变关系利⽤⼏何模型、⼏何定理求解,如两点之间线段最短、垂线段最短、三⾓形三边关系等。
套路整合及分类讨论点的存在性点的存在满⾜某种关系,如满⾜⾯积⽐为9:10 抓定量,找特征; 确定分类;. 根据⼏何特征或函数特征建等式。
图形的存在性特殊三⾓形、特殊四边形的存在性分析动点、定点或不变关系(如平⾏); 根据特殊图形的判定、性质,确定分类; 根据⼏何特征或函数特征建等式。
三⾓形相似、全等的存在性找定点,分析⽬标三⾓形边⾓关系; 根据判定、对应关系确定分类; 根据⼏何特征建等式求解。
答题规范动作 试卷上探索思路、在演草纸上演草。
合理规划答题卡的答题区域:两栏书写,先左后右。
作答前根据思路,提前规划,确保在答题区域内写完答案;同时⽅便修改。
作答要求:框架明晰,结论突出,过程简洁。
23题作答更加注重结论,不同类型的作答要点: ⼏何推理环节,要突出⼏何特征及数量关系表达,简化证明过程; ⾯积问题,要突出⾯积表达的⽅案和结论; ⼏何最值问题,直接确定最值存在状态,再进⾏求解; 存在性问题,要明确分类,突出总结。
中考数学几何压轴题
2015中考真题汇编—几何综合问题例1:28.(2015.北京)在正方形ABCD中,BD是一条对角线,点P在射线CD上(与点C、D不重合),连接AP,平移△ADP,使点D移动到点C,得到△BCQ,过点Q作QH⊥BD于H,连接AH,PH。
(1)若点P在线段CD上,如图1。
①依题意补全图1;②判断AH与PH的数量关系与位置关系并加以证明;若点P在线段CD的延长线上,∠AHQ=152°,正方形ABCD的边长为1,请写出求DP 长的思路。
(可以不写出计算结果.........)例2:25(2015.上海)已知:如图,AB是半圆O的直径,弦CD∥AB,动点P、Q分别在线段OC、CD上,且DQ=OP,AP的延长线与射线OQ相交于点E、与弦CD相交于点F(点F与点C、D不重合),AB=20,COS∠AOC=4/5.设OP=X,△CPF的面积为Y.(1)求证:AP=OQ;(2)求Y关于X的函数关系式,并写出它的定义域;(3)当△OPE是直角三角形时,求线段OP的长.例3:24(2015.天津)将一个直角三角形纸片ABO,放置在平面直角坐标系中,点A(,0),点B(0,1),点O(0,0). 过边OA上的动点M(点M不与点O,A 重合)作MN⊥AB于点N,沿着MN折叠该纸片,得顶点A的对应点A′. 设OM=m,折叠后的△A′MN与四边形OMNB重叠部分的面积为S.(Ⅰ)如图①,当点A′与顶点B重合时,求点M的坐标;(Ⅱ)如图②,当点A′落在第二象限时,A′M与OB相交于点C,试用含m的式子表示S;(Ⅲ)当S=时,求点M的坐标(直接写出结果即可).例4:25(2015.重庆)如图1,在△ABC中,∠ACB=90°,∠BAC=60°,点E角平分线上一点,过点E作AE的垂线,过点A作AB的线段,两垂线交于点D,连接DB,点F是BD的中点,DH⊥AC,垂足为H,连接EF,HF。
(1)如图1,若点H是AC的中点,AC=2,求AB,BD的长。
中考数学压轴题解题方法大全和技巧
2015年中考数学压轴题解题技巧练习如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B4,0、C8,0、D8,8.抛物线y=ax2+bx过A、C两点.1直接写出点A的坐标,并求出抛物线的解析式;2动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E.①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形请直接写出相应的t值.解:1点A的坐标为4,8 …………………1分将A 4,8、C8,0两点坐标分别代入y=ax2+bx8=16a+4b得0=64a+8b解得a=-12,b=4∴抛物线的解析式为:y=-12x2+4x …………………3分2①在Rt△APE和Rt△ABC中,tan∠PAE=PEAP=BCAB,即PEAP=48∴PE=12AP=12t.PB=8-t.∴点E的坐标为4+12t,8-t.∴点G的纵坐标为:-124+12t2+44+12t=-18t2+8. …………………5分∴EG=-18t 2+8-8-t =-18t 2+t. ∵-18<0,∴当t=4时,线段EG 最长为2. …………………7分 ②共有三个时刻. …………………8分t 1=163, t 2=4013,t 3= 8525+. …………………11分 一、对称翻折平移旋转1.2014年南宁如图12,把抛物线2y x =-虚线部分向右平移1个单位长度,再向上平移1个单位长度,得到抛物线1l ,抛物线2l 与抛物线1l 关于y 轴对称.点A 、O 、B 分别是抛物线1l 、2l 与x 轴的交点,D 、C 分别是抛物线1l 、2l 的顶点,线段CD 交y 轴于点E .1分别写出抛物线1l 与2l 的解析式;2设P 是抛物线1l 上与D 、O 两点不重合的任意一点,Q 点是P 点关于y 轴的对称点,试判断以P 、Q 、C 、D 为顶点的四边形是什么特殊的四边形 说明你的理由.3在抛物线1l 上是否存在点M ,使得ABM AOED S S ∆∆=四边形,如果存在,求出M 点的坐标,如果不存在,请说明理由.2.福建2013年宁德市如图,已知抛物线C 1:()522-+=x a y 的顶点为P ,与x 轴相交于A 、B 两点点A 在点B 的左边,点B 的横坐标是1.1求P 点坐标及a 的值;4分 2如图1,抛物线C 2与抛物线C 1关于x 轴对称,将抛物线C 2向右平移,平移后的抛物线记为C 3,C 3的顶点为M ,当点P 、M 关于点B 成中心对称时,求C 3的解析式;4分3如图2,点Q 是x 轴正半轴上一点,将抛物线C 1绕点Q 旋转180°后得到抛物线C 4.抛物线C 4的顶点为N ,与x 轴相交于E 、F 两点点E 在点F 的左边,当以点P 、N 、F 为顶点的三角形是直角三角形时,求点Q 的坐标.5分12yxAO B PM图1C 2C 321 yxAO B PN图C 1C 4Q EF 22二、动态:动点、动线3.2014年辽宁省锦州如图,抛物线与x 轴交于Ax 1,0、Bx 2,0两点,且x 1>x 2,与y 轴交于点C 0,4,其中x 1、x 2是方程x 2-2x -8=0的两个根. 1求这条抛物线的解析式;2点P 是线段AB 上的动点,过点P 作PE ∥AC ,交BC 于点E ,连接CP ,当△CPE 的面积最大时,求点P 的坐标;3探究:若点Q 是抛物线对称轴上的点, 是否存在这样的点Q ,使△QBC 成为等腰三角形若存在,请直接写出所有符合条件的 点Q 的坐标;若不存在,请说明理由.4.2013年山东省青岛市已知:如图①,在Rt △ACB 中,∠C B 出发沿BA 方向向点A 匀速运动,速度为1cm/s ;点Q 由A 为2cm/s ;连接PQ .若设运动的时间为ts0<t <2,解答下列问题: 1当t 为何值时,PQ ∥BC2设△AQP 的面积为y 2cm ,求y 与t 之间的函数关系式;3是否存在某一时刻t,使线段PQ 恰好把Rt △ACB 的周长和面积同时平分 若存在,求出此时t 的值;若不存在,说明理由;4如图②,连接PC,并把△PQC 沿QC 翻折,得到四边形PQP ′C,那么是否存在某一时刻t,使四边形PQP ′C 为菱形 若存在,求出此时菱形的边长;若不存在,说明理由.5.09年吉林省如图所示,菱形ABCD 的边长为6厘米,∠B =60°.从初始时刻开始,点P 、Q 同时从A 点出发,点P 以1厘米/秒的速度沿A →C →B 的方向运动,点Q 以2厘米/秒的速度沿A →B →C →D 的方向运动,当点Q 运动到D 点时,P 、Q 两点同时停止运动.设P 、Q 运动的时间为x秒时,△APQ 与△ABC 重叠部分....的面积为y 平方厘米这里规定:点和线段是面积为0的三角形,解答下列问题:1点P 、Q 从出发到相遇所用时间是__________秒;B 图C2点P 、Q 从开始运动到停止的过程中,当△APQ 是等边三角形时x 的值是__________秒; 3求y 与x 之间的函数关系式.6.2012年浙江省嘉兴市如图,已知A 、B 是线段MN 上的两点,4=MN ,1=MA ,1>MB .以A为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M 、N 两点重合成一点C ,构成△ABC ,设x AB =. 1求x 的取值范围;2若△ABC 为直角三角形,求x 的值; 3探究:△ABC 的最大面积8.2009年中考天水如图1,在平面直角坐标系xOy ,二次函数y =ax 2+bx +ca >0的图象顶点为D ,与y 轴交于点C ,与x 轴交于点A 、B ,点A 在原点的左侧,点B 的坐标为3,0,OB =OC ,tan ∠ACO =错误!.1求这个二次函数的解析式;2若平行于x 轴的直线与该抛物线交于点M 、N ,且以MN 为直径的圆与x 轴相切,求该圆的半径长度;3如图2,若点G 2,y 是该抛物线上一点,点P 是直线AG 下方的抛物线上的一动点,当点P 运动到什么位置时,△AGP 的面积最大 求此时点P 的坐标和△AGP 的最大面积.9.14年湖南省张家界市在平面直角坐标系中,已知A -4,0,B 1,0,且以AB 为直径的圆交y 轴的正半轴于点C ,过点C 作圆的切线交x 轴于点D . 1求点C 的坐标和过A ,B ,C 三点的抛物线的解析式; 2求点D 的坐标;3设平行于x 轴的直线交抛物线于E ,F 两点,问:是否存在以线段EF 为直径的圆,恰好与x 轴相切 若存在,求出该圆的半径,若不存在,请说明理由.xOy坐标O 相切于点A 和点C .1求抛物线的解析式;2抛物线的对称轴交x 轴于点E ,连结DE ,并延长DE 交圆O 于F ,求EF 的长. 3过点B 作圆O 的切线交DC 的延长线于点P ,判断点P 是否在抛物线上,说明理由.第24题四、比例比值取值范围11.2014年怀化图9是二次函数k m x y ++=2)(的图象,其顶点坐标为M1,-4.1求出图象与x 轴的交点A,B 的坐标; 2在二次函数的图象上是否存在点P,使MAB PAB S S ∆∆=45,若存在,求出P 点的坐标;若不存在,请说明理由;3将二次函数的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象回答:当直线)1(<+=b b x y 与此图象有两个公共点时,b 的取值范围.12. 湖南省长沙市2013年如图,在平面直角坐标系中,矩形OABC 的两边分别在x 轴和y 轴上,82OA = cm, OC=8cm,现有两动点P 、Q 分别从O 、C 同时出发,P在线段OA 上沿OA 方向以每秒2 cm 的速度匀速运动,Q在线段CO 上沿CO 方向以每秒1 cm 的速度匀速运动.设运动时间为t 秒.1用t 的式子表示△OPQ 的面积S ;2求证:四边形OPBQ 的面积是一个定值,并求出这个定值;3当△OPQ 与△PAB 和△QPB 相似时,抛物线214y x bx c =++经过B 、P 两点,过线段BP 上一动点M 作y 轴的平行线交抛物线于N ,当线段MN 的长取最大值时,求直线MN 把四边形OPBQ 分成两部分的面积之比.13.成都市2010年在平面直角坐标系xOy ,抛物线2y ax bx c =++与x 轴交于A B 、两点点A 在点B 的左侧,与y 轴交于点C ,点A 的坐标为(30)-,,若将经过A C 、两点的直线y kx b =+沿y 轴向下平移3个单位后恰好经过原点,且抛物线的对称轴是直线2x =-.1求直线AC 及抛物线的函数表达式;2AC ABP ∆BPC ∆的面积分别为ABP S ∆、BPC S ∆,且:2:3ABP BPC S S ∆∆=,求点P 的坐标;图9 图1BA P x CQ O y第26题图3设Q 的半径为l,圆心Q 在抛物线上运动,则在运动过程中是否存在Q 与坐标轴相切的情况 若存在,求出圆心Q 的坐标;若不存在,请说明理由.并探究:若设⊙Q 的半径为r ,圆心Q 在抛物线上运动,则当r 取何值时,⊙Q 与两坐轴同时相切五、探究型14.内江市2010如图,抛物线()2230y mx mx m m =-->与x 轴交于A B 、两点,与y 轴交于C 点.1请求出抛物线顶点M 的坐标用含m 的代数式表示,A B 、两点的坐标; 2经探究可知,BCM △与ABC △的面积比不变,试求出这个比值;3是否存在使BCM △为直角三角形的抛物线 若存在,请求出;如果不存在,请说明 理由.15.重庆市潼南县2010年如图,于A 、B,点A 的坐标为2,0,点C 1求抛物线的解析式;2点E 是线段AC 上一动点,过点D 的坐标; 3在直线BC 上是否存在一点P,说明理由.16.2008年福建龙岩如图,抛物线y 轴,点A 在x 轴上,点C 在y 轴上,且AC BC =.1求抛物线的对称轴;2写出A B C ,,三点的坐标并求抛物线的解析式;3探究:若点P 是抛物线对称轴上且在x 轴下方的动点,是否存在PAB △是等腰三角形.若存在,求出所有符合条件的点P 坐标;不存在,请说明理由.题图2617.09年广西钦州26.本题满分10分如图,已知抛物线y =34x 2+bx +c 与坐标轴交于A 、B 、C 三点, A 点的坐标为-1,0,过点C 的直线y =34tx -3与x 轴交于点Q ,点P 是线段BC 上的一个动点,过P 作PH ⊥OB 于点H .若PB =5t ,且0<t <1.1填空:点C 的坐标是_▲_,b =_▲_,c =_▲_; 2求线段QH 的长用含t 的式子表示;3依点P 的变化,是否存在t 的值,使以P 、H 、Q 为顶点的三角形与△COQ 相似 若存在,求出所有t 的值;若不存在,说明理由.18.09年重庆市已知:如图,在平面直角坐标系xO y 中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =2,OC =3.过原点O 作∠AOC 的平分线交AB 于点D ,连接DC ,过点D 作DE ⊥DC ,交OA 于点E .1求过点E 、D 、C 的抛物线的解析式;2将∠EDC 绕点D 按顺时针方向旋转后,角的一边与y 轴的正半轴交于点F ,另一边与线段OC交于点G .如果DF 与1中的抛物线交于另一点M ,点M 的横坐标为56,那么EF =2GO 是否成立 若成立,请给予证明;若不成立,请说明理由;3对于2中的点G ,在位于第一象限内的该抛物线上是否存在点Q ,使得直线GQ 与AB 的交点P与点C 、G 构成的△PCG 是等腰三角形 若存在,请求出点Q 的坐标;若不存在,请说明理由.ax 2+bx,12P3在2的条件下,抛物线的对称轴上是否存在点Q ,使得以B ,N ,Q 为顶点的三角形与△ABC 相似 若存在,请求出点Q 的坐标;若不存在,请说明理由.20.08江苏徐州如图1,一副直角三角板满足AB =BC,AC =DE,∠ABC =∠DEF =90°,∠EDF =30°操作将三角板DEF 的直角顶点E 放置于三角板ABC 的斜边AC 上,再将三角板....DEF ...绕点..E .旋转..,并使边DE 与边AB 交于点P,边EF 与边BC 于点Q 探究一在旋转过程中, (1) 如图2,当CE1EA=时,EP 与EQ 满足怎样的数量关系 并给出证明. (2) (3) 如图3,当CE2EA=时EP 与EQ 满足怎样的数量关系, (4) 并说明理由. (5)(6) 根据你对1、2的探究结果,试写出当CEEA=m 时,EP 与EQ 满足的数量关系式 为_________,其中m 的取值范围是_______直接写出结论,不必证明 探究二若,AC =30cm,连续PQ,设△EPQ 的面积为Scm 2,在旋转过程中:(1) S 是否存在最大值或最小值 若存在,求出最大值或最小值,若不存在,说明理由. (2) 随着S 取不同的值,对应△EPQ 的个数有哪些变化 不出相应S 值的取值范围. (3)六、最值类综合题;一函数型综合题:是先给定直角坐标系和几何图形,求已知函数的解析式即在求解前已知函数的类型,然后进行图形的研究,求点的坐标或研究图形的某些性质;初中已知函数有:①一次函数包括正比例函数和常值函数,它们所对应的图像是直线;②反比例函数,它所对应的图像是双曲线;③二次函数,它所对应的图像是抛物线;求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法图形法和代数法解析法;此类题基本在第24题,满分12分,基本分2-3小题来呈现;二几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点或动线段运动,对应产生线段、面积等的变化,求对应的未知函数的解析式即在没有求出之前不知道函数解析式的形式是什么和求函数的定义域,最后根据所求的函数关系进行探索研究,一般有:在什么条件下图形是等腰三角形、直角三角形、四边形是菱形、梯形等或探索两个三角形满足什么条件相似等或探究线段之间的位置关系等或探索面积之间满足一定关系求x的值等和直线圆与圆的相切时求自变量的值等;求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系即列出含有x、y的方程,变形写成y=fx的形式;一般有直接法直接列出含有x和y的方程和复合法列出含有x和y和第三个变量的方程,然后求出第三个变量和x之间的函数关系式,代入消去第三个变量,得到y =fx的形式,当然还有参数法,这个已超出初中数学教学要求;找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法;求定义域主要是寻找图形的特殊位置极限位置和根据解析式求解;而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值;几何型综合题基本在第25题做为压轴题出现,满分14分,一般分三小题呈现;在解数学综合题时我们要做到:数形结合记心头,大题小作来转化,潜在条件不能忘,化动为静多画图,分类讨论要严密,方程函数是工具,计算推理要严谨,创新品质得提高;解中考数学压轴题秘诀二具有选拔功能的中考压轴题是为考察考生综合运用知识的能力而设计的题目,其特点是知识点多,覆盖面广,条件隐蔽,关系复杂,思路难觅,解法灵活;解数学压轴题,一要树立必胜的信心,二要具备扎实的基础知识和熟练的基本技能,三要掌握常用的解题策略;现介绍几种常用的解题策略,供初三同学参考;1、以坐标系为桥梁,运用数形结合思想:纵观最近几年各地的中考压轴题,绝大部分都是与坐标系有关的,其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答;2、以直线或抛物线知识为载体,运用函数与方程思想:直线与抛物线是初中数学中的两类重要函数,即一次函数与二次函数所表示的图形;因此,无论是求其解析式还是研究其性质,都离不开函数与方程的思想;例如函数解析式的确定,往往需要根据已知条件列方程或方程组并解之而得;3、利用条件或结论的多变性,运用分类讨论的思想:分类讨论思想可用来检测学生思维的准确性与严密性,常常通过条件的多变性或结论的不确定性来进行考察,有些问题,如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵观近几年的中考压轴题分类讨论思想解题已成为新的热点;4、综合多个知识点,运用等价转换思想:任何一个数学问题的解决都离不开转换的思想,初中数学中的转换大体包括由已知向未知,由复杂向简单的转换,而作为中考压轴题,更注意不同知识之间的联系与转换,一道中考压轴题一般是融代数、几何、三角于一体的综合试题,转换的思路更要得到充分的应用;中考压轴题所考察的并非孤立的知识点,也并非个别的思想方法,它是对考生综合能力的一个全面考察,所涉及的知识面广,所使用的数学思想方法也较全面;因此有的考生对压轴题有一种恐惧感,认为自己的水平一般,做不了,甚至连看也没看就放弃了,当然也就得不到应得的分数,为了提高压轴题的得分率,考试中还需要有一种分题、分段的得分策略;5、分题得分:中考压轴题一般在大题下都有两至三个小题,难易程度是第1小题较易,第2小题中等,第3小题偏难,在解答时要把第1小题的分数一定拿到,第2小题的分数要力争拿到,第3小题的分数要争取得到,这样就大大提高了获得中考数学高分的可能性;6、分段得分:一道中考压轴题做不出来,不等于一点不懂,一点不会,要将片段的思路转化为得分点,因此,要强调分段得分,分段得分的根据是“分段评分”,中考的评分是按照题目所考察的知识点分段评分,踏上知识点就给分,多踏多给分;因此,对中考压轴题要理解多少做多少,最大限度地发挥自己的水平,把中考数学的压轴题变成最有价值的压台戏;近几年中考数学中运动几何问题倍受青睐,它不仅综合考查初中数学骨干知识,如三角形全等与相似、图形的平移与旋转、函数一次函数、二次函数与反比例函数与方程等,更重要的是综合考查初中基本数学思想与方法;此类题型也往往起到了考试的选拔作用,使学生之间的数学考试成绩由此而产生距离,所以准确快速解决此类问题是赢得中考数学胜利的关键;如何准确、快速解决此类问题呢关键是把握解决此类题型的规律与方法――以静制动;另外,需要强调的是此类题型一般起点低,第一步往往是一个非常简单的问题,考生一般都能拿分,但恰恰是这一步问题的解题思想和方法是本题基本的做题思想和方法,是特殊到一般数学思想和方法的具体应用,所以考生在解决第一步时不仅要准确计算出答案,更重要的是明确此题的方法和思路;下面以具体实例简单的说一说此类题的解题方法;一、利用动点图形位置进行分类,把运动问题分割成几个静态问题,然后运用转化的思想和方法将几何问题转化为函数和方程问题例1:北京市石景山区2010年数学期中练习在△ABC中,∠B=60°,BA=24CM,BC=16CM, 1求△ABC的面积;2现有动点P从A点出发,沿射线AB向点B方向运动,动点Q从C点出发,沿射线CB也向点B方向运动;如果点P的速度是4CM/秒,点Q的速度是2CM/秒,它们同时出发,几秒钟后,△PBQ 的面积是△ABC的面积的一半3在第2问题前提下,P,Q两点之间的距离是多少点评:此题关键是明确点P、Q在△ABC边上的位置,有三种情况;1当0﹤t≦6时,P、Q分别在AB、BC边上;2当6﹤t≦8时,P、Q分别在AB延长线上和BC边上;3当t >8时, P、Q分别在AB、BC边上延长线上.