新人教版七年级上册数学电子教案
人教版七年级上册数学教案【10篇】
人教版七年级上册数学教案【10篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作资料、求职资料、报告大全、方案大全、合同协议、条据文书、教学资料、教案设计、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic model essays, such as work materials, job search materials, report encyclopedia, scheme encyclopedia, contract agreements, documents, teaching materials, teaching plan design, composition encyclopedia, other model essays, etc. if you want to understand different model essay formats and writing methods, please pay attention!人教版七年级上册数学教案【10篇】教案设计是改善课堂教学的一种更高层次的探索,是提高课堂教学质量和效率的一项必要工作,它可以促进教学的系统化,使老师掌握讲课节奏。
2023年最新-新人教版七年级上册数学教案(优秀4篇)
新人教版七年级上册数学教案(优秀4篇)新人教版七年级上册数学教案篇一今天我讲授了臧克家的《说和做》第一课时,总体情况比较顺畅,也有些小的遗憾。
这节课上得还是不错的,这缘于自己的充分备课,学生的充分预习,积极互动,相互配合,还有语文组和教科研等同志的通力协作。
经过大家的评课,我对这节课又有了新的认识,现将我的反思记录下来。
这是一篇十分精粹的散文,诗人以充沛的感情、精譬的语言来表现闻一多先生的崇高品格及他的革命精神。
可以说文章的内容不是十分难,但事例是以概括性的语言来叙述的,这需要学生认真品读后才能捕捉,这篇文章的精彩是语言,诗意化的语言含蓄、凝炼是最为值得学生品味的。
而闻一多先生的精神也是学生需要学习的。
本着一课一得的思想,我把课设为两课时。
本次教学只讲了第一课时。
面对自己不熟悉的学生,我把学习目标定为:掌握文学常识,掌握字词,理清写作思路和把握人物形象。
让学生知道作者从哪两个方面写闻一多先生的说和做,知道闻一多先生是怎样一个人,因为在第一课时如果学生真正读懂文章,真正深入到文章中来,对闻一多先生有了了解,那么在第二课时就可以在品读语言过程中来深入挖掘闻先生这种说和做,虽前后期不同但其根本就是:为追求民主,为救国救民。
这样,会使学生对文章的理解水到渠成。
在整个教学过程中,学生的积极性高涨,显示了较高的思维、探究能力。
这节语文课给我的启示是:1.语文教学的根在听说读写,是听说读写之内的挖掘与创新,而不是游离于听说读写,花样翻新。
语文课不能缺少朗朗的读书声,不能看不到对语言文字的揣摩品味,不能缺少对优美精彩文段的欣赏和必要的独到的分析见解。
2.提倡合作学习不能忽视学生的独到思考。
合作学习必须在学生充分阅读、思考的基础上进行合作学习,否则,由于学生对课文的理解还不深入,认识也不很深刻,小组合作加工整理的结果与所得也是肤浅的、片面的,这样的合作只是给个别优生提供展示的机会。
3.语文课少不了品读、感悟、玩味、思考、探究。
新人教版七年级上册数学教案5篇
新人教版七年级上册数学教案5篇2021最新人教版数学七年级上册教案篇一一、教材分析1、教材的地位和作用课题学习《从数据谈节水》,是人教实验版数学八年级(上)教材第十一章《数据的描述》的第三节。
这一节是在学习了用统计图表描述数据以后的一节活动课,它是对七年级第四章《数据的收集与整理》及本章数据的描述等知识的巩固和深化,是对所学的有关数据处理知识的综合运用。
在这一活动中让学生感受统计与实际生活的联系以及在解决实际问题中的作用,促使学生掌握基本的统计方法,通过对数据的直观描述尽可能多地获取有用的信息,同时增强学生的节水意识及环保意识。
2、教学目标根据学生的学习内容、新课程理念和认知水平,特制定如下目标:(1)知识与技能:进一步巩固处理数据的基本步骤和方法,能灵活选用统计图对具体问题的数据进行清晰、有效地描述,并获取有用信息并作出合理决策。
(2)过程与方法:让学生亲身经历独立思考、动手操作、团结合作、互相交流的学习过程,积累数学活动的经验,学会合理处理信息,发展数学应用意识。
(3)情感与态度:使学生感受统计在生产生活中的作用;培养学生的数感;使学生乐于接触社会环境中的数学信息,激发学生的节水及环保意识。
3、重点和难点(1)重点:培养学生的数感和统计观念。
(2)难点:能根据具体问题选择适当的统计图描述数据并获取有用的信息,并作出合理的判断和预测。
二、学情分析我今天所授课的班级,应该说学生的数学素质参差不齐,有部分学生在课堂上乐于参与数学活动,而另一部分学生则学习基础较差,会被动参与,因此应激发学生参与活动学习的兴趣,使之获得成就感。
三、教法和学法分析枯燥的数据是令人乏味的,首先可采用激趣法:恰当收集选取图片和视频资料,为课题学习营造学生熟悉的生活情境,吸引学生,巧妙设疑,激发学生的活动兴趣。
分层安排活动,能力强的学生自主思考,独立完成,能力差的学生分组分工合作完成,然后全班交流。
例外,提供更多的学习扩展资料供学生浏览。
人教版七年级数学上册教案(5篇)
人教版七年级数学上册教案(5篇)最新人教版七年级数学上册教案(5篇)教学过程一般按时间顺序书写,此外也可以加几点总体提示;对教学重点部分所需的时间需要有较好的认知;要有可以舍弃的内容和备用的内容,以便灵活处理。
下面是整理的最新人教版数学七年级上册教案,欢迎阅读与收藏。
最新人教版数学七年级上册教案篇1教学目标【知识与能力目标】1、巩固理解有理数的概念;2、掌握数轴的意义及构成特点,明确其在实际中的应用;3、会用数轴上的点表示有理数。
【过程与方法目标】【情感态度价值观目标】通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受。
教学重难点【教学重点】数轴的意义及作用。
【教学难点】数轴上的点与有理数的直观对应关系。
课前准备《数学》人教版七年级上册,自制课件教学过程一、探索新知(投影展示)问题在一条东西向的马路上,有一个汽车站,汽车站东3m和7、5m 处分别有一棵柳树和一棵杨树,汽车站西3m和4、5m处分别有一棵槐树和一根电线杆,试画图表示这一情景。
学生结合上述问题分组讨论,明确以下问题:1、怎样用数简明地表示这些树、电线杆与汽车站的相对位置关系(体现距离、方向)?2、举例说明生活中类似的事例;3、什么叫数轴?它有哪几个要素组成?4、数轴的.用处是什么?5、你会画数轴吗并应用它吗?“问题”解决:课件投影课本p8图1、2-1,同时说明其产生的过程及合理、简明的特点;结论:正数、0和负数可以用一条直线上的点表示出来。
