2013年全国高考理科数学试题分类汇编2:函数

合集下载

13大市2013年高三历次考试数学试题分类汇编2:函数

13大市2013年高三历次考试数学试题分类汇编2:函数

【推荐】江苏省13大市2013年高三历次考试数学试题分类汇编2:函数一、填空题1 .(江苏省泰州、南通、扬州、宿迁、淮安五市2013届高三第三次调研测试数学试卷)已知函数2221 0 () 0ax x x f x x bx c x ⎧--⎪=⎨++<⎪⎩,≥,,是偶函数,直线y t =与函数()y f x =的图象自左向右依次交于四个不同点A ,B ,C ,D .若AB BC =,则实数t 的值为______. 【答案】74- 2 .(江苏省盐城市2013届高三年级第二次模拟考试数学试卷)设函数)(x f y =满足对任意的R x ∈,0)(≥x f 且9)()1(22=++x f x f .已知当]1,0[∈x 时,有242)(--=x x f ,则⎪⎭⎫ ⎝⎛62013f 的值为________. 【答案】53 .(常州市2013届高三教学期末调研测试数学试题)已知函数f (x )=32,2,(1),02x x x x ⎧⎪⎨⎪-<<⎩≥,若关于x 的方程f (x )=kx 有两个不同的实根,则实数k 的取值范围是______. 【答案】10,2⎛⎫ ⎪⎝⎭4 .(苏北三市(徐州、淮安、宿迁)2013届高三第二次调研考试数学试卷)已知函数⎪⎩⎪⎨⎧∈-∈=]3,1(,2329]1,0[,3)(x x x x f x ,当]1,0[∈t 时,]1,0[))((∈t f f ,则实数t 的取值范围是_____. 【答案】37[log ,1]35 .(江苏省苏锡常镇四市2013届高三教学情况调研(一)数学试题)设函数()ln f x x =的定义域为(),M +∞,且0M >,对于任意a ,b ,(,)c M ∈+∞,若a ,b ,c 是直角三角形的三条边长,且()f a ,()f b ,()f c 也能成为三角形的三条边长,那么M 的最小值为________. 【答案】26 .(徐州、宿迁市2013届高三年级第三次模拟考试数学试卷)已知函数2,01,()12, 1.2x x x f x x +<⎧⎪=⎨+⎪⎩≤≥若0a b >≥,且()()f a f b =,则()bf a 的取值范围是__. 【答案】5[,3)4;7 .(扬州、南通、泰州、宿迁四市2013届高三第二次调研测试数学试卷)设f (x )是定义在R 上的奇函数,当x < 0时,f (x )=x + e x(e 为自然对数的底数),则()ln6f 的值为____. 【答案】1ln 66- 8 .(江苏省泰州市2012-2013学年度第一学期期末考试高三数学试题)设函数f(x)是定义在R上的奇函数,且f(a)>f(b), 则f(-a)_________ f(-b)(填“>”或:“<”)【答案】<9 .(江苏省苏锡常镇四市2013届高三教学情况调研(一)数学试题)已知函数123()1234x x x x f x x x x x +++=+++++++,则55(2)(2)22f f -++--=_____. 【答案】810.(常州市2013届高三教学期末调研测试数学试题)函数22()log (4)f x x =-的值域为______.【答案】(,2]-∞11.(江苏省无锡市2013届高三上学期期末考试数学试卷)已知关于x 的函数y=2(1)t x t x-+(f∈R)的定义域为D,存在区间[a,b]⊆D,f(x)的值域也是[a,b].当t 变化时,b-a 的最大值=______________. 【答案】23312.(扬州市2012-2013学年度第一学期期末检测高三数学试题)已知函数2log ()3x x f x ⎧=⎨⎩(0)(0)x x >≤,则=)]0([f f ____. 【答案】013.(南通市2013届高三第一次调研测试数学试卷)定义在R 上的函数()f x ,对任意x ∈R 都有(2)()f x f x +=,当(2,0)x ∈- 时,()4x f x =,则(2013)f =________.【答案】答案:14. 本题考查一般函数的性质——周期性在解题中的应用.14.(镇江市2013届高三上学期期末考试数学试题)方程lg(2)1x x +=有______个不同的实数根.【答案】2;15.(南京市、盐城市2013届高三年级第一次模拟考试数学试题)已知函数21(1),02,()(2),2x x f x f x x ⎧⎪--≤<=⎨-≥⎪⎩, 若关于x 的方程()f x kx =(0)k >有且仅有四个根, 其最大根为, 则函数225()6724g t t t =-+的值域为 . 【答案】41[,1)25--16.(连云港市2012-2013学年度第一学期高三期末考试数学试卷)已知函数f (x )=⎩⎨⎧2,x ∈[0,1]x ,x ∉[0,1].则使f [f (x )]=2成立的实数x 的集合为________. 【答案】{x |0≤x ≤1,或x =2};二、填空题17.(南京市、盐城市2013届高三年级第一次模拟考试数学试题)对于定义在区间D 上的函数()f x , 若任给0x D ∈, 均有0()f x D ∈, 则称函数()f x 在区间D 上封闭.试判断()1f x x =-在区间[2,1]-上是否封闭, 并说明理由; 若函数3()1x a g x x +=+在区间[3,10]上封闭, 求实数a 的取值范围;若函数3()3h x x x =-在区间[,](,)a b a b Z ∈上封闭, 求,a b 的值. 【答案】解: (1)()1f x x =-在区间[2,1]-上单调递增,所以()f x 的值域为[-3,0] 而[-1,0][2,1]⊄-,所以()f x 在区间[2,1]-上不是封闭的(2)因为33()311x a a g x x x +-==+++,①当3a =时,函数()g x 的值域为{}3[3,10]⊆,适合题意②当3a >时,函数()g x 在区间[3,10]上单调递减,故它的值域为309[,]114a a ++, 由309[,]114a a ++[3,10]⊆,得303119104a a +⎧≥⎪⎪⎨+⎪≤⎪⎩,解得331a ≤≤,故331a <≤③当3a <时,在区间[3,10]上有33()3311x a a g x x x +-==+<++,显然不合题意 综上所述, 实数a 的取值范围是331a ≤≤(3)因为3()3h x x x =-,所以2()333(1)(1)h x x x x '=-=+-,所以()h x 在(,1)-∞-上单调递减,在(1,1)-上递增,在(1,)+∞上递增. ①当1a b <≤-时,()h x 在区间[,]a b 上递增,所以()()h a a h b b ≥⎧⎨≤⎩,此时无解 ②当111a b ≤--<≤且时,因max ()(1)2h x h b =-=>,矛盾,不合题意③当11a b ≤->且时,因为(1)2,(1)2h h -==-都在函数的值域内,故22a b ≤-⎧⎨≥⎩, 又33()3()3a h a a a b h b b b ⎧≤=-⎨≥=-⎩,解得202202a a b b -≤≤≥⎧⎨≤≤≤⎩或或,从而22a b =-⎧⎨=⎩④当11a b -≤<≤时,()h x 在区间[,]a b 上递减,()()h b a h a b ≥⎧⎨≤⎩(*), 而,a b Z ∈,经检验,均不合(*)式⑤当111a b -<≤≥且时,因min ()(1)2h x h a ==-<,矛盾,不合题意⑥当1b a >≥时,()h x 在区间[,]a b 上递增,所以()()h a a h b b ≥⎧⎨≤⎩,此时无解 综上所述,所求整数,a b 的值为2,2a b =-=。

2013年全国高考理科数学试题分类汇编2:函数Word版含答案

2013年全国高考理科数学试题分类汇编2:函数Word版含答案

2013 年全国高考理科数学试题分类汇编2:函数一、选择题1 .(2 013年高考江西卷(理))函数 y= x ln(1-x) 的定义域为A.(0,1)B.[0,1) C.(0,1] D.[0,1]【答案】 D 2 .( 2 013年普通高等学校招生统一考试重庆数学(理)试题(含答案))若a bc , 则函数f x x a x b x b x c x c x a 的两个零点分别位于区间( )A.a,b 和 b, c 内 B., a 和 a,b 内C. b,c 和 c, 内D. ,a 和 c, 内【答案】 A13 .( 2 013年上海市春季高考数学试卷(含答案 ))函数 f( x) x2的大致图像是 ( )y y y yA x 0Bx 0 x 0xC D【答案】 A 4 .( 2013年高考四川卷(理))设函数 f ( x)e x x a ( aR , e为自然对数的底数 ).若曲线y sin x 上存在( x , y) 使得 f ( f( y ))y,则a的取值范围是 ( ) 000 0(A ) [1,e](B)1 ,(C)[1, e1](D)1[ e,-11] [e -1, e 1]【答案】 A5 .( 2013年高考新课标 1(理))已知函数 f ( x) x22x, x 0, 若|f (x) | ≥ ax ,则 aln( x1),x 0的取值范围是A. ,0]B. ( ,1]C.D. [ 2,0]( [ 2,1] 【答案】 D6 .( 2013年普通高等学校招生统一考试大纲版数学(理)WORD版含答案(已校对))函数f x = log 2 1 1 x 0 的反函数f1x=x第 1 页共 7 页(A) 1 x 0 (B) 1 x 0 (C) 2x 1 x R (D) 2x 1 x 0 2x 1 2x 1【答案】 A7 .( 2 013 年普通高等学校招生统一考试浙江数学(理)试题(纯WORD版))已知 x, y为正实数 , 则A. 2lgxlgy 2lg x2lg y B.2lg( xy)2lgx 2lg yC. 2lgxlgy 2lg x2lg y D.2lg( xy)2lgx 2lg y【答案】 D8 .年普通高等学校招生统一考试山东数学(理)试题(含答案))已知函数f( x)为奇( 2013函数 , 且当 x 0时 , f( x) x21 , 则 f ( 1)x(A)2(B) 0 (C) 1 (D) 2【答案】 A9 .(2 013 年高考陕西卷(理))在如图所示的锐角三角形空地中,欲建一个面积不小于3002m的内接矩形花园 ( 阴影部分 ), 则其边长x( 单位) 的取值范围是mx40m40m(A) [15,20] (B) [12,25] (C) [10,30] (D) [20,30]【答案】 C10 .( 2013 年普通高等学校招生统一考试重庆数学(理)试题(含答案))y 3 a a 6 6 a 3 的最大值为( )A.9B.9C. 33 2 2 D.2 【答案】 B 11.( 2 013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知函数f x 的定义域为1,0, 则函数 f 2 x1 的定义域为(A) 1,1(B) 1, 1(C) -1,0 (D) 1 ,12 2第 2 页共 7 页【答案】 B 12.( 2 013年高考湖南卷(理))函数 f x2ln x 的图像与函数g x x24x 5 的图像的交点个数为A.3B.2C.1D.0 【答案】 B 13.( 2 013x2) 年高考四川卷(理))函数 y 的图象大致是(3x 1【答案】 C14.( 2 013 年普通高等学校招生统一考试辽宁数学(理)试题(WORD版))已知函数f x x2 2 a 2 x a2 ,g x x2 2 a 2 x a28. 设H1x max f x , g x , H 2x min f x , g x , max p, q表示 p,q 中的较大值 , min p,q 表示 p, q 中的较小值 , 记 H1x 得最小值为 A,H 2x 得最小值为 B ,则A B(A) a22a 16 (B) a22a 16 (C) 16 (D) 16【答案】 B15.( 20 13年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))定义域为R 的四个函数 y x3 ,y 2x , y x21, y 2sin x 中 , 奇函数的个数是 ( )A . 4 B. 3 C. 2 D. 1【答案】 C16.( 2013 年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))若函数f (x)=x3 +bx+c 有极值点 x1 , x2 , 且 f (x1)=x1 , 则关于 x 的方程 3(f (x1)) 2 +2f(x)+b=0 的不同实根个数是(A)3 (B)4 (C) 5 (D)6【答案】 A17 .( 2013 年普通高等学校招生统一考试天津数学(理)试题(含答案))函数第 3 页共 7 页f ( x) 2x | log 0.5x | 1的零点个数为(A) 1 (B) 2 (C)3 (D) 4【答案】 B18.( 2013年高考北京卷(理) ) 函数 f ( x) 的图象向右平移 1 个单位长度 , 所得图象与y=ex关于 y 轴对称 , 则 f( x)=A. e x 1B. e x 1C. e x 1D. e x 1【答案】 D19.( 2013 年上海市春季高考数学试卷(含答案 ))设 f -1( x) 为函数 f ( x) x 的反函数 ,下列结论正确的是( )(A)f 1(2) 2 (B) f 1(2) 4 (C) f 1(4) 2 (D) f 1(4)4【答案】 B20.( 2013 年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对) )若函 数 f x =x 2 ax 1 在 1 ,+ 是增函数 , 则 a 的取值范围是x 2(A) [-1,0] (B) [ 1, ) (C) [0,3] (D) [3, ) 【答案】 D 二、填空题21 .( 2013年 上 海 市 春 季 高 考 数 学 试 卷 ( 含 答案 ) ) 函 数 y log 2 x( 2)的 定 义 域是_______________【答案】 ( 2, )22.( 2013 年高考上海卷(理) )方程3x 31 3x1的实数解为 ________1 3 【答案】 x log3 4 .23(.2013 年高考上海卷(理))对区间 I 上有定义的函数g( x) , 记 g (I ){ y | y g( x), x I } ,已知定义域为[0,3]的函数y f ( x) 有反函数y f 1( x) , 且f 1 ([0,1)) [1,2), f 1 ((2,4]) [0,1), 若方程 f( x) x 0有解x0 ,则x0_____第 4 页共 7 页【答案】 x0 2 .24.( 2 013年高考新课标 1(理))若函数 f ( x) = (1 x2 )( x2ax b) 的图像关于直线x2对称 , 则 f ( x) 的最大值是______.【答案】 16.25.( 2 013年上海市春季高考数学试卷(含答案 ))方程 2x8 的解是_________________【答案】 3 26.( 2 013年高考湖南卷(理))设函数f ( x) a x b x c x , 其中 c a 0,c b 0.(1)记集合 M (a,b, c) a,b,c不能构成一个三角形的三条边长,且a=b , 则( a,b, c) M 所对应的 f ( x) 的零点的取值集合为____.(2)若 a,b, c是 ABC的三条边长,则下列结论正确的是 ______.( 写出所有正确结论的序号 )①x ,1 , f x 0;②x R,使 xa x ,b x , c x不能构成一个三角形的三条边长;③若 ABC为钝角三角形,则x 1,2 , 使 f x 0.【答案】 (1) (0,1](2) ①②③27.( 2 013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯 WORD版含附加题))已知 f ( x) 是定义在 R 上的奇函数 . 当x 0 时 , f ( x) x24x , 则不等式 f (x)x的解集用区间表示为 ___________. 【答案】5,0 5,28.( 2 013年高考上海卷(理))设 a为实常数 , yf ( x) 是定义在 R 上的奇函数 , 当 x 0时, f ( x)a27 , 若 f ( x) a 1对一切x0 成立 , 则 a 的取值范围为________9xx【答案】 a 8 . 7三、解答题29.( 2 013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))设函数第 5 页共 7 页f ( x) ax (1 a2 ) x2 , 其中 a 0 , 区间 I | x f (x)>0( Ⅰ) 求的长度 ( 注 : 区间 ( , ) 的长度定义为 ); ( Ⅱ) 给定常数 k (0,1) , 当时 , 求 l 长度的最小值 .【答案】解 : ( Ⅰ) f( x) x[ a (1 a 2 )x]( Ⅱ) 由( Ⅰ) 知 ,a 1 l2 11 aaa已知 k(0,1),0 1 - k a 1 k.令11 kg(a) a 1在 a 1 k时取最大值a0 x (0,a) . 所以区间长度为aa2.1 1 a2 1 - kk 20 11 - k恒成立 .1 k这时 l1 k 1 k(1 k )2 1 (1 k ) 211k所以当a1 k时, l取最小值1 (1 k )2 .30.( 2013 年上海市春季高考数学试卷 (含答案 ))本题共有 3 个小题 ,第 1 小题满分 5 分, 第 2 小题满分 7 分 , 第 3 小题满分 6 分 .已知真命题 : “函数y f ( x) 的图像关于点P(a、b) 成中心对称图形”的充要条件为“函数y f ( x a) b 是奇函数” .(1 ) 将函数g( x) x33x2的图像向左平移1 个单位 , 再向上平移2 个单位 , 求此时图像对应的函数解析式 , 并利用题设中的真命题求函数g (x) 图像对称中心的坐标 ;(2 ) 求函数h( x) log 22x图像对称中心的坐标 ;4 x(3)已知命题 : “函数y f ( x) 的图像关于某直线成轴对称图像”的充要条件为“存在实数 a 和 b, 使得函数 y f (x a) b 是偶函数” . 判断该命题的真假. 如果是真命题 ,请给予证明 ; 如果是假命题 , 请说明理由 , 并类比题设的真命题对它进行修改, 使之成为真命题( 不必证明 ).【答案】(1) 平移后图像对应的函数解析式为y (x 1)33(x 1)2 2 , 整理得 y x3 3x ,第 6 页共 7 页由于函数yx 3 3x 是奇函数 , 由题设真命题知 , 函数 g( x) 图像对称中心的坐标是(1, 2) . (2) 设 h( x) log 2 2x 的对称中心为 P(a ,b) , 由题设知函数 h(x a) b 是奇函数 .4 x设 f (x) h( x a) b, 2( x a) 2x 2a 则 f ( x) log 2 ( x a) b , 即 f (x) log 2 a b . 4 4 x 由不等式 2x 2a 0 的解集关于原点对称, 得 a 2 . 4 a x此时 f (x) lo g 2( x 2) , , . 2 x b x ( 2 2) 2 任取 x ( 2,2) , 由 f ( x) f (x) 0 , 得 b 1,所以函数 h(x)log 2 2x 图像对称中心的坐标是 (2,1) . 4 x (3) 此命题是假命题 .举反例说明 : 函数 f ( x) x 的图像关于直线 y x 成轴对称图像 , 但是对任意实数 a 和 b ,函数 y f (x a) b , 即 y x a b 总不是偶函数 .修改后的真命题 :“函数 y f ( x) 的图像关于直线 x a 成轴对称图像”的充要条件是“函数 y f ( x a)是偶函数” .第 7 页共 7 页。