然后分别用第一步的方法列方程求解.A例2: 北京市顺义2010年初三模考已知正方形ABCD的边长是1,E为CD边的中点, P为正方形ABCD边上的一个动点,动点P从A点出发,沿A→B→C→E运动,到达点E.若点P经过的路程为自变量x,△APE的面积为函数y,1写出y与x的关系式2求当y=13时,x的值等于多少点评:这个问题的关键是明确点P在四边形ABCD边上的位置,根据题意点P的位置分三种情况:分别在AB上、BC边上、EC边上.第一是以静化动,把问的某某秒后的那个时间想想成一个点,然后再去解,第二是对称性,如果是二次函数的题,一定要注意对称性;第三是关系法:你可以就按照图来,就算是图画的在不对,只要你把该要的条件列成一些关系,列出一些方程来;中等的动点题也就没问题了;但是在难一点的动点题就要你的能力了,比如让你找等腰三角形的题,最好带着圆规,这样的题你要从三个顶点考虑,每一条边都要想好,然后再求出来看看在不在某个范围内1、以坐标系为桥梁,运用数形结合思想纵观最近几年各地的中考压轴题,绝大部分都是与坐标系有关的,其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答;2、以直线或抛物线知识为载体,运用函数与方程思想直线与抛物线是初中数学中的两类重要函数,即一次函数与二次函数所表示的图形;因此,无论是求其解析式还是研究其性质,都离不开函数与方程的思想;例如函数解析式的确定,往往需要根据已知条件列方程或方程组并解之而得;3、利用条件或结论的多变性,运用分类讨论的思想分类讨论思想可用来检测学生思维的准确性与严密性,常常通过条件的多变性或结论的不确定性来进行考察,有些问题,如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵观近几年的中考压轴题分类讨论思想解题已成为新的热点;4、综合多个知识点,运用等价转换思想任何一个数学问题的解决都离不开转换的思想,初中数学中的转换大体包括由已知向未知,由复杂向简单的转换,而作为中考压轴题,更注意不同知识之间的联系与转换,一道中考压轴题一般是融代数、几何、三角于一体的综合试题,转换的思路更要得到充分的应用;中考压轴题所考察的并非孤立的知识点,也并非个别的思想方法,它是对考生综合能力的一个全面考察,所涉及的知识面广,所使用的数学思想方法也较全面;因此有的考生对压轴题有一种恐惧感,认为自己的水平一般,做不了,甚至连看也没看就放弃了,当然也就得不到应得的分数,为了提高压轴题的得分率,考试中还需要有一种分题、分段的得分策略;5、分题得分:中考压轴题一般在大题下都有两至三个小题,难易程度是第1小题较易,第2小题中等,第3小题偏难,在解答时要把第1小题的分数一定拿到,第2小题的分数要力争拿到,第3小题的分数要争取得到,这样就大大提高了获得中考数学高分的可能性;6、分段得分:一道中考压轴题做不出来,不等于一点不懂,一点不会,要将片段的思路转化为得分点,因此,要强调分段得分,分段得分的根据是“分段评分”,中考的评分是按照题目所考察的知识点分段评分,踏上知识点就给分,多踏多给分;因此,对中考压轴题要理解多少做多少,最大限度地发挥自己的水平,把中考数学的压轴题变成最有价值的压台戏;二. 重点难点:1. 重点:利用题设大胆猜想、分析、比较、归纳、推理,或由条件去探索不明确的结论;或由结论去探索未给予的条件;或去探索存在的各种可能性以及发现所形成的客观规律;2. 难点:探索存在的各种可能性以及发现所形成的客观规律;三. 具体内容:通常情景中的“探索发现”型问题可以分为如下类型:1. 条件探索型——结论明确,而需探索发现使结论成立的条件的题目;2. 结论探索型——给定条件但无明确结论或结论不惟一,而需探索发现与之相应的结论的题目;3. 存在探索型——在一定的条件下,需探索发现某种数学关系是否存在的题目;4. 规律探索型——在一定的条件状态下,需探索发现有关数学对象所具有的规律性或不变性的题目;由于题型新颖、综合性强、结构独特等,此类问题的一般解题思路并无固定模式或套路,但是可以从以下几个角度考虑:1利用特殊值特殊点、特殊数量、特殊线段、特殊位置等进行归纳、概括,从特殊到一般,从而得出规律;2反演推理法反证法,即假设结论成立,根据假设进行推理,看是推导出矛盾还是能与已知条件一致;3分类讨论法;当命题的题设和结论不惟一确定,难以统一解答时,则需要按可能出现的情况做到既不重复也不遗漏,分门别类加以讨论求解,将不同结论综合归纳得出正确结果;4类比猜想法;即由一个问题的结论或解决方法类比猜想出另一个类似问题的结论或解决方法,并加以严密的论证;以上所述并不能全面概括此类命题的解题策略,因而具体操作时,应更注重数学思想方法的综合运用;5. 如图所示,抛物线()23m x y --=m >0的顶点为A ,直线l :m x y -=33与y 轴交点为B . 1写出抛物线的对称轴及顶点A 的坐标用含m 的代数式表示;2证明点A 在直线l 上,并求∠OAB 的度数;3动点Q 在抛物线对称轴上,问抛物线上是否存在点P ,使以点P 、Q 、A 为顶点的三角形与⊿OAB 全等 若存在,求出m 的值,并写出所有符合上述条件的P 点坐标;若不存在,请说明理由.6. 在平面直角坐标系xOy 中,将抛物线22y x =沿y 轴向上平移1个单位,再沿x 轴向右平移两个单位,平移后抛物线的顶点坐标记作A ,直线3x =与平移后的抛物线相交于B ,与直线OA 相交于C .1求△ABC 面积;2点P 在平移后抛物线的对称轴上,如果△ABP 与△ABC 相似,求所有满足条件的P 点坐标.7. 设抛物线22y ax bx =+-与x 轴交于两个不同的点A 一1,0、Bm,0,与y 轴交于点C.且∠ACB=90°.1求m 的值和抛物线的解析式;2已知点D1,n 在抛物线上,过点A 的直线1y x =+交抛物线于另一点E .若点P 在x轴上,以点P 、B 、D 为顶点的三角形与△AEB 相似,求点P 的坐标.3在2的条件下,△BDP 的外接圆半径等于________________.。
中考数学填空题压轴题(含答案)
根据考试大纲,填空压轴题仍将以探究规律类型题为主要考察方向。
题型一:数字规律【例1】一组按一定规律排列的式子:-,,-,,…,(0a ≠),则第n 个式子是 (n为正整数).【答案】【例2】按一定规律排列的一列数依次为:,916,79,54,31 ……,按此规律排列下去,这列数中的第5个数是 ,第n 个数是 .【答案】1125,122+n n【例3】一组按规律排列的整数5,7,11,19,…,第6个整数为____ _,根据上述规律,第n 个整数为____ (n 为正整数).【答案】67;32+n (n 为正整数)【例4】将除去零以外的自然数按以下规律排列,根据第一列的奇数行的数的规律,写出第一列第9行的数为 ,再结合第一行的偶数列的数的规律,判断2011所在的位置是第 行第 列.【答案】81;第45行第15列2a 52a 83a 114a 31(1)n na n --例题精讲填空题压轴题【例5】某些植物发芽有这样一种规律:当年所发新芽第二年不发芽,老芽在以后每年都发芽.发芽规律见下表(设第一年前的新芽数为a )第n 年 1 2 3 4 5 … 老芽率 a a 2a 3a 5a … 新芽率 0 a a 2a 3a … 总芽率a2 a3a5a8a…照这样下去,第8年老芽数与总芽数的比值为 .【解析】由规律可以看出,从第3年开始,老芽率、新芽率,总芽率都分别是前两年之和,因此,第8年的老芽为21,总芽为34,因此答案为2134. 【解析】2134题型二:多边形上存在的点数【例6】如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n 个图形需要黑色棋子的个数是 .【解析】此类型题首先要找到边数的特点,然后找每条边上点的数目,第n 个图形是2n +边形,而且每个边上有n 个点。
【答案】(2)n n +或22n n +或2(1)1n +-【例7】用棋子摆出下列一组“口”字,按照这种方法摆下去,则摆第n 个“口”字需用棋子___________【答案】4n【例8】用“O”摆出如图所示的图案,若按照同样的方式构造图案,则第10个图案需要 个“O”.① ② ③ ④ 【答案】181第2个“口”第1个“口” 第3个“口”第n 个“口”………………第1个图形第2个图形第3个图形第4个图形题型三:藏头露尾型【例9】如下图是一组有规律的图案,第1个 图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n (n 是正整数)个图案中由 个基础图形组成.【解析】此类问题重点要找到“头是谁”“尾是谁”,①13+;②132+⨯;③133+⨯,……第n 个31n + 【答案】31n +【例10】搭建如图①的单顶帐篷需要17根钢管,这样的帐篷按图②,图③的方式串起来搭建,则串7顶这样的帐篷需要 根钢管.图1 图2 图3【答案】83.题型四:成倍数变化型【例11】如图,ABC ∆中,90ACB ∠=︒,1AC BC ==,取斜边的中点,向斜边做垂线,画出一个新的等腰直角三角形,如此继续下去,直到所画直角三角形的斜边与ABC ∆的BC 边重叠为止,此时这个三角形的斜边长为_____.【解析】注意每一次变化所变化的倍数 【答案】81;11(2)2n n - 【例12】如图,以边长为1的正方形的四边中点为顶点作四边形,再以所得四边形四边中点为顶点作四边形,......依次作下去,图中所作的第三个四边形的周长为________; 所作的第n 个四边形的周长为_________________.【答案】2,24()2n【例13】如图,在ABC ∆中,A α∠=,ABC ∠的平分线与ACD ∠的平分线交于点1A ,得1A ∠,则1______A ∠=.1A BC ∠的平分线与1ACD ∠的平分线交于点2A ,得2A ∠,……,2009A BC ∠的平分线与2009A CD ∠的平分线交于点2010A ,得2010A ∠,则2010A ∠= .【答案】2α,20102α(1)(2)(3)……A 2A 1DC A【例14】如图,小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形1111A B C D ,正方形1111A B C D 的面积为 ; 再把正方形1111A B C D 的各边延长一倍得到正方形2222A B C D , 如此进行下去,正方形n n n n D C B A 的面积为 . (用含有n 的式子表示,n 为正整数)【答案】5,n5【例15】把一个正三角形分成四个全等的三角形,第一次挖去中间的一个小三角形,对剩下的三个小正三角形再重复以上做法……一直到第n 次挖去后剩下的三角形有 个.第一次 第二次 第三次 第四次【答案】3n题型五:相似与探究规律【例16】已知ABC AB AC m ∆==中,,72ABC ∠=︒,1BB 平分ABC ∠交AC 于1B ,过1B 作12B B //BC交AB 于2B ,作23B B 平分21AB B ∠,交AC 于3B ,过3B 作34//B B BC ,交AB 于4B ……依次进行下去,则910B B 线段的长度用含有m 的代数式可以表示为 .【答案】m 6215⎪⎪⎭⎫⎝⎛-【例17】如图,矩形纸片ABCD 中,6,10AB BC ==.第一次将纸片折叠,使点B 与点D 重合,折痕与BD交于点1O ;设1O D 的中点为1D ,第二次将纸片折叠使 点B 与点1D 重合,折痕与BD 交于点2O ;设21O D 的中点 为2D ,第三次将纸片折叠使点B 与点2D 重合,折痕与BD 交于点3O ,… .按上述方法折叠,第n 次折叠后的折痕与BD 交于点n O ,则1BO = ,n BO = .第一次折叠 第二次折叠 第三次折叠【答案】2;12332n n -- B AD C 1O 1O 2O 1D 1D 2D 1O 2O 3O B AD C B ADCBA DC【例18】如图,直线x y 33=,点1A 坐标为(1,0),过点1A 作x 轴的垂线交直线于点1B ,以原点O 为圆心,1OB 长为半径画弧交x 轴于点2A ;再过点2A 作x 轴的垂线 交直线于点2B ,以原点O 为圆心,2OB 长为半径画弧交x 轴于 点3A ,…,按此做法进行下去,点4A 的坐标为( , ); 点n A ( , ).【答案】(938,0)(1)332(-n ,0) 【例19】如图,以等腰三角形AOB 的斜边为直角边向外作第2个等腰直角三角形1ABA ,再以等腰直角三角形1ABA 的斜边为直角边向外作第3个等腰直角三角形11A BB ,……,如此作下去,若1OA OB ==,则第n 个等腰直角三角形的面积n S = ________(n 为正整数).【解析】由题干可知:123124 (222)S S S ===,,可知22n n S -=【答案】22n -【例20】如图,n +1个边长为2的等边三角形有一条边在同一直线上,设211B D C ∆的面积为1S ,322B D C ∆的面积为2S ,…,1n n n B D C +∆的面积为n S ,则2S = ;n S =____ (用含n 的式子表示).【答案】233,31nn + 【例21】如图,P 为ABC ∆的边BC 上的任意一点,设BC a =,当1B 、1C 分别为AB 、AC 的中点时,1112B C a =,当2B 、2C 分别为1BB 、1CC 的中点时,2234B C a =,当3B 、3C 分别为2BB 、2CC 的中点时,3378B C a =,当4B 、4C 分别为3BB 、3CC 的中点时,441516B C a =当5B 、5C 分别为4BB 、4CC 的中点时,55_____B C =当n B 、n C 分别为1n BB -、1n CC -的中点时,则n n B C = ;设ABC ∆中BC 边上的高为h ,则n n PB C ∆的面积为______(用含a 、h 的式子表示).【答案】a 3231,a n n 212-, ah n n 12212+-D 4D 3D 2D 1C 5C 4C 3C 2C 1B 5B 4B 3B 2B 1A……B 2B 1A 1BOAC 3B 3B 2C 2C 1B 1CBA【例22】如图,在梯形ABCD 中,AB CD ∥,AB a =,CD b =,E 为边AD 上的任意一点,EF AB ∥,且EF 交BC 于点F .若E 为边AD 上的中点,则______EF =(用含有a ,b 的式子表示);若E 为边AD 上距点A 最近的n 等分点(2n ≥,且n 为整数),则______EF =(用含有n ,a ,b 的式子表示).【答案】2a b +;(1)b n an+-【例23】已知在ABC ∆中,BC a =.如图1,点1B 、1C 分别是AB 、AC 的中点,则线段11B C 的长是_______; 如图2,点1B 、2B ,1C 、2C 分别是AB 、AC 的三等分点,则线段1122B C B C +的值是__________;如图3, 点12......、、、n B B B ,12......、、、n C C C 分别是AB 、AC 的(1)n +等分点,则线段1122n n B C B C B C ++⋅⋅⋅+的值是 ______.【答案】1,2a a ,12na 【例24】已知:如图,在Rt ABC ∆中,点1D 是斜边AB 的中点,过点1D 作11D E AC ⊥于点1E ,连接1BE 交1CD 于点2D ;过点2D 作22D E AC ⊥于点2E ,连接2BE ,交1CD 于点3D ;过点3D 作33D E AC ⊥于点3E ,如此继续,可以依次得到点4D 、5D 、…n D , 分别记11BD E ∆、22BD E ∆、33BD E ∆、…n n BD E ∆的面积 为1S 、2S 、3S …n S .设ABC ∆的面积是1,则1______S =, ______n S =(用含n 的代数式表示).【答案】14,21(1)n +题型六:折叠与探究规律【例25】如图,将正方形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C ,D 重合),压平后得到折痕MN .设2AB =,当12CE CD =时,则________AMBN=. 若1CE CD n =(n 为整数),则_______AM BN=.(用含n 的式子表示) 【答案】15;1)1(22+-n n【例26】如图,正方形ABCD ,E 为AB 上的动点,(E 不与A 、B 重合)连接DE ,作DE 的中垂线,交图3图2图12n-1B 2C 2A BCB 1C 1C 1B 1CBA FE D CBANMFEDCBAB321AD 于点F .⑴若E 为AB 中点,则______DFAE= ⑵若E 为AB 的n 等分点(靠近点A ),则________DFAE= 【答案】251,42n n+题型七:其他类型【例27】图1是一个八角星形纸板,图中有八个直角,八个相等的钝角,每条边都相等.如图2将纸板沿虚线进行切割,无缝隙无重叠的拼成图3所示的大正方形,其面积为8+3中线段AB 的长为 .图1 图2 图31+【例28】如图,1P 是一块半径为1的半圆形纸板,在1P 的左下端剪去一个半径为12的半圆后得到图形2P ,然后依次剪去一个更小的半圆(其直径为前一个被剪掉半圆的半径)得图形34,,,,n P P P ,记纸板n P 的面积为n S ,试计算求出=-23S S ;并猜想得到1n n S S --=()2n ≥【答案】1)41(2,32---n ππ【例29】如图,图①是一块边长为1,周长记为1P 的正三角形纸板,沿图①的底边剪去一块边长为12的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉正三角形纸板边长的21)后,得图③,④,…,记第)3(≥n n 块纸板的周长为n P ,则=-34P P ;1--n n P P = .P 3P 2P 1【答案】81,121-⎪⎭⎫⎝⎛n【例30】已知一个面积为S 的等边三角形,现将其各边n (n 为大于2的整数)等分,并以相邻等分点为顶点向外作小等边三角形(如图所示).当8n =时,共向外作出了 个小等边三角形;当n k =时,共向外作出了 个小等边三角形,这些小等边三角形的面积和是 (用含k 的式子表示).【答案】18; 【例31】在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为(10),,点D 的坐标为(02),.延长CB 交x 轴于点1A ,作正方形111A B C C ;延长11C B 交x 轴于点2A ,作正方形2221A B C C …按这样 的规律进行下去,第3个正方形的面积为________;第n 个正方形的面积为___________(用含n 的代数式表示).【答案】4235)(,22235-⎪⎭⎫ ⎝⎛n【例32】如图所示,111()P x y ,、222()P x y ,,……()n n n P x y ,在函数4y x=(0x >)的图象上,11OP A ∆,212P A A ∆,323P A A ∆…1n n n P A A -∆都是等腰三角形,斜边1OA 、12A A …1n n A A -,都在x 轴上, 则1_____y =,12______n y y y ++⋅⋅⋅+=【答案】2 , 2n【例33】如图所示,直线1+=x y 与y 轴交于点1A ,以1OA 为边作正方形111OA B C ,然后延长11C B 与直线1+=x y 交于点2A ,得到第一个梯形112AOC A ;再以12C A 为边作正方形1222C A B C ,同样延长22C B 与直线1+=x y 交于点3A 得到第二个梯形2123A C C A ;,再以23C A 为边作正方形2333C A B C ,延长33C B ,得到第三个梯形;……则第2个梯形2123A C C A 的面积是 ;第n (n 是正整数)个梯形的面积是 (用含n 的式子表示).3(-2)k 23(2)k s k-n =3n =5……n =4① ② ③ ④C 2B 2A 2C 1B 1A 1DC B AO yx【答案】6;2n 2223-⨯或1n 423-⨯【例34】在平面直角坐标系中,我们称边长为1且顶点的横纵坐标均为整数的正方形为单位格点 正方形,如图,菱形ABCD 的四个顶点坐标分别是(80)-,,(04),,(80),,(04)-,,则菱形ABCD 能覆盖的单位格点正方形的个数是_______个;若菱形n n n n A B C D 的四个顶点坐标分别为(20)-,n , (0),n ,(20),n ,(0)-,n (n 为正整数), 则菱形n n n n A B C D 能覆盖的单位格点正方形的 个数为_________(用含有n 的式子表示).【答案】单位格点个数为48,单位格点个数为n n 442-【例35】在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.请你观察图中正方形1111A B C D 、2222A B C D 、3333A B C D 每个正方形四条边上的整点的个数.按此规律推算出正方形10101010A B C D 四条边上的整点共有 个.【答案】80【例36】对于每个正整数n ,抛物线2211(1)(1)n n n n n y x x +++=-+与x 轴交于n A ,n B 两点,若n n A B 表示这两点间的距离,则n n A B = (用含n 的代数式表示);112220112011A B A B A B +++的值为 .【答案】()20122011,11+n nyxOD 1D 2D 3C 1C 2C 3B 1B 2B 3A 3A 2A 1123-1-2-3-3-2-1321-8-448ODC BAyx。
中考数学几何压轴题(有关三角形、四边形)的综合专题(含答案解析)