3、展示温度计图形,比较其与图1、2-1的共同点和不同点:共同点:温度计也可以看作将正数、0和负数用一条直线上的点表示出来的情形;不同点:温度计是竖直的,方向感不直观。
4、描述数轴的意义(课本p9中间,由学生阅读,并尝试画一条数轴,强调)(1)数轴的构成三要素:原点、方向、单位长度;(2)数轴的用处是:把数用数轴上的点来表示,例(课本p9图1、2-3),说明有理数都可以用数轴上的点表示;5、归纳(1)一般地,设a是一个正数,则数轴上表示数a的点在原点的边,与原点的距离是个单位长度;表示数-a的点在原点的边,与原点的距离是个单位长度。
人教版数学七年级上册教案(精选14篇)
人教版数学七年级上册教案(精选14篇)人教版数学七年级上册教案第1篇一、教材分析1、教材的内容:本节课是人教版七年级下册第五章第一节的第一课时2、教材的地位和作用:平面内两条直线的位置关系是“空间与图形”所要研究的基本问题,这些内容学生在前两个学段已经有所接触,本章在学生已有知识和经验的基础上,继续研究平面内两条直线的位置关系,首先研究相交的两条直线,这是后面学习垂直相交的必要基础也为后面学面直角坐标系奠定基石,因此本节课具有承前启后的重要作用3、教学的重点、难点:重点:邻补角、对顶角的概念,对顶角的性质和应用。
难点:理解对顶角性质的探索(确定重难点的依据:本节的学习目的是研究两条相交直线产生的四个角的关系,因此将邻补角、对顶角的概念、性质以及应用作为本节的重点。
同学们刚刚开始接触几何,对推理说理不习惯也不熟悉,所以将理解对顶角相等的性质作为难点。
)4、教学目标:A:知识与技能目标(1).理解对顶角和邻补角的概念,能在图形中辨认.(2).掌握对顶角相等的性质和它的推证过程(3).会用对顶角的性质进行有关的简单推理和计算.B:过程与方法目标(1).通过观察、操作、探究、猜想、思考、交流、归纳、推理等培养学生的推理能力和有条理的表达能力,培养操作能力、动手能力。
(2).体会具体到抽象再到具体的思想方法.C:情感、态度与价值目标(1).感受图形中和谐美、对称美.(2).感受合作交流带来的成功感,树立自信心.(3).感受数学应用的广泛性,使学生更加热爱数学二、学情分析:在此之前,学生已经学习了图形的初步认识、对相交线和平行线有了直观的感性认识,且对互补和互余有了清楚的了解,在此基础上来学习邻补角和对顶角,符合学生的认知规律,让学生对新知识的应用充满好奇与期待.三、教法和学法:教法:叶圣陶先生倡导:解放学生的手,解放学生的脑,解放学生的时间.根据这一思想及我校初一学生活泼好动的特点,我采取启发式教学、探究式教学及多媒体辅助教学相结合的方法.学法:以学生分组实践、自主探究、合作交流为主要形式的探究式学习方法.四、教学过程:1课前准备:课件,剪刀,纸片,相交线模型2教学过程:设置以下六个环节环节一:情景屋(创设情景,激发学习动机)请学生欣赏观察图片,图片中有大桥上的钢梁和钢索,窗户的窗格都给我们以相交线平行线的形象,让学生感受到相交线平行线在我们生活中有着广泛的应用,由此产生研究它们了解它们的兴趣和欲望,适时的给出本章课题:相交线和平行线环节二:问题苑(合作交流,解释发现)通过一些问题的设置,激发学生探究的欲望,具体操作:(1):动手尝试:剪纸片,感知剪刀所形成的角在剪纸过程中的变化(2):给出问题,由剪刀这个实物抽象出几何模型——两条直线相交。
人教版七年级上册数学教案6篇
人教版七年级上册数学教案6篇人教版七年级上册数学教案(精选篇1)一、内容特点在知识与方法上类似于数系的第一次扩张,也是后继内容学习的基础。
内容定位:了解无理数、实数概念,了解(算术)平方根的概念;会用根号表示数的(算术)平方根,会求平方根、立方根,用有理数估计一个无理数的大致范围,实数简单的四则运算(不要求分母有理化)。
二、设计思路整体设计思路:无理数的引入——无理数的表示——实数及其相关概念(包括实数运算),实数的应用贯穿于内容的始终。
学习对象——实数概念及其运算;学习过程——通过拼图活动引进无理数,通过具体问题的解决说明如何表示无理数,进而建立实数概念;以类比,归纳探索的方式,寻求实数的运算法则;学习方式——操作、猜测、抽象、验证、类比、推理等。
具体过程:首先通过拼图活动和计算器探索活动,给出无理数的概念,然后通过具体问题的解决,引入平方根和立方根的概念和开方运算。
最后教科书总结实数的概念及其分类,并用类比的方法引入实数的`相关概念、运算律和运算性质等。
第一节:数怎么又不够用了:通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性;借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想;会判断一个数是有理数还是无理数。
第二、三节:平方根、立方根:如何表示正方形的边长它的值到底是多少并引入算术平方根、平方根、立方根等概念和开方运算。
第四节:公园有多宽:在实际生活和生产实际中,对于无理数我们常常通过估算来求它的近似值,为此这一节内容介绍估算的方法,包括通过估算比较大小,检验计算结果的合理性等,其目的是发展学生的数感。
第五节:用计算器开方:会用计算器求平方根和立方根。
经历运用计算器探求数学规律的活动,发展合情推理的能力。
第六节:实数。
总结实数的概念及其分类,并用类比的方法引入实数的相关概念、运算律和运算性质等。
三、一些建议1.注重概念的形成过程,让学生在概念的形成的过程中,逐步理解所学的概念;关注学生对无理数和实数概念的意义理解。
新人教版七年级数学上册全册教案
新人教版七年级上册数学全册教案第一章 有理数1. 1正数和负数备课:七年级数学教研组【教学目标】一.知识与技能:能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量.二.过程与方法:借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性.三、情感、态度与价值观:培养学生积极思考,合作交流的意识和能力.教学重点:两种意义相反的量教学难点:正确会区分两种不同意义的量教学方法:引导、探究、归纳与练习相结合教学手段:多媒体等。
【教学过程】一、预习探究1、冬天,零度以下的数在天气预报中如何表示,如某地一月份某日的平均气温大约是零下3℃,可用____数表示,记作______。
2、零上24摄氏度表示为_______,零下3.5摄氏度表示为__________。
3、如果向南走2米记为+2,那么向北走10米应表示为 。
4、地图册上亚洲西部地中海旁有一个死海湖,图上标有-392,这表明死海湖面与海平面相比 了392米。
