初一数学上学期期中试卷3

合集下载

人教版七年级第一学期期中数学试卷及答案三

人教版七年级第一学期期中数学试卷及答案三

人教版七年级第一学期期中数学试卷及答案一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1.﹣2的相反数是()A.﹣2B.2C.±2D.2.随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000用科学记数法表示为()A.8.2×108B.82×108C.8.2×106D.82×1073.小明家冰箱冷冻室的温度为﹣4℃,调低5℃后的温度为()A.4℃B.﹣9℃C.﹣1℃D.9℃4.若一个数的绝对值是8,则这个数是()A.8B.﹣8C.8或﹣8D.5.下列说法正确的是()A.3πxy的系数是3B.3πxy的次数是3C.﹣xy2的系数是﹣D.﹣xy2的次数是26.下列运算正确的是()A.5xy﹣4xy=1B.3x2+2x3=5x5C.x2﹣x=x D.3x2+2x2=5x27.在简便运算时,把变形成最合适的形式是()A.24×(﹣100+)B.24×(﹣100﹣)C.24×(﹣99﹣)D.24×(﹣99+)8.下列式子是合并同类项的是()A.5a﹣7a=﹣2a B.|π﹣3|=π﹣3C.﹣(x﹣1)=﹣x+1D.﹣(﹣4)=49.下列表述不正确的是()A.某水果的单价是5元/kg,5a表示akg水果的金额B.长方形的长为a,宽为5,5a表示这个长方形的面积C.某校七年级有5个班,平均每个班有a名男生,5a表示全校七年级男生总数D.一个两位数的十位和个位数字分别为5和a,则这个两位数可以表示为5a10.实数x,y,z在数轴上的对应点的位置如图所示,若|z+y|<|x+y|,则A,B,C,D四个点中可能是原点的为()A.A点B.B点C.C点D.D点二、填空题:(本大题有6小题,11题6分,12-16每小题6分,共26分)11.计算:(1)﹣10+10=;(2)﹣2﹣(﹣7)=;(3)(﹣5)×(﹣3)=;(4)4÷(﹣8)=;(5)﹣1﹣|﹣9|=;(6)1÷×()2=.12.比较大小:﹣﹣(填“<”或“>”).13.已知单项式3a n b与﹣a2b m是同类项,则n﹣m=.14.多项式2a2c﹣33bc+4ab3﹣4的最高次项为,常数项为.15.如图,长方形纸片上画有两个完全相同的阴影长方形,那么剩余的非阴影长方形的周长为(用含a,b 的代数式表示).16.一组数:根据以上规律,这组数中的第2022个数是.三、解答题:(本大题有9题,共84分)17.在数轴上表示下列各数,并按从小到大的顺序用“<”号把这些数连接起来.1.5,﹣2,0,﹣.18.(20分)计算:(1)13+(﹣17)﹣(﹣5)﹣15;(2)(﹣8)×(﹣5)﹣60÷(﹣15);(3);(4)(﹣1)100+[﹣42﹣(1﹣32)×2].19.化简下列各式:(1)7xy2﹣8﹣4xy2+3;(2)(a2+2a)+(4a﹣3a2).20.先化简,再求值:已知A=2x﹣3y2+1,B=5x﹣4y2,求当x=,y=﹣2时A﹣2B的值.21.一出租车一天下午以某植物园南门为出发地在东西方向营运,向东走为正,向西走为负,行车里程(单位:km)依先后次序记录如下:+10,﹣6,﹣4,+4,﹣8,+6,﹣3,+3,﹣7,+10.(1)将最后一名乘客送到目的地,出租车离出发点多远?(2)若每千米收费2.5元,司机一个下午的营业额是多少?22.现要从A,B两地运送苹果到C,D两地,A、B两地果园分别有苹果60吨和40吨,C、D两地分别需要苹果70吨和30吨;已知从A、B到C、D的运价如下表:(1)若从A果园运到C地的苹果为x吨,则从A果园运到D地的苹果为吨,从A果园将苹果运往D 地的运输费用为元;到C地到D地A果园每吨12元每吨15元B果园每吨8元每吨10元(2)用含x的式子表示出总运输费.23.傻羊羊说:“我定义了一种新的运算,叫❈(加乘)运算.”然后它写出了一些按照❈(加乘)运算的运算法则进行运算的算式:(+5)❈(+2)=+7;(﹣3)❈(﹣5)=+8;(﹣3)❈(+4)=﹣7;(+5)❈(﹣6)=﹣11;0❈(+8)=8;(﹣6)❈0=6.智羊羊看了这些算式后说:“我知道你定义的❈(加乘)运算的运算法则了.”聪明的你也明白了吗?(1)计算(﹣2)❈[0❈(﹣1)]的值;(括号的作用与它在有理数运算中的作用一致)(2)我们知道加法和乘法都有交换律和结合律,这两种运算律在有理数的❈(加乘)运算中还适用吗?请你任选一个运算律,判断它在❈(加乘)运算中是否适用,并举例验证.(举一个例子即可)24.特殊值法,又叫特值法,是数学中通过设题中某个未知量为特殊值,从而通过简单的运算,得出最终答案的一种方法.例如:已知:a4x4+a3x3+a2x2+a1x+a0=6x,则:(1)取x=0时,直接可以得到a0=0;(2)取x=1时,可以得到a4+a3+a2+a1+a0=6;(3)取x=﹣1时,可以得到a4﹣a3+a2﹣a1+a0=﹣6.(4)把(2),(3)的结论相加,就可以得到2a4+2a2+2a0=0,结合(1)a0=0的结论,从而得出a4+a2=0.请类比上例,解决下面的问题:已知a6(x﹣1)6+a5(x﹣1)5+a4(x﹣1)4+a3(x﹣1)3+a2(x﹣1)2+a1(x﹣1)+a0=4x,求(1)a0的值;(2)a6+a5+a4+a3+a2+a1+a0的值;(3)a6+a4+a2的值.25.如图1.在数轴上点M表示的数为m,点N表示的数为n,点M到点N的距离记为MN.如图2:在数轴上点A表示数a,点B表示数b,点C表示数c,a是3的相反数,b是最大的负整数,c是多项式2x3y2﹣3x+1的次数.(1)a=,b=,c=;(2)若将数轴折叠,使得A点与C点重合,求与点B重合的点表示的数;(3)点A、B、C开始在数轴上运动,若点B以每秒1个单位长度的速度向左运动,同时,点A和点C分别以每秒2个单位长度和3个单位长度的速度向右运动,运动时间为t秒;探究:3BC﹣4AB的值是否随着时间的变化而改变?若变化,请说明理由;若不变,请求其值.参考答案一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确)1.﹣2的相反数是()A.﹣2B.2C.±2D.【分析】根据相反数的定义进行解答即可.解:由相反数的定义可知,﹣2的相反数是﹣(﹣2)=2.故选:B.【点评】本题考查的是相反数的定义,即只有符号不同的两个数叫做互为相反数.2.随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000用科学记数法表示为()A.8.2×108B.82×108C.8.2×106D.82×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.解:将8200000用科学记数法表示为:8.2×106.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.小明家冰箱冷冻室的温度为﹣4℃,调低5℃后的温度为()A.4℃B.﹣9℃C.﹣1℃D.9℃【分析】根据题意列出算式,利用减法法则计算,即可得到结果.解:根据题意列得:﹣4﹣5=﹣4+(﹣5)=﹣9(℃).故选:B.【点评】此题考查了有理数的减法法则,熟练掌握减法法则是解本题的关键.有理数减法法则:减去一个数,等于加上这个数的相反数.4.若一个数的绝对值是8,则这个数是()A.8B.﹣8C.8或﹣8D.【分析】根据绝对值的定义解决此题.解:8或﹣8的绝对值是8.故选:C.【点评】本题主要考查绝对值,熟练掌握绝对值的定义是解决本题的关键.5.下列说法正确的是()A.3πxy的系数是3B.3πxy的次数是3C.﹣xy2的系数是﹣D.﹣xy2的次数是2【分析】根据单项式的系数和指数的定义解答即可.解:A.系数应该是3π,不符合题意;B.π是数字,次数应该是2,不符合题意;C.正确,符合题意;D.次数应该是3,不符合题意.故选:C.【点评】本题考查了单项式的系数和指数的定义,注意π是数字.6.下列运算正确的是()A.5xy﹣4xy=1B.3x2+2x3=5x5C.x2﹣x=x D.3x2+2x2=5x2【分析】区分是否是同类项,在根据合并同类项的法则合并即可.解:A、5xy﹣4xy=xy,故本选项错误;B、不是同类项,不能合并,故本选项错误;C、不是同类项,不能合并,故本选项错误;D、3x2+2x2=5x2,故本选项正确;故选:D.【点评】本题考查了同类项和合并同类项等知识点的应用,同类项是指所含字母相同,并且相同字母的指数分别相等的项;同类项的系数相加,字母和字母的指数不变.7.在简便运算时,把变形成最合适的形式是()A.24×(﹣100+)B.24×(﹣100﹣)C.24×(﹣99﹣)D.24×(﹣99+)【分析】根据有理数的乘法分配律即可得出答案.解:∵﹣100+=﹣(100﹣)=﹣,∴根据有理数的乘法分配律,把变形成最合适的形式为24×(﹣100+)=﹣24×100+24×=,可以简便运算.故选:A.【点评】本题考查有理数的乘法,正确掌握运算法则是解题的关键.8.下列式子是合并同类项的是()A.5a﹣7a=﹣2a B.|π﹣3|=π﹣3C.﹣(x﹣1)=﹣x+1D.﹣(﹣4)=4【分析】根据合并同类项的法则、绝对值的性质、去括号法则分别对每一项进行分析,即可得出答案.解:A、5a﹣7a=﹣2a,合并同类项,故本选项正确,符合题意;B、|π﹣3|=π﹣3,不是合并同类项,是去绝对值,故本选项不符合题意;C、﹣(x﹣1)=﹣x+1,不是合并同类项,是去括号,故本选项不符合题意;D、﹣(﹣4)=4,不是合并同类项,是去括号,故本选项不符合题意.故选:A.【点评】本题考查了合并同类项的法则、绝对值的性质、去括号法则,注意:合并同类项时,把同类项的系数相加作为结果的系数,字母和字母的指数不变.9.下列表述不正确的是()A.某水果的单价是5元/kg,5a表示akg水果的金额B.长方形的长为a,宽为5,5a表示这个长方形的面积C.某校七年级有5个班,平均每个班有a名男生,5a表示全校七年级男生总数D.一个两位数的十位和个位数字分别为5和a,则这个两位数可以表示为5a【分析】根据代数式表示实际意义的方法分别判断每个选项即可得.解:A.某水果的单价是5元/kg,5a表示akg水果的金额,正确,不符合题意;B.长方形的长为a,宽为5,5a表示这个长方形的面积,正确,不符合题意;C.某校七年级有5个班,平均每个班有a名男生,5a表示全校七年级男生总数,正确,不符合题意;D.一个两位数的十位和个位数字分别为5和a,则这个两位数可以表示为50+a,原表述错误,符合题意;故选:D.【点评】本题主要考查代数式,解题的关键是掌握代数式的书写规范和实际问题中数量间的关系.10.实数x,y,z在数轴上的对应点的位置如图所示,若|z+y|<|x+y|,则A,B,C,D四个点中可能是原点的为()A.A点B.B点C.C点D.D点【分析】分四种情况讨论,利用数形结合思想可解决问题.解:若点A为原点,可得0<x<y<z,且|x|<|y|<|z|,则|z+y|>|x+y|,与题意不符合,故选项A不符合题意;若点B为原点,可得x<0<y<z,且|x|<|y|<|z|,|z+y|>|z|,|x+y|<|y|,则|z+y|>|x+y|,不符合题意,故选项B不符合题意;若点C为原点,可得x<0<y<z,且|y|<|x|<|z|,|x+y|<|x|,|z+y|>|z|,则|z+y|>|x+y|,不符合题意,故选项C不若点D为原点,可得x<y<0<z,且|z|<|y|<|x|,|z+y|<|y|,|x+y|>|x|,则|z+y|<|x+y|,与题意符合,故选项D符合题意;故选:D.【点评】本题考查了数轴.由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.二、填空题:(本大题有6小题,11题6分,12-16每小题6分,共26分)11.计算:(1)﹣10+10=0;(2)﹣2﹣(﹣7)=5;(3)(﹣5)×(﹣3)=15;(4)4÷(﹣8)=;(5)﹣1﹣|﹣9|=﹣10;(6)1÷×()2=1.【分析】(1)利用有理数的加法法则进行运算即可;(2)利用有理数的减法的法则进行运算即可;(3)利用有理数的乘法的法则进行运算即可;(4)利用有理数的除法的法则进行运算即可;(5)先算绝对值,再算减法即可;(6)先算乘方,除法转为乘法,再算乘法即可.解:(1)﹣10+10=10﹣10=0;故答案为:0;(2)﹣2﹣(﹣7)=﹣2+7=7﹣2=5;故答案为:5;(3)(﹣5)×(﹣3)=5×3=15;(4)4÷(﹣8)=4×(﹣)=﹣;故答案为:;(5)﹣1﹣|﹣9|=﹣1﹣9=﹣(1+9)=﹣10;故答案为:﹣10;(6)1÷×()2=1×=1,故答案为:1.【点评】本题主要考查有理数的混合运算,解答的关键是对相应的运算法则的掌握.12.比较大小:﹣>﹣(填“<”或“>”).【分析】根据两负数比较大小绝对值大的反而小,可得答案.解:|﹣|=,|﹣|=,﹣,故答案为:>.【点评】本题考查了有理数比较大小,两负数比较大小绝对值大的反而小.13.已知单项式3a n b与﹣a2b m是同类项,则n﹣m=1.【分析】直接利用同类项的定义得出m,n的值,进而得出答案.解:∵单项式3a n b与﹣a2b m是同类项,∴n=2,m=1,∴n﹣m=2﹣1=1.故答案为:1.【点评】此题主要考查了同类项,正确把握同类项的定义是解题关键.14.多项式2a2c﹣33bc+4ab3﹣4的最高次项为4ab3,常数项为﹣4.【分析】利用最高次项和常数项的定义分别得出答案.解:多项式2a2c﹣33bc+4ab3﹣4的最高次项为4ab3,常数项为﹣4.故答案为:4ab3,﹣4.【点评】此题主要考查了多项式的有关定义,正确把握相关定义是解题的关键.15.如图,长方形纸片上画有两个完全相同的阴影长方形,那么剩余的非阴影长方形的周长为4b﹣2a(用含a,b的代数式表示).【分析】直接利用已知图形边长进而表示出各边长,即可得出答案.解:由题意可得,非阴影长方形的周长为:2(b﹣a)+2b=4b﹣2a.故答案为:4b﹣2a.【点评】此题主要考查了列代数式,正确表示出各边长是解题关键.16.一组数:根据以上规律,这组数中的第2022个数是.【分析】观察数列可发现:分母为1的分数有1个,分母为2的数有3个,分母为3的数有5个,可得出:分母为n的分数有(2n﹣1)个,且正负数的个数都是(n﹣1)个,互为相反数,则前n组数的个数为:1+3+5+…+(2n﹣1)=n2,由此即可解决问题.解:观察数列可发现:分母为1的分数有1个,分母为2的数有3个,分母为3的数有5个,∴可得出:分母为n的分数有(2n﹣1)个,∴前n组数的个数为:1+3+5+…+(2n﹣1)=n2,∵452=2025,442=1936,∴第2022个数是以45为分母,∵2025﹣2023=2,∴第2022个数为:.故答案为:.【点评】本题主要考查数字的变化规律,解答的关键是由所给的数总结出存在的规律.三、解答题:(本大题有9题,共84分)17.在数轴上表示下列各数,并按从小到大的顺序用“<”号把这些数连接起来.1.5,﹣2,0,﹣.【分析】首先根据在数轴上表示数的方法,在数轴上表示出各数;然后根据当数轴方向朝右时,右边的数总比左边的数大,用“<”号把这些数连接起来即可.解:在数轴上表示下列各数如下:故.【点评】本题主要考查的是比较有理数的大小,熟练掌握比较有理数大小的方法是解题的关键.18.(20分)计算:(1)13+(﹣17)﹣(﹣5)﹣15;(2)(﹣8)×(﹣5)﹣60÷(﹣15);(3);(4)(﹣1)100+[﹣42﹣(1﹣32)×2].【分析】(1)利用有理数的加减运算的法则进行求解即可;(2)先算乘法与除法,再算加法即可;(3)利用乘法的分配律进行运算即可;(4)先算乘方,再算括号里的运算,接着算乘法,最后算加法即可.解:(1)13+(﹣17)﹣(﹣5)﹣15=﹣4+5﹣15=1﹣15=﹣14;(2)(﹣8)×(﹣5)﹣60÷(﹣15)=40+4=44;(3)=×(﹣36)﹣×(﹣36)+×(﹣36)=﹣12+20﹣33=﹣25;(4)(﹣1)100+[﹣42﹣(1﹣32)×2]=1+[﹣16﹣(1﹣9)×2]=1+(﹣16+8×2)=1+(﹣16+16)=1+0=1.【点评】本题主要考查有理数的混合运算,解答的关键是对相应的运算法则的掌握.19.化简下列各式:(1)7xy2﹣8﹣4xy2+3;(2)(a2+2a)+(4a﹣3a2).【分析】(1)直接合并同类项,进而得出答案;(2)直接去括号,再合并同类项得出答案.解:(1)7xy2﹣8﹣4xy2+3=3xy2﹣5;(2)(a2+2a)+(4a﹣3a2)=a2+2a+4a﹣3a2=6a﹣2a2.【点评】此题主要考查了整式的加减,正确合并同类项是解题关键.20.先化简,再求值:已知A=2x﹣3y2+1,B=5x﹣4y2,求当x=,y=﹣2时A﹣2B的值.【分析】利用整式的加减法的法则进行化简,再把相应的值代入运算即可.解:∵A=2x﹣3y2+1,B=5x﹣4y2,∴A﹣2B=2x﹣3y2+1﹣2(5x﹣4y2)=2x﹣3y2+1﹣10x+8y2=﹣8x+5y2+1,当x=,y=﹣2时,原式=﹣8×+5×(﹣2)2+1=﹣4+20+1=17.【点评】本题主要考查整式的加减,解答的关键是对相应的运算法则的掌握与运用.21.一出租车一天下午以某植物园南门为出发地在东西方向营运,向东走为正,向西走为负,行车里程(单位:km)依先后次序记录如下:+10,﹣6,﹣4,+4,﹣8,+6,﹣3,+3,﹣7,+10.(1)将最后一名乘客送到目的地,出租车离出发点多远?(2)若每千米收费2.5元,司机一个下午的营业额是多少?【分析】(1)把行驶记录相加,再根据正负数的意义解答即可;(2)求出行驶记录绝对值的和,然后乘以每千米收费2.5元即可求解.解:(1)10﹣6﹣4+4﹣8+6﹣3+3﹣7+10=5,∴将最后一名乘客送到目的地,出租车离出发点5km远;(2)10+|﹣6|+|﹣4|+4+|﹣8|+6+|﹣3|+3+|﹣7|+10=61(km),司机下午营业额为:61×2.5=152.5(元),∴司机一个下午的营业额是152.5元.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.22.现要从A,B两地运送苹果到C,D两地,A、B两地果园分别有苹果60吨和40吨,C、D两地分别需要苹果70吨和30吨;已知从A、B到C、D的运价如下表:(1)若从A果园运到C地的苹果为x吨,则从A果园运到D地的苹果为(60﹣x)吨,从A果园将苹果运往D地的运输费用为(x﹣30)元;到C地到D地A果园每吨12元每吨15元B果园每吨8元每吨10元(2)用含x的式子表示出总运输费.【分析】(1)由从A果园运到C地的苹果为x吨,知从A果园运到D地的苹果为(60﹣x)吨,从B果园运到C地的苹果为(70﹣x)吨,运到D地的苹果为(x﹣30)吨,据此可得答案;(2)用运送到C、D的吨数分别乘以对应单价,求和即可得出答案.解:(1)∵从A果园运到C地的苹果为x吨,∴从A果园运到D地的苹果为(60﹣x)吨,从B果园运到C地的苹果为(70﹣x)吨,运到D地的苹果为(x ﹣30)吨,故答案为:(60﹣x),(x﹣30);(2)总运输费为12x+15(60﹣x)+8(70﹣x)+10(x﹣30)=12x+900﹣15x+560﹣8x+10x﹣300=﹣x+1160(元).【点评】本题考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系,理解A、B两地提供的吨数就是C、D两地缺少的数量是关键.23.傻羊羊说:“我定义了一种新的运算,叫❈(加乘)运算.”然后它写出了一些按照❈(加乘)运算的运算法则进行运算的算式:(+5)❈(+2)=+7;(﹣3)❈(﹣5)=+8;(﹣3)❈(+4)=﹣7;(+5)❈(﹣6)=﹣11;0❈(+8)=8;(﹣6)❈0=6.智羊羊看了这些算式后说:“我知道你定义的❈(加乘)运算的运算法则了.”聪明的你也明白了吗?(1)计算(﹣2)❈[0❈(﹣1)]的值;(括号的作用与它在有理数运算中的作用一致)(2)我们知道加法和乘法都有交换律和结合律,这两种运算律在有理数的❈(加乘)运算中还适用吗?请你任选一个运算律,判断它在❈(加乘)运算中是否适用,并举例验证.(举一个例子即可)【分析】(1)根据❈(加乘)运算的运算法则,以及有理数的混合运算的运算方法,求出(﹣2)❈[0❈(﹣1)]的值是多少即可.(2)加法有交换律和结合律,这两种运算律在有理数的❈(加乘)运算中还适用,并举例验证加法交换律适用即可.解:(1)(﹣2)❈[0❈(﹣1)]=(﹣2)❈1=﹣3;(2)加法交换律和加法结合律在有理数的❈(加乘)运算中还适用.由❈(加乘)运算的运算法则可知:(+5)❈(+2)=+7,(+2)❈(+5)=+7,所以(+5)❈(+2)=(+2)❈(+5),即加法交换律在有理数的❈(加乘)运算中还适用.【点评】此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算,注意加法运算律的应用.24.特殊值法,又叫特值法,是数学中通过设题中某个未知量为特殊值,从而通过简单的运算,得出最终答案的一种方法.例如:已知:a4x4+a3x3+a2x2+a1x+a0=6x,则:(1)取x=0时,直接可以得到a0=0;(2)取x=1时,可以得到a4+a3+a2+a1+a0=6;(3)取x=﹣1时,可以得到a4﹣a3+a2﹣a1+a0=﹣6.(4)把(2),(3)的结论相加,就可以得到2a4+2a2+2a0=0,结合(1)a0=0的结论,从而得出a4+a2=0.请类比上例,解决下面的问题:已知a6(x﹣1)6+a5(x﹣1)5+a4(x﹣1)4+a3(x﹣1)3+a2(x﹣1)2+a1(x﹣1)+a0=4x,求(1)a0的值;(2)a6+a5+a4+a3+a2+a1+a0的值;(3)a6+a4+a2的值.【分析】(1)观察等式可发现只要令x=1即可求出a(2)观察等式可发现只要令x=2即可求出a6+a5+a4+a3+a2+a1+a0的值.(3)令x=0即可求出等式①,令x=2即可求出等式②,两个式子相加即可求出来.解:(1)当x=1时,a0=4×1=4;(2)当x=2时,可得a6+a5+a4+a3+a2+a1+a0=4×2=8;(3)当x=0时,可得a6﹣a5+a4﹣a3+a2﹣a1+a0=0①,由(2)得得a6+a5+a4+a3+a2+a1+a0=4×2=8②;①+②得:2a6+2a4+2a2+2a0=8,∴2(a6+a4+a2)=8﹣2×4=0,∴a6+a4+a2=0.【点评】本题主要考查代数式求值问题,合理理解题意,整体思想求解是解题的关键.25.如图1.在数轴上点M表示的数为m,点N表示的数为n,点M到点N的距离记为MN.如图2:在数轴上点A表示数a,点B表示数b,点C表示数c,a是3的相反数,b是最大的负整数,c是多项式2x3y2﹣3x+1的次数.(1)a=﹣3,b=﹣1,c=5;(2)若将数轴折叠,使得A点与C点重合,求与点B重合的点表示的数;(3)点A、B、C开始在数轴上运动,若点B以每秒1个单位长度的速度向左运动,同时,点A和点C分别以每秒2个单位长度和3个单位长度的速度向右运动,运动时间为t秒;探究:3BC﹣4AB的值是否随着时间的变化而改变?若变化,请说明理由;若不变,请求其值.【分析】(1)根据相反数,负整数的定义和多项式的次数的定义解答即可;(2)由题意容易得出折叠点表示的数是1,再根据1与﹣1的距离可得答案;(3)分别用含t的式子表示出BC与AB,再进行计算即可.解:(1)∵a是3的相反数,b是最大的负整数,c是多项式2x3y2﹣3x+1的次数,∴a=﹣3,b=﹣1,c=5,故答案为:﹣3,﹣1,5;(2)当﹣3与5重合时,折叠点是1,∴1﹣(﹣1)=2,1+2=3,故与点B重合的点表示的数是3;(3)A:﹣3﹣2t,B:﹣1﹣t,C:5+3t,∴BC=(5+3t)﹣(﹣1﹣t)=6+4t,AB=(﹣1﹣t)﹣(﹣3﹣2t)=2+t,∴3BC﹣4AB=3(6+4t)﹣4(2+t)=10+8t;答:3BC﹣4AB=10+8t,值随着时间的变化而改变.【点评】此题考查了列代数式,数轴,掌握数轴上两点之间的距离求解方法是解决问题的关键.。