中考数学几何压轴题(有关三角形、四边形)的综合专题1、如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的一点,F为AB边上一点,连接CF,交BE于点D且∠ACF=∠CBE,CG平分∠ACB交BD于点G,(1)求证:CF=BG;(2)延长CG交AB于H,连接AG,过点C作CP∥AG交BE的延长线于点P,求证:PB=CP+CF;(3)在(2)问的条件下,当∠GAC=2∠FCH时,若S△AEG=3,BG=6,求AC的长.2、[问题背景]如图1所示,在△ABC中,AB=BC,∠ABC=90°,点D为直线BC上的一个动点(不与B、C重合),连结AD,将线段AD绕点D按顺时针方向旋转90°,使点A旋转到点E,连结EC.[问题初探]如果点D在线段BC上运动,通过观察、交流,小明形成了以下的解题思路:过点E作EF⊥BC 交直线BC于F,如图2所示,通过证明△DEF≌△,可推证△CEF是三角形,从而求得∠DCE=.[继续探究]如果点D在线段CB的延长线上运动,如图3所示,求出∠DCE的度数.[拓展延伸]连接BE,当点D在直线BC上运动时,若AB=,请直接写出BE的最小值.3、(2019秋•锦江区校级期末)在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线.(1)如图1,求证:AD=2DC.(2)如图2,作∠CBD的角平分线交线段CD于点M,若CM=1,求△DBM的面积;(3)如图3,过点D作DE⊥AB于点E,点N是线段AC上一点(不与C、D重合),以BN为一边,在BN的下方作∠BNG=60°,NG交DE延长线于点G,试探究线段ND,DG与AD之间的数量关系,并说明理由.4、(2019•镇平县三模)如图1,已知直角三角形ABC,∠ACB=90°,∠BAC=30°,点D是AC边上一点,过D作DE⊥AB于点E,连接BD,点F是BD中点,连接EF,CF.(1)发现问题:线段EF,CF之间的数量关系为;∠EFC的度数为;(2)拓展与探究:若将△AED绕点A按顺时针方向旋转α角(0°<α<30°),如图2所示,(1)中的结论还成立吗?请说明理由;(3)拓展与运用:如图3所示,若△AED绕点A旋转的过程中,当点D落到AB边上时,AB边上另有一点G,AD=DG=GB,BC=3,连接EG,请直接写出EG的长度.5、(2017春•西城区校级期末)如图1,在等腰△ABC中,AB=AC,∠BAC=a,点P是线段AB的中点,点E是线段CB延长线上一点,且PE=PC,将线段PC绕点P顺时针旋转α得到PD,连接BD.(1)如图2,若α=60°,其他条件不变,先补全图形,然后探究线段BD和BC之间的数量关系,并说明理由.(2)如图3,若α=90°,其他条件不变,探究线段BP、BD和BC之间的等量关系,并说明理由.6、【发现问题】如图1,已知△ABC,以点A为直角顶点、AB为腰向△ABC外作等腰直角△ABE.请你以A为直角顶点、AC为腰,向△ABC外作等腰直角△ACD(不写作法,保留作图痕迹).连接BD、CE.那么BD与CE的数量关系是BD=CE.【拓展探究】如图2,已知△ABC,以AB、AC为边向外作正方形AEFB和正方形ACGD,连接BD、CE,试判断BD与CE之间的数量关系,并说明理由.【解决问题】如图3,有一个四边形场地ABCD,∠ADC=60°,BC=15,AB=8,AD=CD,求BD的最大值.7、(1)如图1,点C为线段AB外一个动点,已知AB=a,AC=b.当点C位于BA的延长线上时,线段BC取得最大值,则最大值为(用含a,b的式子表示);(2)如图2,点C为线段AB外一个动点,若AB=10,AC=3,分别以AC,BC为边,作等边三角形ACD和等边三角形BCE,连接AE,DB.①求证:AE=DB;②请直接写出线段AE的最大值;(3)如图3,AB=6,点M为线段AB外一个动点,且AM=2,MB=MN,∠BMN=90°,请直接写出线段AN的最大值.8、【初步探索】(1)如图1:在四边形ABC中,AB=AD,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且EF =BE+FD,探究图中∠BAE、∠F AD、∠EAF之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;【灵活运用】(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且EF=BE+FD,上述结论是否仍然成立,并说明理由;【拓展延伸】(3)如图3,已知在四边形ABCD中,∠ABC+∠ADC=180°AB=AD,若点E在CB的延长线上,点F在CD的延长线上,如图3所示,仍然满足EF=BE+FD,请写出∠EAF与∠DAB的数量关系,并给出证明过程.9、(2018•大东区一模)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点O为AB中点,点P为直线BC上的动点(不与点B、点C重合),连接OC、OP,将线段OP绕点P逆时针旋转60°,得到线段PQ,连接BQ.(1)如图1,当点P在线段BC上时,请直接写出线段BQ与CP的数量关系.(2)如图2,当点P在CB延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,当点P在BC延长线上时,若∠BPO=45°,AC=,请直接写出BQ的长.10、模型发现:同学们知道,三角形的两边之和大于第三边,即如图1,在△ABC中,AB+AC>BC.对于图1,若把点C看作是线段AB外一动点,且AB=c,AC=b,则线段BC的长会因为点C的位置的不同而发生变化.因为AB、AC的长度固定,所以当∠BAC越大时,BC边越长.特别的,当点C位于时,线段BC的长取得最大值,且最大值为(用含b,c的式子表示)(直接填空).模型应用:点C为线段AB外一动点,且AB=3,AC=2,如图2所示,分别以AC,BC为边,作等边三角形ACD 和等边三角形BCE,连接BD,AE.(1)求证:BD=AE.(2)线段AE长的最大值为.模型拓展:如图3,在平面直角坐标系中,点A是y轴正半轴上的一动点,点B是x轴正半轴上的一动点,且AB =8.若AC⊥AB,AC=3,试求OC长的最大值.11、已知:△ABC中,∠ACB=90°,AC=BC.(1)如图1,点D在BC的延长线上,连AD,过B作BE⊥AD于E,交AC于点F.求证:AD=BF;(2)如图2,点D在线段BC上,连AD,过A作AE⊥AD,且AE=AD,连BE交AC于F,连DE,问BD与CF有何数量关系,并加以证明;(3)如图3,点D在CB延长线上,AE=AD且AE⊥AD,连接BE、AC的延长线交BE于点M,若AC =3MC,请直接写出的值.12、已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求的值.13、已知,△ABC中,AB=AC,∠BAC=90°,E为边AC任意一点,连接BE.(1)如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;(2)如图2,F也为AC上一点,且满足AE=CF,过A作AD⊥BE交BE于点H,交BC于点D,连接DF交BE于点G,连接AG;①若AG平分∠CAD,求证:AH=AC;②如图3,当G落在△ABC外时,若将△EFG沿EF边翻折,点G刚好落在AB边上点P,直接写出AG与EF的数量关系.14、如图所示,Rt△ABC中,∠ACB=90°,E为AC中点,作ED⊥AC交AB于D,连接CD;(1)如图1,求证:AB=2CD;(2)如图2,作CF⊥AB交AB于F,点G为CF上一点,点H为DE延长线上一点,分别连接AH、GH,若∠AHG=2∠B,求证:AH=GH;(3)如图3,在(2)的条件下,连接DG,且有DE=BF,∠EDG=90°,若AC=6,求AH的长度.15、【问题情境】一节数学课后,老师布置了一道课后练习题:如图:已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,点E、F分别在A和BC上,∠1=∠2,FG⊥AB于点G,求证:△CDE≌△EGF.(1)阅读理解,完成解答本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写这道练习题的证明过程;(2)特殊位置,证明结论若CE平分∠ACD,其余条件不变,求证:AE=BF;(3)知识迁移,探究发现如图,已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,若点E是DB的中点,点F在直线CB上且满足EC=EF,请直接写出AE与BF的数量关系.(不必写解答过程)16、在正方形ABCD和等腰直角△BGF中,∠BGF=90°,P是DF的中点,连接PG、PC.(1)如图1,当点G在BC边上时,延长GP交DC于点E.求证:PG=PC;(2)如图2,当点F在AB的延长线上时,(1)中的结论是否成立?请证明你的结论;(3)如图3,若四边形ABCD为菱形,且∠ABC=60°,△BGF为等边三角形,点F在CB的延长线上时,线段PC、PG又有怎样的数量关系,请直接写出你的结论,并画出论证过程中需要添加的辅助线.17、在△ABC中,∠BAC=60°,点D、E分别在边AC、AB上,AD=AE,连接CE、BD相交于点F,且∠BEC=∠ADF,连接AF.(1)如图1,连接ED,求证:∠ABD=∠CED;(2)如图2,求证:EF+FD=AF;(3)如图3,取BC的中点G,连接AG交BD于点H,若∠GAC=3∠ABD,BH=7,求△ABH的面积.18、点D,E分别在△ABC的边AC,BD上,BD,CE交于点F,连接AF,∠F AE=∠F AD,FE=FD.(1)如图1,若∠AEF=∠ADF,求证:AE=AD;(2)如图2,若∠AEF≠∠ADF,FB平分∠ABC,求∠BAC的度数;(3)在(2)的条件下,如图3,点G在BE上,∠CFG=∠AFB若AG=6,△ABC的周长为20,求BC长.中考数学几何压轴题(有关三角形、四边形)的综合专题参考答案1、如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的一点,F为AB边上一点,连接CF,交BE于点D且∠ACF=∠CBE,CG平分∠ACB交BD于点G,(1)求证:CF=BG;(2)延长CG交AB于H,连接AG,过点C作CP∥AG交BE的延长线于点P,求证:PB=CP+CF;(3)在(2)问的条件下,当∠GAC=2∠FCH时,若S△AEG=3,BG=6,求AC的长.证明:(1)如图1,∵∠ACB=90°,AC=BC,∴∠A=45°,∵CG平分∠ACB,∴∠ACG=∠BCG=45°,∴∠A=∠BCG,在△BCG和△CAF中,∵,∴△BCG≌△CAF(ASA),∴CF=BG;(2)如图2,∵PC∥AG,∴∠PCA=∠CAG,∵AC=BC,∠ACG=∠BCG,CG=CG,∴△ACG≌△BCG,∴∠CAG=∠CBE,∵∠PCG=∠PCA+∠ACG=∠CAG+45°=∠CBE+45°,∠PGC=∠GCB+∠CBE=∠CBE+45°,∴∠PCG=∠PGC,∴PC=PG,∵PB=BG+PG,BG=CF,∴PB=CF+CP;(3)解法一:如图3,过E作EM⊥AG,交AG于M,∵S△AEG=AG•EM=3,由(2)得:△ACG≌△BCG,∴BG=AG=6,∴×6×EM=3,EM=,设∠FCH=x°,则∠GAC=2x°,∴∠ACF=∠EBC=∠GAC=2x°,∵∠ACH=45°,∴2x+x=45,x=15,∴∠ACF=∠GAC=30°,在Rt△AEM中,AE=2EM=2,AM==3,∴M是AG的中点,∴AE=EG=2,∴BE=BG+EG=6+2,在Rt△ECB中,∠EBC=30°,∴CE=BE=3+,∴AC=AE+EC=2+3+=3+3.解法二:同理得:∠CAG=30°,AG=BG=6,如图4,过G作GM⊥AC于M,在Rt△AGM中,GM=3,AM===3,∵∠ACG=45°,∠MGC=90°,∴GM=CM=3,∴AC=AM+CM=3+3.2、[问题背景]如图1所示,在△ABC中,AB=BC,∠ABC=90°,点D为直线BC上的一个动点(不与B、C重合),连结AD,将线段AD绕点D按顺时针方向旋转90°,使点A旋转到点E,连结EC.[问题初探]如果点D在线段BC上运动,通过观察、交流,小明形成了以下的解题思路:过点E作EF⊥BC 交直线BC于F,如图2所示,通过证明△DEF≌△ADB,可推证△CEF是等腰直角三角形,从而求得∠DCE=135°.[继续探究]如果点D在线段CB的延长线上运动,如图3所示,求出∠DCE的度数.[拓展延伸]连接BE,当点D在直线BC上运动时,若AB=,请直接写出BE的最小值.解:[问题初探]如图2,过点E作EF⊥BC交直线BC于F,∴∠DFE=90°=∠ABD,∴∠EDF+∠DEF=90°,由旋转知,AD=DE,∠ADE=90°,∴∠ADB+∠EDF=90°,∴∠ADB=∠DEF,∴△ABD≌△DFE(AAS),∴BD=EF,DF=AB,∵AB=BC,∴BC=DF,∴BD=CF,∴EF=CF,∴△CEG是等腰直角三角形,∴∠ECF=45°,∴∠DCE=135°,故答案为:ADB,等腰直角,135;[继续探究]如图3,过点E作EF⊥BC于F,∴∠DFE=90°=∠ABD,∴∠EDF+∠DEF=90°,由旋转知,AD=DE,∠ADE=90°,∴∠ADB+∠EDF=90°,∴∠ADB=∠DEF,∴△ABD≌△DFE(AAS),∴BD=EF,DF=AB,∵AB=BC,∴BC=DF,∴BD=CF,∴EF=CF,∴△CEG是等腰直角三角形,∴∠ECF=45°,∴∠DCE=45°;[拓展延伸]如图4,在△ABC中,∠ABC=90°,AB=BC=,∴∠ACB=45°当点D在射线BC上时,由[问题初探]知,∠BCM=135°,∴∠ACM=∠BCM﹣∠ACB=90°,当点D在线段CB的延长线上时,由[继续探究]知,∠BCE=45°,∴∠ACN=∠ACB+∠BCM=90°,∴点E是过点C垂直于AC的直线上的点,∴当BE⊥MN时,BE最小,∵∠BCE=45°,∴∠CBE=45°=∠BCE,∴BE=CE,∴BE最小=BC=,即:BE的最小值为.3、在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线.(1)如图1,求证:AD=2DC.(2)如图2,作∠CBD的角平分线交线段CD于点M,若CM=1,求△DBM的面积;(3)如图3,过点D作DE⊥AB于点E,点N是线段AC上一点(不与C、D重合),以BN为一边,在BN的下方作∠BNG=60°,NG交DE延长线于点G,试探究线段ND,DG与AD之间的数量关系,并说明理由.证明:(1)如图1,过点D作DE⊥AB,∵BD是△ABC的角平分线,DE⊥AB,∠ACB=90°,∴DC=DE,∵∠A=30°,DE⊥AB,∴AD=2DE,∴AD=2DC;(2)如图2,过点M作ME∥BD,∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∵BD是△ABC的角平分线,∴∠ABD=∠DBC=30°,∵BM平分∠CBD,∴∠CBM=15°=∠DBM,∵ME∥BD,∴∠MEC=∠CBD=30°,∠EMB=∠DBM=∠MBE,∴ME=BE,∵∠MEC=30°,∠C=90°∴CE=MC=,ME=2MC=2=BE,∴BC=+2,∵∠CBD=30°,∠C=90°,∴BC=CD,∴CD=1+,∴DM=,∴△DBM的面积=××(+2)=1+;(3)若点N在CD上时,AD=DG+DN,理由如下:如图3所示:延长ED使得DW=DN,连接NW,∵∠ACB=90°,∠A=30°,BD是△ABC的角平分线,DE⊥AB于点E,∴∠ADE=∠BDE=60°,AD=BD,∵DN=DW,且∠WDN=60°∴△WDN是等边三角形,∴NW=DN,∠W=∠WND=∠BNG=∠BDN=60°,∴∠WNG=∠BND,在△WGN和△DBN中,∴△WGN≌△DBN(SAS),∴BD=WG=DG+DN,∴AD=DG+DN.(3)若点N在AD上时,AD=DG﹣DN,理由如下:如图4,延长BD至H,使得DH=DN,连接HN,由(1)得DA=DB,∠A=30°.∵DE⊥AB于点E.∴∠2=∠3=60°.∴∠4=∠5=60°.∴△NDH是等边三角形.∴NH=ND,∠H=∠6=60°.∴∠H=∠2.∵∠BNG=60°,∴∠BNG+∠7=∠6+∠7.即∠DNG=∠HNB.在△DNG和△HNB中,∴△DNG≌△HNB(ASA).∴DG=HB.∵HB=HD+DB=ND+AD,∴DG=ND+AD.∴AD=DG﹣ND.4、如图1,已知直角三角形ABC,∠ACB=90°,∠BAC=30°,点D是AC边上一点,过D作DE⊥AB于点E,连接BD,点F是BD中点,连接EF,CF.(1)发现问题:线段EF,CF之间的数量关系为EF=CF;∠EFC的度数为120°;(2)拓展与探究:若将△AED绕点A按顺时针方向旋转α角(0°<α<30°),如图2所示,(1)中的结论还成立吗?请说明理由;(3)拓展与运用:如图3所示,若△AED绕点A旋转的过程中,当点D落到AB边上时,AB边上另有一点G,AD=DG=GB,BC=3,连接EG,请直接写出EG的长度.解:(1)如图1中,∵DE⊥AB,∴∠BED=90°,∵∠BCD=90°,BF=DF,∴FE=FB=FD=CF,∴∠FBE=∠FEB,∠FBC=∠FCB,∴∠EFC=∠EFD+∠CFD=∠FBE+∠FEB+∠FBC+∠FCB=2(∠FBE+∠FBC)=2∠ABC=120°,故答案为:EF=CF,120°.(2)结论成立.理由:如图2中,取AB的中点M,AD的中点N,连接MC,MF,ED,EN,FN.∵BM=MA,BF=FD,∴MF∥AD,MF=AD,∵AN=ND,∴MF=AN,MF∥AN,∴四边形MFNA是平行四边形,∴NF=AM,∠FMA=∠ANF,在Rt△ADE中,∵AN=ND,∠AED=90°,∴EN=AD=AN=ND,同理CM=AB=AM=MB,在△AEN和△ACM中,∠AEN=∠EAN,∠MCA=∠MAC,∵∠MAC=∠EAN,∴∠AMC=∠ANE,又∵∠FMA=∠ANF,∴∠ENF=∠FMC,在△MFC和△NEF中,,∴△MFC≌△NEF(SAS),∴FE=FC,∠NFE=∠MCF,∵NF∥AB,∴∠NFD=∠ABD,∵∠ACB=90°,∠BAC=30°,∴∠ABC=60°,△BMC是等边三角形,∠MCB=60°∴∠EFC=∠EFN+∠NFD+∠DFC=∠MCF+∠ABD+∠FBC+∠FCB=∠ABC+∠MCB=60°+60°=120°.(3)如图3中,作EH⊥AB于H.在Rt△ABC中,∵∠BAC=30°,BC=3,∴AB=2BC=6,在Rt△AED中,∠DAE=30°,AD=2,∴DE=AD=1,在Rt△DEH中,∵∠EDH=60°,DE=1,∴EH=ED•sin60°=,DH=ED•cos60°=,在Rt△EHG中,EG==.5、如图1,在等腰△ABC中,AB=AC,∠BAC=a,点P是线段AB的中点,点E是线段CB延长线上一点,且PE=PC,将线段PC绕点P顺时针旋转α得到PD,连接BD.(1)如图2,若α=60°,其他条件不变,先补全图形,然后探究线段BD和BC之间的数量关系,并说明理由.(2)如图3,若α=90°,其他条件不变,探究线段BP、BD和BC之间的等量关系,并说明理由.解:(1)BC=2BD,理由:如图2,连接CD,由旋转可得,CP=DP,∠CPD=60°,∴△CDP是等边三角形,∴∠CDP=60°=∠PCD,又∵P是AB的中点,AB=AC,∠A=60°,∴等边三角形ABC中,∠PCB=30°,CP⊥AB,∴∠BCD=30°,即BC平分∠PCD,∴BC垂直平分PD,∴∠BDC=∠BPC=90°,∴Rt△BCD中,BC=2BD.(2)如图3,取BC中点F,连接PF,∵∠A=90°,AB=AC,∴△ABC是等腰直角三角形,∵P是AB的中点,F是BC的中点,∴PF是△ABC的中位线,∴PF∥AC,∴∠PFB=∠ACB=45°,∠BPF=∠A=90°,∴△BPF是等腰直角三角形,∴BF=BP,BP=PF,∵∠DPC=∠BPF=90°,∴∠BPD=∠FPC,又∵PD=PC,∴△BDP≌△FCP,∴BD=CF,∵BC=BF+FC,∴BC=BD+BP.6、【发现问题】如图1,已知△ABC,以点A为直角顶点、AB为腰向△ABC外作等腰直角△ABE.请你以A为直角顶点、AC为腰,向△ABC外作等腰直角△ACD(不写作法,保留作图痕迹).连接BD、CE.那么BD与CE的数量关系是BD=CE.【拓展探究】如图2,已知△ABC,以AB、AC为边向外作正方形AEFB和正方形ACGD,连接BD、CE,试判断BD与CE之间的数量关系,并说明理由.【解决问题】如图3,有一个四边形场地ABCD,∠ADC=60°,BC=15,AB=8,AD=CD,求BD的最大值.【发现问题】解:延长CA到M,作∠MAC的平分线AN,在AN上截取AD=AC,连接CD,即可得到等腰直角△ACD;连接BD、CE,如图1所示:∵△ABE与△ACD都是等腰直角三角形,∴AB=AE,AD=AC,∠BAE=∠CAD=90°,∴∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE,【拓展探究】解:BD=CE;理由如下:∵四边形AEFB与四边形ACGD都是正方形,∴AB=AE,AD=AC,∠BAE=∠CAD=90°,∴∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE;【解决问题】解:以AB为边向外作等边三角形ABE,连接CE,如图3所示:则∠BAE=60°,BE=AB=AE=8,∵AD=CD,∠ADC=60°,∴△ACD是等边三角形,∴∠CAD=60°,AC=AD,∴∠CAD+∠BAC=∠BAE+∠BAC,即∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE;当C、B、E三点共线时,CE最大=BC+BE=15+8=23,∴BD的最大值为23.7、如图1,点C为线段AB外一个动点,已知AB=a,AC=b.当点C位于BA的延长线上时,线段BC取得最大值,则最大值为a+b(用含a,b的式子表示);(2)如图2,点C为线段AB外一个动点,若AB=10,AC=3,分别以AC,BC为边,作等边三角形ACD和等边三角形BCE,连接AE,DB.