全国高考理科数学试题分类汇编:函数

合集下载

2024年高考数学真题分类汇编09:函数与导数(含详细答案解析)

2024年高考数学真题分类汇编09:函数与导数(含详细答案解析)

函数与导数一、单选题1.(2024·全国)已知函数为f (x )=-x 2-2ax -a ,x <0e x+ln (x +1),x ≥0,在R 上单调递增,则a 取值的范围是()A.(-∞,0]B.[-1,0]C.[-1,1]D.[0,+∞)2.(2024·全国)已知函数为f (x )的定义域为R ,f (x )>f (x -1)+f (x -2),且当x <3时f (x )=x ,则下列结论中一定正确的是()A.f (10)>100B.f (20)>1000C.f (10)<1000D.f (20)<100003.(2024·全国)设函数f (x )=a (x +1)2-1,g (x )=cos x +2ax ,当x ∈(-1,1)时,曲线y =f (x )与y =g (x )恰有一个交点,则a =()A.-1B.12C.1D.24.(2024·全国)设函数f (x )=(x +a )ln (x +b ),若f (x )≥0,则a 2+b 2的最小值为()A.18B.14C.12D.15.(2024·全国)曲线f x =x 6+3x -1在0,-1 处的切线与坐标轴围成的面积为()A.16B.32C.12D.-326.(2024·全国)函数f x =-x 2+e x -e -x sin x 在区间[-2.8,2.8]的大致图像为()A. B.C. D.7.(2024·全国)设函数f x =e x +2sin x1+x 2,则曲线y =f x 在0,1 处的切线与两坐标轴围成的三角形的面积为()A.16B.13C.12D.238.(2024·北京)已知x 1,y 1 ,x 2,y 2 是函数y =2x图象上不同的两点,则下列正确的是()A.log 2y 1+y 22>x 1+x22 B.log 2y 1+y 22<x 1+x22C.log 2y 1+y 22>x 1+x 2D.log 2y 1+y 22<x 1+x 29.(2024·天津)下列函数是偶函数的是()A.y=e x-x2x2+1B.y=cos x+x2x2+1C.y=e x-xx+1D.y=sin x+4xe|x|10.(2024·天津)若a=4.2-0.3,b=4.20.3,c=log4.20.2,则a,b,c的大小关系为()A.a>b>cB.b>a>cC.c>a>bD.b>c>a11.(2024·上海)下列函数f x 的最小正周期是2π的是()A.sin x+cos xB.sin x cos xC.sin2x+cos2xD.sin2x-cos2x12.(2024·上海)已知函数f(x)的定义域为R,定义集合M=x0x0∈R,x∈-∞,x0,f x <f x0,在使得M =-1,1的所有f x 中,下列成立的是()A.存在f x 是偶函数B.存在f x 在x=2处取最大值C.存在f x 是严格增函数D.存在f x 在x=-1处取到极小值二、多选题13.(2024·全国)设函数f(x)=(x-1)2(x-4),则()A.x=3是f(x)的极小值点B.当0<x<1时,f(x)<f x2C.当1<x<2时,-4<f(2x-1)<0D.当-1<x<0时,f(2-x)>f(x)14.(2024·全国)设函数f(x)=2x3-3ax2+1,则()A.当a>1时,f(x)有三个零点B.当a<0时,x=0是f(x)的极大值点C.存在a,b,使得x=b为曲线y=f(x)的对称轴D.存在a,使得点1,f1为曲线y=f(x)的对称中心三、填空题15.(2024·全国)若曲线y=e x+x在点0,1处的切线也是曲线y=ln(x+1)+a的切线,则a=.16.(2024·全国)已知a>1,1log8a -1log a4=-52,则a=.17.(2024·全国)曲线y=x3-3x与y=-x-12+a在0,+∞上有两个不同的交点,则a的取值范围为.18.(2024·天津)若函数f x =2x2-ax-ax-2+1有唯一零点,则a的取值范围为.19.(2024·上海)已知f x =x,x>01,x≤0,则f3 =.四、解答题20.(2024·全国)已知函数f(x)=ln x2-x+ax+b(x-1)3(1)若b=0,且f (x)≥0,求a的最小值;(2)证明:曲线y=f(x)是中心对称图形;(3)若f (x )>-2当且仅当1<x <2,求b 的取值范围.21.(2024·全国)已知函数f (x )=e x -ax -a 3.(1)当a =1时,求曲线y =f (x )在点1,f (1) 处的切线方程;(2)若f (x )有极小值,且极小值小于0,求a 的取值范围.22.(2024·全国)已知函数f x =a x -1 -ln x +1.(1)求f x 的单调区间;(2)若a ≤2时,证明:当x >1时,f x <e x -1恒成立.23.(2024·全国)已知函数f x =1-ax ln 1+x -x .(1)当a =-2时,求f x 的极值;(2)当x ≥0时,f x ≥0恒成立,求a 的取值范围.24.(2024·北京)已知f x =x +k ln 1+x 在t ,f t t >0 处切线为l .(1)若切线l 的斜率k =-1,求f x 单调区间;(2)证明:切线l 不经过0,0 ;(3)已知k =1,A t ,f t ,C 0,f t ,O 0,0 ,其中t >0,切线l 与y 轴交于点B 时.当2S △ACO =15S △ABO ,符合条件的A 的个数为?(参考数据:1.09<ln3<1.10,1.60<ln5<1.61,1.94<ln7<1.95)25.(2024·天津)设函数f x =x ln x .(1)求f x 图象上点1,f 1 处的切线方程;(2)若f x ≥a x -x 在x ∈0,+∞ 时恒成立,求a 的取值范围;(3)若x 1,x 2∈0,1 ,证明f x 1 -f x 2 ≤x 1-x 2 12.26.(2024·上海)若f x =log a x (a >0,a ≠1).(1)y =f x 过4,2 ,求f 2x -2 <f x 的解集;(2)存在x 使得f x +1 、f ax 、f x +2 成等差数列,求a 的取值范围.27.(2024·上海)对于一个函数f x 和一个点M a ,b ,令s x =(x -a )2+f x -b 2,若P x 0,f x 0 是s x取到最小值的点,则称P 是M 在f x 的“最近点”.(1)对于f (x )=1x(x >0),求证:对于点M 0,0 ,存在点P ,使得点P 是M 在f x 的“最近点”;(2)对于f x =e x ,M 1,0 ,请判断是否存在一个点P ,它是M 在f x 的“最近点”,且直线MP 与y =f (x )在点P 处的切线垂直;(3)已知y =f (x )在定义域R 上存在导函数f (x ),且函数g (x )在定义域R 上恒正,设点M 1t -1,f t -g t ,M 2t +1,f t +g t .若对任意的t ∈R ,存在点P 同时是M 1,M 2在f x 的“最近点”,试判断f x 的单调性.参考答案:1.B【分析】根据二次函数的性质和分界点的大小关系即可得到不等式组,解出即可.【解析】因为f x 在R上单调递增,且x≥0时,f x =e x+ln x+1单调递增,则需满足--2a2×-1≥0-a≤e0+ln1,解得-1≤a≤0,即a的范围是[-1,0].故选:B.2.B【分析】代入得到f(1)=1,f(2)=2,再利用函数性质和不等式的性质,逐渐递推即可判断.【解析】因为当x<3时f(x)=x,所以f(1)=1,f(2)=2,又因为f(x)>f(x-1)+f(x-2),则f(3)>f(2)+f(1)=3,f(4)>f(3)+f(2)>5,f(5)>f(4)+f(3)>8,f(6)>f(5)+f(4)>13,f(7)>f(6)+f(5)>21,f(8)>f(7)+f(6)>34,f(9)>f(8)+f(7)>55,f(10)>f(9)+f(8)>89,f(11)>f(10)+f(9)>144,f(12)>f(11)+f(10)>233,f(13)>f(12)+f(11)>377f(14)>f(13)+f(12)>610,f(15)>f(14)+f(13)>987,f(16)>f(15)+f(14)>1597>1000,则依次下去可知f(20)>1000,则B正确;且无证据表明ACD一定正确.故选:B.【点睛】关键点点睛:本题的关键是利用f(1)=1,f(2)=2,再利用题目所给的函数性质f(x)>f(x-1)+ f(x-2),代入函数值再结合不等式同向可加性,不断递推即可.3.D【分析】解法一:令F x =ax2+a-1,G x =cos x,分析可知曲线y=F(x)与y=G(x)恰有一个交点,结合偶函数的对称性可知该交点只能在y轴上,即可得a=2,并代入检验即可;解法二:令h x =f(x)-g x ,x∈-1,1,可知h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即可得a=2,并代入检验即可.【解析】解法一:令f(x)=g x ,即a(x+1)2-1=cos x+2ax,可得ax2+a-1=cos x,令F x =ax2+a-1,G x =cos x,原题意等价于当x∈(-1,1)时,曲线y=F(x)与y=G(x)恰有一个交点,注意到F x ,G x 均为偶函数,可知该交点只能在y轴上,可得F0 =G0 ,即a-1=1,解得a=2,若a=2,令F x =G x ,可得2x2+1-cos x=0因为x∈-1,1,则2x2≥0,1-cos x≥0,当且仅当x=0时,等号成立,可得2x2+1-cos x≥0,当且仅当x=0时,等号成立,则方程2x2+1-cos x=0有且仅有一个实根0,即曲线y=F(x)与y=G(x)恰有一个交点,所以a=2符合题意;综上所述:a=2.解法二:令h x =f(x)-g x =ax2+a-1-cos x,x∈-1,1,原题意等价于h x 有且仅有一个零点,因为h -x =a -x 2+a -1-cos -x =ax 2+a -1-cos x =h x ,则h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即h 0 =a -2=0,解得a =2,若a =2,则h x =2x 2+1-cos x ,x ∈-1,1 ,又因为2x 2≥0,1-cos x ≥0当且仅当x =0时,等号成立,可得h x ≥0,当且仅当x =0时,等号成立,即h x 有且仅有一个零点0,所以a =2符合题意;故选:D .4.C【分析】解法一:由题意可知:f (x )的定义域为-b ,+∞ ,分类讨论-a 与-b ,1-b 的大小关系,结合符号分析判断,即可得b =a +1,代入可得最值;解法二:根据对数函数的性质分析ln (x +b )的符号,进而可得x +a 的符号,即可得b =a +1,代入可得最值.【解析】解法一:由题意可知:f (x )的定义域为-b ,+∞ ,令x +a =0解得x =-a ;令ln (x +b )=0解得x =1-b ;若-a ≤-b ,当x ∈-b ,1-b 时,可知x +a >0,ln x +b <0,此时f (x )<0,不合题意;若-b <-a <1-b ,当x ∈-a ,1-b 时,可知x +a >0,ln x +b <0,此时f (x )<0,不合题意;若-a =1-b ,当x ∈-b ,1-b 时,可知x +a <0,ln x +b <0,此时f (x )>0;当x ∈1-b ,+∞ 时,可知x +a ≥0,ln x +b ≥0,此时f (x )≥0;可知若-a =1-b ,符合题意;若-a >1-b ,当x ∈1-b ,-a 时,可知x +a 0,ln x +b 0,此时f (x )<0,不合题意;综上所述:-a =1-b ,即b =a +1,则a 2+b 2=a 2+a +1 2=2a +12 2+12≥12,当且仅当a =-12,b =12时,等号成立,所以a 2+b 2的最小值为12;解法二:由题意可知:f (x )的定义域为-b ,+∞ ,令x +a =0解得x =-a ;令ln (x +b )=0解得x =1-b ;则当x ∈-b ,1-b 时,ln x +b <0,故x +a ≤0,所以1-b +a ≤0;x ∈1-b ,+∞ 时,ln x +b >0,故x +a ≥0,所以1-b +a ≥0;故1-b +a =0,则a 2+b 2=a 2+a +1 2=2a +12 2+12≥12,当且仅当a =-12,b =12时,等号成立,所以a 2+b 2的最小值为12.故选:C .【点睛】关键点点睛:分别求x +a =0、ln (x +b )=0的根,以根和函数定义域为临界,比较大小分类讨论,结合符号性分析判断.5.A【分析】先求出切线方程,再求出切线的截距,从而可求面积.【解析】f x =6x 5+3,所以f 0 =3,故切线方程为y =3(x -0)-1=3x -1,故切线的横截距为13,纵截距为-1,故切线与坐标轴围成的面积为12×1×13=16故选:A .6.B【分析】利用函数的奇偶性可排除A 、C ,代入x =1可得f 1 >0,可排除D .【解析】f -x =-x 2+e -x -e x sin -x =-x 2+e x -e -x sin x =f x ,又函数定义域为-2.8,2.8 ,故该函数为偶函数,可排除A 、C ,又f 1 =-1+e -1e sin1>-1+e -1e sin π6=e 2-1-12e >14-12e>0,故可排除D .故选:B .7.A【分析】借助导数的几何意义计算可得其在点0,1 处的切线方程,即可得其与坐标轴交点坐标,即可得其面积.【解析】fx =ex+2cos x 1+x 2 -e x +2sin x ⋅2x1+x 22,则f0 =e 0+2cos0 1+0 -e 0+2sin0 ×01+02=3,即该切线方程为y -1=3x ,即y =3x +1,令x =0,则y =1,令y =0,则x =-13,故该切线与两坐标轴所围成的三角形面积S =12×1×-13 =16.故选:A .8.A【分析】根据指数函数和对数函数的单调性结合基本不等式分析判断AB ;举例判断CD 即可.【解析】由题意不妨设x 1<x 2,因为函数y =2x 是增函数,所以0<2x 1<2x 2,即0<y 1<y 2,对于选项AB :可得2x1+2x 22>2x 1·2x 2=2x 1+x 22,即y 1+y 22>2x 1+x 22>0,根据函数y =log 2x 是增函数,所以log 2y 1+y 22>log 22x 1+x22=x 1+x22,故A 正确,B 错误;对于选项C :例如x 1=0,x 2=1,则y 1=1,y 2=2,可得log 2y 1+y 22=log 232∈0,1 ,即log 2y 1+y 22<1=x 1+x 2,故C 错误;对于选项D :例如x 1=-1,x 2=-2,则y 1=12,y 2=14,可得log 2y 1+y 22=log 238=log 23-3∈-2,-1 ,即log 2y 1+y 22>-3=x 1+x 2,故D 错误,故选:A .9.B【分析】根据偶函数的判定方法一一判断即可.【解析】对A ,设f x =e x -x 2x 2+1,函数定义域为R ,但f -1 =e -1-12,f 1 =e -12,则f -1 ≠f 1 ,故A 错误;对B ,设g x =cos x +x 2x 2+1,函数定义域为R ,且g -x =cos -x +-x 2-x 2+1=cos x +x 2x 2+1=g x ,则g x 为偶函数,故B 正确;对C ,设h x =e x -xx +1,函数定义域为x |x ≠-1 ,不关于原点对称,则h x 不是偶函数,故C 错误;对D ,设φx =sin x +4x e |x |,函数定义域为R ,因为φ1 =sin1+4e ,φ-1 =-sin1-4e ,则φ1 ≠φ-1 ,则φx 不是偶函数,故D 错误.故选:B .10.B【分析】利用指数函数和对数函数的单调性分析判断即可.【解析】因为y =4.2x 在R 上递增,且-0.3<0<0.3,所以0<4.2-0.3<4.20<4.20.3,所以0<4.2-0.3<1<4.20.3,即0<a <1<b ,因为y =log 4.2x 在(0,+∞)上递增,且0<0.2<1,所以log 4.20.2<log 4.21=0,即c <0,所以b >a >c ,故选:B 11.A【分析】根据辅助角公式、二倍角公式以及同角三角函数关系并结合三角函数的性质一一判断即可 .【解析】对A ,sin x +cos x =2sin x +π4,周期T =2π,故A 正确;对B ,sin x cos x =12sin2x ,周期T =2π2=π,故B 错误;对于选项C ,sin 2x +cos 2x =1,是常值函数,不存在最小正周期,故C 错误;对于选项D ,sin 2x -cos 2x =-cos2x ,周期T =2π2=π,故D 错误,故选:A .12.B【分析】对于ACD 利用反证法并结合函数奇偶性、单调性以及极小值的概念即可判断,对于B ,构造函数f x =-2,x <-1x ,-1≤x ≤11,x >1即可判断.【解析】对于A ,若存在y =f (x )是偶函数, 取x 0=1∈[-1,1],则对于任意x ∈(-∞,1),f (x )<f (1), 而f (-1)=f (1), 矛盾, 故A 错误;对于B ,可构造函数f x =-2,x <-1,x ,-1≤x ≤1,1,x >1,满足集合M =-1,1 ,当x <-1时,则f x =-2,当-1≤x ≤1时,f x ∈-1,1 ,当x >1时,f x =1,则该函数f x 的最大值是f 2 ,则B 正确;对C ,假设存在f x ,使得f x 严格递增,则M =R ,与已知M =-1,1 矛盾,则C 错误;对D ,假设存在f x ,使得f x 在x =-1处取极小值,则在-1的左侧附近存在n ,使得f n >f -1 ,这与已知集合M 的定义矛盾,故D 错误;故选:B .13.ACD【分析】求出函数f x 的导数,得到极值点,即可判断A ;利用函数的单调性可判断B ;根据函数f x 在1,3 上的值域即可判断C ;直接作差可判断D .【解析】对A ,因为函数f x 的定义域为R ,而f x =2x -1 x -4 +x -1 2=3x -1 x -3 ,易知当x ∈1,3 时,f x <0,当x ∈-∞,1 或x ∈3,+∞ 时,f x >0函数f x 在-∞,1 上单调递增,在1,3 上单调递减,在3,+∞ 上单调递增,故x =3是函数f x 的极小值点,正确;对B ,当0<x <1时,x -x 2=x 1-x >0,所以1>x >x 2>0,而由上可知,函数f x 在0,1 上单调递增,所以f x >f x 2 ,错误;对C ,当1<x <2时,1<2x -1<3,而由上可知,函数f x 在1,3 上单调递减,所以f 1 >f 2x -1 >f 3 ,即-4<f 2x -1 <0,正确;对D ,当-1<x <0时,f (2-x )-f (x )=1-x 2-2-x -x -1 2x -4 =x -1 22-2x >0,所以f (2-x )>f (x ),正确;故选:ACD .14.AD【分析】A 选项,先分析出函数的极值点为x =0,x =a ,根据零点存在定理和极值的符号判断出f (x )在(-1,0),(0,a ),(a ,2a )上各有一个零点;B 选项,根据极值和导函数符号的关系进行分析;C 选项,假设存在这样的a ,b ,使得x =b 为f (x )的对称轴,则f (x )=f (2b -x )为恒等式,据此计算判断;D 选项,若存在这样的a ,使得(1,3-3a )为f (x )的对称中心,则f (x )+f (2-x )=6-6a ,据此进行计算判断,亦可利用拐点结论直接求解.【解析】A 选项,f (x )=6x 2-6ax =6x (x -a ),由于a >1,故x ∈-∞,0 ∪a ,+∞ 时f (x )>0,故f (x )在-∞,0 ,a ,+∞ 上单调递增,x ∈(0,a )时,f (x )<0,f (x )单调递减,则f (x )在x =0处取到极大值,在x =a 处取到极小值,由f (0)=1>0,f (a )=1-a 3<0,则f (0)f (a )<0,根据零点存在定理f (x )在(0,a )上有一个零点,又f (-1)=-1-3a <0,f (2a )=4a 3+1>0,则f (-1)f (0)<0,f (a )f (2a )<0,则f (x )在(-1,0),(a ,2a )上各有一个零点,于是a >1时,f (x )有三个零点,A 选项正确;B 选项,f (x )=6x (x -a ),a <0时,x ∈(a ,0),f (x )<0,f (x )单调递减,x ∈(0,+∞)时f (x )>0,f (x )单调递增,此时f (x )在x =0处取到极小值,B 选项错误;C 选项,假设存在这样的a ,b ,使得x =b 为f (x )的对称轴,即存在这样的a ,b 使得f (x )=f (2b -x ),即2x 3-3ax 2+1=2(2b -x )3-3a (2b -x )2+1,根据二项式定理,等式右边(2b -x )3展开式含有x 3的项为2C 33(2b )0(-x )3=-2x 3,于是等式左右两边x 3的系数都不相等,原等式不可能恒成立,于是不存在这样的a ,b ,使得x =b 为f (x )的对称轴,C 选项错误;D 选项,方法一:利用对称中心的表达式化简f (1)=3-3a ,若存在这样的a ,使得(1,3-3a )为f (x )的对称中心,则f (x )+f (2-x )=6-6a ,事实上,f (x )+f (2-x )=2x 3-3ax 2+1+2(2-x )3-3a (2-x )2+1=(12-6a )x 2+(12a -24)x +18-12a ,于是6-6a =(12-6a )x 2+(12a -24)x +18-12a即12-6a =012a -24=018-12a =6-6a,解得a =2,即存在a =2使得(1,f (1))是f (x )的对称中心,D 选项正确.方法二:直接利用拐点结论任何三次函数都有对称中心,对称中心的横坐标是二阶导数的零点,f (x )=2x 3-3ax 2+1,f (x )=6x 2-6ax ,f (x )=12x -6a ,由f (x )=0⇔x =a 2,于是该三次函数的对称中心为a 2,f a2,由题意(1,f (1))也是对称中心,故a2=1⇔a =2,即存在a =2使得(1,f (1))是f (x )的对称中心,D 选项正确.故选:AD【点睛】结论点睛:(1)f (x )的对称轴为x =b ⇔f (x )=f (2b -x );(2)f (x )关于(a ,b )对称⇔f (x )+f (2a -x )=2b ;(3)任何三次函数f (x )=ax 3+bx 2+cx +d 都有对称中心,对称中心是三次函数的拐点,对称中心的横坐标是f (x )=0的解,即-b 3a ,f -b3a 是三次函数的对称中心15.ln2【分析】先求出曲线y =e x +x 在0,1 的切线方程,再设曲线y =ln x +1 +a 的切点为x 0,ln x 0+1 +a ,求出y ,利用公切线斜率相等求出x 0,表示出切线方程,结合两切线方程相同即可求解.【解析】由y =e x +x 得y =e x +1,y |x =0=e 0+1=2,故曲线y =e x +x 在0,1 处的切线方程为y =2x +1;由y =ln x +1 +a 得y =1x +1,设切线与曲线y =ln x +1 +a 相切的切点为x 0,ln x 0+1 +a ,由两曲线有公切线得y =1x 0+1=2,解得x 0=-12,则切点为-12,a +ln 12 ,切线方程为y =2x +12 +a +ln 12=2x +1+a -ln2,根据两切线重合,所以a -ln2=0,解得a =ln2.故答案为:ln216.64【分析】将log 8a ,log a 4利用换底公式转化成log 2a 来表示即可求解.【解析】由题1log 8a -1log a 4=3log 2a -12log 2a =-52,整理得log 2a 2-5log 2a -6=0,⇒log 2a =-1或log 2a =6,又a >1,所以log 2a =6=log 226,故a =26=64故答案为:64.17.-2,1【分析】将函数转化为方程,令x 3-3x =-x -1 2+a ,分离参数a ,构造新函数g x =x 3+x 2-5x +1,结合导数求得g x 单调区间,画出大致图形数形结合即可求解.【解析】令x 3-3x =-x -1 2+a ,即a =x 3+x 2-5x +1,令g x =x 3+x 2-5x +1x >0 ,则g x =3x 2+2x -5=3x +5 x -1 ,令g x =0x >0 得x =1,当x ∈0,1 时,g x <0,g x 单调递减,当x ∈1,+∞ 时,g x >0,g x 单调递增,g 0 =1,g 1 =-2,因为曲线y =x 3-3x 与y =-x -1 2+a 在0,+∞ 上有两个不同的交点,所以等价于y =a 与g x 有两个交点,所以a ∈-2,1.故答案为:-2,1 18.-3,-1 ∪1,3【分析】结合函数零点与两函数的交点的关系,构造函数g x =2x 2-ax 与h x =ax -3,x ≥2a1-ax ,x <2a,则两函数图象有唯一交点,分a =0、a >0与a <0进行讨论,当a >0时,计算函数定义域可得x ≥a 或x ≤0,计算可得a ∈0,2 时,两函数在y 轴左侧有一交点,则只需找到当a ∈0,2 时,在y 轴右侧无交点的情况即可得;当a <0时,按同一方式讨论即可得.