湖南省长沙市华益中学2023-2024学年上学期七年级期中考试数学试卷

湖南省长沙市华益中学2023-2024学年上学期七年级期中考试数学试卷

23年秋初一华益中学期中考试数学试卷 一、选择题 (在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本大题共10个小题,每小题3分,共30分) −1.(3分)2的相反数是()A .2−B .2C .21D . −21 2.(3分)2023年我国高校毕业生近1160万人,教育部等七部门拟联合开展促就业的“国 聘行动”.数据“1160万”用科学记数法表示为()1.1610⨯A .81.1610⨯B .711.610⨯C .6 0.11610⨯D .83.(3分)下列各组数中,相等的一组是()−−A .(2)−−与|2|(1)−−12B .与2(2)−C .3−2与3D .322与 32()2 a b +<4.(3分)若0 ab <,0,则下列说法正确的是()A .a ,b 同号B . a ,b 异号且负数的绝对值较大C .a ,b 异号且正数的绝对值较大D .以上均有可能5.(3分)关于整式,下列说法正确的是() A .x y 2的次数是2B .0不是单项式3πC .mn 的系数是3x x −−D .2332是三次三项式−2a b n 6.(3分)若5 5a b 32m n 与+的差仍是单项式,则m n的值是()A .2B .0 −C .1D .17.(3分)下列各式运用等式的性质变形,错误的是() a b =A .若,则+=+a b =B a c b c .若,则=c ca ba b =C .若,则=a b =D ac bc .若,则−=−a c b c −1A 8.(3分)如果数轴上的点对应的数为,点B 与 A 点相距3个单位长度,则点 B 所对 应的有理数为()A .2−B .4−C .2或4−D .2或49.(3分)某同学在解关于x x mx 的方程−=+313时,把m x =看错了,结果解得4,则该同m 学把看成了()−A .2B .2C .34D .27 10.(3分)《九章算术》是中国传统数学最重要的著作之一.书中记载:“今有人共买鸡,人出八,盈十一;人出五,不足十三.问人数几何?”意思是:“有若干人共同出钱买鸡,如果每人出八钱,那么多了十一钱;如果每人出五钱,那么少了十三钱.问:共有几个人?”设共有x 个人共同出钱买鸡,则下面所列方程正确的是() x x A .−=+x x B 811513.+=−811513x x C .−=+x x D 511813.+=−8(11)5(13)二、填空题 (本大题共6个小题,每小题3分,共18分)11.(3分)某地上午气温为︒16C ,下午上升︒3C ,到半夜又下降︒ 20C,则该地半夜的气温为. 12.(3分)用“四舍五入”法将3.896精确到0.01,所得到的近似数为.13.(3分)已知a ,b a b ++−=满足|3|(2)02+,则a b ()2023的值是.14.(3分)已知轮船在逆水中前进的速度是a 千米时,水流的速度是5/千米 /时,则这轮船在顺水中前进的速度是/千米时. a a 2+−=1015.(3分)已知,则代数式 a a 2222021++的值是.16.(3分)若k x −−=||4k (5)60− 是关于x的一元一次方程,则k 的值为.三、解答题 (本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题6分,第22、23题每17.(6分)−+−−⨯−2|23|2(1)32023.18.(6分)解方程:x x =−+−6312152.19.(6分)先化简,再求值:+−−−m m n m n 2(32)6()22,其中=−m 3,=n 3.20.(8分)(1)已知有理数a ,b ,c 在数轴上对应的点如图所示,化简:−+−−−b a a c c b ||||||; (2)已知=−A x x 532,=−+B x x 1162,求当=x 1时,求−A B 的值.21.(8分)如图,在长为++a ab 12,宽为−a ab 22的长方形纸板上裁去一个边长为b 的正方形.(1)求剩余纸板的周长C (用含a ,b 的代数式表示); (2)当=a 3,=b 1时,求C 的值.22.(9分)李军大学毕业后返乡创业,成为一名电商老板,把村里农民的苹果放在网上销售,计划每天销售2000千克,实际每天的销售量与计划销售量相比有增减,超过计划量记为正,不足计划量记为负.下表是李军某一周苹果的销售情况:(1)李军该周销售苹果最多的一天比最少的一天多销售多少千克? (2)李军该周实际销售苹果的总量是多少千克?(3)若李军按5元/千克收购,按9.5元/千克进行苹果销售,运费及包装费等平均为2.5元/千克,则李军该周销售苹果一共收入多少元?23.(9分)已知关于x 的整式=+−+A x ax x 3322,整式=+−+B x ax x 24222,若a 是常数,且−A B 3不含x 的一次项. (1)求a 的值;(2)若b 为整数,关于x 的一元一次方程+−=bx x 230的解是整数,求+a b 5的值.24.(10分)1990年,著名社会学家费孝通先生总结出了“各美其美,美人之美,美美与共,天下大同”这一处理不同文化关系的十六字“箴言”.在数学上,我们不妨约定:若关于x 的方程110a x b +=与220a x b +=同时满足21221||()0a b a b −+−=,则称方程110a x b +=与220a x b +=互为“美美与共”方程.根据该约定,回答下列问题.(1)已知关于x 的方程20x m −=与0ax b +=互为“美美与共”方程,且方程20x m −=的解为12,则m = ,a = ,b = ; (2)是否存在有理数k ,使关于x 的方程30x k +=与其“美美与共”方程的解都是整数,若存在,求出k 的值,若不存在,请说明理由;(3)若方程12(21)x x −=−的解也是方程0ax b +=的解,求方程0ax b +=的“美美与共”方程的解.25.(10分)如图,在长沙市华益中学迎面50米接力比赛中,设运动时间为t秒,甲班的A 同学在数轴上位置C拿到最后一棒接力棒时,记为0t=,此时乙班的B同学已经位于数轴上数10的位置,A同学以每秒8米向左运动,B同学以每秒5米向左运动,两位同学到达D点立即停止运动.(1)当0t=时,A、B同学相距米;当1t=时,A、B同学在数轴上所表示的数为、.(2)①若t秒后A同学恰好追上B同学,求t;②当A同学到达终点D后,B同学还要经过多少秒到达D点.③分别取线段AC、BD中点为E、F,若在点A、B运动期间,4mEF nDA−始终保持不变(其中m,n为常数),求mn的值.23年秋初一华益中学期中考试数学试卷参考答案与试题解析 一、选择题 (在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本大题共10个小题,每小题3分,共30分)−1.(3分)2的相反数是()A .2−B .2C .21D . −21 【分析】根据相反数的定义进行判断即可.−【解答】解:2的相反数是2,故选:A .【点评】本题考查相反数,掌握相反数的定义是正确判断的前提.2.(3分)2023年我国高校毕业生近1160万人,教育部等七部门拟联合开展促就业的“国聘行动”.数据“1160万”用科学记数法表示为()1.1610⨯A .81.1610⨯B .711.610⨯C .60.11610⨯D .8a ⨯10【分析】将一个数表示成n a 的形式,其中1||10<,n 为整数,这种记数方法叫做科学记数法,据此即可得出答案.【解答】解:1160万 ==⨯11600000 1.16107,故选:B .【点评】本题考查科学记数法表示较大的数,科学记数法是基础且重要知识点,必须熟练掌握.3.(3分)下列各组数中,相等的一组是()−−A .(2)−−与|2|−1B .2(1)−与2(2)−C .3−2与3D .322与32()2【分析】根据有理数的乘方运算法则、绝对值的意义可进行求解.【解答】解:A −−=、(2)2−−=−,|2|2 −−,所以(2)−−与|2|不相等不符合题意;−=−11B 、2 −=,(1)12(1)−2,所以与−12不相等不符合题意;−=−C 、(2)83−=−28,3(2)−,所以3−23与相等符合题意;D 、3924()2=,所以322与23()2不相等不符合题意;C 故选:.【点评】本题主要考查有理数的乘方运算,熟练掌握有理数的乘方运算法则是解题的关键. 4.(3分)若0a b +<,0ab <,则下列说法正确的是( ) A .a ,b 同号B .a ,b 异号且负数的绝对值较大C .a ,b 异号且正数的绝对值较大D .以上均有可能【分析】根据题意得知a 、b 异号,并且负数的绝对值较大,挖掘出这一条件后,再对四个选项逐一分析.【解答】解:0ab <,a ∴、b 异号,又0a b +<,∴负数的绝对值较大, 根据这一条件判断:A 、C 、D 选项错误;B 选项正确; 故选:B .【点评】本题考查了有理数的除法,两个不等于零的数相乘,两数相乘,同号为正,异号为负,并把绝对值相乘.5.(3分)关于整式,下列说法正确的是( ) A .2x y 的次数是2 B .0不是单项式C .3mn π的系数是3D .3223x x −−是三次三项式【分析】根据单项式的系数与单项式的次数的定义对A 、C 进行判断;根据单独的一个数字或字母也是单项式对B 进行判断;根据多项式的次数和项数的定义对D 进行判断. 【解答】解:A 、2x y 的次数是3,所以A 选项错误; B 、数字0是单项式,所以B 选项错误; C 、3mn π的系数是3π,所以C 选项错误;D 、3223x x −−是三次三项式,所以D 选项正确.故选:D .【点评】本题考查了单项式:由数与字母的积或字母与字母的积所组成的代数式叫做单项式(单独的一个数字或字母也是单项式).单项式中的数字因数叫做这个单项式的系数.所有字母的指数之和叫做这个单项式的次数.也考查了多项式的定义. 6.(3分)若52n a b −与325m n a b +的差仍是单项式,则n m 的值是( ) A .2B .0C .1−D .1【分析】由52n a b −与325m n a b +的差仍是单项式知52n a b −与325m n a b +是同类项,据此可得3n =,25m n +=,解之求出m 的值,代入计算可得.【解答】解:52n a b −与325m n a b +的差仍是单项式,52n a b ∴−与325m n a b +是同类项,3n ∴=,25m n +=, 1m ∴=,则311n m ==,故选:D .【点评】本题主要考查同类项,所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.7.(3分)下列各式运用等式的性质变形,错误的是( ) A .若a b =,则a c b c +=+ B .若a b =,则a bc c=C .若a b =,则ac bc =D .若a b =,则a c b c −=−【分析】根据等式的性质,可得答案.【解答】解:A 、若a b =,则a c b c +=+,故A 不符合题意; B 、c 等于零时,除以c 无意义,故B 符合题意; C 、若a b =,则ac bc =,故C 不符合题意;D 、若a b =,则a c b c −=−,故D 不符合题意;故选:B .【点评】本题考查了等式的性质,熟记等式的性质是解题关键.8.(3分)如果数轴上的点A 对应的数为1−,点B 与A 点相距3个单位长度,则点B 所对应的有理数为( ) A .2B .4−C .2−或4D .2或4−【分析】考虑在A 点左边和右边两种情形解答问题.【解答】解:在A 点左边与A 点相距3个单位长度的点所对应的有理数为4−; 在A 点右边与A 点相距3个单位长度的点所对应的有理数为2. 故选:D .【点评】本题考查了数轴上两点间的距离,解题的关键是注意分类讨论.9.(3分)某同学在解关于x 的方程313x mx −=+时,把m 看错了,结果解得4x =,则该同学把m 看成了( ) A .2−B .2C .43D .72【分析】将4x =代入313x mx −=+中解得m 的值即可.x =【解答】解:将4x mx 代入−=+313中可得−=+m 12143m =,解得:2,B 故选:. 【点评】本题考查解一元一次方程,熟练掌握解方程的方法是解题的关键.10.(3分)《九章算术》是中国传统数学最重要的著作之一.书中记载:“今有人共买鸡,人出八,盈十一;人出五,不足十三.问人数几何?”意思是:“有若干人共同出钱买鸡,如果每人出八钱,那么多了十一钱;如果每人出五钱,那么少了十三钱.问:共有几个人?”设共有x 个人共同出钱买鸡,则下面所列方程正确的是() x x A .−=+x x B 811513.+=−811513x x C .−=+x x D 511813.+=−8(11)5(13)x 【分析】设有个人共同出钱买鸡,根据买鸡需要的总钱数不变,即可得出关于x 的一元一次方程,此题得解.【解答】解:设有x x x 个人共同出钱买鸡,根据题意得:−=+811513.故选:A .【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.二、填空题 (本大题共6个小题,每小题3分,共18分)11.(3分)某地上午气温为︒16C ,下午上升︒3C ,到半夜又下降︒ 20C ,则该地半夜的气温为︒−1C . 【分析】利用题意列出算式解答即可.【解答】解:+− =−163211920︒=−1C .故答案为:︒ −1C .【点评】本题主要考查了有理数的加减混合运算的应用,正确列出算式是解题的关键.3.90. 12.(3分)用“四舍五入”法将3.896精确到0.01,所得到的近似数为【分析】把千分位上的数字6进行“四舍五入”即可.【解答】解:≈3.896 3.900.01)(精确到.故答案为:3.90.【点评】本题考查了近似数与精确度,熟练掌握精确度的定义是解答本题的关键.近似数的最后一个数字实际在什么位上,即精确到了什么位,要求精确到某一位,应当对下一位的数字进行四舍五入.13.(3分)已知a ,a b ++−=b 满足|3|(2)02 +,则a b ()2023−的值是1.【分析】根据绝对值、偶次方的非负性求出a、b ,再根据有理数的乘方法则计算即可.a b 【解答】解:|3|(2)0++−=2∴+=a 30,,b −=20,∴=−a 3b =,2,∴+=−+=−a b ()(32)120232023,−故答案为:1.【点评】本题考查的是非负数的性质,熟记绝对值、偶次方具有非负性是解题的关键.14.(3分)已知轮船在逆水中前进的速度是a 时,水流的速度是5千米/千米/ 时,则这轮 a 船在顺水中前进的速度是+(10)/千米时.【分析】根据顺水速度=逆水速度+⨯2水流速度,把相关数值代入后化简即可.a +【解答】解:由题意得:船在静水中的速度为:5,∴a a ++=+这轮船在顺水中航行的速度是55(10)千米/时,a 故答案为:+(10).【点评】本题考查列代数式,解题的关键是顺水速度=逆水速度+⨯2水流速度.a a +−=15.(3分)已知102 a a 2,则代数式222021++的值是2023.a a +=【分析】根据题意得到12,再将代数式变形即可求值.a a 【解答】解:2+−=10∴+=a a 2,1,∴++=++=⨯+=a a a a 2220212()2021212021202322,故答案为:2023.【点评】本题考查了代数式求值,利用整体代入思想解决问题是解题关键.16.(3分)若k x −−=||4k (5)60−是关于x 的一元一次方程,则k−的值为5.【分析】直接利用一元一次方程的定义得出关于k 的方程求出答案.k x 【解答】解:(5)60−−=||4k −是关于x 的一元一次方程,∴−=k ||41k −≠50且,解得:k =−5.−5故答案为:.【点评】此题主要考查了一元一次方程的定义,正确把握未知数的系数与次数是解题关键.三、解答题 (本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题6分,第22、23题每17.(6分)320232|23|2(1)−+−−⨯−.【分析】先求绝对值和乘方,再作乘法和加减即可.【解答】解:原式812(1)=−+−⨯−812=−++5=−.【点评】本题考查含乘方的有理数运算,掌握相关的运算法则和公式是解题的关键.18.(6分)解方程:2152163x x +−=−. 【分析】先去分母,再去括号,移项,合并同类项,系数化成1即可.【解答】解:2152163x x +−=−,去分母,得2162(52)x x +=−−, 去括号,得216104x x +=−+,移项,得210641x x +=+−,合并同类项,得129x =,系数化成1,得34x =. 【点评】本题考查了解一元一次方程,熟知解一元一次方程的基本步骤是解题的关键.19.(6分)先化简,再求值:,其中,.【分析】直接去括号,再合并同类项,把已知数据代入得出答案.【解答】解:原式2262466m m n m n =+−−+22m n =+,当3m =−,3n =时,原式2(3)23=⨯−+⨯66=−+0=.【点评】此题主要考查了整式的加减—化简求值,正确合并同类项是解题关键.20.(8分)(1)已知有理数,,在数轴上对应的点如图所示,化简:; (2)已知,,求当时,求的值.【分析】(1)根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的意义化简,去括号合并即可得到结果;(2)先化简A B −,然后把1x =代入求值.【解答】解:(1)由数轴可得:0a b c <<<,且||||||a c b >>,0b a ∴−>,0a c −<,0c b −>, ||||||b a a c c b −+−−−()()()b a a c c b =−−−−−b a a c c b =−−+−+22a b =−+;(2)A B −322(5)(116)x x x x =−−−+3225116x x x x =−−+−326116x x x =−+−, 当1x =时,原式3216111160=−⨯+⨯−=.【点评】本题考查整式的加减−化简求值、数轴、绝对值,解题的关键是掌握绝对值性质.21.(8分)如图,在长为,宽为的长方形纸板上裁去一个边长为的正方形.(1)求剩余纸板的周长(用含,的代数式表示); (2)当,时,求的值.【分析】(1)根据长方形的周长公式进行解答即可;(2)把3a =,1b =代入求值即可.【解答】解:(1)剩余纸板的周长:222(12)a ab a ab +++−2222224a ab a ab =+++−2422a ab =−+;(2)把3a =,1b =代入得:243231232C =⨯−⨯⨯+=.【点评】本题主要考查了列代数式,整式加减的应用;解题的关键是熟练掌握整式加减混合运算法则,准确计算.22.(9分)李军大学毕业后返乡创业,成为一名电商老板,把村里农民的苹果放在网上销售,计划每天销售2000千克,实际每天的销售量与计划销售量相比有增减,超过计划量记为正,不足计划量记为负.下表是李军某一周苹果的销售情况:(1)李军该周销售苹果最多的一天比最少的一天多销售多少千克?(2)李军该周实际销售苹果的总量是多少千克?(3)若李军按5元千克收购,按9.5元千克进行苹果销售,运费及包装费等平均为2.5元千克,则李军该周销售苹果一共收入多少元?【分析】(1)根据表中数据计算即可;(2)根据表中数据计算即可;(3)根据(2)的数据计算即可.【解答】解:(1)13070200+=(千克),答:李军该周销售苹果最多的一天比最少的一天多200千克;(2)20007305070130205011014180⨯+−−+−++=(千克),答:李军该周实际销售苹果的总量是14180千克;(3)14180(9.55 2.5)28360⨯−−=(元),答:李军该周销售苹果一共收入28360元.【点评】本题主要考查正负数的计算,熟练掌握正负数的计算是解题的关键.23.(9分)已知关于的整式,整式,若是常数,且不含的一次项. (1)求的值;(2)若为整数,关于的一元一次方程的解是整数,求的值.【分析】(1)将A ,B 代入3A B −中计算后根据已知条件即可求得a 的值;(2)解方程并进行分类讨论后确定b 的值,然后将a ,b 的值代入5a b +中计算即可.【解答】解:(1)2332A x ax x =+−+,22422B x ax x =+−+,3A B ∴−223(332)(2422)x ax x x ax x =+−+−+−+2239962422x ax x x ax x =+−+−−+− 2(57)4x a x =+−+,3A B −不含x 的一次项,570a ∴−=,解得:75a =; (2)230bx x +−=,整理得:(2)3b x +=,原方程的解为整数,且b 为整数,1b ∴=±或3−或5−,当1b =时,75517185a b +=⨯+=+=;当1b =−时,75517165a b +=⨯−=−=; 当3b =−时,75537345a b +=⨯−=−=;当5b =−时,75557525a b +=⨯−=−=; 综上,5a b +的值为2或4或6或8.【点评】本题考查整式的化简求值及解一元一次方程,结合已知条件确定a ,b 的值是解题的关键.24.(10分)1990年,著名社会学家费孝通先生总结出了“各美其美,美人之美,美美与共,天下大同”这一处理不同文化关系的十六字“箴言”.在数学上,我们不妨约定:若关于x 的方程110a x b +=与220a x b +=同时满足21221||()0a b a b −+−=,则称方程110a x b +=与220a x b +=互为“美美与共”方程.根据该约定,回答下列问题.(1)已知关于x 的方程20x m −=与0ax b +=互为“美美与共”方程,且方程20x m −=的解为12,则m = 1 ,a = ,b = ;(2)是否存在有理数k ,使关于x 的方程30x k +=与其“美美与共”方程的解都是整数,若存在,求出k 的值,若不存在,请说明理由;(3)若方程12(21)x x −=−的解也是方程0ax b +=的解,求方程0ax b +=的“美美与共”方程的解.【分析】(1)根据题干信息得出12a b =,21a b =,先方程20x m −=的解为12,求出1m =,即可得出答案;(2)先求出方程30x k +=的解为:3k x =−,在求出方程30x k +=的“美美与共”方程30kx +=的解为3x k=−,根据3k −和3k −都为整数,求出结果即可; (3)先求出方程12(21)x x −=−的解为:13x =,得出方程0ax b +=的解为13b x a =−=−,再求出方程0ax b +=的“美美与共”方程为0bx a +=,求出方程0bx a +=的解为:3a x b =−=−. 【解答】解:(1)21221||()0a b a b −+−=,120a b ∴−=,210a b −=,解得:12a b =,21a b =, 方程20x m −=的解为12,∴1202m ⨯−=,解得:1m =, ∴方程20x m −=与0ax b +=互为“美美与共”方程,2b ∴=,m a −=,1a ∴=−, 故答案为:1;1−;2;(2)存在;方程30x k +=的解为:3k x =−, 方程30x k +=的“美美与共”方程为:30kx +=,且其解为3x k=−, 关于x 的方程30x k +=与其“美美与共”方程的解都是整数, ∴3k −和3k−都为整数,3k ∴=±; (3)方程12(21)x x −=−的解为:13x =, 方程12(21)x x −=−的解也是方程0ax b +=的解,∴方程0ax b +=的解为13b x a =−=, 方程0ax b +=的“美美与共”方程为0bx a +=,∴方程0bx a +=的解为:3a x b=−=. 即方程0ax b +=的“美美与共”方程的解为3x =. 【点评】本题主要考查了方程的解,解一元一次方程,解题的关键是熟练掌握解方程的一般步骤准确计算.25.(10分)如图,在长沙市华益中学迎面50米接力比赛中,设运动时间为t 秒,甲班的A 同学在数轴上位置C 拿到最后一棒接力棒时,记为0t =,此时乙班的B 同学已经位于数轴上数10的位置,A 同学以每秒8米向左运动,B 同学以每秒5米向左运动,两位同学到达D 点立即停止运动.(1)当0t =时,A 、B 同学相距 15 米;当1t =时,A 、B 同学在数轴上所表示的数为 、 .(2)①若t 秒后A 同学恰好追上B 同学,求t ;②当A 同学到达终点D 后,B 同学还要经过多少秒到达D 点.③分别取线段AC 、BD 中点为E 、F ,若在点A 、B 运动期间,4mEF nDA −始终保持不变(其中m ,n 为常数),求m n的值. 【分析】(1)根据数轴上两点间距离公式进行解答即可;(2)①根据t 秒后A 恰好追上B 时,A 同学的路程比B 同学的路程多15列方程求解即可; ②先求出A 到达D 所需要的时间,再求出B 到达D 所需要的时间,然后两个时间相减即可; ③分别用t 表示出E 、F 在数轴表示的数,然后求出线段653||2t EF −=,508DA t =−,进而求出6532t EF −=,然后代入4mEF nDA −并化简得出4(86)13050mEF nDA n m t m n −=−+−,根据4mEF nDA −为定值(其中m ,n 为常数)得出860n m −=,即可求解.【解答】解:(1)当0t =时,A 同学所在位置表示的数为25,B 表示的数为10, ∴此时A 、B 同学相距251015−=;当1t =时,A 同学在数轴上所表示的数为251817−⨯=,B 同学在数轴上所表示的数为10155−⨯=;故答案为:15;17;5;(2)解:①根据题意,得852510t t −=−,解得5t =; ②10(25)25(25)0.7558−−−−−=(秒), 答:当A 同学到达终点D 后,B 同学还要经过0.75秒到达D 点;③A 在数轴上所表示的数为258t −,B 在数轴上所表示的数为105t −,故258(25)508DA t t =−−−=−,E 在数轴上所表示的数为(258)252542t t −+=−, F 在数轴上所表示的数为(105)(25)15522t t −+−−−=, 线段长155653|254()|||22t t EF t −−−=−−=, 当B 同学运动到D 点时停止运动,所以总运动时间为10(25)75−−=(秒), ∴65302t −>,则6532t EF −=, 4mEF nDA ∴−,2(653)(508)m t n t =−−−(86)13050n m t m n =−+−,由于4mEF nDA −为定值,故860n m −=,解得43m n =. 【点评】本题主要考查的是数轴上两点之间的距离,一元一次方程的应用,熟练的利用方程思想解决数轴上的动点问题是解题的关键.。