二、课堂教学5、中国地形图上,可以看到我国有一座世界最高峰—珠穆朗玛峰,图上标着8848米,在西北部有一吐鲁番盆地,地图上标着-155米,这两个数表示的高度是相对海平面说的,你能说说8848米,-155米各表示什么吗?学生思考讨论,尝试回答大于0的数叫做 ;小于0的数,或在正数前面加“-”号的数叫 ;0既不是 也不是 。
6、判断:下列各数中,哪些是正数?哪些是负数? 12, -9.24,31, -301, 427, 31.25, 0. 7、在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02克记作+0.02克,那么-0.03克表示什么?8、北京冬季里某天的温度为-3℃~+3℃,它的确切含义是什么?9、课堂小结:三、反馈练习:1、小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________.2、产品成本提高-10%,实际表示_________.3、甲、乙两人同时从A 地出发,如果向南走48m,记作+48m ,则乙向北走32m ,记为__这时甲乙两人相距___m.4、某种药品的说明书上标明保存温度是(20±2)℃,由此可知在__℃~__℃范围内保存才合适。
人教版七年级上册数学教案7篇
人教版七年级上册数学教案7篇人教版七年级上册数学教案7篇数学课件是非常重要的。
语文能力是学习其他学科和科学的基础,也是一门重要的人文社会科学,是人们相互交流思想等的工具。
下面小编给大家带来关于人教版七年级上册数学教案,希望会对大家的工作与学习有所帮助。
人教版七年级上册数学教案篇1最近,我在初一(4)班上了一节数学公开课,课题是《3.4实际问题与二元一次方程组》第二课时“销售中的盈亏”,本节课是探究课,在教学中我采用小组合作交流探究的教学方式,在老师的时事点评和引导下,让学生自己动手,动口,动脑,计算,归纳销售中的常用公式,力求体现自主,合作,探究式学习,让学生在“轻松,和谐”的课堂中高效完成本节学习任务。
本节课我的教学过程主要分六个环节:第一,设计情境,激发学生学习兴趣,引入本节课课题;第二,尝试练习,熟悉公式;第三,探究销售中的盈亏问题;第四,小组展示,解决探究问题;第五,巩固练习,提升能力;第六,归纳总结销售问题中常见的四个量之间的关系提炼解决问题的方法。
反思本节课的教学,成功之处有:1.设计情境,引入课题,体现教学来源于生活有服务于生活的理念,“汉滨初中对面的电脑城中销售一种路由器,先将进价提高20%,后再降20%出售,卖96元一台,问商家是盈是亏?”通过本问题,起到两个作用,一是引入课题,二是看待问题的方式不能只看表面而做出解答,必须用数量关系进行计算在做出判断。
2.练习,达到让学生熟悉公式的目的。
3.化解探究问题中的难点,把问题细化为6个小问题,便于小组分工合作,及时完成任务。
4.采用小组合作学习,充分展示学生探究问题的全过程。
5.在教学中能激励性的语言去鼓励学生大胆发言和展示,让学生在比较轻松和谐的课堂氛围中完成学习任务。
回顾本节课,我觉得在一些教学设计和教学过程中还存在着以下不足之处: 1.不能正确的把握各个环节的时间,为达到预期的学习效果。
学生的语言表达能力和概括能力也有待进一步的提高。
人教版七年级上册数学教案【3篇】
人教版七年级上册数学教案【优秀3篇】七年级上册初中数学教案篇一一:教材分析:1:教材所处的地位和作用:本课是在接一元一次方程的基础上,讲述一元一次方程的应用,让学生通过审题,根据应用题的实际意义,找出相等关系,列出有关一元一次方程,是本节的重点和难点,同时也是本章节的重难点。
本课讲述一元一次方程的应用题,为学生初中阶段学好必备的代数,几何的基础知识与基本技能,解决实际问题起到启蒙作用,以及对其他学科的学习的应用。
在提高学生的能力,培养他们对数学的兴趣以及对他们进行思想教育方面有独特的意义,同时,对后续教学内容起到奠基作用。
2:教育教学目标:(1)知识目标:(A)通过教学使学生了解应用题的一个重要步骤是根据题意找出相等关系,然后列出方程,关键在于分析已知未知量之间关系及寻找相等关系。
(B)通过和;差;倍;分的量与量之间的分析以及公式中有一个字母表示未知数,其余字母表示已知数的情况下,列出一元一次方程解简单的应用题。
(2)能力目标:通过教学初步培养学生分析问题,解决实际问题,综合归纳整理的能力,以及理论联系实际的能力。
(3)思想目标:通过对一元一次方程应用题的教学,让学生初步认识体会到代数方法的优越性,同时渗透把未知转化为已知的辩证思想,介绍我国古代数学家对一元一次方程的研究成果,激发学生热爱中国共产党,热爱社会主义,决心为实现社会主义四个现代化而学好数学的思想;同时,通过理论联系实际的方式,通过知识的应用,培养学生唯物主义的思想观点。
3:重点,难点以及确定的依据:根据题意寻找和;差;倍;分问题的相等关系是本课的重点,根据题意列出一元一次方程是本课的难点,其理论依据是关键让学生找出相等关系克服列出一元一次方程解应用题这一难点,但由于学生年龄小,解决实际问题能力弱,对理论联系实际的问题的理解难度大。
二:学情分析:(说学法)1:学生初学列方程解应用题时,往往弄不清解题步骤,不设未知数就直接进行列方程或在设未知数时,有单位却忘记写单位等。
人教版七年级上册数学优秀教案优秀5篇
人教版七年级上册数学优秀教案优秀5篇人教版七年级上数学教案篇一一、指导思想以课改理念:一切为了学生,为了学生的一切,为了一切学生的终身发展为指导,依据学校工作计划,加强学习,坚持以德育为核心,以教学为中心、二、学情分析本学期,我担任七年级1班和2班的数学,通过上学期的学习,学生基本上适应了初中数学的学习,学生在数学上的计算能力、阅读理解能力、实践探究能力、逻辑思维与逻辑推理能力得到了相应的发展,对图形及图形间的关系有了初步认识,但还有一部分同学没有达到应该达到的高度,另外学生自主拓展知识的能力几乎没有,学生不能自行拓展与加深自己的知识面、因此本学期在此方面应当加强!三、教材分析:本学期学习的章节:有《整式的运算》、《平行线与相交线》、《生活中的数据》、《概率》、《三角形》、《变量之间的关系》、《生活中的轴对称》、各章教学内容概述如下:《整式的运算》:整式是代数的基础性概念,代数式的运算(包括整式运算)属于代数的基本功,是解决问题和进行推理的需要,也构成进一步学习的基础、重点是探索整式运算的。