【解析】令f x =0,即2x 2-ax =ax -2 -1,由题可得x 2-ax ≥0,当a =0时,x ∈R ,有2x 2=-2 -1=1,则x =±22,不符合要求,舍去;当a >0时,则2x 2-ax =ax -2 -1=ax -3,x ≥2a1-ax ,x <2a,即函数g x =2x 2-ax 与函数h x =ax -3,x ≥2a1-ax ,x <2a有唯一交点,由x 2-ax ≥0,可得x ≥a 或x ≤0,当x ≤0时,则ax -2<0,则2x 2-ax =ax -2 -1=1-ax ,即4x 2-4ax =1-ax 2,整理得4-a 2 x 2-2ax -1=2+a x +1 2-a x -1 =0,当a =2时,即4x +1=0,即x =-14,当a ∈0,2 ,x =-12+a 或x =12-a>0(正值舍去),当a ∈2,+∞ 时,x =-12+a <0或x =12-a<0,有两解,舍去,即当a ∈0,2 时,2x 2-ax -ax -2 +1=0在x ≤0时有唯一解,则当a ∈0,2 时,2x 2-ax -ax -2 +1=0在x ≥a 时需无解,当a ∈0,2 ,且x ≥a 时,由函数h x =ax -3,x ≥2a1-ax ,x <2a关于x =2a 对称,令h x =0,可得x =1a 或x =3a ,且函数h x 在1a ,2a上单调递减,在2a ,3a上单调递增,令g x =y =2x 2-ax ,即x -a 2 2a 24-y 2a 2=1,故x ≥a 时,g x 图象为双曲线x2a 24-y 2a2=1右支的x 轴上方部分向右平移a2所得,由x2a 24-y 2a2=1的渐近线方程为y =±aa 2x =±2x ,即g x 部分的渐近线方程为y =2x -a 2,其斜率为2,又a ∈0,2 ,即h x =ax -3,x ≥2a1-ax ,x <2a在x ≥2a 时的斜率a ∈0,2 ,令g x =2x 2-ax =0,可得x =a 或x =0(舍去),且函数g x 在a ,+∞ 上单调递增,故有1a <a 3a>a,解得1<a <3,故1<a <3符合要求;当a <0时,则2x 2-ax =ax -2 -1=ax -3,x ≤2a1-ax ,x >2a,即函数g x =2x 2-ax 与函数h x =ax -3,x ≤2a1-ax ,x >2a有唯一交点,由x 2-ax ≥0,可得x ≥0或x ≤a ,当x ≥0时,则ax -2<0,则2x 2-ax =ax -2 -1=1-ax ,即4x 2-4ax =1-ax 2,整理得4-a 2 x 2-2ax -1=2+a x +1 2-a x -1 =0,当a =-2时,即4x -1=0,即x =14,当a ∈-2,0 ,x =-12+a <0(负值舍去)或x =12-a0,当a ∈-∞,2 时,x =-12+a >0或x =12-a>0,有两解,舍去,即当a ∈-2,0 时,2x 2-ax -ax -2 +1=0在x ≥0时有唯一解,则当a ∈-2,0 时,2x 2-ax -ax -2 +1=0在x ≤a 时需无解,当a ∈-2,0 ,且x ≤a 时,由函数h x =ax -3,x ≤2a1-ax ,x >2a关于x =2a 对称,令h x =0,可得x =1a 或x =3a ,且函数h x 在2a ,1a上单调递减,在3a ,2a上单调递增,同理可得:x ≤a 时,g x 图象为双曲线x 2a 24-y 2a 2=1左支的x 轴上方部分向左平移a2所得,g x 部分的渐近线方程为y =-2x +a 2,其斜率为-2,又a ∈-2,0 ,即h x =ax -3,x ≥2a1-ax ,x <2a在x <2a 时的斜率a ∈-2,0 ,令g x =2x 2-ax =0,可得x =a 或x =0(舍去),且函数g x 在-∞,a 上单调递减,故有1a >a 3a<a,解得-3<a <-1,故-3<a <-1符合要求;综上所述,a ∈-3,-1 ∪1,3 .故答案为:-3,-1 ∪1,3 .【点睛】关键点点睛:本题关键点在于将函数f x 的零点问题转化为函数g x =2x 2-ax 与函数h x =ax -3,x ≥2a1-ax ,x <2a的交点问题,从而可将其分成两个函数研究.19.3【分析】利用分段函数的形式可求f 3 .【解析】因为f x =x ,x >01,x ≤0, 故f 3 =3,故答案为:3.20.(1)-2(2)证明见解析(3)b ≥-23【分析】(1)求出f x min =2+a 后根据f (x )≥0可求a 的最小值;(2)设P m ,n 为y =f x 图象上任意一点,可证P m ,n 关于1,a 的对称点为Q 2-m ,2a -n 也在函数的图像上,从而可证对称性;(3)根据题设可判断f 1 =-2即a =-2,再根据f (x )>-2在1,2 上恒成立可求得b ≥-23.【解析】(1)b =0时,f x =ln x2-x+ax ,其中x ∈0,2 ,则f x =1x +12-x =2x 2-x+a ,x ∈0,2 ,因为x 2-x ≤2-x +x 2 2=1,当且仅当x =1时等号成立,故f x min =2+a ,而f x ≥0成立,故a +2≥0即a ≥-2,所以a 的最小值为-2.,(2)f x =ln x2-x+ax +b x -1 3的定义域为0,2 ,设P m ,n 为y =f x 图象上任意一点,P m ,n 关于1,a 的对称点为Q 2-m ,2a -n ,因为P m ,n 在y =f x 图象上,故n =ln m2-m+am +b m -1 3,而f 2-m =ln 2-m m +a 2-m +b 2-m -1 3=-ln m2-m +am +b m -1 3 +2a ,=-n +2a ,所以Q 2-m ,2a -n 也在y =f x 图象上,由P 的任意性可得y =f x 图象为中心对称图形,且对称中心为1,a .(3)因为f x >-2当且仅当1<x<2,故x=1为f x =-2的一个解,所以f1 =-2即a=-2,先考虑1<x<2时,f x >-2恒成立.此时f x >-2即为lnx2-x+21-x+b x-13>0在1,2上恒成立,设t=x-1∈0,1,则ln t+11-t-2t+bt3>0在0,1上恒成立,设g t =ln t+11-t-2t+bt3,t∈0,1,则g t =21-t2-2+3bt2=t2-3bt2+2+3b1-t2,当b≥0,-3bt2+2+3b≥-3b+2+3b=2>0,故g t >0恒成立,故g t 在0,1上为增函数,故g t >g0 =0即f x >-2在1,2上恒成立.当-23≤b<0时,-3bt2+2+3b≥2+3b≥0,故g t ≥0恒成立,故g t 在0,1上为增函数,故g t >g0 =0即f x >-2在1,2上恒成立.当b<-23,则当0<t<1+23b<1时,g t <0故在0,1+2 3b上g t 为减函数,故g t <g0 =0,不合题意,舍;综上,f x >-2在1,2上恒成立时b≥-2 3 .而当b≥-23时,而b≥-23时,由上述过程可得g t 在0,1递增,故g t >0的解为0,1,即f x >-2的解为1,2.综上,b≥-2 3 .【点睛】思路点睛:一个函数不等式成立的充分必要条件就是函数不等式对应的解,而解的端点为函数对一个方程的根或定义域的端点,另外,根据函数不等式的解确定参数范围时,可先由恒成立得到参数的范围,再根据得到的参数的范围重新考虑不等式的解的情况.21.(1)e-1x-y-1=0(2)1,+∞【分析】(1)求导,结合导数的几何意义求切线方程;(2)解法一:求导,分析a≤0和a>0两种情况,利用导数判断单调性和极值,分析可得a2+ln a-1>0,构建函数解不等式即可;解法二:求导,可知f (x)=e x-a有零点,可得a>0,进而利用导数求f x 的单调性和极值,分析可得a2+ln a-1>0,构建函数解不等式即可.【解析】(1)当a=1时,则f(x)=e x-x-1,f (x)=e x-1,可得f(1)=e-2,f (1)=e-1,即切点坐标为1,e-2,切线斜率k=e-1,所以切线方程为y-e-2=e-1x-1,即e-1x-y-1=0.(2)解法一:因为f(x)的定义域为R,且f (x)=e x-a,若a≤0,则f (x)≥0对任意x∈R恒成立,可知f (x )在R 上单调递增,无极值,不合题意;若a >0,令f (x )>0,解得x >ln a ;令f (x )<0,解得x <ln a ;可知f (x )在-∞,ln a 内单调递减,在ln a ,+∞ 内单调递增,则f (x )有极小值f ln a =a -a ln a -a 3,无极大值,由题意可得:f ln a =a -a ln a -a 3<0,即a 2+ln a -1>0,构建g a =a 2+ln a -1,a >0,则g a =2a +1a>0,可知g a 在0,+∞ 内单调递增,且g 1 =0,不等式a 2+ln a -1>0等价于g a >g 1 ,解得a >1,所以a 的取值范围为1,+∞ ;解法二:因为f (x )的定义域为R ,且f (x )=e x -a ,若f (x )有极小值,则f (x )=e x -a 有零点,令f (x )=e x -a =0,可得e x =a ,可知y =e x 与y =a 有交点,则a >0,若a >0,令f (x )>0,解得x >ln a ;令f (x )<0,解得x <ln a ;可知f (x )在-∞,ln a 内单调递减,在ln a ,+∞ 内单调递增,则f (x )有极小值f ln a =a -a ln a -a 3,无极大值,符合题意,由题意可得:f ln a =a -a ln a -a 3<0,即a 2+ln a -1>0,构建g a =a 2+ln a -1,a >0,因为则y =a 2,y =ln a -1在0,+∞ 内单调递增,可知g a 在0,+∞ 内单调递增,且g 1 =0,不等式a 2+ln a -1>0等价于g a >g 1 ,解得a >1,所以a 的取值范围为1,+∞ .22.(1)见解析(2)见解析【分析】(1)求导,含参分类讨论得出导函数的符号,从而得出原函数的单调性;(2)先根据题设条件将问题可转化成证明当x >1时,e x -1-2x +1+ln x >0即可.【解析】(1)f (x )定义域为(0,+∞),f (x )=a -1x =ax -1x当a ≤0时,f (x )=ax -1x <0,故f (x )在(0,+∞)上单调递减;当a >0时,x ∈1a,+∞ 时,f (x )>0,f (x )单调递增,当x ∈0,1a时,f (x )<0,f (x )单调递减.综上所述,当a ≤0时,f (x )在(0,+∞)上单调递减;a >0时,f (x )在1a ,+∞ 上单调递增,在0,1a上单调递减.(2)a ≤2,且x >1时,e x -1-f (x )=e x -1-a (x -1)+ln x -1≥e x -1-2x +1+ln x ,令g (x )=e x -1-2x +1+ln x (x >1),下证g (x )>0即可.g (x )=e x -1-2+1x ,再令h (x )=g (x ),则h (x )=e x -1-1x2,显然h (x )在(1,+∞)上递增,则h (x )>h (1)=e 0-1=0,即g (x )=h (x )在(1,+∞)上递增,故g (x)>g (1)=e0-2+1=0,即g(x)在(1,+∞)上单调递增,故g(x)>g(1)=e0-2+1+ln1=0,问题得证23.(1)极小值为0,无极大值.(2)a≤-12【分析】(1)求出函数的导数,根据导数的单调性和零点可求函数的极值.(2)求出函数的二阶导数,就a≤-12、-12<a<0、a≥0分类讨论后可得参数的取值范围.【解析】(1)当a=-2时,f(x)=(1+2x)ln(1+x)-x,故f (x)=2ln(1+x)+1+2x1+x-1=2ln(1+x)-11+x+1,因为y=2ln(1+x),y=-11+x+1在-1,+∞上为增函数,故f (x)在-1,+∞上为增函数,而f (0)=0,故当-1<x<0时,f (x)<0,当x>0时,f (x)>0,故f x 在x=0处取极小值且极小值为f0 =0,无极大值.(2)f x =-a ln1+x+1-ax1+x-1=-a ln1+x-a+1x1+x,x>0,设s x =-a ln1+x-a+1x1+x,x>0,则s x =-ax+1-a+11+x2=-a x+1+a+11+x2=-ax+2a+11+x2,当a≤-12时,sx >0,故s x 在0,+∞上为增函数,故s x >s0 =0,即f x >0,所以f x 在0,+∞上为增函数,故f x ≥f0 =0.当-12<a<0时,当0<x<-2a+1a时,sx <0,故s x 在0,-2a+1 a上为减函数,故在0,-2a+1a上s x <s0 ,即在0,-2a+1 a上f x <0即f x 为减函数,故在0,-2a+1 a上f x <f0 =0,不合题意,舍.当a≥0,此时s x <0在0,+∞上恒成立,同理可得在0,+∞上f x <f0 =0恒成立,不合题意,舍;综上,a≤-1 2 .【点睛】思路点睛:导数背景下不等式恒成立问题,往往需要利用导数判断函数单调性,有时还需要对导数进一步利用导数研究其符号特征,处理此类问题时注意利用范围端点的性质来确定如何分类.24.(1)单调递减区间为(-1,0),单调递增区间为(0,+∞).(2)证明见解析(3)2【分析】(1)直接代入k=-1,再利用导数研究其单调性即可;(2)写出切线方程y-f(t)=1+k1+t(x-t)(t>0),将(0,0)代入再设新函数F(t)=ln(1+t)-t1+t,利用导数研究其零点即可;(3)分别写出面积表达式,代入2S △ACO =15S ABO 得到13ln (1+t )-2t -15t1+t=0,再设新函数h (t )=13ln (1+t )-2t -15t1+t(t >0)研究其零点即可.【解析】(1)f (x )=x -ln (1+x ),f (x )=1-11+x =x1+x(x >-1),当x ∈-1,0 时,f x <0;当x ∈0,+∞ ,f x >0;∴f (x )在(-1,0)上单调递减,在(0,+∞)上单调递增.则f (x )的单调递减区间为(-1,0),单调递增区间为(0,+∞).(2)f (x )=1+k 1+x ,切线l 的斜率为1+k1+t,则切线方程为y -f (t )=1+k1+t (x -t )(t >0),将(0,0)代入则-f (t )=-t 1+k 1+t,f (t )=t 1+k1+t ,即t +k ln (1+t )=t +t k 1+t ,则ln (1+t )=t 1+t ,ln (1+t )-t1+t =0,令F (t )=ln (1+t )-t1+t,假设l 过(0,0),则F (t )在t ∈(0,+∞)存在零点.F (t )=11+t -1+t -t (1+t )2=t(1+t )2>0,∴F (t )在(0,+∞)上单调递增,F (t )>F (0)=0,∴F (t )在(0,+∞)无零点,∴与假设矛盾,故直线l 不过(0,0).(3)k =1时,f (x )=x +ln (1+x ),f (x )=1+11+x =x +21+x>0.S △ACO =12tf (t ),设l 与y 轴交点B 为(0,q ),t >0时,若q <0,则此时l 与f (x )必有交点,与切线定义矛盾.由(2)知q ≠0.所以q >0,则切线l 的方程为y -t -ln t +1 =1+11+t x -t ,令x =0,则y =q =y =ln (1+t )-tt +1.∵2S △ACO =15S ABO ,则2tf (t )=15t ln (1+t )-t t +1,∴13ln (1+t )-2t -15t 1+t =0,记h (t )=13ln (1+t )-2t -15t1+t(t >0),∴满足条件的A 有几个即h (t )有几个零点.h(t )=131+t -2-15(t +1)2=13t +13-2t 2+2t +1 -15(t +1)2=2t 2+9t -4(t +1)2=(-2t +1)(t -4)(t +1)2,当t ∈0,12 时,h t <0,此时h t 单调递减;当t ∈12,4 时,h t >0,此时h t 单调递增;当t ∈4,+∞ 时,h t <0,此时h t 单调递减;因为h (0)=0,h 120,h (4)=13ln5-20 13×1.6-20=0.8>0,h (24)=13ln25-48-15×2425=26ln5-48-725<26×1.61-48-725=-20.54<0,所以由零点存在性定理及h (t )的单调性,h (t )在12,4 上必有一个零点,在(4,24)上必有一个零点,综上所述,h (t )有两个零点,即满足2S ACO =15S ABO 的A 有两个.【点睛】关键点点睛:本题第二问的关键是采用的是反证法,转化为研究函数零点问题.25.(1)y =x -1(2)2(3)证明过程见解析【分析】(1)直接使用导数的几何意义;(2)先由题设条件得到a =2,再证明a =2时条件满足;(3)先确定f x 的单调性,再对x 1,x 2分类讨论.【解析】(1)由于f x =x ln x ,故f x =ln x +1.所以f 1 =0,f 1 =1,所以所求的切线经过1,0 ,且斜率为1,故其方程为y =x -1.(2)设h t =t -1-ln t ,则h t =1-1t =t -1t,从而当0<t <1时h t <0,当t >1时h t >0.所以h t 在0,1 上递减,在1,+∞ 上递增,这就说明h t ≥h 1 ,即t -1≥ln t ,且等号成立当且仅当t =1.设g t =a t -1 -2ln t ,则f x -a x -x =x ln x -a x -x =x a 1x -1-2ln 1x=x ⋅g 1x.当x ∈0,+∞ 时,1x的取值范围是0,+∞ ,所以命题等价于对任意t ∈0,+∞ ,都有g t ≥0.一方面,若对任意t ∈0,+∞ ,都有g t ≥0,则对t ∈0,+∞ 有0≤g t =a t -1 -2ln t =a t -1 +2ln 1t ≤a t -1 +21t -1 =at +2t-a -2,取t =2,得0≤a -1,故a ≥1>0.再取t =2a ,得0≤a ⋅2a +2a 2-a -2=22a -a -2=-a -2 2,所以a =2.另一方面,若a =2,则对任意t ∈0,+∞ 都有g t =2t -1 -2ln t =2h t ≥0,满足条件.综合以上两个方面,知a 的取值范围是2 .(3)先证明一个结论:对0<a <b ,有ln a +1<f b -f ab -a<ln b +1.证明:前面已经证明不等式t -1≥ln t ,故b ln b -a ln a b -a =a ln b -a ln ab -a +ln b =ln b a b a -1+ln b <1+ln b ,且b ln b -a ln a b -a =b ln b -b ln a b -a +ln a =-ln a b 1-a b +ln a >-ab-1 1-a b+ln a =1+ln a ,所以ln a +1<b ln b -a ln ab -a <ln b +1,即ln a +1<f b -f a b -a<ln b +1.由f x =ln x +1,可知当0<x <1e 时f x <0,当x >1e时f x >0.所以f x 在0,1e 上递减,在1e,+∞ 上递增.不妨设x 1≤x 2,下面分三种情况(其中有重合部分)证明本题结论.情况一:当1e≤x 1≤x 2<1时,有f x 1 -f x 2 =f x 2 -f x 1 <ln x 2+1 x 2-x 1 <x 2-x 1<x 2-x 1,结论成立;情况二:当0<x 1≤x 2≤1e时,有f x 1 -f x 2 =f x 1 -f x 2 =x 1ln x 1-x 2ln x 2.对任意的c ∈0,1e,设φx =x ln x -c ln c -c -x ,则φx =ln x +1+12c -x.由于φx 单调递增,且有φ c 2e1+12c=ln c2e1+12c+1+12c -c2e1+12c<ln1e1+12c+1+12c -c2=-1-12c +1+12c=0,且当x ≥c -14ln 2c-1 2,x >c 2时,由12c -x≥ln 2c -1可知φ x =ln x +1+12c -x >ln c 2+1+12c -x =12c -x-ln 2c -1 ≥0.所以φ x 在0,c 上存在零点x 0,再结合φ x 单调递增,即知0<x <x 0时φ x <0,x 0<x <c 时φ x >0.故φx 在0,x 0 上递减,在x 0,c 上递增.①当x 0≤x ≤c 时,有φx ≤φc =0;②当0<x <x 0时,由于c ln 1c =-2f c ≤-2f 1e =2e <1,故我们可以取q ∈c ln 1c,1 .从而当0<x <c1-q 2时,由c -x >q c ,可得φx =x ln x -c ln c -c -x <-c ln c -c -x <-c ln c -q c =c c ln 1c-q <0.再根据φx 在0,x 0 上递减,即知对0<x <x 0都有φx <0;综合①②可知对任意0<x ≤c ,都有φx ≤0,即φx =x ln x -c ln c -c -x ≤0.根据c ∈0,1e和0<x ≤c 的任意性,取c =x 2,x =x 1,就得到x 1ln x 1-x 2ln x 2-x 2-x 1≤0.所以f x 1 -f x 2 =f x 1 -f x 2 =x 1ln x 1-x 2ln x 2≤x 2-x 1.情况三:当0<x 1≤1e ≤x 2<1时,根据情况一和情况二的讨论,可得f x 1 -f 1e≤1e -x 1≤x 2-x 1,f 1e -f x 2 ≤x 2-1e ≤x 2-x 1.而根据f x 的单调性,知f x 1 -f x 2 ≤f x 1 -f 1e 或f x 1 -f x 2 ≤f 1e-f x 2 .故一定有f x 1 -f x 2 ≤x 2-x 1成立.综上,结论成立.【点睛】关键点点睛:本题的关键在于第3小问中,需要结合f x 的单调性进行分类讨论.26.(1)x |1<x <2(2)a >1【分析】(1)求出底数a ,再根据对数函数的单调性可求不等式的解;(2)存在x 使得f x +1 、f ax 、f x +2 成等差数列等价于a 2=21x +342-18在0,+∞ 上有解,利用换元法结合二次函数的性质可求a 的取值范围.【解析】(1)因为y =f x 的图象过4,2 ,故log a 4=2,故a 2=4即a =2(负的舍去),而f x =log 2x 在0,+∞ 上为增函数,故f 2x -2 <f x ,故0<2x -2<x 即1<x <2,故f 2x -2 <f x 的解集为x |1<x <2 .(2)因为存在x 使得f x +1 、f ax 、f x +2 成等差数列,故2f ax =f x +1 +f x +2 有解,故2log a ax =log a x +1 +log a x +2 ,因为a >0,a ≠1,故x >0,故a 2x 2=x +1 x +2 在0,+∞ 上有解,由a 2=x 2+3x +2x 2=1+3x +2x 2=21x +34 2-18在0,+∞ 上有解,令t =1x ∈0,+∞ ,而y =2t +34 2-18在0,+∞ 上的值域为1,+∞ ,故a 2>1即a >1.27.(1)证明见解析(2)存在,P 0,1 (3)严格单调递减【分析】(1)代入M (0,0),利用基本不等式即可;(2)由题得s x =(x -1)2+e 2x ,利用导函数得到其最小值,则得到P ,再证明直线MP 与切线垂直即可;(3)根据题意得到s 1 x 0 =s 2 x 0 =0,对两等式化简得f x 0 =-1g (t ),再利用“最近点”的定义得到不等式组,即可证明x 0=t ,最后得到函数单调性.【解析】(1)当M (0,0)时,s x =(x -0)2+1x -0 2=x 2+1x2≥2x 2⋅1x 2=2,当且仅当x 2=1x 2即x =1时取等号,故对于点M 0,0 ,存在点P 1,1 ,使得该点是M 0,0 在f x 的“最近点”.(2)由题设可得s x =(x -1)2+e x -0 2=(x -1)2+e 2x ,则s x =2x -1 +2e 2x ,因为y =2x -1 ,y =2e 2x 均为R 上单调递增函数,则s x =2x -1 +2e 2x 在R 上为严格增函数,而s 0 =0,故当x <0时,s x <0,当x >0时,s x >0,故s x min =s 0 =2,此时P 0,1 ,而f x =e x ,k =f 0 =1,故f x 在点P 处的切线方程为y =x +1.而k MP =0-11-0=-1,故k MP ⋅k =-1,故直线MP 与y =f x 在点P 处的切线垂直.(3)设s 1x =(x -t +1)2+f x -f t +g t 2,s 2x =(x -t -1)2+f x -f t -g t 2,而s 1x =2(x -t +1)+2f x -f t +g t f x ,s 2x =2(x -t -1)+2f x -f t -g t f x ,若对任意的t ∈R ,存在点P 同时是M 1,M 2在f x 的“最近点”,设P x 0,y 0 ,则x 0既是s 1x 的最小值点,也是s 2x 的最小值点,因为两函数的定义域均为R ,则x 0也是两函数的极小值点,则存在x0,使得s 1 x 0 =s 2 x 0 =0,即s 1 x 0 =2x 0-t +1 +2f x 0 f x 0 -f (t )+g (t ) =0①s 2 x 0 =2x 0-t -1 +2f x 0 f x 0 -f (t )-g (t ) =0②由①②相等得4+4g (t )⋅f x 0 =0,即1+f x 0 g (t )=0,即f x 0 =-1g (t ),又因为函数g (x )在定义域R 上恒正,则f x 0 =-1g (t )<0恒成立,接下来证明x 0=t ,因为x 0既是s 1x 的最小值点,也是s 2x 的最小值点,则s 1x 0 ≤s (t ),s 2x 0 ≤s (t ),即x 0-t +1 2+f x 0 -f t +g t 2≤1+g t 2,③x 0-t -12+f x 0 -f t -g t 2≤1+g t 2,④③+④得2x 0-t 2+2+2f x 0 -f (t ) 2+2g 2(t )≤2+2g 2(t )即x 0-t 2+f x 0 -f t 2≤0,因为x 0-t 2≥0,f x 0 -f t 2≥0则x 0-t =0f x 0 -f t =0,解得x 0=t ,则f t =-1g (t )<0恒成立,因为t 的任意性,则f x 严格单调递减.【点睛】关键点点睛:本题第三问的关键是结合最值点和极小值的定义得到f x 0 =-1g (t ),再利用最值点定义得到x 0=t 即可.。