2013年高考真题理科数学分类汇编(解析版):函数及答案

2013年高考真题理科数学分类汇编(解析版):函数及答案

2013年高考真题理科数学分类汇编(解析版)函 数1、(2013年高考(安徽卷))函数=()y f x 的图像如图所示,在区间[],a b 上可找到(2)n n ≥ 个不同的数12,...,,n x x x 使得1212()()()==,n nf x f x f x x x x 则n 的取值范围是 (A ){}3,4 (B ){}2,3,4 (C ) {}3,4,5 (D ){}2,3【答案】B【解析】由题知,过原点的直线与曲线相交的个数即n 的取值.用尺规作图,交点可取2,3,4. 所以选B 2、(2013年高考(北京卷))函数f (x )的图象向右平移一个单位长度,所得图象与y =e x 关于y 轴对称,则f (x )= A.1ex + B. 1ex - C. 1ex -+ D. 1ex --3、(2013年高考(广东卷))定义域为R 的四个函数3y x =,2xy =,21y x =+,2sin y x =中,奇函数的个数是( )A . 4B .3C .2D .【解析】C ;考查基本初等函数和奇函数的概念,是奇函数的为3y x =与2sin y x =,故选C .4、(2013年高考(全国(广西)卷))已知函数()()()-1,021f x f x -的定义域为,则函数的定义域为(A )()1,1- (B )11,2⎛⎫- ⎪⎝⎭ (C )()-1,0 (D )1,12⎛⎫ ⎪⎝⎭【答案】B【解析】由题意可知 1210,x -<+<,则112x -<<-。

故选B5、(2013年高考(全国(广西)卷))函数()()1=log 10f x x x ⎛⎫+> ⎪⎝⎭的反函数()1=f x - (A )()1021x x >- (B )()1021xx ≠- (C )()21x x R -∈ (D )()210x x -> 【答案】A【解析】由题意知1112(0)21y y x y x +=⇒=<-, 因此,故选A6、(2013年高考(全国(广西)卷))若函数()211=,2f x x ax a x ⎛⎫++∞ ⎪⎝⎭在是增函数,则的取值范围是(A )[]-1,0 (B )[]-∞1, (C )[]0,3 (D )[]3∞,+7、(2013年高考(湖南卷))函数()2ln f x x =的图像与函数()245g x x x =-+的图像的交点个数为A .3B .2C .1D .0【答案】B【解析】画出两个函数的图象,可得交点数。

2013年全国高考(理科)数学试题分类汇编:函数

2013年全国高考(理科)数学试题分类汇编:函数

全国高考理科数学试题分类汇编2:函数一、选择题1 (高考江西卷(理))函数的定义域为A.(0,1)B.[0,1)C.(0,1]D.[0,1]*D 2 (重庆数学(理)试题)若a b c<<,则函数()()()()()()()f x x a x b x b x c x c x a =--+--+--的两个零点分别位于区间( )A.(),a b 和(),b c 内B.(),a -∞和(),a b 内C.(),b c 和(),c +∞内D.(),a -∞和(),c +∞内*A3 (上海市春季高考数学试卷(含答案))函数12()f x x -=的大致图像是( )*A4 (高考四川卷(理))设函数()f x a R ∈,e 为自然对数的底数).若曲线sin y x =上存在00(,)x y 使得00(())f f y y =,则a 的取值范围是( )(A)[1,]e (B)1[,-11]e -, (C)[1,1]e + (D)1[-1,1]e e -+*A5 (高考新课标1(理))已知函数()f x =22,0ln(1),0x x x x x ⎧-+≤⎨+>⎩,若|()f x |≥ax ,则a 的取值范围是A.(,0]-∞B.(,1]-∞C.[2,1]-D.[2,0]-*D6 .(大纲版数学(理))函数()()21=log 10f x x x ⎛⎫+> ⎪⎝⎭的反函数()1=f x - (A)()1021x x >- (B)()1021xx ≠- (C)()21x x R -∈ (D)()210xx ->*A 7 (浙江数学(理)试题)已知y x ,为正实数,则A.y x yx lg lg lg lg 222+=+ B.y x y x lg lg )lg(222∙=+ C.y x yx lg lg lg lg 222+=∙ D.y x xy lg lg )lg(222∙=*D8 (山东数学(理)试题)已知函数()f x 为奇函数,且当0x >时,21()f x x x=+,则(1)f -=(A) 2- (B) 0 (C) 1 (D) 2*A9 (高考陕西卷(理))在如图所示的锐角三角形空地中, 欲建一个面积不小于300m 2的内接矩形花园(阴影部分), 则其边长x (单位m )的取值范围是(A) [15,20] (B) [12,25] (C) [10,30] (D) [20,30]*C 10(重庆数学(理)试题)y =()63a -≤≤的最大值为( )A.9B.92 C.3 B 11(大纲版数学(理))已知函数()f x 的定义域为()1,0-,则函数()21f x -的定义域为(A)()1,1- (B)11,2⎛⎫- ⎪⎝⎭(C)()-1,0 (D)1,12⎛⎫⎪⎝⎭*B12(高考湖南卷(理))函数()2ln f x x =的图像与函数()245g x x x =-+的图像的交点个数为A.3B.2C.1D.0 *B13(高考四川卷(理))函数231x x y =-的图象大致是( )*C14(辽宁数学(理)试题)已知函数()()()()222222,228.f x x a x a g x x a x a =-++=-+--+设()()(){}()()(){}{}()12max ,,min ,,max ,H x f x g x H x f x g x p q ==表示,p q 中的较大值,{}min ,p q 表示,p q 中的较小值,记()1H x 得最小值为,A ()2H x 得最小值为B ,则A B -=(A)2216a a -- (B)2216a a +- (C)16- (D)16*B15(广东省数学(理)卷)定义域为R 的四个函数3y x =,2x y =,21y x =+,2sin y x =中,奇函数的个数是( )A . 4 B.3C.2D.1*C16(安徽数学(理)试题)若函数3()=+b +f x x x c 有极值点1x ,2x ,且11()=f x x ,则关于x 的方程213(())+2()+=0f x f x b 的不同实根个数是 (A)3 (B)4 (C) 5 (D)6*A17(天津数学(理)试题)函数0.5()2|log |1x f x x =-的零点个数为(A) 1 (B) 2(C) 3(D) 4*B18(高考北京卷(理))函数f (x )的图象向右平移1个单位长度,所得图象与y =e x关于y 轴对称,则f (x )=A.1e x +B. 1e x -C. 1ex -+ D. 1ex --*D19(上海市春季高考数学试卷(含答案))设-1()f x 为函数()f x =,下列结论正确的是( )(A) 1(2)2f -= (B) 1(2)4f -= (C) 1(4)2f -= (D) 1(4)4f -=*B20(大纲版数学(理))若函数()21=f x x ax x ++在1,+2⎛⎫∞ ⎪⎝⎭是增函数,则a 的取值范围是 (A)[-1,0] (B)[1,)-+∞ (C)[0,3] (D)[3,)+∞*D二、填空题21(上海市春季高考数学试卷(含答案))函数2log (2)y x =+的定义域是_________*(2,)-+∞ 22(高考上海卷(理))方程1313313x x-+=-的实数解为________*3log 4x =. 23(高考上海卷(理))对区间I 上有定义的函数()g x ,记(){|(),}g I y y g x x I ==∈,已知定义域为[0,的函数()y f x =有反函数1()y f x -=,且11([0,1))[1,2),((2,4])[0,1)f f --==,若方程()0f x x -=有解0x ,则0_____x =*02x =.24(高考新课标1(理))若函数()f x =22(1)()xx ax b -++的图像关于直线2x =-对称,则()f x 的最大值是______.*16.25(上海市春季高考数学试卷(含答案))方程28x=的解是_______________*326(高考湖南卷(理))设函数(),0,0.x x x f x a b c c a c b =+->>>>其中(1)记集合{}(,,),,M a b c a b c a =不能构成一个三角形的三条边长,且=b ,则(,,)a b c M ∈所对应的()f x 的零点的取值集合为____.(2)若,,a b c ABC ∆是的三条边长,则下列结论正确的是______.(写出所有正确结论的序号)①()(),1,0;x f x ∀∈-∞>②,,,x x x x R xa b c ∃∈使不能构成一个三角形的三条边长; ③若()()1,2,0.ABC x f x ∆∃∈=为钝角三角形,则使*(1)]10(, (2)①②③27(江苏卷(数学))已知)(x f 是定义在R 上的奇函数.当0>x 时,x x x f 4)(2-=,则不等式x x f >)(的解集用区间表示为___________.*()()+∞-,50,528(高考上海卷(理))设a 为实常数,()y f x =是定义在R 上的奇函数,当0x <时,2()97a f x x x=++,若()1f x a ≥+对一切0x ≥成立,则a 的取值范围为_______*87a ≤-. 三、解答题29(安徽数学(理)试题)设函数22()(1)f x ax a x =-+,其中0a >,区间|()>0I x f x =(Ⅰ)求的长度(注:区间(,)αβ的长度定义为βα-); (Ⅱ)给定常数(0,1)k ∈,当时,求l 长度的最小值.*解: (Ⅰ))1,0(0])1([)(22aa x x a a x x f +∈⇒>+-=.所以区间长度为21a a+. (Ⅱ) 由(Ⅰ)知,aa aal 1112+=+=恒成立令已知k kk k k k a k k -1110-111.1-10),1,0(2>+∴>⇒>++≤≤<∈.22)1(11)1(1111)(k kk k l k a a a a g -+-=-+-≥⇒-=+=⇒这时时取最大值在 所以2)1(111k kl k a -+--=取最小值时,当. 30(上海市春季高考数学试卷(含答案))本题共有3个小题,第1小题满分5分,第2小题满分7分,第3小题满分6分.已知真命题:“函数()y f x =的图像关于点( )P a b 、成中心对称图形”的充要条件为“函数()y f x a b =+- 是奇函数”.(1)将函数32()3g x x x =-的图像向左平移1个单位,再向上平移2个单位,求此时图像对应的函数解析式,并利用题设中的真命题求函数()g x 图像对称中心的坐标; (2)求函数22()log 4xh x x=- 图像对称中心的坐标; (3)已知命题:“函数 ()y f x =的图像关于某直线成轴对称图像”的充要条件为“存在实数a 和b,使得函数()y f x a b =+- 是偶函数”.判断该命题的真假.如果是真命题,请给予证明;如果是假命题,请说明理由,并类比题设的真命题对它进行修改,使之成为真命题(不必证明).*(1)平移后图像对应的函数解析式为32(1)3(1)2y x x =+-++, 整理得33y x x =-, 由于函数33y x x =-是奇函数, 由题设真命题知,函数()g x 图像对称中心的坐标是(1 2)-,. (2)设22()log 4xh x x=-的对称中心为( )P a b ,,由题设知函数()h x a b +-是奇函数. 设()(),f x h x a b =+-则22()()log 4()x a f x b x a +=--+,即222()log 4x af x b a x +=---. 由不等式2204x aa x+>--的解集关于原点对称,得2a =. 此时22(2)()l o g (2 2)2x f x b x x+=-∈--,,. 任取(2,2)x ∈-,由()()0f x f x -+=,得1b =, 所以函数22()log 4xh x x=-图像对称中心的坐标是(2 1),. (3)此命题是假命题. 举反例说明:函数()f x x =的图像关于直线y x =-成轴对称图像,但是对任意实数a 和b ,函数()y f x a b =+-,即y x a b =+-总不是偶函数. 修改后的真命题: “函数()y f x =的图像关于直线x a =成轴对称图像”的充要条件是“函数()y f x a =+是偶函数”.。

2013年高考真题2:函数 Word版含答案

2013年高考真题2:函数 Word版含答案

2013年高考解析分类汇编2:函数一、选择题错误!未指定书签。

.(2013年高考重庆卷(文1))函数21log (2)y x =-的定义域为( )A .(,2)-∞B .(2,)+∞C .(2,3)(3,)+∞D .(2,4)(4,)+∞【答案】C【命题立意】本题考查函数的定义域。

要使函数有意义则,220log (2)0x x ->⎧⎨-≠⎩,即2021x x ->⎧⎨-≠⎩,即2x >且3x ≠,所以选C. 错误!未指定书签。

.(2013年高考重庆卷(文9))已知函数3()s i n 4(,)f x a x b x a b R =++∈,2(lg(log 10))5f =,则(lg(lg 2))f =( )A .5-B .1-C .3D .4 【答案】C【命题立意】本题考查函数的奇偶性以及对数的运算性质。

因为22lg10lg(log 10)lg(lg 2)lg(log 10lg 2)lg(lg 2)lg1012g +=⋅=⨯==,所以2l g (lg 2)l g (l o g 10)=-。

设2lg(log 10),t =则lg(lg 2)t =-。

由条件可知()5f t =,即3()sin 45f t at b t =++=,所以2si n 1a tb t +=,所以3()s i n 4143f t a t b t -=--+=-+=,选C. 错误!未指定书签。

.(2013年高考大纲卷(文6))函数()()()-121log 10=f x x f x x ⎛⎫=+> ⎪⎝⎭的反函数( )A .()1021x x >- B .()1021xx ≠- C .()21x x R -∈ D .()210x x -> 【答案】A)0)(11(log )(2>+==y x x f y ,所以y x 211=+,所以121-=y x,所以)0(121>-=y x y ,所以)0(121>-=x y x ,即)0(121)(1>-=-x x f x ,故选A.错误!未指定书签。

专题02 函数-【2023高考必备】2013-2022十年全国高考数学真题(全国通用版)(原卷版)

专题02 函数-【2023高考必备】2013-2022十年全国高考数学真题(全国通用版)(原卷版)
A.1.2天B.1.8天
C.2.5天D.3.5天
7.(2020新高考II卷(海南卷)·第8题)若定义在 的奇函数f(x)在 单调递减,且f(2)=0,则满足 的x的取值范围是()
A. B.
C. D.
8.(2020新高考II卷(海南卷)·第7题)已知函数 在 上单调递增,则 的取值范围是()
A. B. C. D.
A.10名B.18名C.24名D.32名
18.(2020年高考数学课标Ⅲ卷理科·第12题)已知55<84,134<85.设a=log53,b=log85,c=log138,则()
A a<b<cB.b<a<cC.b<c<aD.c<a<b
19.(2020年高考数学课标Ⅲ卷理科·第4题)Logistic模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t的单位:天)的Logistic模型: ,其中K为最大确诊病例数.当I( )=0.95K时,标志着已初步遏制疫情,则 约为()(ln19≈3)
49.(2015高考数学新课标1理科·第13题)若函数 为偶函数,则
50.(2014高考数学课标2理科·第15题)已知偶函数 在 单调递减, .若 ,则 的取值范围是__________.
51.(2013高考数学新课标1理科·第16题)若函数 = 的图像关于直线 =-2对称,则 的最大值是______.
A B
()
C D
41.(2014高考数学课标1理科·第3题)设函数 , 的定义域都为R,且 是奇函数, 是偶函数,则下列结论正确的是()
A. 是偶函数B.| | 是奇函数
C. | |是奇函数D.| |是奇函数