运算法则,理解整式运算的算理,推导乘法公式、难点是灵活运用整式运算法则解决一些实际问题,正确地运用乘法公式、《平行线与相交线》:两条直线被第三条直线所截,即所谓的三线八角问题和对平行线的讨论是平面几何中重要的议题,也是基础性的内容,有很大的教育价值、平行线的条件和平行线的特征是本章的重点,也是难点、《生活中的数据》:包括数和数据的表示两部分内容、在数的讨论中,使学生认识很小的单位分数(百万分之一)和有效数字的概念,体会其意义和作用、重点是会用科学记数法表示较小的数据,能按要求取近似数,能读懂统计图并能从中获取信息、难点是用生活中的事例感受和表述百万分之一的大小,培养数感和建立统计观念,正确掌握近似数、有效数字的特点及数位的关系;对数据信息的处理、加工的能力、《概率》:在七年级上册感受了可能性有大有小的基础上,进一步刻画可能性的大小,因而十分自然地给出了概率的概念,重点是理解概率的意义,并会计算一些事件发生的概率,能设计出符合要求的简单概率模型、难点是理解概率的意义,并会计算一些事件发生的概率,理解现实世界中不确定现象的特点,树立一定的随机观念、《三角形》:教材提供许多活动,给学生充分的实践和探索的空间,使他们通过探索和交流发现一些与三角形有关的结论,并应用它解决实际问题、重点是三角形的性质与三角形全等的判定、三角形的分类、难点是能进行简单的说理、《变量之间的关系》:把变量之间的关系列为单独一章,这是在学习了代数式求值和探索规律等地方渗透了变化的思想基础上引入的,为进一步学习函数概念进行铺垫、重点是在具体情景中从表格关系式、图像中获取信息找出自变量、因变量及其相互之间的关系、难点是通过观察和思考能用自己的语言表达,变量之间的关系以及正确把对变量之间关系进行分析和对变化趋势进行预测、《生活中的轴对称》:实际上是轴对称图形的认识和讨论,并通过轴对称图形来探索轴对称图形的性质、轴对称可以看成反射变换,也是一种几何变换、事实上,平移和旋转可以经过两次反射变换得到,因此它更基本、重点是研究轴对称及轴对称的基本性质、难点是从具体的现实情境中抽象出轴对称的过程、整个教材体现了如下特点:1、现代性更新知识载体,渗透现代数学思想方法,引入信息技术、2、实践性联系社会实际,贴近生活实际、3、探究性创造条件,为学生提供自主活动、自主探索的机会,获取知识技能、4、发展性面向全体学生,满足不同学生发展需要、5、趣味性文字通俗,形式活泼,图文并茂,趣味直观、四、教学目标1、让学生学到的知识技能是社会对青少年所需求的;2、要让学生知道这是自己终身学习和发展所需要的;3、教学要贴近生活实际让学生爱数学,自主的学教学;4、让学生掌握数学基本知识和技能、五、教学措施:1、认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作测试试卷,也让学生学会认真学习、2、兴趣是最好的老师、激发学生的兴趣,给学生介绍数学家,数学史,介绍相应的数学趣题,给出数学课外思考题,总之,要让学生对数学产生浓厚的兴趣、3、引导学生积极参与知识的构建,营造民主和谐、自主探究、合作交流、分享发现快乐的高效的学习课堂,让学生体会学习的快乐,享受学习的乐趣、4、在课堂教学中将严抓课堂纪律使学生形成自学遵守纪律的习惯,要求他们上课专心听讲,积极发言,作业认真完成、给时间让学生讨论问题,激发学生的学习兴趣,又可以增进同学之间的友谊、5、引导学生积极归纳解题规律,引导学生一题多解,多解归一,培养学生透过现象看本质,提高学生举一反三的能力,让学生处于一种思如泉涌的状态、6、要扭转学生的厌学现象、利用晚自习时间对他们进行辅导,在平时的课堂中多给予提问,给后进生树立信心、对优生要严格要求,端正他们的学习态度,抑制他们产生骄傲情绪、7、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念、8、把握学生思想动态,关心学生的学习、生活,利用课余时间多接触学生,及时与学生沟通,建立良好的师生关系、9、充分利用课堂教学时间,帮助学生理解教学重难点,训练考点、热点,强化记忆,形成能力,提高成绩、10、改进教学方法,用多媒体,实物创设情景进行教学,力求课堂的多样化、生活化和开放化,力争有更多的师生互动、生生互动的机会、11、精讲多练,在教学新知识的同时,注重旧知识的复习,使所学知识系统化,条理化,让学生在练习、测试中巩固提高,减少遗忘、12、在不加重学生负担的前提下,积极引导学生阅读课外书,促进学生自主、合作,探究学习,培养兴趣,提高能力、一三、加强培优补中促差生的个别辅导,因材施教,培养学生的个性特长、特别要多鼓励后进生,提高他们的学习兴趣,培养他们良好的学习习惯:14、坚持因材施教原则,逐步实施分层教学,向基础不同的学生提出相应的要求,力求使中下生吃得上,中等生吃得下,优生吃得饱,即课堂练习、作业及要求等进行分层、人教版七年级上数学教案篇二一、班情分析:本学期,我教授九4、7三个班,九(4)班有学生37人,九(7)班有学生42人,大部分同学学习习惯良好,学习积极性高,能较好地完成学习任务,进入初中有半年了,现对学生的学情做如下分析,希望能做到有的放矢,因材施教。
人教版初一上册数学教案优秀8篇
人教版初一上册数学教案优秀8篇七年级数学上册教案篇一教学目标:1、能将正方体、长方体、棱锥、棱柱展开成平面图形;并由它们的平面图形折叠成立体图形2、在操作活动中认识棱柱的某些特性;3、经历折叠、模型制作等活动,发展空间观念,积累数学活动经验;教学重点:通过活动认识归纳出棱柱的特性,并能初步感受到研究空间问题的思维方法教学难点:根据简单的立体图形判别平面图形;反之,根据平面图形判别立体图形。
教学过程:一、导入情境让学生自己出示现实生活中某些商品的包装盒(课前准备工作),制作这些纸盒,我们是先根据它们表面展开后图形的形状剪裁纸张,再折叠围成,从而引入课题——展开与折叠。
二、通过动手操作,加强对图形(棱柱)的感受,体会棱柱的性质做一做活动一:1、如图1所示的平面图形经过折叠能否围成一个棱柱?请同学们以同桌的`形式动手做做看。
2、操作完后,请学生展示他们制作的模型。
3、实践验证图1所示的平面图形经过折叠可以围成如图2所示的棱柱。
4、教师介绍棱柱的各部分名称。
数学七年级上册教学设计篇二教学目标1 知识与技能:理解平行与垂直是同一平面内两条直线的两种特殊位置关系,初步认识平行线与垂线。
2 过程与方法:在观察、操作、比较、概括中,经历探究平行线和垂线特征的过程,建立平行与垂直的概念。
3 情感态度与价值观:在活动中丰富学生活动经验,培养学生的空间观念及空间想象能力。
教学重难点1 教学重点:正确理解“相交”“互相平行”“互相垂直”等概念。
2 教学难点:理解平行与垂直概念的本质特征。
教学工具多媒体设备教学过程1 情境导入,画图感知1、学生想象在无限大的平面上两条直线的位置关系。
教师:摸一摸平放在桌面上的白纸,你有什么感觉?(1)学生交流汇报。
(2)像这样很平的面,我们就称它为平面。
(板书:平面)我们可以把白纸的这个面作为平面的一部分,请大家在这个平面上任意画一条直线,说一说,你画的这条直线有什么特点?(3)闭上眼睛想一想:白纸所在的平面慢慢变大,变得无限大,在这个无限大的平面上,直线也跟着不断延长。