①求证:AE=DB;②请直接写出线段AE的最大值;(3)如图3,AB=6,点M为线段AB外一个动点,且AM=2,MB=MN,∠BMN=90°,请直接写出线段AN的最大值.(1)解:∵点C为线段AB外一动点,且AC=b,AB=a,∴当点C位于BA的延长线上时,线段BC的长取得最大值,且最大值为AC+AB=a+b,(2)①证明:如图2中,∵△ACD与△BCE是等边三角形,∴CD=AC,CB=CE,∠ACD=∠BCE=60°,∴∠DCB=∠ACE,在△CAD与△EAB中,,∴△CAD≌△EAB(SAS),∴AE=BD.②∵线段AE长的最大值=线段BD的最大值,由(1)知,当线段BD的长取得最大值时,点D在BA的延长线上,∴最大值为AD+AB=3+10=13;(3)如图3中,连接BN,∵将△AMN绕着点M顺时针旋转90°得到△PBM,连接AP,则△APM是等腰直角三角形,∴MA=MP=2,BP=AN,∴P A=2,∵AB=6,∴线段AN长的最大值=线段BP长的最大值,∴当P在线段BA的延长线时,线段BP取得最大值最大值=AB+AP=6+2.8、【初步探索】(1)如图1:在四边形ABC中,AB=AD,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且EF =BE+FD,探究图中∠BAE、∠F AD、∠EAF之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是∠BAE+∠F AD=∠EAF;【灵活运用】(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且EF=BE+FD,上述结论是否仍然成立,并说明理由;【拓展延伸】(3)如图3,已知在四边形ABCD中,∠ABC+∠ADC=180°AB=AD,若点E在CB的延长线上,点F在CD的延长线上,如图3所示,仍然满足EF=BE+FD,请写出∠EAF与∠DAB的数量关系,并给出证明过程.解:(1)∠BAE+∠F AD=∠EAF.理由:如图1,延长FD到点G,使DG=BE,连接AG,根据SAS可判定△ABE≌△ADG,进而得出∠BAE=∠DAG,AE=AG,再根据SSS可判定△AEF≌△AGF,可得出∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF.故答案为:∠BAE+∠F AD=∠EAF;(2)仍成立,理由:如图2,延长FD到点G,使DG=BE,连接AG,∵∠B+∠ADF=180°,∠ADG+∠ADF=180°,∴∠B=∠ADG,又∵AB=AD,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF;(3)∠EAF=180°﹣∠DAB.证明:如图3,在DC延长线上取一点G,使得DG=BE,连接AG,∵∠ABC+∠ADC=180°,∠ABC+∠ABE=180°,∴∠ADC=∠ABE,又∵AB=AD,∴△ADG≌△ABE(SAS),∴AG=AE,∠DAG=∠BAE,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠F AE=∠F AG,∵∠F AE+∠F AG+∠GAE=360°,∴2∠F AE+(∠GAB+∠BAE)=360°,∴2∠F AE+(∠GAB+∠DAG)=360°,即2∠F AE+∠DAB=360°,∴∠EAF=180°﹣∠DAB.9、如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点O为AB中点,点P为直线BC上的动点(不与点B、点C重合),连接OC、OP,将线段OP绕点P逆时针旋转60°,得到线段PQ,连接BQ.(1)如图1,当点P在线段BC上时,请直接写出线段BQ与CP的数量关系.(2)如图2,当点P在CB延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,当点P在BC延长线上时,若∠BPO=45°,AC=,请直接写出BQ的长.解:(1)CP=BQ,理由:如图1,连接OQ,由旋转知,PQ=OP,∠OPQ=60°⊅∴△POQ是等边三角形,∴OP=OQ,∠POQ=60°,在Rt△ABC中,O是AB中点,∴OC=OA=OB,∴∠BOC=2∠A=60°=∠POQ,∴∠COP=∠BOQ,在△COP和△BOQ中,,∴△COP≌△BOQ(SAS),∴CP=BQ,(2)CP=BQ,理由:如图2,连接OQ,由旋转知,PQ=OP,∠OPQ=60°∴△POQ是等边三角形,∴OP=OQ,∠POQ=60°,在Rt△ABC中,O是AB中点,∴OC=OA=OB,∴∠BOC=2∠A=60°=∠POQ,∴∠COP=∠BOQ,在△COP和△BOQ中,,∴△COP≌△BOQ(SAS),∴CP=BQ,(3)如图3,在Rt△ABC中,∠A=30°,AC=,∴BC=AC•tan∠A=,过点O作OH⊥BC,∴∠OHB=90°=∠BCA,∴OH∥AB,∵O是AB中点,∴CH=BC=,OH=AC=,∵∠BPQ=45°,∠OHP=90°,∴∠BPQ=∠PQH,∴PH=OH=,∴CP=PH﹣CH=﹣=,连接BQ,同(1)的方法得,BQ=CP=.10、模型发现:同学们知道,三角形的两边之和大于第三边,即如图1,在△ABC中,AB+AC>BC.对于图1,若把点C看作是线段AB外一动点,且AB=c,AC=b,则线段BC的长会因为点C的位置的不同而发生变化.因为AB、AC的长度固定,所以当∠BAC越大时,BC边越长.特别的,当点C位于线段BA的延长线上时,线段BC的长取得最大值,且最大值为b+c(用含b,c的式子表示)(直接填空)模型应用:点C为线段AB外一动点,且AB=3,AC=2,如图2所示,分别以AC,BC为边,作等边三角形ACD 和等边三角形BCE,连接BD,AE.(1)求证:BD=AE.(2)线段AE长的最大值为5.模型拓展:如图3,在平面直角坐标系中,点A是y轴正半轴上的一动点,点B是x轴正半轴上的一动点,且AB =8.若AC⊥AB,AC=3,试求OC长的最大值.解:当点C位于线段BA的延长线上时,线段BC的长取得最大值,最大值为b+c,故答案为:线段BA的延长线上;b+c;模型应用:(1)证明:∵△ACD、△BCE都是等边三角形,∴CD=CA=AD,CB=CE,∠ACD=60°,∠BCE=60°,∴∠DCB=∠ACE,在△DCB和△ACE中,,∴△DCB≌△ACE(SAS)∴BD=AE;(2)当点D位于线段BA的延长线上时,线段BD的长取得最大值,最大值为AB+AD=AB+AC=3+2=5,∵AE=BD,∴线段AE长的最大值为5,模型拓展:取AB的中点G,连接OG、CG,在Rt△AOB中,G为AB的中点,∴OG=AB=4,在Rt△CAG中,CG===5,当点O、G、C在同一条直线上时,OC最大,最大值为4+5=9.11、已知:△ABC中,∠ACB=90°,AC=BC.(1)如图1,点D在BC的延长线上,连AD,过B作BE⊥AD于E,交AC于点F.求证:AD=BF;(2)如图2,点D在线段BC上,连AD,过A作AE⊥AD,且AE=AD,连BE交AC于F,连DE,问BD与CF有何数量关系,并加以证明;(3)如图3,点D在CB延长线上,AE=AD且AE⊥AD,连接BE、AC的延长线交BE于点M,若AC =3MC,请直接写出的值.(1)证明:如图1中,∵BE⊥AD于E,∴∠AEF=∠BCF=90°,∵∠AFE=∠CFB,∴∠DAC=∠CBF,∵BC=CA,∴△BCF≌△ACD,∴BF=AD.(2)结论:BD=2CF.理由:如图2中,作EH⊥AC于H.∵∠AHE=∠ACD=∠DAE=90°,∴∠DAC+∠ADC=90°,∠DAC+∠EAH=90°,∴∠DAC=∠AEH,∵AD=AE,∴△ACD≌△EHA,∴CD=AH,EH=AC=BC,∵CB=CA,∴BD=CH,∵∠EHF=∠BCF=90°,∠EFH=∠BFC,EH=BC,∴△EHF≌△BCF,∴FH=CF,∴BD=CH=2CF.(3)如图3中,同法可证BD=2CM.∵AC=3CM,设CM=a,则AC=CB=3a,BD=2a,∴==.12、已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求的值.(1)①证明:如图1中,∵AB=AC,∠ABC=60°∴△ABC是等边三角形,∴∠BAC=60°,∵AD⊥BN,∴∠ADB=90°,∵∠MBN=30°,∠BFD=60°=∠1+∠BAF=∠2+∠BAF,∴∠1=∠2②证明:如图2中,在Rt△BFD中,∵∠FBD=30°,∴BF=2DF,∵BF=2AF,∴BF=AD,∵∠BAE=∠FBC,AB=BC,∴△BFC≌△ADB,∴∠BFC=∠ADB=90°,∴BF⊥CF(2)在BF上截取BK=AF,连接AK.∵∠BFE=∠2+∠BAF,∠CFE=∠4+∠1,∴∠CFB=∠2+∠4+∠BAC,∵∠BFE=∠BAC=2∠EFC,∴∠1+∠4=∠2+∠4∴∠1=∠2,∵AB=AC,∴△ABK≌CAF,∴∠3=∠4,S△ABK=S△AFC,∵∠1+∠3=∠2+∠3=∠CFE=∠AKB,∠BAC=2∠CEF,∴∠KAF=∠1+∠3=∠AKF,∴AF=FK=BK,∴S△ABK=S△AFK,∴=2.13、已知,△ABC中,AB=AC,∠BAC=90°,E为边AC任意一点,连接BE.(1)如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;(2)如图2,F也为AC上一点,且满足AE=CF,过A作AD⊥BE交BE于点H,交BC于点D,连接DF交BE于点G,连接AG;①若AG平分∠CAD,求证:AH=AC;②如图3,当G落在△ABC外时,若将△EFG沿EF边翻折,点G刚好落在AB边上点P,直接写出AG与EF的数量关系.(1)解:如图1中,在AB上取一点M,使得BM=ME,连接ME.在Rt△ABE中,∵OB=OE,∴BE=2OA=2,∵MB=ME,∴∠MBE=∠MEB=15°,∴∠AME=∠MBE+∠MEB=30°,设AE=x,则ME=BM=2x,AM=x,∵AB2+AE2=BE2,∴(2x+x)2+x2=22,∴x=(负根已经舍弃),∴AB=AC=(2+)•,∴BC=AB=+1.方法二:作EH⊥BC于H,求出BH,CH即可解决问题.(2)证明:如图2中,作CP⊥AC,交AD的延长线于P,GM⊥AC于M.∵BE⊥AP,∴∠AHB=90°,∴∠ABH+∠BAH=90°,∵∠BAH+∠P AC=90°,∴∠ABE=∠P AC,在△ABE和△CAP中,,∴△ABE≌△CAP,∴AE=CP=CF,∠AEB=∠P,在△DCF和△DCP中,,∴△DCF≌△DCP,∴∠DFC=∠P,∴∠GFE=∠GEF,∴GE=GF,∵GM⊥EF,∴FM=ME,∵AE=CF,∴AF=CE,∴AM=CM,在△GAH和△GAM中,,∴△AGH≌△AGM,∴AH=AM=CM=AC(3)解:结论:AG=EF.理由:如图3中,作CM⊥AC交AD的延长线于M,连接PG交AC于点O.由(2)可知△ACM≌△BAE,△CDF≌△CDM,∴∠AEB=∠M=∠GEF,∠M=∠CFD=∠GFE,AE=CM=CF,∴∠GEF=∠GFE,∴GE=GF,∵△EFP是由△EFG翻折得到,∴EG=EP=GF=PF,∴四边形EGFP是菱形,∴PG⊥AC,OE=OF,∵AE=CF,∴AO=OC,∵AB∥OP,∴BP=PC,∵PF∥BE,∴EF=CF=AE,∵PB=PC,AO=OC,∴PO=OG=AB,∴AB=PG,AB∥PG,∴四边形ABPG是平行四边形,∴AG∥BC,∴∠GAO=∠ACB=45°,设EO=OF=a,则OA=OG=3a,AG=3a,∴==,∴AG=EF14、如图所示,Rt△ABC中,∠ACB=90°,E为AC中点,作ED⊥AC交AB于D,连接CD;(1)如图1,求证:AB=2CD;(2)如图2,作CF⊥AB交AB于F,点G为CF上一点,点H为DE延长线上一点,分别连接AH、GH,若∠AHG=2∠B,求证:AH=GH;(3)如图3,在(2)的条件下,连接DG,且有DE=BF,∠EDG=90°,若AC=6,求AH的长度.解:(1)∵E为AC中点,作ED⊥AC交AB于D,∴AD=CD,∵∠ACB=90°,∴BC∥DE,∴AD=BD,∴CD=BD,∴AB=2CD;(2)如图2,连接CH,∵点E是AC的中点,∴AE=CE,∵DE⊥AC,∴CH=AH,∴∠ACH=∠CAH,∵∠ACB=90°,∴∠B+∠BAC=90°,∵CF⊥AB,∴∠BAC+∠ACF=90°,∴∠ACF=∠B,∴∠HCG=∠ACH+∠ACF=∠CAH+∠B,∠AHG=2∠B∴在四边形AHGF中,∠AFG+∠FGH+∠AHG+∠F AH=360°,∴∠FGH=360°﹣(∠AFG+∠AHG+∠F AH)=360°﹣(90°+2∠B+∠CAH+∠BAC)=360°﹣(90°+2∠B+∠CAH+90°﹣∠B)=360°﹣(180°+∠B+∠CAH)=180°﹣(∠B+∠CAH),∵∠CGH=180°﹣∠FGH=∠B+∠CAH=∠HCG,∴CH=GH,∵CH=AH,∴AH=GH;(3)如图3,由(1)知,DE∥BC,∴∠B=∠ADE,在△BFC和△DEA中,,∴△BFC≌△DEA,∴BC=AD,∵AD=BD=CD,∴BC=BD=CD,∴△BCD是等边三角形,∴∠B=60°,在Rt△ABC中,AC=6,∴BC=2,AB=4,∵CF⊥BD,∴DF=,CF=3,∵∠BAC=30°,∴∠ADE=60°,∵∠EDG=90°,∠FDG=30°,在Rt△DFG中,DF=,∴FG=1,DG=2,∴CG=CF﹣FG=2过点H作HN⊥CF,由(2)知,CH=GH,∴NG=CG=1,∴FN=NG+FG=2,过点H作HM⊥AB,∴∠FMH=∠NFM=∠HNF=90°,∴四边形NFMH是矩形,∴HM=FN=2,在Rt△DMH中,∠ADE=60°,HM=2,∴DH=,在Rt△HDG中,根据勾股定理得,HG==.15、【问题情境】一节数学课后,老师布置了一道课后练习题:如图:已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,点E、F分别在A和BC上,∠1=∠2,FG⊥AB于点G,求证:△CDE≌△EGF.(1)阅读理解,完成解答本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写这道练习题的证明过程;(2)特殊位置,证明结论若CE平分∠ACD,其余条件不变,求证:AE=BF;(3)知识迁移,探究发现如图,已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,若点E是DB的中点,点F在直线CB上且满足EC=EF,请直接写出AE与BF的数量关系.(不必写解答过程)(1)证明:∵AC=BC,∠ACB=90°,∴∠A=∠B=45°,∵CD⊥AB,∴∠CDB=90°,∴∠DCB=45°,∵∠ECF=∠DCB+∠1=45°+∠1,∠EFC=∠B+∠2=45°+∠2,∠1=∠2,∴∠ECF=∠EFC,∴CE=EF,∵CD⊥AB,FG⊥AB,∴∠CDE=∠EGF=90°,在△CDE和△EGF中,,∴△CDE≌△EGF(AAS);(2)证明:由(1)得:CE=EF,∠A=∠B,∵CE平分∠ACD,∴∠ACE=∠1,∵∠1=∠2,∴∠ACE=∠2,在△ACE和△BEF中,,∴△ACE≌△BEF(AAS),∴AE=BF;(3)AE=BF,作EH⊥BC与H,如图3所示:设DE=x,根据题意得:BE=DE=x,AD=BD=2x,CD=AD=2x,AE=3x,根据勾股定理得:BC=AC=2x,∵∠ABC=45°,EH⊥BC,∴BH=x,∴CH=BC﹣BH=x,∵EC=EF,∴FH=CH=x,∴BF=x﹣x=x,∴=,∴AE=.16、在正方形ABCD和等腰直角△BGF中,∠BGF=90°,P是DF的中点,连接PG、PC.(1)如图1,当点G在BC边上时,延长GP交DC于点E.求证:PG=PC;(2)如图2,当点F在AB的延长线上时,(1)中的结论是否成立?请证明你的结论;(3)如图3,若四边形ABCD为菱形,且∠ABC=60°,△BGF为等边三角形,点F在CB的延长线。
2015年重庆市中考数学试卷(A卷)答案与解析详解析
﹝机密﹞ 2015 年6月13日11:00前重庆市 2015 年初中毕业暨高中招生考试数学试题( A 卷)(全卷共五个大题,满分150 分,考试时间120 分钟)注意事项:1、试题的答案书写在答题卡上,不得在试卷上直接作答;...2、作答前认真阅读答题卡的注意事项;...3、作图(包含做协助线)请一律用黑色..署名笔达成;4、考试结束,由监考人员将试题和答题卡一并回收....一、选择题(共12 小题,每题 4 分,满分48 分)1.( 4 分)( 2015?重庆)在﹣ 4, 0,﹣ 1, 3 这四个数中,最大的数是()A .﹣ 4B.0C.﹣1D.32.( 4 分)( 2015?重庆)以下图形是轴对称图形的是()A .B .C.D.3.( 4 分)( 2015?重庆)化简的结果是()A .4B .2 C. 3 D. 22 3的结果是()4.( 4 分)( 2015?重庆)计算( a b)6 3 2 3 5 3 6A .a bB .a b C. a b D. a b5.( 4 分)( 2015?重庆)以下检查中,最适适用普查方式的是()A .调查一批电视机的使用寿命状况B .检查某中学九年级一班学生的视力状况C.检查重庆市初中学生每日锻炼所用的时间状况D .调查重庆市初中学生利用网络媒体自主学习的状况6.( 4 分)( 2015?重庆)如图,直线 AB ∥CD ,直线 EF 分别与直线AB , CD 订交于点G,H.若∠ 1=135 °,则∠ 2 的度数为()A .65°B .55°C. 45°D. 35°7.( 4 分)( 2015?重庆)在某校九年级二班组织的跳绳竞赛中,第一小组五位同学跳绳的个数分别为198, 230, 220, 216, 209,则这五个数据的中位数为()A .220B .218C. 216D. 2098.( 4 分)( 2015?重庆)一元二次方程2﹣ 2x=0 的根是()xA.x1=0 , x2=﹣ 2 B .x1=1, x2=2 C. x1=1, x2=﹣2 D. x1=0 , x2=29.( 4 分)(2015?重庆)如图, AB 是⊙ O 直径,点 C 在⊙ O 上, AE 是⊙ O 的切线, A 为切点,连结 BC 并延伸交AE 于点 D.若∠ AOC=80 °,则∠ ADB 的度数为()A .40°B .50°C. 60°D. 20°10.( 4 分)( 2015?重庆)今年“五一”节,小明出门登山,他从山脚爬到山顶的过程中,中途歇息了一段时间.设他从山脚出发后所用时间为t(分钟),所走的行程为s(米),s 与 t 之间的函数关系以下图.以下说法错误的选项是()A.小明半途歇息用了 20 分钟B.小明歇息前登山的均匀速度为每分钟70 米C.小明在上述过程中所走的行程为6600 米D.小明歇息前登山的均匀速度大于歇息后登山的均匀速度11.(4 分)( 2015?重庆)以下图形都是由相同大小的小圆圈按必定规律构成的,此中第①个图形中一共有 6 个小圆圈,第②个图形中一共有9 个小圆圈,第③ 个图形中一共有12个小圆圈,,按此规律摆列,则第⑦ 个图形中小圆圈的个数为()A .21B .24C. 27D. 3012.( 4 分)( 2015?重庆)如图,在平面直角坐标系中,菱形ABCD 在第一象限内,边BC与 x 轴平行, A ,B 两点的纵坐标分别为3,1.反比率函数y=的图象经过 A ,B 两点,则菱形 ABCD 的面积为()A .2B.4C.2D.4二、填空题(共 6 小题,每题 4 分,满分 24 分)13.( 4 分)( 2015?重庆)我国“南仓”级远洋综合补给舱满载排水量为37000 吨,把数 37000用科学记数法表示为 3.7×104.14.( 4 分)( 2015?重庆)计算:20150﹣ |2|=﹣1.15.(4 分)( 2015?重庆)已知△ ABC ∽△ DEF ,△ ABC 与△DEF 的相像比为4:1,则△ABC 与△ DEF 对应边上的高之比为4: 1.16.( 4 分)( 2015?重庆)如图,在等腰直角三角形ABC 中,∠ ACB=90 °, AB=4.以A 为圆心, AC 长为半径作弧,交AB 于点 D ,则图中暗影部分的面积是8﹣2π.(结果保留π)17.( 4 分)( 2015?重庆)从﹣ 3,﹣ 2,﹣ 1, 0,4 这五个数中随机抽取一个数记为a,a 的值既是不等式组的解,又在函数y=的自变量取值范围内的概率是.18.( 4 分)( 2015?重庆)如图,在矩形 ABCD 中, AB=4 ,AD=10 .连结 BD ,∠ DBC 的角均分线 BE 交 DC 于点 E,现把△ BCE 绕点 B 逆时针旋转,记旋转后的△ BCE 为△BC ′E′.当射线BE ′和射线 BC′都与线段AD 订交时,设交点分别为F,G.若△ BFD 为等腰三角形,则线段DG长为.三、解答题(共 2 小题,满分14 分)19.( 7 分)( 2015?重庆)解方程组.20.(7 分)( 2015?重庆)如图,在△ABD 和△ FEC 中,点 B,C,D, E 在同向来线上,且AB=FE , BC=DE ,∠ B=∠ E.求证:∠ ADB= ∠ FCE.四、解答题(共 4 小题,满分40 分)21.( 10 分)( 2015?重庆)计算:(1) y( 2x﹣ y) +(x+y )2;(2)( y﹣1﹣)÷.22.( 10 分)( 2015?重庆)为贯彻政府报告中“全民创新,万众创业”的精神,某镇对辖区内全部的小微公司按年收益 w(万元)的多少分为以下四个种类: A 类( w< 10),B 类( 10≤w <20),C 类( 20≤w< 30),D 类( w ≥30),该镇政府对辖区内全部小微公司的有关信息进行统计后,绘制成以下条形统计图和扇形统计图,请你联合图中信息解答以下问题:(1)该镇本次统计的小微公司总个数是 25 ,扇形统计图中 B 类所对应扇形圆心角的度数为 72度,请补全条形统计图;(2)为了进一步解决小微公司在发展中的问题,该镇政府准备召开一次会谈会,每个公司派一名代表参会.