2013年高考理科数学全国新课标卷2试题与答案word解析版

2013年高考理科数学全国新课标卷2试题与答案word解析版

2013年普通高等学校夏季招生全国统一考试数学理工农医类(全国新课标卷II)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013课标全国Ⅱ,理1)已知集合M ={x |(x -1)2<4,x ∈R },N ={-1,0,1,2,3},则M ∩N =( ).A .{0,1,2}B .{-1,0,1,2}C .{-1,0,2,3}D .{0,1,2,3} 2.(2013课标全国Ⅱ,理2)设复数z 满足(1-i)z =2i ,则z =( ).A .-1+iB .-1-IC .1+iD .1-i3.(2013课标全国Ⅱ,理3)等比数列{a n }的前n 项和为S n .已知S 3=a 2+10a 1,a 5=9,则a 1=( ).A .13B .13-C .19D .19-4.(2013课标全国Ⅱ,理4)已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l ⊥m ,l ⊥n ,lα,lβ,则( ).A .α∥β且l ∥αB .α⊥β且l ⊥βC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l5.(2013课标全国Ⅱ,理5)已知(1+ax )(1+x )5的展开式中x 2的系数为5,则a =( ).A .-4B .-3C .-2D .-16.(2013课标全国Ⅱ,理6)执行下面的程序框图,如果输入的N =10,那么输出的S =( ).A .1111+2310+++B .1111+2!3!10!+++C .1111+2311+++D .1111+2!3!11!+++7.(2013课标全国Ⅱ,理7)一个四面体的顶点在空间直角坐标系O -xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为( ).8.(2013课标全国Ⅱ,理8)设a =log 36,b =log 510,c =log 714,则( ).A .c >b >aB .b >c >aC .a >c >bD .a >b >c9.(2013课标全国Ⅱ,理9)已知a >0,x ,y 满足约束条件1,3,3.x x y y a x ≥⎧⎪+≤⎨⎪≥(-)⎩若z =2x +y 的最小值为1,则a =( ).A .14 B.12 C .1 D .210.(2013课标全国Ⅱ,理10)已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是( ).A.∃x0∈R,f(x0)=0B.函数y=f(x)的图像是中心对称图形C.若x0是f(x)的极小值点,则f(x)在区间(-∞,x0)单调递减D.若x0是f(x)的极值点,则f′(x0)=011.(2013课标全国Ⅱ,理11)设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为( ).A.y2=4x或y2=8x B.y2=2x或y2=8xC.y2=4x或y2=16x D.y2=2x或y2=16x12.(2013课标全国Ⅱ,理12)已知点A(-1,0),B(1,0),C(0,1),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则b的取值范围是( ).A.(0,1) B.11,22⎛⎫-⎪⎪⎝⎭ C.1123⎛⎤-⎥⎝⎦ D.11,32⎡⎫⎪⎢⎣⎭第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须做答。

2013年高考理科数学试题分类汇编2:数列

2013年高考理科数学试题分类汇编2:数列

2013年高考理科数学试题分类汇编2:数列D1 9.(2013年高考江西卷(理))等比数列x,3x+3,6x+6,..的第四项等于 A.-24 B.0 C.12D.24【答案】A二、填空题10.(2013年高考四川卷(理))在等差数列{}na 中,218aa -=,且4a 为2a和3a 的等比中项,求数列{}na 的首项、公差及前n 项和.【答案】解:设该数列公差为d ,前n 项和为ns .由已知,可得()()()21111228,38a d a d a d a d +=+=++.所以()114,30a d d d a +=-=,解得14,0a d ==,或11,3a d ==,即数列{}na 的首相为4,公差为0,或首相为1,公差为3. 所以数列的前n 项和4nsn=或232n n ns -=11.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))等差数列{}na 的前n 项和为nS ,已知10150,25SS ==,则nnS 的最小值为________. 【答案】49- 12.(2013年高考湖北卷(理))古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1,3,6,10,,第n个三角形数为()2111222n n nn +=+.记第n 个k 边形数为(),N n k ()3k ≥,以下列出了部分k 边形数中第n 个数的表达式:三角形数 ()211,322N n nn =+正方形数 ()2,4N n n =五边形数 ()231,522N n nn =-六边形数 ()2,62N n n n=-可以推测(),N n k 的表达式,由此计算()10,24N =___________.选考题【答案】100013.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))在正项等比数列}{na 中,215=a,376=+a a,则满足nn a a a a a a 2121>+++的最大正整数n的值为_____________.【答案】1214.(2013年高考湖南卷(理))设nS 为数列{}na 的前n 项和,1(1),,2n nn n Sa n N *=--∈则(1)3a =_____; (2)12100S SS ++⋅⋅⋅+=___________.【答案】116-;10011(1)32-15.(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))当,1x R x ∈<时,有如下表达式:211.......1n x x x x+++++=-两边同时积分得:11111222222011.......1ndx xdx x dx x dx dx x+++++=-⎰⎰⎰⎰⎰从而得到如下等式:23111111111()()...()...ln 2.2223212n n +⨯+⨯+⨯++⨯+=+请根据以下材料所蕴含的数学思想方法,计算:122311111111()()...()_____2223212nn nnnnn C C C C +⨯+⨯+⨯++⨯=+ 【答案】113[()1]12n n +-+16.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))已知{}n a 是等差数列,11a=,公差0d ≠,nS 为其前n 项和,若125,,a a a成等比数列,则8_____S =【答案】6417.(2013年上海市春季高考数学试卷(含答案))若等差数列的前6项和为23,前9项和为57,则数列的前n 项和n =S __________.【答案】25766n n - 18.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))在等差数列{}na 中,已知3810a a +=,则573aa +=_____.【答案】2019.(2013年高考陕西卷(理))观察下列等式:211=22123-=-2221263+-=2222124310-+-=-照此规律, 第n 个等式可为___)1(2)1-n 1--32-1121-n 222+=+++n n n ()( ____. 【答案】)1(2)1-n 1--32-1121-n 222+=+++n n n ()(20.(2013年高考新课标1(理))若数列{na }的前n 项和为S n =2133n a +,则数列{na }的通项公式是na =______.【答案】na =1(2)n --.21.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))如图,互不-相同的点12,,,n A AX 和12,,,n B BB 分别在角O 的两条边上,所有nnA B 相互平行,且所有梯形11nnn n A B B A ++的面积均相等.设.nn OAa =若121,2,a a==则数列{}na 的通项公式是_________.【答案】*,23N n n a n∈-=22.(2013年高考北京卷(理))若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q =_______;前n 项和S n =___________.【答案】2,122n +-23.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已知等比数列{}na 是递增数列,nS 是{}na 的前n 项和,若13a a ,是方程2540xx -+=的两个根,则6S =____________.【答案】63三、解答题24.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))设函数22222()1(,)23nn n x x x f x x x R n N n=-+++++∈∈,证明:(Ⅰ)对每个nn N ∈,存在唯一的2[,1]3nx ∈,满足()0nnf x =; (Ⅱ)对任意np N ∈,由(Ⅰ)中nx 构成的数列{}nx 满足10n n p x x n+<-<.【答案】解: (Ⅰ) 224232224321)(0nx x x x x x f n x y x nn n ++++++-=∴=> 是单调递增的时,当是x 的单调递增函数,也是n 的单调递增函数.11)1(,01)0(=+-≥<-=n n f f 且.10)(],1,0(321>>>≥=∈⇒n n n n x x x x x f x ,且满足存在唯一x x x x x x x x x x x x x f x n n n -⋅++-<--⋅++-=++++++-≤∈-1141114122221)(,).1,0(2122242322 时当]1,32[0)23)(2(1141)(02∈⇒≤--⇒-⋅++-≤=⇒n n n n n n n n x x x x x x x f综上,对每个nn N ∈,存在唯一的2[,1]3n x ∈,满足()0n n f x =;(证毕)(Ⅱ)由题知4321)(,012242322=++++++-=>>≥+nxx x x x x f x x nn n n n n n n pn n)()1(4321)(2212242322=+++++++++++-=+++++++++++p n x n x nx x x x x x f pn pn n pn np n p n p n p n p n p n p n 上式相减:22122423222242322)()1(432432p n x n x n x x x x x n x x x x x pn p n n p n np n p n p n p n p n nnn n n n ++++++++++=++++++++++++++ )()(2212244233222)()1(-4-3-2--p n x n x nx x x x x x x x x x pn pn n pn nnn p n np n np n np n p n n +++++++++=+++++++++nx x n p n n p n n 1-111<⇒<+-=+.法二:25.(2013年高考上海卷(理))(3 分+6分+9分)给定常数0c >,定义函数()2|4|||f x x c x c =++-+,数列123,,,a a a 满足*1(),n n a f a n N +=∈. (1)若12a c =--,求2a 及3a ;(2)求证:对任意*1,n n n N a a c+∈-≥,;(3)是否存在1a ,使得12,,,n a a a 成等差数列?若存在,求出所有这样的1a ,若不存在,说明理由.【答案】:(1)因为c >,1(2)a c =-+,故2111()2|4|||2a f a a c a c ==++-+=, 3122()2|4|||10a f a a c a c c ==++-+=+(2)要证明原命题,只需证明()f x x c ≥+对任意x R ∈都成立,()2|4|||f x x c x c x c x c≥+⇔++-+≥+即只需证明2|4|||+x c x c x c ++≥++若0x c +≤,显然有2|4|||+=0x c x c x c ++≥++成立; 若0x c +>,则2|4|||+4x c x c x c x c x c ++≥++⇔++>+显然成立 综上,()f x x c ≥+恒成立,即对任意的*n N ∈,1n n aa c+-≥(3)由(2)知,若{}na 为等差数列,则公差0d c ≥>,故n 无限增大时,总有0na >此时,1()2(4)()8n n n n n a f a a c a c a c +==++-+=++即8d c =+故21111()2|4|||8af a a c a c a c ==++-+=++,即1112|4|||8a c a c a c ++=++++, 当10a c +≥时,等式成立,且2n ≥时,0na>,此时{}na 为等差数列,满足题意; 若10a c +<,则11|4|48a c ac ++=⇒=--,此时,230,8,,(2)(8)n aa c a n c ==+=-+也满足题意;综上,满足题意的1a 的取值范围是[,){8}c c -+∞⋃--.26.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))本小题满分10分.设数列{}122,3,3,34444na :,-,-,-,-,-,-,,-1-1-1-1k k k k k 个(),,(),即当1122k k k k n -+<≤()()()k N +∈时,11k n a k-=(-),记12n nS a a a =++()n N +∈,对于l N +∈,定义集合{}l P 1nnn S a n N n l +=∈≤≤是的整数倍,,且(1)求集合11P 中元素的个数; (2)求集合2000P 中元素的个数.【答案】本题主要考察集合.数列的概念与运算.计数原理等基础知识,考察探究能力及运用数学归纳法分析解决问题能力及推理论证能力. (1)解:由数列{}n a 的定义得:11=a,22-=a,23-=a,34=a,35=a,36=a ,47-=a,48-=a ,49-=a ,410-=a,511=a∴11=S ,12-=S,33-=S,04=S,35=S,66=S,27=S,28-=S,69-=S ,1010-=S,511-=S∴111a S•=,440a S•=,551a S•=,662a S•=,11111a S•-=∴集合11P 中元素的个数为5(2)证明:用数学归纳法先证)12()12(+-=+i i Si i事实上, ① 当1=i 时,3)12(13)12(-=+•-==+S S i i 故原式成立② 假设当m i =时,等式成立,即)12()12(+•-=+m m Sm m 故原式成立 则:1+=m i ,时,2222)12(}32)(1(}1)1(2)[1()22()12()12()22()12(+-+++-=+-++==++++++m m m m m m S S S m m m m m m)32)(1()352(2++-=++-=m m m m 综合①②得:)12()12(+-=+i i S i i 于是)1)(12()12()12()12(22}12(}12)[1(++=+++-=++=+++i i i i i i S S i i i i由上可知:}12(+i i S 是)12(+i 的倍数而)12,,2,1(12}12)(1(+=+=+++i j i a ji i ,所以)12()12()12(++=+++i j S Si i ji i 是)12,,2,1(}12)(1(+=+++i j a j i i 的倍数又)12)(1(}12)[1(++=++i i S i i 不是22+i 的倍数,而)22,,2,1)(22(}12)(1(+=+-=+++i j i aji i所以)22()1)(12()22()12)(1()12)(1(+-++=+-=+++++i j i i i j S S i i j i i 不是)22,,2,1(}12)(1(+=+++i j a j i i 的倍数故当)12(+=i i l 时,集合lP 中元素的个数为2i 1-i 231=+++)(于是当)(1i 2j 1j )12(+≤≤++=i i l 时,集合lP 中元素的个数为ji2+又471312312000++⨯⨯=)(故集合2000P 中元素的个数为100847312=+27.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))在公差为d的等差数列}{na 中,已知101=a,且3215,22,a aa +成等比数列.(1)求na d ,; (2)若0<d ,求.||||||||321n a a aa ++++【答案】解:(Ⅰ)由已知得到:22221311(22)54(1)50(2)(11)25(5)a a a a d a d d d +=⇒++=+⇒+=+ 224112122125253404611n n d d d d d d d a n a n==-⎧⎧⇒++=+⇒--=⇒⎨⎨=+=-⎩⎩或;(Ⅱ)由(1)知,当0d <时,11n a n =-, ①当111n ≤≤时,123123(1011)(21)0||||||||22n n n n n n n a a a a a a a a a +--≥∴++++=++++==②当12n ≤时,1231231112132123111230||||||||()11(2111)(21)212202()()2222n n n n a a a a a a a a a a a a n n n n a a a a a a a a ≤∴++++=++++-+++---+=++++-++++=⨯-=所以,综上所述:1232(21),(111)2||||||||21220,(12)2n n n n a a a a n n n -⎧≤≤⎪⎪++++=⎨-+⎪≥⎪⎩; 28.(2013年高考湖北卷(理))已知等比数列{}na 满足:2310aa -=,123125a a a=.(I)求数列{}na 的通项公式;(II)是否存在正整数m ,使得121111ma aa +++≥?若存在,求m 的最小值;若不存在,说明理由.【答案】解:(I)由已知条件得:25a =,又2110a q -=,13q ∴=-或,所以数列{}na 的通项或253n na-=⨯(II)若1q =-,12111105m a aa +++=-或,不存在这样的正整数m ; 若3q =,12111919110310mm a a a ⎡⎤⎛⎫+++=-<⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,不存在这样的正整数m .29.(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))设等差数列{}n a 的前n 项和为nS ,且424SS =,221nn aa =+.(Ⅰ)求数列{}na 的通项公式;(Ⅱ)设数列{}n b 前n 项和为nT ,且12n n na T λ++=(λ为常数).令2nn cb =*()n N ∈.求数列{}nc 的前n 项和nR .【答案】解:(Ⅰ)设等差数列{}na 的首项为1a ,公差为d ,由424SS =,221nn aa =+得 11114684(21)22(1)1a d a d a n a n d +=+⎧⎨+-=+-+⎩,解得,11a =,2d =因此21n a n =-*()n N ∈(Ⅱ)由题意知:12n n n T λ-=-所以2n ≥时,112122n n n n n n n b T T ----=-=-+ 故,1221221(1)()24n n n n n c b n ---===-*()n N ∈所以01231111110()1()2()3()(1)()44444n n R n -=⨯+⨯+⨯+⨯+⋅⋅⋅+-⨯, 则12311111110()1()2()(2)()(1)()444444n n n R n n -=⨯+⨯+⨯+⋅⋅⋅+-⨯+-⨯两式相减得1231311111()()()()(1)()444444n n n R n -=+++⋅⋅⋅+--⨯11()144(1)()1414nn n -=---整理得1131(4)94n n n R -+=-所以数列数列{}nc 的前n 项和1131(4)94n n n R -+=-30.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))本小题满分16分.设}{na 是首项为a ,公差为d 的等差数列)0(≠d ,nS 是其前n 项和.记cn nS bn n+=2,*N n ∈,其中c为实数.(1)若0=c ,且421b b b ,,成等比数列,证明:knkS n S2=(*,N n k ∈);(2)若}{nb 是等差数列,证明:0=c .【答案】证明:∵}{na 是首项为a ,公差为d 的等差数列)0(≠d ,nS 是其前n 项和∴d n n na Sn2)1(-+=(1)∵0=c ∴d n a n S b n n21-+==∵421b b b ,,成等比数列 ∴4122b b b =∴)23()21(2d a a d a +=+∴041212=-dad ∴0)21(21=-d a d ∵0≠d ∴d a 21= ∴a d 2= ∴a n a n n na d n n na Sn222)1(2)1(=-+=-+=∴左边=ak n a nk Snk222)(== 右边=ak n Sn k222=∴左边=右边∴原式成立(2)∵}{nb 是等差数列∴设公差为1d ,∴11)1(d n b bn-+=带入cn nS bnn+=2得:11)1(d n b -+cn nS n +=2 ∴)()21()21(11121131b d c n cd n d a d b n d d-=++--+-对+∈N n 恒成立 ∴⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==+--=-0)(021021111111b d c cd d a d b d d由①式得:d d211=∵ 0≠d ∴ 01≠d由③式得:0=c 法二:证:(1)若=c ,则dn a a n )1(-+=,2]2)1[(a d n n Sn+-=,22)1(ad n bn+-=.当421b b b ,,成等比数列,4122b b b=,即:⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+2322d a a d a ,得:add22=,又0≠d ,故a d 2=.由此:an S n2=,ak n a nk Snk222)(==,ak n Sn k222=.故:knkS n S 2=(*,N n k ∈).(2)c n ad n n c n nS b n n ++-=+=22222)1(,c n ad n ca d n c a d n n ++--+-++-=2222)1(22)1(22)1(cn a d n ca d n ++--+-=222)1(22)1(. (※)若}{nb 是等差数列,则BnAn b n+=型.观察(※)式后一项,分子幂低于分母幂,故有:22)1(2=++-cn ad n c,即022)1(=+-a d n c ,而22)1(a d n +-≠0,故0=c .经检验,当0=c 时}{nb 是等差数列.31.(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))等差数列{}na 的前n 项和为nS ,已知232=S a ,且124,,S S S 成等比数列,求{}na 的通项式.【答案】32.(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))已知首项为32的等比数列{}na 不是递减数列, 其前n 项和为(*)n S n ∈N , 且S 3 + a 3, S 5 + a 5, S 4 + a 4成等差数列.(Ⅰ) 求数列{}na 的通项公式; (Ⅱ) 设*()1nn nTS n S ∈=-N , 求数列{}nT 的最大项的值与最小项的值. 【答案】33.(2013年高考江西卷(理))正项数列{a n }的前项和{a n }满足:222(1)()0nn sn n s n n -+--+=(1)求数列{a n }的通项公式a n ; (2)令221(2)nn bn a +=+,数列{b n }的前n 项和为nT .证明:对于任意的*n N ∈,都有564nT<【答案】(1)解:由222(1)()0n n S n n S n n -+--+=,得2()(1)0n n S n n S ⎡⎤-++=⎣⎦.由于{}na 是正项数列,所以20,nn SS n n>=+.于是112,2aS n ==≥时,221(1)(1)2nn n aS S n n n n n-=-=+----=.综上,数列{}na 的通项2na n=. (2)证明:由于2212,(2)nn nn a n b n a +==+.则222211114(2)16(2)nn bn n n n ⎡⎤+==-⎢⎥++⎣⎦.222222222111111111111632435(1)(1)(2)n T n n n n ⎡⎤=-+-+-++-+-⎢⎥-++⎣⎦…222211111151(1)162(1)(2)16264n n ⎡⎤=+--<+=⎢⎥++⎣⎦.34.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))设数列{}na 的前n 项和为nS .已知11a=,2121233nn Sa n n n+=---,*n ∈N .(Ⅰ) 求2a 的值;(Ⅱ) 求数列{}na 的通项公式;(Ⅲ) 证明:对一切正整数n ,有1211174n a aa +++<.【答案】.(1) 解: 2121233nn Sa n n n+=---,n N *∈.∴当1n =时,112212221233aS a a ==---=-又11a=,24a ∴=(2)解: 2121233nn Sa n n n +=---,n N *∈.∴()()321112122333nn n n n n Sna n n n na ++++=---=-①∴当2n ≥时,()()()111213n nn n n Sn a =-+=-- ②由① — ②,得 ()()112211nn n n S S na n a n n -+-=---+1222nnn a S S -=-()()1211n n n a na n a n n +∴=---+111n na a n n+∴-=+ ∴数列na n ⎧⎫⎨⎬⎩⎭是以首项为111a=,公差为1的等差数列.()()2111,2nn a n n a n n n∴=+⨯-=∴=≥当1n =时,上式显然成立. 2*,na n n N ∴=∈(3)证明:由(2)知,2*,nan n N =∈①当1n =时,11714a=<,∴原不等式成立. ②当2n =时, 121117144a a+=+<,∴原不等式亦成立.③当3n ≥时,()()()()221111,11n n n n n n >-⋅+∴<-⋅+()()()2221211111111111121324211n a a a n n n n n ∴+++=+++<+++++⨯⨯-⋅-⋅+111111111111111121322423522211n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+-+-+-++-+- ⎪ ⎪ ⎪ ⎪ ⎪--+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1111111111112132435211n n n n ⎛⎫=+-+-+-++-+- ⎪--+⎝⎭1111171117121214214n n n n ⎛⎫⎛⎫=++--=+--<⎪ ⎪++⎝⎭⎝⎭∴当3n ≥时,,∴原不等式亦成立.综上,对一切正整数n ,有1211174n a aa +++<.35.(2013年高考北京卷(理))已知{a n }是由非负整数组成的无穷数列,该数列前n 项的最大值记为A n ,第n 项之后各项1n a +,2n a +,的最小值记为B n ,d n =A n -B n .(I)若{a n }为2,1,4,3,2,1,4,3,,是一个周期为4的数列(即对任意n ∈N *,4n na a +=),写出d 1,d 2,d 3,d 4的值;(II)设d 为非负整数,证明:d n =-d (n =1,2,3)的充分必要条件为{a n }为公差为d 的等差数列; (III)证明:若a 1=2,d n =1(n =1,2,3,),则{a n }的项只能是1或者2,且有无穷多项为1.【答案】(I)12341, 3.dd d d ====(II)(充分性)因为{}na 是公差为d 的等差数列,且d ≥,所以12.n a aa ≤≤≤≤因此nnAa =,1nn Ba +=,1(1,2,3,)nn n da a d n +=-=-=.(必要性)因为0(1,2,3,)nd d n =-≤=,所以nn n nAB d B =+≤.又因为n na A ≤,1n na B +≥,所以1n n a a +≤. 于是n nA a =,1nn Ba +=.因此1n n n n n aa B A d d+-=-=-=,即{}na 是公差为d 的等差数列. (III)因为112,1a d ==,所以112A a==,1111B A d=-=.故对任意11,1nn aB ≥≥=.假设{}(2)na n ≥中存在大于2的项.设m 为满足2na >的最小正整数,则2m ≥,并且对任意1,2kk m a ≤<≤,.又因为12a =,所以12m A -=,且2mm Aa =>. 于是211mm m B A d =->-=,{}1min ,2m m m Ba B -=≥.故111220m m m dA B ---=-≤-=,与11m d-=矛盾.所以对于任意1n ≥,有2na ≤,即非负整数列{}na 的各项只能为1或2. 因此对任意1n ≥,12n a a ≤=,所以2n A =. 故211n n n B A d =-=-=.因此对于任意正整数n ,存在m 满足m n >,且1ma =,即数列{}na 有无穷多项为1.36.(2013年高考陕西卷(理))设{}na 是公比为q 的等比数列.(Ⅰ) 导{}n a 的前n 项和公式;(Ⅱ) 设q ≠1, 证明数列{1}na +不是等比数列.【答案】解:(Ⅰ) 分两种情况讨论.①.}{111111na a a a S a a q nn=+++== 的常数数列,所以是首项为时,数列当②nn n n n nqa qa qa qa qS a a a a S q ++++=⇒++++=≠--1211211 时,当. 上面两式错位相减:.)()()()-11123121nn n n n qa a qa qa a qa a qa a a S q -=--+-+-+=- (qq a q qa a S n n n -1)1(.-111-=-=⇒.③综上,⎪⎩⎪⎨⎧≠--==)1(,1)1()1(,11q q q a q na S n n(Ⅱ) 使用反证法.设{}na 是公比q ≠1的等比数列, 假设数列{1}na +是等比数列.则 ①当1*+∈∃naN n ,使得=0成立,则{1}na +不是等比数列.②当01*≠+∈∀naN n ,使得成立,则恒为常数=++=++-+11111111n n n n q a q a a a1,0111111=≠⇒+=+⇒-q a q a q a n n 时当.这与题目条件q ≠1矛盾.③综上两种情况,假设数列{1}na +是等比数列均不成立,所以当q ≠1时, 数列{1}na +不是等比数列.。