人教版七年级数学上册教案(通用18篇)
人教版七年级数学上册教案〔通用18篇〕篇1:人教版七年级数学上册教案教学目的 1,掌握绝对值的概念,有理数大小比拟法那么.2,学会绝对值的计算,会比拟两个或多个有理数的大小.3.体验数学的概念、法那么来自于实际生活,浸透数形结合和分类思想.教学难点两个负数大小的比拟知识重点绝对值的概念教学过程(师生活动) 设计理念设置情境引入课题星期天黄老师从学校出发,开车去玩耍,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),假如规定向东为正,①用有理数表示黄老师两次所行的路程;②假如汽车每公里耗油0.15升,计算这天汽车共耗油多少升?学生考虑后,老师作如下说明:实际生活中有些问题只关注量的详细值,而与相反意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的间隔和汽油的价格,而与行驶的方向无关;观察并考虑:画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的间隔 .学生答复后,老师说明如下:数轴上表示数的点到原点的间隔只与这个点分开原点的长度有关,而与它所表示的数的正负性无关;一般地,数轴上表示数a的点与原点的间隔叫做数a的绝对值,记做|a|例如,上面的问题中|20|=20,|-10|=10显然,|0|=0 这个例子中,第一问是相反意义的量,用正负数表示,后一问的解答那么与符号没有关系,说明实际生活中有些问题,人们只需知道它们的详细数值,而并不关注它们所表示的意义.为引入绝对值概念做准备.并使学生体验数学知识与生活实际的联络.因为绝对值概念的几何意义是数形转化的典型模型,学生初次接触较难承受,所以配置此观察与考虑,为建立绝对值概念作准备.合作交流探究规律例1求以下各数的绝对值,并归纳求有理数a 的绝对有什么规律?、-3,5,0,+58,0.6要求小组讨论,合作学习.老师引导学生利用绝对值的意义先求出答案,然后观察原数与它的绝对值这两个数据的特征,并结合相反数的意义,最后总结得出求绝对值法那么(见教科书第15页).稳固练习:教科书第15页练习.其中第1题按法那么直接写出答案,是求绝对值的根本训练;第2题是对相反数和绝对值概念进展区分,对学生的分析^p 、判断才能有较高要求,要注意考虑的周密性,要让学生体会出不同说法之间的区别. 求一个数的绝时值的法那么,可看做是绝对值概念的一个应用,所以安排此例.学生能做的尽量让学生完成,老师在教学过程中只是组织者.本着这个理念,设计这个讨论.结合实际发现新知引导学生看教科书第16页的图,并答复相关问题:把14个气温从低到高排列;把这14个数用数轴上的点表示出来;观察并考虑:观察这些点在数轴上的位置,并考虑它们与温度的上下之间的关系,由此你觉得两个有理数可以比拟大小吗?应怎样比拟两个数的大小呢?学生交流后,老师总结:14个数从左到右的顺序就是温度从低到高的顺序:在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数.在上面14个数中,选两个数比拟,再选两个数试试,通过比拟,归纳得出有理数大小比拟法那么想象练习:想象头脑中有一条数轴,其上有两个点,分别表示数一100和一90,体会这两个点到原点的间隔 (即它们的绝对值)以及这两个数的大小之间的关系.要求学生在头脑中有明晰的图形. 让学生体会到数学的规定都来于生活,每一种规定都有它的合理性数在大小比拟法那么第2点学生较难掌握,要从绝对值的意义和数轴上的数左小右大这方面结合起来来理解,所以配置想象练习,加强数与形的想象。
最新人教版七年级数学上册全册教案-人教版七年级数学上册电子书
最新人教版七年级数学上册全册教案-人教版七年级数学上册电子书最新人教版七年级数学上册全册教案-人教版七年级数学上册电子书第一章有理数教材分析1.本单元结合学生的生活经验,列举了学生熟悉的用正、负数表示的实例,•从扩充运算的角度引入负数,然后再指出可以用正、负数表示现实生活中具有相反意义的量,使学生感受到负数的引入是来自实际生活的需要,体会数学知识与现实世界的联系.引入正、负数概念之后,接着给出正整数、负整数、正分数、负分数集合及整数、分数和有理数的概念.2.通过怎样用数简明地表示一条东西走向的马路旁的树、•电线杆与汽车站的相对位置关系引入数轴.数轴是非常重要的数学工具,它可以把所有的有理数用数轴上的点形象地表示出来,使数与形结合为一体,揭示了数形之间的内在联系,从而体现出以下4个方面的作用:(1)数轴能反映出数形之间的对应关系.(2)数轴能反映数的性质.(3)数轴能解释数的某些概念,如相反数、绝对值、近似数.(4)数轴可使有理数大小的比较形象化.3.对于相反数的概念,•从“数轴上表示互为相反数的两点分别在原点的两旁,且离开原点的距离相等”来说明相反数的几何意义,同时补充“零的相反数是零”作为相反数意义的一部分.4.正确理解绝对值的概念是难点.根据有理数的绝对值的两种意义,可以归纳出有理数的绝对值有如下性质:(1)任何有理数都有唯一的绝对值.(2)有理数的绝对值是一个非负数,即最小的绝对值是零.(3)两个互为相反数的绝对值相等,即│a│=│-a│.(4)任何有理数都不大于它的绝对值,即│a│≥a,│a│≥-a.(5)若│a│=│b│,则a=b,或a=-b或a=b=0.三维目标1.知识与技能(1)了解正数、负数的实际意义,会判断一个数是正数还是负数.(2)掌握数轴的画法,能将已知数在数轴上表示出来,•能说出数轴上已知点所表示的解。
(3)理解相反数、绝对值的几何意义和代数意义,•会求一个数的相反数和绝对值.(4)会利用数轴和绝对值比较有理数的大小.2.过程与方法经过探索有理数运算法则和运算律的过程,体会“类比”、“转化”、“数形结合”等数学方法.3.情感态度与价值观使学生感受数学知识与现实世界的联系,鼓励学生探索规律,并在合作交流中完善规范语言.重、难点与关键1.重点:正确理解有理数、相反数、绝对值等概念;会用正、•负数表示具有相反意义的量,会求一个数的相反数和绝对值.2.难点:准确理解负数、绝对值等概念.3.关键:正确理解负数的意义和绝对值的意义.课时划分1.1 正数和负数 2课时1.2 有理数 5课时1.3 有理数的加减法 4课时1.4 有理数的乘除法 5课时1.5 有理数的乘方 4课时第一章有理数(复习) 2课时1.1正数和负数第一课时三维目标知识与技能能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章有理数1.1正数和负数(2课时)第1课时正数和负数的概念了解正数和负数的产生;知道什么是正数和负数;理解正负数表示的量的意义;知道0既不是正数,也不是负数.重点正、负数的意义.难点1.负数的意义.2.具有相反意义的量.