计划从 D 类公司的 4 个参会代表中随机抽取 2 个讲话, D 类公司的 4 个参会代表中有 2 个来自高新区,另 2 个来自开发区.请用列表或画树状图的方法求出所抽取的2 个讲话代表都来自高新区的概率.23.( 10 分)( 2015?重庆)假如把一个自然数各数位上的数字从最高位到个位挨次排出的一串数字,与从个位到最高位挨次排出的一串数字完整相同,那么我们把这样的自然数称为“和谐数”.比如自然数 12321,从最高位到个位挨次排出的一串数字是:1, 2, 3, 2, 1,从个位到最高位挨次排出的一串数字还是:1, 2, 3, 2, 1,所以 12321 是一个“和睦数”,再加22, 545, 3883, 345543,,都是“和睦数”.(1)请你直接写出 3 个四位“和睦数”;请你猜想随意一个四位“和睦数”可否被11整除?并说明原因;(2)已知一个能被11 整除的三位“和睦数”,设其个位上的数字x( 1≤x≤4, x 为自然数),十位上的数字为y,求 y 与 x 的函数关系式.24.( 10 分)( 2015?重庆)某水库大坝的横截面是以下图的四边形ABCD ,此中 AB ∥ CD ,大坝顶上有一眺望台PC,PC 正前面有两艘渔船M ,N.察看员在眺望台顶端P 处观察到渔船 M 的俯角α为 31°,渔船 N 的俯角β为 45°.已知 MN 所在直线与 PC 所在直线垂直,垂足为 E,且 PE 长为 30 米.(1)求两渔船M , N 之间的距离(结果精准到 1 米);(2)已知坝高24 米,坝长 100 米,背水坡AD 的坡度 i=1 : 0.25,为提升大坝防洪能力,请施工队将大坝的背水坡经过填筑土石方进行加固,坝底BA 加宽后变为BH ,加固后背水坡 DH 的坡度 i=1 :1.75,施工队施工10 天后,为赶快达成加固任务,施工队增添了机械设备,工作效率提升到本来的 2 倍,结果比原计划提早20 天达成加固任务,施工队原计划平均每日填筑土石方多少立方米?(参照数据: tan31°≈0.60, sin31°≈0.52)五、解答题(共 2 小题,满分24 分)25.(12 分)( 2015?重庆)如图1,在△ ABC 中,∠ ACB=90 °,∠ BAC=60 °,点 E 是∠ BAC 角均分线上一点,过点E作AE的垂线,过点A作AB的垂线,两垂线交于点D,连结 DB ,点 F 是 BD 的中点, DH ⊥ AC ,垂足为H,连结 EF, HF.(1)如图 1,若点 H 是 AC 的中点, AC=2,求AB,BD的长;(2)如图 1,求证: HF=EF ;(3)如图 2,连结 CF, CE.猜想:△CEF 是不是等边三角形?假如,请证明;若不是,说明原因.26.( 12 分)( 2015?重庆)如图1,在平面直角坐标系中,抛物线y=﹣2交 x x + x+3轴于 A ,B 两点(点 A 在点 B 的左边),交 y 轴于点 W ,极点为 C,抛物线的对称轴与x 轴的交点为 D .(1)求直线 BC 的分析式;(2)点 E( m,0),F( m+2,0)为 x 轴上两点,此中 2< m< 4,EE′, FF′分别垂直于 x 轴,交抛物线于点 E′, F′,交 BC 于点 M , N,当 ME ′+NF ′的值最大时,在 y 轴上找一点 R,使|RF′﹣ RE′|的值最大,恳求出R 点的坐标及 |RF′﹣ RE′|的最大值;(3)如图 2,已知 x 轴上一点P(,0),现以P为极点,2为边长在x 轴上方作等边三角形 QPG,使 GP⊥ x 轴,现将△ QPG 沿 PA 方向以每秒 1 个单位长度的速度平移,当点 P 抵达点 A 时停止,记平移后的△ QPG 为△ Q′P′G′.设△ Q′P′G′与△ADC 的重叠部分面积为s.当 Q′到 x 轴的距离与点 Q′到直线 AW 的距离相等时,求 s 的值.参照详尽答案:一、选择题(共12 小题,每题 4 分,满分48 分)1.考点:有理数大小比较.版权全部剖析:先计算 |﹣ 4|=4,|﹣ 1|=1 ,依据负数的绝对值越大,这个数越小得﹣4<﹣ 1,再依据正数大于 0,负数小于 0 获得﹣ 4<﹣ 1< 0< 3.解答:解:∵ |﹣ 4|=4, |﹣ 1|=1 ,∴﹣ 4<﹣ 1,∴﹣ 4, 0,﹣ 1, 3 这四个数的大小关系为﹣4<﹣ 1< 0< 3.应选 D.评论:本题考察了有理数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.2.考点:轴对称图形.版权全部剖析:依据轴对称图形的观点求解.解答:解: A 、是轴对称图形,故正确;B 、不是轴对称图形,故错误;C、不是轴对称图形,故错误;D 、不是轴对称图形,故错误.应选 A.评论:本题考察了轴对称图形的观点:轴对称图形的重点是找寻对称轴,图形两部分沿对称轴折叠后可重合.3.考点:二次根式的性质与化简.版权全部剖析:直接利用二次根式的性质化简求出即可.解答:解:=2.应选: B.评论:本题主要考察了二次根式的性质与化简,正确化简二次根式是解题重点.4.考点:幂的乘方与积的乘方.版权全部剖析:依据幂的乘方和积的乘方的运算方法:①( a m)n =a mn( m,n 是正整数);② ( ab)n=a n b n (n 是正整数);求出( a2b)3的结果是多少即可.解答:解:( a2b)3 = (a2)3?b3 =a6b3即计算( a2b)3的结果是a6b3.应选: A.评论:本题主要考察了幂的乘方和积的乘方,要娴熟掌握,解答本题的重点是要明确:① (a m)n=a mn( m, n 是正整数);②( ab)n =a n b n( n 是正整数).5.考 d 全面检查与抽样检查.版权全部点:剖析:由普查获得的检查结果比较正确,但所费人力、物力和时间许多,而抽样检查获得的检查结果比较近似.解答:解:A 、检查一批电视机的使用寿命状况,检查局有损坏性,合适抽样检查,故 A 不切合题意;B 、检查某中学九年级一班学生的视力状况,合适普查,故 B 切合题意;C、检查重庆市初中学生每日锻炼所用的时间状况,检查范围广,合适抽样检查,故 C 不切合题意;D 、检查重庆市初中学生利用网络媒体自主学习的状况,合适抽样检查,故 D 不切合题意;应选: B.评论:本题考察了抽样检查和全面检查的差别,选择普查还是抽样检查要依据所要考察的对象的特点灵巧采用,一般来说,关于拥有损坏性的检查、没法进行普查、普查的意义或价值不大,应选择抽样检查,关于精准度要求高的检查,事关重要的检查常常采用普查.6.考点:平行线的性质.版权全部剖析:依据平行线的性质求出∠ 2 的度数即可.解答:解:∵ AB ∥ CD ,∠ 1=135 °,∴∠ 2=180 °﹣ 135°=45 °.应选 C.评论:本题考察的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.7.考点:中位数.版权全部剖析:找中位数要把数据按从小到大的次序摆列,位于最中间的一个数(或两个数的均匀数)为中位数.解答:解:先对这组数据按从小到大的次序从头排序:198 , 209, 216 , 220, 230 .位于最中间的数是216,则这组数的中位数是216.应选 C.评论:本题属于基础题,考察了确立一组数据的中位数的能力.注意找中位数的时候必定要先排好次序,而后依据奇数和偶数的个数来确立中位数,假如数占有奇数个,则正中间的数字即为所求,假如是偶数个则找中间两位数的均匀数.8.考点:解一元二次方程-因式分解法.版权全部剖析:先分解因式,即可得出两个一元一次方程,求出方程的解即可.解答:解: x2﹣ 2x=0 ,x=0 , x ﹣ 2=0 ,x1=0, x2 =2,应选 D.评论:本题考察认识一元二次方程的应用,解本题的重点是能把一元二次方程转变为一元一次方程,难度适中.9.考点:切线的性质.版权全部剖析:AD ⊥ AB ,∠ DAC= ∠ B= ∠ AOC=40 °,推由 AB 是⊙ O 直径, AE 是⊙ O 的切线,推出出∠ AOD=50 °.解答:解:∵ AB 是⊙ O 直径, AE 是⊙ O 的切线,∴∠ BAD=90 °,∵∠ B= ∠ AOC=40 °,∴∠ ADB=90 °﹣∠ B=50 °,应选 B.评论:本题主要考察圆周角定理、切线的性质,解题的重点在于连结AC ,建立直角三角形,求10.考点:一次函数的应用.版权全部剖析:依据函数图象可知,小明40分钟登山2800 米,40~ 60 分钟歇息, 60~ 100 分钟登山( 3800 ﹣2800)米,登山的总行程为 3800 米,依据行程、速度、时间的关系进行解答即可.解答:解: A 、依据图象可知,在 40~ 60 分钟,行程没有发生变化,所以小明半途歇息的时间为: 60﹣ 40=20 分钟,故正确;B 、依据图象可知,当t=40 时, s=2800,所以小明歇息前登山的均匀速度为:2800÷40=70(米 /分钟),故 B 正确;C、依据图象可知,小明在上述过程中所走的行程为3800 米,故错误;D 、小明歇息后的登山的均匀速度为:(3800﹣2800)÷(100﹣60)=25(米/分),小明休息前登山的均匀速度为:2800 ÷40=70 (米 /分钟),70 > 25,所以小明歇息前登山的均匀速度大于歇息后登山的均匀速度,故正确;应选: C.评论:本题考察了函数图象,解决本题的重点是读懂函数图象,获守信息,进行解决问题.11.考点:规律型:图形的变化类.版权全部剖析:认真察看图形,找到图形中圆形个数的通项公式,而后辈入n=7 求解即可.解答:解:察看图形得:第 1 个图形有 3+3×1=6 个圆圈,第2 个图形有 3+3×2=9 个圆圈,第 3个图形有 3+3×3=12 个圆圈,第 n 个图形有 3+3n=3 ( n+1)个圆圈,当 n=7 时, 3×( 7+1 )=24 ,应选 B.评论:本题考察了图形的变化类问题,解题的重点是认真察看图形并找到图形变化的通项公式,难度不大.12.考点:菱形的性质;反比率函数图象上点的坐标特点.版权全部剖析:过点 A 作 x 轴的垂线,与CB 的延伸线交于点E,依据 A , B 两点的纵坐标分别为3, 1,可得出横坐标,即可求得AE , BE ,再依据勾股定理得出AB ,依据菱形的面积公式:底乘高即可得出答案.解答:解:过点 A 作 x 轴的垂线,与CB 的延伸线交于点E,∵ A , B 两点在反比率函数y=的图象上且纵坐标分别为3, 1,∴A, B 横坐标分别为 1, 3,∴AE=2 , BE=2 ,∴AB=2,S 菱形ABCD =底×高 =2×2=4,应选 D.评论:本题考察了菱形的性质以及反比率函数图象上点的坐标特点,熟记菱形的面积公式是解题的重点.二、填空题(共 6 小题,每题 4 分,满分24 分)13.考点:科学记数法—表示较大的数.版权全部剖析:科学记数法的表示形式为a×10n的形式,此中1≤|a|< 10, n 为整数.确立n 的值时,要看把原数变为 a 时,小数点挪动了多少位,n 的绝对值与小数点挪动的位数相同.当原数绝对值> 1 时, n 是正数;当原数的绝对值< 1 时, n 是负数.解答:解:将 37000 用科学记数法表示为 3.7 ×104.故答案为: 3.7×104.评论:本题考察科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,此中 1≤|a|< 10,n 为整数,表示时重点要正确确立 a 的值以及n 的值.14.考点:实数的运算;零指数幂.版权全部专题:计算题.剖析:原式第一项利用零指数幂法例计算,第二项利用绝对值的代数意义化简,计算即可获得结果.解答:解:原式 =1﹣ 2=﹣1.故答案为:﹣ 1.评论:本题考察了实数的运算,娴熟掌握运算法例是解本题的重点.15.考点:相像三角形的性质.版权全部剖析:依据相像三角形的对应边上的高之比等于相像比得出即可.解答:解:∵△ ABC ∽△ DEF ,△ ABC 与△ DEF 的相像比为4: 1,∴△ ABC 与△ DEF 对应边上的高之比是4: 1,故答案为:4:1.评论:本题考察了相像三角形的性质的应用,能娴熟地运用相像三角形的性质进行计算是解本题的重点,注意:相像三角形的对应边上的高之比等于相像比.16.考点:扇形面积的计算;等腰直角三角形.版权全部剖析:依据等腰直角三角形性质求出∠ A 度数,解直角三角形求出AC 和 BC ,分别求出△ ACB 的面积和扇形ACD 的面积即可.解答:解:∵△ ACB 是等腰直角三角形ABC 中,∠ ACB=90 °,∴∠ A= ∠ B=45 °,∵ AB=4,∴ AC=BC=AB ×sin45 °=4,∴ S△ACB ===8, S 扇形ACD ==2π,∴图中暗影部分的面积是8﹣ 2π,故答案为:8﹣2π.评论:本题考察了扇形的面积,三角形的面积,解直角三角形,等腰直角三角形性质的应用,解本题的重点是能求出△ ACB 和扇形 ACD 的面积,难度适中.17.考点:概率公式;解一元一次不等式组;函数自变量的取值范围.版权全部剖析:由 a 的值既是不等式组的解,又在函数y=的自变量取值范围内的有﹣ 3,﹣ 2,可直接利用概率公式求解即可求得答案.解答:解:∵不等式组的解集是:﹣<x<,∴ a 的值既是不等式组的解的有:﹣3,﹣ 2,﹣ 1,0,∵函数 y= 的自变量取值范围为:2x2+2x ≠0,∴在函数 y= 的自变量取值范围内的有﹣3,﹣ 2, 4;∴ a 的值既是不等式组的解,又在函数y=的自变量取值范围内的有:﹣ 3,﹣ 2;∴ a 的值既是不等式组的解,又在函数y=的自变量取值范围内的概率是:.故答案为:.评论:本题考察了概率公式的应用.用到的知识点为:概率=所讨状况数与总状况数之比.18.考旋转的性质.版权全部点:分依据角均分线的性质,可得CE 的长,依据旋转的性质,可得BC ′=BC , E′C′=EC ;依据等析:腰三角形,可得FD、FB的关系,依据勾股定理,可得BF的长,依据正切函数,可得tan∠ ABF,tan∠ FBG 的值,依据三角函数的和差,可得AG 的长,依占有理数的减法,可得答案.解解:作FK ⊥ BC ′于 K 点,如图:答:在 Rt△ ABD 中,由勾股定理,得BD===14设 DE=x , CE=4﹣x,由 BE 均分∠ DBC ,得=,即=.解得 x=,EC=.在 Rt△ BCE 中,由勾股定理,得BE===.由旋转的性质,得BE ′=BE=,BC′=BC=10,E′C′=EC=.△BFD 是等腰三角形, BF=FD=x ,在 Rt△ ABF 中,由勾股定理,得x 2=( 4 )2+ ( 10﹣ x)2,解得 x=,AF=10 ﹣=.tan∠ ABF===,tan∠ FBG===,tan∠ ABG=tan ∠ ABF+tan ∠ FBG===,tan∠ ABF==21,AG=×4=,DG=AD ﹣ AG=10 ﹣==,故答案为:.点本题考察了旋转的性质,利用了勾股定理,旋转的性质,正切函数的定义,利用三角函数评:的和差得出 AG 的长是解题重点.三、解答题(共 2 小题,满分14 分)19.考点:解二元一次方程组.版权全部专题:计算题.剖析:方程组利用代入消元法求出解即可.解答:解:,①代入②得: 3x+2x ﹣ 4=1,解得: x=1,把 x=1 代入①得: y= ﹣ 2,则方程组的解为.评论:本题考察认识二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.考点:全等三角形的判断与性质.版权全部专题:证明题.剖析:依据等式的性质得出BD=CE ,再利用SAS 得出:△ ABD 与△ FEC 全等,从而得出∠ ADB= ∠ FCE .解答:证明:∵ BC=DE ,∴ BC+CD=DE+CD ,即 BD=CE ,在△ABD 与△FEC 中,,∴△ ABD ≌△ FEC( SAS ),∴∠ ADB= ∠ FCE .评论:本题考察全等三角形的判断和性质,重点是依据等式的性质得出BD=CE ,再利用全等三角形的判断和性质解答.四、解答题(共 4 小题,满分40 分)21.考点:分式的混淆运算;整式的混淆运算.版权全部专题:计算题.剖析:( 1)原式利用单项式乘以多项式,以及完整平方公式化简,去括号归并即可获得结果;(2)原式括号中两项通分并利用同分母分式的减法法例计算,同时利用除法法例变形,约分即可获得结果.22 2解答:解:( 1)原式 =2xy ﹣ y +x +2xy+y2=4xy+x;(2)原式 =?=.评论:本题考察了分式的混淆运算,娴熟掌握运算法例是解本题的重点.22.考点:列表法与树状图法;扇形统计图;条形统计图.版权全部剖析:( 1)由题意可得该镇本次统计的小微公司总个数是:4÷16%=25 (个);扇形统计图中 B 类所对应扇形圆心角的度数为:×360°=72°;又由 A 类小微公司个数为:25﹣ 5﹣ 14﹣4=2 (个);即可补全条形统计图;( 2)第一依据题意画出树状图,而后由树状图求得全部等可能的结果与所抽取的 2 个发言代表都来自高新区的状况,再利用概率公式即可求得答案.解答:解:( 1)该镇本次统计的小微公司总个数是:4÷16%=25 (个);扇形统计图中 B 类所对应扇形圆心角的度数为:×360°=72°;故答案为:25, 72;A类小微公司个数为: 25﹣ 5﹣ 14﹣ 4=2 (个);补全统计图:( 2)分别用 A , B 表示 2 个来自高新区的,用C, D 表示 2 个来自开发区的.画树状图得:∵共有12 种等可能的结果,所抽取的 2 个讲话代表都来自高新区的有 2 种状况,∴所抽取的 2 个讲话代表都来自高新区的概率为:=.评论:本题考察了列表法或树状图法求概率以及条形统计图与扇形统计图.用到的知识点为:概率 =所讨状况数与总状况数之比.23.考点:因式分解的应用;规律型:数字的变化类.版权全部剖析:( 1)依据“和睦数”的定义(把一个自然数各数位上的数字从最高位到个位挨次排出的一串数字,与从个位到最高位挨次排出的一串数字完整相同)写出四个“和睦数”,设随意四位“和睦数”形式为:,依据和睦数的定义获得a=d, b=c ,则===91a+10b 为正整数,易证得随意四位“和睦数”都能够被11 整除;( 2)设能被11 整除的三位“和睦数”为:,则===9x+y+为正整数.故y=2x ( 1≤x≤4,x 为自然数).解答:解:( 1)四位“和睦数”:1221 , 1331, 1111, 6666(答案不独一)随意一个四位“和睦数”都能被11整除,原因以下:设随意四位“和睦数”形式为:,则知足:最高位到个位摆列:d,c, b, a个位到最高位摆列:a, b, c, d.由题意,可得两组数据相同,则:a=d, b=c,则===91a+10b 为正整数.∴四位“和睦数”能被 11 整数,又∵ a, b, c, d 为随意自然数,∴随意四位“和睦数”都能够被11 整除;( 2)设能被11 整除的三位“和睦数”为:,则知足:个位到最高位摆列:x , y, z.最高位到个位摆列:z, y, x .由题意,两组数据相同,则:x=z ,故==101x+10y ,故= = =9x+y+ 为正整数.故 y=2x ( 1≤x≤4, x 为自然数).评论:本题考察了因式分解的应用.解题的重点是弄清楚“和睦数”的定义,从而写出切合题意的数.24.考点:解直角三角形的应用-仰角俯角问题;分式方程的应用;解直角三角形的应用-坡度坡角问题.版权全部剖析:( 1)在直角△ PEN ,利用三角函数即可求得ME 的长,依据MN=EM ﹣ EN 求解;( 2)过点 D 作 DN ⊥ AH 于点 N ,利用三角函数求得AN 和 AH 的长,从而求得△ ADH的面积,获得需要填筑的土石方数,再依据结果比原计划提早20 天达成,列方程求解.解答:=50( m),解:( 1)在直角△ PEN 中, EN=PE=30m , ME=则 MN=EM ﹣ EN=20 ( m).答:两渔船 M 、 N 之间的距离是20 米;( 2)过点 D 作 DQ ⊥AH 于点 Q.由题意得: tan∠ DAB=4 , tanH= ,在直角△ DAQ 中, AQ= = =6( m),在直角△ DHQ 中, HQ= = =42 ( m).故 AH=HQ ﹣ AQ=42 ﹣ 6=36 ( m).S△ADH =AH ?DQ=432 ( m2).故需要填筑的土石方是V=SL=432 ×100=43200 ( m3).设原计划均匀每日填筑xm3,则原计划天达成,则增添机械设施后,此刻均匀每日填筑 2xm 3.依据题意,得: 10x+ () ?2x=43200 ,解得: x=864 .经查验 x=864 是原方程的解.答:施工队原计划均匀每日填筑土石方864 立方米.评论:本题考察了仰角的定义以及坡度,要修业生能借助仰角结构直角三角形并解直角三角形.五、解答题(共 2 小题,满分24 分)25.考点:全等三角形的判断与性质;等边三角形的判断与性质;三角形中位线定理.版权所有剖析:( 1)依据直角三角形的性质和三角函数即可获得结果;(2)如图 1,连结 AF ,证出△ DAE ≌△ ADH ,△ DHF ≌△ AEF ,即可获得结果;(3)如图 2,取 AB 的中点 M ,连结 CM , FM ,在 R t△ ADE 中, AD=2AE ,依据三角形的中位线的性质获得 AD=2FM ,于是获得 FM=AE ,由∠CAE= ∠ CAB=30 °∠ CMF= ∠ AMF ﹣ AMC=30 °,证得△ ACE ≌△ MCF ,问题即可得证.解答:解:( 1)∵∠ ACB=90 °,∠ BAC=60 °,∴∠ ABC=30 °,∴ AB=2AC=2 ×2 =4,∵AD ⊥ AB ,∠CAB=60 °,∴∠DAC=30 °,∵AH= AC=,∴ AD==2,∴BD==2;(2)如图 1,连结 AF ,∵AE 是∠ BAC 角均分线,∴∠ HAE=30 °,∴∠ ADE= ∠ DAH=30 °,在△ DAE 与△ ADH 中,,∴△ DAE ≌△ ADH ,∴DH=AE ,∵点 F 是 BD 的中点,∴DF=AF ,∵∠ EAF= ∠ EAB ﹣∠ FAB=30 °﹣∠ FAB∠FDH= ∠ FDA ﹣∠ HDA= ∠ FDA ﹣ 60°=( 90°﹣∠ FBA )﹣ 60°=30°﹣∠FBA ,∴∠ EAF= ∠ FDH ,在△DHF 与△AEF 中,,∴△ DHF ≌△ AEF ,∴HF=EF ;( 3)如图 2,取 AB 的中点M ,连结CM , FM ,在 R t△ ADE 中, AD=2AE ,∵ DF=BF , AM=BM ,∴AD=2FM ,∴FM=AE ,∵∠ABC=30 °,∴AC=CM= AB=AM ,∵∠ CAE=∠ CAB=30°∠ CMF=∠ AMF﹣∠ AMC=30°,在△ACE 与△MCF 中,,∴△ ACE ≌△ MCF ,∴CE=CF ,∠ ACE= ∠MCF ,∵∠ ACM=60 °,∴∠ ECF=60 °,∴△ CEF 是等边三角形.