七年级数学上学期期中试卷3新版新人教版

七年级数学上学期期中试卷3新版新人教版

期中试卷(3)一、选择题:本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一项是符合题目要求的,将此选项的代号填入题后的括号内.1.(3分)﹣2的相反数是()A.﹣ B.﹣2 C.D.22.(3分)如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的是()A.B.C.D.3.(3分)在有理数﹣3,0,23,﹣85,3.7中,属于非负数的个数有()A.4个B.3个C.2个D.1个4.(3分)在数轴上,把表示﹣4的点移动2个单位长度,所得到的对应点表示的数是()A.﹣1 B.﹣6 C.﹣2或﹣6 D.无法确定5.(3分)已知|a+1|与|b﹣4|互为相反数,则a b的值是()A.﹣1 B.1 C.﹣4 D.46.(3分)a,b,c三个数在数轴上的位置如图所示,则下列结论中错误的是()A.a+b<0 B.a+c<0 C.a﹣b>0 D.b﹣c<07.(3分)每天供给地球光和热的太阳与我们的距离非常遥远,它距地球的距离约为150000000千米,将150000000千米用科学记数法表示为()A.0.15×109千米B.1.5×108千米 C.15×107千米D.1.5×107千米8.(3分)绝对值大于1小于4的整数的和是()A.0 B.5 C.﹣5 D.109.(3分)a,b互为相反数,下列各数中,互为相反数的一组为()A.a2与b2B.a3与b5C.a2n与b2n(n为正整数)D.a2n+1与b2n+1(n为正整数)10.(3分)2008年5月5日,奥运火炬手携带着象征“和平、友谊、进步”的奥运圣火火种,离开海拔5200米的“珠峰大本营”,向山顶攀登.他们在海拔每上升100米,气温就下降0.6℃的低温和缺氧的情况下,于5月8日9时17分,成功登上海拔8844.43米的地球最高点.而此时“珠峰大本营”的温度为﹣4℃,峰顶的温度为(结果保留整数)()A.﹣26℃B.﹣22℃C.﹣18℃D.22℃二、填空题:本大题共6小题,每小题3分,共18分.把答案填在题中的横线上.11.(3分)如果节约16度电记作+16度,那么浪费5度电记作度.12.(3分)若a﹣5和﹣7互为相反数,则 a的值.13.(3分)在数轴上,﹣4与﹣6之间的距离是个单位长度.14.(3分)倒数是它本身的数是;相反数是它本身的数是;绝对值是它本身的数是.15.(3分)计算|3.14﹣π|﹣π的结果是.16.(3分)观察下列算式:1×5+4=32,2×6+4=42,3×7+4=52,4×8+4=62,请你在观察规律之后并用你得到的规律填空:×+ =502.三、解答题(共72分)17.(24分)计算(1)(﹣3)×(﹣9)﹣8×(﹣5)(2)(﹣83)+(+26)+(﹣17)+(+74).(3)(﹣)×(﹣30)(4)(﹣0.1)3﹣×(﹣)2(5)﹣23﹣3×(﹣2)3﹣(﹣1)4(6)﹣32+16÷(﹣2)﹣(﹣1)2015.18.(6分)河里水位第一天上升8cm,第二天下降7cm,第三天又下降了9cm,第四天又上升了3cm,最后水位上升了还是下降了?多少厘米?19.(8分)把下列各数的序号填在相应的数集内:①1 ②﹣③+3.2 ④0 ⑤⑥﹣5 ⑦+108 ⑧﹣6.5 ⑨﹣6.(1)正整数集{ …}(2)正分数集{ …}(3)负分数集{ …}(4)有理数集{ …}.20.(7分)画一条数轴,并在数轴上表示:3.5和它的相反数,﹣4和它的倒数,绝对值等于3的数,最大的负整数和它的平方,并把这些数由小到大用“<”号连接起来.21.(6分)规定图形表示运算a﹣b+c,图形表示运算x+z﹣y﹣w.则+=(要求写出计算过程)22.(6分)已知a、b互为相反数,c、d互为倒数,m的绝对值是2,求的值.23.(6分)有一种“二十四点”的游戏,其游戏规则是这样的:任取四个1至13之间的自然数,将这四个数(每个数用且只能用一次)进行加减乘除四则运算,使其结果等于24.例如对1,2,3,4,可作如下运算:(1+2+3)×4=24(上述运算与4×(1+2+3)视为相同方法的运算)现有四个有理数3,4,6,10,运用上述规则写出三种不同方法的运算式,可以使用括号,使其结果等于24.运算式如下:(1),另有四个有理数3,5,﹣7,﹣4,可通过运算式(2)使其结果等于24.24.(9分)一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下:(单位:米)+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线最远距离是多少米?(3)守门员全部练习结束后,他共跑了多少米?参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一项是符合题目要求的,将此选项的代号填入题后的括号内.1.(3分)﹣2的相反数是()A.﹣ B.﹣2 C.D.2【考点】相反数.【分析】根据相反数的定义:只有符号不同的两个数叫做互为相反数即可得到答案.【解答】解:﹣2的相反数是2,故选:D.【点评】此题主要考查了相反数,关键是掌握相反数的定义.2.(3分)如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的是()A.B.C.D.【考点】正数和负数.【专题】计算题;实数.【分析】求出各足球质量的绝对值,取绝对值最小的即可.【解答】解:根据题意得:|﹣0.8|<|+0.9|<|+2.5|<|﹣3.6|,则最接近标准的是﹣0.8g,故选C【点评】此题考查了正数与负数,熟练掌握绝对值的代数意义是解本题的关键.3.(3分)在有理数﹣3,0,23,﹣85,3.7中,属于非负数的个数有()A.4个B.3个C.2个D.1个【考点】有理数.【分析】根据大于或等于零的数是非负数,可得答案.【解答】解:0,23,3.7是非负数,故选:B.【点评】本题考查了非负数,大于或等于零的数是非负数.4.(3分)在数轴上,把表示﹣4的点移动2个单位长度,所得到的对应点表示的数是()A.﹣1 B.﹣6 C.﹣2或﹣6 D.无法确定【考点】数轴.【专题】分类讨论.【分析】讨论:把表示﹣4的点向左移动2个单位长度或向右移动2个单位长度,然后根据数轴表示数的方法可分别得到所得到的对应点表示的数.【解答】解:∵表示﹣4的点移动2个单位长度,∴所得到的对应点表示为﹣6或﹣2.故选C.【点评】本题考查了数轴:数轴的三要素(正方向、原点和单位长度);数轴上原点左边的点表示负数,右边的点表示正数;左边的点表示的数比右边的点表示的数要小.也考查了分类讨论的思想.5.(3分)已知|a+1|与|b﹣4|互为相反数,则a b的值是()A.﹣1 B.1 C.﹣4 D.4【考点】非负数的性质:绝对值.【分析】根据非负数的性质可求出a、b的值,再将它们代入代数式中求解即可.【解答】解:根据题意得:,解得:,则原式=1.故选B.【点评】本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.6.(3分)a,b,c三个数在数轴上的位置如图所示,则下列结论中错误的是()A.a+b<0 B.a+c<0 C.a﹣b>0 D.b﹣c<0【考点】数轴.【分析】先根据各点在数轴上的位置判断出a,b,c的符号,进而可得出结论.【解答】解:∵由图可知,a<b<0<c,|a|>c,∴a+b<0,故A正确;a+c<0,故B正确;a﹣b<0,故C错误;b﹣c<0,故D正确.故选C.【点评】本题考查的是数轴,熟知数轴上的特点是解答此题的关键.7.(3分)每天供给地球光和热的太阳与我们的距离非常遥远,它距地球的距离约为150000000千米,将150000000千米用科学记数法表示为()A.0.15×109千米B.1.5×108千米 C.15×107千米D.1.5×107千米【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于150000000有9位,所以可以确定n=9﹣1=8.【解答】解:150 000 000=1.5×108.故选B.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.8.(3分)绝对值大于1小于4的整数的和是()A.0 B.5 C.﹣5 D.10【考点】有理数的加法;绝对值.【分析】首先找出绝对值大于1小于4的整数,然后根据互为相反数的两数之和为0解答即可.【解答】解:绝对值大于1小于4的整数有:±2;±3.﹣2+2+3+(3)=0.故选:A.【点评】本题主要考查的是绝对值的定义、有理数的加法,找出所有符合条件的数是解题的关键.9.(3分)a,b互为相反数,下列各数中,互为相反数的一组为()A.a2与b2B.a3与b5C.a2n与b2n(n为正整数)D.a2n+1与b2n+1(n为正整数)【考点】相反数.【分析】依据相反数的定义以及有理数的乘方法则进行判断即可.【解答】解:A、a,b互为相反数,则a2=b2,故A错误;B、a,b互为相反数,则a3=﹣b3,故a3与b5不是互为相反数,故B错误;C\、a,b互为相反数,则a2n=b2n,故C错误;D、a,b互为相反数,由于2n+1是奇数,则a2n+1与b2n+1互为相反数,故D正确;故选D.【点评】本题考查了相反数和乘方的意义,明确只有符号不同的两个数叫做互为相反数,还要熟练掌握互为相反数的两个数的偶数次方相等,奇次方还是互为相反数.10.(3分)2008年5月5日,奥运火炬手携带着象征“和平、友谊、进步”的奥运圣火火种,离开海拔5200米的“珠峰大本营”,向山顶攀登.他们在海拔每上升100米,气温就下降0.6℃的低温和缺氧的情况下,于5月8日9时17分,成功登上海拔8844.43米的地球最高点.而此时“珠峰大本营”的温度为﹣4℃,峰顶的温度为(结果保留整数)()A.﹣26℃B.﹣22℃C.﹣18℃D.22℃【考点】有理数的混合运算.【专题】应用题.【分析】由于“海拔每上升100米,气温就下降0.6℃”,因此,应先求得峰顶与珠峰大本营的高度差,进而求得两地的温度差,最后依据珠峰大本营的温度计算出峰顶的温度.【解答】解:由题意知:峰顶的温度=﹣4﹣(8844.43﹣5200)÷100×0.6≈﹣25.87≈﹣26℃.故选A.【点评】本题考查有理数运算在实际生活中的应用.利用所学知识解答实际问题是我们应具备的能力,这也是今后中考的命题重点.认真审题,准确地列出式子是解题的关键.本题的阅读量较大,应仔细阅读,弄清楚题意.二、填空题:本大题共6小题,每小题3分,共18分.把答案填在题中的横线上.11.(3分)如果节约16度电记作+16度,那么浪费5度电记作﹣5 度.【考点】正数和负数.【分析】节约用+号表示,则浪费一定用﹣表示,据此即可解决.【解答】解:节约16度电记作+16度,那么浪费5度电记作:﹣5度.故答案是:﹣5.【点评】此题考查了正负数的表示,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.12.(3分)若a﹣5和﹣7互为相反数,则 a的值12 .【考点】相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:由题意,得a﹣5+(﹣7)=0,解得a=12,故答案为:12.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.13.(3分)在数轴上,﹣4与﹣6之间的距离是 2 个单位长度.【考点】数轴.【专题】计算题.【分析】数轴上两点间的距离等于这两点表示的两个数的差的绝对值,即较大的数减去较小的数.【解答】解:﹣4与﹣6之间的距离是|﹣4﹣(﹣6)|=2.【点评】考查了数轴上两点间的距离的求法.14.(3分)倒数是它本身的数是±1 ;相反数是它本身的数是0 ;绝对值是它本身的数是非负数.【考点】倒数;相反数;绝对值.【分析】根据乘积为1的两个数互为倒数,可得倒数等于它本身的数,根据只有符号不同的两个数互为相反数,可得答案;根据非负数的绝对值是它本身,可得答案.【解答】解:倒数是它本身的数是±1;相反数是它本身的数是 0;绝对值是它本身的数是非负数,故答案为:1或﹣1,0,非负数.【点评】本题考查了倒数,倒数等于它本身的数是±1.15.(3分)计算|3.14﹣π|﹣π的结果是﹣3.14 .【考点】绝对值.【分析】利用绝对值的意义去绝对值符号,然后计算即可.【解答】解:|3.14﹣π|﹣π=π﹣3.14﹣π=﹣3.14.故答案为:﹣3.14.【点评】本题考查了绝对值的意义;绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.16.(3分)观察下列算式:1×5+4=32,2×6+4=42,3×7+4=52,4×8+4=62,请你在观察规律之后并用你得到的规律填空:48 ×52 + 4 =502.【考点】规律型:数字的变化类.【分析】根据数字变化规律得出第n个算式为;n(n+4)+4=(n+2)2,进而得出答案.【解答】解:∵1×5+4=32,2×6+4=42,3×7+4=52,4×8+4=62,∴第n个算式为;n(n+4)+4=(n+2)2,∴48×52+4=502.故答案为:48×52+4.【点评】此题主要考查了数字变化规律,根据数字变化得出数字规律是解题关键.三、解答题(共72分)17.(24分)计算(1)(﹣3)×(﹣9)﹣8×(﹣5)(2)(﹣83)+(+26)+(﹣17)+(+74).(3)(﹣)×(﹣30)(4)(﹣0.1)3﹣×(﹣)2(5)﹣23﹣3×(﹣2)3﹣(﹣1)4(6)﹣32+16÷(﹣2)﹣(﹣1)2015.【考点】有理数的混合运算.【分析】(1)根据有理数的乘法和减法可以解答本题;(2)根据有理数的加法可以解答本题;(3)根据乘法分配律可以解答本题;(4)根据幂的乘方、有理数的乘法和减法可以解答本题;(5)根据幂的乘方、有理数的乘法和减法可以解答本题;(6)根据幂的乘方、有理数的除法和减法可以解答本题.【解答】解:(1)(﹣3)×(﹣9)﹣8×(﹣5)=27+40=67;(2)(﹣83)+(+26)+(﹣17)+(+74)=(﹣83)+26+(﹣17)+74=0.(3)(﹣)×(﹣30)==(﹣10)+25=15;(4)(﹣0.1)3﹣×(﹣)2=(﹣0.001)﹣=(﹣0.001)﹣0.09=﹣0.091;(5)﹣23﹣3×(﹣2)3﹣(﹣1)4=﹣8﹣3×(﹣8)﹣1=﹣8+24﹣1=15;(6)﹣32+16÷(﹣2)﹣(﹣1)2015=﹣9+(﹣8)﹣(﹣1)=﹣9+(﹣8)+1=﹣16.【点评】本题考查有理数的混合运算,解题的关键是明确有理数混合运算的计算方法.18.(6分)河里水位第一天上升8cm,第二天下降7cm,第三天又下降了9cm,第四天又上升了3cm,最后水位上升了还是下降了?多少厘米?【考点】有理数的加减混合运算.【分析】把上升的水位记作正数,下降的水位记作负数,运用加法计算即可.【解答】解:设上升的水位为正数,下降的水位为负数,根据题意,得8+(﹣7)+(﹣9)+3=11+(﹣16)=﹣5cm.故最后水位下降了5厘米.【点评】本题考查了有理数的加法和正负数表示相反意义的量,是一个基础的题目.19.(8分)把下列各数的序号填在相应的数集内:①1 ②﹣③+3.2 ④0 ⑤⑥﹣5 ⑦+108 ⑧﹣6.5 ⑨﹣6.(1)正整数集{ ①⑦…}(2)正分数集{ ③⑤…}(3)负分数集{ ②⑧⑨…}(4)有理数集{ ①②③④⑤⑥⑦⑧⑨…}.【考点】有理数.【分析】(1)根据大于0的整数是正整数,可得正整数集合;(2)根据大于0的分数是正分数,即可得出结果;(3)根据小于0的分数是负分数,即可得出结果;(4)由有理数的定义即可得出结果.【解答】解:①1 ②﹣③+3.2 ④0 ⑤⑥﹣5 ⑦+108 ⑧﹣6.5 ⑨﹣6.(1)正整数集{①⑦…};故答案为:①⑦;(2)正分数集{③⑤…};故答案为:③⑤;(3)负分数集{②⑧⑨…};故答案为:②⑧⑨;(4)有理数集{①②③④⑤⑥⑦⑧⑨…};故答案为:①②③④⑤⑥⑦⑧⑨.【点评】本题考察了有理数,根据有理数的意义解题是解题的关键.20.(7分)画一条数轴,并在数轴上表示:3.5和它的相反数,﹣4和它的倒数,绝对值等于3的数,最大的负整数和它的平方,并把这些数由小到大用“<”号连接起来.【考点】有理数大小比较;数轴.【分析】在数轴上表示出各数,再从左到右用“<”把它们连接起来即可.【解答】解:3.5的相反数是﹣3.5,﹣4的倒数是﹣,绝对值等于3的数是±3,最大的负整数是﹣1,(﹣1)2=1,在数轴上表示为:故﹣4<﹣3.5<﹣3<﹣1<﹣<1<3<3.5.【点评】本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键.21.(6分)规定图形表示运算a﹣b+c,图形表示运算x+z﹣y﹣w.则+= 0(要求写出计算过程)【考点】有理数的加减混合运算.【专题】新定义.【分析】根据题中的新定义化简,计算即可得到结果.【解答】解:根据题意得:1﹣2+3+4+6﹣5﹣7=0.故答案为:0【点评】此题考查了有理数的加减混合运算,弄清题中的新定义是解本题的关键.22.(6分)已知a、b互为相反数,c、d互为倒数,m的绝对值是2,求的值.【考点】代数式求值.【分析】根据题意,找出其中的等量关系a+b=0 cd=1|m|=2,然后根据这些等式来解答即可.【解答】解:根据题意,知a+b=0 ①cd=1 ②|m|=2,即m=±2 ③把①②代入原式,得原式=0+4m﹣3×1=4m﹣3 ④(1)当m=2时,原式=2×4﹣3=5;(2)当m=﹣2时,原式=﹣2×4﹣3=﹣11.所以,原式的值是5或﹣11.【点评】主要考查倒数、相反数和绝对值的概念及性质.注意分类讨论思想的应用.23.(6分)有一种“二十四点”的游戏,其游戏规则是这样的:任取四个1至13之间的自然数,将这四个数(每个数用且只能用一次)进行加减乘除四则运算,使其结果等于24.例如对1,2,3,4,可作如下运算:(1+2+3)×4=24(上述运算与4×(1+2+3)视为相同方法的运算)现有四个有理数3,4,6,10,运用上述规则写出三种不同方法的运算式,可以使用括号,使其结果等于24.运算式如下:(1)(10﹣6+4)×3=24;3×6﹣4+10=24;4+6÷3×10=24 ,另有四个有理数3,5,﹣7,﹣4,可通过运算式(2)3×[5+(﹣4)﹣(﹣7)]=24 使其结果等于24.【考点】有理数的混合运算.【专题】计算题;实数.【分析】利用“二十四点”游戏规则计算即可.【解答】解:(1)根据“二十四点”游戏规则得:(10﹣6+4)×3=24;3×6﹣4+10=24;4+6÷3×10=24;(2)根据“二十四点”游戏规则得:3×[5+(﹣4)﹣(﹣7)]=24.故答案为:(1)(10﹣6+4)×3=24;3×6﹣4+10=24;4+6÷3×10=24;(2)3×[5+(﹣4)﹣(﹣7)]=24【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.24.(9分)一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下:(单位:米)+5,﹣3,+10,﹣8,﹣6,+12,﹣10.(1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线最远距离是多少米?(3)守门员全部练习结束后,他共跑了多少米?【考点】有理数的加法;正数和负数.【专题】应用题.【分析】(1)由于守门员从球门线出发练习折返跑,问最后是否回到了球门线的位置,只需将所有数加起来,看其和是否为0即可;(2)计算每一次跑后的数据,绝对值最大的即为所求;(3)求出所有数的绝对值的和即可.【解答】解:(1)(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10)=(5+10+12)﹣(3+8+6+10)=27﹣27=0答:守门员最后回到了球门线的位置.(2)由观察可知:5﹣3+10=12米.答:在练习过程中,守门员离开球门线最远距离是12米.(3)|+5|+|﹣3|+|+10|+|﹣8|+|﹣6|+|+12|+|﹣10|=5+3+10+8+6+12+10=54米.答:守门员全部练习结束后,他共跑了54米.【点评】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.“正”和“负”相对.解题关键是理解“正”和“负”的相对性,确定具有相反意义的量.。