一、新课导入活动1:创设情境,导入新课教师投影展示教材第2页图片,让学生体验自然数的产生,分数的产生离不开生产和生活的需要,可以让学生自由发表意见和感想.二、推进新课活动2:体验负数的引入的必要性教师出示温度计:安排三名同学进行如下活动:研究手中的温度计上刻度的确切含义,一名同学手持温度计,一名同学说出其中三个刻度,一名同学在黑板上速记.教师根据活动情况,如果学生不能引入符号表示,教师也可参与活动,逐步引入负数.强调:0既不是正数,也不是负数.活动3:分组活动,感受正负数的意义各组派一名同学进行如下活动:按老师的指令表演,看哪一组获胜.1.老师说出指令:向前2步,向后3步,向前-2步,向后-3步,学生按老师的指令表演.2.各小组互相监督,派一名同学汇报完成的情况.活动4:深入理解正负数的意义,提高分析解决问题的能力师投影展示问题,讲解课本例题.例:1.一个月内,小明体重增加2千克,小华体重减少1千克,小强体重无变化,写出他们这个月的体重增长值.2.某年,下列国家的商品进出口总额比上一年的变化情况是:美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增长7.5%.写出这些国家这一年商品进出口总额的增长率.学生讨论后解决.活动5:练习与小结练习:教材第3页练习.小结:这堂课我们学习了哪些知识?你能说一说吗?活动6:作业习题1.1第4,5,6,8题本课是有理数的第一课时,引入负数是数的范围的一次重要扩充,学生头脑中关于数的结构要做重大调整(其实是一次知识的顺应过程),而负数相对于以前的数,对学生来说显得更抽象,因此,这个概念并不是一下就能建立的.为了接受这个新的数,就必须对原有的数的结构进行整理。
负数的产生主要是因为原有的数不够用了(不能正确简洁地表示数量),书本的例子或图片中出现的负数就是让学生去感受和体验这一点.第2课时正数、负数以及0的意义进一步理解正、负数及0的意义,熟练掌握正负数的表示方法,会用正、负数表示具有相反意义的量.重点进一步理解正、负数及0表示的量的意义.难点理解负数及0表示的量的意义.一、创设情境,复习引入师:在会计的账目本上我们会看到这样一些数据,如+1800元,—6932元,你知道它们是什么意思吗?你能再举出一些这样的例子吗?思考:“0”为什么既不是正数也不是负数呢?学生思考讨论,借助举例说明.二、推进新课活动1:尝试解释正负数的含义 教师出示问题1.学生举例说明正、负数在实际中的应用. 2.在地形图上表示某地的高度时,需要以海平面为基准(规定海平面的海拔为0).通常用正数表示高于海平面的某地的海拔,负数表示低于海平面的某地的海拔.珠穆朗玛峰的海拔为8844.43米,它表示什么含义?吐鲁番盆地的海拔为-155米,它表示什么含义?3.记录账目时,通常用正数表示收入款额,负数表示支出款额. 活动2:感受数0的含义.师:在前面的几个问题中出现的那些新数,我们把前面带有“-”的数叫做负数.并且为与负数相区别,我们把以前学过的0以外的数,例如3,2,0.5等,叫做正数,根据需要,有时在正数前面也加“+”,例如+2,+3,+0.5,+13就是2,3,0.5,13.一个数前面的“+”“-”叫做它的符号.教师说明数0的意义.0既不是正数,也不是负数,0是正数与负数的分界.0℃是一个确定的温度,海拔0表示海平面的平均高度.0的意义已不仅是表示“没有”.三、迁移应用,巩固提高例:举出几对具有相反意义的量,并分别用正、负数表示. 提示:相反意义的量有“上升”与“下降”,“前”与“后”,“高于”与“低于”,“得到”与“失去”,“收入”与“支出”等.这是一道开放性练习题,意在考查正负数与相反意义量的表示能力. 四、练习与小结练习:教材第4页练习题.小结:谈谈你对正数、负数和0的认识. 五、作业教材习题1.1第1,2,3,7题“数0既不是正数,也不是负数。
在引入负数后,0除了表示一个也没有以外,还是正数和负数的分界。
了解0的这一层意义,也有助于对正负数的理解,且对数的顺利扩张和有理数概念的建立都有帮助.教学中要让学生体验数学知识在实际中的合理应用,在体验中感悟和深化知识,通过实际例子的学习激发学生学习数学的兴趣.1.2 有理数 1.2.1 有理数1.理解有理数的意义.2.能把给出的有理数按要求分类.3.了解0在有理数分类中的作用.重点会把所给的各数填入它所属于的集合里.难点掌握有理数的两种分类.一、创设情境,导入新课师:同学们都已经知道除了我们小学里所学的数之外,还有另一种形式的数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.学生讨论.二、合作交流,解读探究师:你能列举出一些你已经学过的各类型的数吗?学生列举:3,5.7,-7,-9,-10,0,13,25,-356,-7.4,5.2,…师:你能说说这些数的特点吗? 学生回答,并相互补充.教师指出,我们把所有的这些数统称为有理数. 你能对以上各种类型的数作出分类吗?有理数⎩⎨⎧整数⎩⎪⎨⎪⎧正整数0负整数分数⎩⎨⎧正分数负分数说明:以上分类,若学生有因难,可加以引导:整数和分数统称为有理数,所以有理数可分为整数和分数两大类,那么整数又包含哪些数?分数呢?以上按整数和分数来分,那可不可以按性质(正数、负数)来分呢?试一试.有理数⎩⎨⎧正有理数⎩⎨⎧正整数正分数零负有理数⎩⎨⎧负整数负分数说明:让学生感受分类的方法和原则,统一标准,不重不漏. 三、应用迁移,巩固提高例1:把下列各数填入相应的集合内:3.,0,2008,-12,-7.88,10%,10.1,0.67,-89.正数集合 负数集合整数集合 分数集合例2:以下是两位同学的分类方法,你认为他们的分类结果正确吗?为什么?有理数⎩⎪⎨⎪⎧正有理数⎩⎨⎧正整数正分数负有理数⎩⎨⎧负整数负分数有理数⎩⎨⎧正数整数分数负数零四、练习与小结 练习:教材练习题.小结:谈一谈今天你的收获. 五、作业 习题1.2第1题本课在引入了负数后对所学过的数按照一定的标准进行分类,提出了有理数的概念.分类是数学中解决问题的常用手段,通过本节课的学习使学生了解分类的思想并进行简单的分类是数学能力的体现,本课具有开放性的特点,给学生提供了较大的思维空间,能促进学生积极主动地参加学习,亲自体验知识的形成过程,可避免直接进行分类所带来的枯燥性。