2021年高考数学专题分类汇编:函数、导数、导数及应用(含答案)

2021年高考数学专题分类汇编:函数、导数、导数及应用(含答案)

函数、导数、导数及应用一.选择题(共13小题)1.(2021•浙江)已知函数f(x)=x2+,g(x)=sin x,则图象为如图的函数可能是()A.y=f(x)+g(x)﹣B.y=f(x)﹣g(x)﹣C.y=f(x)g(x)D.y=2.(2021•甲卷)下列函数中是增函数的为()A.f(x)=﹣x B.f(x)=()x C.f(x)=x2D.f(x)=3.(2021•甲卷)设f(x)是定义域为R的奇函数,且f(1+x)=f(﹣x).若f(﹣)=,则f()=()A.﹣B.﹣C.D.4.(2021•乙卷)设函数f(x)=,则下列函数中为奇函数的是()A.f(x﹣1)﹣1B.f(x﹣1)+1C.f(x+1)﹣1D.f(x+1)+15.(2021•甲卷)设函数f(x)的定义域为R,f(x+1)为奇函数,f(x+2)为偶函数,当x∈[1,2]时,f(x)=ax2+b.若f(0)+f(3)=6,则f()=()A.﹣B.﹣C.D.6.(2021•上海)下列函数中,在定义域内存在反函数的是()A.f(x)=x2B.f(x)=sin x C.f(x)=2x D.f(x)=17.(2021•甲卷)青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L和小数记录法的数据V满足L=5+lgV.已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据约为()(≈1.259)A.1.5B.1.2C.0.8D.0.68.(2021•浙江)若实数x,y满足约束条件,则z=x﹣y的最小值是()A.﹣2B.﹣C.﹣D.9.(2021•乙卷)下列函数中最小值为4的是()A.y=x2+2x+4B.y=|sin x|+C.y=2x+22﹣x D.y=lnx+10.(2021•乙卷)若x,y满足约束条件则z=3x+y的最小值为()A.18B.10C.6D.411.(2021•乙卷)设a≠0,若x=a为函数f(x)=a(x﹣a)2(x﹣b)的极大值点,则()A.a<b B.a>b C.ab<a2D.ab>a212.(2021•乙卷)设a=2ln1.01,b=ln1.02,c=﹣1,则()A.a<b<c B.b<c<a C.b<a<c D.c<a<b13.(2021•新高考Ⅰ)若过点(a,b)可以作曲线y=e x的两条切线,则()A.e b<a B.e a<b C.0<a<e b D.0<b<e a二.填空题(共8小题)14.(2021•浙江)已知a∈R,函数f(x)=若f(f())=3,则a=.15.(2021•新高考Ⅰ)已知函数f(x)=x3(a•2x﹣2﹣x)是偶函数,则a=.16.(2021•新高考Ⅰ)函数f(x)=|2x﹣1|﹣2lnx的最小值为.17.(2021•上海)已知函数f(x)=3x+(a>0)的最小值为5,则a=.18.(2021•上海)若方程组无解,则=.19.(2021•上海)不等式<1的解集为.20.(2021•甲卷)曲线y=在点(﹣1,﹣3)处的切线方程为.21.(2021•上海)在无穷等比数列{a n}中,(a1﹣a n)=4,则a2的取值范围是.三.解答题(共8小题)22.(2021•甲卷)已知函数f(x)=|x﹣2|,g(x)=|2x+3|﹣|2x﹣1|.(1)画出y=f(x)和y=g(x)的图像;(2)若f(x+a)≥g(x),求a的取值范围.23.(2021•上海)已知函数f(x)=﹣x.(1)若a=1,求函数的定义域;(2)若a≠0,若f(ax)=a有2个不同实数根,求a的取值范围;(3)是否存在实数a,使得函数f(x)在定义域内具有单调性?若存在,求出a的取值范围.24.(2021•浙江)设a,b为实数,且a>1,函数f(x)=a x﹣bx+e2(x∈R).(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若对任意b>2e2,函数f(x)有两个不同的零点,求a的取值范围;(Ⅲ)当a=e时,证明:对任意b>e4,函数f(x)有两个不同的零点x1,x2,满足x2>x1+.(注:e=2.71828⋯是自然对数的底数)25.(2021•甲卷)设函数f(x)=a2x2+ax﹣3lnx+1,其中a>0.(1)讨论f(x)的单调性;(2)若y=f(x)的图像与x轴没有公共点,求a的取值范围.26.(2021•新高考Ⅰ)已知函数f(x)=x(1﹣lnx).(1)讨论f(x)的单调性;(2)设a,b为两个不相等的正数,且blna﹣alnb=a﹣b,证明:2<+<e.27.(2021•乙卷)已知函数f(x)=ln(a﹣x),已知x=0是函数y=xf(x)的极值点.(1)求a;(2)设函数g(x)=.证明:g(x)<1.28.(2021•乙卷)已知函数f(x)=x3﹣x2+ax+1.(1)讨论f(x)的单调性;(2)求曲线y=f(x)过坐标原点的切线与曲线y=f(x)的公共点的坐标.29.(2021•甲卷)已知a>0且a≠1,函数f(x)=(x>0).(1)当a=2时,求f(x)的单调区间;(2)若曲线y=f(x)与直线y=1有且仅有两个交点,求a的取值范围.参考答案与试题解析一.选择题(共13小题)1.(2021•浙江)已知函数f(x)=x2+,g(x)=sin x,则图象为如图的函数可能是()A.y=f(x)+g(x)﹣B.y=f(x)﹣g(x)﹣C.y=f(x)g(x)D.y=【解答】解:由图可知,图象关于原点对称,则所求函数为奇函数,因为f(x)=x2+为偶函数,g(x)=sin x为奇函数,函数y=f(x)+g(x)﹣=x2+sin x为非奇非偶函数,故选项A错误;函数y=f(x)﹣g(x)﹣=x2﹣sin x为非奇非偶函数,故选项B错误;函数y=f(x)g(x)=(x2+)sin x,则y'=2x sin x+(x2+)cos x>0对x∈恒成立,则函数y=f(x)g(x)在上单调递增,故选项C错误.故选:D.2.(2021•甲卷)下列函数中是增函数的为()A.f(x)=﹣x B.f(x)=()x C.f(x)=x2D.f(x)=【解答】解:由一次函数性质可知f(x)=﹣x在R上是减函数,不符合题意;由指数函数性质可知f(x)=()x在R上是减函数,不符合题意;由二次函数的性质可知f(x)=x2在R上不单调,不符合题意;根据幂函数性质可知f(x)=在R上单调递增,符合题意.故选:D.3.(2021•甲卷)设f(x)是定义域为R的奇函数,且f(1+x)=f(﹣x).若f(﹣)=,则f()=()A.﹣B.﹣C.D.【解答】解:由题意得f(﹣x)=﹣f(x),又f(1+x)=f(﹣x)=﹣f(x),所以f(2+x)=f(x),又f(﹣)=,则f()=f(2﹣)=f(﹣)=.故选:C.4.(2021•乙卷)设函数f(x)=,则下列函数中为奇函数的是()A.f(x﹣1)﹣1B.f(x﹣1)+1C.f(x+1)﹣1D.f(x+1)+1【解答】解:因为f(x)==,所以函数f(x)的对称中心为(﹣1,﹣1),所以将函数f(x)向右平移一个单位,向上平移一个单位,得到函数y=f(x﹣1)+1,该函数的对称中心为(0,0),故函数y=f(x﹣1)+1为奇函数.故选:B.5.(2021•甲卷)设函数f(x)的定义域为R,f(x+1)为奇函数,f(x+2)为偶函数,当x∈[1,2]时,f(x)=ax2+b.若f(0)+f(3)=6,则f()=()A.﹣B.﹣C.D.【解答】解:∵f(x+1)为奇函数,∴f(1)=0,且f(x+1)=﹣f(﹣x+1),∵f(x+2)偶函数,∴f(x+2)=f(﹣x+2),∴f[(x+1)+1]=﹣f[﹣(x+1)+1]=﹣f(﹣x),即f(x+2)=﹣f(﹣x),∴f(﹣x+2)=f(x+2)=﹣f(﹣x).令t=﹣x,则f(t+2)=﹣f(t),∴f(t+4)=﹣f(t+2)=f(t),∴f(x+4)=f(x).当x∈[1,2]时,f(x)=ax2+b.f(0)=f(﹣1+1)=﹣f(2)=﹣4a﹣b,f(3)=f(1+2)=f(﹣1+2)=f(1)=a+b,又f(0)+f(3)=6,∴﹣3a=6,解得a=﹣2,∵f(1)=a+b=0,∴b=﹣a=2,∴当x∈[1,2]时,f(x)=﹣2x2+2,∴f()=f()=﹣f()=﹣(﹣2×+2)=.故选:D.6.(2021•上海)下列函数中,在定义域内存在反函数的是()A.f(x)=x2B.f(x)=sin x C.f(x)=2x D.f(x)=1【解答】解:选项A:因为函数是二次函数,属于二对一的映射,根据函数的定义可得函数不存在反函数,A错误,选项B:因为函数是三角函数,有周期性和对称性,属于多对一的映射,根据函数的定义可得函数不存在反函数,B错误,选项C:因为函数的单调递增的指数函数,属于一一映射,所以函数存在反函数,C正确,选项D:因为函数是常数函数,属于多对一的映射,所以函数不存在反函数,D错误,故选:C.7.(2021•甲卷)青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L和小数记录法的数据V满足L=5+lgV.已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据约为()(≈1.259)A.1.5B.1.2C.0.8D.0.6【解答】解:在L=5+lgV中,L=4.9,所以4.9=5+lgV,即lgV=﹣0.1,解得V=10﹣0.1===≈0.8,所以其视力的小数记录法的数据约为0.8.故选:C.8.(2021•浙江)若实数x,y满足约束条件,则z=x﹣y的最小值是()A.﹣2B.﹣C.﹣D.【解答】解:由约束条件作出可行域如图,立,解得A(﹣1,1),化目标函数z=x﹣为y=2x﹣2z,由图可知,当直线y=2x﹣2z过A时,直线在y轴上的截距最大,z有最小值为﹣1﹣.故选:B.9.(2021•乙卷)下列函数中最小值为4的是()A.y=x2+2x+4B.y=|sin x|+C.y=2x+22﹣x D.y=lnx+【解答】解:对于A,y=x2+2x+4=(x+1)2+3≥3,所以函数的最小值为3,故选项A错误;对于B,因为0<|sin x|≤1,所以y=|sin x|+,当且仅当,即|sin x|=2时取等号,因为|sin x|≤1,所以等号取不到,所以y=|sin x|+>4,故选项B错误;对于C,因为2x>0,所以y=2x+22﹣x=,当且仅当2x=2,即x=1时取等号,所以函数的最小值为4,故选项C正确;对于D,因为当x=时,,所以函数的最小值不是4,故选项D错误.故选:C.10.(2021•乙卷)若x,y满足约束条件则z=3x+y的最小值为()A.18B.10C.6D.4【解答】解:由约束条件作出可行域如图,联立,解得A(1,3),由z=3x+y,得y=﹣3x+z,由图可知,当直线y=﹣3x+z过A时,直线在y轴上的截距最小,z有最小值为3×1+3=6.故选:C.11.(2021•乙卷)设a≠0,若x=a为函数f(x)=a(x﹣a)2(x﹣b)的极大值点,则()A.a<b B.a>b C.ab<a2D.ab>a2【解答】解:令f(x)=0,解得x=a或x=b,即x=a及x=b是f(x)的两个零点,当a>0时,由三次函数的性质可知,要使x=a是f(x)的极大值点,则函数f(x)的大致图象如下图所示,则0<a<b;当a<0时,由三次函数的性质可知,要使x=a是f(x)的极大值点,则函数f(x)的大致图象如下图所示,则b<a<0;综上,ab>a2.故选:D.12.(2021•乙卷)设a=2ln1.01,b=ln1.02,c=﹣1,则()A.a<b<c B.b<c<a C.b<a<c D.c<a<b 【解答】解:∵a=2ln1.01=ln1.0201,b=ln1.02,∴a>b,令f(x)=2ln(1+x)﹣(﹣1),0<x<1,令=t,则1<t<∴x=,∴g(t)=2ln()﹣t+1=2ln(t2+3)﹣t+1﹣2ln4,∴g′(t)=﹣1==﹣>0,∴g(t)在(1,)上单调递增,∴g(t)>g(1)=2ln4﹣1+1﹣2ln4=0,∴f(x)>0,∴a>c,同理令h(x)=ln(1+2x)﹣(﹣1),再令=t,则1<t<∴x=,∴φ(t)=ln()﹣t+1=ln(t2+1)﹣t+1﹣ln2,∴φ′(t)=﹣1=<0,∴φ(t)在(1,)上单调递减,∴φ(t)<φ(1)=ln2﹣1+1﹣ln2=0,∴h(x)<0,∴c>b,∴a>c>b.故选:B.13.(2021•新高考Ⅰ)若过点(a,b)可以作曲线y=e x的两条切线,则()A.e b<a B.e a<b C.0<a<e b D.0<b<e a【解答】解:函数y=e x是增函数,y′=e x>0恒成立,函数的图象如图,y>0,即取得坐标在x轴上方,如果(a,b)在x轴下方,连线的斜率小于0,不成立.点(a,b)在x轴或下方时,只有一条切线.如果(a,b)在曲线上,只有一条切线;(a,b)在曲线上侧,没有切线;由图象可知(a,b)在图象的下方,并且在x轴上方时,有两条切线,可知0<b<e a.故选:D.二.填空题(共8小题)14.(2021•浙江)已知a∈R,函数f(x)=若f(f())=3,则a=2.【解答】解:因为函数f(x)=,所以,则f(f())=f(2)=|2﹣3|+a=3,解得a=2.故答案为:2.15.(2021•新高考Ⅰ)已知函数f(x)=x3(a•2x﹣2﹣x)是偶函数,则a=1.【解答】解:函数f(x)=x3(a•2x﹣2﹣x)是偶函数,y=x3为R上的奇函数,故y=a•2x﹣2﹣x也为R上的奇函数,所以y|x=0=a•20﹣20=a﹣1=0,所以a=1.故答案为:1.16.(2021•新高考Ⅰ)函数f(x)=|2x﹣1|﹣2lnx的最小值为1.【解答】解:函数f(x)=|2x﹣1|﹣2lnx的定义域为(0,+∞).当0<x时,f(x)=|2x﹣1|﹣2lnx=﹣2x+1﹣2lnx,此时函数f(x)在(0,]上为减函数,所以f(x)≥f()=﹣2×+1﹣2ln=2ln2;当x>时,f(x)=|2x﹣1|﹣2lnx=2x﹣1﹣2lnx,则f′(x)==,当x∈(,1)时,f′(x)<0,f(x)单调递减,当x∈(1,+∞)时,f′(x)>0,f(x)单调递增,∴当x=1时f(x)取得最小值为f(1)=2×1﹣1﹣2ln1=1.∵2ln2=ln4>lne=1,∴函数f(x)=|2x﹣1|﹣2lnx的最小值为1.故答案为:1.17.(2021•上海)已知函数f(x)=3x+(a>0)的最小值为5,则a=9.【解答】解:f(x)=3x+=3x+1+﹣1≥﹣1=5,所以a=9,经检验,3x=2时等号成立.故答案为:9.18.(2021•上海)若方程组无解,则=0.【解答】解:对于方程组,有,当D≠0时,方程组的解为,根据题意,方程组无解,所以D=0,即,故答案为:0.19.(2021•上海)不等式<1的解集为(﹣7,2).【解答】解:<1⇒<0⇒<0,解得,﹣7<x<2.故答案为:(﹣7,2).20.(2021•甲卷)曲线y=在点(﹣1,﹣3)处的切线方程为5x﹣y+2=0.【解答】解:因为y=,(﹣1,﹣3)在曲线上,所以y′==,所以y′|x=﹣1=5,则曲线y=在点(﹣1,﹣3)处的切线方程为:y﹣(﹣3)=5[x﹣(﹣1)],即5x﹣y+2=0.故答案为:5x﹣y+2=0.21.(2021•上海)在无穷等比数列{a n}中,(a1﹣a n)=4,则a2的取值范围是(﹣4,0)∪(0,4).【解答】解:∵无穷等比数列{a n},∴公比q∈(﹣1,0)∪(0,1),∴a n=0,∴(a1﹣a n)=a1=4,∴a2=a1q=4q∈(﹣4,0)∪(0,4).故答案为:(﹣4,0)∪(0,4).三.解答题(共8小题)22.(2021•甲卷)已知函数f(x)=|x﹣2|,g(x)=|2x+3|﹣|2x﹣1|.(1)画出y=f(x)和y=g(x)的图像;(2)若f(x+a)≥g(x),求a的取值范围.【解答】解:(1)函数f(x)=|x﹣2|=,g(x)=|2x+3|﹣|2x﹣1|=.画出y=f(x)和y=g(x)的图像;(2)由图像可得:f(6)=4,g()=4,若f(x+a)≥g(x),说明把函数f(x)的图像向左或向右平移|a|单位以后,f(x)的图像不在g(x)的下方,由图像观察可得:a≥2﹣+4=∴a的取值范围为[,+∞).23.(2021•上海)已知函数f(x)=﹣x.(1)若a=1,求函数的定义域;(2)若a≠0,若f(ax)=a有2个不同实数根,求a的取值范围;(3)是否存在实数a,使得函数f(x)在定义域内具有单调性?若存在,求出a的取值范围.【解答】解:(1)当a=1时,f(x)=,由|x+1|﹣1≥0,得|x+1|≥1,解得x≤﹣2或x≥0.∴函数的定义域为(﹣∞,﹣2]∪[0,+∞);(2)f(ax)=,f(ax)=a⇔,设ax+a=t≥0,∴有两个不同实数根,整理得a=t﹣t2,t≥0,∴a=,t≥0,当且仅当0≤a<时,方程有2个不同实数根,又a≠0,∴a的取值范围是(0,);(3)当x≥﹣a时,f(x)=﹣x=,在[,+∞)上单调递减,此时需要满足﹣a≥,即a,函数f(x)在[﹣a,+∞)上递减;当x<﹣a时,f(x)=﹣x=,在(﹣∞,﹣2a]上递减,∵a<0,∴﹣2a>﹣a>0,即当a时,函数f(x)在(﹣∞,﹣a)上递减.综上,当a∈(﹣∞,﹣]时,函数f(x)在定义域R上连续,且单调递减.24.(2021•浙江)设a,b为实数,且a>1,函数f(x)=a x﹣bx+e2(x∈R).(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若对任意b>2e2,函数f(x)有两个不同的零点,求a的取值范围;(Ⅲ)当a=e时,证明:对任意b>e4,函数f(x)有两个不同的零点x1,x2,满足x2>x1+.(注:e=2.71828⋯是自然对数的底数)【解答】解:(Ⅰ)f′(x)=a x lna﹣b,①当b≤0时,由于a>1,则a x lna>0,故f′(x)>0,此时f(x)在R上单调递增;②当b>0时,令f′(x)>0,解得,令f′(x)<0,解得,∴此时f(x)在单调递减,在单调递增;综上,当b≤0时,f(x)的单调递增区间为(﹣∞,+∞);当b>0时,f(x)的单调递减区间为,单调递增区间为;(Ⅱ)注意到x→﹣∞时,f(x)→+∞,当x→+∞时,f(x)→+∞,由(Ⅰ)知,要使函数f(x)有两个不同的零点,只需即可,∴对任意b>2e2均成立,令,则a t﹣bt+e2<0,即e tlna﹣bt+e2<0,即,即,∴对任意b>2e2均成立,记,则,令g′(b)=0,得b=lna,①当lna>2e2,即时,易知g(b)在(2e2,lna)单调递增,在(lna,+∞)单调递减,此时g(b)≤g(lna)=lna﹣lna•ln1+e2lna=lna•(e2+1)>0,不合题意;②当lna≤2e2,即时,易知g(b)在(2e2,+∞)单调递减,此时=2e2﹣2e2[ln(2e2)﹣ln(lna)]+e2lna,故只需2﹣2[ln2+2﹣ln(lna)]+lna≤0,即lna+2ln(lna)≤2+2ln2,则lna≤2,即a≤e2;综上,实数a的取值范围为(1,e2];(Ⅲ)证明:当a=e时,f(x)=e x﹣bx+e2,f′(x)=e x﹣b,令f′(x)=0,解得x=lnb>4,易知+e2=e2﹣3b<e2﹣3e4=e2(1﹣3e2)<0,∴f(x)有两个零点,不妨设为x1,x2,且x1<lnb<x2,由,可得,∴要证,只需证,只需证,而,则,∴要证,只需证,只需证x2>ln(blnb),而f(ln(blnb))=e ln(blnb)﹣bln(blnb)+e2=blnb﹣bln(blnb)+e2<blnb﹣bln(4b)+e2=,∴x2>ln(blnb),即得证.25.(2021•甲卷)设函数f(x)=a2x2+ax﹣3lnx+1,其中a>0.(1)讨论f(x)的单调性;(2)若y=f(x)的图像与x轴没有公共点,求a的取值范围.【解答】解:(1)f′(x)=2a2x+a﹣==,x>0,因为a>0,所以﹣<0<,所以在(0,)上,f′(x)<0,f(x)单调递减,在(,+∞)上,f′(x)>0,f(x)单调递增.综上所述,f(x)在(0,)上单调递减,在(,+∞)上f(x)单调递增.(2)由(1)可知,f(x)min=f()=a2×()2+a×﹣3ln+1=3+3lna,因为y=f(x)的图像与x轴没有公共点,所以3+3lna>0,所以a>,所以a的取值范围为(,+∞).26.(2021•新高考Ⅰ)已知函数f(x)=x(1﹣lnx).(1)讨论f(x)的单调性;(2)设a,b为两个不相等的正数,且blna﹣alnb=a﹣b,证明:2<+<e.【解答】(1)解:由函数的解析式可得f'(x)=1−lnx−1=−lnx,∴x∈(0,1),f′(x)>0,f(x)单调递增,x∈(1,+∞),f′(x)<0,f(x)单调递减,则f(x)在(0,1)单调递增,在(1,+∞)单调递减.(2)证明:由blna−alnb=a−b,得,即,由(1)f(x)在(0,1)单调递增,在(1,+∞)单调递减,所以f(x)max=f(1)=1,且f(e)=0,令,,则x1,x2为f(x)=k的两根,其中k∈(0,1).不妨令x1∈(0,1),x2∈(1,e),则2−x1>1,先证2<x1+x2,即证x2>2−x1,即证f(x2)=f(x1)<f(2﹣x1),令h(x)=f(x)−f(2−x),则h′(x)=f′(x)+f′(2−x)=−lnx−ln(2−x)=−ln[x(2−x)]在(0,1)单调递减,所以h′(x)>h′(1)=0,故函数h(x)在(0,1)单调递增,∴h(x1)<h(1)=0.∴f(x1)<f(2﹣x1),∴2<x1+x2,得证.同理,要证x1+x2<e,(法一)即证1<x2<e﹣x1,根据(1)中f(x)单调性,即证f(x2)=f(x1)>f(e﹣x1),令φ(x)=f(x)−f(e−x),x∈(0,1),则φ'(x)=−ln[x(e−x)],令φ′(x0)=0,x∈(0,x0),φ'(x)>0,φ(x)单调递增,x∈(x0,1),φ'(x)<0,φ(x)单调递减,又0<x<e时,f(x)>0,且f(e)=0,故,φ(1)=f(1)−f(e−1)>0,∴φ(x)>0恒成立,x1+x2<e得证,(法二)f(x1)=f(x2),x1(1﹣lnx1)=x2(1﹣lnx2),又x1∈(0,1),故1﹣lnx1>1,x1(1﹣lnx1)>x1,故x1+x2<x1(1﹣lnx1)+x2=x2(1﹣lnx2)+x2,x2∈(1,e),令g(x)=x(1﹣lnx)+x,g′(x)=1﹣lnx,x∈(1,e),在(1,e)上,g′(x)>0,g(x)单调递增,所以g(x)<g(e)=e,即x2(1﹣lnx2)+x2<e,所以x1+x2<e,得证,则2<+<e.27.(2021•乙卷)已知函数f(x)=ln(a﹣x),已知x=0是函数y=xf(x)的极值点.(1)求a;(2)设函数g(x)=.证明:g(x)<1.【解答】(1)解:由题意,f(x)的定义域为(﹣∞,a),令t(x)=xf(x),则t(x)=xln(a﹣x),x∈(﹣∞,a),则t'(x)=ln(a﹣x)+x•=,因为x=0是函数y=xf(x)的极值点,则有t'(0)=0,即lna=0,所以a=1,当a=1时,t'(x)=,且t'(0)=0,因为t''(x)=,则t'(x)在(﹣∞,1)上单调递减,所以当x∈(﹣∞,0)时,t'(x)>0,当x∈(0,1)时,t'(x)<0,所以a=1时,x=0是函数y=xf(x)的一个极大值点.综上所述,a=1;(2)证明:由(1)可知,xf(x)=xln(1﹣x),要证,即需证明,因为当x∈(﹣∞,0)时,xln(1﹣x)<0,当x∈(0,1)时,xln(1﹣x)<0,所以需证明x+ln(1﹣x)>xln(1﹣x),即x+(1﹣x)ln(1﹣x)>0,令h(x)=x+(1﹣x)ln(1﹣x),则h'(x)=(1﹣x),所以h'(0)=0,当x∈(﹣∞,0)时,h'(x)<0,当x∈(0,1)时,h'(x)>0,所以x=0为h(x)的极小值点,所以h(x)>h(0)=0,即x+ln(1﹣x)>xln(1﹣x),故,所以.28.(2021•乙卷)已知函数f(x)=x3﹣x2+ax+1.(1)讨论f(x)的单调性;(2)求曲线y=f(x)过坐标原点的切线与曲线y=f(x)的公共点的坐标.【解答】解:(1)f′(x)=3x2﹣2x+a,△=4﹣12a,①当△≤0,即时,由于f′(x)的图象是开口向上的抛物线,故此时f′(x)≥0,则f(x)在R上单调递增;②当△>0,即时,令f′(x)=0,解得,令f′(x)>0,解得x<x1或x>x2,令f′(x)<0,解得x1<x<x2,∴f(x)在(﹣∞,x1),(x2,+∞)单调递增,在(x1,x2)单调递减;综上,当时,f(x)在R上单调递增;当时,f(x)在单调递增,在单调递减.(2)设曲线y=f(x)过坐标原点的切线为l,切点为,则切线方程为,将原点代入切线方程有,,解得x0=1,∴切线方程为y=(a+1)x,令x3﹣x2+ax+1=(a+1)x,即x3﹣x2﹣x+1=0,解得x=1或x=﹣1,∴曲线y=f(x)过坐标原点的切线与曲线y=f(x)的公共点的坐标为(1,a+1)和(﹣1,﹣a﹣1).29.(2021•甲卷)已知a>0且a≠1,函数f(x)=(x>0).(1)当a=2时,求f(x)的单调区间;(2)若曲线y=f(x)与直线y=1有且仅有两个交点,求a的取值范围.【解答】解:(1)a=2时,f(x)=,f′(x)===,当x∈(0,)时,f′(x)>0,当x∈(,+∞)时,f′(x)<0,故f(x)在(0,)上单调递增,在(,+∞)上单调递减.(2)由题知f(x)=1在(0,+∞)有两个不等实根,f(x)=1⇔x a=a x⇔alnx=xlna⇔=,令g(x)=,g′(x)=,g(x)在(0,e)上单调递增,在(e,+∞)上单调递减,又g(x)=﹣∞,g(e)=,g(1)=0,g(x)=0,作出g(x)的图象,如图所示:由图象可得0<<,解得a>1且a≠e,即a的取值范围是(1,e)∪(e,+∞).。