评论:本题考察了全等三角形的判断和性质,直角三角形的性质,等边三角形的判断,正确的作出协助线结构全等三角形是解题的重点.26.考点:二次函数综合题.版权全部剖析:( 1)求出抛物线与x 轴的交点坐标和极点坐标,用待定系数法求分析式即可;( 2)先求出 E′、F′的坐标表示,而后求出E′M 、F ′N,用二次函数的极点坐标求出当m=3 时, ME ′+NF ′的值最大,获得E′、 F′的坐标,再求出 E ′F′的分析式,当点 R 在直线 E′F′与y 轴的交点时, |RF′﹣ RE′|的最大值,从而求出R 点的坐标及 |RF′﹣ RE′|的最大值;( 3)分类议论 Q 点在∠ CAB 的角均分线或外角均分线上时,运用三角形相像求出相应线段,在求出△ Q′P′G′与△ ADC 的重叠部分面积为S.解答:x2 + x+3 =0,解:( 1)令 y=0 ,则﹣解方程得: x=6 或 x= ﹣ 2,∴ A(﹣ 2,0),B(6,0),又 y= ﹣x2 + x+3 =﹣( x﹣ 2)2 +4 ,又极点C(2,4 ),设直线BC 的分析式为:y=kx+b ,代入 B 、 C 两点坐标得:,解得:,∴ y= ﹣x+6 ;( 2)如图1,∵点 E( m, 0), F( m+2 , 0),∴ E′( m,﹣m2+m+3 ), F′( m+2,﹣m2+4),∴ E′M= ﹣m2+ m+3 ﹣(﹣m+6 ) =﹣m2+2 m﹣ 3 ,F′N= ﹣m2 +4 ﹣(﹣m+4 ) = ﹣m2 + m,∴ E′M+F ′N= ﹣m2+2 m﹣ 3 + (﹣m2 + m)= ﹣m2 +3 m﹣ 3 ,当 m=﹣=3 时, E′M+F ′N 的值最大,∴此时, E′( 3,)F′(5,),∴直线E′F′的分析式为:y= ﹣x+,∴ R(0,),依据勾股定理可得:RF′=10, RE′=6,∴ |RF′﹣ RE ′|的值最大值是4;(3)由题意得, Q 点在∠ CAB 的角均分线或外角均分线上,①如图 2,当 Q 点在∠ CAB 的角均分线上时,Q′M=Q ′N=,AW=,∵△ RMQ ′∽△ WOA ,∴∴RQ′=,∴RN=+,∵△ ARN ∽△ AWO ,∵∴AN=,∴ DN=AD ﹣ AN=4 ﹣=,∴S=;②如图 3,当 Q 点在∠ CAB 的外角均分线上时,∵△ Q′RN ∽ △ WAO ,∴RQ′=,∴RM=﹣,∵△ RAM ∽△ WOA ,∴AM=,在 RtQ ′MP ′中, MP ′=Q′M=3 ,∴ AP′=MP ′﹣ AM=3 ﹣=,在 Rt△ AP′S 中, P′S=AP ′=×,∴S=.评论:本题主要考察了待定系数法求函数分析式,二次函数的性质,三角形的三边关系,三角形相像的判断与性质以及数形联合和分类议论思想的综合运用,本题牵涉知识面广,综合性强,难度较大.。
2015年重庆市中考数学试卷(A卷)答案与解析
2015年重庆市中考数学试卷(A卷)参考答案与试题解析一、选择题(共 小题,每小题 分,满分 分).( 分)( 重庆)在﹣ , ,﹣ , 这四个数中,最大的数是( ) .﹣ . .﹣ .考点:有理数大小比较.分析:先计算 ﹣ , ﹣ ,根据负数的绝对值越大,这个数越小得﹣ <﹣ ,再根据正数大于 ,负数小于 得到﹣ <﹣ < < .解答:解: ﹣ , ﹣ ,﹣ <﹣ ,﹣ , ,﹣ , 这四个数的大小关系为﹣ <﹣ < < .故选 .点评:本题考查了有理数大小比较:正数大于 ,负数小于 ;负数的绝对值越大,这个数越小..( 分)( 重庆)下列图形是轴对称图形的是( ). . . .考点:轴对称图形.分析:根据轴对称图形的概念求解.解答:解: 是轴对称图形,故正确; 不是轴对称图形,故错误;不是轴对称图形,故错误; 不是轴对称图形,故错误.故选 .点评:本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合..( 分)( 重庆)化简的结果是( ). . . .考点:二次根式的性质与化简.分析:直接利用二次根式的性质化简求出即可.解答:解: .故选: .点评:此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键. .( 分)( 重庆)计算( ) 的结果是( ). . . .考点:幂的乘方与积的乘方.分析:根据幂的乘方和积的乘方的运算方法: ( ) ( , 是正整数);( ) ( 是正整数);求出( ) 的结果是多少即可.解答:解:( ) ( )即计算( ) 的结果是 .故选: .点评:此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确: ( ) ( , 是正整数); ( ) ( 是正整数)..( 分)( 重庆)下列调查中,最适合用普查方式的是( ).调查一批电视机的使用寿命情况.调查某中学九年级一班学生的视力情况.调查重庆市初中学生每天锻炼所用的时间情况.调查重庆市初中学生利用网络媒体自主学习的情况考点:全面调查与抽样调查.分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解答:解: 调查一批电视机的使用寿命情况,调查全局有破坏性,适合抽样调查,故 不符合题意; 调查某中学九年级一班学生的视力情况,适合普查,故 符合题意;调查重庆市初中学生每天锻炼所用的时间情况,调查范围广,适合抽样调查,故 不符合题意; 调查重庆市初中学生利用网络媒体自主学习的情况,适合抽样调查,故 不符合题意 故选: .点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查..( 分)( 重庆)如图,直线 ,直线 分别与直线 , 相交于点 , .若 ,则 的度数为( ). .. .考点:平行线的性质.分析:根据平行线的性质求出 的度数即可.解答:解: , , ﹣ .故选 .点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补..( 分)( 重庆)在某校九年级二班组织的跳绳比赛中,第一小组五位同学跳绳的个数分别为 , , , , ,则这五个数据的中位数为( ). . . .考点:中位数.分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.解答:解:先对这组数据按从小到大的顺序重新排序: , , , ,.位于最中间的数是 则这组数的中位数是 .故选 .点评: 本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后根据奇数和偶数的个数来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数..( 分)( 重庆)一元二次方程 ﹣ 的根是( ). , ﹣. , . , ﹣. ,考点: 解一元二次方程 因式分解法. 分析:先分解因式,即可得出两个一元一次方程,求出方程的解即可. 解答: 解: ﹣ , ( ﹣ ) , , ﹣ , ,,故选 .点评: 本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程,难度适中..( 分)( 重庆)如图, 是 直径,点 在 上, 是 的切线, 为切点,连接 并延长交 于点 .若 ,则 的度数为( ).. . .考点: 切线的性质. 分析: 由 是 直径, 是 的切线,推出 ,,推出 .解答:解: 是 直径, 是 的切线,, , ﹣ ,故选 .点评:本题主要考查圆周角定理、切线的性质,解题的关键在于连接 ,构建直角三角形,求 的度数..( 分)( 重庆)今年 五一 节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为 (分钟),所走的路程为 (米),与 之间的函数关系如图所示.下列说法错误的是( ).小明中途休息用了 分钟.小明休息前爬山的平均速度为每分钟 米.小明在上述过程中所走的路程为 米.小明休息前爬山的平均速度大于休息后爬山的平均速度考点:一次函数的应用.分析:根据函数图象可知,小明 分钟爬山 米, ~ 分钟休息, ~ 分钟爬山( ﹣ )米,爬山的总路程为 米,根据路程、速度、时间的关系进行解答即可.解答:解: 根据图象可知,在 ~ 分钟,路程没有发生变化,所以小明中途休息的时间为: ﹣ 分钟,故正确;根据图象可知,当 时, ,所以小明休息前爬山的平均速度为: (米 分钟),故 正确;根据图象可知,小明在上述过程中所走的路程为 米,故错误;小明休息后的爬山的平均速度为:( ﹣ ) ( ﹣ ) (米 分),小明休息前爬山的平均速度为: (米 分钟),> ,所以小明休息前爬山的平均速度大于休息后爬山的平均速度,故正确;故选: .点评:本题考查了函数图象,解决本题的关键是读懂函数图象,获取信息,进行解决问题..( 分)( 重庆)下列图形都是由同样大小的小圆圈按一定规律组成的,其中第 个图形中一共有 个小圆圈,第 个图形中一共有 个小圆圈,第 个图形中一共有 个小圆圈, ,按此规律排列,则第 个图形中小圆圈的个数为(). . . .考点:规律型:图形的变化类.分析:仔细观察图形,找到图形中圆形个数的通项公式,然后代入 求解即可.解答:解:观察图形得:第 个图形有 个圆圈,第 个图形有 个圆圈,第 个图形有 个圆圈, 第 个图形有 ( )个圆圈,当 时, ( ) ,故选 .点评:本题考查了图形的变化类问题,解题的关键是仔细观察图形并找到图形变化的通项公式,难度不大..( 分)( 重庆)如图,在平面直角坐标系中,菱形 在第一象限内,边 与 轴平行, ,两点的纵坐标分别为 , .反比例函数 的图象经过 , 两点,则菱形 的面积为( ). . . .考点:菱形的性质;反比例函数图象上点的坐标特征.分析:过点 作 轴的垂线,与 的延长线交于点 ,根据 , 两点的纵坐标分别为,可得出横坐标,即可求得 , ,再根据勾股定理得出 ,根据菱形的面积公式:底乘高即可得出答案.解答:解:过点 作 轴的垂线,与 的延长线交于点 ,, 两点在反比例函数 的图象上且纵坐标分别为 , , , 横坐标分别为 , , , ,,菱形 底 高 ,故选 .点评:本题考查了菱形的性质以及反比例函数图象上点的坐标特征,熟记菱形的面积公式是解题的关键.二、填空题(共 小题,每小题 分,满分 分).( 分)( 重庆)我国 南仓 级远洋综合补给舱满载排水量为吨,把数 用科学记数法表示为 .考点:科学记数法 表示较大的数.分析:科学记数法的表示形式为 的形式,其中 < , 为整数.确定 的值时,要看把原数变成 时,小数点移动了多少位, 的绝对值与小数点移动的位数相同.当原数绝对值> 时, 是正数;当原数的绝对值< 时, 是负数.解答:解:将 用科学记数法表示为 .故答案为: .点评:此题考查科学记数法的表示方法.科学记数法的表示形式为 的形式,其中 < , 为整数,表示时关键要正确确定 的值以及 的值. .( 分)( 重庆)计算: ﹣ ﹣ .考点:实数的运算;零指数幂.专题:计算题.分析:原式第一项利用零指数幂法则计算,第二项利用绝对值的代数意义化简,计算即可得到结果.解答:解:原式 ﹣ ﹣ .故答案为:﹣ .点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键. .( 分)( 重庆)已知 , 与 的相似比为 : ,则 与 对应边上的高之比为 : .考点:相似三角形的性质.分析:根据相似三角形的对应边上的高之比等于相似比得出即可.解答:解: , 与 的相似比为 : , 与 对应边上的高之比是 : ,故答案为: : .点评:本题考查了相似三角形的性质的应用,能熟练地运用相似三角形的性质进行计算是解此题的关键,注意:相似三角形的对应边上的高之比等于相似比..( 分)( 重庆)如图,在等腰直角三角形 中,, .以 为圆心, 长为半径作弧,交于点 ,则图中阴影部分的面积是 ﹣ .(结果保留 )考点:扇形面积的计算;等腰直角三角形.分析:根据等腰直角三角形性质求出 度数,解直角三角形求出和 ,分别求出 的面积和扇形 的面积即可.解答:解: 是等腰直角三角形 中, , ,, ,, 扇形 , 图中阴影部分的面积是 ﹣ 。
中考数学几何选择填空压轴题四边形难题(含答案))
1、 《求长度》 (答案)1、(容易)如图1的矩形ABCD 中,有一点E 在AD 上,今以BE 为折线将A 点往右折,如图2所示,再作过A 点且与CD 垂直的直线,交CD 于F 点,如图3所示,若AB= 36,BC=13,∠BEA=60°,则图3中AF 的长度为 4【解】作AH ⊥BC 于H2、(难)如图,矩形ABCD 与菱形EFGH 的对角线均交于点O ,且EG ∥BC ,将矩形折叠,使点C 与点O 重合,折痕MN 恰好过点G 若AB=6,EF=2,∠H=120°,则DN 的长为36-【解】长EG 交DC 于P 点,连接GC 、FH ;如图所示: 则CP=DP=21CD=26,△GCP 为直角三角形,∵四边形EFGH 是菱形,∠EHG=120°,∴GH=EF=2,∠OHG=60°,EG ⊥FH ,∴OG=GH•sin60°=2×23=3,由折叠的性质得:CG=OG=3,OM=CM ,∠MOG=∠MCG ,∴PG==26,∵OG ∥CM ,∴∠MOG+∠OMC=180°,∴∠MCG+∠OMC=180°,∴OM ∥CG ,∴四边形OGCM 为平行四边形,∵OM=CM ,∴四边形OGCM 为菱形,∴CM=OG=3,根据题意得:PG 是梯形MCDN 的中位线,∴DN+CM=2PG=6,∴DN=36-3、(中等)如图,△ABC 的周长为19,点D ,E 在边BC 上,∠ABC 的平分线垂直于AE ,垂足为N ,∠ACB 的平分线垂直于AD ,垂足为M ,若BC=7,则MN 的长度为25【解】△BNA ≅△BNE∴BA=BE ,∴△BAE 是等腰三角形,同理△CAD 是等腰三角形,∴点N 是AE 中点,点M 是AD 中点(三线合一),∴MN 是△ADE 的中位线, ∵BE+CD=AB+AC=19-BC=19-7=12,∴DE=BE+CD-BC=5,∴MN=21DE=25.4、(难度)如图,在菱形ABCD 中,∠ABC=120°,将菱形折叠,使点A 恰好落在对角线BD 上的点G 处(不与B 、D 重合),折痕为EF ,若DG=2,BG=6,则BE 的长为______2.8【解】作EH ⊥BD ,设BE=x在Rt △EHG 中,EG 2=EH 2+GH 2,即(8-x )2=(23x )2+(6-21x )2,解得,x =2.8,即BE=2.8, 故答案为:2.85、如图,▱ABCD 中,AB=7,BC=3,连接AC ,分别以点A 和点C 为圆心,大于21AC 的长为半径作弧, 两弧相交于点M ,N ,作直线MN ,交CD 于点E ,连接AE ,则△AED 的周长是_____ 10.6、(容易)如图,ABCD 的对角线相交于点O ,且AD CD ,过点O 作OM AC ,交AD 于点M .如果CDM 的周长为8,那么ABCD 的周长是_ 16【解】∵四边形ABCD 是平行四边形,∴OA=OC ,∵OM ⊥AC ,∴AM=CM ,∵△CDM 的周长为8, ∴CM+DM+CD=AM+DM+CD=AD+CD=8,∴平行四边形ABCD 的周长是:2×8=16.7、(中等)如图,正方形ABCD 的边长为12,点E 在边AB 上,BE=8,过点E 作EF ∥BC ,分别交BD 、CD 于G 、F 两点.若点P 、Q 分别为DG 、CE 的中点,则PQ 的长为_____ 1328、(难度)如图,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,AB=OB ,点E 、点F 分别是OA 、OD 的中点,连接EF ,∠CEF=45°,EM ⊥BC 于点M ,EM 交BD 于点N ,FN=,则线段BC 的长为_____249、(难度)如图,平行四边形ABCD 中,AM ⊥BC 于M ,AN ⊥CD 于N ,已知AB =10,BM =6,MC =3,则MN 的长为___________5734【方法】将目标量置入直角三角形中10、(容易)如上图,在矩形ABCD 中,AB =6,BC =8,点E 是BC 中点,点F 是边CD 上的任意一点,当△AEF 的周长最小时,则DF 的长为 4【解】以CD 为对称轴作对称变换11、如图,在矩形ABCD 中,E 是BC 边上的点,连接AE 、DE ,将△DEC 沿线段DE 翻折,点C 恰好落在线段AE 上的点F 处.若AB =6,BE : EC =4 : 1,则线段DE 的长为 ____102_______.【方法】AD = AE=10;勾股定理12、如图,矩形ABCD 中,AB =8,BC =4.点E 在边AB 上,点F 在边CD 上,点G 、H 在对角线AC 上.若四边形EGFH 是菱形,则AE 的长是 [5【解】连接EF 交AC 于O ,∵四边形EGFH 是菱形,∴EF ⊥AC ,OE =OF , ∵四边形ABCD 是矩形,∴∠B =∠D =90°,AB ∥CD ,∴∠ACD =∠CAB , 在△CFO 与△AOE 中,,∴△CFO ≌△AOE ,∴AO =CO ,A BDCM NAE BDC F∵AC ==4,∴AO =21AC =2,∵∠CAB =∠CAB ,∠AOE =∠B =90°,∴△AOE ∽△ABC ,∴,∴,∴AE =5.13、(难度)如图,矩形ABCD 中,AB =2,AD =2.点E 是BC 边上的一个动点,连接AE ,过点D 作DF ⊥AE 于点F .当△CDF 是等腰三角形时,BE 的长为 1、2、22-【解】①CF =CD 时,过点C 作CM ⊥DF ,垂足为点M ,则CM ∥AE ,DM =MF ,延长CM 交AD 于点G ,∴AG =GD =1,∴CE =1, ∵CG ∥AE ,AD ∥BC ,∴四边形AGCE 是平行四边形,∴CE =AG =1,∴BE =1 ∴当BE =1时,△CDF 是等腰三角形;②DF =DC 时,则DC =DF =2,∵DF ⊥AE ,AD =2,∴∠DAE =45°,则BE =2, ∴当BE =2时,△CDF 是等腰三角形;③FD =FC 时,则点F 在CD 的垂直平分线上,故F 为AE 中点. ∵AB =2,BE =x ,∴AE =,AF =,∵△ADF ∽△EAB ,∴=,,x 2﹣4x +2=0,解得:x =2±2,∴当BE =22-时,△CDF 是等腰三角形.综上,当BE =1、2、22-时,△CDF 是等腰三角形.14、如图,边长为1的菱形ABCD 中,∠DAB=60度.连接对角线AC ,以AC 为边作第二个菱形ACC 1D 1,使∠D 1AC=60°;连接AC 1,再以AC 1为边作第三个菱形AC 1C 2D 2,使∠D 2AC 1=60°;…,按此规律所作的第n 个菱形的边长为 1)3(-n .解:连接DB ,∵四边形ABCD 是菱形,∴AD=AB .AC ⊥DB , ∵∠DAB=60°,∴△ADB 是等边三角形,∴DB=AD=1,∴BM=21, ∴AM==23,∴AC=3,同理AC 1=3AC=(3)2,AC 2=3AC 1=33=(3)3, 按此规律所作的第n 个菱形的边长为1)3(-n15、如图,以Rt △ABC 的斜边BC 为一边在△ABC 的同侧作正方形BCEF ,设正方形的中心为O ,连接AO ,如果AB=4,AO=26,那么AC 的长等于 16 .【解】如图,过O 点作OG 垂直AC ,G 点是垂足.∵∠BAC=∠BOC=90°,∴ABCO 四点共圆,∴∠OAG=∠OBC=45° ∴△AGO 是等腰直角三角形,∴2AG 2=2GO 2=AO 2=2)26(=72, ∴OG=AG=6,∵∠BAH=∠OGH=90°,∠AHB=∠OHG ,∴△ABH ∽△GOH ,∴AB/OG=AH/(AG ﹣AH ),∵AB=4,OG=AG=6,∴AH=2.4 在直角△OHC 中,∵HG=AG ﹣AH=6﹣2.4=3.6,OG 又是斜边HC 上的高, ∴OG 2=HG×GC ,而OG=6,GH=3.6,∴GC=10.∴AC=AG+GC=6+10=16. 故AC 边的长是16.16、如图,在梯形ABCD 中,AD ∥BC ,∠B=90°,AD=2,BC=5,E 为DC 中点,tanC=34.则AE 的长度为265【解】过点E 作BC 的垂线交BC 于点F ,交AD 的延长线于点M , 在梯形ABCD 中,AD ∥BC ,E 是DC 的中点,∴∠M=∠MFC ,DE=CE ;在△MDE 和△FCE 中,∠M=∠MFC ,∠DEM=∠CEF ,DE=CE ;∴△MDE ≌△FCE ,∴EF=ME ,DM=CF . ∵AD=2,BC=5,∴DM=CF=23, 在Rt △FCE 中,tanC=CFEF =34,∴EF=ME=2,在Rt △AME 中,AE=265)232(222=++ 17、如图,平行四边形ABCD 中,AE 平分∠BAD 交BC 边于E ,EF ⊥AE 交CD 边于F ,延长BA 到点G ,使AG = CF ,连接GF .若BC = 7,DF = 3,tan ∠AEB =3 ,则GF 的长为 23【解】连接AC ,羊场AE 与DC 延长线交于一点H18、(容易)如图,梯形ABCD 中,AD ∥BC ,AB = 3,BC=4,连结BD ,∠BAD 的平分线交BD 于 点E ,且AE ∥CD ,则AD 的长为1DG ABCDEMABC DEF【解】构造平行四边形。
中考数学压轴题60例(填空题)