人教版七年级第一学期期中数学试卷及答案3

人教版七年级第一学期期中数学试卷及答案3

人教版七年级第一学期期中数学试卷及答案一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如果盈利100元记为+100元,那么﹣80元表示()A.亏损80元B.盈利80元C.亏损20元D.盈利20元2.2020年我国的北斗卫星导航系统星座部署完成,其中一颗中高轨道卫星高度大约是21500000米.将数字21500000用科学记数法表示为()A.0.215×108B.2.15×107C.21.5×107D.2.15×1063.把﹣3,﹣2,﹣1,0,1这五个数填入下列圆中,使行、列三个数的和相等,其中错误的是()A.B.C.D.4.下列计算正确的是()A.0÷(﹣3)=0×(﹣)=−B.(﹣2)÷(﹣2)=﹣2×2=﹣4C.1÷(﹣)=1×(﹣9)=﹣9D.(﹣36)÷(﹣9)=﹣36÷9=﹣45.下列四个数中,比﹣小的数是()A.﹣(﹣1)B.﹣C.0D.﹣0.436.下列说法正确的是()A.单项式2的次数是0B.单项式﹣3πx2y的次数是4C.单项式y的系数为0D.多项式2x2+xy2+3是二次三项式7.若单项式y n与﹣2x m y3的和仍为单项式,则m﹣n的值是()A.1B.﹣1C.5D.﹣58.下列各题去括号所得结果正确的是()A.x2﹣(x﹣y+2z)=x2﹣x+y+2zB.3x2﹣[5x﹣(x﹣1)]=3x﹣5x﹣x+1C.x﹣(﹣2x+3y﹣1)=x+2x﹣3y+1D.(x﹣1)﹣(x2﹣2)=x﹣1﹣x2﹣29.若x=,则代数式2x2﹣5x+x2+4x﹣3x2﹣2的值为()A.B.C.−D.−10.n个球队进行单循环比赛(参加比赛的每一个队都与其他所有队各赛一场),总的比赛场数是()A.B.n(n﹣1)C.D.n(n+1)11.若有理数a,b,c满足abc>0,a+b+c=0,则a,b,c中负数的个数是()A.0B.1C.2D.312.已知数a,b,c的大小关系如图所示,则下列各式:①abc>0;②a+b﹣c>0;③bc﹣a>0;④|a﹣b|﹣|c+a|+|b﹣c|=﹣2a,其中正确个数是()A.1B.2C.3D.4二、填空题:本大题共6小题,每小题3分,共18分.请将答案直接填在答题纸中对应的横线上.13.﹣的倒数是.14.(﹣2)2的结果是.15.数轴上3与它的相反数之间的整数的和为.16.若|a﹣4|+|b+3|=0,则ab=.17.如图是一所住宅的建筑平面图,这所住宅的建筑面积为米2.18.A、B、C三点在数轴上对应的数分别是2、﹣4、c,若相邻两点的距离相等,则c=.三、解答题(本大题共6小题,共46分.解答应写出文字说明、演算步骤或推理过程)19.(6分)计算把﹣2,0,1.5,﹣1,﹣22这五个数在数轴上表示出来,并用“<”把它们连接起来.20.(12分)(1)+(﹣)++(﹣)+(﹣);(2)(﹣+)×(﹣48);(3)﹣2.5÷×(﹣);(4)﹣23÷(﹣2﹣)×(﹣)2﹣+1.21.(8分)(Ⅰ)化简:(a2﹣4b)﹣(2b+4)﹣(﹣3a2+);(Ⅱ)若(Ⅰ)中的a是最小的非负整数,|b|=1,且b<0,求(Ⅰ)中代数式的值.22.(8分)已知A=3x2﹣x+2y﹣4xy,B=2x2﹣3x﹣y+xy.(Ⅰ)化简:2A﹣B;(Ⅱ)若x+y=,xy=﹣1,求2A﹣3B的值.23.(6分)在抗洪抢险中,解放军战士的冲锋舟加满油,沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:千米):+14,﹣9,+8,﹣7,+13,﹣6,+12,﹣5.(Ⅰ)填空:①B地位于A地的方向,距离A地千米;②救灾过程中,冲锋舟距离A地最远处为千米;(Ⅱ)若冲锋舟每千米耗油0.5升,油箱容量为28升,求冲锋舟当天救灾过程中至少还需补充多少升油?24.(6分)有一台功能单一的计算器,只能完成对任意两个整数求差后再取绝对值的运算,其运算过程是:输入第一个整数x1,只显示不运算,再输入整数x2,显示|x1﹣x2|的结果.比如依次输入1,2,则显示结果1,若此后再输入一个整数,则显示与前面运算结果进行求差后再取绝对值的运算结果.(Ⅰ)若小明依次输入﹣1,0,1,则显示;(Ⅱ)若小明将2,3,4,5,打乱顺序后一个一个地输入(不重复),则所有显示结果的最小值为;所有显示结果的最大值为;(Ⅲ)若小明依次输入四个连续整数n,n+1,n+2,n+3(其中n为正整数),则显示结果为;(Ⅳ)若小明将四个连续整数n,n+1,n+2,n+3(其中n为整数),打乱顺序后一个一个地输入(不重复),则所有显示结果的最小值为;(Ⅴ)若小明将1到2022这2022个整数打乱顺序后一个一个地输入(不重复),则所有显示结果的最大值为.参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如果盈利100元记为+100元,那么﹣80元表示()A.亏损80元B.盈利80元C.亏损20元D.盈利20元【分析】根据正负数表示相反意义的数来判断即可.【解答】解:∵盈利100元记为+100元,∴﹣80元表示亏损80元.故选:A.2.2020年我国的北斗卫星导航系统星座部署完成,其中一颗中高轨道卫星高度大约是21500000米.将数字21500000用科学记数法表示为()A.0.215×108B.2.15×107C.21.5×107D.2.15×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将21500000用科学记数法表示为2.15×107,故选:B.3.把﹣3,﹣2,﹣1,0,1这五个数填入下列圆中,使行、列三个数的和相等,其中错误的是()A.B.C.D.【分析】由图逐一验证,运用排除法即可选得.【解答】解:验证四个选项:A、行:﹣1+(﹣3)+0=﹣4,列:1﹣3﹣2=﹣4,行=列,对,不符合题意;B、行:﹣3+1+0=﹣2,列:﹣1+1﹣2=﹣2,行=列,对,不符合题意;C、行:﹣2﹣1+0=﹣3,列:1﹣1﹣3=﹣3,行=列,对,不符合题意,;D、行:1﹣2﹣3=﹣4,列:0﹣2﹣1=﹣3,行≠列,符合题意.故选:D.4.下列计算正确的是()A.0÷(﹣3)=0×(﹣)=−B.(﹣2)÷(﹣2)=﹣2×2=﹣4C.1÷(﹣)=1×(﹣9)=﹣9D.(﹣36)÷(﹣9)=﹣36÷9=﹣4【分析】根据有理数的除法法则进行判断便可.【解答】解:A.0÷(﹣3)=0,选项不符合题意;B.原式=+2÷2=1,选项不合题意;C.原式=﹣1×9=﹣9,选项符合题意.D.原式=+36÷9=4,选项不合题意;故选:C.5.下列四个数中,比﹣小的数是()A.﹣(﹣1)B.﹣C.0D.﹣0.43【分析】先比较出各数的大小,进而可得出结论.【解答】解:∵﹣(﹣1)=1,|﹣|=,|﹣|=,|﹣0.43|=0.43,0.43>,∴,∴四个数中,比﹣小的数是﹣0.43.故选:D.6.下列说法正确的是()A.单项式2的次数是0B.单项式﹣3πx2y的次数是4C.单项式y的系数为0D.多项式2x2+xy2+3是二次三项式【分析】单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数;多项式中单项式的个数就是多项式的项数,多项式中次数最高的项的次数叫做多项式的次数.【解答】解:A、单项式2的次数是0,正确,故A符合题意;B、单项式﹣3πx2y的次数是3,故B不符合题意;C、单项式y的系数为1,故C不符合题意;D、多项式2x2+xy2+3是三次三项式,故D不符合题意.故选:A.7.若单项式y n与﹣2x m y3的和仍为单项式,则m﹣n的值是()A.1B.﹣1C.5D.﹣5【分析】根据同类项的概念,首先求出m与n的值,然后求出m﹣n的值.【解答】解:∵单项式y n与﹣2x m y3的和仍为单项式,∴他们是同类项,则m=2、n=3,∴m﹣n=2﹣3=﹣1,故选:B.8.下列各题去括号所得结果正确的是()A.x2﹣(x﹣y+2z)=x2﹣x+y+2zB.3x2﹣[5x﹣(x﹣1)]=3x﹣5x﹣x+1C.x﹣(﹣2x+3y﹣1)=x+2x﹣3y+1D.(x﹣1)﹣(x2﹣2)=x﹣1﹣x2﹣2【分析】直接利用去括号法则分别分析得出即可.【解答】解:A.x2﹣(x﹣y+2z)=x2﹣x+y﹣2z,故此选项错误,不符合题意;B.3x2﹣[5x﹣(x﹣1)]=3x2﹣[5x﹣(x﹣1)]=3x2﹣(5x﹣x+1)=3x﹣(5x﹣x+1)=3x﹣5x+x﹣1,故此选项错误,不符合题意;C.x﹣(﹣2x+3y﹣1)=x+2x﹣3y+1,正确,符合题意;D.(x﹣1)﹣(x2﹣2)=x﹣1﹣x2+2,故此选项错误,不符合题意.故选:C.9.若x=,则代数式2x2﹣5x+x2+4x﹣3x2﹣2的值为()A.B.C.−D.−【分析】先利用合并同类项的法则进行化简,再代入相应的值运算即可.【解答】解:2x2﹣5x+x2+4x﹣3x2﹣2=(2+1﹣3)x2+(﹣5+4)x﹣2=﹣x﹣2,当x=时,原式=﹣﹣2=.故选:D.10.n个球队进行单循环比赛(参加比赛的每一个队都与其他所有队各赛一场),总的比赛场数是()A.B.n(n﹣1)C.D.n(n+1)【分析】n支球队举行比赛,若每个球队与其他队比赛(n﹣1)场,则两队之间比赛两场,由于是单循环比赛,则共比赛.【解答】解:n支球队举行单循环比赛,比赛的总场数为.故选:A.11.若有理数a,b,c满足abc>0,a+b+c=0,则a,b,c中负数的个数是()A.0B.1C.2D.3【分析】先根据abc>0,结合有理数乘法法则,易知a、b、c中有2个负数或没有一个负数(都是正数),而都是正数,则a+b+c>0,不符合a+b+c=0的要求,于是可得a、b、c中必有2个负数.【解答】解:∵abc>0,∴a、b、c中有2个负数或没有一个负数,若没有一个负数,则a+b+c>0,不符合a+b+c=0的要求,故a、b、c中必有2个负数.故选:C.12.已知数a,b,c的大小关系如图所示,则下列各式:①abc>0;②a+b﹣c>0;③bc﹣a>0;④|a﹣b|﹣|c+a|+|b﹣c|=﹣2a,其中正确个数是()A.1B.2C.3D.4【分析】先根据各点在数轴上的位置判断出其符号,再对各小题进行分析即可.【解答】解:由图可知,a<0<b<c,c>|a|>b.①∵a<0<b<c,∴abc<0,不符合题意;②∵a<0<b<c,c>|a|>b,∴a+b﹣c<0,不符合题意;③∵a<0<b<c,∴bc﹣a>0,符合题意;④∵a<0<b<c,c>|a|>b,∴a﹣b<0,c+a>0,b﹣c<0,∴原式=b﹣a﹣(c+a)﹣(b﹣c)=b﹣a﹣c﹣a﹣b+c=﹣2a,符合题意.故选:B.二、填空题:本大题共6小题,每小题3分,共18分.请将答案直接填在答题纸中对应的横线上.13.﹣的倒数是﹣2.【分析】乘积是1的两数互为倒数.【解答】解:﹣的倒数是﹣2.故答案为:﹣2.14.(﹣2)2的结果是4.【分析】根据幂的意义计算即可.【解答】解:(﹣2)2=(﹣2)×(﹣2)=4,故答案为:4.15.数轴上3与它的相反数之间的整数的和为0.【分析】先根据相反数的定义得到3的相反数,再求出3与它的相反数之间的整数,最后求和即可.【解答】解:3的相反数的相反数是﹣3,而﹣3与3之间的整数有﹣3,﹣2,﹣1,0,1,2,3,∴3与它的相反数之间的整数的和为﹣3+(﹣2)+(﹣1)+0+1+2+3=0,故答案为:0.16.若|a﹣4|+|b+3|=0,则ab=﹣12.【分析】先根据非负数的性质求出a,b的值,再由有理数的乘法法则解答即可.【解答】解:∵|a﹣4|+|b+3|=0,∴a﹣4=0,b+3=0,解得a=4,b=﹣3,∴ab=4×(﹣3)=﹣12.故答案为:﹣12.17.如图是一所住宅的建筑平面图,这所住宅的建筑面积为(x2+2x+18)米2.【分析】由图可知,这所住宅的建筑面积=三个长方形的面积+一个正方形的面积.【解答】解:由图可知,这所住宅的建筑面积为x2+2x+12+6=x2+2x+18(米2).18.A、B、C三点在数轴上对应的数分别是2、﹣4、c,若相邻两点的距离相等,则c=﹣10或﹣1或8.【分析】先算出2与﹣4间的距离,然后讨论c在﹣4的左边,在﹣4与2之间、在2的右边不同情况.【解答】解:数轴上﹣4、2间距离是:2﹣(﹣4)=6,当c在﹣4左侧时,﹣4﹣c=6,所以c=﹣10,当c在﹣4与2中间时,c=﹣4+3=﹣1,当c在2的右边时,c=2+6=8.故答案为:﹣10或﹣1或8.三、解答题(本大题共6小题,共46分.解答应写出文字说明、演算步骤或推理过程)19.(6分)计算把﹣2,0,1.5,﹣1,﹣22这五个数在数轴上表示出来,并用“<”把它们连接起来.【分析】根据有理数的大小得出结论即可.【解答】解:在数轴上表示各数为:∴﹣22<﹣2<﹣1<0<1.5.20.(12分)(1)+(﹣)++(﹣)+(﹣);(2)(﹣+)×(﹣48);(3)﹣2.5÷×(﹣);(4)﹣23÷(﹣2﹣)×(﹣)2﹣+1.【分析】(1)化简符号,再把同分母的先相加;(2)用乘法分配律计算即可;(3)把小数化为假分数,把除化为乘,再约分即可;(4)先算括号内的和乘方运算,再算乘除,最后算加减.【解答】解:(1)原式=﹣+﹣﹣=(﹣)+(﹣﹣)+=0﹣1+=﹣;(2)原式=﹣×48+×48﹣×48=﹣6+16﹣8=2;(3)原式=﹣××(﹣)=;(4)原式=﹣8÷(﹣)×﹣+1=﹣8×(﹣)×﹣+1=﹣+1=1.21.(8分)(Ⅰ)化简:(a2﹣4b)﹣(2b+4)﹣(﹣3a2+);(Ⅱ)若(Ⅰ)中的a是最小的非负整数,|b|=1,且b<0,求(Ⅰ)中代数式的值.【分析】(Ⅰ)去括号、合并同类项即可;(Ⅱ)由题意得出a=0,b=﹣1,再代入计算即可.【解答】解:(Ⅰ)原式=a2﹣4b﹣b﹣2+3a2﹣=4a2﹣5b﹣;(Ⅱ)由题意知a=0,b=﹣1,则原式=0﹣5×(﹣1)﹣=5﹣=.22.(8分)已知A=3x2﹣x+2y﹣4xy,B=2x2﹣3x﹣y+xy.(Ⅰ)化简:2A﹣B;(Ⅱ)若x+y=,xy=﹣1,求2A﹣3B的值.【分析】(1)利用整式加减运算法则化简即可.(2)把(x+y),xy看作一个整体,代入求值可得.【解答】解:(1)2A﹣B=2(3x2﹣x+2y﹣4xy)﹣(2x2﹣3x﹣y+xy)=6x2﹣2x+4y﹣8xy﹣2x2+3x+y﹣xy=4x2+x+5y﹣9xy;(2)∵x+y=,xy=﹣1,∴2A﹣3B=7x+7y﹣11xy=7(x+y)﹣11xy=7×﹣11×(﹣1)=6+11=17.23.(6分)在抗洪抢险中,解放军战士的冲锋舟加满油,沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:千米):+14,﹣9,+8,﹣7,+13,﹣6,+12,﹣5.(Ⅰ)填空:①B地位于A地的正东方向,距离A地20千米;②救灾过程中,冲锋舟距离A地最远处为25千米;(Ⅱ)若冲锋舟每千米耗油0.5升,油箱容量为28升,求冲锋舟当天救灾过程中至少还需补充多少升油?【分析】(Ⅰ)①把题目中所给数值相加,若结果为正数,则B地在A地的东方,若结果为负数,则B地在A地的西方;②分别计算出各点离出发点的距离,取数值较大的点即可;(Ⅱ)先求出这一天走的总路程,再计算出一共所需油量,减去油箱容量即可求出途中还需补充的油量.【解答】解:(Ⅰ)①(+14)+(﹣9)+(+8)+(﹣7)+(+13)+(﹣6)+(+12)+(﹣5)=14﹣9+8﹣7+13﹣6+12﹣5=20(千米),答:B地位于A地的正东方向,距离A地20千米;②第1次记录时冲锋舟离出发点A的距离为|+14|=14千米,第2次记录时冲锋舟离出发点A的距离为|14+(﹣9)|=5千米,第3次记录时冲锋舟离出发点A的距离为|5+(+8)|=13千米,第4次记录时冲锋舟离出发点A的距离为|13+(﹣7)|=6千米,第5次记录时冲锋舟离出发点A的距离为|6+(+13)|=19千米,第6次记录时冲锋舟离出发点A的距离为|19+(﹣6)|=13千米,第7次记录时冲锋舟离出发点A的距离为|13+(+12)|=25千米,第8次记录时冲锋舟离出发点A的距离为|25+(﹣5)|=20千米,由此可知,救灾过程中,冲锋舟离出发点A最远处为25千米;故答案为:①正东,20;②25;(Ⅱ)冲锋舟当天航行总路程为:|+14|+|﹣9|+|+8|+|﹣7|+|+13|+|﹣6|+|+12|+|﹣5|=14+9+8+7+13+6+12+5=74(千米),则74×0.5﹣28=37﹣28=9(升),答:冲锋舟当天救灾过程中至少还需补充9升油.24.(6分)有一台功能单一的计算器,只能完成对任意两个整数求差后再取绝对值的运算,其运算过程是:输入第一个整数x1,只显示不运算,再输入整数x2,显示|x1﹣x2|的结果.比如依次输入1,2,则显示结果1,若此后再输入一个整数,则显示与前面运算结果进行求差后再取绝对值的运算结果.(Ⅰ)若小明依次输入﹣1,0,1,则显示0;(Ⅱ)若小明将2,3,4,5,打乱顺序后一个一个地输入(不重复),则所有显示结果的最小值为0;所有显示结果的最大值为4;(Ⅲ)若小明依次输入四个连续整数n,n+1,n+2,n+3(其中n为正整数),则显示结果为2;(Ⅳ)若小明将四个连续整数n,n+1,n+2,n+3(其中n为整数),打乱顺序后一个一个地输入(不重复),则所有显示结果的最小值为0;(Ⅴ)若小明将1到2022这2022个整数打乱顺序后一个一个地输入(不重复),则所有显示结果的最大值为2021.【分析】(I)根据已知得出输入与输出结果的规律求出即可;(II)打乱顺序后一个一个地输入,可确定结果的最大值和最小值;(Ⅲ)按计算器的运算顺序计算可得答案;(Ⅳ)按如下次序输入:n,n+1,n+3,n+2,可得最小值为0;(Ⅴ)根据分析的奇偶性进行构造,其中k为非负整数,连续四个正整数结合分别得出最大值与最小值,可得结论.【解答】解:(I)由题意|﹣1﹣0|=1,|1﹣1|=0,所以小明依次输入﹣1,0,1,则显示的结果是0,故答案为:0;(II)对于2,3,4,5,按如下次序输入:2,3,5,4,可得:|2﹣3|=1,|1﹣5|=4,|4﹣4|=0,全部输入完毕后显示的结果的最小值是0;对于2,3,4,5,按如下次序输入:2,4,3,5,可得:|||2﹣4|﹣3|﹣5|=4,全部输入完毕后显示的结果的最大值是4;故答案为:0,4;(Ⅲ)小明依次输入四个连续整数n,n+1,n+2,n+3(其中n为正整数),可得:|||n﹣n﹣1|﹣(n+2)|﹣(n+3)|=2,故答案为:2;(IV)对于四个连续整数n,n+1,n+2,n+3(其中n为整数),打乱顺序后一个一个地输入(不重复),按如下次序输入:n,n+1,n+3,n+2,可得:|||n﹣n﹣1|﹣(n+3)|﹣(n+2)|=0,则所有显示结果的最小值为0,故答案为:0;(Ⅴ)小明输入这2022个数设次序分别是x1,x2,x2022,相当于计算:||…||x1﹣x2|﹣x3|﹣…﹣x2022|=P.因此P的值≤2022.另外从运算奇偶性分析,x1,x2为整数.|x1﹣x2|与x1+x2奇偶性相同.因此P与x1+x2+…+x2022的奇偶性相同.但x1+x2+…+x2022=1+2+…+2022=偶数.于是断定P≤2021.我们证明P可以取到2021.对1,2,3可以通过这种方式得到0:||3﹣2|﹣1|=0,对4,5,6,7,按如下次序|||4﹣5|﹣7|﹣6|=0,|||(4k+1)﹣(4k+3)|﹣(4k+4)|﹣(4k+2)|=0,对于k=0,1,2,…,均成立.∵2022=3+4×504+3,因此,1﹣2020可按上述办法依次输入最后显示最小结果为0,而后三个数2020,2021,2022,||2020﹣2021|﹣2022|=2021.所以P的最大值为2021.故答案为:2021.。

河北省石家庄市2023-2024学年七年级上学期期中考试数学试卷(含解析)

河北省石家庄市2023-2024学年七年级上学期期中考试数学试卷(含解析)

2023—2024学年度第一学期期中考试初一数学注意事项:本试卷共6页,总分120分,考试时间90分钟.一、选择题(本题共16个小题,1—10题,每题3分:11—16题,每题2分,共42分,在每个小题的四个选项中只有一项是符合题目要求的)1. 的倒数是( )A. B. 2 C. -2 D.【答案】C解析:∵-0.5×(-2)=1,∴的倒数是是-2.故选C.2. 数轴上到表示的点的距离为3的点表示的数为()A. 1B.C. 5或D. 1或【答案】D解析:解:若要求的点在的左边,则其表示的数为;若要求的点在的右边,则其表示的数为.所以数轴上到-2点距离为3的点所表示的数是或1.故选:D.3. 如果数轴上表示2和﹣4的两点分别是点A和点B,那么点A和点B之间的距离是( )A. ﹣2B. 2C. ﹣6D. 6.【答案】D解析:,故选D.4. 若m、n满足|m+3|+(n+2)2=0,则mn的值为( )A. ﹣1B. 1C. 6D. ﹣6【答案】C解析:∵|m+3|+(n+2)2=0,∴m+3=0,n+2=0,解得,m=﹣3,n=﹣2,∴mn=﹣3×(﹣2)=6,故选:C.5. 下列空间图形中是圆柱的为( )A. B. C. D.【答案】A解析:解:A是圆柱,B是圆锥,C是圆台,D是棱柱.故选A.6. 值日生每天值完日后,总是先把每一列最前和最后的课桌摆好,然后再依次摆中间的课桌,很快就能把课桌摆得整整齐齐,他们这样做的道理是()A. 两点之间,线段最短B. 两点确定一条直线C. 两点的距离最短D. 以上说法都不对【答案】B解析:解:把每一列最前和最后的课桌看作两个点,∴这样做的道理是:两点确定一条直线.故选:B7. 下列计算正确的是()A. B.C. D.【答案】C解析:A选项,,错误;B选项,,错误;C选项,,正确;D选项,,错误;故选:C.8. 下列说法正确是( )A. 射线比直线短B. 两点确定一条直线C. 经过三点只能作一条直线D. 两点间的长度叫两点间的距离【答案】B解析:A、射线,直线都是可以无限延长的,无法测量长度,错误;B、两点确定一条直线,是公理,正确;C、经过不在一条直线的三点能作三条直线,错误;D、两点间线段的长度叫两点间的距离,错误.故选B9. 如图,能用、、三种方法表示同一个角的是( )A. B.C. D.【答案】A解析:解:A、、、三种方法表示的是同一个角,故此选项正确;B、、、三种方法表示的不一定是同一个角,故此选项错误;C、、、三种方法表示的不一定是同一个角,故此选项错误;D、、、三种方法表示的不一定是同一个角,故此选项错误;故选:A.10. 如果,则的补角等于( )A.B.C.D.【答案】C解析:解:∵,∴的补角,故选:C.11. 有个填写运算符号的游戏:在“”中的“□”内,填入+,﹣,×,÷中的某一个,然后计算结果,可使计算结果最小的符号为( )A + B. ﹣ C. × D. ÷【答案】B解析:解:;;;,∵,∴使计算结果最小的符号为“”.故选:B.12. 下列说法正确的是()A. 同号两数相乘,取原来的符号B. 一个数与相乘,积为该数的相反数C. 一个数与相乘仍得这个数D. 两个数相乘,积大于任何一个乘数【答案】B解析:、两数相乘,同号得正,此选项错误,不符合题意;、一个数与相乘,积为该数的相反数,此选项正确,符合题意;、一个数与相乘得,此选项错误,不符合题意;、两个数相乘,积不一定大于任何一个乘数,如,此选项错误,不符合题意;故选:.13. 如图,在数轴上,若点表示一个负数,则原点可以是()A. 点B. 点C. 点D. 点【答案】D解析:解:∵负数<0,∴在数轴上负数一定在原点的左侧,若点B表示负数,原点只能是点A.故选D.14. 如图,点C在的边上,用尺规作出了,作图痕迹中,弧是( )A. 以点C为圆心,为半径的弧B. 以点C为圆心,为半径的弧C. 以点E为圆心,为半径的弧D. 以点E为圆心,为半径的弧【答案】D解析:解:作图痕迹中,弧是以点为圆心,为半径的弧,故选:D.15. 如图,将三角形ABC绕点A逆时针旋转85°得到三角形AB′C′,若∠C′AB′=60°,则∠CAB=( )A. 60°B. 85°C. 25°D. 15°【答案】A解析:三角形ABC绕点A逆时针旋转85°得到三角形AB′C′,即故选:A.16. 如图,圆的周长为4个单位长度.在该圆的4等分点处分别标上数字0、1、2、3,先让圆周上表示数字0的点与数轴上表示数的点重合,再将数轴按逆时针方向环绕在该圆上.则数轴上表示数的点与圆周上表示数字( )的点重合.A. 0B. 1C. 2D. 3【答案】D解析:解:由题意得,在逆时针环绕时,圆周上表示的数字以0,3,2,1为一个循环组,依次循环,∵,且,∴数轴上表示数的点与圆周上表示数字3的点重合.故选:D.二、填空题(本题共计3小题,17、18题各3分,19题4分,共计10分)17. 数轴上与原点的距离不大于5 的表示整数的点有______个.【答案】11解析:∵数轴上到原点距离不大于5的所有数为:∣x-0∣≤5,即-5≤x≤5,∴满足条件的整数有:±5,±4,±3,±2,±1,0;共11个,故答案为1118. 已知a与b互为相反数,c与d互为倒数,x的绝对值等于2,则的值为___________【答案】±2解析:由题意得:a+b=0,cd=1,x=±2,当x=2时,a+b-cdx=0-1×2=-2,当x=-2时,a+b-cdx=0-1×(-2)=2,故答案±2.19. 如图所示是一个运算程序示意图,若开始输入的值为81,则第一次输出的结果为____,则第2023次输出的结果为____.【答案】①. 27 ②. 3解析:解:若开始输入的值为81,第1次:,第2次:,第3次:,第4次:,第5次:,第6次:,…,∴从第3次开始,奇数次运算输出的结果是3,偶数次运算输出的结果是1,∵2023是奇数,∴第2023次输出的结果为3,故答案为:27,3.20. 计算下列各式(1);(2);(3);(4).【答案】(1)(2)(3)(4)【小问1详解】【小问2详解】【小问3详解】;【小问4详解】;21. 一只小虫从某点出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:,,,,,,(1)通过计算说明小虫是否回到起点;(2)如果小虫爬行的速度为0.5厘米/秒,那么小虫共爬行了多长时间.【答案】(1)小虫回到起点(2)小虫共爬行了108秒【小问1详解】解:(厘米)答:小虫回到起点.【小问2详解】(秒);答:小虫共爬行了108秒.22. 如图,是线段上一点,是的中点,是的中点.(1)若,,求的长度.(2)若,求的长度.【答案】(1)3;(2)3.解析:解:(1)∵是的中点,是的中点,,,∴,,∴.(2)∵是的中点,是的中点,,∴.23. 请先阅读下列内容,然后解答问题:因为:,,,…,所以:++…+=+++…+==(1)猜想并写出:= ;(为正整数)(2)直接写出下面式子计算结果:++…+= ;(3)探究并计算:++…+【答案】(1);(2);(3)解析:解:(1),故答案为:(2)++…+===,故答案为:(3)原式=++…+=…+===24. (1)如图.在一条不完整的数轴上一动点向左移动4个单位长度到达点,再向右移动7个单位长度到达点.①若点表示的数为0,求点表示的数是 ,点表示的数是 ;②如果点、表示的数互为相反数,求点表示的数是 .(2)如图1.在一块长方形区域中布置了图中阴影部分所示的展区,其中的展台有三种不同的形状,其规格如图2所示.①该长方形区域的长可以用式子表示为 ;②根据图中信息,用等式表示,,满足的关系为 .【答案】(1)①,3;②;(2)①;②解析:解:(1)①点表示的数是,点表示的数为:;故答案为:;②设表示的数为,则:表示的数为,∴,∴,∴点表示的数为,∴点表示的数为;故答案为:;(2)①由图可知:长方形的长为:;故答案为:;②由图可知,长方形的宽可表示为:或,∴,∴;故答案为:.25. 将一副三角板中的两块直角三角尺的直角顶点按如图所示的方式叠放在一起.(1)若,则的度数为 ;(2)若,求的度数;(3)猜想与之间存在什么数量关系?并说明理由:【答案】(1)(2)(3),理由见解析【小问1详解】解:由题意可得:,∵,∴,∵,∴;故答案为:;【小问2详解】解:∵,∴,∴;【小问3详解】解:猜想:,理由如下:∵,又∵,∴,即.26. 如图,点A、C、B在数轴上表示的数分别是-3、1、5.动点P、Q同时出发,动点P从点A出发,以每秒4个单位的速度沿匀速运动回到点A停止运动.动点Q从点C出发,以每秒1个单位的速度沿向终点B匀速运动,设点P的运动时间为.(1)当点P到达点B时,点Q表示的数为____________.(2)当时,求点P、Q之间的距离.(3)当点P在上运动时,用含t的代数式表示点P、Q之间的距离.(4)当点P、Q到点C的距离相等时,直接写出t的值.【答案】(1)3;(2)1;(3)当时,PQ=4-3t,当时,PQ=3t-4;(4),或,或,或.【解析】解析:(1),Q点运动距离为,Q点表示的数为,所以点Q表示的数为3;(2)当t=1时,P点表示的数为,Q点表示的数为,∴P、Q之间的距离为.(3)P点表示的数为,Q点表示的数为,.当时,PQ=4-3t.当时,PQ= 3t-4.(4),①PQ第一次相遇前:,解得:,②PQ第一次相遇:,解得:③PQ第二次相遇:,解得:,④PQ第二次相遇后:,解得:,综上,,或,或,或.。

浙江省J12共同体联盟2024学年七年级上学期期中考试数学试卷

浙江省J12共同体联盟2024学年七年级上学期期中考试数学试卷

J12共同体联盟校学业质量检测2024(初一上)数学试题卷亲爱的同学:欢迎参加考试!答题时,请注意以下几点:1.全卷共4页,有三大题,24小题,满分120分。

考试时间120分钟。

2.答案必须写在答题纸相应的位置上,写在试题卷、草稿纸上均无效。

3.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

祝你成功!一、选择题(本题有10小题,每小题3分,共30分。

每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.在实数-1,0,√3,12中,属于无理数的是( ) A.-1 B.0 C .√3 D .12 2.2024年法国巴黎奥运会最大场馆是巴黎圣母院体育场,该场馆可容纳约77600人,其中77600用科学记数法表示为( )A.0.776×105B.7.76×104C.77.6×103D.776×1023.某日杭州市最高气温为11℃,最低气温为-2℃,则该日杭州市的最大温差为( )A.13℃B.11℃C.9℃D.7℃4.9的平方根是( )A.9B.±9C.3D.±35.下列计算正确的是( )A.3(a+b )=3a+bB.-a 2b+b 2a =0C.x 2+2x 2=3x 2D.2a+3b =5ab6.下列说法:① 若两个数乘积为1,则这两个数必互为倒数;② 任何正数都有两个互为相反数的平方根;③ 立方根等于本身的数有1,0,-1;④ 一个数的算术平方根一定比原数小.其中错误的是( )A.①B.②C.③D.④7.一条数轴上有两点A 与B ,已知点A 到原点O 的距离为3个单位,点B 在点A 的右侧且到点A 的距离为5个单位,则点B 所表示的数可能是( )A.8B.2C.-8或2D.8或28.某辆新能源车每次充电都会把电充满,下表记录了该车相邻两次充电时的情况。

(注:“累计里程“指汽车从出厂开始累计行驶的路程)在这段时间内,该车每100千米平均耗电量为( )A .403度 B.12.5度 C.8度 D.7.5度 充电时间 充电量(度) 充电时的累计里程(千米) 2024年9月30日 10 35000 2024年10月2日25 352009.如图,数轴上从左到右的三个点A,B,C把数轴分成了I,II,II,IV四个部分,点A,B,C对应的数分别是a,b,c。

江苏省灌云高级中学2023-2024学年七年级上学期期中考试数学试卷(含解析)

江苏省灌云高级中学2023-2024学年七年级上学期期中考试数学试卷(含解析)