全国卷历年高考函数与导数真题归类分析(含答案)

全国卷历年高考函数与导数真题归类分析(含答案)

全国卷历年高考函数与导数真题归类分析(含答案)全国卷历年高考函数与导数真题归类分析(含答案)(2015年-2018年共11套)函数与导数小题(共23小题)一、函数奇偶性与周期性1.(2015年1卷13)若函数$f(x)=x\ln(x+a+x^2)$为偶函数,则$a=$解析】由题知$y=\ln(x+a+x^2)$是奇函数,所以$\ln(x+a+x^2)+\ln(-x+a+x^2)=\ln(a+x-x)=\ln a$,解得$a=1$。

考点:函数的奇偶性。

2.(2018年2卷11)已知$$f(x)=\begin{cases}\frac{x+1}{x},x<0\\ax^2,x\geq0\end{cases}$$ 是定义域为$(-\infty,0)\cup[0,+\infty)$的奇函数,满足$f(\frac{1}{2})=1$。

若,$f'(-1)=-2$,则$a=$解:因为$f(x)$是奇函数,所以$f(-\frac{1}{2})=-1$,$f(0)=0$。

又因为$f'(-1)=-2$,所以$f'(-x)|_{x=1}=2$,$f'(0+)=0$,$f'(0-)=0$。

由此可得$$\begin{aligned}a&=\lim\limits_{x\to 0^+}\frac{f(x)-f(0)}{x-0}\\&=\lim\limits_{x\to 0^+}\frac{ax^2}{x}\\&=\lim\limits_{x\to0^+}ax\\&=\lim\limits_{x\to 0^-}ax\\&=-\frac{1}{2}\end{aligned}$$ 故选B。

3.(2016年2卷12)已知函数$f(x)(x\in R)$满足$f(-x)=2-f(x)$,若函数$y=\sum\limits_{i=1}^m(x_i+y_i)$的图像的交点为$(x_1,y_1),(x_2,y_2),\cdots,(x_m,y_m)$,则$\sum\limits_{i=1}^m(x_i+y_i)=( )$解析】由$f(x)$的奇偶性可得$f(0)=1$,又因为$f(x)$是偶函数,所以$f'(0)=0$。

2022年全国高考数学真题及模拟题汇编:函数(附答案解析)

2022年全国高考数学真题及模拟题汇编:函数(附答案解析)