2013年高考数学函数与方程分类汇编试题解析

2013年高考数学函数与方程分类汇编试题解析

2013年高考数学函数与方程分类汇编试题解析(人教版)[时间:45分钟分值:100分]基础热身1.(1)函数f(x)=-x2+5x-6的零点为________;(2)函数g(x)=x2-2x+1的零点个数为________.2.用二分法求方程x3-2x-5=0在区间[2,3]内的实根,取区间中点x0=2.5,那么下一个有根区间是________.3.用二分法求函数f(x)=3x-x-4的一个零点,其参考数据如下:f(1.6000)=0.200 f(1.5875)=0.133 f(1.5750)=0.067f(1.5625)=0.003 f(1.5562)=-0.029 f(1.5500)=-0.060据此数据,可得方程3x-x-4=0的一个近似解x0(精确到0.01)为________.4.设函数f(x)=x2+bx+c,x≤0,2,x>0,若f(-4)=f(0),f(-2)=-2,则关于x的方程f(x)=x的解的个数为________.能力提升5.函数f(x)=x2-2x的零点个数是________.6.[2012•如皋模拟] 若函数f(x)=x2•lga-2x+2在区间(1,2)内有且只有一个零点,那么实数a的取值范围是________.7.定义在R上的偶函数y=f(x),当x>0时,y=f(x)是单调递增的,f(1)•f(2)<0,则函数y =f(x)的图象与x轴的交点的个数是________.8.已知直线x=2及x=4与函数y=log2x图象的交点分别为A,B,与函数y=lgx图象的交点分别为C、D,则直线AB与CD交点坐标为________.9.[2012•温州一模] 根据表格中的数据,可以判定函数f(x)=lnx-x+2有一个零点所在的区间为(k,k+1)(k∈N*),则k的值为________.x 1 2 3 4 5lnx 0 0.69 1.10 1.39 1.6110.[2012•常镇二调] 已知方程12x=x13的解x0∈1n+1,1n,则正整数n=________. 11.[2012•盐城模拟] 若方程x3+a=4x的各个实根x1,x2,…,xk(k≤4)所对应的点xi,4xi(i=1,2,…,k)均在直线y=x的同侧,则实数a的取值范围是________.12.[2012•盐城调研] 已知关于x的方程|x|x+3=kx3有三个不同的实数解,则实数k的取值范围是________________.13.(8分)如图K11-1是一个二次函数y=f(x)的图象.(1)写出这个二次函数的零点;(2)写出这个二次函数的解析式;(3)分别指出f(-4)f(-1),f(0)f(2)与零的大小关系.图K11-114.(8分)已知函数f(x)=4x+m•2x+1有且仅有一个零点,求m的取值范围,并求出该零点.15.(12分)已知a是实数,函数f(x)=2ax2+2x-3-a.如果函数y=f(x)在区间[-1,1]上有零点,求a的取值范围.16.(12分)已知二次函数y=f1(x)的图象以原点为顶点且过点(1,1),反比例函数y=f2(x)的图象与直线y=x的两个交点间距离为8,f(x)=f1(x)+f2(x).(1)求函数f(x)的表达式;(2)证明:当a>3时,关于x的方程f(x)=f(a)有三个实数解.课时作业(十一)【基础热身】1.(1)2和3(2)1[解析] (1)令f(x)=-x2+5x-6=0,解得x=2或x=3,故零点为2和3;(2)令g(x)=0,解得x=1,故零点就一个.2.(2,2.5)[解析] 由计算器可算得f(2)=-1,f(3)=16,f(2.5)=5.625,f(2)•f(2.5)<0,∴下一个有根区间是(2,2.5).3.1.56[解析] 由表格可得x0∈(1.5562,1.5625),又精确到0.01,故x0≈1.56.4.3[解析] 由f(-4)=f(0),可得f(x)=x2+bx+c关于x=-2对称,∴-b2=-2,∴b =4.∵f(-2)=-2,∴c=2,∴当x≤0时,f(x)=x2+4x+2,故f(x)=x的解为x=2或-1或-2.【能力提升】5.3[解析] 分别作出函数y=x2与y=2x的图象,看图可知有3个交点,故函数f(x)=x2-2x的零点个数为3.6.(1,10)[解析] 由题意可有f(1)f(2)<0,即lga×(4lga-2)<0⇒0<lga<12⇒1<a<10.7.2[解析] 由已知可知,存在x1∈(1,2),使得f(x1)=0,又函数f(x)为偶函数,所以存在x0∈(-2,-1),使得f(x0)=0,故y=f(x)的图象与x轴有两个交点.8.(0,0)[解析] 由图象可知直线AB与CD相交,两直线方程分别为AB:y=12x,CD:y =lg22x,则其交点坐标为(0,0).9.3[解析] f(3)=ln3-1>0,f(4)=ln4-2<0,所以该函数的零点在(3,4)内,k=3.10.2[解析] 由下图可得:x0∈(0,1),设f(x)=12x-x13,因为f12=1212-1213<0,f13=1213-1313>0,故n=2.11.(-∞,-6)∪(6,+∞)[解析] 方程的根显然不为0,原方程的实根是曲线y=x3+a 与曲线y=4x的交点的横坐标;而曲线y=x3+a是由曲线y=x3向上或向下平移|a|个单位而得到的.若交点(xi,4xi)(i=1,2,…,k)均在直线y=x的同侧,因直线y=x与y=4x交点为:(-2,-2),(2,2);所以结合图象可得:a>0,-2 3+a>-2或a<0,23+a<2⇒a∈(-∞,-6)∪(6,+∞).12.k>0或k<-14[解答] 因为|x|x+3=kx3,所以|x|x3• x+3 =k(*),当x=0时,原式成立;当x≠0时,1k=|x|•x•(x+3)=x2 x+3 x≥0 ,-x2 x+3 x<0 ,设y=x2 x+3 x≥0 ,-x2 x+3 x<0 ,画出函数图象如下图,观察图象得:ymin=-4.因为y=1k与y=x2 x+3 x≥0 ,-x2 x+3 x<0 有两个交点故1k>-4且k≠0,所以k>0或k<-14.13.[解答] (1)由图象知函数y=f(x)的零点是x1=-3,x2=1.(2)方法一:设二次函数的解析式为f(x)=ax2+bx+c(a≠0),据题意f 1=a+b+c=0,f 0=c=3,f -3 =9a-3b+c=0,解得a=-1,b=-2,c=3.故这个二次函数的解析式为f(x)=-x2-2x+3.方法二:设二次函数的解析式为f(x)=a(x+3)(x-1)(a≠0),由f(-1)=4,可得a=-1,故这个二次函数的解析式为f(x)=-x2-2x+3.方法三:设二次函数的解析式为f(x)=a(x+1)2+4(a≠0),由f(0)=3,可得a=-1,故这个二次函数的解析式为f(x)=-x2-2x+3.(3)∵f(-4)=-5,f(-1)=4,f(0)=3,f(2)=-5,∴f(-4)f(-1)=-20<0,f(0)f(2)=-15<0.14.[解答] ∵f(x)=4x+m•2x+1有且仅有一个零点,即方程(2x)2+m•2x+1=0仅有一个实根.设2x=t(t>0),则t2+mt+1=0.当Δ=0,即m2-4=0,∴m=±2.当m=-2时,t=1;m=2时,t=-1不合题意,舍去,∴2x=1,x=0符合题意.当Δ>0,即m>2或m<-2时,方程t2+mt+1=0有两不等根,由题设知仅有一根,且为正,故方程t2+mt+1=0有一正一负根,即t1t2<0,这与t1t2>0矛盾.∴这种情况不可能.综上可知:m=-2时,f(x)有惟一零点,该零点为x=0.15.[解答] 若a=0,则函数f(x)=2x-3在区间[-1,1]上没有零点.下面就a≠0时分三种情况讨论.(1)方程f(x)=0在区间[-1,1]上有重根.此时Δ=4+8a(3+a)=4(2a2+6a+1)=0,解得a=-3±72.当a=-3-72时,f(x)=0的重根x=3-72∈[-1,1];当a=-3+72时,f(x)=0的重根x=3+72∉[-1,1];故当方程f(x)=0在区间[-1,1]上有重根时,a=-3-72.(2)f(x)在区间[-1,1]上只有一个零点且不是f(x)=0的重根,此时有f(-1)•f(1)=(a-1)(a-5)≤0⇒1≤a≤5.∵当a=5时,方程f(x)=0在区间[-1,1]上有两个相异实根.故当方程f(x)=0在区间[-1,1]上只有一个根且不是重根时,a的取值范围为{a|1≤a<5}.(3)方程f(x)=0在区间[-1,1]上有两相异实根.因为函数f(x)=2ax+12a2-12a-a-3,其图象的对称轴方程为x=-12a,所以a应满足(I)a>0,Δ=8a2+24a+4>0,-1<-12a<1,f 1≥0,f -1 ≥0或(Ⅱ)a<0,Δ=8a2+24a+4>0,-1<-12a<1,f 1≤0,f -1 ≤0,解不等式组(I)得a≥5,解不等式组(Ⅱ)得a<-3-72,故当方程f(x) =0在区间[-1,1]上有两相异实根时,a<-3-72或a≥5.综上所述,函数在区间[-1,1]上有零点,a的取值范围是-∞,-3-72∪[1,+∞).16.[解答] (1)由已知,设f1(x)=ax2,由f1(1)=1,得a=1,∴f1(x)=x2.设f2(x)=kx(k>0),它的图象与直线y=x的交点分别为A(k,k),B(-k,-k).由|AB|=8,得k=8,∴f2(x)=8x.故f(x)=x2+8x.(2)证明:法一:由f(x)=f(a),得x2+8x=a2+8a,即8x=-x2+a2+8a.在同一坐标系内作出f2(x)=8x和f3(x)=-x2+a2+8a的大致图象,其中f2(x)的图象是以坐标轴为渐近线,且位于第一、三象限的双曲线,f3(x)的图象是以0,a2+8a为顶点,开口向下的抛物线.因此,f2(x)与f3(x)的图象在第三象限有一个交点,即f(x)=f(a)有一个负数解.又∵f2(2)=4,f3(2)=-4+a2+8a,当a>3时,f3(2)-f2(2)=a2+8a-8>0,∴当a>3时,在第一象限f3(x)的图象上存在一点(2,f3(2))在f2(x)图象的上方.∴f2(x)与f3(x)的图象在第一象限有两个交点,即f(x)=f(a)有两个正数解.因此,方程f(x)=f(a)有三个实数解.法二:由f(x)=f(a),得x2+8x=a2+8a,即(x-a)x+a-8ax=0,得方程的一个解x1=a.方程x+a-8ax=0化为ax2+a2x-8=0,由a>3,Δ=a4+32a>0,得x2=-a2-a4+32a2a,x3=-a2+a4+32a2a,∵x2<0,x3>0,∴x1≠x2,且x2≠x3.若x1=x3,即a=-a2+a4+32a2a,则3a2=a4+32a⇒a4=4a,得a=0或a=34,这与a>3矛盾,∴x1≠x3.故原方程f(x)=f(a)有三个实数解.。