2023-2024学年度第一学期期中监测灌云高级中学七年级数学试题考试时间:100分钟;总分:150分1.答题前填写好自己的姓名、班级、考号等信息.2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)一、单选题(每题3分,共计24分)1. 计算的结果为()A. 1B.C. 3D.【答案】B解析:解:,故选B.2. 在下列各数,π,0,,,,(每两个2之间依次增加一个数6)中,无理数的个数有()A4个 B. 3个 C. 2个 D. 1个【答案】C解析:是循环小数,是有理数;π是无限不循环小数,是无理数;0是有理数;是分数,是有理数;是小数,是有理数;是小数,是有理数;(每两个2之间依次增加一个数6)是无限不循环小数,是无理数,无理数的个数有2个,故选:C.3. 下列各式运用等式的性质变形,正确的是().A. 若,则B. 若,则C. 若,则D. 若,则【答案】C解析:解:A、若,则,原变形错误,不符合题意;B、若,,则,原变形错误,不符合题意;C、若,则,原变形正确,符合题意;D、若,,则,原变形错误,不符合题意,故选:C.4. 下列运算中,正确的是()A. B.C. D.【答案】D解析:A、,故A错误;B、,故B错误;C、,故C错误;D、,故D正确.故选:D.5. 2023年歌曲《罗刹海市》席卷全球,据统计截止八月中旬,播放量突破惊人的亿,数字用科学记数法表示为( )A. B. C. D.【答案】C解析:解:.故选:C.6. 若,则的值()A. 1B. 或1C. 0D. 或3【答案】D解析:解:当时,,;当时,,;当时,,;当时,,;综上所述,的值为或3.故选:D.7. 如图,将,,,0,1,2,3,4,5分别填入九个空格内,使每行、每列、每条对角线上的三个数之和相等,现在分别表示其中的一个数,则的值为()A. B. C. 0 D. 5【答案】A解析:解:根据题意得:,,,,故选:A.8. 如图,一枚棋子放在七角棋盘的第0号角,现依逆时针方向移动这枚棋子,其各步依次移动1,2,3,…,n个角,如第一步从0号角移动到第1号角,第二步从第1号角移动到第3号角,第三步从第3号角移动到第6号角,….若这枚棋子不停地移动下去,则这枚棋子永远不能到达的角的个数是( )A. 0B. 1C. 2D. 3【答案】D解析:因棋子移动了k次后走过的总格数是1+2+3+…+k=k(k+1),应停在第k(k+1)-7p格,这时P是整数,且使0≤k(k+1)-7p≤6,分别取k=1,2,3,4,5,6,7时,k(k+1)-7p=1,3,6,3,1,0,0,发现第2,4,5格没有停棋,若7<k≤10,设k=7+t(t=1,2,3)代入可得,k(k+1)-7p=7m+t(t+1),由此可知,停棋的情形与k=t时相同,故第2,4,5格没有停棋,即这枚棋子永远不能到达的角的个数是3.故选D.第Ⅱ卷(非选择题)二、填空题(每题3分,共计30分)9. 若数在数轴上所对应的点在原点的右边且到原点的距离等于5,那么这个数等于__________.【答案】5解析:解:数在数轴上所对应的点在原点的右边且到原点的距离等于5,这个数,故答案为:5.10. 若单项式和是同类项,则的值为_________.【答案】4解析:解:∵单项式和是同类项,∴,,解得:,∴.故答案为:4.11. 若是关于x的一元一次方程,则m的值是________.【答案】解析:解:∵是关于x的一元一次方程,∴,,解得:或,,∴.故答案是:.12. 已知在如图数值转换机中的输出值,则输入值________.【答案】解析:解:根据题意得,∴解得.故答案为:.13. 已知有理数a,b,c,d,e,且互为倒数,c,d互为相反数,e的绝对值为2,则式子___________.【答案】或解析:解:∵互为倒数,c,d互为相反数,e的绝对值为2,∴,,,∴当时,;当时,;故答案为:或.14. 现定义一种新运算,对于任意有理数,,,满足,若对于含未知数式子满足,则________.【答案】2解析:∵∴,去括号,可得:,移项,合并同类项,可得:,系数化为1,可得:.故答案为:.15. 如图,将直径为1个单位长度的圆形纸片上的点A放在数轴的处,纸片沿着数轴向左滚动一周,点A到达了点的位置,则此时点表示的数是________.【答案】##解析:解:由题意得,点表示的数是,故答案为:.16. 如果,为定值,关于的一次方程,无论为何值时,它的解总是1,则______.【答案】1解析:解:将代入方程,,,,,由题意可知,,,,,,故答案为:1.17. 若,则________.【答案】解析:解:当时,∵,∴,即,当时,∵,∴,∴,∴,故答案为:.18. 如图,将一个边长为1的正方形纸片分割成7个图形,图形①面积是正方形纸片面积的,图形②面积是图形①面积的2倍的,图形③面积是图形②面积的2倍的,…,图形⑥面积是图形⑤面积的2倍的,图形⑦面积是图形⑥面积的2倍.计算的值为________【答案】解析:解:根据题意得:图形①的面积是,图形②的面积是,图形③的面积是,…,图形⑥的面积是,图形⑦的面积是,∴.故答案为:三、解答题19. 计算题①②③④【答案】①5,②26,③9,④4详解】①原式;②原式;③原式;④原式20. 解方程:(1);(2).【答案】(1)(2)【小问1详解】解:去括号得:,移项合并同类项得:,解得:;【小问2详解】解:,去分母得:,去括号得:,移项合并同类项得:,解得:.21. (1)先化简再求值:,其中.(2)先化简,再求值:,其中,.【答案】(1),;(2),4解析:解:(1),当,时,原式;(2),,,当,时,原式,,.22. 出租车司机小张某天下午的运营是在一条东西走向的大道上.如果规定向东为正,他这天下午的行程记录如下:(单位:千米),,,,,,(1)将最后一名乘客送到目的地时,小张离下午出车点的距离是多少?(2)若汽车的耗油量为升/千米,油价为元/升,这天下午共需支付多少油钱?【答案】(1)将最后一名乘客送到目的地时,小张在下午出车点东边,距出发点的距离是21千米(2)这天下午共需支付油费元【小问1详解】解:(千米),答:将最后一名乘客送到目的地时,小张在下午出车点东边,距出发点的距离是21千米.【小问2详解】解:(元),答:这天下午共需支付油费元.23. 已知,.(1)若m为最小的正整数,且,求;(2)若的结果中不含一次项和常数项,求的值.【答案】(1)(2)1【小问1详解】解:∵m为最小的正整数,且,∴,故,则;【小问2详解】解:.∵的结果中不含一次项和常数项,∴,解得:,∴.24. 列方程解应用题:某中学库存若干套桌椅,准备修理后支援贫困山区学校.现有甲、乙两木工组,甲每天修理桌椅16套,乙每天修桌椅比甲多8套,甲单独修完这些桌椅比乙单独修完多用20天,学校每天付甲组80元修理费,付乙组120元修理费.(1)该中学库存多少套桌椅?(2)在修理过程中,学校要派一名工人进行质量监督,学校负担他每天20元生活补助费,现有三种修理方案:、由甲单独修理;、由乙单独修理;、甲、乙合作同时修理.你认为哪种方案省时又省钱?为什么?【答案】(1)该中学库存960套桌椅(2)方案c省时省钱【小问1详解】解:(设该中学库存x套桌椅,则,解得.答:该中学库存960套桌椅.【小问2详解】解:设a、b、c三种修理方案的费用分别为元,则,,,综上可知,选择方案c更省时省钱.答:方案c省时省钱.25. 关于x的整式,当x取任意一组相反数m与时,若整式的值相等,则该整式叫做“偶整式”;若整式的值互为相反数,则该整式叫做“奇整式”.例如:是“偶整式”,是“奇整式”.(1)若整式A是关于x的“奇整式”,当x取1与时,对应的整式值分别为,,则________;(2)对于整式,可以看作一个“偶整式”与“奇整式”的和.①这个“偶整式”是________,“奇整式”是________;②当x分别取,,,0,1,2,3时,这七个整式的值之和是________.【答案】(1)0 (2)①,;②35【小问1详解】解:∵整式A是关于x的“奇整式”,当x取1与时,对应的整式值分别为,,∴,∴,故答案为:0;【小问2详解】解:①,∵,,∴“偶整式”,是奇整式”,故答案为:,;②由于是偶整式,是奇整式,∴当x分别取,,,0,1,2,3时,的值分别为10,5,2,1,2,5,10;当x取互为相反数的值时的值也互为相反数,即和为0,∴当x分别取,,,0,1,2,3时,的所有值的和为0,,∴这七个整式的值之和是;故答案为:35.26. 将整数1,2,3……2009按下列方式排列成数表,用斜十字框“×”框出任意的5个数,如果用a,b,c,d,m表示类似“×”形框中的5个数.其中.(1)记,若S最小,那么m=__________,若S最大,那么m=__________.(2)用等式表示a,b,c,d,m这5个数之间的关系并说明理由.(3)若.求m的值.(4)框出的五个数中,a,b,c,d的和能否等于588吗?若能,求出m的值,若不能,请说明理由.【答案】(1)17,2009(2)(3)(4)能,【小问1详解】(1)由题意可得,∴∵∴当时S最小,此时,∵,∴,∴,∵,∴当时,S最大,故答案为:17,2009;【小问2详解】解:∵,∴,,∴;【小问3详解】解:∵,∴,,∵,∴,∴∴;【小问4详解】解:若,则,解得,∵,∴是第三列的数,∴框出的五个数中,a,b,c,d的和能等于588,且.27. 已知a,b满足,a,b分别对应数轴上的A,B两点.(1)直接写出__________,__________;(2)若点P从点A出发,以每秒3个单位长度的速度向数轴正方向运动,求运动时间为多少时,点P到点A的距离是点P到点B的距离的2倍?(3)数轴上还有一点C对应的数为30.若点P和点Q同时从点A和点B出发,分别以每秒3个单位长度和每秒1个单位长度的速度向C点运动.P点到达C点后,再立刻以同样的速度返回,运动到终点A,点Q 达到点C后继续向前运动.求点P和点Q运动多少秒时,P,Q两点之间的距离为4?【答案】(1)4,16(2)或8(3)点P和点Q运动4或8或9或11秒时,P、Q两点之间的距离为4【小问1详解】解:∵,∴,,∴,,故答案为:4,16;【小问2详解】解:设运动时间为,由题意得,或,解得或8,∴运动时间为或8秒时,点P到点A的距离是点P到点B的距离的2倍;【小问3详解】解:设点P和点Q运动t秒时,P、Q两点之间的距离为4,如图,当点Q在点P右侧,,解得,如图,当点P在点Q的右侧,,解得,如图,当点P从点C返回时,且点P在Q的右侧,,解得,如图,当点P返回时,点Q在点P的右侧,,解得,即点P和点Q运动4或8或9或11秒时,P、Q两点之间的距离为4,此时点Q表示的数为20、24、25、27.。

2023北京海淀区初一(上)期中数学试卷及答案

2023北京海淀区初一(上)期中数学试卷及答案

2023北京海淀初一(上)期中数 学2023.11第一部分 选择题—、选择题(共30分,每题3分)第1-10题均有四个选项,符合题意的选项只有一个. 1.3的相反数是 A.13B. 13−C.3D.-32.中国自主研发的某手机芯片内集成了约153亿个晶体管,将153****0000用科学记数法表示应为 A.100.15310⨯B. 915310⨯.C. 1015310⨯.D. 915310⨯.3.下列计算正确的是 A.132−=− B.325−+=− C.()326⨯−=D.()()1422−÷−=4.()23− 的值为 A.9−B.9C.6−D.65.下列各数中是正数的是 A.0B.1−−C.()0.5−−D.()2+−6.下列整式中与2a b 是同类项的为 A.2abB .2a b −C.2abD.2a bc7.对于多项式234x y xy −−,下列说法正确的是 A.二次项系数是3B.常数项是4C.次数是3D.项数是28.若21a b −=−,则421a b −+ 的值为 A.-1B.0C.1D.29.已知有理数a 在数轴上的对应点的位置如图所示,那么 A.1a >−B .a a >−C.24a >D.a a >10.某窗户的形状如图所示(图中长度单位:cm),其上部是半圆形,下部是由两个相同的长方形和一个正方形构成.已知半圆的半径为a cm ,长方形的长和宽分别为b cm 和c cm.给出下面四个结论:①窗户外围的周长是(32a b c π++)cm ; ②窗户的面积是()2222cma bcb ++;③622c a += ; ④3b c =.上述结论中,所有正确结论的序号是 A. ①②B. ①③C. ②④D. ③④第二部分 非选择题二、填空题(共18分,每题3分)11.如果+30m 表示向东走30m ,那么向西走40m 可表加为__________m. 12.比较大小:-2______-5(填“<”“=”或“>”).13.用四舍五入法将13.549精确到百分位,所得到的近似数为__________. 14.若有理数a ,b 满足210a b −+=,则a b +=_________.15.已知数轴上点A ,B 所对应的数分别是1,3,从点A 出发向负方向移动2个单位长度得到点C ,从点B 出发向正方向移动2个单位长度得到点D ,则点C ,D 之间的距离为_____个单位长度. 16.对于有理数a ,b ,我们规定运算“㊉”:2a ba b +⊕=, (1)计算:①㊉2=___________;(2)对于任意有理数a ,b ,c ,若(a ㊉b )㊉c =a ㊉(b ㊉c )成立,则称运算“㊉”满足结合律.请判断运算“㊉”是否满足结合律:_____(填“满足”或“不满足”).三、解答题(共52分,第17题4分,第18题12分,第19题5分,第20-24题,每小题4分,第25题5分,第26题6分)解答应写出文字说明、演算步骤或证明过程.17.在数轴上表示下列各数:0,-3,113−,2.5,并按从小到大的顺序用“<”号把这些数连接起来.18.计算:(1)()()()81023++−−−−;(2)2635()9−÷⨯−;(3)231()32446−−⨯;(4)()()324735−+−÷+.19.化简:(1)23ab ab ab −+;(2)()()223521a a a−++−.20.先化简,再求值:2214323xy xy xy xy ⎛⎫⎪−−⎝⎭+,其中2x =,1y =−.21.已知排好顺序的一组数:4,12−,0,-2.3,59,8.14,7,-10.(1)在这组数中,正数有______个,负数有______个;(2)若从这组数中任取两个相邻的数,将左侧的数记为a ,右侧的数记为b ,则a -b 的值中共有____个正数; (3)若从这组数中任取两个不同的数m 和n ,则mn 的值中共有______个不同的负数. 22.如图是一个运算程序: (1)若1x =,3y =,求加的值;(2)若2y =−,m 的值大于-4,直接写出一个符合条件的x 的值.23.2023年9月80,在杭州亚运会火炬传递启动仪式上,火炬传递路线从“涌金公园广场”开始,最后到达西湖十景之一的“平湖秋月”.右图为杭州站的火炬传递线路图.按照图中路线,从“涌金公园广场”到“一公园”共安排16名火炬手跑完全程,平均每人传递里程为48米.以48米为基准,其中实际里程超过基准的米数记为正数,不足的记为负数,并将其称为里程波动值.下表记录了16名火炬手中部分人的里程波动值.(2)若第4棒火炬手的实际里程为49米.①第4棒火炬手的里程波动值为____②求第14棒火炬手的实际里程.24.如图,某影厅共有16排座位,第1排有m个座位,第2排比第1排多6个座位,第3排及后面每排座位数相同,都比第2排多n个座位.(1)该影厅第3排有______个座位(用含m,n的式子表示);(2)图中的阴影区域为居中区域,第1排的两侧各去掉1个座位后得到第1排的居中区域,第2排的居中区域比第1排的居中区域在两侧各多1个座位,第3排及后面每排的居中区域座位数相等,都比第2排的居中区域在两侧各多2个座位.居中区域的第7,8,9排为最佳观影位置.①若该影厅的第1排有11个座位,则居中区域的第2排有_____个座位,居中区域第3排有_____个座位;②若该影厅的最佳观影位置共有39个座位,则该影厅共有____个座位(用含n的式子表示)25.小明用一些圆形卡片和正方形卡片做游戏.游戏规则:在每张圆形卡片左侧相邻位置添加一张正方形卡片,在每张正方形卡片左侧相邻位置添加一张圆形卡片.游戏步骤:第一次游戏操作:将初始的若干张卡片排成一排,按照游戏规则操作,得到一排新的卡片;第二次游戏操作:在第一次游戏得到的结果上再按照游戏规则操作,又得到一排新的卡片;······以此类推,后续每一次游戏操作都是在上一次游戏的结果上进行的.例如:小明初始得到的是一张正方形卡片和一张圆形卡片,排成一排,如下图所示:第一次游戏操作后得到的卡片如下图所示:得到的卡片从左到右简记为:圆,方,方,圆.(1)若小明初始得到的是两张正方形卡片,则第一次游戏操作后得到的卡片从左到右简记为________;(2)若小明初始得到若干张卡片,第二次游戏操作后的结果如下图所示,则他初始得到的卡片从左到右简记为_______________;(3)若小明初始得到五张卡片,则第二次游戏操作后至少有_____对位置相邻且形状相同的卡片.26.类比同类项的概念,我们规定:所含字母相同,并且相同字母的指数之差的绝对值都小于或等于1的项是“准同类项”.例如:34a b 与432a b 是“准同类项”. (1)给出下列三个单项式: ①452a b ,②253a b③444a b −.其中与45a b 是“准同类项”的是______________(填写序号).(2)已知A ,B ,C 均为关于a ,b 的多项式4534233(2)A a b a b n a b =++−,2324523nB a b a b a b =−+,C A B =−.若C 的任意两项都是“准同类项”,求n 的值.(3)已知D ,E 均为关于a ,b 的单项式,22mD a b =,43n E a b =,其中|1||2|m x x k =−+−+,(12)n k x x =−−−,x 和k 都是有理数,且k >0.若D 与E 是“准同类项”,则x 的最大值是____,最小值是_____.海淀区2023年七年级增值评价基线调研数学试题参考答案一、选择题二、填空题11. 40− 12. > 13. 13.55 14. 1 15. 6 16.32; 不满足 三、解答题17. 解:−3<−113<0<2.518. 解:(1)(+8)+(−10)−(−2)−3 =8−10+2−3 =8+2−10−3 = −3(2)−6÷23×(−59)=−6×32×(−59) =6×32×59=5 (3)24×(23−34−16)=24×23−24×34−24×16 =16−18−4 = −62.501133–1–2–3–4–512345(4)(−2)3+(4−7)÷3+5=−8+(−3)÷3+5=−8−1+5=−419.解:(1)2ab−ab+3ab=(2−1+3)ab=4ab(2)3a2−(5a+2)+(1−a2)=3a2−5a−2+1−a2=2a2−5a−120. 解:4xy+3(xy2−1xy)−2xy23=4xy+3xy2−xy−2xy2=3xy+xy2当x=2,y=−1时,3xy+xy2=3×2×(−1)+2×(−1)2=−6+2=−4.所以,此时原式的值为−4.21. 解:(1)4,3;(2)4;(3)12.22.解:(1)若x=1,y=3,则|x|=1,−y=−3.所以|x|≥−y.所以m=2y−x2=2×3−12=5(2)1(答案不唯一,满足0<x<2即可).23. 解:(1)53;(2)①1;②解:0−(2+6−5+1+3−2+0−6+5+5−4−5−8+4+1)=0−(−3)=3. 48+3=51.答:第14棒火炬手所跑的实际里程为51米. 24. 解:(1)m +n +6;(2)①11, 15;②234+14n .25.解:(1)圆,方,圆,方;(2)方,圆,方;(3)5.26.解:(1) ① ③;(2)因为 A =a 4b 5+3a 3b 4+(n −2)a 2b 3,B =2a 2b 3−3a 2b n +a 4b 5,所以 C =A −B =3a 3b 4+(n −4)a 2b 3+3a 2b n . ①当4n =时,342333C a b a b =+, 所以C 的两项是“准同类项”. ②当4n ≠时,因为 C 的任意两项都是“准同类项”,当3a 2b n 和(n −4)a 2b 3是“准同类项”,且n 为正整数时, 得到 n =2或3.当3a 2b n 和3a 3b 4是“准同类项”,且n 为正整数时, 得到n =3或5. 所以n =3.综上, n 的值为3或4. (3)x 的最大值是72,最小值是138.。

初一数学上册期中考试试卷及答案

初一数学上册期中考试试卷及答案

初一数学上册期中考试试卷及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正数?A. -3B. 0C. 5D. -1答案:C2. 以下哪个表达式的结果为负数?A. 2 + 3B. -2 - 3C. 2 × 3D. -2 × 3答案:B3. 哪个分数等于1/2?A. 2/4B. 3/6C. 4/8D. 5/10答案:A4. 如果a = 5,b = 3,那么a + b的值是多少?A. 2B. 8C. 10D. 15答案:B5. 哪个图形不是轴对称图形?A. 圆形B. 正方形C. 等边三角形D. 不规则四边形答案:D6. 下列哪个选项是质数?A. 4B. 6C. 7D. 8答案:C7. 一个数的相反数是-5,这个数是多少?A. 5B. -5C. 0D. 10答案:A8. 一个数的绝对值是5,这个数可能是?A. 5B. -5C. 5或-5D. 0答案:C9. 哪个选项表示的是不等式?A. 3 + 4 = 7B. 2 × 5 = 10C. 9 > 3D. 6 = 6答案:C10. 下列哪个选项是正确的比例?A. 2:3 = 4:6B. 3:4 = 6:8C. 5:7 = 10:14D. 1:2 = 3:6答案:D二、填空题(每题2分,共20分)11. 一个数的平方是16,这个数是______。

答案:4或-412. 如果一个数除以3余1,这个数可能是______。

答案:413. 一个数的立方是-8,这个数是______。

答案:-214. 一个数的倒数是1/3,这个数是______。

答案:315. 一个数的绝对值是它本身,这个数是非负数,包括______。

答案:0和正数16. 如果一个三角形的两边长分别是3和4,那么第三边的长度应该在______范围内。

答案:1和7之间17. 一个数的平方根是2,这个数是______。

答案:418. 如果一个数的相反数是它本身,这个数是______。

2023-2024学年河北省石家庄市栾城区初一第一学期期中数学试卷及参考答案

2023-2024学年河北省石家庄市栾城区初一第一学期期中数学试卷及参考答案

2023—2024学年度第一学期石家庄市栾城区期中教学质量检测七年级数学一.选择题(本大题共12个小题,每小题2分,共24分,把每小题的正确选项填涂在答题纸上)1.如果气温升高时气温变化记作2+℃,那么气温下降4℃时气温变化记作( ) A .4+℃B .4−℃C .6+℃D .6−℃2.计算(1)5−−的结果是( ) A .4−B .4C .6−D .53.2023的相反数为( ) A .2023−B .2023C .12023−D .120234.下列绘制的数轴正确的是( ) A . B . C .D .5.单项式223x y−的系数和次数分别是( )A .2−,3B .-2,2C .23−,3 D .23−,2 6.下列各式中,计算正确的是( ) A .( 5.8)( 5.8)11.6−−−=− B .2144164−÷⨯=− C .322(3)72−⨯−=D .22(5)4(5)(3)45⎡⎤−+⨯−⨯−=⎣⎦7.计算2( 1.8)−的结果是( ) A .32.4B .32.4−C .3.24D .32.48.下列说法错误的是( ) A .直线l 经过点AB .点C 在线段上C .射线与线段有公共点D .直线a ,b 相交于点A9.某服装店新开张,第一天销售服装m 件,第二天比第一天少销售8件,第三天的销售量是第二天的2倍多3件,则这三天的销售量一共为( ) A .(421)m +件B .(421)m −件C .(331)m +件D .(331)m −件10.如图,用量角器度量AOB ∠和AOC ∠的度数下列说法中,正确的是( )A .110AOB ∠=︒B .AOB AOC ∠=∠ C .90AOB AOC ︒∠+∠=D .180AOB AOC ︒∠+∠=11.当1x =时,代数式37ax bx ++的值为4,则当1x =−时,代数式37ax bx ++的值为( ) A .4B .4−C .10D .1112.观察下列一组数:23−,45,67−,89,1011−,…,它们是按一定规律排列的,那么这一组数的第n 个数是( )A .221n n + B .2(1)21n n n −− C .2(1)21nn n −+ D .12n n ++ 二、填空题(本大题共8个小题,每小题3分,共24分,将正确答案填写在答题纸上)13.中国古代的算筹计数法可追溯到公元前5世纪.摆法有纵式和横式两种(如图所示),以算筹计数的方法是摆个位为纵,十位为横,百位为纵,千位为横……这样纵横依次交纵式表示752−,表示2369,则表示________.14.单项式3ax y −与46b x y 是同类项,则a b +=________.15.已知a 、b 互为相反数,c 、d 互为倒数,则代数式2()3a b cd +−的值为________. 16.如图,点O 在直线AB 上,581728AOC '''∠=︒.则BOC ∠的度数是________.17.图中几何体的截面(图中阴影部分)依次是________、________、________、________.18.121536︒'"=________°.(将度分秒转化成度)19.如图,在75⨯方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是点________.20.如图是一组有规律的图案,它们是由边长相等的正三角形组合而成的,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形,,按此规律摆下去,第n 个图案有________个三角形(用含n 的式子表示).三、解答题:(本大题共5个小题,共52分)21.计算(共10分)已知下列各有理数: 2.5−,3,4−,12−,32(1)在数轴上标出这些数表示的点:(2)用“<”号把这些数连接起来:________; (3)请将以上各数填到相应的横线上: 正有理数:________;负有理数:________. 22.计算(共10分)某校七年级1至4班计划每班购买数量相同的图书布置班级读书角,但是由于种种原因,实际购书量与计划有出入,如表是实际购书情况:(1)直接写出a =________,b =________; (2)根据记录的数据可知4个班实际购书共本;(3)书店给出一种优惠方案:一次购买达到15本,其中2本书免费.若每本书售价为30元,求这4个班团体购书的最低费用. 23.(共10分)读句子画图:如图A 、B 、C 、D 在同一平面内(1)过点A 、D 画直线; (2)画射线CD ; (3)连结AB ;(4)连接AC 和BD 相交于点E ;(5)连结BC 并延长BC 到F ,使CF BC =. 24.(本题满分10分). 已知如图所示.(1)写出表示阴影部分面积的代数式;(两个四边形均为正方形) (2)求4cm a =,6cm b =时,阴影部分的面积. 25.(本题满分12分)已知120AOB ∠=︒,40COD ∠=︒,OE 平分AOC ∠,OF 平分BOD ∠.(1)如图1,当OB ,OC 重合时,求AOE BOF ∠−∠的值;(2)如图2,当COD ∠从图1所示的位置开始绕点O 以每秒2°的速度顺时针旋转t 秒(010t <<).在旋转过程中,AOE BOF ∠−∠的值是否会因t 的变化而变化?若不变化,请求出该定值;若变化,请说明理由; (3)在(2)的条件下,求当COD ∠旋转多少秒时,12COF ∠=︒.2023—2024学年度第一学期石家庄市栾城区期中考试七年级数学答案一.选择题(本大题共12个小题,每小题2分,共24分,把每小题的正确选项填涂在答题纸上)1-5 BCABC6-10 DCBBD 11 C12 C二、填空题(本大题共8个小题,每小题3分,共24分,将正确答案填写在答题纸上)13.7416−14.715.3−16.1214232︒'''.17.圆形,三角形,六边形,圆形.18.12.2619.M20.31n+三、解答题:(本大题共5个小题,共52分)21.解(1)数轴上表示各点如下:………………………….5分(2)用“<”号把这些数连接起来:134 2.5322−<−<<<,…………………..8分(3)正有理数有:3,32;负有理数有:4−, 2.5−,12−……………….10分22.解(1)∵由于4班实际购入22本,且实际购买数量与计划购买数量的差值为8−,即可得计划购书量为30本,∴一班实际购入301545a=+=本,二班实际购入数量与计划购入数量的差值32302b=−=本,故答案依次为:45,2.……………….4分(2)4个班一共购入数量为:45322322122+++=本,故答案为:122………………..6分(3)∵1221582÷=,……………7分∴如果每次购买15本,则可以购买8次,且最后还剩2本书需单独购买,……………8分∴最低总花费为:30(152)83023180⨯−⨯+⨯=元.……………………10分23.解(1)如图,直线AD即为所求;…………………2分(2)如图,射线CD即为所求;…………………4分(3)如图,线段AB 即为所求;…………………6分 (4)如图,点E 即为所求;…………………8分 (5)如图,线段CF 即为所求.…………………10分 24.解:(1)CDB BGF ECGF S S S S =−+△△正阴.........................2分2211()22a b b a b =+−⨯+…………………4分 ()2212a b ab =+−; 答:阴影部分面积为()2212a b ab +−;…………………..6分(2)当4cm a =,6cm b =时,()2212S a b ab =+−阴()22146462=⨯+−⨯……………………8分 ()214cm =,答:阴影部分的面积为214cm .…………………..10分 25.(1)解:因为OE 平分AOC ∠,OF 平分BOD ∠,所以1602AOE AOC ∠=∠=︒,11402022BOF BOD ∠=∠=⨯︒=︒.…………..2分所以602040AOE BOF ∠−∠=︒−︒=︒;…………………4分(2)解:AOE BOF ∠−∠的值是定值.…………………..5分根据题意,得:2BOC t ∠=︒,则21202AOC AOB t t ∠=∠+︒=︒+︒,2402BOD COD t t ∠=∠+︒=︒+︒.………………………7分因为OE 平分AOC ∠,OF 平分BOD ∠,所以1602AOE AOC t ∠=∠=︒+︒,1202BOF BOD t ∠=∠=︒+︒,……………..8分所以40AOE BOF ∠−∠=︒;…………………9分(3)解:根据题意,得()212BOF t ∠=+︒,…………………10分 所以21220t t +=+,………………….11分 解得8t =,所以当COD ∠旋转8s 时,12COF ∠=︒.………………………….12分。