2022年全国高考数学真题及模拟题汇编:函数一.选择题(共7小题)1.函数()3f x lgx x =+-的定义域为( )A .[0,3]B .(0,3]C .[0,)+∞D .(-∞,3]2.函数||22()x y x x R =-∈的大致图象是( )A .B .C .D .3.已知函数()3f x x x =--0.2(3)a f =,3(0.2)b f =,0.2(log 3)c f =,则a ,b ,c 的大小关系是( )A .a b c >>B .b a c >>C .c a b >>D .c b a >> 4.已知函数212()(5)f x log x ax =-+,在(4,)x ∈+∞单调递减,则a 的取值范围是( )A .(-∞,8]B .21(,)4-∞C .(,8)-∞D .21(,]4-∞5.已知3log 2a =,0.1b e =,0.5ln c e =,则三者大小关系为( )A .a c b <<B .c a b <<C .c b a <<D .a b c << 6.已知12a e =,3log 5b =,6log 8c =(其中e 为自然对数的底数, 2.718)e ≈,下列关系正确的是( )A .a b c >>B .a c b >>C .b a c >>D .c a b >>7.若1a >,则1()x y a=与log a y x =在同一坐标系中的图象大致是( ) A . B .C .D .二.多选题(共3小题) 8.下列函数中,属于奇函数并且值域为R 的有( )A .3y x =B .1y x x =+C .1y x x =-D .22x x y -=+9.下列函数中,值域是(0,)+∞的是( )A .12x y -=B .21y x =C .(1)y ln x =+D .||y x =10.下列函数中,是奇函数且在(,)-∞+∞上是单调递增函数的是( )A .()f x x =B .()||f x x x =C .()22x x f x -=-D .2()f x x =三.填空题(共5小题)11.函数22(1)3(0)f x x x x -=-+>,则f (3)= .12.函数()log (2)2(0a f x x a =+->,且1)a ≠的图象必过定点 .13.已知212x =,21log 3y =,则x y +的值为 . 14.已知函数23(0x y a a -=+>且1)a ≠的图象恒过定点P ,点P 在幂函数()y f x =的图象上,则3log f (3)= .15.若幂函数()f x 的图象经过点1(,4)4,则(2)f -= . 四.解答题(共7小题)16.已知函数()f x 是定义在R 上的奇函数,且当0x <时,2()2f x x x =-+.(1)当0x 时,求函数()f x 的解析式;(2)解关于m 的不等式:(2)(2)23f m f m m +--.17.设函数4()221xx f x =--,0x >. (1)求函数()f x 的值域;(2)设函数2()1g x x ax =-+,若对1[1x ∀∈,2],2[1x ∃∈,2],12()()f x g x =,求正实数a 的取值范围.18.设函数21y mx mx =--.(1)若函数21y mx mx =--有两个零点,求m 的取值范围;(2)若命题:x R ∃∈,0y ,是假命题,求m 的取值范围;(3)若对于[1x ∈,3],2(1)3y m x ++恒成立,求m 的取值范围.19.已知函数()log (2)log (2)a a f x x x =+--,其中0a >,1a ≠.(1)求函数()f x 的定义域;(2)判断函数()f x 的奇偶性并给出证明;(3)若(1)1f -<,求a 的取值范围.20.已知函数1()21x f x a =-+为奇函数. (1)求a 的值,并判断函数()f x 的单调性;(2)若x R ∀∈,2(1)()0f x f kx ++<,求实数k 的取值范围.21.计算下列各式.(1)1206310.064()(2021)3π--+-+;(2)2731329log 5log 42log 5log -++. 22.计算:(100.539()()54--++ (2)22log 62222523lg lg -+--2022年全国高考数学真题及模拟题汇编:函数参考答案与试题解析一.选择题(共7小题)1.函数()3f x lgx x =+-的定义域为( )A .[0,3]B .(0,3]C .[0,)+∞D .(-∞,3]【考点】函数的定义域及其求法【分析】由对数式的真数大于0,根式内部的代数式大于等于0联立不等式组求解.【解答】解:要使原函数有意义,则030x x >⎧⎨-⎩,解得03x <. ∴函数()3f x lgx x =+-的定义域为(0,3].故选:B .【点评】本题考查函数的定义域及其求法,是基础题.2.函数||22()x y x x R =-∈的大致图象是( )A .B .C .D .【考点】函数的图象与图象的变换【分析】根据题意分析可得()f x 为偶函数,通过0x =函数的值,排除函数的图象即可.【解答】解:根据题意有||2||2()2()2()x x f x x x f x --=--=-=,所以函数是偶函数,又函数||22x y x =-,当0x =时,1y =,排除C ,故选:A .【点评】本题考查函数的图象分析,注意分析函数的奇偶性,属于基础题.3.已知函数()3f x x x =--0.2(3)a f =,3(0.2)b f =,0.2(log 3)c f =,则a ,b ,c 的大小关系是( )A .a b c >>B .b a c >>C .c a b >>D .c b a >>【考点】函数单调性的性质与判断【分析】首先求出函数()f x 的单调性,再判断0.2log 3,30.2,0.23的大小关系,从而得出a ,b ,c 的大小关系. 【解答】解:因为函数()3f x x x =-所以30x -,可得3x ,即()f x 的定义域为(-∞,3], 所以()3f x x x =-(-∞,3]单调递增,因为0.20331>=,3000.20.21<<=,0.2log 30<,所以30.20.2log 30.23<<,所以30.20.2(log 3)(0.2)(3)f f f <<,所以c b a <<.故选:A .【点评】本题主要考查函数单调性的性质与判断,考查函数值大小的比较,考查逻辑推理能力,属于基础题.4.已知函数212()(5)f x log x ax =-+,在(4,)x ∈+∞单调递减,则a 的取值范围是( )A .(-∞,8]B .21(,)4-∞C .(,8)-∞D .21(,]4-∞ 【考点】复合函数的单调性【分析】令25t x ax =-+,12log y t =,分析内层函数与外层函数的单调性以及对数真数在所给区间恒为正数,可得出关于a 的不等式组,进而求得实数a 的取值范围.【解答】解:令25t x ax =-+,易知12log y t =在其定义域上单调递减,要使()f x 在(4,)+∞上单调递减,则25t x ax =-+在(4,)+∞单调递增,且250t x ax =-+>,即2424450a a ⎧⎪⎨⎪-+⎩, 所以8214a a ⎧⎪⎨⎪⎩,即214a 因此实数a 的取值范围是(-∞,21]4. 故选:D. 【点评】本题考查复合函数的单调性,考查学生的运算能力,属于中档题.5.已知3log a =0.1b e =,0.5ln c e =,则三者大小关系为( )A .a c b <<B .c a b <<C .c b a <<D .a b c <<【考点】对数值大小的比较【分析】直接利用对数的运算性质化简得答案.【解答】解:33log log 0.5a =<=,0.101b e e =>=,0.50.5ln c e ==,a cb ∴<<.故选:A .【点评】本题考查对数值的大小比较,考查对数的运算性质,是基础题.6.已知12a e =,3log 5b =,6log 8c =(其中e 为自然对数的底数, 2.718)e ≈,下列关系正确的是( )A .a b c >>B .a c b >>C .b a c >>D .c a b >> 【考点】对数值大小的比较【分析】利用对数函数的单调性得到a b >,a c >,再利用对数的运算法则,换底公式,基本不等式得到b c >,求解即可.【解答】解:1232a e =>,33log 5log 3b =<332=, 6443log 8log 81log 22c =<=+=, a b ∴>,a c >,25858583363535lg lg lg lg lg lg lg b c lg lg lg lg lg lg -⋅∴-=->-=⋅ 222222(83)2425555444353535lg lg lg lg lg lg lg lg lg lg lg lg lg +--->=>⋅⋅⋅ 2255035lg lg lg lg -==⋅, b c ∴>,a b c ∴>>,故选:A .【点评】本题考查了对数的运算法则,换底公式,对数函数的单调性,基本不等式的应用,考查了计算能力,属于中档题.7.若1a >,则1()x y a=与log a y x =在同一坐标系中的图象大致是( ) A . B .C .D .【考点】对数函数的图象与性质;指数函数的图象与性质【分析】由指数函数与对数函数的性质依次判断即可. 【解答】解:1()x y a=与log a y x =分别过(0,1),(1,0)点, 又1a >, ∴1()x y a=与log a y x =分别为定义域内的减函数,增函数, 故选:D .【点评】本题考查了指数函数与对数函数的性质应用,属于基础题.二.多选题(共3小题)8.下列函数中,属于奇函数并且值域为R 的有( )A .3y x =B .1y x x =+C .1y x x =-D .22x x y -=+【考点】函数的值域;函数奇偶性的性质与判断【分析】根据题意,依次分析选项是否正确,综合可得答案.【解答】解:根据题意,依次分析选项:对于A ,3()f x x =是奇函数,且值域为R ,符合题意;对于B ,1()f x x x =+,当0x >时,1()2f x x x=+,当0x <时,()2f x -,即()f x 的值域为(-∞,2][2-,)+∞,不符合题意;对于C ,1()f x x x=-,是奇函数,且在(0,)+∞上单调递增,当0x +→时,()f x →-∞,x →+∞时,()f x →+∞,其值域为R ,符合题意;对于D ,()22x x f x -=+,是奇函数,且()2f x (当且仅当0x =时取“= “),其值域不为R ,不符合题意;故选:AC .【点评】本题考查函数奇偶性的判断以及值域的计算,考查逻辑推理能力与运算求解能力,属于中档题.9.下列函数中,值域是(0,)+∞的是( )A .12x y -=B .21y x =C .(1)y ln x =+D .||y x =【考点】函数的值域【分析】利用函数的性质求出值域即可判断.【解答】解:对于:1A x R -∈,120x y -∴=>,故A 正确,对于:0B x ≠,20x ∴>,210y x ∴=>,故B 正确, 对于:10C x +>,(1)(y ln x ∴=+∈-∞,)+∞,故C 错误,对于:D x R ∈,||[0y x ∴=∈,)+∞,故D 错误.故选:AB .【点评】本题主要考查函数值域的求解和判断,结合函数的性质求出函数的值域是解决本题的关键,是基础题.10.下列函数中,是奇函数且在(,)-∞+∞上是单调递增函数的是( )A .()f x x =B .()||f x x x =C .()22x x f x -=-D .2()f x x =【考点】奇偶性与单调性的综合【分析】由常见函数的奇偶性和单调性可得结论.【解答】解:()f x x =为奇函数,且在(,)-∞+∞上是单调递增,故A 符合题意;()||f x x x =满足()()f x f x -=-,()f x 为奇函数,且在[0,)+∞递增,在(-∞,0]也递增,则()f x 在(,)-∞+∞上是单调递增,故B 符合题意;()22x x f x -=-的定义域为R ,满足()()f x f x -=-,()f x 为奇函数,且2x y =和2x y -=-在R 上递增,则()f x 在R 上递增,故C 符合题意;2()f x x =为偶函数,故D 不符题意.故选:ABC .【点评】本题考查函数的奇偶性和单调性的判断,考查运算能力和推理能力,属于基础题.三.填空题(共5小题)11.函数22(1)3(0)f x x x x -=-+>,则f (3)= 5 .【考点】函数的值【分析】令213x -=得2x =,再代入即可.【解答】解:令213x -=得,2x =或2x =-(舍去),故f (3)2(21)f =-22235=-+=,故答案为:5.【点评】本题考查了复合函数函数值的求法,属于基础题.12.函数()log (2)2(0a f x x a =+->,且1)a ≠的图象必过定点 (1,2)-- .【考点】对数函数的图象与性质【分析】令21x +=,解得1x =-,当1x =-时,022y =-=-,即可求解.【解答】解:令21x +=,解得1x =-,当1x =-时,022y =-=-,故函数()log (2)2(0a f x x a =+->,且1)a ≠的图象必过定点(1,2)--.故答案为:(1,2)--.【点评】本题主要考查对数函数的性质,考查定点问题,属于基础题.13.已知212x =,21log 3y =,则x y +的值为 2 . 【考点】对数的运算性质【分析】先把指数式化为对数式,再利用对数的运算性质求解.【解答】解:212x =,2log 12x ∴=,222112log 423x y log log ∴+=+==, 故答案为:2.【点评】本题主要考查了指数式与对数式的互化,考查了对数的运算性质,是基础题.14.已知函数23(0x y a a -=+>且1)a ≠的图象恒过定点P ,点P 在幂函数()y f x =的图象上,则3log f (3)= 2 .【考点】幂函数的概念、解析式、定义域、值域;指数函数的单调性与特殊点【分析】求出(2,4)P ,由幂函数()a y f x x ==过(2,4)P ,求出a ,得到()f x 的解析式,再计算3log f (3)即可.【解答】解:函数23(0x y a a -=+>且1)a ≠的图象恒过定点P ,则(2,4)P ,∴幂函数()a y f x x ==过(2,4)P ,24a ∴=,解得2a =,2()f x x ∴=,3log f ∴(3)3log 92==.故答案为:2.【点评】本题考查函数值的求法,考查函数的性质等基础知识,考查运算求解能力,是基础题.15.若幂函数()f x 的图象经过点1(,4)4,则(2)f -= 12- . 【考点】幂函数的概念、解析式、定义域、值域【分析】设出幂函数的解析式,代入点的坐标,求出函数的解析式,求出(2)f -的值即可.【解答】解:设幂函数的解析式为()f x x α=, 则1()44α=,解得:1α=-, 故1()f x x =,故1(2)2f -=-, 故答案为:12-. 【点评】本题考查了求幂函数的定义,考查函数求值问题,是基础题.四.解答题(共7小题)16.已知函数()f x 是定义在R 上的奇函数,且当0x <时,2()2f x x x =-+.(1)当0x 时,求函数()f x 的解析式;(2)解关于m 的不等式:(2)(2)23f m f m m +--.【考点】函数奇偶性的性质与判断【分析】(1)根据奇函数的性质进行转化求解即可.(2)将不等式进行转化,利用函数奇偶性和单调性的性质进行转化求解即可.【解答】解:(1)函数()f x 是定义在R 上的奇函数,且当0x <时,2()2f x x x =-+. (0)0f ∴=,当0x >,则0x -<,则2()2()f x x x f x -=--=-,即2()2(0)f x x x x =+<,综上2()2(0)f x x x x =+.(2)由(2)(2)23f m f m m +--.得(2)2(2)2(2)2f m m f m m f m m +--+-=-+-. 设()()g x f x x =+,则不等式等价为(2)(2)g m g m -,作出函数()f x 的图象如图:则()f x 在R 上是增函数,则()()g x f x x =+也是增函数, 则由(2)(2)g m g m -,得22m m -,得23m, 即实数m 的取值范围是(-∞,2]3.【点评】本题主要考查函数解析式的求解,根据函数奇偶性和单调性的定义将不等式进行转化是解决本题的关键,是中档题.17.设函数4()221xx f x =--,0x >. (1)求函数()f x 的值域;(2)设函数2()1g x x ax =-+,若对1[1x ∀∈,2],2[1x ∃∈,2],12()()f x g x =,求正实数a 的取值范围.【考点】函数的值域【分析】(1)由已知41()2212121x x x x f x =-=-+--,,利用基本不等式可求函数()f x 的值域;(2)由对1[1x ∀∈,2],2[1x ∃∈,2],12()()f x g x =,可得函数函数()f x 在[1,2]上的值域包含于函数()g x 在[1,2]上的值域,由此可求正实数a 的取值范围.【解答】解:(1)24(2)111()2221212121x x x x x x f x -+=-=-=-+---,0x >,210x ->, 则11()212(21)22121x x x x f x =-+-⋅=--,,当且仅当1x =时取“=”, 所以()[2f x ∈,)+∞,即函数()f x 的值域为[2,)+∞;(2)设21x t =-,[1x ∈,2],[1t ∴∈,3], 函数1y t t=+在[1,3]上单调递增, 则函数()f x 在[1,2]上单调递增,()[2f x ∴∈,10]3, 设[1x ∈,2]时,函数()g x 的值域为A ,由题意知[2,10]3A ⊆, 又因为函数()g x 图象的对称轴为02a x =>, 当12a ,即02a <时,函数()g x 在[1,2]上递增,则(1)210(2)3g g ⎧⎪⎨⎪⎩,解得506a <, 当122a <<时,即24a <<时,函数()g x 在[1,2]上的最大值为g (1),g (2)中的较大者,而g (1)20a =-<且g (2)521a =-<,不合题意,当22a >,即4>时,函数()g x 在[1,2]上递减,则10(1)3(2)2g g ⎧⎪⎨⎪⎩,满足条件的a 不存在. 综上,5(0,]6a ∈. 【点评】本题考查了求函数的值域及分类讨论思想,采用了换元法求值域,换元后对参数t 的范围要进行确认,这是易错点,属于中档题.18.设函数21y mx mx =--.(1)若函数21y mx mx =--有两个零点,求m 的取值范围;(2)若命题:x R ∃∈,0y ,是假命题,求m 的取值范围;(3)若对于[1x ∈,3],2(1)3y m x ++恒成立,求m 的取值范围.【考点】函数恒成立问题;二次函数的性质与图象【分析】(1)利用零点的定义,结合二次方程根的个数问题,求解即可;(2)将问题转化为210mx mx --<对于x R ∀∈恒成立,分0m =和0m ≠两种情况,结合二次函数的图象与性质,列式求解即可;(3)将问题转化为4()m x x-+在[1x ∈,3]恒成立,利用基本不等式求解最值,即可得到答案.【解答】解:(1)因为函数21y mx mx =--有两个零点,所以方程210mx mx --=有两个不同的实数根,则2040m m m ≠⎧⎨=+>⎩,解得4m <-或0m >, 故实数m 的取值范围为(-∞,4)(0-⋃,)+∞;(2)命题:x R ∃∈,0y ,是假命题,则命题:x R ∀∈,0y <,是真命题,则210mx mx --<对于x R ∀∈恒成立,当0m =时,不等式为10-<恒成立,符合题意;当0m ≠时,则2040m m m <⎧⎨=+<⎩,解得40m -<<. 综上所述,实数m 的取值范围为(4-,0];(3)因为对于[1x ∈,3],2(1)3y m x ++恒成立, 即240x mx ++对于[1x ∈,3]恒成立,即4()m x x-+在[1x ∈,3]恒成立, 则4[()]max m x x-+, 因为4424x x x x+⋅=, 当且仅当4x x=,即2x =时取等号, 所以4[()]4max x x -+=-, 则4m -,所以实数m 的取值范围为[4-,)+∞.【点评】本题考查了函数零点的理解与应用,函数与方程的应用,函数与不等式的综合应用,命题真假的应用以及不等式恒成立问题,要掌握不等式恒成立问题的一般求解方法:参变量分离法、数形结合法、最值法等,属于中档题.19.已知函数()log (2)log (2)a a f x x x =+--,其中0a >,1a ≠.(1)求函数()f x 的定义域;(2)判断函数()f x 的奇偶性并给出证明;(3)若(1)1f -<,求a 的取值范围.【考点】函数奇偶性的性质与判断【分析】(1)依题意,得2020x x +>⎧⎨->⎩,解之可得函数()f x 的定义域; (2)()f x 为奇函数;利用奇函数的定义证明即可;(3)1(1)13aa f log log a -<⇔<,通过对a 的范围的分类讨论,可求得答案. 【解答】解:(1)()log (2)log (2)a a f x x x =+--,其中0a >,1a ≠,∴202202x x x x +>>-⎧⎧⇒⎨⎨-><⎩⎩, ∴函数()f x 的定义域为(2,2)-;(2)()f x 为奇函数. 证明:22()()022a a x x f x f x log log x x-+-+=+=+-, ()()f x f x ∴-=-,(2,2)x ∈-,()f x ∴为奇函数;(3)(1)1f -<,∴1(1)3a a f log log a -=<, ①01a <<,()f x 单调递减,∴103a <<; ②1a >,()f x 单调递增,∴13a >,1a ∴>; 综上:103a <<或1a >,即(0a ∈,1)(13⋃,)+∞. 【点评】本题考查函数奇偶性的性质与判断,考查分析推理能力与运算求解能力,属于中档题.20.已知函数1()21x f x a =-+为奇函数. (1)求a 的值,并判断函数()f x 的单调性;(2)若x R ∀∈,2(1)()0f x f kx ++<,求实数k 的取值范围.【考点】奇偶性与单调性的综合【分析】(1)由奇函数在R 上有定义,可得(0)0f =,求得a 的值,再由指数函数的单调性可得()f x 的单调性;(2)由奇函数()f x 的单调性可将不等式的两边的“f ”去掉,结合二次不等式恒成立,运用判别式法,解不等式可得所求范围.【解答】解:(1)函数1()21x f x a =-+为奇函数,定义域为R , 可得(0)0f =,即102a -=,解得12a =, 则1112()12212xx xf x -=-=++,满足()()0f x f x -+=, 所以12a =成立; 由2x y =在R 上递增,可得112xy =+在R 上递减, 所以()f x 在R 上为递减函数;(2)x R ∀∈,2(1)()0f x f kx ++<,即为2(1)()()f x f kx f kx +<-=-,因为()f x 在R 上为递减函数,所以21x kx +>-,即210x kx ++>恒成立,则△0<,即240k -<,解得22k -<<,则k 的取值范围是(2,2)-.【点评】本题考查函数的奇偶性和单调性的判断和运用:解不等式,考查转化思想和运算能力、推理能力,属于基础题.21.计算下列各式.(1)1206310.064()(2021)3π--+-+; (2)2731329log 5log 42log 5log -++. 【考点】对数的运算性质;有理数指数幂及根式【分析】(1)利用有理数指数幂的运算性质求解.(2)利用对数的运算性质求解.【解答】解:(1)原式1113662332043132⨯⨯⨯=⋅-++⨯ 23220.49198917255=-++⨯=-++=. (2)原式333log 527log 9log 527211=+++-=++=.【点评】本题主要考查了有理数指数幂的运算性质和对数的运算性质,是基础题.22.计算:(100.539()()54--++(2)22log 62222523lg lg -+-- 【考点】有理数指数幂及根式;对数的运算性质【分析】利用有理指数幂及对数的运算性质依次化简即可.【解答】解:(100.539()()54--++221133e e =-+++;(2)22log 62222523lg lg -+--421100632lg =--⨯ 211=-=.【点评】本题考查了有理指数幂及对数的运算,属于基础题.。

2019-2023全国高考真题数学汇编:指数与指数函数

2019-2023全国高考真题数学汇编:指数与指数函数
【详解】当 x (0, +) 时, y = ax (0 a 1) ,所以 f ( x) 在 (0, + ) 上递减,
f ( x) 是偶函数,所以 f ( x) 在 (−,0) 上递增.
注意到 a0 = 1, 所以 B 选项符合. 故选:B 4.D 【分析】利用指数型复合函数单调性,判断列式计算作答.
【详解】由 a log3 4 = 2 可得 log3 4a = 2 ,所以 4a = 9 , 所以有 4−a = 1 ,
9 故选:B. 【点睛】本题考查的是有关指对式的运算的问题,涉及到的知识点有对数的运算法则,指数的运算法则, 属于基础题目. 3.B 【分析】根据偶函数,指数函数的知识确定正确选项.
故选:D
5.D
【分析】根据偶函数的定义运算求解.
【详解】因为
f
(x) =
xex 为偶函数,则 eax −1
f
( x) −
f
(−x) =
xex eax −1

(−x)
e−ax
e−x −1
=
x ex − e(a−1)x eax −1
=0,
又因为 x 不恒为 0,可得 ex − e(a−1)x = 0 ,即 ex = e(a−1)x ,
第2页/共3页
则 x = (a −1) x ,即1= a −1,解得 a = 2 .
故选:D. 6.A 【分析】利用作差法比较自变量的大小,再根据指数函数的单调性及二次函数的性质判断即可. 【详解】令 g(x) = −(x −1)2 ,则 g(x) 开口向下,对称轴为 x =1 ,
因为
6 2
−1−
2