1.2.2 数轴1.了解数轴的概念,知道数轴的三要素,会画数轴.2.能将已知数在数轴上表示出来,能说出数轴上的已知点表示的数.重点数轴的概念.难点从直观认识到理性认识,建立数轴的概念,正确地画出数轴.一、创设情境,导入新课问题1:温度计是我们日常生活中用来测量温度的重要工具,你会读温度计吗?请你尝试读出温度计所表示的三个温度.出示温度计,并让同学读出任意的三个数.问题2:在一条东西向的马路上,有一个汽车站,汽车站东3 m和7.5 m处分别有一棵柳树和一棵杨树,汽车站西3 m和4.8 m处分别有一棵槐树和一根电线杆,试画图表示这一情境.(小组讨论,交流合作,动手操作)二、推进新课教师:由上述两个问题我们得到什么启发?你能用一条直线上的点表示有理数吗?让学生在讨论的基础上动手操作,在操作的基础上归纳出可以表示有理数的直线必须满足的条件.从而得出数轴的三要素:原点、正方向、单位长度.做游戏:教师准备一根绳子,请8个同学走上来,把位置调整为等距离,规定第3个同学为原点,由西向东为正方向,每个同学都有一个整数编号,请大家记住,现在请第一排的同学依次发出口令,口令为数字时,该数对应的同学要回答“到”;口令为该同学的名字时,该同学要报出他对应的“数字”,如果规定第4个同学为原点,游戏还能进行吗?问题:1.你能举出一些在现实生活中用直线表示数的实际例子吗?2.如果给你一些数,你能相应地在数轴上找出它们的准确位置吗?如果给你数轴上的点,你能读出它所表示的数吗?3.哪些数表示的点在原点的左边,哪些数表示的点在原点的右边,由此你会发现什么规律?4.每个数表示的点到原点的距离是多少?由此你会发现什么规律?(小组讨论,交流归纳)归纳出一般结论,教材第9页的归纳.三、练习与小结练习:首先布置学生阅读教材,重新梳理知识,然后完成教材练习.小结:谈一谈你对数轴的认识.四、布置作业习题1.2第2题.数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体现出了从感性认识,到理性认识,到抽象概括的认识规律。
1.2.3相反数1.了解相反数的意义.2.借助数轴理解相反数的概念,知道互为相反数的两个数在数轴上的位置关系.3.给出一个数,能说出它的相反数.重点相反数的概念.难点相反数的识别及理解.活动1:创设情境,导入新课相反数的概念的引出.演示活动:要一个学生向前走5步,向后走5步.提出问题:如果向前为正、向后为负,向前走5步,向后走5步各记作什么?学生回答.师:这位同学两次行走的距离都是5步,但两次的方向相反,这就决定这两个数的符号不同,像这样的两个数叫做互为相反数.活动2:探索互为相反数的意义师:画一数轴,在数轴上任意标出两点,使这两点表示的数互为相反数.(一个学生板演,其他学生自练) 师:这样的两个数即互为相反数,你能试述具备什么特点的两个数互为相反数吗? 学生讨论后回答.师指出:0的相反数是0. 出示投影1.在前面画的数轴上任意标出4个数,并标出它们的相反数. 2.分别说出9,-7,0,-0.2的相反数.3.指出-2.4,35,-1.7,1各是什么数的相反数?4.a 的相反数是什么?1题动手解决,2,3题学生抢答,4题学生讨论后回答. 提出问题:a 前面加“-”表示a 的相反数,-(+1.1)表示什么?-(-7)呢?-(-9.8)呢?它们的结果应是多少?学生活动:讨论、分析、回答. 活动3:巩固练习 练习:教材练习. 出示投影1.-(+4)是________的相反数,-(+4)=________.2.-(+15)是________的相反数,-(+15)=________.3.-(-7.1)是________的相反数,-(-7.1)=________. 4.-(-100)是________的相反数,-(-100)=________. 学生活动:思考后口答.学生回答后教师引导:在一个数前面加上“-”表示求这个数的相反数,如果在这些数前面加上“+”呢?学生讨论后回答. 活动4:小结与作业小结:谈谈你对相反数的认识.生:让学生回答,可以多让几位学生总结. 作业:教材课后练习.相反数的概念使有理数的各个运算法则容易表述,也揭示了两个特殊数的特征.这两个特殊数在数量上具有相同的绝对值,它们的和为零,在数轴上表示时,离开原点的距离相等等性质均有广泛的应用.所以本教学设计围绕数量和几何意义展开,渗透数形结合的思想.1.2.4 绝对值1.理解绝对值的意义,会求一个数的绝对值.2.会比较两个有理数的大小.重点1.对绝对值意义的理解.2.有理数大小的比较方法.3.借助数轴利用数形结合的思想方法,理解绝对值的概念及几何意义.难点1.利用绝对值比较两个负数的大小.2.会利用分类讨论的方法解决问题.一、创设情境,导入新课投影展示教材11页图片,指出:甲、乙两汽车从公路上的同一处地点出发,分别向东西方向行驶10千米,到达A ,B 两地, (1)若向东行驶记为正,此时甲、乙两车的位置如何表示? (2)此时甲车行驶的路程是多少?乙车行驶的路程是多少?(3)讨论,(2)的两个答案与(1)中的有何不同,怎样理解这两个答案? 二、推进新课 (1)绝对值的概念 师:结合图片指出,一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作│a │.这里a 可以是正数、负数、0.然后结合图片让学生回答│10│=________,│-10│________.练习:根据绝对值的定义说出下列各数的绝对值:-5,3.2,0,100,-2,-23,12.学生尝试解决.师进一步提出:以上各数中,①正数有哪几个,它们的绝对值和这个数有什么关系? ②负数有哪几个,它们的绝对值和这个数有什么关系? ③0的绝对值是多少?引导学生讨论并归纳出:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0. 师要求学生根据归纳的结果,结合教材11页内容,完成如下填空.│a │=⎩⎪⎨⎪⎧ (a >0)(a =0) (a <0)练习:教材11页练习1,2,3.(2)探究有理数大小的比较师:投影展示教材12页的思考. 提出问题:①这14个温度中最高的是________,最低的是________. ②你能将这七天中每天的最低气温按从低到高排列吗? ③你能在数轴上表示出这七天中的最低气温吗?④观察,你所排列的顺序和它们在数轴上的位置有什么联系? 生:独立解决①~③小题,然后同学间交流探讨第④小题并归纳出:从低到高的顺序对应于数轴上从左到右的顺序.师:数学中规定:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即在数轴上,左边的数小于右边的数.出示问题:根据以上规定用“大于”“小于”填空: 正数________0,0________负数,正数________负数. 生:独立完成然后同学间交流. 师:利用数轴用“>”“<”填空:-6________-5,-3________-2,-12________-23.观察结果并讨论,两个负数比较时,你发现了什么规律? 生:讨论并归纳结果,两个负数相比较,绝对值大的反而小. 师:出示教材例题,然后师生共同完成.说明:两个负数的比较,尤其是两个负分数相比较时,学生易出错,讲解例题时教师应当关注这一点. 观察例题,师生共同归纳:异号两数相比较时,只需要考虑它们的________,同号两数相比较时,要考虑它们的________. 