2013年全国高考理科数学试题分类汇编2:函数Word版含答案

2013年全国高考理科数学试题分类汇编2:函数Word版含答案

2013 年全国高考理科数学试题分类汇编2:函数一、选择题1.( 2013年高考江西卷(理))函数 y= x ln(1-x) 的定义域为A.(0,1)B.[0,1)C.(0,1]D.[0,1]【答案】 D2.( 2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))若 a b c ,则函数f x x a x b x b x c x c x a 的两个零点分别位于区间()A.a,b 和 b, c内B., a 和 a,b内C. b,c和c,内D.,a 和 c,内【答案】 A13.( 2013年上海市春季高考数学试卷(含答案 ))函数f ( x) x 2的大致图像是 ()y y y yA x0Bx0x0xC D【答案】 A4 .( 2013年高考四川卷(理))设函数 f ( x)ex x a (a R ,e为自然对数的底数).若曲线 y sin x 上存在( x, y) 使得 f ( f ( y ))y, 则a 的取值范围是 ( )0000(A)[1,e](B)1,(C)[1, e1](D)1[ e,-11][e-1, e 1]【答案】 A5 .( 2013年高考新课标 1(理))已知函数f ( x)x22x, x0,若 | f (x) |≥ax,则aln( x1),x0的取值范围是A. (,0]B. (,1]C. [ 2,1]D.[2,0]【答案】 D6 .( 2013年普通高等学校招生统一考试大纲版数学(理)WORD版含答案(已校对))函数f x = log 2 11x 0的反函数 f 1 x=x(A)1x 0(B)1x 0 (C) 2x1 xR (D) 2x1 x 02x12x1【答案】 A7 .( 2013 年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版)) 已知 x, y 为正实数 , 则A. 2lg x lg y 2lg x 2lg yB. 2lg( x y) 2lg x 2lg yC.2lg x lg y 2lg x 2lg yD.2lg( xy) 2lg x 2lg y【答案】 D8 .年普通高等学校招生统一考试山东数学(理)试题(含答案))已知函数 f ( x)为奇( 2013函数 , 且当 x 0时 , f ( x)x 21, 则 f ( 1)x(A)2(B) 0 (C) 1(D) 2【答案】 A9 .(2013年高考陕西卷 (理))在如图所示的锐角三角形空地中, 欲建一个面积不小于300 2m的内接矩形花园 ( 阴影部分 ),则其边长 x ( 单位 ) 的取值范围是mx40m40m(A) [15,20] (B) [12,25](C) [10,30] (D) [20,30]【答案】 C10 .( 2013年 普 通 高 等 学 校 招 生 统 一 考 试 重 庆 数 学 ( 理 ) 试 题 ( 含 答 案 ))y3 a a 66 a3 的最大值为 ( )A.9B.9 C.33 22D.2【答案】 B11.( 2013 年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对) ) 已知函数 f x 的定义域为 1,0 , 则函数 f 2 x 1 的定义域为(A)1,1(B)1,1(C)-1,0(D)1,122【答案】 B12.( 2013年高考湖南卷(理))函数 f x2ln x 的图像与函数g x x24x 5 的图像的交点个数为A.3B.2C.1D.0【答案】 B13.( 2013x2)年高考四川卷(理))函数 y的图象大致是 (3x1【答案】 C14.( 2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD版))已知函数f x x2 2 a 2 x a2 ,g x x2 2 a 2 x a28. 设H1x max f x , g x, H 2x min f x , g x , max p, q表示 p,q 中的较大值 ,min p,q表示 p, q 中的较小值,记 H1x 得最小值为A, H 2x 得最小值为B,则A B(A)a22a 16(B)a22a16(C)16(D)16【答案】 B15.( 2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))定义域为R的四个函数 y x3,y 2x, y x21,y2sin x 中,奇函数的个数是()A .4 B.3 C.2 D.1【答案】 C16.( 2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD版))若函数f (x)=x3 +bx+c 有极值点 x1, x2,且 f (x1)=x1,则关于 x 的方程 3(f (x1)) 2 +2f (x)+b=0 的不同实根个数是(A)3(B)4 (C) 5(D)6【答案】 A17 .( 2013年普通高等学校招生统一考试天津数学(理)试题(含答案))函数f ( x)2x | log0.5 x |1的零点个数为(A) 1(B) 2(C) 3(D) 4【答案】 B18.( 2013年高考北京卷(理))函数 f ( x)的图象向右平移 1 个单位长度 , 所得图象与y=e x 关于 y 轴对称,则 f ( x)=A. e x 1B.e x 1C. e x 1D.e x 1【答案】 D19.( 2013年上海市春季高考数学试卷(含答案 ))设f-1( x)为函数f ( x)x 的反函数,下列结论正确的是 ( )(A) f1 (2)2(B)f1(2)4(C) f 1(4)2(D)f1(4)4【答案】 B20.( 2013年普通高等学校招生统一考试大纲版数学(理)WORD版含答案(已校对))若函数 f x =x2ax1在1, +是增函数 , 则a的取值范围是x2(A) [-1,0](B)[ 1,) (C)[0,3](D)[3,)【答案】 D二、填空题21 .( 2013年上海市春季高考数学试卷 ( 含答案 ) )函数y log 2x( 2)的定义域是_______________【答案】 (2,)22.( 2013年高考上海卷(理))方程3x 313x1的实数解为 ________ 13【答案】 x log3 4 .23(.2013 年高考上海卷(理))对区间I上有定义的函数g( x) ,记 g (I ){ y | y g( x), x I } ,已知定义域为[0,3]的函数y f ( x)有反函数y f1( x) ,且f 1 ([0,1))[1,2), f1 ((2,4])[0,1), 若方程f ( x)x0有解x0,则x0_____【答案】 x0 2 .24.( 2013年高考新课标 1(理))若函数f ( x)=(1x2 )( x2ax b) 的图像关于直线x2对称 , 则f ( x)的最大值是 ______.【答案】 16.25.( 2013年上海市春季高考数学试卷(含答案 ))方程2x8 的解是_________________【答案】 326.( 2013年高考湖南卷(理))设函数 f ( x) ax b x c x , 其中 c a 0,c b0. (1)记集合 M (a,b, c) a,b,c不能构成一个三角形的三条边长,且a=b ,则( a,b, c) M 所对应的 f ( x) 的零点的取值集合为____.(2)若 a,b, c是 ABC的三条边长,则下列结论正确的是______.(写出所有正确结论的序号 )①x,1 , f x0;②x R,使 xa x ,b x , c x不能构成一个三角形的三条边长;③若ABC为钝角三角形,则x 1,2 , 使 f x0.【答案】 (1)(0,1](2) ①②③27.( 2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯 WORD 版含附加题))已知 f ( x) 是定义在 R 上的奇函数.当 x 0 时, f ( x)x24x ,则不等式 f (x)x 的解集用区间表示为 ___________.【答案】5,05,28.( 2013年高考上海卷(理))设 a 为实常数,y f ( x) 是定义在R上的奇函数,当 x0时, f ( x)a27 ,若 f ( x) a 1对一切 x0 成立,则a的取值范围为________ 9xx【答案】 a 8 . 7三、解答题29.( 2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))设函数f ( x) ax (1 a 2 ) x 2, 其中 a 0 , 区间 I | x f (x)>0( Ⅰ) 求的长度 ( 注 : 区间 ( , ) 的长度定义为 );( Ⅱ) 给定常数 k(0,1) , 当时 , 求 l 长度的最小值 .【答案】 解 : ( Ⅰ) f ( x) x[ a (1 a 2)x]( Ⅱ) 由( Ⅰ) 知 , a 1l211 aaa已知 k (0,1),01 - k a 1k.令1 1 kg(a)a 1在 a 1 k 时取最大值 a0 x (0,a ) . 所以区间长度为 aa 2 .11 a 21 - kk211 - k 恒成立 .1 k这时 l1 k 1 k (1 k )21 (1 k )211 k所以当a 1 k 时, l 取最小值1 (1 k )2 .30.( 2013 年上海市春季高考数学试卷 (含答案 )) 本题共有 3 个小题 , 第 1 小题满分 5 分, 第 2 小题满分 7 分 , 第 3 小题满分 6 分 .已知真命题 : “函数y f ( x) 的图像关于点 P(a 、b) 成中心对称图形”的充要条件为“函数 y f ( x a) b 是奇函数” .(1) 将函数 g( x) x33x 2的图像向左平移 1 个单位 , 再向上平移 2 个单位 , 求此时图像对应的函数解析式 , 并利用题设中的真命题求函数 g (x) 图像对称中心的坐标 ;(2) 求函数 h( x)log 22x图像对称中心的坐标 ;4x(3) 已知命题 : “函数y f ( x) 的图像关于某直线成轴对称图像”的充要条件为“存在实数 a 和 b, 使得函数 y f (x a) b 是偶函数” . 判断该命题的真假. 如果是真命题 , 请给予 证明 ; 如果是假命题 , 请说明理由 , 并类比题设的真命题对它进行修改 , 使之成为真命题 ( 不必证明 ).【答案】 (1) 平移后图像对应的函数解析式为y (x 1)33(x 1)22 ,整理得 yx 33x ,由于函数 yx33x 是奇函数 ,由题设真命题知 , 函数 g( x) 图像对称中心的坐标是 (1, 2) .(2) 设 h( x)log 22x的对称中心为 P(a ,b) , 由题设知函数 h(x a)b 是奇函数 .4 x设 f (x) h( xa) b,2( x a) 2x 2a 则 f ( x) log 2( x a)b , 即 f (x) log 2ab .4 4 x由不等式2x 2a0 的解集关于原点对称 , 得 a 2 .4 a x此时f (x) log 2( x 2),, .2x b x( 2 2)2任取 x ( 2,2) , 由 f ( x)f (x) 0 , 得 b 1,所以函数 h(x)log 2 2x 图像对称中心的坐标是(2,1) .4 x(3) 此命题是假命题 .举反例说明 : 函数 f ( x)x 的图像关于直线yx 成轴对称图像 , 但是对任意实数 a 和 b ,函数 yf (x a) b , 即 y x a b 总不是偶函数 .修改后的真命题 :“函数 yf ( x) 的图像关于直线 x a 成轴对称图像”的充要条件是“函数 y f ( x a)是偶函数” .。

2013年理科全国各省市高考真题——函数(解答题带答案)

2013年理科全国各省市高考真题——函数(解答题带答案)

2013年全国各省市理科数学—函数1、2013大纲理T22.(本小题满分12分) 已知函数()()()1=ln 1.1x x f x x xλ++-+(I )若0x ≥时,()0f x ≤,求λ的最小值;(II )设数列{}211111,ln 2.234n n n n a a a a n n=+++⋅⋅⋅+-+>的通项证明:2、2013新课标I 理T21.(本小题满分12分)已知函数b ax x x f ++=2)(,)()(d cx e x g x+=若曲线)(x f y =和曲线)(x g y =都过点)2,0(P ,且在点P 处有相同的切线24+=x y . (Ⅰ)求a ,b ,c ,d 的值;(Ⅱ)若x ≥-2时,)()(x kg x f ≤,求k 的取值范围.3、2013新课标Ⅱ理T21.(本小题满分12分) 已知函数)ln()(m x e x f x +-=。

(Ⅰ)设0=x 是)(x f 的极值点,求m 并讨论)(x f 的单调性; (Ⅱ)当2≤m 时,证明)(x f >0。

4、2013辽宁理T21.(本小题满分12分)已知函数()()()[]321,12cos .0,12e xx f x x g x ax x x x -=+=+++∈当时,(I )求证:()11-;1x f x x≤≤+ (II )若()()f x g x ≥恒成立,a 求实数的取值范围.5、2013山东理T21.(本小题满分13分)(1)求()f x 的单调区间,最大值;(2)讨论关于x 的方程|ln |()x f x =根的个数.6、2013山东理T22.(本小题满分13分)(Ⅰ)求椭圆C 的方程;(Ⅱ)点P 是椭圆C 上除长轴端点外的任一点,连接PF 1、PF 2,设∠F 1PF 2的角平分线PM 交C 的长轴于点M (m ,0),求m 的取值范围;7、2013北京理T18. (本小题共13分)设l 为曲线C :ln xy x=在点(1,0)处的切线. (I)求l 的方程;(II)证明:除切点(1,0)之外,曲线C 在直线l 的下方8、2013重庆理T17.设()()256ln f x a x x =-+,其中a R ∈,曲线()y f x =在点()()1,1f 处的切线与y 轴相交于点()0,6。

2013年高考全国二卷理科数学真题

2013年高考全国二卷理科数学真题

绝密★启用前2013年普通高等学校招生全国统一考(新课标Ⅱ卷)数学(理科)注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前考生将自己的姓名\准考证号填写在本试卷和答题卡相应位置。

2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号标黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4. 考试结束,将试题卷和答题卡一并交回。

第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题。

每小题5分,共50分。

在每个小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合,则( )(A)(B)(C)(D)(2)设复数满足,则=( )(A)(B)(C)(D)(3)等比数列的前项和为,已知,,则( )(A)(B)(C)(D)(4)已知为异面直线,,。

直线满足⊥m,,则( )(A)且(B)且(C)与相交,且交线垂直于(D)α与β相交,且交线平行于(5)已知的展开式中的系数为5,则( )(A)-4 (B)-3 (C)-2 (D)-1(6)执行右面的程序框图,如果输入的,那么输出的( )(A)(B)(C)(D)(7)一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是,,,画该四面体三视图中的正视图时,以zOx平面为搞影面,则得到正视图可以为(A) (B) (C)(D)(8)设,,则( )(A)(B)(C)(D)(9)已知满足条件,若的最小值为1,则( )(A)(B)(C)(D)(10)已知函数,则下列结论中错误的是( )(A)(B)函数的图像是中心对称图形(C)若是的极小值点,则在区间单调递减(D)若是的极值点,则(11)设抛物线,的焦点为,点在上,若以为直径的园过点,则的方程为( )(A)或(B) 或(C)或(D 或(12)已知点,直线将分割为面积相等的两部分,则的取值范围是( )(A)(B)(C)(D)第Ⅱ卷本卷包括必考题和选考题,每个试题考生都必修作答。

2013年高考数学试题分类汇编——三角函数 2

2013年高考数学试题分类汇编——三角函数 2

2013年全国各地高考试题汇编(湖南.文)已知函数()cos cos()3f x x x =⋅-(1)求2()3f π的值(2)求使1()4f x <成立的x 的取值集合 (2013陕西.理)已知向量1(cos ,),,cos2),2x x x x =-=∈a b R ,设函数()·f x =a b . (1) 求()f x 的最小正周期. (2) 求()f x 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.(2013湖南.理)已知函数()sin()cos()63f x x x ππ=-+-,2()2sin 2xg x =.(1)若α是第一象限角,且()5f α=,求()g α的值; (2)求使()()f x g x ≥成立的x 的取值集合.(2013湖北.文)在△ABC 中,角A ,B ,C 对应的边分别是a ,b ,c . 已知cos23cos()1A B C -+=. (1)求角A 的大小;(2)若△ABC 的面积S =5b =,求sin sinBC 的值.2013江西.理)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,已知cos (cos )cos 0C A A B += (1) 求角B 的大小;若1a c +=,求b 的取值范围 2013四川.理)在ABC ∆中,角,,A B C 的对边分别c b a 、、,且53)cos(sin )sin(cos 2cos 22-=++---C A B B A B B A (1)求A cos 的值;若5,24==b a ,求向量在方向上的投影。

(2013新课标Ⅱ.理)ABC ∆在内角,,A B C 的对边分别为,,a b c ,已知cos sin a b C c B =+. (1)求B ;(2)若2b =,求ABC ∆面积的最大值。