4 2
,而
(
6+

函数-【2023高考必备】2013-2022十年全国高考数学真题分类汇编(全国通用版)(原卷版)

 函数-【2023高考必备】2013-2022十年全国高考数学真题分类汇编(全国通用版)(原卷版)
2013-2022十年全国高考数学真题分类汇编
专题02函数
一、选择题
1.(2022年全国乙卷理科·第12题)已知函数 的定义域均为R,且 .若 的图像关于直线 对称, ,则 ()
A. B. C. D.
2.(2022新高考全国II卷·第8题)已知函数 的定义域为R,且 ,则 ()
A. B. C.0D.1
A. B. C. D.
12.(2021年高考全国甲卷理科·第4题)青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L和小数记录表的数据V的满足 .已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据为()( )
A.1.5B.1.2C.0.8D.0.6
27.(2018年高考数学课标Ⅱ卷(理)·第3题)函数 的图象大致为()
A. B. C. D.
24.(2019年高考数学课标全国Ⅰ卷理科·第5题)函数 在 的图象大致为()
25.(2018年高考数学课标Ⅲ卷(理)·第7题)函数 的图象大致为()
26.(2018年高考数学课标Ⅱ卷(理)·第11题)已知 是定义域为 的奇函数,满足 .若 ,则 ()
A. B.0C.2D.50
13.(2020年高考数学课标Ⅰ卷理科·第12题)若 ,则()
A. B. C. D.
14.(2020年高考数学课标Ⅰ卷理科·第5题)某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:°C)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据 得到下面的散点图:
由此散点图,在10°C至40°C之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是()
3.(2021年新高考全国Ⅱ卷·第8题)已知函数 的定义域为 , 为偶函数, 为奇函数,则()

2024年高考数学真题分类汇编(三角函数篇,解析版)

2024年高考数学真题分类汇编(三角函数篇,解析版)