三、练习与小结练习:教材13页练习. 小结:1.说一说你对绝对值的概念的认识. 2.谈一谈有理数大小的比较方法. 四、布置作业习题1.2第5,6,8,10.让学生在熟悉的日常生活情境中获得数学体验,不仅加深对绝对值的理解,更感受到学习绝对值概念的必要性和激发学习的兴趣.教材中数的绝对值概念是根据几何意义来定义的(其本质是将数转化为形来解释,是难点),然后通过练习归纳出求有理数的绝对值的规律,如果直接给出绝对值的概念,灌输知识的味道很浓,且太抽象,学生不易接受.1.3有理数的加减法1.3.1有理数的加法(2课时)第1课时有理数的加法1.通过实例,了解有理数加法的意义,会根据有理数的加法法则进行有理数的加法运算.2.能运用有理数的加法解决实际问题.重点了解有理数加法的意义,会根据有理数加法法则进行有理数的加法运算.难点有理数加法中的异号两数如何进行加法运算.活动1:创设情境,导入新课师:我们已学过正数的加法,但是在实际问题中还会遇到超出正数范围的加法情况,此时应该怎样进行计算呢?活动2:自主学习探究加法法则师:布置自学任务.自学教材16~18页的内容,归纳并识记有理数的加法法则.这一段大约用时15分钟,教师巡视指导,要关注学生能否正确理解加法法则的内容.有理数加法的法则是:1.同号两数相加,取相同的符号,并把绝对值相加;2.绝对值不同的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.3.一个数与0相加,仍得这个数.活动3:运用法则试一试身手:口答下列算式的结果:(1)(+4)+(+3);(2)(-4)+(-3);(3)(+4)+(-3);(4)(+3)+(-4);(5)(+4)+(-4);(6)(-3)+0;(7)0+(+2);(8)0+0.学生逐题口答后,师生共同得出.进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.教师:出示教材例1,师生共同完成,教师规范写出解答,注意解答过程中讲解对法则的应用.解:(1)(-3)+(-9)(两个加数同号,用加法法则的第1条计算)=-(3+9)(和取负号,把绝对值相加)=-12.(2)(-4.7)+3.9(两个加数异号,用加法法则的第2条计算)=-(4.7-3.9)(和取负号,用大的绝对值减去小的绝对值)=-0.8.教师点评法则运用过程中的注意点:先定符号,再算绝对值.下面请同学们计算下列各题以及教材第18页练习.(1)(-0.9)+(+1.5);(2)(+2.7)+(-3);(3)(-1.1)+(-2.9).学生练习,四位学生板演,教师巡视指导,学生交流,师生评价.本节课教师可根据时间的情况,多安排一些练习,以求通过练习达到巩固掌握知识的目的.活动4:小结与作业小结:谈一谈你对加法法则的认识,在加法计算中都应该注意哪些问题?作业:必做题,习题1.3第1,11题;选做题,习题1.3第12题.数学思想方法的渗透不可能立即见效,也不可能靠一朝一夕让学生理解、掌握,所以,本节课在这一方面主要是让学生感知研究数学问题的一般方法(分类、辩析、归纳、化归等).如在探究加法法则时,有意识地把各种情况先分为三类(同号、异号、一个数同0相加);在运用法则时,当和的符号确定以后,有理数的加法就转化为算术的加减法.第2课时相关运算律1.正确理解加法交换律,结合律,能用字母表示运算律的内容.2.能运用运算律较熟悉地进行加法运算.重点1.了解加法交换律、结合律的内容,运用运算律进行加法运算.2.运用有理数的加法解决问题.难点运用有理数的加法解决问题.一、创设情境,导入新课师投影出示练习,计算:①30+(-20);(-20)+30;②[8+(-5)]+(-4);8+[(-5)+(-4)].生独立完成后同学交流.二、推进新课(1)探索加法交换律,结合律师提出问题:观察比较第一组两题,比较它们有什么异同点.观察比较第二组两题,比较它们有什么异同点.学生讨论归纳,师生共同归纳得出加法交换律,结合律的内容,并用字母表示.(2)运用加法交换律,结合律解决问题师出示教材例2.先让学生按照从左到右的运算顺序进行计算.学生独立完成.师生共同分析运用加法交换律和结合律进行计算,教师要给出规范完整的过程,让学生看清楚听明白,从中体会认识运算律的作用.练习:教材20页练习.学生独立完成,然后进行交流.教师可安排学生板演,从中发现学生对运算律的理解和掌握程度.(3)运用有理数的加法解决问题师投影展示教材例3.学生独立解决.(一般来说学生会直接进行计算,不会想到第二种解法,在学生完成以后教师再提出以下问题)如果每袋小麦以90千克为标准,超过部分记为正,不足部分记为负数,那么10袋小麦对应的数分别为多少?它们的和是不是最终结果呢?学生讨论后解决.教师在这一过程中应当关注学生能否理解这种解法,学生在计算中能否自觉运用运算律解决问题.根据情况可对这一题和这种解法进行板书或讲解.三、课堂小结小结:1.谈谈你本节课的收获.2.在生活中你有没有遇到过类似例3中解法2解决问题的数学现象,你能举出一两个例子吗?四、布置作业习题1.3第2,8,9题.本节课在开始时先复习小学时学的加法运算律,然后提出问题:“我们如何知道加法的交换律在有理数范围内是否适用?”然后让学生通过一些实际例子来验证.尤其是鼓励学生多举一些数来验证,其意义首先是为了避免学生产生片面认识,以为从几个例子就可以得出普遍结论;其次也让学生了解结论的重要性.1.3.2有理数的减法(2课时)第1课时有理数的减法法则1.掌握有理的减法法则.2.能运用有理数的减法法则进行运算.重点有理数的减法法则.难点对有理数的减法法则的探究.一、创设情境,导入新课师:出示温度计,提出问题:1.你能从温度计上看出3℃比较-3℃高多少度吗?2.你能列式求这个结果吗?学生观察后先回答问题1得出结果,然后再列出算式3-(-3)=6.二、探究新知1.探究有理数的减法法则师:这里的计算用到了有理数的减法,通过观察我们知道了3-(-3)=6,而我们还知道3+(+3)=6.即3-(-3)=3+(+3).观察这个式子,你有什么发现?学生进行讨论,教师不必急于归纳.然后教师进一步提出问题.计算:9-8,9+(-8).15-7,15+(-7).观察比较计算的结果,你有什么发现?师生共同归纳有理数的减法法则.教师板书法则.2.尝试运用法则师出示教材例4.师生共同完成.在完成过程中教师示范前两题,给学生一个规范的过程,同时结合法则讲解法则的运用,剩下两题学生尝试完成,体验法则的运用.练习:教材23页练习.三.课堂小结小结:谈谈本节课的收获.思考:以前我们只能做被减数大于减数的减法运算,现在你能做被减数小于减数的减法运算吗?这时的差是一个什么数?四、布置作业作业:习题1.3第3,4,6题.本节在引入有理数减法时花了较多的时间,目的是让学生有充分的思考空间与时间进行探索。