(1)求,a c 的值; (2)求sin()A B -的值.(2013全国卷.文)设ABC ∆的内角,,A B C 的对边分别为,,,()()a b c a b c a b c ac ++-+= (1)求角B (2)若413sin sin -=C A ,求角C (2013江苏卷)已知)sin ,(cos )sin ,(cos ββαα=b a ,=,παβ<<<0. (1)若2||=-b a ,求证:b a ⊥; (2)设)1,0(=c ,若c b a =+,求βα,的值. 2013上海.理)已知函数()2sin (0)f x x ωω=> (1)若()y f x =在2[,]43ππ-上单调递增,求ω的取值范围;(2)令2ω=,将函数()y f x =的图像向左平移6π个单位,再向上平移1个单位,得到函数()y g x =的图像.区间[,](,,)a b a b R a b ∈<,满足: ()y g x =在[,]a b 上至少含有30个零点.在所有满足上述条件的[,]a b 中,求b a -的最小值.2010年高考三角函数汇编一、选择题(2010上海文数)18.若△ABC 的三个内角满足sin :sin :sin 5:11:13A B C =,则△ABC (A )一定是锐角三角形. (B )一定是直角三角形.(C )一定是钝角三角形. (D)可能是锐角三角形,也可能是钝角三角形.2010湖南文数)7.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,若∠C=120°,,则 A.a >b B.a <b C. a =b D.a 与b 的大小关系不能确定(2010浙江理数)(9)设函数()4sin(21)f x x x =+-,则在下列区间中函数()f x 不.存在零点的是 (A )[]4,2-- (B )[]2,0- (C )[]0,2 (D )[]2,4(2010浙江理数)(4)设02x π<<,则“2sin 1x x <”是“sin 1x x <”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 (2010全国卷2理数)(7)为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6y x π=+的图像(A )向左平移4π个长度单位(B )向右平移4π个长度单位(C )向左平移2π个长度单位 (D )向右平移2π个长度单位 (2010陕西文数)3.函数f (x )=2sin x cos x 是(A)最小正周期为2π的奇函数 (B )最小正周期为2π的偶函数 (C)最小正周期为π的奇函数(D )最小正周期为π的偶函数(2010辽宁文数)(6)设0ω>,函数sin()23y x πω=++的图像向右平移43π个单位后与原图像重合,则ω的最小值是 (A )23 (B ) 43 (C ) 32(D ) 3 (2010辽宁理数)(5)设ω>0,函数y=sin(ωx+3π)+2的图像向右平移34π个单位后与原图像重合,则ω的最小值是 (A )23 (B)43 (C)32(D)3 (2010全国卷2文数)已知2sin 3α=,则cos(2)x α-=(A)B )19-(C )19(D(2010江西理数)7.E ,F 是等腰直角△ABC 斜边AB 上的三等分点,则tan ECF ∠=( )A. 1627B. 23C. 3D. 34(2010重庆文数)(6)下列函数中,周期为π,且在[,]42ππ上为减函数的是(A )sin(2)2y x π=+(B )cos(2)2y x π=+(C )sin()2y x π=+(D )cos()2y x π=+ (2010重庆理数)已知函数()sin (0,)2y x πωϕωϕ=+><的部分图象如题(6)图所示,则A. ω=1 ϕ= 6πB. ω=1 ϕ=- 6πC. ω=2 ϕ= 6πD. ω=2 ϕ= -6π(2010山东文数)(10)观察2'()2x x =,4'3()4x x =,'(cos )sin x x =-,由归纳推理可得:若定义在R 上的函数()f x 满足()()f x f x -=,记()g x 为()f x 的导函数,则()g x -=(A )()f x (B)()f x - (C) ()g x (D)()g x - (2010四川理数)(6)将函数sin y x =的图像上所有的点向右平行移动10π个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是 (A )sin(2)10y x π=-(B )sin(2)5y x π=-(C )1sin()210y x π=- (D )1sin()220y x π=-15、(2010天津文数)(8)5y Asin x x R 66ππωϕ⎡⎤=∈⎢⎥⎣⎦右图是函数(+)()在区间-,上的图象,为了得到这个函数的图象,只要将y sin x x R =∈()的图象上所有的点(A)向左平移3π个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变(B) 向左平移3π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变(C) 向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变(D) 向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变(2010天津理数)(7)在△ABC 中,内角A,B,C 的对边分别是a,b,c ,若22a b -,sin C B =,则A= (A )030 (B )060 (C )0120 (D )0150 (2010全国卷1理数)(2)记cos(80)k -︒=,那么tan100︒=(2010湖南理数)6、在△ABC 中,角A ,B ,C 所对的边长分别为a,b,c ,若∠C=120°,c =,则A 、a>bB 、a<bC 、a=bD 、a 与b 的大小关系不能确定 (2010湖北理数)3.在ABC ∆中,a=15,b=10,A=60°,则cos B =A -3 B 3 C -3 D 3(2010浙江理数)(11)函数2()sin(2)4f x x x π=--的最小正周期是__________________ .(2010山东文数)(15) 在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c,若a =2b =,sin cos B B +则角A 的大小为 .(2010广东理数)11.已知a,b,c 分别是△ABC 的三个内角A,B,C 所对的边,若则sinC= . (2010福建理数)14.已知函数f(x)=3sin(x-)(>0)6πωω和g(x)=2cos(2x+)+1ϕ的图象的对称轴完全相同。

2013年高考理科数学全国新课标卷2试题与答案解析版

2013年高考理科数学全国新课标卷2试题与答案解析版

2013年普通高等学校夏季招生全国统一考试数学理工农医类(全国新课标卷II)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2013课标全国Ⅱ,理1)已知集合M ={x |(x -1)2<4,x ∈R },N ={-1,0,1,2,3},则M ∩N =( ).A .{0,1,2}B .{-1,0,1,2}C .{-1,0,2,3}D .{0,1,2,3} 2.(2013课标全国Ⅱ,理2)设复数z 满足(1-i)z =2i ,则z =( ).A .-1+iB .-1-IC .1+iD .1-i3.(2013课标全国Ⅱ,理3)等比数列{a n }的前n 项和为S n .已知S 3=a 2+10a 1,a 5=9,则a 1=( ).A .13B .13-C .19D .19-4.(2013课标全国Ⅱ,理4)已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l ⊥m ,l ⊥n ,l α,l β,则( ).A .α∥β且l ∥αB .α⊥β且l ⊥βC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l5.(2013课标全国Ⅱ,理5)已知(1+ax )(1+x )5的展开式中x 2的系数为5,则a =( ).A .-4B .-3C .-2D .-16.(2013课标全国Ⅱ,理6)执行下面的程序框图,如果输入的N =10,那么输出的S =( ).A .1111+2310+++B .1111+2!3!10!+++C .1111+2311+++D .1111+2!3!11!+++7.(2013课标全国Ⅱ,理7)一个四面体的顶点在空间直角坐标系O -xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为( ).8.(2013课标全国Ⅱ,理8)设a =log 36,b =log 510,c =log 714,则( ).A .c >b >aB .b >c >aC .a >c >bD .a >b >c9.(2013课标全国Ⅱ,理9)已知a>0,x,y满足约束条件1,3,3.xx yy a x≥⎧⎪+≤⎨⎪≥(-)⎩若z=2x+y的最小值为1,则a=( ).A.14 B.12 C.1 D.210.(2013课标全国Ⅱ,理10)已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是( ).A.∃x0∈R,f(x0)=0B.函数y=f(x)的图像是中心对称图形C.若x0是f(x)的极小值点,则f(x)在区间(-∞,x0)单调递减D.若x0是f(x)的极值点,则f′(x0)=011.(2013课标全国Ⅱ,理11)设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为( ).A.y2=4x或y2=8x B.y2=2x或y2=8xC.y2=4x或y2=16x D.y2=2x或y2=16x12.(2013课标全国Ⅱ,理12)已知点A(-1,0),B(1,0),C(0,1),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则b的取值范围是( ).A.(0,1) B.11,22⎛⎫-⎪⎪⎝⎭ C.11,23⎛⎤-⎥⎝⎦ D.11,32⎡⎫⎪⎢⎣⎭第Ⅱ卷本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须做答。

2013全国各地高考理科数学试题及详解汇编(二).pptx

2013全国各地高考理科数学试题及详解汇编(二).pptx

1
1
11
中点.
(Ⅰ)在平面 ABC 内,试作出过点 P 与平面 A1BC 平行的直线l ,说明理由,并证明直线l
平面 ADD1A1;
(Ⅱ)设(Ⅰ)中的直线l 交 AB 于点 M ,交 AC 于点 N ,求二面角 A A1M N 的余弦值

C
D
AP
B
C1
D1
A1
B1
20.(本小题满分 13 分)
D. 2
4.(5分)高三某班团支部换届进行差额选举,从已产生的甲、乙、丙、丁四名候选人中选 出三人分别担任书记、组织委员和宣传委员,并且要求乙是上届组织委员不能连任原职,则
换届后不同的任职结果有( )
A.16 种
B.18 种
C.20 种
D.22 种
5.(5分)若在区域
为( )
A.
B.
内任取一点 P,则点 P 恰好在单位圆x2+y2=1 内的概率
C.
D.
6.(5分)设直线 l 的方程为:x+ysinθ﹣2013=0(θ∈R),则直线 l 的倾斜角 α 的范围是( )
A. [0,π)
B.
C.
D.
7.(5 分)下列命题正确的有 ①用相关指数R2 来刻画回归效果越小,说明模型的拟合效果越好; ②命题 p:“∃x0∈R,x02﹣x0﹣1>0”的否定¬p:“∀x∈R,x ﹣2 x﹣1≤0”;
①若 A, B,C 三个点共线, C 在线段上,则 C 是 A, B,C 的中位点;
②直角三角形斜边的点是该直角三角形三个顶点的中位点;
③若四个点 A, B,C, D 共线,则它们的中位点存在且唯一;
④梯形对角线的交点是该梯形四个顶点的唯一中位点.

【2013备考】各地名校试题解析分类汇编(一)理科数学:2函数2

【2013备考】各地名校试题解析分类汇编(一)理科数学:2函数2

各地解析分类汇编:函数21【云南省玉溪一中2013届高三第四考次月理】函数1()0x f x x ⎧=⎨⎩,为有理数,为无理数 , 则下列结论错误的是 ( )A . ()f x 是偶函数B .方程(())f f x x =的解为1x =C . ()f x 是周期函数D .方程(())()f f x f x =的解为1x =【答案】D【解析】则当x 为有有理数时,x -,x T +也为有理数,则()=()f x f x -,()=()f x T f x +;则当x 为有无理数时,x -,x T +也为无理数,则()=()f x T f x +,所以函数()f x 为偶函数且为周期函数,所以A,C 正确.当x 为有有理数时, (())(1)f f x f x ==,即1x =,所以方程(())f f x x =的解为1x =,C 正确.方程(())()f f x f x =可等价变形为()=1f x ,此时与方程()=1f x 的解为x 为有理数,故D 错误,故选D2【云南省玉溪一中2013届高三上学期期中考试理】已知对数函数()log a f x x =是增函数,则函数(||1)f x +的图象大致是( )【答案】B【解析】因为函数为增函数,所以1a >,又函数(||1)f x +为偶函数。

当0x >时,(||1)(1)l o g (a f x f x x +=+=+,当0x <时,(||1)(1)log (1)a f x f x x +=-+=-+,选B. 3【云南师大附中2013届高三高考适应性月考卷(三)理科】下列函数中既不是奇函数也不是偶函数的是 ( )A.||2x y =B.1(y g x =C.22x x y -=+D.111y gx =+ 【答案】D【解析】根据奇偶性定义知,A 、C 为偶函数,B 为奇函数,D 定义域为{|1}x x >-不关于原点对称,故选D.4【云南省玉溪一中2013届高三第三次月考 理】若)(x f 是偶函数,且当0)1(,1)(,),0[<--=+∞∈x f x x f x 则时的解集是( )A .(-1,0)B .(-∞,0) (1,2)C .(1,2)D .(0,2)【答案】D【解析】 根据函数的性质做出函数()f x 的图象如图.把函数()f x 向右平移1个单位,得到函数(1)f x -,如图,则不等式(1)0f x -<的解集为(0,2),选D.5【云南省玉溪一中2013届高三第三次月考 理】已知在函数||y x =([1,1]x ∈-)的图象上有一点(,||)P t t ,该函数的图象与 x 轴、直线x =-1及 x =t 围成图形(如图阴影部分)的面积为S ,则S 与t 的函数关系图可表示为( )【答案】B【解析】由题意知,当10t -<<时,面积原来越大,但增长的速度越来越慢.当0t >时,S 的增长会越来越快,故函数S 图象在y 轴的右侧的切线斜率会逐渐增大,选B .6【云南省玉溪一中2013届高三第三次月考 理】定义在R 上的函数()f x 满足()(),(2)(f x f x f xf x -=--=+且(1,0)x ∈-时,1()2,5x f x =+则2(log 20)f =( )A .1B .45C .1-D .45-【答案】C【解析】由()(),(2)(2),f x f x f x f x -=--=+可知函数为奇函数,且(4)()f x f x +=,所以函数的周期为4,24log 205<<,20log 2041<-<,即225log 204log 4-=,所以22222554(log 20)(log 204)(log )(log )(log )445f f f f f =-==--=-,因为241log 05-<<,所以24log 524141(log )215555f =+=+=,所以2224(log 20)(log 204)(log )15f f f =-=-=-,选C.7【云南省昆明一中2013届高三新课程第一次摸底测试理】函数()2x f x e x =+-的零点所在的区间是A .1(0,)2B .1(,1)2C .(1,2)D .(2,3)【答案】A 【解析】函数()2xf x e x =+-,在定义域上单调递增,(0)120f =-<,(1)10f e =->,13()022f ==>,由跟的存在定理可知函数的零点在区间1(0,)2上选A.8【云南省昆明一中2013届高三新课程第一次摸底测试理】已知偶函数(),(2)(),[1,0]f x x R f x f x x ∀∈-=-∈-对都有且当时 ()2,(2013)x f x f =则=A .1B .—1C .12D .12-【答案】C【解析】由(2)(f xf x -=-得(4)()f x f x -=,所以函数的周期是4,所以11(2013)(45031)(1)(1)22f f f f -=⨯+==-==,选C. 9【天津市耀华中学2013届高三第一次月考理科】已知函数2()=f x x cos x -,则(0.6),(0),(-0.5)f f f 的大小关系是A 、(0)<(0.6)<(-0.5)f f fB 、(0)<(-0.5)<(0.6)f f fC 、(0.6)<(-0.5)<(0)f f fD 、(-0.5)<(0)<(0.6)f f f 【答案】B【解析】因为函数2()=f x x cos x -为偶函数,所以(0.5)(0.5)f f -=,()=2f 'x x sin x +,当02x π<<时,()=20f 'x x sin x +>,所以函数在02x π<<递增,所以有(0)<(0.5)<f f f ,即(0)<(0.5)<f f f -,选B.10【天津市耀华中学2013届高三第一次月考理科】在下列区间中,函数()=+43x f x e x -的零点所在的区间为 A 、(1-4,0) B 、(0,14) C 、(14,12) D 、(12,34)【答案】C 【解析】1114441()=2=1604f e e --<,121()=102f e ->,所以函数的零点在11(,)42,选C. 11【天津市新华中学2013届高三上学期第一次月考数学(理)】 已知函数()()2531m f x m m x --=--是幂函数且是()0,+∞上的增函数,则m 的值为A. 2B. -1C. -1或2D. 0【答案】B【解析】因为函数为幂函数,所以211m m --=,即220m m --=,解得2m =或1m =-.因为幂函数在(0,)+∞,所以530m -->,即35m <-,所以1m =-.选B. 12【天津市新华中学2013届高三上学期第一次月考数学(理)】 已知定义在区间[0,2]上的函数=()y f x 的图象如图所示,则=(2-)y f x 的图象为【答案】A【解析】当0x =时,(20)(2)1y f f =-==,排除B,C,D,选A.13【天津市新华中学2013届高三上学期第一次月考数学(理)】给定函数①12=y x -,②23+3=2xx y -,③12=log |1-|y x ,④=sin2xy π,其中在(0,1)上单调递减的个数为A. 0B. 1 个C. 2 个D. 3个【答案】C【解析】①为幂函数,102-<,所以在(0,1)上递减.②223333()24x x x -+=-+,在(0,1)上递减,所以函数23+3=2xx y -在(0,1),递减.③1122log 1log 1y x x =-=-,在(0,1)递增.④sin2y x π=的周期,4T =,在(0,1)上单调递增,所以满足条件的有2个,选C.14【天津市新华中学2013届高三上学期第一次月考数学(理)】设3=2a log ,=2b ln ,12=5c -,则A. <<a b cB. <<b c aC. <<c a bD. <<c b a【答案】C【解析】321log 2log 3=,21ln 2log e =,125-=。