2024年人教版初一上学期期中数学试卷及答案指导

2024年人教版初一上学期期中数学试卷及答案指导

2024年人教版数学初一上学期期中模拟试卷(答案在后面)一、选择题(本大题有10小题,每小题3分,共30分)1、一个长方形的长是8厘米,宽是5厘米,它的周长是多少厘米?选项:A、13厘米B、23厘米C、30厘米D、40厘米2、一个数加上它的两倍,再减去3,结果是7,这个数是多少?选项:A、1B、2C、3D、43、题目:一个长方形的长是10厘米,宽是5厘米,它的周长是多少厘米?选项:A. 15厘米B. 25厘米C. 30厘米D. 50厘米4、题目:一个数的2倍是12,这个数是多少?选项:A. 2B. 4C. 6D. 85、下列各数中,有理数是()A、√2B、πC、3.14D、-1/36、下列各数中,属于无理数的是()A、1.414B、-2/3C、3/5D、π7、下列各数中,是正数的是:A、-1/2B、-2C、0D、1/28、下列各数中,是负数的是:A、-1/2B、-2C、0D、1/29、选择题:一个长方形的长是6cm,宽是3cm,那么这个长方形的周长是多少平方厘米?A. 18cm²B. 15cm²C. 18cmD. 15cm² 10、选择题:一个圆的半径是4cm,那么这个圆的面积是多少平方厘米?(取π≈3.14)A. 50.24cm²B. 78.5cm²C. 25.12cm²D. 12.56cm²二、填空题(本大题有5小题,每小题3分,共15分)1、若一个等腰三角形的底边长为4cm,腰长为6cm,则该三角形的周长为______cm。

2、在直角坐标系中,点A的坐标为(2,3),点B的坐标为(-1,-2)。

那么线段AB的中点坐标为 ______ 。

3、若一个数的3倍减去12等于18,则这个数是 ______ 。

4、一个长方形的长是宽的3倍,若长方形的周长是48厘米,则这个长方形的面积是 ______ 平方厘米。

5、在等差数列{an}中,若a1=3,d=2,则前n项和Sn=______ 。

人教版七年级上册期中考试数学试卷及详细答案解析(共5套)

人教版七年级上册期中考试数学试卷及详细答案解析(共5套)

人教版七年级上册期中考试数学试卷(一)一、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)1.水位上升30cm记作+30cm,那么﹣16cm表示.2.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为℃.3.用“<”“=”或“>”填空:﹣(﹣1)﹣|﹣1|.4.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05毫升,小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴下的水用科学记数法表示为毫升.5.近似数2.30万精确到位.6.如果一个负数的平方等于它的相反数,那么这个数是.7.如图所示的日历中,任意圈出一竖列相邻的三个数,设中间一个数为a,则这三个数之和为(用含a的式子表示)日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 318.若x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,则﹣p= .9.m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2010﹣2010xy= .10.计算(a+3a+5a+…+2009a)﹣(2a+4a+6a+…+2010a)= .二、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的)11.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④12.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.913.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个14.下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大.A.1个B.2个C.3个D.4个15.下列各式中,是二次三项式的是()A.B.32+3+1 C.32+a+ab D.x2+y2+x﹣y16.若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=317.计算(﹣1)2n+(﹣1)2n+1的值是()A.2 B.﹣2 C.±2 D.018.近似数4.50所表示的准确值a的取值范围是()A.4.495≤a<4.505 B.4040≤a<4.60C.4.495≤a≤4.505 D.4.500≤a<4.505619.下面用数学语言叙述﹣b,其中表达不正确的是()A.比a的倒数小b的数B.1除以a的商与b的绝对值的差C.1除以a的商与b的相反数的和D.b与a的倒数的差的相反数20.若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算(1)(+3.5)﹣(1.4)﹣(2.5)+(﹣4.6)(2)﹣22÷(﹣4)3+|0.8﹣1|×(2)2;(3)[2﹣(+﹣)×24]÷5×(﹣1)2009(4)x﹣2( x+1 )+3x;(5)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(6)4(x2﹣5x)﹣5(2x2+3x)22.在数轴上表示下列各数,并按从小到大的顺序用“<”将这些数连接起来:2.5,﹣2.5,,0,.23.根据如图所示的数轴,解答下面问题(1)分别写出A、B两点所表示的有理数;(2)请问A、B两点之间的距离是多少?(3)在数轴上画出与A点距离为2的点(用不同于A、B的其它字母表).24.化简求值:已知|a﹣4|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]+4a2b 的值.25.如图,梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40.(π取3)(1)用式子表示图中阴影部分的面积;(2)当a=10时,求阴影部分面积的值.26.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?参考答案与试题解析一、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)1.水位上升30cm记作+30cm,那么﹣16cm表示水位下降了16cm .【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”相对,所以若水位上升30cm记作+30cm,那么﹣16cm表示水位下降了16cm.故答案为:水位下降了16cm.2.在月球表面,白天,阳光垂直照射的地方温度高达+127℃;夜晚,温度可降至﹣183℃.则月球表面昼夜的温差为310 ℃.【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:白天,阳光垂直照射的地方温度高达+127℃,夜晚,温度可降至﹣183℃,所以月球表面昼夜的温差为:127℃﹣(﹣183℃)=310℃.故答案为:310℃.3.用“<”“=”或“>”填空:﹣(﹣1)>﹣|﹣1|.【考点】有理数大小比较.【分析】先依据相反数和绝对值的性质化简各数,然后进行比较即可.【解答】解:﹣(﹣1)=1,﹣|﹣1|=﹣1.∵1>﹣1,∴﹣(﹣1)>﹣|﹣1|.故答案为:>.4.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05毫升,小明同学在洗手后,没有把水龙头拧紧,当小明离开4小时后水龙头滴下的水用科学记数法表示为 1.44×103毫升.【考点】科学记数法—表示较大的数.【分析】首先把4小时化为秒,再用时间×0.05×2计算可得答案.【解答】解:0.05×2×4×3600=1440=1.44×103,故答案为:1.44×103.5.近似数2.30万精确到百位.【考点】近似数和有效数字.【分析】近似数2.30万精确到0.01万位,即百位.【解答】解:近似数2.30万精确到百位.故答案为百.6.如果一个负数的平方等于它的相反数,那么这个数是﹣1 .【考点】有理数的乘方;相反数.【分析】设这个数为x(x<0),由于一个负数的平方等于它的相反数得到x2=﹣x,解得x=0或x=﹣1,因此这个数只能为﹣1.【解答】解:设这个数为x(x<0),根据题意得x2=﹣x,x(x+1)=0,∴x=0或x=﹣1,∴这个数为﹣1.故答案为﹣1.7.如图所示的日历中,任意圈出一竖列相邻的三个数,设中间一个数为a,则这三个数之和为3a (用含a的式子表示)日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30 31【考点】列代数式.【分析】认真观察日历中,竖列相邻的三个数之间的规律,问题即可解决.【解答】解:任意圈出一竖列相邻的三个数,设中间一个数为a,则另外两个数为:a﹣7,a+7,∴这三个数之和=a+a﹣7+a+7=3a.故答案为3a.8.若x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,则﹣p= ﹣5 .【考点】多项式.【分析】根据单项式的系数和次数的定义,多项式的定义求解.【解答】解:∵x p+4x3﹣qx2﹣2x+5是关于x的五次五项式,∴﹣p=﹣5.9.m、n互为相反数,x、y互为负倒数(乘积为﹣1的两个数),则(m+n)﹣2010﹣2010xy= 0 .【考点】有理数的混合运算;相反数;倒数.【分析】利用相反数,负倒数的定义求出m+n,xy与的值,代入原式计算即可求出值.【解答】解:根据题意得:m+n=0,xy=﹣1,即=﹣1,则原式=0﹣2010+2010=0.故答案为:010.计算(a+3a+5a+…+2009a)﹣(2a+4a+6a+…+2010a)= ﹣1005a .【考点】整式的加减.【分析】首先去括号,然后再把化成(a﹣2a)+(3a﹣4a)+(5a﹣6a)+…+,再合并即可.【解答】解:原式=a+3a+5a+…+2009a﹣2a﹣4a﹣6a﹣…﹣2010a,=(a﹣2a)+(3a﹣4a)+(5a﹣6a)+…+,=﹣a+(﹣a)+(﹣a)+(﹣a)+…+(﹣a),=﹣1005a,故答案为:﹣1005a.二、精心选一选,慧眼识金!(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是正确的)11.下列各组数中,互为相反数的有()①﹣(﹣2)和﹣|﹣2|;②(﹣1)2和﹣12;③23和32;④(﹣2)3和﹣23.A.④B.①②C.①②③D.①②④【考点】有理数的乘方;相反数;绝对值.【分析】根据a n表示n个a相乘,而﹣an表示an的相反数,而(﹣a)2n=a2n,(﹣a)2n+1=﹣a2n+1(n是整数)即可对各个选项中的式子进行化简,然后根据相反数的定义即可作出判断.【解答】解:①﹣(﹣2)=2,﹣|﹣2|=﹣2,故互为相反数;②(﹣1)2=1,﹣12=﹣1,故互为相反数;③23=8,32=9不互为相反数;④(﹣2)3=﹣8,﹣23=﹣8,相等,不是互为相反数.故选B.12.如果a2=(﹣3)2,那么a等于()A.3 B.﹣3 C.±3 D.9【考点】有理数的乘方.【分析】先求出(﹣3)2的值,∵32=9,(﹣3)2=9,可求出a的值.【解答】解:∵a2=(﹣3)2=9,且(±3)2=9,∴a=±3.故选C.13.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有()A.4个B.3个C.2个D.1个【考点】单项式.【分析】根据单项式的定义进行解答即可.【解答】解: a2b2,是数与字母的积,故是单项式;,,a2﹣2ab+b2中是单项式的和,故是多项式;﹣25是单独的一个数,故是单项式.故共有2个.故选C.14.下列说法正确的是()①最大的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大.A.1个B.2个C.3个D.4个【考点】有理数大小比较;数轴.【分析】根据实数的分类以及绝对值的性质即可作出判断.【解答】解:①最大的负整数是﹣1,正确;②数轴上表示数2和﹣2的点到原点的距离相等,正确;③当a≤0时,|a|=﹣a成立,正确;④a+5一定比a大,正确.故选D15.下列各式中,是二次三项式的是()A.B.32+3+1 C.32+a+ab D.x2+y2+x﹣y【考点】多项式.【分析】由于多项式次数是多项式中次数最高的项的次数,项数是多项式中所有单项式的个数,由此可确定所有答案的项数和次数,然后即可作出选择.【解答】解:A、a2+﹣3是分式,故选项错误;B、32+3+1是常数项,可以合并,故选项错误;C、32+a+ab是二次三项式,故选项正确;D、x2+y2+x﹣y是二次四项式,故选项错误.故选C.16.若﹣3xy2m与5x2n﹣3y8的和是单项式,则m、n的值分别是()A.m=2,n=2 B.m=4,n=1 C.m=4,n=2 D.m=2,n=3【考点】解二元一次方程组;同类项.【分析】两个单项式的和为单项式,则这两个单项式是同类项再根据同类项的定义列出方程组,即可求出m、n的值.【解答】解:由题意,得,解得.故选C.17.计算(﹣1)2n+(﹣1)2n+1的值是()A.2 B.﹣2 C.±2 D.0【考点】有理数的乘方.【分析】根据有理数乘方的含义,得(﹣1)2n+1=﹣1,(﹣1)2n=1,再计算求和即可.【解答】解:(﹣1)2n+(﹣1)2n+1=1+(﹣1)=0.故选D.18.近似数4.50所表示的准确值a的取值范围是()A.4.495≤a<4.505 B.4040≤a<4.60C.4.495≤a≤4.505 D.4.500≤a<4.5056【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数4.50所表示的准确值a的取值范围是4.495≤a<4.505.故选A.19.下面用数学语言叙述﹣b,其中表达不正确的是()A.比a的倒数小b的数B.1除以a的商与b的绝对值的差C.1除以a的商与b的相反数的和D.b与a的倒数的差的相反数【考点】代数式.【分析】根据代数式,可得代数式的表达意义.【解答】解:用数学语言叙述﹣bA、比a的倒数小b的数,故A正确;B、1除以a的商与b的绝对值的差,故B错误;C、1除以a的商与b的相反数的和,故C正确;D、b与a的倒数的差的相反数,故D正确;故选:B.20.若a+b<0,ab<0,则下列说法正确的是()A.a、b同号B.a、b异号且负数的绝对值较大C.a、b异号且正数的绝对值较大D.以上均有可能【考点】有理数的乘法;有理数的加法.【分析】根据有理数的加法和有理数的乘法运算法则进行判断即可.【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值较大,综上所述,a、b异号且负数的绝对值较大.故选B.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分)21.计算(1)(+3.5)﹣(1.4)﹣(2.5)+(﹣4.6)(2)﹣22÷(﹣4)3+|0.8﹣1|×(2)2;(3)[2﹣(+﹣)×24]÷5×(﹣1)2009(4)x﹣2( x+1 )+3x;(5)3x2+2xy﹣4y2﹣(3xy﹣4y2+3x2);(6)4(x2﹣5x)﹣5(2x2+3x)【考点】整式的加减;有理数的混合运算.【分析】利用实数的运算法则和整式的运算法则即可求出答案.【解答】解:(1)原式=3.5﹣2.5﹣1.4﹣4.6=1﹣6=﹣5;(2)原式=﹣4÷(﹣64)+0.2×=+=;(3)原式=[﹣(9+4﹣18)]÷5×(﹣1)=÷5×(﹣1)=﹣;(4)原式=x﹣2x﹣2+3x=2x﹣2;(5)原式=3x2+2xy﹣4y2﹣3xy+4y2﹣3x2=﹣xy;(6)原式=4x2﹣20x﹣10x2﹣15x=﹣6x2﹣35x;22.在数轴上表示下列各数,并按从小到大的顺序用“<”将这些数连接起来:2.5,﹣2.5,,0,.【考点】有理数大小比较;数轴.【分析】先在数轴上表示出各数,再按照从左到右的顺序用“<”连接起来即可.【解答】解:各点在数轴上的位置如图所示:故﹣2.5<﹣<0<1<2.5.23.根据如图所示的数轴,解答下面问题(1)分别写出A、B两点所表示的有理数;(2)请问A、B两点之间的距离是多少?(3)在数轴上画出与A点距离为2的点(用不同于A、B的其它字母表).【考点】数轴.【分析】(1)读出数轴上的点表示的数值即可;(2)根据两点的距离公式,即可求出A、B两点之间的距离;(3)与点A的距离为2的点有两个,一个向左,一个向右.【解答】解:(1)根据所给图形可知A:1,B:﹣2;(2)依题意得:AB之间的距离为:1+2=3;(3)设这两点为C、D,则这两点为C:1+2=3,D:1﹣2=﹣1.如图所示:24.化简求值:已知|a﹣4|+(b+1)2=0,求5ab2﹣[2a2b﹣(4ab2﹣2a2b)]+4a2b 的值.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据非负数的性质,可求出a、b的值,然后再去括号、合并同类项,对原代数式进行化简,最后把a,b的值代入计算即可.【解答】解:∵|a﹣4|+(b+1)2=0,∴a=4,b=﹣1;原式=5ab2﹣(2a2b﹣4ab2+2a2b)+4a2b=5ab2﹣4a2b+4ab2+4a2b=9ab2=36.25.如图,梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40.(π取3)(1)用式子表示图中阴影部分的面积;(2)当a=10时,求阴影部分面积的值.【考点】列代数式;代数式求值.【分析】(1)根据梯形的面积=(上底+下底)×高,阴影部分的面积等于梯形的面积减去半圆的面积,列式进行计算即可得解;(2)把a=10代入(1)中的代数式进行计算即可得解.【解答】解:(1)∵梯形的上底为a2+2a﹣10,下底为3a2﹣5a﹣80,高为40,半圆的直径为4a,∴阴影部分的面积=(a2+2a﹣10+3a2﹣5a﹣80)×40﹣π()2,=80a2﹣60a﹣1800﹣2a2π,=80a2﹣60a﹣1800﹣2a2×3,=74a2﹣60a﹣1800;(2)当a=10时,74a2﹣60a﹣1800=74×102﹣60×10﹣1800=5000.26.振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,﹣9,+8,﹣6,+7.5,﹣6,+8,﹣7.(1)求振子停止时所在位置距A点有多远?(2)如果每毫米需时间0.02秒,则共用时间多少秒?【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据一次用的时间乘以次数,可得答案.【解答】解:(1)+10+(﹣9)+8+(﹣6)+7.5+(﹣6)+8+(﹣7)=5.5毫米,答:振子停止时所在位置距A点5.5毫米;(2)0.02×(10+|﹣9|+8+|﹣6|+7.5+|﹣6|+8+|﹣7|)=0.02×61.5=1.23秒.答:共用时间1.23秒.人教版七年级上册期中考试数学试卷(二)一.精心选一选(本大题共l0小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Il的答题栏内.相信你一定能选对!)1.的绝对值是()A.B.﹣C.D.﹣2.一只蜗牛从深度为10米的井底向上爬3米,然后向下爬1米,接着又向上爬3米,然后又向下爬I米,则此时蜗牛离井口的距离为()A.4米B.5米C.6米D.7米3.下列说法中正确的是()A.整数都是非负数B.带有负号的数一定是负数C.分数都是有理数D.相反数是它本身的数是0和14.2016年10月10日,山东移动4G用户突破3000万,3000万用科学记数法可表示为()A.0.3×108B.3×107C.3×106D.3×1035.若有理数a,b满足a+b<0,ab<0,则()A.a,b都是正数B.a,b都是负数C.a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值D.a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值6.下列说法中正确的个数是()①1是单项式;②单项式﹣的系数是﹣1,次数是2;③多项式x2+x﹣1的常数项是1;④多项式x2+2xy+y2的次数是2.A.1个B.2个C.3个D.4个7.与﹣a2b是同类项的是()A.2ab2B.﹣3a2C.ab D.8.多项式x+2y与2x﹣y的差是()A.﹣x+3y B.3x+y C.﹣x+y D.﹣x﹣y9.已知a﹣2b+1的值是﹣l,则(a﹣2b)2+2a﹣4b的值是()A.﹣4 B.﹣l C.0 D.210.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A.393 B.397 C.401 D.405二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个数的倒数是它本身,这个数是.12.由四舍五入法得到的近似数10.560精确到位.13.若|x﹣1|+(y+2)2=0,则(x+y)2017= .14.请写出一个只含有想x,y两个字母的三次四项式.15.如图,半圆的半径为r,直角三角形的两条直角边分别为a,b,则图中阴影部分的面积是.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程)16.计算题(1)(﹣2)×(﹣5)+|﹣3|÷(2)﹣23×÷(﹣)2(3)(2﹣1﹣)÷(﹣)17.如图是一个梯形硬纸板,上底为a,下底为2a,一腰为a,另一腰为b(其中b>a),如图所示,用两张同样的梯形纸板可以拼成一个大的梯形,也可以拼成一个长方形.(1)请在方框中画出你拼出的大梯形和长方形.(2)计算拼成的大梯形和长方形的周长.18.化简:5x+(2x+y)﹣(x﹣4y).(2)先化简,再求值:(2x2﹣1+x)﹣2(x﹣x2﹣3),其中x=﹣.19.已知:M=x3﹣3xy+2x+1,N=﹣3x+xy,求多项式3M+2N,并计算当x=﹣1,y=时,3M+2N的值.20.一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣l,﹣2,+5.请问:(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)试求出该货车共行驶了多少千米?(3)如果货车运送的水果以l00千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣l5,+25,﹣l0,﹣15,则该货车运送的水果总重量是多少千克?21.小明和小红在一起玩数学小游戏,他们规定:a*b=a2﹣2ab+b2;=a+b﹣c; =ad﹣bc.请你和他们一起按规定计算:(1)2*(﹣5)的值;(2)(3).22.我国出租车的收费标准因地而异,济宁市规定:起步价为6元,3千米之后每千米1.4元;济南市规定:起步价8元,3千米之后每千米1.2元.(1)求济宁的李先生乘出租车2千米,5千米应付的车费;(2)写出在济宁乘出租车行x千米时应付的车费;(3)当行驶路程超过3千米,不超过l3千米时,求在济南、济宁两地坐出租车的车费相差多少?(4)如果李先生在济南和济宁乘出租车所付的车费相等,试估算出李先生乘出租车多少千米(直接写出答案,不必写过程).参考答案与试题解析一.精心选一选(本大题共l0小题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项前的字母代号填在卷Il的答题栏内.相信你一定能选对!)1.的绝对值是()A.B.﹣C.D.﹣【考点】绝对值.【分析】根据正数的绝对值等于它本身即可求解.【解答】解:的绝对值是.故选A.【点评】本题主要考查绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.一只蜗牛从深度为10米的井底向上爬3米,然后向下爬1米,接着又向上爬3米,然后又向下爬I米,则此时蜗牛离井口的距离为()A.4米B.5米C.6米D.7米【考点】有理数的减法;有理数的加法.【专题】常规题型.【分析】先定义向上爬为正,向下爬为负,用井深减去各个数就得到此时蜗牛离井口的距离.【解答】解:向上爬记作“+”,往下爬记作“﹣”蜗牛离井口的距离为10﹣3﹣(﹣1)﹣3﹣(﹣1)=10﹣3+1﹣3+1=6(米)故选C.【点评】本题考查了有理数的加减运算.计算有理数的加减,先把减法转化为加法,可以运用加法的交换律和结合律.3.下列说法中正确的是()A.整数都是非负数B.带有负号的数一定是负数C.分数都是有理数D.相反数是它本身的数是0和1【考点】相反数;有理数.【分析】根据相反数的概念解答即可.【解答】解:A、整数有负整数、0、正整数,故A错误;B、小于零的数是负数,故B错误;C、分数都是有理数,故C正确;D、相反数是它本身的数是非负数,故D错误;故选:C.【点评】本题考查了相反数的意义:只有符号不同的两个数互为相反数,0的相反数是0.4.2016年10月10日,山东移动4G用户突破3000万,3000万用科学记数法可表示为()A.0.3×108B.3×107C.3×106D.3×103【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3000万用科学记数法可表示为3×107,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.若有理数a,b满足a+b<0,ab<0,则()A.a,b都是正数B.a,b都是负数C.a,b中一个正数,一个负数,且正数的绝对值大于负数的绝对值D.a,b中一个正数,一个负数,且负数的绝对值大于正数的绝对值【考点】有理数的乘法;正数和负数;绝对值;有理数的加法.【分析】两有理数相乘,同号得正,异号得负,因为ab<0,所以a、b异号,再根据a+b<0进一步判定负数的绝对值大于正数的绝对值.【解答】解:∵ab<0,∴a、b异号,∵a+b<0,∴负数的绝对值大于正数的绝对值.故选:D.【点评】考查了有理数的乘法,有理数的加法,本题主要利用两有理数相乘,同号得正,异号得负.6.下列说法中正确的个数是()①1是单项式;②单项式﹣的系数是﹣1,次数是2;③多项式x2+x﹣1的常数项是1;④多项式x2+2xy+y2的次数是2.A.1个B.2个C.3个D.4个【考点】多项式;单项式.【分析】根据单项式和多项式的系数、次数、项数的定义可得.【解答】解:①单独的数字或字母是单项式,正确;②单项式﹣的系数是﹣,次数是2,错误;③多项式x2+x﹣1的常数项是﹣1,错误;④多项式x2+2xy+y2的次数是2,正确;故选:B.【点评】本题主要考查单项式和多项式,熟练掌握单项式的系数、次数和多项式的项数、次数、常数项等概念是关键.7.与﹣a2b是同类项的是()A.2ab2B.﹣3a2C.ab D.【考点】同类项.【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,结合选项进行判断.【解答】解:A、相同字母的指数不同不是同类项,故A错误;B、字母不同不是同类项,故B错误;C、相同字母的指数不同不是同类项,故C错误;D、字母相同,相同字母的指数相同,故D正确;故选:D.【点评】本题考查了同类项的定义,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.8.多项式x+2y与2x﹣y的差是()A.﹣x+3y B.3x+y C.﹣x+y D.﹣x﹣y【考点】整式的加减.【分析】根据题意对两个多项式作差即可.【解答】解:(x+2y)﹣(2x﹣y)=x+2y﹣2x+y=﹣x+3y故选(A)【点评】本题考查多项式运算,要注意多项式参与运算时,需要对该多项式添加括号.9.已知a﹣2b+1的值是﹣l,则(a﹣2b)2+2a﹣4b的值是()A.﹣4 B.﹣l C.0 D.2【考点】代数式求值.【分析】先化简条件得a﹣2b=﹣2,再将(a﹣2b)2+2a﹣4b整理,代值即可得出结论.【解答】解:∵a﹣2b+1的值是﹣l,∴a﹣2b+1=﹣1,∴a﹣2b=﹣2,∴(a﹣2b)2+2a﹣4b=(a﹣2b)2+2(a﹣2b)=4+2×(﹣2)=0,故选C.【点评】此题是代数式求值,主要考查了整式的加减、整体思想,整体代入是解本题的关键.10.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A.393 B.397 C.401 D.405【考点】规律型:图形的变化类.【分析】观察图形可知后面一个图形比前面一个图形多4个小正方形,所以可得规律为:第n个图形中共有4(n﹣1)+1个小正方形.【解答】解:由图片可知:规律为小正方形的个数=4(n﹣1)+1=4n﹣3.n=100时,小正方形的个数=4n﹣3=397.故选B.【点评】此题考查了规律型:图形的变化,是找规律题,目的是培养同学们观察、分析问题的能力.注意由特殊到一般的分析方法,此题的规律为:第n个图形中共有4(n﹣1)+1个小正方形.二、细心填一填(本大题共有5小题,每题3分,共15分.请把结果直接填在题中的横线上.只要你仔细运算,积极思考,相信你一定能填对!)11.一个数的倒数是它本身,这个数是1或﹣1 .【考点】倒数.【专题】计算题.【分析】根据倒数的定义得倒数等于它本身只有1和﹣1.【解答】解:1或﹣1的倒数等于它本身.故答案为1或﹣1.【点评】本题考查了倒数:a的倒数为.12.由四舍五入法得到的近似数10.560精确到千分位.【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:近似数10.560精确到千分位.故答案为千分位.【点评】本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.13.若|x﹣1|+(y+2)2=0,则(x+y)2017= ﹣1 .【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】首先根据非负数的性质:几个非负数的和等于0,则每个数等于0,从而列方程求得x和y的值,进而求解.【解答】解:根据题意得:x﹣1=0,y+2=0,解得:x=1,y=﹣2,则原式=(1﹣2)2017=﹣1.故答案是:﹣1.【点评】本题考查了非负数的性质:几个非负数的和等于0,则每个数等于0,理解性质是关键.14.请写出一个只含有想x,y两个字母的三次四项式x3+xy+y+1(答案不唯一).【考点】多项式.【分析】由多项式的定义即可求出答案.【解答】解:故答案为:x3+xy+y+1(答案不唯一)【点评】本题考查多项式的概念,属于基础题型.15.如图,半圆的半径为r,直角三角形的两条直角边分别为a,b,则图中阴影部分的面积是πr2﹣ab .【考点】列代数式.【分析】利用大图形面积减去小图形面积即可求出答案.【解答】解:阴影部分面积=πr2﹣ab故答案为:πr2﹣ab【点评】本题考查列代数式,涉及圆面积公式,三角形面积公式.三、认真答一答(本大题共7题,满分55分.只要你认真审题,细心运算,一定能解答正确!解答应写出文字说明、证明过程或推演过程)16.计算题(1)(﹣2)×(﹣5)+|﹣3|÷(2)﹣23×÷(﹣)2(3)(2﹣1﹣)÷(﹣)【考点】有理数的混合运算.【专题】常规题型;实数.【分析】(1)原式先计算乘除运算,再计算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算即可得到结果;(3)原式利用除法法则变形,再利用乘法分配律计算即可得到结果.【解答】解:(1)原式=10+5=15;(2)原式=﹣8××=﹣8;(3)原式=(﹣+)×(﹣)=﹣3+2﹣=﹣1.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.如图是一个梯形硬纸板,上底为a,下底为2a,一腰为a,另一腰为b(其中b>a),如图所示,用两张同样的梯形纸板可以拼成一个大的梯形,也可以拼成一个长方形.(1)请在方框中画出你拼出的大梯形和长方形.(2)计算拼成的大梯形和长方形的周长.【考点】图形的剪拼;矩形的判定与性质;梯形.【分析】(1)直接利用已知图形进而拼凑出梯形与长方形;(2)直接利用已知图形得出其周长.【解答】解:(1)如图所示:;(2)大梯形的周长为:2a+4a+2b=6a+2b(cm),长方形的周长为:2(3a+a)=8a(cm).【点评】此题主要考查了图形的剪拼,正确得出符合题意的图形是解题关键.18.(1)化简:5x+(2x+y)﹣(x﹣4y).(2)先化简,再求值:(2x2﹣1+x)﹣2(x﹣x2﹣3),其中x=﹣.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】(1)原式去括号合并即可得到结果;(2)原式去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:(1)原式=5x+2x+y﹣x+4y=6x+5y;(2)原式=2x2﹣1+x﹣2x+2x2+6=4x2﹣x+5,当x=﹣时,原式=1++5=6.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.已知:M=x3﹣3xy+2x+1,N=﹣3x+xy,求多项式3M+2N,并计算当x=﹣1,y=时,3M+2N的值.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】把M与N代入3M+2N中,去括号合并得到最简结果,将x与y的值代入计算即可求出值.【解答】解:∵M=x3﹣3xy+2x+1,N=﹣3x+xy,∴3M+2N=3(x3﹣3xy+2x+1)+2(﹣3x+xy)=3x3﹣9xy+6x+3﹣6x+2xy=3x3﹣7xy+3,当x=﹣1,y=时,原式=﹣3++3=.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.一辆货车从仓库0出发在东西街道上运送水果,规定向东为正方向,依次到达的5个销售地点分别为A,B,C,D,E,最后回到仓库0.货车行驶的记录(单位:千米)如下:+1,+3,﹣6,﹣l,﹣2,+5.请问:(1)请以仓库0为原点,向东为正方向,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)试求出该货车共行驶了多少千米?(3)如果货车运送的水果以l00千克为标准重量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果重量可记为:+50,﹣l5,+25,﹣l0,﹣15,则该货车运送的水果总重量是多少千克?【考点】数轴;正数和负数.【分析】(1)根据数轴的三要素画出数轴,并根据题意在数轴上表示出A、B、C、D、E的位置;(2)求出行驶记录的数据的绝对值的和即可;(3)根据有理数的加法进行计算即可.【解答】解:(1如图所示:取1个单位长度表示1千米,;。