中考数学压轴题60例(填空题)一、填空题(共60小题)1.(2015•株洲)“皮克定理”是用来计算顶点在整点的多边形面积的公式,公式表达式为S=a+﹣1,孔明只记得公式中的S表示多边形的面积,a和b中有一个表示多边形边上(含顶点)的整点个数,另一个表示多边形内部的整点个数,但不记得究竟是a还是b表示多边形内部的整点个数,请你选择一些特殊的多边形(如图1)进行验证,得到公式中表示多边形内部的整点个数的字母是,并运用这个公式求得图2中多边形的面积是.2.(2015•长春)如图,在平面直角坐标系中,点A在抛物线y=x2﹣2x+2上运动.过点A 作AC⊥x轴于点C,以AC为对角线作矩形ABCD,连结BD,则对角线BD的最小值为.3.(2015•岳阳)如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,顶点C的纵坐标为﹣2,现将抛物线向右平移2个单位,得到抛物线y=a1x2+b1x+c1,则下列结论正确的是.(写出所有正确结论的序号)①b>0②a﹣b+c<0③阴影部分的面积为4④若c=﹣1,则b2=4a.4.(2015•永州)设a n为正整数n4的末位数,如a1=1,a2=6,a3=1,a4=6.则a1+a2+a3+…+a2013+a2014+a2015=.5.(2015•义乌市)实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两个相同的管子在容器的5cm高度处连通(即管子底离容器底5cm),现三个容器中,只有甲中有水,水位高1cm,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升cm.(1)开始注水1分钟,丙的水位上升cm.(2)开始注入分钟的水量后,乙的水位比甲高0.5cm.6.(2015•宿迁)当x=m或x=n(m≠n)时,代数式x2﹣2x+3的值相等,则x=m+n时,代数式x2﹣2x+3的值为.7.(2015•孝感)如图,四边形ABCD是矩形纸片,AB=2.对折矩形纸片ABCD,使AD 与BC重合,折痕为EF;展平后再过点B折叠矩形纸片,使点A落在EF上的点N,折痕BM与EF相交于点Q;再次展平,连接BN,MN,延长MN交BC于点G.有如下结论:①∠ABN=60°;②AM=1;③QN=;④△BMG是等边三角形;⑤P为线段BM上一动点,H是BN的中点,则PN+PH的最小值是.其中正确结论的序号是.8.(2015•武汉)如图,∠AOB=30°,点M、N分别在边OA、OB上,且OM=1,ON=3,点P、Q分别在边OB、OA上,则MP+PQ+QN的最小值是.9.(2015•乌鲁木齐)如图,抛物线y=ax2+bx+c的对称轴是x=﹣1.且过点(,0),有下列结论:①abc>0;②a﹣2b+4c=0;③25a﹣10b+4c=0;④3b+2c>0;⑤a﹣b≥m(am﹣b);其中所有正确的结论是.(填写正确结论的序号)10.(2015•潍坊)正比例函数y1=mx(m>0)的图象与反比例函数y2=(k≠0)的图象交于点A(n,4)和点B,AM⊥y轴,垂足为M.若△AMB的面积为8,则满足y1>y2的实数x的取值范围是.11.(2015•十堰)抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(﹣1,0)和(m,0),且1<m<2,当x<﹣1时,y随着x的增大而减小.下列结论:①abc>0;②a+b>0;③若点A(﹣3,y1),点B(3,y2)都在抛物线上,则y1<y2;④a(m﹣1)+b=0;⑤若c≤﹣1,则b2﹣4ac≤4a.其中结论错误的是.(只填写序号)12.(2015•深圳)如图,已知点A在反比例函数y=(x<0)上,作Rt△ABC,点D为斜边AC的中点,连DB并延长交y轴于点E.若△BCE的面积为8,则k=.13.(2015•上海)已知在△ABC中,AB=AC=8,∠BAC=30°,将△ABC绕点A旋转,使点B落在原△ABC的点C处,此时点C落在点D处,延长线段AD,交原△ABC的边BC 的延长线于点E,那么线段DE的长等于.14.(2015•齐齐哈尔)BD为等腰△ABC的腰AC上的高,BD=1,tan∠ABD=,则CD 的长为.15.(2015•盘锦)如图,直线y=﹣3x+3与x轴交于点B,与y轴交于点A,以线段AB为边,在第一象限内作正方形ABCD,点C落在双曲线y=(k≠0)上,将正方形ABCD沿x轴负方向平移a个单位长度,使点D恰好落在双曲线y=(k≠0)上的点D1处,则a=.16.(2015•南宁)如图,在数轴上,点A表示1,现将点A沿x轴做如下移动,第一次点A 向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点,按照这种移动规律移动下去,第n次移动到点A n,如果点A n与原点的距离不小于20,那么n的最小值是.17.(2015•南京)如图,过原点O的直线与反比例函数y1,y2的图象在第一象限内分别交于点A,B,且A为OB的中点,若函数y1=,则y2与x的函数表达式是.18.(2015•眉山)如图,以△ABC的三边为边分别作等边△ACD、△ABE、△BCF,则下列结论:①△EBF≌△DFC;②四边形AEFD为平行四边形;③当AB=AC,∠BAC=120°时,四边形AEFD是正方形.其中正确的结论是.(请写出正确结论的番号).19.(2015•聊城)如图,△ABC的三个顶点和它内部的点P1,把△ABC分成3个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1、P2,把△ABC分成5个互不重叠的小三角形;△ABC的三个顶点和它内部的点P1、P2、P3,把△ABC分成7个互不重叠的小三角形;…△ABC的三个顶点和它内部的点P1、P2、P3、…、P n,把△ABC分成个互不重叠的小三角形.20.(2015•乐山)在直角坐标系xOy中,对于点P(x,y)和Q(x,y′),给出如下定义:若y′=,则称点Q为点P的“可控变点”.例如:点(1,2)的“可控变点”为点(1,2),点(﹣1,3)的“可控变点”为点(﹣1,﹣3).(1)若点(﹣1,﹣2)是一次函数y=x+3图象上点M的“可控变点”,则点M的坐标为.(2)若点P在函数y=﹣x2+16(﹣5≤x≤a)的图象上,其“可控变点”Q的纵坐标y′的取值范围是﹣16<y′≤16,则实数a的取值范围是.21.(2015•莱芜)如图,反比例函数y=(x>0)的图象经过点M(1,﹣1),过点M作MN⊥x轴,垂足为N,在x轴的正半轴上取一点P(t,0),过点P作直线OM的垂线l.若点N关于直线l的对称点在此反比例函数的图象上,则t=.22.(2015•荆门)如图,点A1,A2依次在y=(x>0)的图象上,点B1,B2依次在x轴的正半轴上.若△A1OB1,△A2B1B2均为等边三角形,则点B2的坐标为.23.(2015•锦州)如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数y=x的图象上,从左向右第3个正方形中的一个顶点A的坐标为(6,2),阴影三角形部分的面积从左向右依次记为S1、S2、S3、…、S n,则第4个正方形的边长是,S3的值为.24.(2015•湖北)在▱ABCD中,AD=BD,BE是AD边上的高,∠EBD=20°,则∠A的度数为.25.(2015•葫芦岛)如图,在矩形ABCD中,AD=2,CD=1,连接AC,以对角线AC为边,按逆时针方向作矩形ABCD的相似矩形AB1C1C,再连接AC1,以对角线AC1为边作矩形AB1C1C的相似矩形AB2C2C1,…,按此规律继续下去,则矩形AB n C n C n﹣1的面积为.26.(2015•河南)如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为.27.(2015•广元)从3,0,﹣1,﹣2,﹣3这五个数中抽取一个数,作为函数y=(5﹣m2)x和关于x的一元二次方程(m+1)x2+mx+1=0中m的值.若恰好使函数的图象经过第一、三象限,且使方程有实数根,则满足条件的m的值是.28.(2015•福建)如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是.29.(2015•鄂州)如图,∠AOB=30°,点M、N分别是射线OA、OB上的动点,OP平分∠AOB,且OP=6,当△PMN的周长取最小值时,四边形PMON的面积为.30.(2015•东营)如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为1的等边三角形,点A在x轴上,点O,B1,B2,B3,…都在直线l上,则点A2015的坐标是.31.(2015•德阳)下列四个命题中,正确的是(填写正确命题的序号)①三角形的外心是三角形三边垂直平分线的交点;②函数y=(1﹣a)x2﹣4x+6与x轴只有一个交点,则a=;③半径分别为1和2的两圆相切,则两圆的圆心距为3;④若对于任意x>1的实数,都有ax>1成立,则a的取值范围是a≥1.32.(2015•丹东)如图,直线OD与x轴所夹的锐角为30°,OA1的长为1,△A1A2B1、△A2A3B2、△A3A4B3…△A n A n+1B n均为等边三角形,点A1、A2、A3…A n+1在x轴的正半轴上依次排列,点B1、B2、B3…B n在直线OD上依次排列,那么点B n的坐标为.33.(2015•大连)在平面直角坐标系中,点A,B的坐标分别为(m,3),(3m﹣1,3),若线段AB与直线y=2x+1相交,则m的取值范围为.34.(2015•成都)如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,以下关于倍根方程的说法,正确的是(写出所有正确说法的序号)①方程x2﹣x﹣2=0是倍根方程.②若(x﹣2)(mx+n)=0是倍根方程,则4m2+5mn+n2=0;③若点(p,q)在反比例函数y=的图象上,则关于x的方程px2+3x+q=0是倍根方程;④若方程ax2+bx+c=0是倍根方程,且相异两点M(1+t,s),N(4﹣t,s)都在抛物线y=ax2+bx+c 上,则方程ax2+bx+c=0的一个根为.35.(2015•滨州)某服装厂专门安排210名工人进行手工衬衣的缝制,每件衬衣由2个小袖、1个衣身、1个衣领组成,如果每人每天能够缝制衣袖10个,或衣身15个,或衣领12个,那么应该安排名工人缝制衣袖,才能使每天缝制出的衣袖,衣身、衣领正好配套.36.(2015•本溪)在△ABC中,AB=6cm,AC=5cm,点D、E分别在AB、AC上.若△ADE 与△ABC相似,且S△ADE:S四边形BCED=1:8,则AD=cm.37.(2015•北海)如图,直线y=﹣2x+2与两坐标轴分别交于A、B两点,将线段OA分成n等份,分点分别为P1,P2,P3,…,P n﹣1,过每个分点作x轴的垂线分别交直线AB于点T1,T2,T3,…,T n﹣1,用S1,S2,S3,…,S n﹣1分别表示Rt△T1OP1,Rt△T2P1P2,…,Rt△T n P n﹣2P n﹣1的面积,则当n=2015时,S1+S2+S3+…+S n﹣1=.﹣138.(2015•安顺)如图,正方形ABCD的边长为4,E为BC上一点,BE=1,F为AB上一点,AF=2,P为AC上一点,则PF+PE的最小值为.39.(2015•遵义)如图,在圆心角为90°的扇形OAB中,半径OA=2cm,C为的中点,D、E分别是OA、OB的中点,则图中阴影部分的面积为cm2.40.(2015•资阳)已知抛物线p:y=ax2+bx+c的顶点为C,与x轴相交于A、B两点(点A 在点B左侧),点C关于x轴的对称点为C′,我们称以A为顶点且过点C′,对称轴与y轴平行的抛物线为抛物线p的“梦之星”抛物线,直线AC′为抛物线p的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是y=x2+2x+1和y=2x+2,则这条抛物线的解析式为.41.(2015•南昌)如图,在△ABC中,AB=BC=4,AO=BO,P是射线CO上的一个动点,∠AOC=60°,则当△PAB为直角三角形时,AP的长为.42.(2015•牡丹江)矩形纸片ABCD,AB=9,BC=6,在矩形边上有一点P,且DP=3.将矩形纸片折叠,使点B与点P重合,折痕所在直线交矩形两边于点E,F,则EF长为.43.(2015•南充)如图,正方形ABCD的边长为1,以AB为直径作半圆,点P是CD中点,BP与半圆交于点Q,连结DQ,给出如下结论:①DQ=1;②=;③S△PDQ=;④cos∠ADQ=,其中正确结论是(填写序号)44.(2015•凉山州)菱形ABCD在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB=60°,点P是对角线OC上一个动点,E(0,﹣1),当EP+BP最短时,点P的坐标为.45.(2015•黄冈)在△ABC中,AB=13cm,AC=20cm,BC边上的高为12cm,则△ABC 的面积为cm2.46.(2015•宁德)如图,在平面直角坐标系中,反比例函数y=(x>0)的图象交矩形OABC的边AB于点D,交边BC于点E,且BE=2EC.若四边形ODBE的面积为6,则k=.47.(2015•攀枝花)如图,若双曲线y=(k>0)与边长为3的等边△AOB(O为坐标原点)的边OA、AB分别交于C、D两点,且OC=2BD,则k的值为.48.(2015•青岛)如图,在一次数学活动课上,张明用17个边长为1的小正方形搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体(不改变张明所搭几何体的形状),那么王亮至少还需要个小立方体,王亮所搭几何体的表面积为.49.(2015•庆阳)在底面直径为2cm,高为3cm的圆柱体侧面上,用一条无弹性的丝带从A 至C按如图所示的圈数缠绕,则丝带的最短长度为cm.(结果保留π)50.(2015•张家界)如图,在四边形ABCD中,AD=AB=BC,连接AC,且∠ACD=30°,tan∠BAC=,CD=3,则AC=.51.(2015•枣庄)如图,在平面直角坐标系中,点A(0,4),B(3,0),连接AB,将△AOB 沿过点B的直线折叠,使点A落在x轴上的点A′处,折痕所在的直线交y轴正半轴于点C,则直线BC的解析式为.52.(2015•烟台)如图,直线l:y=﹣x+1与坐标轴交于A,B两点,点M(m,0)是x轴上一动点,以点M为圆心,2个单位长度为半径作⊙M,当⊙M与直线l相切时,则m 的值为.53.(2015•无锡)已知:如图,AD、BE分别是△ABC的中线和角平分线,AD⊥BE,AD=BE=6,则AC的长等于.54.(2015•通辽)如图,在一张长为7cm,宽为5cm的矩形纸片上,现要剪下一个腰长为4cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上),则剪下的等腰三角形的面积为.55.(2015•陕西)如图,AB是⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是.56.(2015•丽水)如图,反比例函数y=的图象经过点(﹣1,﹣2),点A是该图象第一象限分支上的动点,连结AO并延长交另一分支于点B,以AB为斜边作等腰直角三角形ABC,顶点C在第四象限,AC与x轴交于点P,连结BP.(1)k的值为.(2)在点A运动过程中,当BP平分∠ABC时,点C的坐标是.57.(2015•黑龙江)正方形ABCD的边长是4,点P是AD边的中点,点E是正方形边上的一点.若△PBE是等腰三角形,则腰长为.58.(2015•杭州)如图,在四边形纸片ABCD中,AB=BC,AD=CD,∠A=∠C=90°,∠B=150°.将纸片先沿直线BD对折,再将对折后的图形沿从一个顶点出发的直线裁剪,剪开后的图形打开铺平.若铺平后的图形中有一个是面积为2的平行四边形,则CD=.59.(2015•贵阳)小明把半径为1的光盘、直尺和三角尺形状的纸片按如图所示放置于桌面上,此时,光盘与AB,CD分别相切于点N,M.现从如图所示的位置开始,将光盘在直尺边上沿着CD向右滚动到再次与AB相切时,光盘的圆心经过的距离是.60.(2015•恩施州)如图,半径为5的半圆的初始状态是直径平行于桌面上的直线b,然后把半圆沿直线b进行无滑动滚动,使半圆的直径与直线b重合为止,则圆心O运动路径的长度等于.2015年全国中考数学压轴题60例(填空题卷)参考答案与试题解析一、填空题(共60小题)1.(2015•株洲)“皮克定理”是用来计算顶点在整点的多边形面积的公式,公式表达式为S=a+﹣1,孔明只记得公式中的S表示多边形的面积,a和b中有一个表示多边形边上(含顶点)的整点个数,另一个表示多边形内部的整点个数,但不记得究竟是a还是b表示多边形内部的整点个数,请你选择一些特殊的多边形(如图1)进行验证,得到公式中表示多边形内部的整点个数的字母是a,并运用这个公式求得图2中多边形的面积是17.5.考点:规律型:图形的变化类.专题:压轴题;新定义.分析:分别找到图1中图形内的格点数和图形上的格点数后与公式比较后即可发现表示图上的格点数的字母,图2中代入有关数据即可求得图形的面积.解答:解:如图1,∵三角形内由1个格点,边上有8个格点,面积为4,即4=1+﹣1;矩形内由2个格点,边上有10个格点,面积为6,即6=2+﹣1;∴公式中表示多边形内部整点个数的字母是a;图2中,a=15,b=7,故S=15+﹣1=17.5.故答案为:a,17.5.点评:本题考查了图形的变化类问题,解题的关键是能够仔细读题,找到图形内和图形外格点的数目,难度不大.2.(2015•长春)如图,在平面直角坐标系中,点A在抛物线y=x2﹣2x+2上运动.过点A 作AC⊥x轴于点C,以AC为对角线作矩形ABCD,连结BD,则对角线BD的最小值为1.考点:二次函数图象上点的坐标特征;垂线段最短;矩形的性质.专题:计算题;压轴题.分析:先利用配方法得到抛物线的顶点坐标为(1,1),再根据矩形的性质得BD=AC,由于AC的长等于点A的纵坐标,所以当点A在抛物线的顶点时,点A到x轴的距离最小,最小值为1,从而得到BD的最小值.解答:解:∵y=x2﹣2x+2=(x﹣1)2+1,∴抛物线的顶点坐标为(1,1),∵四边形ABCD为矩形,∴BD=AC,而AC⊥x轴,∴AC的长等于点A的纵坐标,当点A在抛物线的顶点时,点A到x轴的距离最小,最小值为1,∴对角线BD的最小值为1.故答案为1.点评:本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了矩形的性质.3.(2015•岳阳)如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,顶点C的纵坐标为﹣2,现将抛物线向右平移2个单位,得到抛物线y=a1x2+b1x+c1,则下列结论正确的是③④.(写出所有正确结论的序号)①b>0②a﹣b+c<0③阴影部分的面积为4④若c=﹣1,则b2=4a.考点:二次函数图象与几何变换;二次函数图象与系数的关系.专题:压轴题.分析:①首先根据抛物线开口向上,可得a>0;然后根据对称轴为x=﹣>0,可得b<0,据此判断即可.②根据抛物线y=ax2+bx+c的图象,可得x=﹣1时,y>0,即a﹣b+c>0,据此判断即可.③首先判断出阴影部分是一个平行四边形,然后根据平行四边形的面积=底×高,求出阴影部分的面积是多少即可.④根据函数的最小值是,判断出c=﹣1时,a、b的关系即可.解答:解:∵抛物线开口向上,∴a>0,又∵对称轴为x=﹣>0,∴b<0,∴结论①不正确;∵x=﹣1时,y>0,∴a﹣b+c>0,∴结论②不正确;∵抛物线向右平移了2个单位,∴平行四边形的底是2,∵函数y=ax2+bx+c的最小值是y=﹣2,∴平行四边形的高是2,∴阴影部分的面积是:2×2=4,∴结论③正确;∵,c=﹣1,∴b2=4a,∴结论④正确.综上,结论正确的是:③④.故答案为:③④.点评:(1)此题主要考查了二次函数的图象与几何变换,要熟练掌握,解答此类问题的关键是要明确:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.(2)此题还考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).4.(2015•永州)设a n为正整数n4的末位数,如a1=1,a2=6,a3=1,a4=6.则a1+a2+a3+…+a2013+a2014+a2015=6652.考点:尾数特征.专题:压轴题;规律型.分析:正整数n4的末位数依次是1,6,1,6,5,6,1,6,1,0,十个一循环,先求出2015÷10的商和余数,再根据商和余数,即可求解.解答:解:正整数n4的末位数依次是1,6,1,6,5,6,1,6,1,0,十个一循环,1+6+1+6+5+6+1+6+1+0=33,2015÷10=201…5,33×201+(1+6+1+6+5)=6633+19=6652.故a1+a2+a3+…+a2013+a2014+a2015=6652.故答案为:6652.点评:考查了尾数特征,本题关键是得出正整数n4的末位数依次是1,6,1,6,5,6,1,6,1,0,十个一循环.5.(2015•义乌市)实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两个相同的管子在容器的5cm高度处连通(即管子底离容器底5cm),现三个容器中,只有甲中有水,水位高1cm,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升cm.(1)开始注水1分钟,丙的水位上升cm.(2)开始注入或分钟的水量后,乙的水位比甲高0.5cm.考点:一元一次方程的应用.专题:压轴题.分析:(1)由甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,注水1分钟,乙的水位上升cm,得到注水1分钟,丙的水位上升cm;(2)设开始注入t分钟的水量后,乙的水位比甲高0.5cm,有两种情况:①甲的水位不变时,②乙的水位到达管子底部,甲的水位上升时,分别列方程求解即可.