专题三角函数1(新课标全国Ⅰ卷)已知cos (α+β)=m ,tan αtan β=2,则cos (α-β)=()A.-3mB.-m3C.m 3D.3m【答案】A【分析】根据两角和的余弦可求cos αcos β,sin αsin β的关系,结合tan αtan β的值可求前者,故可求cos α-β 的值.【详解】因为cos α+β =m ,所以cos αcos β-sin αsin β=m ,而tan αtan β=2,所以=12×2b ×kb ×sin A 2+12×kb ×b ×sin A2,故cos αcos β-2cos αcos β=m 即cos αcos β=-m ,从而sin αsin β=-2m ,故cos α-β =-3m ,故选:A .2(新课标全国Ⅰ卷)当x ∈[0,2π]时,曲线y =sin x 与y =2sin 3x -π6 的交点个数为()A.3B.4C.6D.8【答案】C【分析】画出两函数在0,2π 上的图象,根据图象即可求解【详解】因为函数y =sin x 的的最小正周期为T =2π,函数y =2sin 3x -π6 的最小正周期为T =2π3,所以在x ∈0,2π 上函数y =2sin 3x -π6有三个周期的图象,在坐标系中结合五点法画出两函数图象,如图所示:由图可知,两函数图象有6个交点.故选:C3(新课标全国Ⅱ卷)设函数f (x )=a (x +1)2-1,g (x )=cos x +2ax ,当x ∈(-1,1)时,曲线y =f (x )与y =g (x )恰有一个交点,则a =()A.-1B.12C.1D.22024年高考数学真题分类汇编——三角函数篇【分析】解法一:令F x =ax 2+a -1,G x =cos x ,分析可知曲线y =F (x )与y =G (x )恰有一个交点,结合偶函数的对称性可知该交点只能在y 轴上,即可得a =2,并代入检验即可;解法二:令h x =f (x )-g x ,x ∈-1,1 ,可知h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即可得a =2,并代入检验即可.【详解】解法一:令f (x )=g x ,即a (x +1)2-1=cos x +2ax ,可得ax 2+a -1=cos x ,令F x =ax 2+a -1,G x =cos x ,原题意等价于当x ∈(-1,1)时,曲线y =F (x )与y =G (x )恰有一个交点,注意到F x ,G x 均为偶函数,可知该交点只能在y 轴上,可得F 0 =G 0 ,即a -1=1,解得a =2,若a =2,令F x =G x ,可得2x 2+1-cos x =0因为x ∈-1,1 ,则2x 2≥0,1-cos x ≥0,当且仅当x =0时,等号成立,可得2x 2+1-cos x ≥0,当且仅当x =0时,等号成立,则方程2x 2+1-cos x =0有且仅有一个实根0,即曲线y =F (x )与y =G (x )恰有一个交点,所以a =2符合题意;综上所述:a =2.解法二:令h x =f (x )-g x =ax 2+a -1-cos x ,x ∈-1,1 ,原题意等价于h x 有且仅有一个零点,因为h -x =a -x 2+a -1-cos -x =ax 2+a -1-cos x =h x ,则h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即h 0 =a -2=0,解得a =2,若a =2,则h x =2x 2+1-cos x ,x ∈-1,1 ,又因为2x 2≥0,1-cos x ≥0当且仅当x =0时,等号成立,可得h x ≥0,当且仅当x =0时,等号成立,即h x 有且仅有一个零点0,所以a =2符合题意;故选:D .4(全国甲卷数学(理)(文))已知cos αcos α-sin α=3,则tan α+π4=()A.23+1 B.23-1C.32D.1-3【答案】B【分析】先将cos αcos α-sin α弦化切求得tan α,再根据两角和的正切公式即可求解.【详解】因为cos αcos α-sin α=3,所以11-tan α=3,⇒tan α=1-33,所以tan α+π4 =tan α+11-tan α=23-1,故选:B .5(新高考北京卷)已知f x =sin ωx ω>0 ,f x 1 =-1,f x 2 =1,|x 1-x 2|min =π2,则ω=()A.1B.2C.3D.4【分析】根据三角函数最值分析周期性,结合三角函数最小正周期公式运算求解.【详解】由题意可知:x 1为f x 的最小值点,x 2为f x 的最大值点,则x 1-x 2 min =T 2=π2,即T =π,且ω>0,所以ω=2πT=2.故选:B .6(新高考天津卷)已知函数f x =sin3ωx +π3ω>0 的最小正周期为π.则函数在-π12,π6 的最小值是()A.-32B.-32C.0D.32【答案】A【分析】先由诱导公式化简,结合周期公式求出ω,得f x =-sin2x ,再整体求出x ∈-π12,π6时,2x 的范围,结合正弦三角函数图象特征即可求解.【详解】f x =sin3ωx +π3 =sin 3ωx +π =-sin3ωx ,由T =2π3ω=π得ω=23,即f x =-sin2x ,当x ∈-π12,π6 时,2x ∈-π6,π3,画出f x =-sin2x 图象,如下图,由图可知,f x =-sin2x 在-π12,π6上递减,所以,当x =π6时,f x min =-sin π3=-32故选:A7(新高考上海卷)下列函数f x 的最小正周期是2π的是()A.sin x +cos xB.sin x cos xC.sin 2x +cos 2xD.sin 2x -cos 2x【答案】A【分析】根据辅助角公式、二倍角公式以及同角三角函数关系并结合三角函数的性质一一判断即可 .【详解】对A ,sin x +cos x =2sin x +π4,周期T =2π,故A 正确;对B ,sin x cos x =12sin2x ,周期T =2π2=π,故B 错误;对于选项C ,sin 2x +cos 2x =1,是常值函数,不存在最小正周期,故C 错误;对于选项D ,sin 2x -cos 2x =-cos2x ,周期T =2π2=π,故D 错误,故选:A .8(新课标全国Ⅱ卷)对于函数f(x)=sin2x和g(x)=sin2x-π4,下列说法正确的有() A.f(x)与g(x)有相同的零点 B.f(x)与g(x)有相同的最大值C.f(x)与g(x)有相同的最小正周期D.f(x)与g(x)的图像有相同的对称轴【答案】BC【分析】根据正弦函数的零点,最值,周期公式,对称轴方程逐一分析每个选项即可.【详解】A选项,令f(x)=sin2x=0,解得x=kπ2,k∈Z,即为f(x)零点,令g(x)=sin2x-π4=0,解得x=kπ2+π8,k∈Z,即为g(x)零点,显然f(x),g(x)零点不同,A选项错误;B选项,显然f(x)max=g(x)max=1,B选项正确;C选项,根据周期公式,f(x),g(x)的周期均为2π2=π,C选项正确;D选项,根据正弦函数的性质f(x)的对称轴满足2x=kπ+π2⇔x=kπ2+π4,k∈Z,g(x)的对称轴满足2x-π4=kπ+π2⇔x=kπ2+3π8,k∈Z,显然f(x),g(x)图像的对称轴不同,D选项错误.故选:BC9(新课标全国Ⅱ卷)已知α为第一象限角,β为第三象限角,tanα+tanβ=4,tanαtanβ=2+1,则sin(α+β)=.【答案】-22 3【分析】法一:根据两角和与差的正切公式得tanα+β=-22,再缩小α+β的范围,最后结合同角的平方和关系即可得到答案;法二:利用弦化切的方法即可得到答案.【详解】法一:由题意得tanα+β=tanα+tanβ1-tanαtanβ=41-2+1=-22,因为α∈2kπ,2kπ+π2,β∈2mπ+π,2mπ+3π2,k,m∈Z,则α+β∈2m+2kπ+π,2m+2kπ+2π,k,m∈Z,又因为tanα+β=-22<0,则α+β∈2m+2kπ+3π2,2m+2kπ+2π,k,m∈Z,则sinα+β<0,则sinα+βcosα+β=-22,联立sin2α+β+cos2α+β=1,解得sinα+β=-223.法二:因为α为第一象限角,β为第三象限角,则cosα>0,cosβ<0,cosα=cosαsin2α+cos2α=11+tan2α,cosβ=cosβsin2β+cos2β=-11+tan2β,则sin(α+β)=sinαcosβ+cosαsinβ=cosαcosβ(tanα+tanβ)=4cosαcosβ=-41+tan2α1+tan2β=-4(tanα+tanβ)2+(tanαtanβ-1)2=-442+2=-223故答案为:-22 3.10(全国甲卷数学(文))函数f x =sin x-3cos x在0,π上的最大值是.【答案】2【分析】结合辅助角公式化简成正弦型函数,再求给定区间最值即可.【详解】f x =sin x -3cos x =2sin x -π3 ,当x ∈0,π 时,x -π3∈-π3,2π3,当x -π3=π2时,即x =5π6时,f x max =2.故答案为:2一、单选题1(2024·宁夏石嘴山·三模)在平面直角坐标系中,角θ的顶点与原点重合,始边与x 轴的非负半轴重合,终边经过点P 1,2 ,则7cos 2θ-2sin2θ=()A.-15B.15C.-2D.2【答案】A【分析】由题意可知:tan θ=2,根据倍角公式结合齐次化问题分析求解.【详解】由题意可知:tan θ=2,所以7cos 2θ-2sin2θ=7cos 2θ-4sin θcos θsin 2θ+cos 2θ=7-4tan θtan 2θ+1=7-4×222+1=-15.故选:A .2(2024·广东茂名·一模)已知cos α+π =-2sin α,则sin 2α-3cos α+π2cos αcos2α+1=()A.-1B.-25C.45D.78【答案】D【分析】根据给定条件,求出tan α,再结合诱导公式及二倍角的余弦公式,利用正余弦齐次式法计算得解.【详解】由cos α+π =-2sin α,得cos α=2sin α,则tan α=12,所以sin 2α-3cos α+π2 cos αcos2α+1=sin 2α+3sin αcos α2cos 2α=12tan 2α+32tan α=18+34=78.故选:D3(2024·河北保定·二模)函数f (x )=1-e x1+e xcos2x 的部分图象大致为()A. B.C. D.【答案】A【分析】根据函数的奇偶性判断即可.【详解】设g x =1-e x1+e x,则g-x=1-e-x1+e-x=e x-11+e x=-g x ,所以g x 为奇函数,设h x =cos2x,可知h x 为偶函数,所以f x =1-e x1+e xcos2x为奇函数,则B,C错误,易知f0 =0,所以A正确,D错误.故选:A.4(2024·山东济宁·三模)已知函数f(x)=(3sin x+cos x)cos x-12,若f(x)在区间-π4,m上的值域为-3 2,1,则实数m的取值范围是()A.π6,π2B.π6,π2C.π6,7π12D.π6,7π12【答案】D【分析】利用二倍角公式、辅助角公式化简函数f(x),再借助正弦函数的图象与性质求解即得.【详解】依题意,函数f(x)=3sin x cos x+cos2x-12=32sin2x+12cos2x=sin2x+π6,当x∈-π4,m时,2x+π6∈-π3,2m+π6,显然sin-π3=sin4π3=-32,sinπ2=1,且正弦函数y=sin x在π2,4π3上单调递减,由f(x)在区间-π4,m上的值域为-32,1,得π2≤2m+π6≤4π3,解得π6≤m≤7π12,所以实数m的取值范围是π6,7π12.故选:D5(2024·江西景德镇·三模)函数f x =cosωx x∈R在0,π内恰有两个对称中心,fπ=1,将函数f x 的图象向右平移π3个单位得到函数g x 的图象.若fα +gα =35,则cos4α+π3=()A.725B.1625C.-925D.-1925【答案】A【分析】根据y轴右边第二个对称中心在0,π内,第三个对称中心不在0,π内可求得32≤ω<52,结合fπ=1可得ω=2,再利用平移变换求出g x ,根据三角变换化简fα +gα =35可得sin2α+π6=35,然后由二倍角公式可解.【详解】由x∈0,π得ωx∈0,ωπ,因为函数f x 在0,π内恰有两个对称中心,所以3π2≤ωπ5π2>ωπ,解得32≤ω<52,又fπ=cosωπ=1,所以ωπ=kπ,k∈Z,即ω=k,k∈Z,所以ω=2,将函数f x 的图象向右平移π3个单位得到函数y=cos2x-π3=cos2x-2π3,即g x =cos2x-2π3,因为fα +gα =cos2α+cos2α-2π3=32sin2α+12cos2α=sin2α+π6=35,所以cos4α+π3=1-2sin22α+π6=1-2×35 2=725.故选:A6(2024·安徽马鞍山·三模)已知函数f(x)=sin2ωx+cos2ωx(ω>1)的一个零点是π2,且f(x)在-π6,π16上单调,则ω=()A.54B.74C.94D.114【答案】B【分析】整理可得f(x)=2sin2ωx+π4,以2ωx+π4为整体,根据单调性分析可得1<ω≤2,再结合零点分析求解.【详解】因为f(x)=sin2ωx+cos2ωx=2sin2ωx+π4,x∈-π6,π16,且ω>1时,可得2ωx+π4∈-π3ω+π4,π8ω+π4,且-π3ω+π4<0<π8ω+π4,若f(x)在-π6,π16上单调,则-π3ω+π4≥-π2π8ω+π4≤π2,解得1<ω≤2,又因为f(x)的一个零点是π2,则πω+π4=kπ,k∈Z,解得ω=k-14,k∈Z,所以k=2,ω=7 4 .故选:B.7(2024·山东临沂·二模)已知函数f x =sin2x+φϕ <π2图象的一个对称中心为π6,0,则()A.f x 在区间-π8,π3上单调递增B.x=5π6是f x 图象的一条对称轴C.f x 在-π6,π4上的值域为-1,32D.将f x 图象上的所有点向左平移5π12个长度单位后,得到的函数图象关于y轴对称【答案】D【分析】借助整体代入法结合正弦函数的性质可得A、B;结合正弦函数最值可得C;得到平移后的函数解析式后借助诱导公式即可得D.【详解】由题意可得2×π6+φ=kπk∈Z,解得φ=-π3+kπk∈Z,又ϕ <π2,故φ=-π3,即f x =sin2x-π3;对A :当x ∈-π8,π3 时,2x -π3∈-7π12,π3,由函数y =sin x 在-7π12,π3上不为单调递增,故f x 在区间-π8,π3上不为单调递增,故A 错误;对B :当x =5π6时,2x -π3=4π3,由x =4π3不是函数y =sin x 的对称轴,故x =5π6不是f x 图象的对称轴,故B 错误;对C :当x ∈-π6,π4 时,2x -π3∈-2π3,π6,则f x ∈-1,12,故C 错误;对D :将f x 图象上的所有点向左平移5π12个长度单位后,可得y =sin 2x +2×5π12-π3 =sin 2x +π2=cos2x ,该函数关于y 轴对称,故D 正确.故选:D .8(2024·广东广州·二模)已知函数f (x )=2sin (ωx +φ)ω>0,|φ|<π2的部分图象如图所示,若将函数f (x )的图象向右平移θ(θ>0)个单位后所得曲线关于y 轴对称,则θ的最小值为()A.π8B.π4C.3π8D.π2【答案】A【分析】根据给定的图象特征,结合五点法作图列式求出ω和φ,再根据图象的平移变换,以及图象的对称性即可得解.【详解】由f π4=1,得sin π4ω+φ =22,又点π4,1 及附近点从左到右是上升的,则π4ω+φ=π4+2k π,k ∈Z ,由f 5π8 =0,点5π8,0 及附近点从左到右是下降的,且上升、下降的两段图象相邻,得5π8ω+φ=π+2k π,k ∈Z ,联立解得ω=2,φ=-π4+2k π,k ∈Z ,而|φ|<π2,于是φ=-π4,f (x )=2sin 2x -π4,若将函数f (x )的图像向右平移θ(θ>0)个单位后,得到y =sin 2x -2θ-π4,则-2θ-π4=π2-k π,k ∈Z ,而θ>0,因此θ=-3π8+k π2,k ∈N ,所以当k =1时,θ取得最小值为π8.故选:A9(2024·四川雅安·三模)已知函数f x =sin ωx +3cos ωx (ω>0),则下列说法中正确的个数是()①当ω=2时,函数y =f x -2log πx 有且只有一个零点;②当ω=2时,函数y =f x +φ 为奇函数,则正数φ的最小值为π3;③若函数y =f x 在0,π3 上单调递增,则ω的最小值为12;④若函数y =f x 在0,π 上恰有两个极值点,则ω的取值范围为136,256.A.1 B.2C.3D.4【答案】B【分析】利用辅助角公式化简函数,由图象分析判断①;由正弦函数的性质判断②③;由极大值的意义结合正弦函数的性质判断④.