2013高考数学—函数分类汇编

2013高考数学—函数分类汇编

2013高考数学—函数分类汇编1.(2013山东卷理3)已知函数)(x f 为奇函数,当0>x 时,xx x f 1)(2+=,在=-)1(f .A 2- .B 0 .C 1 .D 22.(2013陕西卷理1)设全集为R ,函数21)(x x f -=的定义域为M ,则M C R 为.A ]1,1[- .B )1,1(-.C ),1[]1,(+∞--∞ .D ),1()1,(+∞--∞3.(2013陕西卷理12)设][x 表示不大于x 的最大整数,则对任意实数y x ,,有.A ][][x x -=- .B ][2]2[x x = .C ][][][y x y x +≤+ .D ][][][y x y x -≤-4.(2013新课标2卷理10)已知函数c bx ax x x f +++=23)(,下列结论错误的是.A R x ∈∃0,0)(0=x f.B 函数)(x f y =的图像是中心对称图形.C 若0x 是)(x f 的极小值点,则)(x f 在区间),(0x -∞单调递减.D 若0x 是)(x f 的极值点,则0)(0'=x f5.(2013新课标1卷理11)已知函数⎩⎨⎧>+≤+-=)0(),1ln()0(,2)(2x x x x x x f ,若ax x f ≥)(,则a 的取值范围是.A ]0,(-∞ .B ]1,(-∞ .C ]1,2[- ]0,2.[-D6.(2013新课标1卷理16)若函数))(1()(22b ax x x x f ++-=的图像关于直线2-=x 对称,在)(x f 的最大值是7.(2013江西卷理2)函数)1ln(x x y -=的定义域为.A )1,0( .B )1,0[ .C ]1,0( .D ]1,0[8.(2013江西卷理10)如图,半径为1的半圆O 与等边三角形夹在两平行线21,l l 之间,1l ∥2l ,l 与半圆相交于G F ,两点,与三角形ABC 两边相交于D E ,两点,设弧FG 的长为x(π<<x 0),CD BC EB y ++=,若l 从1l 平移到2l ,则函数)(x f y =的图像大致是9.(2013广西卷理5)函数)0)(11(log )(2>+=x xx f 的反函数)(1x f-=.A 121-x )0(>x .B 121-x)0(≠x .C 12-x (R x ∈) .D 12-x )0(>x10.(2013辽宁卷理11)已知函数)(x f 满足22)2(2)(a x a x x f ++-=,8)2(2)(22+--+-=a x a x x g 。