解答:解:(1)∵甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,∵注水1分钟,乙的水位上升cm,∴得到注水1分钟,丙的水位上升cm×4=cm;(2)设开始注入t分钟的水量后,乙的水位比甲高0.5cm,有两种情况:①甲的水位不变时;由题意得,t﹣1=0.5,解得:t=,∵×=6>5,∴此时丙容器已向乙容器溢水,∵5÷=分钟,×=,即经过分钟时丙容器的水到达管子底部,乙的水位上升,∴+2×(t﹣)﹣1=0.5,解得:t=;②当乙的水位到达管子底部,甲的水位上升时,∵乙的水位到达管子底部的时间为;+(5﹣)÷÷2=分钟,∴5﹣1﹣2×(t﹣)=0.5,解得:t=,综上所述开始注入或分钟的水量后,乙的水位比甲高0.5cm.故答案为cm;或.点评:本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.6.(2015•宿迁)当x=m或x=n(m≠n)时,代数式x2﹣2x+3的值相等,则x=m+n时,代数式x2﹣2x+3的值为3.考点:二次函数图象上点的坐标特征.专题:压轴题.分析:设y=x2﹣2x+3由当x=m或x=n(m≠n)时,代数式x2﹣2x+3的值相等,得到抛物线的对称轴等于=﹣,求得m+n=2,再把m+n=2代入即可求得结果.解答:解:设y=x2﹣2x+3,∵当x=m或x=n(m≠n)时,代数式x2﹣2x+3的值相等,∴=﹣,∴m+n=2,∴当x=m+n时,即x=2时,x2﹣2x+3=(2)2﹣2×(2)+3=3,故答案为:3.点评:本题考查了二次函数图象上点的坐标特征,熟记抛物线的对称轴公式是解题的关键.7.(2015•孝感)如图,四边形ABCD是矩形纸片,AB=2.对折矩形纸片ABCD,使AD 与BC重合,折痕为EF;展平后再过点B折叠矩形纸片,使点A落在EF上的点N,折痕BM与EF相交于点Q;再次展平,连接BN,MN,延长MN交BC于点G.有如下结论:①∠ABN=60°;②AM=1;③QN=;④△BMG是等边三角形;⑤P为线段BM上一动点,H是BN的中点,则PN+PH的最小值是.其中正确结论的序号是①④⑤.考点:几何变换综合题.专题:压轴题.分析:①首先根据EF垂直平分AB,可得AN=BN;然后根据折叠的性质,可得AB=BN,据此判断出△ABN为等边三角形,即可判断出∠ABN=60°.②首先根据∠ABN=60°,∠ABM=∠NBM,求出∠ABM=∠NBM=30°;然后在Rt△ABM中,根据AB=2,求出AM的大小即可.③首先根据EF∥BC,QN是△MBG的中位线,可得QN=BG;然后根据BG=BM=,求出QN的长度即可.④根据∠ABM=∠MBN=30°,∠BNM=∠BAM=90°,推得∠MBG=∠BMG=∠BGM=60°,即可推得△BMG是等边三角形.⑤首先根据△BMG是等边三角形,点N是MG的中点,判断出BN⊥MG,即可求出BN的大小;然后根据E点和H点关于BM称可得PH=PE,因此P与Q重合时,PN+PH=PN+PE=EN,据此求出PN+PH的最小值是多少即可.解答:解:如图1,连接AN,∵EF垂直平分AB,∴AN=BN,根据折叠的性质,可得AB=BN,∴AN=AB=BN.∴△ABN为等边三角形.∴∠ABN=60°,∠PBN=60°÷2=30°,即结论①正确;∵∠ABN=60°,∠ABM=∠NBM,∴∠ABM=∠NBM=60°÷2=30°,∴AM=,即结论②不正确.∵EF∥BC,QN是△MBG的中位线,∴QN=BG;∵BG=BM=,∴QN=,即结论③不正确.∵∠ABM=∠MBN=30°,∠BNM=∠BAM=90°,∴∠BMG=∠BNM﹣∠MBN=90°﹣30°=60°,∴∠MBG=∠ABG﹣∠ABM=90°﹣30°=60°,∴∠BGM=180°﹣60°﹣60°=60°,∴∠MBG=∠BMG=∠BGM=60°,∴△BMG为等边三角形,即结论④正确.∵△BMG是等边三角形,点N是MG的中点,∴BN⊥MG,∴BN=BG•sin60°=,根据条件易知E点和H点关于BM对称,∴PH=PE,∴P与Q重合时,PN+PH的值最小,此时PN+PH=PN+PE=EN,∵EN==,∴PN+PH=,∴PN+PH的最小值是,即结论⑤正确.故答案为:①④⑤.点评:(1)此题主要考查了几何变换综合题,考查了分析推理能力,考查了空间想象能力,考查了数形结合方法的应用,要熟练掌握.(2)此题还考查了等边三角形的判定和性质的应用,以及矩形的性质和应用,要熟练掌握.(3)此题还考查了折叠的性质和应用,以及余弦定理的应用,要熟练掌握.8.(2015•武汉)如图,∠AOB=30°,点M、N分别在边OA、OB上,且OM=1,ON=3,点P、Q分别在边OB、OA上,则MP+PQ+QN的最小值是.考点:轴对称-最短路线问题.专题:压轴题.分析:作M关于OB的对称点M′,作N关于OA的对称点N′,连接M′N′,即为MP+PQ+QN 的最小值.解答:解:作M关于OB的对称点M′,作N关于OA的对称点N′,连接M′N′,即为MP+PQ+QN的最小值.根据轴对称的定义可知:∠N′OQ=∠M′OB=30°,∠ONN′=60°,∴△ONN′为等边三角形,△OMM′为等边三角形,∴∠N′OM′=90°,∴在Rt△M′ON′中,M′N′==.故答案为.点评:本题考查了轴对称﹣﹣最短路径问题,根据轴对称的定义,找到相等的线段,得到等边三角形是解题的关键.9.(2015•乌鲁木齐)如图,抛物线y=ax2+bx+c的对称轴是x=﹣1.且过点(,0),有下列结论:①abc>0;②a﹣2b+4c=0;③25a﹣10b+4c=0;④3b+2c>0;⑤a﹣b≥m(am﹣b);其中所有正确的结论是①③⑤.(填写正确结论的序号)考点:二次函数图象与系数的关系.专题:压轴题.分析:根据抛物线的开口方向、对称轴、与y轴的交点判定系数符号,及运用一些特殊点解答问题.解答:解:由抛物线的开口向下可得:a<0,根据抛物线的对称轴在y轴左边可得:a,b同号,所以b<0,根据抛物线与y轴的交点在正半轴可得:c>0,∴abc>0,故①正确;直线x=﹣1是抛物线y=ax2+bx+c(a≠0)的对称轴,所以﹣=﹣1,可得b=2a,a﹣2b+4c=a﹣4a+2=﹣3a+2,∵a<0,∴﹣3a>0,∴﹣3a+2>0,即a﹣2b+4c>0,故②错误;∵抛物线y=ax2+bx+c的对称轴是x=﹣1.且过点(,0),∴抛物线与x轴的另一个交点坐标为(,0),当x=﹣时,y=0,即,整理得:25a﹣10b+4c=0,故③正确;∵b=2a,a+b+c<0,∴,即3b+2c<0,故④错误;∵x=﹣1时,函数值最大,∴a﹣b+c>m2a﹣mb+c(m≠1),∴a﹣b>m(am﹣b),所以⑤正确;故答案为:①③⑤.点评:本题考查的是二次函数图象与系数的关系,掌握二次函数的性质、灵活运用数形结合思想是解题的关键,解答时,要熟练运用抛物线的对称性和抛物线上的点的坐标满足抛物线的解析式.10.(2015•潍坊)正比例函数y1=mx(m>0)的图象与反比例函数y2=(k≠0)的图象交于点A(n,4)和点B,AM⊥y轴,垂足为M.若△AMB的面积为8,则满足y1>y2的实数x的取值范围是﹣2<x<0或x>2.考点:反比例函数与一次函数的交点问题.专题:压轴题.分析:由反比例函数图象的对称性可得:点A和点B关于原点对称,再根据△AMB的面积为8列出方程×4n×2=8,解方程求出n的值,然后利用图象可知满足y1>y2的实数x的取值范围.解答:解:∵正比例函数y1=mx(m>0)的图象与反比例函数y2=(k≠0)的图象交于点A(n,4)和点B,∴B(﹣n,﹣4).∵△AMB的面积为8,∴×8×n=8,解得n=2,∴A(2,4),B(﹣2,﹣4).由图形可知,当﹣2<x<0或x>2时,正比例函数y1=mx(m>0)的图象在反比例函数y2=(k≠0)图象的上方,即y1>y2.故答案为﹣2<x<0或x>2.点评:本题考查了一次函数和反比例函数的交点问题,三角形的面积,反比例函数的对称性,体现了数形结合的思想.11.(2015•十堰)抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(﹣1,0)和(m,0),且1<m<2,当x<﹣1时,y随着x的增大而减小.下列结论:①abc>0;②a+b>0;③若点A(﹣3,y1),点B(3,y2)都在抛物线上,则y1<y2;④a(m﹣1)+b=0;⑤若c≤﹣1,则b2﹣4ac≤4a.其中结论错误的是③⑤.(只填写序号)考点:二次函数图象与系数的关系.专题:压轴题;数形结合.分析:根据题意画出抛物线的大致图象,利用函数图象,由抛物线开口方向得a>0,由抛物线的对称轴位置得b<0,由抛物线与y轴的交点位置得c<0,于是可对①进行判断;由于抛物线过点(﹣1,0)和(m,0),且1<m<2,根据抛物线的对称性和对称轴方程得到0<﹣<,变形可得a+b>0,则可对②进行判断;利用点A(﹣3,y1)和点B(3,y2)到对称轴的距离的大小可对③进行判断;根据抛物线上点的坐标特征得a﹣b+c=0,am2+bm+c=0,两式相减得am2﹣a+bm+b=0,然后把等式左边分解后即可得到a(m﹣1)+b=0,则可对④进行判断;根据顶点的纵坐标公式和抛物线对称轴的位置得到<c≤﹣1,变形得到b2﹣4ac>4a,则可对⑤进行判断.解答:解:如图,∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的右侧,。
重庆中考数学几何综合题(18题)(学生版)
1PFAC E BDxyl第18题图O 18题图几何填空题(18题)18题几何题一般以四边形为背景,考察中点、平分线、垂线、平移、翻折、旋转、轴对称,计算线段的长度、角的大小、图形的面积为主。
解题技巧和方法:1、测量法、2、勾股定理、3相似的性质、4设未知数列方程、5模型法 典型例题:例1、(2016年重庆中考)正方形ABCD 中,对角线AC ,BD 相交于点O ,DE 平分∠ADO 交AC 于点E ,把△ADE 沿AD 翻折,得到△ADE ′,点F 是DE 的中点,连接AF ,BF ,E ′F .若AE=.则四边形ABFE ′的面积是 .例2、(2015•重庆A )如图,矩形ABCD 中,AB=46连接BD ,∠DBC 的角平分线BE 交DC 于点E ,现把△BCE 绕点B 逆时针旋转,记旋转后的△BCE 为△BC E '',当射线BE '和射线BC '都与线段AD 相交时,设交点分别F,G ,若△BFD 为等腰三角形,则线段DG 长为 。
例3、如图,平面直角坐标系中,())3,0(,0,33),0,3(C B A -,l 是AB 的垂直平分线交BC 于D ,交x 轴于F,连接AD 交y 轴于E ,P 为l 上D 点上一点,且DP=DE ,将DCE ∆绕E 逆时针旋转后,边CE 交线段DC2GFED C BA于M ,边DE 交线段DF 于N ,连接PM,若PM=3DN,则点N 的坐标为____________________例4、如图,正方形ABCD 中,AB= 4,点E 是BC 上靠近点B 的四等分点,点F 是CD 的中点,连结AE 、BF 将△ABE 绕着点E 按顺时针方向旋转,使点B 落在BF 上的点B 1位置处,点A 经过旋转落在点A 1位置处,连结A A 1交BF 于点N ,则AN 的长为______________.例5、如图,已知正方形ABCDAC 、BD 交于点O ,点E 在BC 上,且CE=2BE ,过B 点作BF AE 于点F ,连接OF ,则线段OF 的长度为 。
2015年中考数学最后一次讲座压轴题分析
12015年中考综合、压轴题(专题)解答题在中考中占有相当大的比重,主要由综合性问题构成,就题型而言,包括计算题、证明题和应用题等.它的题型特点和考查功能决定了审题思考的复杂性和解题设计的多样性.一般地,解题设计要因题定法,无论是整体考虑还是局部联想,确定方法都必须遵循的原则是:熟悉化原则、具体化原则;简单化原则、和谐化原则等. (一)解答综合、压轴题,要把握好以下各个环节:1.审题:这是解题的开始,也是解题的基础.一定要全面审视题目的所有条件和答题要求,以求正确、全面理解题意,在整体上把握试题的特点、结构,以利于解题方法的选择和解题步骤的设计.审题思考中,要把握“三性”,即明确目的性,提高准确性,注意隐含性.解题实践表明:条件暗示可知并启发解题手段,结论预告并诱导解题方向,只有细致地审题,才能从题目本身获得尽可能多的信息.这一步,不要怕慢,其实“慢”中有“快”,解题方向明确,解题手段合理得当,这是“快”的前提和保证.否则,欲速则不达.2.寻求合理的解题思路和方法:破除模式化、力求创新是近几年中考数学试题的显著特点,解答题体现得尤为突出,因此,切忌套用机械的模式寻求解题思路和方法,而应从各个不同的侧面、不同的角度,识别题目的条件和结论,认识条件和结论之间的关系、图形的几何特征与数、式的数量、结构特征的关系,谨慎地确定解题的思路和方法.当思维受阻时,要及时调整思路和方法,并重新审视题意,注意挖掘隐蔽的条件和内在联系,既要防止钻牛角尖,又要防止轻易放弃. (二)题型解析类型1 直线型几何综合题这类题常见考查形式为推理与计算.对于推理,基本思路为分析与综合,即从需要证明的结论出发逆推,寻找使其成立的条件,同时从已知条件出发来推导一些结论,再设法将它们联系起来.对于计算,基本思路是利用几何元素(比如边、角)之间的数量关系结合方程思想来处理.例1如图1,在ABC △中,5AB =,3BC =,4AC =,动点E (与点A 、C 不重合)在AC 边上,EF AB ∥交BC 于点F .(1)当E C F △的面积与四边形EABF 的面积相等时,求CE 的长; (2)当E C F △的周长与四边形EABF 的周长相等时,求CE 的长;(3)试问在AB 上是否存在点P ,使得EFP △为等腰直角三角形?若不存在,请简要说明理由;若存在,请求出EF 的长.特别提示:因为等腰直角三角形中哪条边为斜边没有指明,所以需要就可能的情形进行讨论. 类型2 .圆的综合题常见形式为推理与计算综合,解答的基本思路仍然是分析—综合,需要注意的是,因为综合性比较强,解答后面问题时往往需要充分利用前面的结论,这样才会简便.例2如图5,点A 、B 、C 、D 是直径为AB 的⊙O 上四个点,C 是劣弧BD 的中点,AC 交BD 于点E , AE =2, EC =1.(1)求证:DEC △∽ADC △.(2)试探究四边形ABCD 是否是梯形?若是,请你给予证明图1C EF AB2并求出它的面积;若不是,请说明理由.(3)延长AB 到H ,使BH =OB .求证:CH 是⊙O 的切线. 特别提示:在推理时,有时可能需要借助于计算来帮助证明,比如本题中证明DC ∥AB. 类型3. 含统计(或概率)的代数(或几何)综合题 这类题通常为知识串联型试题,因此只要逐个击破即可.例3.在一次数学活动中,黑板上画着如图所示的图形,活动前老师在准备的四张纸片上分别写有如下四个等式中的一个等式: ①AB DC = ②ABE DCE ∠=∠ ③AE DE = ④A D ∠=∠ 小明同学闭上眼睛从四张纸片中随机抽取一张,再从剩下的纸片中随机抽取另一张.请结合图形解答下列两个问题:(1)当抽得①和②时,用①,②作为条件能判定BEC △ 是等腰三角形吗?说说你的理由;(2)请你用树形图或表格表示抽取两张纸片上的等式所有可能出现的结果(用序号表示),并求以已经抽取的两张纸片 上的等式为条件,使BEC △不能..构成等腰三角形的概率. 特别提示:不能得到“ABE DCE △≌△”有两种情形,一是“边边角”不能得全等,二是只能得到相似.类型4. 图形中的函数(方程)这类题通常需要利用方程与函数的思想来处理,具体的说,往往通过线段成比例或者面积公式等来建立关系式,再通过解方程或者利用函数性质来得到解决.例4.如图,已知正方形ABCD 与正方形EFGH的边长分别是和,它们的中心12O O ,都在直线l 上,AD l ∥,EG 在直线l 上,l 与DC 相交于点M,7ME =-,当正方形EFGH 沿直线 l 以每秒1个单位的速度向左平移时,正方形ABCD 也绕1O 以每秒45°顺时针方向开始旋转,在运动变化过程中,它们的形状和大小都不改变. (1)在开始运动前,12O O = ;(2)当两个正方形按照各自的运动方式同时 运动3秒时,正方形ABCD 停止旋转,这时 AE = ,12O O = ;(3)当正方形ABCD 停止旋转后,正方形EFGH 继续向左平移的时间为x 秒,两正方形重叠部分的面积为y ,求y 与x 之间的函数表达式. .特别提示:(1)本题也是变换型试题,计算与证明时要抓住变换中不变的元素(比如角相等,边相等,图形全等,等)来进行处理,如果直角比较多,还可从相似、三角函数、勾股定理角度来建立数量关系.(2)对于图形变化中分段函数的问题,可以从图形特征角度来分别讨论,以力求解答完备.类型5. 抛物线中的图形 一般而言,这类题多为压轴题,解答基本思路仍然为分析与综合.除了需要灵活运用代数与几何核心知识外,还要注意应用分类、数形结合、转化等基本数学思想方法.例5如图,对称轴为直线72x =的抛物线经过点A (6,0)和B (0,4).图53(1)求抛物线解析式及顶点坐标;(2)设点E (x ,y )是抛物线上一动点,且位于第四象限,四边形OEAF 是以OA 为对角线的平行四边形.求平行四边形OEAF 的面积S 与x 之间的函数关系式,并写出自变量x 的取值范围;①当平行四边形OEAF 的面积为24时,请判断平行四边形OEAF 是否为菱形?②是否存在点E ,使平行四边形OEAF 为正方形?若存在,求出点E 的坐标;若不存在,请说明理由.跟踪练习.已知抛物线y =ax 2+bx +c 与x 轴交于A 、B 两点,与y 轴交于点C ,其中点B 在x 轴的正半轴上,点C 在y 轴的正半轴上,线段OB 、OC 的长(OB <OC )是方程x 2-10x +16=0的两个根,且抛物线的对称轴是直线x =-2. (1)求A 、B 、C 三点的坐标; (2)求此抛物线的表达式;(3)连接AC 、BC ,若点E 是线段AB 上的一个动点(与点A 、点B 不重合),过点E 作EF ∥AC 交BC 于点F ,连接CE ,设AE 的长为m ,△CEF 的面积为S ,求S 与m 之间的函数关系式,并写出自变量m 的取值范围;(4)在(3)的基础上试说明S 是否存在最大值,若存在,请求出S 的最大值,并求出此时点E 的坐标,判断此时△BCE 的形状;若不存在,请说明理由. 类型6、函数与几何综合的压轴题例6.如图①,在平面直角坐标系中,AB 、CD 都垂直于x 轴,垂足分别为B 、D 且AD 与B 相交于E 点.已知:A (-2,-6),C (1,-3) (1) 求证:E 点在y 轴上;(2) 如果有一抛物线经过A ,E ,C 三点,求此抛物线方程. (3) 如果AB 位置不变,再将DC 水平向右移动k (k >0)个单位,此时AD 与BC 相交于E ′点,如图②,求△AE ′C 的面积S 关于k 的函数解析式.例7.如图,已知点A(0,1)、C(4,3)、E(415,823),P 是以AC 为对角线的矩形ABCD 内部(不在各边上)的—个动点,点D 在y 轴,抛物线y =ax 2+b x +1以P 为顶点. (1)说明点A 、C 、E 在一条条直线上;(2)能否判断抛物线y =ax 2+b x +1的开口方向?请说明理由;(3)设抛物线y =ax 2+b x +1与x 轴有交点F 、G(F 在G 的左侧),△GAO 与△FAO 的面积差为3,且这条抛物线与线段AE 有两个不同的交点.这时能确定a 、b 的值吗?若能,请求出a 、b 的值;若不能,请确定a 、b 的取值范围. (本题图形仅供分析参考用)第26图②4例8.如图,直线4+=kx y 与函数)0,0(>>=m x xmy 的图像交于A 、B 两点,且与x 、y 轴分别交于C 、D 两点.(1)若COD ∆的面积是AOB ∆的面积的2倍,求k 与m 之间的函数关系式;(2)在(1)的条件下,是否存在k 和m ,使得以AB 为直径的圆经过点)0,2(P .若存在,求出k 和m 的值;若不存在,请说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.(重庆一中)如图,正方形ABCD 中, E 为CD 中点,BF ⊥AE 于点F ,M 为CF
上一点,将△BMF 绕点F 顺时针旋转得△GNF,M 的对应点N 恰在边AB 上, B
的对应点G 恰在线段EA 延长线上,若2
CM =
,则DG 的长为__________. 2.(南开)如图,ABC ∆中,4AB AC ==,BAC ∠=120°,以A 为一个顶点的等边三角形ADE 绕点A 在BAC ∠内旋转,AD 、AE 所在的直线与BC 边分别交于点F 、G ,若点B 关于直线AD 的对称点为'B ,当'FG B ∆是以点G 为直角顶点的直角三角形时,BF 的长为______ _
(1) (2)
3.(南开)如图,E ,F 分别是边长为6的正方形ABCD 的边CD ,AD 上两点,且CE=DF ,连接CF ,BE 交于点M ,在MF 上截取MC MN =,连接AN ,若
CM FN 3
4
=
,则AN 的长度为 4.(育才)如图,已知:正方形ABCD 的边长为1,点E 、 F 分别在AC 、DC 上,若EC=BC ,EF ⊥BE,BF 与EC 相交于G ,则BG 与GF 的乘积为_______
(3) (4)
5.(巴蜀)如图,AC 、BD 是正方形ABCD 的对角线,点F 在边AD 上,AF =DF =
4cm ,DF 是正方形DEFG 的一条对角线,CG 的延长线交AE 于点P ,连接GA 、GC 、GE ,则线段PE 的长为 cm.(结果保留无理数)
6.(联中)如图,以Rt ABC △的斜边AB 为一边在ABC ∆同侧作正方形ABEF .点O 为AE 与BF 的交点,连接CO ,若CA = 2
,CO =,那么CB 的长为______________.
(5) (6)
7.(万州)如图,等腰Rt △ABC 中,O 为斜边AC 的中点,∠CAB 的平分线分别交BO ,BC 于点E ,F ,BP ⊥AF 于H ,PC ⊥BC ,AE=1, PG= .
8.(八中)如图,正方形ABCD 中,P 在对角线BD 上,E 在CB 的延长线上,
且PE PC =,过点P 作PF AE F ⊥于点,1,3BE AB PF ==若,则的长为 .
(7) (8)
O
F
E
C
B
A
B
C
E。