苏科版数学初一上学期期中试卷及解答参考(2024-2025学年)

苏科版数学初一上学期期中试卷及解答参考(2024-2025学年)

2024-2025学年苏科版数学初一上学期期中模拟试卷(答案在后面)一、选择题(本大题有10小题,每小题3分,共30分)1、一个长方形的长是8厘米,宽是5厘米,那么这个长方形的周长是多少厘米?A、19厘米B、21厘米C、30厘米D、40厘米2、一个正方形的边长是10厘米,那么这个正方形的面积是多少平方厘米?A、100平方厘米B、50平方厘米C、25平方厘米D、20平方厘米3、下列哪一个等式表示的是线性方程?A.(2x2+3x−5=0)B.(4x+7=15)C.(x3−2x+1=0)+2=3)D.(1x4、如果一个长方形的长是宽的两倍,并且它的周长是30厘米,那么这个长方形的面积是多少平方厘米?A. 30B. 45C. 60D. 905、下列各组数中,都是质数的一组是:A. 7,11,13,17B. 6,10,14,18C. 4,8,12,16D. 3,9,15,216、若a、b是正整数,且a+b=10,则a和b的最大公约数是:A. 1B. 2C. 5D. 107、已知点A(3, -2),点B(-1, 4),则线段AB的中点M的坐标是多少?A. (1, 1)B. (2, 1)C. (1, 2)D. (1, 1.5)8、如果一个正方形的边长增加了原来的50%,那么面积增加了多少百分比?A. 50%B. 100%C. 125%D. 150%9、一个长方形的长是8厘米,宽是长的一半,那么这个长方形的周长是多少厘米?选项:A. 16厘米B. 20厘米C. 24厘米D. 32厘米 10、一个正方形的对角线长是10厘米,那么这个正方形的边长是多少厘米?选项:A. 5厘米B. 10厘米C. 15厘米D. 20厘米二、填空题(本大题有5小题,每小题3分,共15分)1、若(a+b=7),且(a−b=3),则(a)的值为____ 。

2、已知一个长方形的长是宽的2倍,如果它的周长是30厘米,则这个长方形的面积为 ____ 平方厘米。

初一年级数学上学期期中试卷

初一年级数学上学期期中试卷

初一年级数学上学期期中试卷大家如果想要学习好数学有一件事情就是很重要的,就是要做题,下面小编就给大家整理一下七年级数学,欢迎大家来参考哦初一年级数学上册期中试卷一、选择题(共10题;共20分)1.某速冻汤圆的储藏温度是-18±2℃,现有四个冷藏室的温度如下,则不适合此种汤圆的温度是( )A. -17℃B. -22℃C. -18℃D. -19℃2.下列运算错误的是( )A. ÷(-3)=3×(-3)B. -5÷(- )=-5×(-2)C. 8-(-2)=8+2D. 0÷3=03.下列实数中是无理数的是( )A. B. C. π D. ( )04.徐州市2018年元旦长跑全程约为7.5×103m,该近似数精确到( )A. 1000mB. 100mC. 1mD. 0.1m5.如图,数轴上两点A,B表示的数互为相反数,则点B表示的数为( )A. ﹣6B. 6C. 0D. 无法确定6. 的平方根是( )A.2B.﹣2C.±2D.47. 的绝对值是( )A. B. C.2018D.8.计算的结果是( )A. B. C. -1 D. 19. 的倒数等于( )A. -1B. 1C. 2018D. -201810.如果- 是数a的立方根,- 是b的一个平方根,则a10×b9等于( )A. 2B. -2C. 1D. -1二、填空题(共6题;共6分)11.把有理数,,|- |,按从小到大的顺序用“<”连接为________.12.某城市10月5日最低气温为﹣2℃,最高气温9℃,那么该城市这天的温差是________℃.13.受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展.预计达州市2018年快递业务量将达到5.5亿件,数据5.5亿用科学记数法表示为________.14.若x-1是125的立方根,则x-7的立方根是________.15.若a,b互为倒数,c,d互为相反数,则2c+2d﹣3ab的值为________16.正方形ABCD在数轴上的位置如图,点A、D对应的数分别为0和-1,若正方形ABCD绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为1,则连续翻转2019次后,数轴上数2019所对应的点是________;三、解答题(共7题;共47分)17.计算:18.已知a的相反数是5,|b|=4,求|a+b|﹣|a﹣b|的值.19.计算20.书店、学校、医院、银行依次坐落在一条东西走向的大街上,书店在学校西边20 m处,银行在学校东边100 m处,医院在银行西边60 m处.(1)以学校O的位置为原点,画数轴,并将书店、医院、银行的位置用A,B,C分别表示在这个数轴上.(2)若小明从学校沿街向东行50 m,又向东行-70 m,求此时小明的位置.21.体育委员给王磊、赵立两位的身高都记为1.7×102cm,可有的同学说王磊比赵立高9cm,这种情况可能吗?请说明你的理由.22.有人说,将一张纸对折,再对折,重复下去,第43次后纸的厚度便超过地球到月球的距离,已知一张纸厚0.006cm,地球到月球的距离约为3.85×108m,用计算器算一下这种说法是否可信.23.阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵22<7<3,即2< <3,∴ 的整数部分为2,小数部分为﹣2.请解答:(1) 的整数部分是________,小数部分是________.(2)如果的小数部分为a,的整数部分为b,求a+b- 的值;(3)已知:x是3+ 的整数部分,y是其小数部分,请直接写出x﹣y的值的相反数.答案解析部分一、选择题1.【答案】B【考点】正数和负数的认识及应用【解析】【解答】解:﹣18﹣2=﹣20℃,﹣18+2=﹣16℃,温度范围:﹣20℃至﹣16℃;A.﹣20℃<﹣17℃<﹣16℃,故A不符合题意;B.﹣22℃<﹣20℃,故B符合题意;C.﹣20℃<﹣18℃<﹣16℃,故C不符合题意;D.﹣20℃<﹣19℃<﹣16℃,故D不符合题意;故答案为:B【分析】由速冻汤圆的储藏温度是-18±2℃,得到温度范围是﹣20℃至﹣16℃.2.【答案】A【考点】有理数的减法,有理数的加减混合运算,有理数的除法【解析】【分析】利用有理数的加减运算以及除法运算进而分别分析得出即可.【解答】A、÷(-3)= ×(- )=- ,错误,故此选项符合题意;B、-5÷(- )=-5×(-2),正确,不合题意;C、8-(-2)=8+2,正确,不合题意;D、0÷3=0,正确,不合题意.故选:A.【点评】此题主要考查了有理数的加减运算以及除法运算,正确把握运算法则是解题关键.3.【答案】C【考点】无理数的认识【解析】【解答】解:因为无理数是无限不循环小数,故答案为:C.【分析】根据无理数的定义:无限不循环的小数是无理数,包括π以及开不尽方的数。

2024-2025学年湖南省湘西州七年级上学期期中数学试卷

2024-2025学年湖南省湘西州七年级上学期期中数学试卷

2024-2025学年湖南省湘西州七年级上学期期中数学试卷满分:120分 时量:120分钟一、单选题(本大题共10小题,每小题3分,共30分)1.下列四个数中,是负数的是( )A.3−B.4C.0D.132.乒乓球被誉为我国的“国球”,在正规比赛中,乒乓球的标准质量为2.7克.质检员在检验乒乓球质量时,把超出标准质量0.13克的乒乓球记作0.13+,那么一个质量为2.4克的乒乓球记作( )A. 2.4−B. 2.4+C.0.3+D.0.3−3. 12000用科学记数法表示为( )A.50.1210⨯B.41.210⨯C.31210⨯D.31.210⨯ 4.下列代数式中,符合代数式书写要求的是( )A.1a −B.m n ÷C.132abD.a b +5.下列对“0”的说法正确的个数是( )①0是正数与负数的分界;②0只表示“什么也没有”;③0可以表示特定的意义,如0℃;④0是正数.A.1B.2C.3D.46.课堂上,四位同学在黑板上画出了下面四个数轴,其中错误的是( )A. B. C. D.7.如果数轴上的点A 对应的数为1−,点B 与点A 相距3个单位长度,则点B 所对应的数为( )A.2B.4−C.2−或4D.2或4− 8.下列对于43−说法正确的是( )A.读作“3−的4次幂”B.底数是3−,指数是4C.表示4个3相乘的积的相反数D.表示4个3−相乘的积 9.“结绳计数”是远古时代人类智慧的结晶,即人们通过在绳子上打结来记录数量,类似我们现在熟悉的“进位制”,如图所示是一位古人记录当天采摘果实的个数,在从右向左依次排列的不同绳子上打结,满四进一,根据图示可知,这位古人当天采摘果实的个数是( )A.181B.182C.183D.18410.小学时候大家喜欢玩的幻方游戏,初一年级主任唐波老师稍加创新改成了“幻圆”游戏,现在将1−,2,3−,4,5−,6,7−,8分别填入图中的圆圈内,使横、竖以及内外两圈上的4个数字之和都相等,老师已经帮同学们完成了部分填空,则图中a b +的值为( )A.6−或3−B.8−或1C.1−或4−D.1或1−二、填空题(本大题共8小题,每小题3分,共24分) 11.43的倒数是_______. 12.湘西土家族苗族自治州溶江中学建筑面积约为6.2万平方米,近似数6.2万精确到_______位.13.我校举办的知识竞赛中向健老师规定:答对一道得10分,答错一道扣5分,如果初一(2)班答对了a 道题,答错了b 道题,那么初一(2)班的得分可以表示为_______分.14.“整体思想”是数学解题中一种重要的思想方法,它在代数式求值中应用极为广泛,如:已知2m n +=−,4mn =,则2()m n mn +−=_______.15.易冬雪老师定义新运算“⊗”,规定ba b a a ⊗=+,则(3)2−⊗=_______.16.判断下面各题中的两个变量成反比例关系的是_______.①付琦老师把长为100米的绳子剪下m 米后,还剩下n 米;②熊婷老师买单价为10元的笔记本x 本,一共用了y 元;③马丽珠老师的家到学校的距离为480米,步行上班的平均速度v 米/分钟,所用时间为t 分钟.17.若23(4)0x y ++−=,则x y +=_______. 18.化学中把仅由碳和氢两种元素组成的有机化合物称为碳氢化合物,又叫烃,如图所示的是部分碳氢化合物的结构式,溶江中学优秀的黄文平老师发现第1个结构式中有1个C 和4个H ,第2个结构式中有2个C 和6个H ,第3个结构式中有3个C 和8个H ,…,根据规律猜测图n 中H 原子的个数:_______(用含n 的代数式表示).…图1 图2 图3三、解答题(本大题共8小题,共66分)19.(12分)计算(1)853−−+ (2)948149−÷⨯. (3)(4)9(8)92(9)−⨯+−⨯−⨯−(4)222023148(2)(1)2−⨯−+÷−−−. 20.(6分)请你把下列各有理数填入相应的集合里: 20%−,314−,0,18.3,1−,94−,15,0.3 正有理数集合{ ...};负有理数集合{ ...};整数集合{ ...}.21.(7分)画出数轴,并在数轴上表示下列有理数,并用“>”把这些有理数连接起来.2,122−,0,|1|−,( 3.5)−−,13 22.(8分)已知||1m =,a 与b 互为相反数,x 与y 互为倒数,则3m a b xy ++−的值.23.(6分)近年来,网络直播行业蓬勃发展,许多人抓住这个机会,做起了“直播带货”,很多农产品也改变了原来的销售模式,进行了网上销售,刚大学毕业的小文把自家的冬枣也放到了网上,他原计划每天卖100斤,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤):(1)根据记录的数据可知本周共卖出__________斤;(2)若冬枣每斤按8元出售,每斤冬枣的运费平均3元,那么小文本周七天一共收入多少元?24.(8分)如图是溶江中学足球场旁边的长方形闲置空地,宽为3a 米,长为b 米.为了美化环境,准备在这个长方形空地的四个顶点处分别修建一个半径为a 米的扇形花圃(阴影部分),然后在花圃内种花,中间修一条长b 米,宽a 米的小路,剩余部分种菜.(1)小路的面积为_______平方米;种花的面积为_______平方米;(结果保留π)(2)请计算该长方形场地上种菜的面积;(结果保留π)(3)当2a =,10b =时,请计算该长方形场地上种菜的面积.(π取3.14,结果精确到个位)25.(8分)阅读计算52315(9)17(3)6342−+−++−的方法,再用这种方法计算2个小题. 【解析】原式5231[(5)()][(9)()](17)[(3)()]6342=−+−+−+−+++−+−5231[(5)(9)17(3)][()()()]6342=−+−++−+−+−++− 110(1)144=+−=−. 上面这种解题方法叫做拆项法.(1)计算:2311(17)16(15)23432−++−−;(2)计算:5221(2000)(1999)4000(1)6332−+−++−. 26.(11分)陈英杰老师要求同学们,结合数轴与绝对值的相关知识回答下列问题:(1)探究:①数轴上表示2和5的两点之间的距离是_______;②数轴上表示2−和5−的两点之间的距离是_______;③数轴上表示4和3−的两点之间的距离是_______;(2)归纳:一般的,数轴上表示数a 和数b 的两点之间的距离是_______;;(3)应用:①优秀的陈英杰老师发现代数式|1||2|x x ++−的几何意义是:表示有理数x 的点到表示数2的点和表示数_______的点距离之和;利用几何意义,可求得|1||2|x x ++−的最小值为_______;②求|1||2||3||2025|x x x x −+−+−++−的最小值.。