2013年全国统一高考新课标版Ⅱ卷全国2卷理科数学试卷及参考答案与解析

2013年全国统一高考新课标版Ⅱ卷全国2卷理科数学试卷及参考答案与解析

2013年全国统一高考新课标版Ⅱ卷全国2卷理科数学试卷及参考答案与解析一、选择题:本大题共12小题.每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合M={x|(x﹣1)2<4,x∈R},N={﹣1,0,1,2,3},则M∩N=( )A.{0,1,2}B.{﹣1,0,1,2}C.{﹣1,0,2,3}D.{0,1,2,3}2.(5分)设复数z满足(1﹣i)z=2i,则z=( )A.﹣1+iB.﹣1﹣iC.1+iD.1﹣i3.(5分)等比数列{an }的前n项和为Sn,已知S3=a2+10a1,a5=9,则a1=( )A. B. C. D.4.(5分)已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l ⊄β,则( )A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l5.(5分)已知(1+ax)(1+x)5的展开式中x2的系数为5,则a=( )A.﹣4B.﹣3C.﹣2D.﹣16.(5分)执行右面的程序框图,如果输入的N=10,那么输出的S=( )A. B.C. D.7.(5分)一个四面体的顶点在空间直角坐标系O﹣xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到正视图可以为( )A. B. C. D.8.(5分)设a=log36,b=log510,c=log714,则( )A.c>b>aB.b>c>aC.a>c>bD.a>b>c9.(5分)已知a>0,实数x,y满足:,若z=2x+y的最小值为1,则a=( )A.2B.1C.D.10.(5分)已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是( )A.∃x0∈R,f(x)=0B.函数y=f(x)的图象是中心对称图形C.若x0是f(x)的极小值点,则f(x)在区间(﹣∞,x)单调递减D.若x0是f(x)的极值点,则f′(x)=011.(5分)设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为( )A.y2=4x或y2=8xB.y2=2x或y2=8xC.y2=4x或y2=16xD.y2=2x或y2=16x12.(5分)已知点A(﹣1,0),B(1,0),C(0,1),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则b的取值范围是( )A.(0,1)B.C.D.二、填空题:本大题共4小题,每小题5分.13.(5分)已知正方形ABCD的边长为2,E为CD的中点,则•=.14.(5分)从n个正整数1,2,…,n中任意取出两个不同的数,若取出的两数之和等于5的概率为,则n=.15.(5分)设θ为第二象限角,若tan(θ+)=,则sinθ+cosθ=.16.(5分)等差数列{an }的前n项和为Sn,已知S10=0,S15=25,则nSn的最小值为.三.解答题:解答应写出文字说明,证明过程或演算步骤:17.(12分)△ABC在内角A、B、C的对边分别为a,b,c,已知a=bcosC+csinB. (Ⅰ)求B;(Ⅱ)若b=2,求△ABC面积的最大值.18.(12分)如图,直棱柱ABC﹣A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=AB.(Ⅰ)证明:BC1∥平面A1CD(Ⅱ)求二面角D﹣A1C﹣E的正弦值.19.(12分)经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产品,每1t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t该农产品.以x(单位:t,100≤x≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(Ⅰ)将T表示为x的函数;(Ⅱ)根据直方图估计利润T不少于57000元的概率;(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若x∈[100,110))则取x=105,且x =105的概率等于需求量落入[100,110)的频率,求T的数学期望.20.(12分)平面直角坐标系xOy中,过椭圆M:(a>b>0)右焦点的直线x+y﹣=0交M于A,B两点,P为AB的中点,且OP的斜率为.(Ⅰ)求M的方程(Ⅱ)C,D为M上的两点,若四边形ACBD的对角线CD⊥AB,求四边形ACBD面积的最大值.21.(12分)已知函数f(x)=e x﹣ln(x+m)(Ι)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;(Ⅱ)当m≤2时,证明f(x)>0.选考题:(第22题~第24题为选考题,考生根据要求作答.请考生在第22、23、24题中任选择一题作答,如果多做,则按所做的第一部分评分,作答时请写清题号)22.(10分)【选修4﹣1几何证明选讲】如图,CD为△ABC外接圆的切线,AB的延长线交直线CD于点D,E、F分别为弦AB与弦AC 上的点,且BC•AE=DC•AF,B、E、F、C四点共圆.(1)证明:CA是△ABC外接圆的直径;(2)若DB=BE=EA,求过B、E、F、C四点的圆的面积与△ABC外接圆面积的比值.23.已知动点P、Q都在曲线(β为参数)上,对应参数分别为β=α与β=2α(0<α<2π),M为PQ的中点.(1)求M的轨迹的参数方程;(2)将M到坐标原点的距离d表示为α的函数,并判断M的轨迹是否过坐标原点.24.【选修4﹣﹣5;不等式选讲】设a,b,c均为正数,且a+b+c=1,证明:(Ⅰ)(Ⅱ).2013年全国统一高考数学试卷(理科)(新课标Ⅱ)参考答案与试题解析一、选择题:本大题共12小题.每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合M={x|(x﹣1)2<4,x∈R},N={﹣1,0,1,2,3},则M∩N=( )A.{0,1,2}B.{﹣1,0,1,2}C.{﹣1,0,2,3}D.{0,1,2,3}【分析】求出集合M中不等式的解集,确定出M,找出M与N的公共元素,即可确定出两集合的交集.【解答】解:由(x﹣1)2<4,解得:﹣1<x<3,即M={x|﹣1<x<3},∵N={﹣1,0,1,2,3},∴M∩N={0,1,2}.故选:A.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)设复数z满足(1﹣i)z=2i,则z=( )A.﹣1+iB.﹣1﹣iC.1+iD.1﹣i【分析】根据所给的等式两边同时除以1﹣i,得到z的表示式,进行复数的除法运算,分子和分母同乘以分母的共轭复数,整理成最简形式,得到结果.【解答】解:∵复数z满足z(1﹣i)=2i,∴z==﹣1+i故选:A.【点评】本题考查代数形式的除法运算,是一个基础题,这种题目若出现一定是一个送分题目,注意数字的运算.3.(5分)等比数列{an }的前n项和为Sn,已知S3=a2+10a1,a5=9,则a1=( )A. B. C. D.【分析】设等比数列{an}的公比为q,利用已知和等比数列的通项公式即可得到,解出即可.【解答】解:设等比数列{an}的公比为q,∵S3=a2+10a1,a5=9,∴,解得.∴.故选:C.【点评】熟练掌握等比数列的通项公式是解题的关键.4.(5分)已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l ⊄β,则( )A.α∥β且l∥αB.α⊥β且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l【分析】由题目给出的已知条件,结合线面平行,线面垂直的判定与性质,可以直接得到正确的结论.【解答】解:由m⊥平面α,直线l满足l⊥m,且l⊄α,所以l∥α,又n⊥平面β,l⊥n,l⊄β,所以l∥β.由直线m,n为异面直线,且m⊥平面α,n⊥平面β,则α与β相交,否则,若α∥β则推出m∥n,与m,n异面矛盾.故α与β相交,且交线平行于l.故选:D.【点评】本题考查了平面与平面之间的位置关系,考查了平面的基本性质及推论,考查了线面平行、线面垂直的判定与性质,考查了学生的空间想象和思维能力,是中档题.5.(5分)已知(1+ax)(1+x)5的展开式中x2的系数为5,则a=( )A.﹣4B.﹣3C.﹣2D.﹣1【分析】由题意利用二项展开式的通项公式求得展开式中x2的系数为+a•=5,由此解得a的值.【解答】解:已知(1+ax)(1+x)5=(1+ax)(1+x+x2+x3+x4+x5)展开式中x2的系数为+a•=5,解得a=﹣1,故选:D.【点评】本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.6.(5分)执行右面的程序框图,如果输入的N=10,那么输出的S=( )A. B.C. D.【分析】从赋值框给出的两个变量的值开始,逐渐分析写出程序运行的每一步,便可得到程序框图表示的算法的功能.【解答】解:框图首先给累加变量S和循环变量i赋值,S=0+1=1,k=1+1=2;判断k>10不成立,执行S=1+,k=2+1=3;判断k>10不成立,执行S=1++,k=3+1=4;判断k>10不成立,执行S=1+++,k=4+1=5;…判断i>10不成立,执行S=,k=10+1=11;判断i>10成立,输出S=.算法结束.故选:B.【点评】本题考查解决程序框图中的循环结构时,常采用写出前几次循环的结果,找规律.7.(5分)一个四面体的顶点在空间直角坐标系O﹣xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到正视图可以为( )A. B. C. D.【分析】由题意画出几何体的直观图,然后判断以zOx平面为投影面,则得到正视图即可. 【解答】解:因为一个四面体的顶点在空间直角坐标系O﹣xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),几何体的直观图如图,是正方体的顶点为顶点的一个正四面体,所以以zOx平面为投影面,则得到正视图为:故选:A.【点评】本题考查几何体的三视图的判断,根据题意画出几何体的直观图是解题的关键,考查空间想象能力.8.(5分)设a=log36,b=log510,c=log714,则( )A.c>b>aB.b>c>aC.a>c>bD.a>b>c【分析】利用loga (xy)=logax+logay(x、y>0),化简a,b,c然后比较log32,log52,log72大小即可.【解答】解:因为a=log36=1+log32,b=log510=1+log52,c=log714=1+log72,因为y=log2x是增函数,所以log27>log25>log23,∵,,所以log32>log52>log72,所以a>b>c,故选:D.【点评】本题主要考查不等式与不等关系,对数函数的单调性的应用,不等式的基本性质的应用,属于基础题.9.(5分)已知a>0,实数x,y满足:,若z=2x+y的最小值为1,则a=( )A.2B.1C.D.【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即先确定z的最优解,然后确定a的值即可.【解答】解:作出不等式对应的平面区域,(阴影部分)由z=2x+y,得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点C时,直线y=﹣2x+z的截距最小,此时z最小.即2x+y=1,由,解得,即C(1,﹣1),∵点C也在直线y=a(x﹣3)上,∴﹣1=﹣2a,解得a=.故选:C.【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法. 10.(5分)已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是( )A.∃x0∈R,f(x)=0B.函数y=f(x)的图象是中心对称图形C.若x0是f(x)的极小值点,则f(x)在区间(﹣∞,x)单调递减D.若x0是f(x)的极值点,则f′(x)=0【分析】利用导数的运算法则得出f′(x),分△>0与△≤0讨论,列出表格,即可得出. 【解答】解:f′(x)=3x2+2ax+b.2①x2是函数f(x)的极小值点,但是f(x)在区间(﹣∞,x2)不具有单调性,故C不正确.②∵+f(x)=+x3+ax2+bx+c=﹣+2c,=,∵+f(x)=,∴点P为对称中心,故B正确.③由表格可知x1,x2分别为极值点,则,故D正确.④∵x→﹣∞时,f(x)→﹣∞;x→+∞,f(x)→+∞,函数f(x)必然穿过x轴,即∃xα∈R,f(xα)=0,故A正确.(2)当△≤0时,,故f(x)在R上单调递增,①此时不存在极值点,故D 正确,C不正确;②B同(1)中②正确;③∵x→﹣∞时,f(x)→﹣∞;x→+∞,f(x)→+∞,函数f(x)必然穿过x轴,即∃x∈R,f(x)=0,故A正确.综上可知:错误的结论是C.由于该题选择错误的,故选:C.【点评】熟练掌握导数的运算法则、中心得出的定义、单调性与极值的关系等基础知识与方法,考查了分类讨论的思想方法等基本方法.11.(5分)设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为( )A.y2=4x或y2=8xB.y2=2x或y2=8xC.y2=4x或y2=16xD.y2=2x或y2=16x【分析】根据抛物线方程算出|OF|=,设以MF为直径的圆过点A(0,2),在Rt△AOF中利用勾股定理算出|AF|=.再由直线AO与以MF为直径的圆相切得到∠OAF=∠AMF,Rt△AMF中利用∠AMF的正弦建立关系式,从而得到关于p的方程,解之得到实数p的值,进而得到抛物线C的方程.【解答】解:∵抛物线C方程为y2=2px(p>0),∴焦点F坐标为(,0),可得|OF|=,∵以MF为直径的圆过点(0,2),∴设A(0,2),可得AF⊥AM,Rt△AOF中,|AF|==,∴sin∠OAF==,∵根据抛物线的定义,得直线AO切以MF为直径的圆于A点,∴∠OAF=∠AMF,可得Rt△AMF中,sin∠AMF==,∵|MF|=5,|AF|=∴=,整理得4+=,解之可得p=2或p=8因此,抛物线C的方程为y2=4x或y2=16x.故选:C.方法二:∵抛物线C方程为y2=2px(p>0),∴焦点F(,0),设M(x,y),由抛物线性质|MF|=x+=5,可得x=5﹣,因为圆心是MF的中点,所以根据中点坐标公式可得,圆心横坐标为=,由已知圆半径也为,据此可知该圆与y轴相切于点(0,2),故圆心纵坐标为2,则M点纵坐标为4,即M(5﹣,4),代入抛物线方程得p2﹣10p+16=0,所以p=2或p=8.所以抛物线C的方程为y2=4x或y2=16x.故选:C.【点评】本题给出抛物线一条长度为5的焦半径MF,以MF为直径的圆交抛物线于点(0,2),求抛物线的方程,着重考查了抛物线的定义与简单几何性质、圆的性质和解直角三角形等知识,属于中档题.12.(5分)已知点A(﹣1,0),B(1,0),C(0,1),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则b的取值范围是( )A.(0,1)B.C.D.【分析】解法一:先求得直线y=ax+b(a>0)与x轴的交点为M(﹣,0),由﹣≤0可得点M在射线OA上.求出直线和BC的交点N的坐标,①若点M和点A重合,求得b=;②若点M在点O和点A之间,求得<b<;③若点M在点A的左侧,求得>b>1﹣.再把以上得到的三个b的范围取并集,可得结果.解法二:考查临界位置时对应的b值,综合可得结论.【解答】解:解法一:由题意可得,三角形ABC的面积为=1,由于直线y=ax+b(a>0)与x轴的交点为M(﹣,0),由直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,可得b>0,故﹣≤0,故点M在射线OA上.设直线y=ax+b和BC的交点为N,则由可得点N的坐标为(,).①若点M和点A重合,则点N为线段BC的中点,故N(,),把A、N两点的坐标代入直线y=ax+b,求得a=b=.②若点M在点O和点A之间,此时b>,点N在点B和点C之间,由题意可得三角形NMB的面积等于,即=,即=,可得a=>0,求得 b<,故有<b<.③若点M在点A的左侧,则b<,由点M的横坐标﹣<﹣1,求得b>a.设直线y=ax+b和AC的交点为P,则由求得点P的坐标为(,),此时,由题意可得,三角形CPN的面积等于,即•(1﹣b)•|xN ﹣xP|=,即(1﹣b)•|﹣|=,化简可得2(1﹣b)2=|a2﹣1|.由于此时 b>a>0,0<a<1,∴2(1﹣b)2=|a2﹣1|=1﹣a2 .两边开方可得(1﹣b)=<1,∴1﹣b<,化简可得 b>1﹣,故有1﹣<b<.再把以上得到的三个b的范围取并集,可得b的取值范围应是,故选:B.解法二:当a=0时,直线y=ax+b(a>0)平行于AB边,由题意根据三角形相似且面积比等于相似比的平方可得=,b=1﹣,趋于最小.由于a>0,∴b>1﹣.当a逐渐变大时,b也逐渐变大,当b=时,直线经过点(0,),再根据直线平分△ABC的面积,故a不存在,故b<.综上可得,1﹣<b<,故选:B.【点评】本题主要考查确定直线的要素,点到直线的距离公式以及三角形的面积公式的应用,还考察运算能力以及综合分析能力,分类讨论思想,属于难题.二、填空题:本大题共4小题,每小题5分.13.(5分)已知正方形ABCD的边长为2,E为CD的中点,则•= 2 .【分析】根据两个向量的加减法的法则,以及其几何意义,可得要求的式子为()•(),再根据两个向量垂直的性质,运算求得结果.【解答】解:∵已知正方形ABCD的边长为2,E为CD的中点,则=0,故=( )•()=()•()=﹣+﹣=4+0﹣0﹣=2,故答案为 2.【点评】本题主要考查两个向量的加减法的法则,以及其几何意义,两个向量垂直的性质,属于中档题.14.(5分)从n个正整数1,2,…,n中任意取出两个不同的数,若取出的两数之和等于5的概率为,则n=8 .【分析】列出从n个正整数1,2,…,n中任意取出两个不同的数的所有取法种数,求出和等于5的种数,根据取出的两数之和等于5的概率为列式计算n的值.【解答】解:从n个正整数1,2,…,n中任意取出两个不同的数,取出的两数之和等于5的情况有:(1,4),(2,3)共2种情况;从n个正整数1,2,…,n中任意取出两个不同的数的所有不同取法种数为,由古典概型概率计算公式得:从n个正整数1,2,…,n中任意取出两个不同的数,取出的两数之和等于5的概率为p=.所以,即,解得n=8.故答案为8.【点评】本题考查了古典概型及其概率计算公式,考查了组合数公式,解答此题时既可以按有序取,也可以按无序取,问题的实质是一样的.此题是基础题.15.(5分)设θ为第二象限角,若tan(θ+)=,则sinθ+cosθ=﹣.【分析】已知等式利用两角和与差的正切函数公式及特殊角的三角函数值化简,求出tanθ的值,再根据θ为第二象限角,利用同角三角函数间的基本关系求出sinθ与cosθ的值,即可求出sinθ+cosθ的值.【解答】解:∵tan(θ+)==,∴tanθ=﹣,而cos2θ==,∵θ为第二象限角,∴cosθ=﹣=﹣,sinθ==,则sinθ+cosθ=﹣=﹣.故答案为:﹣【点评】此题考查了两角和与差的正切函数公式,以及同角三角函数间的基本关系,熟练掌握公式是解本题的关键.16.(5分)等差数列{an }的前n项和为Sn,已知S10=0,S15=25,则nSn的最小值为﹣49 .【分析】由等差数列的前n项和公式化简已知两等式,联立求出首项a1与公差d的值,结合导数求出nSn的最小值.【解答】解:设等差数列{an }的首项为a1,公差为d,∵S10=10a1+45d=0,S15=15a1+105d=25,∴a1=﹣3,d=,∴Sn =na1+d=n2﹣n,∴nSn =n3﹣n2,令nSn=f(n),∴f′(n)=n2﹣n,∴当n=时,f(n)取得极值,当n<时,f(n)递减;当n>时,f(n)递增;因此只需比较f(6)和f(7)的大小即可.f(6)=﹣48,f(7)=﹣49,故nSn的最小值为﹣49.故答案为:﹣49.【点评】此题考查了等差数列的性质,以及等差数列的前n项和公式,熟练掌握性质及公式是解本题的关键.三.解答题:解答应写出文字说明,证明过程或演算步骤:17.(12分)△ABC在内角A、B、C的对边分别为a,b,c,已知a=bcosC+csinB.(Ⅰ)求B;(Ⅱ)若b=2,求△ABC面积的最大值.【分析】(Ⅰ)已知等式利用正弦定理化简,再利用两角和与差的正弦函数公式及诱导公式变形,求出tanB的值,由B为三角形的内角,利用特殊角的三角函数值即可求出B的度数;(Ⅱ)利用三角形的面积公式表示出三角形ABC的面积,把sinB的值代入,得到三角形面积最大即为ac最大,利用余弦定理列出关系式,再利用基本不等式求出ac的最大值,即可得到面积的最大值.【解答】解:(Ⅰ)由已知及正弦定理得:sinA=sinBcosC+sinBsinC①,∵sinA=sin(B+C)=sinBcosC+cosBsinC②,∴sinB=cosB,即tanB=1,∵B为三角形的内角,∴B=;(Ⅱ)S△ABC=acsinB=ac,由已知及余弦定理得:4=a2+c2﹣2accos≥2ac﹣2ac×,整理得:ac≤,当且仅当a=c时,等号成立,则△ABC面积的最大值为××=××(2+)=+1.【点评】此题考查了正弦、余弦定理,三角形的面积公式,两角和与差的正弦函数公式,以及基本不等式的运用,熟练掌握定理及公式是解本题的关键.18.(12分)如图,直棱柱ABC﹣A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=AB.(Ⅰ)证明:BC1∥平面A1CD(Ⅱ)求二面角D﹣A1C﹣E的正弦值.【分析】(Ⅰ)通过证明BC1平行平面A1CD内的直线DF,利用直线与平面平行的判定定理证明BC1∥平面A1CD(Ⅱ)证明DE⊥平面A1DC,作出二面角D﹣A1C﹣E的平面角,然后求解二面角平面角的正弦值即可.【解答】解:(Ⅰ)证明:连结AC1交A1C于点F,则F为AC1的中点,又D是AB中点,连结DF,则BC1∥DF,因为DF⊂平面A1CD,BC1⊄平面A1CD,所以BC1∥平面A1CD.(Ⅱ)因为直棱柱ABC﹣A1B1C1,所以AA1⊥CD,由已知AC=CB,D为AB的中点,所以CD⊥AB,又AA1∩AB=A,于是,CD⊥平面ABB1A1,设AB=2,则AA1=AC=CB=2,得∠ACB=90°,CD=,A1D=,DE=,A1E=3故A1D2+DE2=A1E2,即DE⊥A1D,所以DE⊥平面A1DC,又A1C=2,过D作DF⊥A1C于F,∠DFE为二面角D﹣A1C﹣E的平面角,在△A1DC中,DF==,EF==,所以二面角D﹣A1C﹣E的正弦值.sin∠DFE=.【点评】本题考查直线与平面平行的判定定理的应用,二面角的平面角的求法,考查空间想象能力与计算能力.19.(12分)经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产品,每1t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t该农产品.以x(单位:t,100≤x≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(Ⅰ)将T表示为x的函数;(Ⅱ)根据直方图估计利润T不少于57000元的概率;(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若x∈[100,110))则取x=105,且x=105的概率等于需求量落入[100,110)的频率,求T的数学期望.【分析】(Ⅰ)由题意先分段写出,当x∈[100,130)时,当x∈[130,150)时,和利润值,最后利用分段函数的形式进行综合即可.(Ⅱ)由(I)知,利润T不少于57000元,当且仅当120≤x≤150.再由直方图知需求量X∈[120,150]的频率为0.7,利用样本估计总体的方法得出下一个销售季度的利润T不少于57000元的概率的估计值.(Ⅲ)利用利润T的数学期望=各组的区间中点值×该区间的频率之和即得.【解答】解:(Ⅰ)由题意得,当x∈[100,130)时,T=500x﹣300(130﹣x)=800x﹣39000,当x∈[130,150)时,T=500×130=65000,∴T=.(Ⅱ)由(Ⅰ)知,利润T不少于57000元,当且仅当120≤x≤150.由直方图知需求量X∈[120,150]的频率为0.7,所以下一个销售季度的利润T不少于57000元的概率的估计值为0.7.61000×0.3+65000×0.4=59400.【点评】本题考查用样本的频率分布估计总体分布及识图的能力,求解的重点是对题设条件及直方图的理解,了解直方图中每个小矩形的面积的意义,是中档题.20.(12分)平面直角坐标系xOy中,过椭圆M:(a>b>0)右焦点的直线x+y﹣=0交M于A,B两点,P为AB的中点,且OP的斜率为.(Ⅰ)求M的方程(Ⅱ)C,D为M上的两点,若四边形ACBD的对角线CD⊥AB,求四边形ACBD面积的最大值.【分析】(Ⅰ)把右焦点(c,0)代入直线可解得c.设A(x1,y1),B(x2,y2),线段AB的中点P(x,y),利用“点差法”即可得到a,b的关系式,再与a2=b2+c2联立即可得到a,b,c. (Ⅱ)由CD⊥AB,可设直线CD的方程为y=x+t,与椭圆的方程联立得到根与系数的关系,即可得到弦长|CD|.把直线x+y﹣=0与椭圆的方程联立得到根与系数的关系,即可得到弦长|AB|,利用S四边形ACBD=即可得到关于t的表达式,利用二次函数的单调性即可得到其最大值.【解答】解:(Ⅰ)把右焦点(c,0)代入直线x+y﹣=0得c+0﹣=0,解得c=.设A(x1,y1),B(x2,y2),线段AB的中点P(x,y),则,,相减得,∴,∴,又=,∴,即a2=2b2.联立得,解得,∴M的方程为.(Ⅱ)∵CD⊥AB,∴可设直线CD的方程为y=x+t,联立,消去y得到3x2+4tx+2t2﹣6=0,∵直线CD与椭圆有两个不同的交点,∴△=16t2﹣12(2t2﹣6)=72﹣8t2>0,解﹣3<t<3(*).设C(x3,y3),D(x4,y4),∴,.∴|CD|===.联立得到3x2﹣4x=0,解得x=0或,∴交点为A(0,),B,∴|AB|==.∴S四边形ACBD===,∴当且仅当t=0时,四边形ACBD面积的最大值为,满足(*).∴四边形ACBD面积的最大值为.【点评】本题综合考查了椭圆的定义、标准方程及其性质、“点差法”、中点坐标公式、直线与椭圆相交问题转化为方程联立得到一元二次方程根与系数的关系、弦长公式、四边形的面积计算、二次函数的单调性等基础知识,考查了推理能力、数形结合的思想方法、计算能力、分析问题和解决问题的能力.21.(12分)已知函数f(x)=e x﹣ln(x+m)(Ι)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;(Ⅱ)当m≤2时,证明f(x)>0.【分析】(Ⅰ)求出原函数的导函数,因为x=0是函数f(x)的极值点,由极值点处的导数等于0求出m的值,代入函数解析式后再由导函数大于0和小于0求出原函数的单调区间;(Ⅱ)证明当m≤2时,f(x)>0,转化为证明当m=2时f(x)>0.求出当m=2时函数的导函数,可知导函数在(﹣2,+∞)上为增函数,并进一步得到导函数在(﹣1,0)上有唯一零点x,则当x=x0时函数取得最小值,借助于x是导函数的零点证出f(x)>0,从而结论得证.【解答】(Ⅰ)解:∵,x=0是f(x)的极值点,∴,解得m=1.所以函数f(x)=e x﹣ln(x+1),其定义域为(﹣1,+∞).∵.设g(x)=e x(x+1)﹣1,则g′(x)=e x(x+1)+e x>0,所以g(x)在(﹣1,+∞)上为增函数,又∵g(0)=0,所以当x>0时,g(x)>0,即f′(x)>0;当﹣1<x<0时,g(x)<0,f′(x)<0.所以f(x)在(﹣1,0)上为减函数;在(0,+∞)上为增函数;(Ⅱ)证明:当m≤2,x∈(﹣m,+∞)时,ln(x+m)≤ln(x+2),故只需证明当m=2时f(x)>0.当m=2时,函数在(﹣2,+∞)上为增函数,且f′(﹣1)<0,f′(0)>0.故f′(x)=0在(﹣2,+∞)上有唯一实数根x0,且x∈(﹣1,0).当x∈(﹣2,x0)时,f′(x)<0,当x∈(x,+∞)时,f′(x)>0,从而当x=x时,f(x)取得最小值.由f′(x0)=0,得,ln(x+2)=﹣x.故f(x)≥=>0.综上,当m≤2时,f(x)>0.【点评】本题考查了利用导数研究函数的单调性,利用导数求函数在闭区间上的最值,考查了不等式的证明,考查了函数与方程思想,分类讨论的数学思想,综合考查了学生分析问题和解决问题的能力.熟练函数与导数的基础知识是解决该题的关键,是难题.选考题:(第22题~第24题为选考题,考生根据要求作答.请考生在第22、23、24题中任选择一题作答,如果多做,则按所做的第一部分评分,作答时请写清题号)22.(10分)【选修4﹣1几何证明选讲】如图,CD为△ABC外接圆的切线,AB的延长线交直线CD于点D,E、F分别为弦AB与弦AC 上的点,且BC•AE=DC•AF,B、E、F、C四点共圆.(1)证明:CA是△ABC外接圆的直径;(2)若DB=BE=EA,求过B、E、F、C四点的圆的面积与△ABC外接圆面积的比值.【分析】(1)已知CD为△ABC外接圆的切线,利用弦切角定理可得∠DCB=∠A,及BC•AE=DC •AF,可知△CDB∽△AEF,于是∠CBD=∠AFE.利用B、E、F、C四点共圆,可得∠CFE=∠DBC,进而得到∠CFE=∠AFE=90°即可证明CA 是△ABC外接圆的直径;(2)要求过B、E、F、C四点的圆的面积与△ABC外接圆面积的比值.只需求出其外接圆的直径的平方之比即可.由过B、E、F、C四点的圆的直径为CE,及DB=BE,可得CE=DC,利用切割线定理可得DC2=DB•DA,CA2=CB2+BA2,都用DB表示即可.【解答】(1)证明:∵CD为△ABC外接圆的切线,∴∠DCB=∠A,∵BC•AE=DC•AF,∴.∴△CDB∽△AEF,∴∠CBD=∠AFE.∵B、E、F、C四点共圆,∴∠CFE=∠DBC,∴∠CFE=∠AFE=90°.∴∠CBA=90°,∴CA是△ABC外接圆的直径;(2)连接CE,∵∠CBE=90°,∴过B、E、F、C四点的圆的直径为CE,由DB=BE,得CE=DC,又BC2=DB•BA=2DB2,∴CA2=4DB2+BC2=6DB2.而DC2=DB•DA=3DB2,故过B、E、F、C四点的圆的面积与△ABC面积的外接圆的面积比值==. 【点评】熟练掌握弦切角定理、相似三角形的判定与性质、四点共圆的性质、直径的判定、切割线定理、勾股定理等腰三角形的性质是解题的关键.23.已知动点P、Q都在曲线(β为参数)上,对应参数分别为β=α与β=2α(0<α<2π),M为PQ的中点.(1)求M的轨迹的参数方程;(2)将M到坐标原点的距离d表示为α的函数,并判断M的轨迹是否过坐标原点.【分析】(1)利用参数方程与中点坐标公式即可得出;(2)利用两点之间的距离公式、三角函数的单调性即可得出.【解答】解:(1)依题意有P(2cosα,2sinα),Q(2cos2α,2sin2α),因此M(cosα+cos2α,sinα+sin2α).M的轨迹的参数方程为为参数,0<α<2π).(2)M点到坐标原点的距离d=(0<α<2π).当α=π时,d=0,故M的轨迹过坐标原点.【点评】本题考查了参数方程与中点坐标公式、两点之间的距离公式、三角函数的单调性,考查了推理能力与计算能力,属于中档题.24.【选修4﹣﹣5;不等式选讲】设a,b,c均为正数,且a+b+c=1,证明:(Ⅰ)(Ⅱ).【分析】(Ⅰ)依题意,由a+b+c=1⇒(a+b+c)2=1⇒a2+b2+c2+2ab+2bc+2ca=1,利用基本不等式可得3(ab+bc+ca)≤1,从而得证;(Ⅱ)利用基本不等式可证得:+b≥2a,+c≥2b,+a≥2c,三式累加即可证得结论.【解答】证明:(Ⅰ)由a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca得:a2+b2+c2≥ab+bc+ca,由题设得(a+b+c)2=1,即a2+b2+c2+2ab+2bc+2ca=1,所以3(ab+bc+ca)≤1,即ab+bc+ca≤.(Ⅱ)因为+b≥2a,+c≥2b,+a≥2c,故+++(a+b+c)≥2(a+b+c),即++≥a+b+c.所以++≥1.【点评】本题考查不等式的证明,突出考查基本不等式与综合法的应用,考查推理论证能力,属于中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【答案】D
6.(2013年普通高等学校招生统一考试大纲版数学(理))函数fx=log21
1x0的反函数x
f1x=(A)11xx21xR21x0
(B)(C)(D)x0x0xx2121
2013年全国高考理科数学试题分类汇编2:函数一、选择题
1.(2013年高考江西卷(理))函数
ln(1-x)的定义域为
A.(0,1)B.[0,1)C.(0,1]D.[0,1]
【答案】D
2.(2013年普通高等学校招生统一考试重庆数学(理)试题)若abc,则函数fxxaxbxbxcxcxa的两个零点分别位于区间()
பைடு நூலகம்A.a,b和b,c内B.,a和a,b内
C.b,c和c,内D.,a和c,内
【答案】A
3.(2013年上海市春季高考数学试卷)函数f(x)x的大致图像是()
12【答案】A
4.(2013年高考四川卷(理))
设函数f(x)(aR,e为自然对数的底数).若曲线ysinx上存在(x0,y0)使得f(f(y0))y0,则a的取值范围是()
(A)[1,e](B)[e,-11],(C)[1,e1](D)[e-1,e1]
【答案】A11
x22x,x05.(2013年高考新课标1(理))已知函数f(x),若|f(x)|≥ax,则a的取值范围是ln(x1),x0
A.(,0]B.(,1]C.[2,1]D.[2,0]
相关文档
最新文档