湖南省长沙市湖南师大附中2023-2024学年上学期七年级期中考试数学试卷

湖南省长沙市湖南师大附中2023-2024学年上学期七年级期中考试数学试卷

23年秋初一湖南师大附中期中考试数学试卷一、选择题 (共10题,每小题3分,共30分)1.(3分)负数的概念最早出现在中国古代著名的数学专著《九章算术》中.其中有“把卖 +马和牛得到的钱算作正,把买猪付出的钱算作负”,如果收入6元记作6,那么支出2元记 作( ) A .2−B .2C .4−D .4 2.(3分)党的十八大以来,长沙用3600多个日日夜夜的不懈奋斗,努力把习总书记对湖南重要讲话重指示批示精神转化为生动实践,交上了一份奋进新征程、建功新时代的精彩答卷.十年来,长沙力推进义务教育优质均衡发展,教育惠民实现大跨越;全市新改扩建义务教育学校314所,新增位近468000个,请将数据468000用科学记数法表示为 () 0.46810⨯A .64.6810⨯B .546.810⨯C .446810⨯D .33.(3分) −−3||2的相反数是()A . 23B . −23C . 32D . −32 4.(3分)下列各式正确的是() −−=−A .853 B .+=C 437a b ab .−=x x x 54−−−=D .2(7)55.(3分)下列方程中是一元一次方程的是 () x y A .+=x x ++=B 341.560 2C .−=D 342x x .+=x5036.(3分)下列说法正确的是()A .ab a bc 22−−521是四次三项式B .单项式xy 的系数是0C .x x 231−−的常数项是1x y xy 23D .231−+ 2x y 最高次项是27.(3分)下列方程变形中,正确的是()A .由 y =30y =,得323x =B .由,得 x =32 C .由−=23a a a =,得3b b D .由−=+2131b =,得2−2xy m 8.(3分)若和 x y n 3是同类项,则m 和n 的值分别为( )m =1A ., n =1m =1B ., n =3m =3C .,n =1m =3D .,n =3A 向左移动29.(3分)如图,数轴上一动点个单位长度到达点B ,再向右移动5个单位长C 表示的数为1C 度到达点.若点,则与点A 表示的数互为相反数的是() −A .7B .3−C .3D .2x kxy y xy 2210.(3分)多项式338−−+−化简后不含xy 项,则k 为()A .0B . −31C .31D .3 二、填空题 (共6题,每小题3分,共18分)−11.(3分)16的绝对值是.12.(3分)单项式 − 3x yz 523的系数是.a b +=13.(3分)若23742,则b a ++=. 14.(3分)如图是一个计算程序,若输入−a 的值为1,则输出的结果应为.15.(3分)在如图所示的日历中任意圈出一竖列上相邻的三个数,设中间的一个数为 a ,则圈出的三个数之和为.(用含a 的式子表示)16.(3分)小师和小滨进行了十次剪刀石头布的对决,已知:①小师出了3次石头,6次剪刀,1次布;②小滨出了2次石头,4次剪刀,4次布;③10次中没有平局;④你不知道她们的出拳顺序.则这次对决中赢者是.三、解答题 (共9题,其中17、18、19题6分,20、21题8分,22、23题9分,24、25题10分,共72分)17.(6分)计算2[5(2)](|4|)1⨯+−−−−÷3.218.(6分)化简求值:222()3(2)a ab a ab−−−,其中2a=−,3b=.19.(6分)解方程:(1)54(31)13x x+−=.(2)27231 32x x−−−=.20.(8分)阅读材料:对于任意有理数a,b,规定一种新的运算:()1a b a a b=+−,例如,252(25)113=⨯+−=;(1)计算3(2)−;(2)若(2)5x−=,求x的值.21.(8分)有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:c b−0,a b−0,c a−0.(2)化简:||||||c b a b c a−+−−−.22.(9分)如图为小明家住房的结构(单位:米)(1)小明家住房面积为 平方米;(用含x ,y 的代数式表示,化为最简形式)(2)现小明家需要进行装修,装修成本为600元/平方米,若4x =, 2.5y =,则全部装修完的成本为 元.23.(9分)阅读材料:我们定义:如果两个实数的差等于这两个实数的商,那么这两个实数就叫做“差商等数对”.即:如果a b a b −=÷,那么a 与b 就叫做“差商等数对”,记为(,)a b .例如:4242−=÷;993322−=÷;则称数对(4,2),9(,3)2是“差商等数对”. 根据上述材料,解决下列问题:(1)下列数对中,“差商等数对”是 (填序号);①(8.1,9)−−;②11(,)22;③1(,1)2−−; (2)如果(,2)a 是“差商等数对”,请求出a 的值;(3)在(2)的条件下,先化简再求值:222(3)(52)a a a a −−+−.24.(10分)定义:若关于x的方程0(0)ax b a+=≠的解与关于y的方程0(0)cy d c+=≠的解满足||(x y m m−=为正数),则称方程0(0)ax b a+=≠与方程0(0)cy d c+=≠是“m差解方程”.(1)请通过计算判断关于x的方程2512x x=−与关于y的方程3(1)1y y−−=是不是“2差解方程”;(2)若关于x的方程213x mx n−−=−与关于y的方程2(2)3(1)y mn n m−−−=是“m差解方程”,求n的值;(3)关于x,y的两个方程2(1)31x m−=−与方程3y mn n=+,若对于任何数m,都使得它们不是“2差解方程”,求n的值.25.(10分)【知识准备】若数轴上A 点对应数x ,B 点对应数y ,M 为AB 中点,则我们有中点公式:M 对应的数为2x y +. (1)在一条数轴上,O 为原点,点C 对应数c ,点D 对应数d ,2c >,且有2|3|(2)0c d d −+++=.则CD 的中点N 所对应的数为 .(2)【问题探究】在(1)的条件下,若P 点从C 点出发,以每秒1个单位的速度向左运动,运动了6s 后,Q 点从D 点出发,以每秒2个单位的速度向右运动,R 为PQ 的中点.设Q 点运动时间为t 秒,t 为何值时R 到点C 的距离为2.(3)【拓展延伸】若数轴上A 点对应数x ,B 点对应数y ,M 为AB 靠近A 的三等分点,则我们有三等分点公式:M 对应的数为23x y +.若数轴上A 点对应数x ,B 点对应数y ,M 为AB 靠近A 的四等分点,则我们有四等分点公式:M 对应的数为34x y +. ①填空:若数轴上A 点对应数x ,B 点对应数y ,M 为AB 靠近A 的5等分点,则我们有5等分点公式:M 对应的数为 .②在(2)的条件下,若E 是PQ 最靠近Q 的五等分点,F 为PC 中点,求514OE OF +的最小值?并求出此时t 的取值范围.23年秋初一湖南师大附中期中考试数学试卷参考答案与试题解析一、选择题 (共10题,每小题3分,共30分)1.(3分)负数的概念最早出现在中国古代著名的数学专著《九章算术》中.其中有“把卖+马和牛得到的钱算作正,把买猪付出的钱算作负”,如果收入6元记作6 ,那么支出2元记 作() A .2−B .2C .4−D .4【分析】用正数和负数表示具有相反意义的量,其中一个量用正数表示,则与之相反的量用负数表示.+【解答】解:收入6元记作6−2元,则支出2元记作元,故选:B .【点评】本题考查正数、负数的意义,用正数和负数表示具有相反意义的量,其中一个量用正数表示,则与之相反的量用负数表示.2.(3分)党的十八大以来,长沙用3600多个日日夜夜的不懈奋斗,努力把习总书记对湖南重要讲话重指示批示精神转化为生动实践,交上了一份奋进新征程、建功新时代的精彩答卷.十年来,长沙力推进义务教育优质均衡发展,教育惠民实现大跨越;全市新改扩建义务教育学校314所,新增位近468000个,请将数据468000用科学记数法表示为 ( ) 0.46810⨯A .64.6810⨯B .546.810⨯C .446810⨯D .3a ⨯10【分析】科学记数法的表示形式为n a 的形式,其中1||10<,n 为整数.确定n 的值时,a 要看把原数变成时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10时,n<是正整数;当原数的绝对值1时,n是负整数.=⨯【解答】解:468000 4.68105.B 故选:.a ⨯10n 【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中a 1||10<,n为整数,表示时关键要正确确定a 的值以及n 的值.3.(3分) −−3||2的相反数是()A . 23B . −23C . 32D . −32【分析】先算出 −−3||2,再求其相反数即可.【解答】解:22||33−−=−,23−的相反数为23, 故选:C .【点评】用到的知识点为:a 的相反数是a −;负数的绝对值是正数;负数的相反数是正数.4.(3分)下列各式正确的是( )A .853−−=−B .437a b ab +=C .54x x x −=D .2(7)5−−−=【分析】合并同类项,首先要能识别哪些是同类项,两个项(单项式)是同类项,它们所含的字母必须相同,并且各个字母的指数也相同,其次是掌握同类项合并的法则:系数相加.字母和字母的指数不变.【解答】解:A 、85−−应等于13−,故本选项错误;B 、4a 和3b 不是同类项,不能合并,故本选项错误;C 、5x 和4x 指数不同,不是同类项,不能合并,故本选项错误;D 、2(7)5−−−=,故本选项正确.故选:D .【点评】此题主要考查学生对合并同类项的理解和掌握,解答此类题目的关键是能识别哪些是同类项.此题难度不大,属于基础题.5.(3分)下列方程中是一元一次方程的是( )A .341x y +=B .2560x x ++=C .342x x −=D .350x+= 【分析】根据一元一次方程的定义,逐个判断.【解答】解:方程341x y +=含有两个未知数,不是一元一次方程;方程2560x x ++=含有未知数的二次项,不是一元一次方程;方程342x x −=符合一元一次方程的定义,是一元一次方程; 方程350x+=不是整式方程,不是一元一次方程. 故选:C .【点评】本题考查了一元一次方程的定义,一元一次方程需满足以下三条:①只含有一个未知数;②未知数的次数是1;③整式方程.6.(3分)下列说法正确的是( )A .22521ab a bc −−是四次三项式B .单项式xy 的系数是0C .231x x −−的常数项是1D .23231x y xy −+最高次项是22x y【分析】直接利用多项式的项数、次数确定方法分别分析得出答案.【解答】解:A 、22521ab a bc −−是四次三项式,正确;B 、单项式xy 的系数是1,故此选项错误;C 、231x x −−的常数项是1−,故此选项错误;D 、23231x y xy −+最高次项是33xy −,故此选项错误;故选:A .【点评】此题主要考查了多项式,正确把握相关定义是解题关键.7.(3分)下列方程变形中,正确的是( )A .由03y =,得3y =B .由23x =,得23x = C .由23a a −=,得3a = D .由2131b b −=+,得2b =【分析】按照解一元一次方程的步骤进行计算,逐一判断即可解答.【解答】解:A 、由03y =,得0y =,故A 不符合题意; B 、由23x =,得32x =,故B 不符合题意; C 、由23a a −=,得3a =,故C 符合题意;D 、由2131b b −=+,得2b =−,故D 不符合题意;故选:C .【点评】本题考查了解一元一次方程,等式的性质,熟练掌握解一元一次方程的步骤是解题的关键.8.(3分)若2m xy −和3n x y 是同类项,则m 和n 的值分别为( )A .1m =,1n =B .1m =,3n =C .3m =,1n =D .3m =,3n =【分析】相同字母的指数要相同可求出m 与n 的值.【解答】解:由题意可知:1n =,3m =,故选:C .【点评】本题考查同类项的概念,属于基础题型.9.(3分)如图,数轴上一动点A 向左移动2个单位长度到达点B ,再向右移动5个单位长度到达点C A 表示的数为1.若点C ,则与点表示的数互为相反数的是 () −A .7B .3−C .3D .2【分析】先求出A 点表示的数,根据相反数的定义即可求解.【解答】解:数轴上一动点A 向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C ,表示的数为1点C ,∴点B −表示的数为4,∴点A −表示的数为2,∴则与点A表示的数互为相反数的是2,故选:D.【点评】本题考查了相反数的定义,本题的解题关键是求出A 点表示的数.x kxy y xy 2210.(3分)多项式338−−+−化简后不含xy 项,则k 为()A .0B . −31C .31D .3【分析】先将原多项式合并同类项,再令xy 项的系数为0,然后解关于k 的方程即可求出k.【解答】解:原式=+−−−x k xy y 22(13)38,因为不含xy 项,故−=k 130,解得: k =31 . C 故选:. 【点评】本题考查了合并同类项法则及对多项式“项”的概念的理解,题目设计巧妙,有利于培养学生灵活运用知识的能力.二、填空题 (共6题,每小题3分,共18分)−11.(3分)16的绝对值是16.【分析】直接利用绝对值的定义得出答案. −【解答】解:16的绝对值是:16.故答案为:16.【点评】此题主要考查了绝对值,正确掌握绝对值的定义是解题关键.12.(3分)单项式 −3x yz 523的系数是 −53.【分析】利用单项式系数定义可得答案.【解答】解:单项式2335x yz −的系数是35−, 故答案为:35−. 【点评】此题主要考查了单项式,关键是掌握单项式中的数字因数叫做单项式的系数.13.(3分)若23a b +=,则742b a ++= 13 .【分析】根据23a b +=,可知24a b +的值,进一步求解即可.【解答】解:23a b +=,242(2)236a b a b ∴+=+=⨯=,7427613b a ∴++=+=,故答案为:13.【点评】本题考查了代数式求值,熟练掌握整体代入法是解题的关键.14.(3分)如图是一个计算程序,若输入a 的值为1−,则输出的结果应为 5− .【分析】将1a =−代入计算程序中进行计算.【解答】解:当1a =−时,2[(1)(2)](3)4−−−⨯−+(12)(3)4=+⨯−+3(3)4=⨯−+94=−+5=−, 故答案为:5−.【点评】本题考查代数式求值,准确理解程序图,掌握有理数混合运算的运算顺序和计算法则是解题关键.15.(3分)在如图所示的日历中任意圈出一竖列上相邻的三个数,设中间的一个数为a ,则圈出的三个数之和为 3a .(用含a 的式子表示)【分析】观察任意圈出一竖列上相邻的三个数,可以看出每一竖列相邻的两个数之间相差7.表示出最小的数和最大的数,让这三个数相加即可.【解答】解:设中间数为a ,∴其他两个数分别表示为7a −,7a +.∴三个数的和为+++−=a a a a 773.3故答案为:a . 【点评】本题考查列代数式,关键是注意每一竖列相邻两个数之间的关系,都是差7.16.(3分)小师和小滨进行了十次剪刀石头布的对决,已知:①小师出了3次石头,6次剪刀,1次布;②小滨出了2次石头,4次剪刀,4次布;③10次中没有平局;④你不知道她们的出拳顺序.则这次对决中赢者是小师.【分析】因为10次对决中没有平局,那么小师6次剪刀只能对应小滨的2次石头和4次布,这6局中小师赢4局;同理,小师3次石头和1次布只能对应小滨4次剪刀,这4局中小师赢3局,由此推断出结论.【解答】解:因为10次对决中没有平局,所以小师6次剪刀只能对应小滨的2次石头和4次布,所以这6局中小师赢4局,同理,小师3次石头和1次布只能对应小滨4次剪刀,所以这4局中小师赢3局,所以小师共赢了+=局,小滨赢了3437局.故答案为:小师.【点评】本题考查的是推理论证,根据已知条件做出正确分析,注意每一步都有根据和理由.三、解答题 (共9题,其中17、18、19题6分,20、21题8分,22、23题9分,24、25题10分,共72分)17.(6分)计算22[5(2)](|4|)1 ⨯+−−−−÷3.【分析】先算乘方和括号内的式子,再算括号外的乘法,最后算减法即可.【解答】解:22[5(2)](|4|)1⨯+−−−−÷3=⨯+−−−⨯ ==−+=⨯−−−2[5(8)](42)2(3)(8)682.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.18.(6分)化简求值:−−−a ab a ab 2()3(2)22a =−,其中2b =3,.【分析】直接去括号进而合并同类项,再把已知代入即可.【解答】解:−−−a ab a ab 2()3(2)22=−−+=−+4a ab a ab a ab 2263222,a =−2把,=−22b =3代入得:原式.【点评】此题主要考查了整式的加减,正确合并同类项是解题关键.19.(6分)解方程:(1)54(31)13x x +−=.(2)2723132x x −−−=. 【分析】(1)去括号,移项,合并同类项,系数化成1即可;(2)去分母,去括号,移项,合并同类项,系数化成1即可.【解答】解:(1)去括号,得512413x x +−=,移项,得512134x x +=+,合并同类项,得1717x =,系数化为1,得1x =;(2)去分母,得2(27)3(23)6x x −−−=,去括号,得414696x x −−+=,移项,得496146x x +=++,合并同类项,得1326x =,系数化为1,得2x =.【点评】本题考查了解一元一次方程,能正确根据等式的基本性质进行变形是解此题的关键.20.(8分)阅读材料:对于任意有理数a ,b ,规定一种新的运算:()1ab a a b =+−,例如,252(25)113=⨯+−=; (1)计算3(2)−;(2)若(2)5x −=,求x 的值.【分析】(1)直接利用已知运算法则计算得出答案;(2)直接利用已知运算法则计算得出答案.【解答】解:(1)3(2)3(32)12−=⨯−−=;(2)由题意可得:(2)5x −=,2(2)15x −⨯−+−=,则4215x −−=,解得:1x =−. 【点评】此题主要考查了一元一次方程的解法以及有理数的混合运算,正确掌握相关运算法则是解题关键.21.(8分)有理数a 、b 、c 在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:c b − > 0,a b − 0,c a − 0.(2)化简:||||||c b a b c a −+−−−.【分析】(1)直接利用数轴进而分析得出各部分的符号;(2)利用绝对值的性质化简得出答案.【解答】解:(1)由数轴可得:0c b −>,0a b −<,0c a −>,故答案为:>,<,>;(2)||||||c b a b c a −+−−−c b b a c a =−+−−+0=.【点评】此题主要考查了有理数比较大小,正确利用数轴分析是解题关键.22.(9分)如图为小明家住房的结构(单位:米)(1)小明家住房面积为 15xy 平方米;(用含x ,y 的代数式表示,化为最简形式)(2)现小明家需要进行装修,装修成本为600元/平方米,若4x =, 2.5y =,则全部装修完的成本为 元.【分析】(1)住房的总面积=长4y 宽2x 的客厅的面积+长2y 宽x 的厨房的面积+长x 宽y 的浴室的面积+长2x 宽2y 的卧室的面积;(2)将4x =, 2.5y =代入算出小明家住房面积,再乘以每平方米装修成本,即可得出全部装修完的成本.【解答】解:(1)42222y x y x x y x y ⨯+⨯+⨯+⨯824xy xy xy xy =+++15xy =(平方米). 故小明家住房面积为15xy 平方米;(2)4x =, 2.5y =,15154 2.5150xy ∴=⨯⨯=,150********⨯=(元).答:全部装修完的成本为90000元.故答案为:15xy ;90000.【点评】本题考查了整式的混合运算,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.23.(9分)阅读材料:我们定义:如果两个实数的差等于这两个实数的商,那么这两个实数就叫做“差商等数对”.即:如果a b a b −=÷,那么a 与b 就叫做“差商等数对”,记为(,)a b .例如:4242−=÷;993322−=÷;则称数对(4,2),9(,3)2是“差商等数对”. 根据上述材料,解决下列问题:(1)下列数对中,“差商等数对”是 ①③ (填序号);①(8.1,9)−−;②11(,)22;③1(,1)2−−; (2)如果(,2)a 是“差商等数对”,请求出a 的值;(3)在(2)的条件下,先化简再求值:222(3)(52)a a a a −−+−.【分析】(1)根据定义列式计算后进行判断即可;(2)根据定义列得方程,解方程即可;(3)将原式去括号,合并同类项后代入数值计算即可.【解答】解:(1)8.190.9−+=−,8.1(9)0.9−÷−=,则①是“差商等数对”;11022−=,11122÷=,则②不是“差商等数对”; 11122−+=,11(1)22−÷−=,则③是“差商等数对”; 故答案为:①③;(2)由题意可得22a a −=,解得:4a =; (3)222(3)(52)a a a a −−+−222652a a a a =−++−234a a =+,当4a =时,原式23444481664=⨯+⨯=+=.【点评】本题考查整式的化简求值及实数的运算,结合已知条件列得正确的算式是解题的关键.24.(10分)定义:若关于x 的方程0(0)ax b a +=≠的解与关于y 的方程0(0)cy d c +=≠的解满足||(x y m m −=为正数),则称方程0(0)ax b a +=≠与方程0(0)cy d c +=≠是“m 差解方程”.(1)请通过计算判断关于x 的方程2512x x =−与关于y 的方程3(1)1y y −−=是不是“2差解方程”;(2)若关于x 的方程213x m x n −−=−与关于y 的方程2(2)3(1)y mn n m −−−=是“m 差解方程”,求n 的值;(3)关于x ,y 的两个方程2(1)31x m −=−与方程3y mn n =+,若对于任何数m ,都使得它们不是“2差解方程”,求n 的值.【分析】(1)分别求解两个方程,根据定义判断即可;(2)分别求出方程的解,根据题意可得332334||22n m n m mn m −−−++−=,解出n 的值即可;(3)分别求出方程2(1)31x m −=−与方程3y mn n =+的解,再根据对于任何数m ,都使得它们不是“2差解方程”,即与m 无关,则可列出关于n 的一元一次方程,解出方程即可求解.【解答】解:(1)关于x 的方程2512x x =−与关于y 的方程3(1)1y y −−=是“2差解方程”,理由如下:2512x x =−的解为4x =,3(1)1y y −−=的解为2y =,|||42|2x y −=−=,∴关于x 的方程2512x x =−与关于y 的方程3(1)1y y −−=是“2差解方程”; (2)方程213x m x n −−=−的解为3322n m x −−=, 方程2(2)3(1)y mn n m −−−=的解为3342n m mn y −++=, 两个方程是“m 差解方程”,332334||22n m n m mn m −−−++∴−=, |34|2n ∴+=,14n ∴=−或54n =−; (3)2(1)31x m −=−化简得:231x m =+,解得:312m x +=, 3y mn n =+,解得:3mn n y +=, 3123m mn n x y ++∴−=−,9322(92)3266m mn n m n n +−−−+−==; 对于任何数m ,都使2(1)31x m −=−与3y mn n =+不是“2差解方程”,920n ∴−=,解得:92n =. 【点评】本题考查一元一次方程的解,绝对值方程,熟练掌握一元一次方程的解法,绝对值方程的解法,理解新定义是解题的关键.25.(10分)【知识准备】若数轴上A 点对应数x ,B 点对应数y ,M 为AB 中点,则我们有中点公式:M 对应的数为2x y +. (1)在一条数轴上,O 为原点,点C 对应数c ,点D 对应数d ,2c >,且有2|3|(2)0c d d −+++=.则CD 的中点N 所对应的数为 1.5 .(2)【问题探究】在(1)的条件下,若P 点从C 点出发,以每秒1个单位的速度向左运动,运动了6s 后,Q 点从D 点出发,以每秒2个单位的速度向右运动,R 为PQ 的中点.设Q 点运动时间为t 秒,t 为何值时R 到点C 的距离为2.(3)【拓展延伸】若数轴上A 点对应数x ,B 点对应数y ,M 为AB 靠近A 的三等分点,则我们有三等分点公式:M 对应的数为23x y +.若数轴上A 点对应数x ,B 点对应数y ,M 为AB 靠近A 的四等分点,则我们有四等分点公式:M 对应的数为34x y +. ①填空:若数轴上A 点对应数x ,B 点对应数y ,M 为AB 靠近A 的5等分点,则我们有5等分点公式:M 对应的数为 .②在(2)的条件下,若E 是PQ 最靠近Q 的五等分点,F 为PC 中点,求514OE OF +的最小值?并求出此时t 的取值范围.【分析】(1)先由非负数的性质求出5c =,2d =−,进而可得CD 的中点N 所对应的数;(2)首先依题意求出点P 所表示的数为:5t −,点Q 所表示的数为:22t −+,然后根据R 为PQ 的中点,R 到点C 的距离为2,得∴22522t t −++−=,由此解出t 即可; (3)①依题意可得出M 对应的数;②由(2)可知:点P 所表示的数为:5t −,点Q 所表示的数为:22t −+,再求出点E 所表示的数为735t −,点F 所表示的数为52t −,进而求出73||5t OE −=,|5|2t OF =−,从而得514|73||707|OE OF t t +=−+−,然后根据绝对值的意义进行分类讨论即可得出答案.【解答】解:(1)由非负数的性质得:30c d −+=,20d +=,解得:5c =,2d =−, CD ∴的中点N 所对应的数为:25 1.52−+=, 故答案为:1.5.(2)P 点从C 点出发,以每秒1个单位的速度向左运动,∴运动6秒后,点Q 开始运动,运动t 秒后,点P 所表示的数为:5(6)1t t −+=−−, Q 点从D 点出发,以每秒2个单位的速度向右运动,t ∴秒时,点Q 所表示的数为:22t −+, R 为PQ 的中点,则点R 所表示的数为:221322t t t −+−−−=, 又点R 到点C 的距离为2,∴3|5|22t −−=, 整理得:|13|4t −=,解得:9t =,或17t =即9或17秒时,R 到点C 的距离为2.(3)①M 为AB 靠近A 的三等分点时,M 对应的数为23x y +, M 为AB 靠近A 的四等分点时,M 对应的数为34x y +, 以此类推,⋯,M 为AB 靠近A 的5等分点时,M 对应的数为45x y +, 故答案为:45x y +. ②由(2)可知:点P 所表示的数为:1t −−,点Q 所表示的数为:22t −+, E 是PQ 最靠近Q 的五等分点,∴点E 所表示的数为:4(22)17925t t t −+−−−=,F 为PC 中点,∴点F 所表示的数为:15222t t −−+=−, 79||5t OE −∴=,|2|2t OF =−, 795145||14|2||79||287|52t t OE OF t t −∴+=⨯+⨯−=−+−, 当79t <时,514972873714OE OF t t t +=−+−=−,79t <,则1418t −>−,3714371819t ∴−>−=,即51419OE OF +>,当9728t 时,5147928719OE OF t t +=−+−=,当728t >时,514797281437OE OF t t t +=−+−=−,728t >,则1456t >,1437563719t ∴−>−=,即51419OE OF +>,综上所述:514OE OF +的最小值为19,此时9728t ,即947t , 故得当514OE OF +的最小值为19时,t 的取值范围是:947t . 【点评】此题主要考查了有理数与数轴,绝对值的意义,理解题意,读懂题目中新定义的分点公式,熟练掌握绝对值的意义,运用分类讨论思想进行分类讨论是解决问题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一数学自测练习题
一. 填空题(3分×10)
1. 比x 的3倍与y 的立方的和少3的数,用代数式表示是 。

2. 最大的负整数是 ;最小的自然数是 ;平方小于20的所有整数的和是 。

3. 51-的相反数是 ,绝对值是 ,倒数是 。

4. 近似数3.4万精确到 位,它有 个有效数字;用四舍五入法对10410保留两个有效数字,近似值约等于 。

5. 一个数的平方等于225,这个数是 ;六次方等于它本身的数有 ,九次方等于它本身的数有 。

6. 893--x 的最小值是 ,此时x 的值等于 。

7. 比较有理数3.0,31,21---的大小,若用“>”号把它们连接起来是 。

8. 纳米是很小的长度单位,1米是1纳米的十亿倍,用科学记数法表示
1米= 纳米。

9. 已知,0<a 0<b 且1=-b a ,则=-b a 。

10. 直接写出计算结果:=⨯-÷3)31(8
=-⨯-213)31(2
=--⨯-23)31(32
32
二. 选择题(3分×10)
11. 在3-,
411+,0,21-,78.0,5.2-,321-中,整数和负分数一共有( )
个。

A. 3 B. 4 C. 5 D. 6
12. 已知0,0<<ab a ,用
a 、
b 表示a 与b 的差为( ) A. b a + B. b a - C. b a -- D. b a +-
13. 两个不为零的有理数相除,如果交换它们的位置商不变,那么这两个数的关系一定是( )
A. 相等
B. 互为倒数
C. 互为相反数
D. 相等或互为相反数
14. 下列式子:x 2,y x +,x y y x +=+,42=x ,22y x +,x ,2其中代数式的
个数是( )
A. 7
B. 6
C. 5
D. 4
15. 一根绳子剪去三分之一后,长1.5米,这根绳子原来长是多少?设原长为x 米,列出的方程是( ) A. 5.131=-x B. 215.1=-x C. 5.131=x D. 5.131=-x x
16. 数轴上有一点A ,它表示有理数3,现将A 向右移动2个单位到B 点,再由B 点向左移动9个单位到达C 点,则C 点表示的数是( )
A. 4-
B. 4
C. 8-
D. 14-
17. 若3=a ,5=b ,a 与b 异号,则b a -的值为( )
A. 8-
B. 8
C. 2-
D. 2
18. 已知k x y +=2,当3=x 时,10=y ,那么当10=x 时,=y ( )
A. 20
B. 3
C. 16
D. 24
19. 已知31<<x ,化简13-+-x x 的结果是( )
A. 2-
B. 2
C. 42-x
D. x 24-
20. a 、b 是两个有理数,且)(b a b a +-=+,b a b a -=-,下列图中能表示a 、b 正确位置关系的是( )
三. 解答题(40分)
21. 解下列方程(3分×2)
(1)5321=+x
(2)6.37.127-=x
22. 计算(能简算的简算)(4分×4)
(1)93106-+-+-
(2)5.2)4121(2122.01÷⎥⎦⎤⎢⎣⎡+--⨯
(3)[]
2
100)3(331)5.01(1--⨯⨯--- (4)
)763(7763)19()763()5(-⨯-⨯-+-⨯- 23. 仓库原有大米12吨,第一天运进55吨,第二天运出18吨,第三天运出24吨,第四天运进3吨,第五天运出26吨,运用有理数加法法则列式计算仓库里还存多少大米?(本题4分)
24. 根据在图中的尺寸(单位:米),
(1)写出阴影部分的面积S 的计算公式。

(2)求当5=x 米时S 的值。

(本题4分)
25. 已知3=a ,1=b ,5=c ,且b a b a +=+,)(c a c a +-=+,求:c b a +-的值。

(本题5分)
26. 已知:
0)2(12
=-+-ab a 求:)9)(9(1)
3)(3(1)2)(2(1)1)(1(11+++++++++++++b a b a b a b a ab 的值。

(本题5分)
【试题答案】
一.
1. 333-+y x
2. 1-;0;0
3. 51;51
;5- 4. 千;2;4100.1⨯
5. 15±;1,0;1±,0
6. 8-;3
7.
21313.0->->- 8. 9101⨯ 9. 1- 10. 72-;
65-;625-
二.
11—15 CCDCD
16—20 ABDBB
三.
21. (1)解:5321=+x 221=x 4=x
(2)解:6.37.127-=x 6.307.1=x 18=x
22.
(1)解:原式10109991036=++-=++--=
(2)解:原式
2552455212]411422[5=⨯⨯=÷-⨯= (3)解:原式
011)6(31211=+-=-⨯⨯--= (4)解:原式27)7(727)7195(763-=-⨯=+-⨯=
23. 解:规定运进为正,则有)26()3()24()18()55(12-+++-+-+++=26870=- 答:仓库里还存2吨大米。

24. 解:
(1)S )215)(230(1530x x ---⨯=
(2)当5=x 时,350520450)5215()5230(1530=⨯-=⨯-⨯⨯--⨯=S 答:当5=x 米时,阴影面积S 为350平方米。

25. 解:由已知得3±=a ,1±=b ,5±=c
∵ b a b a +=+ ∴ 1,3==b a 或1,3-==b a
∵ )(c a c a +-=+ ∴ 5,3-==c a
当5,1,3-===c b a 时,b a -3)5(13-=-+-=+≠c b a
当5,1,3-=-==c b a 时,1)5()1(3-=-+--=+-c b a
∴ c b a +-的值为3-或1-
26. 解:由题意得,01=-a 且02=-ab
∴ 2,1==b a
∴ 原式11101541431321211⨯++⨯+⨯+⨯+⨯=
)111101()5141()4131()3121()211(-++-+-+-+-=
11101111=-=
【励志故事】
名气的价值
美国南北战争结束后,太平洋人寿保险公司拟以3万美金的年俸,聘请曾任南部联军统帅的名将李将军为该公司董事长,但遭李将军拒绝,理由是他对人寿保险业务毫无心得。

公司负责人当即告称:“阁下对人寿保险业务无心得无所谓,我们需要的是您的大名。

” “好的,可见我的名气很有价值,”李将军严肃地说,“正因为此,今天我不得不告诉你,我要把它用在与它价值相配的地方。


后来,李将军欣然接受了一个小规模专科学校校长的职务,年薪只有1500美元。

30000<1500,这在数学上是谬误,但在李将军那里却是名气的价值。

于是我们便不难明白李将军为何在美国颇受尊敬,因为一个真正伟大睿智的人知道什么才是真正的价值,更知道如何找到价值的归属。

相关文档
最新文档