【详解】依题意,ω>0,函数f (x )=212sin ωx +32cos ωx =2sin ωx +π3,对于①:f (x )=2sin 2x +π3,令y =f x -2log πx =0,即f x =2log πx ,作出函数y =f (x )和函数y =2log πx 的图象,如图,观察图象知,两个函数在0,7π12 上只有一个零点,f 13π12 =2sin 5π2=2,当x =13π12时,y =2log π13π12=2log π1312+2log ππ=2+2log π1312>2,当x >13π12时,2log πx >2≥f (x ),因此函数y =f x 与函数y =2log πx 的图象有且只有一个交点,①正确;对于②:f (x +φ)=2sin 2x +2φ+π3 为奇函数,则2φ+π3=k π,k ∈Z ,φ=-π6+k π2,k ∈Z ,即正数φ的最小值为π3,②正确;对于③:当x ∈0,π3 时,ωx +π3∈π3,π(ω+1)3,由y =f x 在0,π3 上单调递增,得π(ω+1)3≤π2ω>0,解得0<ω≤12,正数ω有最大值12,③错误;对于④:当x ∈(0,π)时,ωx +π3∈π3,ωπ+π3,而y =f x 在(0,π)上恰有两个极值点,由正弦函数的性质得3π2<ωπ+π3≤5π2,解得76<ω≤136,因此ω的取值范围是76,136,④错误.综上,共2个正确,故选:B .10(2024·河北保定·二模)已知tan α=3cos αsin α+11,则cos2α=()A.-78B.78C.79D.-79【答案】B【分析】利用切化弦和同角三角函数的关系,解出sin α,再结合二倍角公式即可求解.【详解】因为sin αcos α=3cos αsin α+11,所以4sin 2α+11sin α-3=0,解得sin α=14或sin α=-3(舍去),所以cos2α=1-2sin 2α=78.故选:B .11(2024·河北衡水·三模)已知sin (3α-β)=m sin (α-β),tan (2α-β)=n tan α,则m ,n 的关系为()A.m =2nB.n =m +1mC.n =m m -1D.n =m +1m -1【答案】D【分析】利用和差角的正弦公式化简,结合已知列出方程即可求解.【详解】依题意,sin (3α-β)=sin [(2α-β)+α]=sin (2α-β)cos α+cos (2α-β)sin α,sin (α-β)=sin [(2α-β)-α]=sin (2α-β)cos α-cos (2α-β)sin α,则sin (2α-β)cos α+cos (2α-β)sin α=m sin (2α-β)cos α-m cos (2α-β)sin α,即sin (2α-β)cos αcos (2α-β)sin α=m +1m -1,即tan (2α-β)tan α=m +1m -1=n .故选:D12(2024·辽宁沈阳·三模)已知tan α2=2,则sin 2α2+sin α的值是()A.25B.45C.65D.85【答案】D【分析】利用二倍角公式和同角之间的转化,进行求解判断选项【详解】当tan α2=2,则sin 2α2+sin α=sin 2α2+2sin α2cos α2sin 2α2+cos 2α2=tan 2α2+2tan α2tan 2α2+1=22+2×222+1=85故选:D13(2024·贵州黔东南·二模)已知0<α<β<π,且sin α+β =2cos α+β ,sin αsin β-3cos αcos β=0,则tan α-β =()A.-1 B.-32C.-12D.12【答案】C【分析】找出tan α和tan β的关系,求出tan α和tan β即可求解.【详解】∵sin αsin β-3cos αcos β=0,∴sin αsin β=3cos αcos β,∴tan αtan β=3①,∵sin α+β =2cos α+β ,∴tan α+β =2⇒tan α+tan β1-tan αtan β=2⇒tan α+tan β1-3=2,∴tan α+tan β=-4②,由①②解得tan α=-1tan β=-3或tan α=-3tan β=-1 ,∵0<α<β<π,∴tan α<tan β,∴tan α=-3tan β=-1 ,∴tan α-β =tan α-tan β1+tan αtan β=-12.故选:C .二、多选题14(2024·河北张家口·三模)已知函数f (x )=23cos 2x +2sin x cos x ,则下列说法正确的是()A.函数f (x )的一个周期为2πB.函数f (x )的图象关于点π3,0 对称C.将函数f (x )的图象向右平移φ(φ>0)个单位长度,得到函数g (x )的图象,若函数g (x )为偶函数,则φ的最小值为5π12D.若f 12α-5π24 -3=12,其中α为锐角,则sin α-cos α的值为6-308【答案】ACD【分析】利用三角恒等变换公式化简,由周期公式可判断A ;代入验证可判断B ;根据平移变化求g (x ),由奇偶性可求出φ,可判断C ;根据已知化简可得sin α-π12 =14,将目标式化为2sin α-π12 -π6 ,由和差角公式求解可判断D .【详解】对于A ,因为f (x )=31+cos2x +sin2x =2sin 2x +π3+3,所以f (x )的最小值周期T =2π2=π,所以2π是函数f (x )的一个周期,A 正确;对于B ,因为f π3 =2sin 2×π3+π3 +3=3,所以,点π3,0 不是函数f (x )的对称中心,B 错误;对于C ,由题知,g x =f (x -φ)=2sin 2(x -φ)+π3 +3=2sin 2x +π3-2φ +3,若函数g (x )为偶函数,则π3-2φ=π2+k π,k ∈Z ,得φ=-π12-k π2,k ∈Z ,因为φ>0,所以φ的最小值为5π12,C 正确;对于D ,若f 12α-5π24-3=2sin 212α-5π24 +π3 =2sin α-π12 =12,则sin α-π12 =14,因为α为锐角,-π12<α-π12<5π12,所以cos α-π12 =154,所以sin α-cos α=2sin α-π4 =2sin α-π12 -π6=232sin α-π12 -12cos α-π12=232×14-12×154=6-308,D 正确.故选:ACD 15(2024·辽宁鞍山·模拟预测)已知函数f x =sin x ⋅cos x ,则()A.f x 是奇函数B.f x 的最小正周期为2πC.f x 的最小值为-12D.f x 在0,π2上单调递增【答案】AC【分析】首先化简函数f x =12sin2x ,再根据函数的性质判断各选项.【详解】f x =sin x ⋅cos x =12sin2x ,函数的定义域为R ,对A ,f -x =-12sin2x =-f x ,所以函数f x 是奇函数,故A 正确;对B ,函数f x 的最小正周期为2π2=π,故B 错误;对C ,函数f x 的最小值为-12,故C 正确;对D ,x ∈0,π2 ,2x ∈0,π ,函数f x 不单调,f x 在0,π4 上单调递增,在π4,π2上单调递减,故D 错误.故选:AC16(2024·安徽·三模)已知函数f x =sin x -3cos x ,则()A.f x 是偶函数B.f x 的最小正周期是πC.f x 的值域为-3,2D.f x 在-π,-π2上单调递增【答案】AC【分析】对于A ,直接用偶函数的定义即可验证;对于B ,直接说明f 0 ≠f π 即可否定;对于C ,先证明-3≤f x ≤2,再说明对-3≤u ≤2总有f x =u 有解即可验证;对于D ,直接说明f -5π6>f -2π3 即可否定.【详解】对于A ,由于f x 的定义域为R ,且f -x =sin -x -3cos -x =-sin x -3cos x =sin x -3cos x =f x ,故f x 是偶函数,A 正确;对于B ,由于f 0 =sin0 -3cos0=-3,f π =sinπ -3cosπ=3,故f 0 ≠f π ,这说明π不是f x 的周期,B 错误;对于C ,由于f x =sin x -3cos x ≤sin x +3cos x =sin x +3cos x 2≤sin x +3cos x 2+3sin x -cos x 2=sin 2x +3cos 2x +23sin x cos x +3sin 2x +cos 2x -23sin x cos x =4sin 2x +4cos 2x =4=2,且f x =sin x -3cos x ≥-3cos x ≥-3,故-3≤f x ≤2.而对-3≤u ≤2,有f 0 =-3≤u ,f 5π6 =2≥u ,故由零点存在定理知一定存在x ∈0,5π6使得f x =u .所以f x 的值域为-3,2 ,C 正确;对于D ,由于-π<-5π6<-2π3<-π2,f -5π6 =2>3=f -2π3 ,故f x 在-π,-π2上并不是单调递增的,D 错误.故选:AC .17(2024·山西太原·模拟预测)已知函数f x =sin 2x +φ 0<φ<π2 的图象关于直线x =π12对称,且h x =sin2x -f x ,则()A.φ=π12B.h x 的图象关于点π6,0中心对称C.f x 与h x 的图象关于直线x =π4对称 D.h x 在区间π6,5π12内单调递增【答案】BCD【分析】根据正弦函数的对称性求解φ判断A ,先求出h x =sin 2x -π3,然后利用正弦函数的对称性求解判断B ,根据对称函数的性质判断C ,结合正弦函数的单调性代入验证判断D .【详解】由题意得2×π12+φ=π2+k π,k ∈Z ,解得φ=π3+k π,k ∈Z ,又因为0<φ<π2,所以φ=π3,A 错误;由φ=π3可知f x =sin 2x +π3,则h x =sin2x -sin 2x +π3 =12sin2x -32cos2x =sin 2x -π3,令2x -π3=k π,k ∈Z ,解得x =π6+k π2,k ∈Z ,令k =0,得x =π6,所以点π6,0 是曲线y =h x 的对称中心,B 正确;因为f π2-x =sin 2π2-x +π3 =sin 4π3-2x =sin 2x -π3=h x ,所以f x 与h x 的图象关于直线x =π4对称,C 正确;当x ∈π6,5π12 时,2x -π3∈0,π2 ,故h x 在区间π6,5π12内单调递增,D 正确.故选:BCD 18(2024·浙江金华·三模)已知函数f x =sin2ωx cos φ+cos2ωx sin φω>0,0<φ<π2的部分图象如图所示,则()A.φ=π6B.ω=2C.f x +π6为偶函数 D.f x 在区间0,π2的最小值为-12【答案】ACD【分析】先由正弦展开式,五点法结合图象求出f x =sin 2x +π6,可得A 正确,B 错误;由诱导公式可得C 正确;整体代入由正弦函数的值域可得D 正确.【详解】由题意得f x =sin 2ω+φ ,由图象可得f 0 =12⇒sin φ=12,又0<φ<π2,所以φ=π6,由五点法可得ω×4π3+π6=3π2⇒ω=1,所以f x =sin 2x +π6 .A :由以上解析可得φ=π6,故A 正确;B :由以上解析可得ω=1,故B 错误;C :f x +π6 =sin 2x +π6 +π6=cos2x ,故C 正确;D :当x ∈0,π2 ⇒2x +π6∈π6,7π6 时,sin 2x +π6 ∈-12,1,所以最小值为-12,故D 正确;故选:ACD .19(2024·浙江温州·二模)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,P -3,4 为其终边上一点,若角β的终边与角2α的终边关于直线y =-x 对称,则()A.cos π+α =35B.β=2k π+π2+2αk ∈Z C.tan β=724D.角β的终边在第一象限【答案】ACD【分析】根据三角函数的定义,可求角α的三角函数,结合诱导公式判断A 的真假;利用二倍角公式,求出2α的三角函数值,结合三角函数的概念指出角2α的终边与单位圆的交点,由对称性确定角β终边与单位圆交点,从而判断BCD 的真假.【详解】因为角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边经过点P -3,4 ,所以:OP =5,所以sin α=45,cos α=-35,所以cos π+α =-cos α=35,故A 对;又sin2α=2sin α⋅cos α=2×45×-35 =-2425,cos2α=cos 2α-sin 2α=-35 2-45 2=-725,所以2α的终边与单位圆的交点坐标为:-725,-2425 ,因为角β的终边与角2α的终边关于直线y =-x 对称,所以角β的终边与单位圆的交点为2425,725,所以tan β=724,且β的终边在第一象限,故CD 正确;又因为终边在直线y =-x 的角为:k π-π4,k ∈Z ,角2α的终边与角β的终边关于y =-x 对称,所以2α+β2=k π-π4⇒β=2k π-π2-2αk ∈Z ,故B 错误.故选:ACD20(2024·广东佛山·二模)已知函数f x =sin x +cos2x 与g x =sin2x +cos x ,记h x =λf x +μg x ,其中λ,μ∈R 且λ2+μ2≠0.下列说法正确的是()A.h x 一定为周期函数B.若λ⋅μ>0,则h x 在0,π2上总有零点C.h x 可能为偶函数 D.h x 在区间0,2π 上的图象过3个定点【答案】ABD【分析】对于A :计算h x +2π ,化简即可;对于B :求出h x ,然后计算h 0 h π2的正负即可;对于C :计算h x ,h -x 是否恒相等即可;对于D :令f x =0g x =0,求解x 即可.【详解】对于A ,∀x ∈R ,h x +2π =λf x +2π +μg x +2π =λf x +μg x =h x ,A 正确;对于B ,h x =λcos x -2sin2x +μ2cos2x -sin x ,则h 0 =λ+2μ,h π2=-3μ,因为λμ>0,即λ,μ同号,所以h 0 h π2<0,由零点存在定理知h x 在0,π2上总有零点,故B 正确;对于C ,h x =λsin x +λcos2x +μsin2x +μcos x ,h -x =-λsin x +λcos2x -μsin2x +μcos x ,由h x =h -x 得2λsin x +2μsin2x =2λsin x +2μ⋅2sin x cos x =2sin x λ+2μcos x =0对x ∈R 恒成立,则λ=μ=0与题意不符,故C 错误;对于D ,令f x =0g x =0 ,则sin x +cos2x =1-2sin 2x +sin x =-sin x -1 2sin x +1 =0sin2x +cos x =cos x 2sin x +1 =0 ⇒sin x =1或sin x =-12cos x =0或sin x =-12,即x ∈-π6+2k π,π2+2k π,7π6+2k π ,k ∈Z ,故所有定点坐标为-π6+2k π,0 ,π2+2k π,0 ,7π6+2k π,0 ,k ∈Z ,又因为x ∈0,2π ,所以函数h x 的图象过定点π2,0 ,7π6,0 ,11π6,0 ,故D 正确;故选:ABD .21(2024·湖南·二模)已知函数f x =12cos 2x -π3 ,把y =f x 的图象向右平移π3个单位长度,得到函数y =g x 的图象,以下说法正确的是()A.x =π6是y =f x 图象的一条对称轴B.f x 的单调递减区间为k π+π6,k π+2π3k ∈Z C.y =g x 的图象关于原点对称D.f x +g x 的最大值为12【答案】ABD【分析】根据题意,求得g x =-12cos2x 的图象,结合三角函数的图象与性质,以及两角差的正弦公式,逐项判定,即可求解.【详解】将函数f x =12cos 2x -π3 的图象向右平移π3个单位长度,得到函数y =g x =12cos 2x -π =-12cos2x 的图象,对于A 中,令x =π6,求得f x =12,即为函数y =f x 最大值,所以直线x =π6是函数f x 图象的一条对称轴,所以A 正确;对于B 中,令2k π≤2x -π3≤2k π+π,k ∈Z ,解得k π+π6≤x ≤k π+2π3,k ∈Z ,可得f x 的单调减区间为k π+π6,k π+2π3,k ∈Z ,所以B 正确.对于C 中,由于g x =-12cos2x 是偶函数,可得函数g x 的图象关于y 轴对称,所以C 错误.对于D 中,由f x +g x =12cos 2x -π3 +-12cos2x =1212cos2x +32sin2x -12cos2x =34sin2x -14cos2x =12sin 2x -π6 ≤12,即f x +g x 的最大值为12,所以D 正确.故选:ABD .22(2024·广东江门·一模)已知函数f (x )=sin 2ωx +π3 +sin 2ωx -π3+23cos 2ωx -3(ω>0),则下列结论正确的是()A.若f x 相邻两条对称轴的距离为π2,则ω=2B.当ω=1,x ∈0,π2时,f x 的值域为-3,2 C.当ω=1时,f x 的图象向左平移π6个单位长度得到函数解析式为y =2cos 2x +π6D.若f x 在区间0,π6上有且仅有两个零点,则5≤ω<8【答案】BCD【分析】根据三角恒等变换化简f x =2sin 2ωx +π3,进而根据周期可判断A ,根据整体法求解函数的值域判断B ,根据函数图象的平移可判断C ,根据零点个数确定不等式满足的条件可判断D .【详解】f (x )=sin 2ωx +π3 +sin 2ωx -π3+23cos 2ωx -3=sin2ωx cos π3+cos2ωx sin π3+sin2ωx cos π3-cos2ωx sin π3+3cos2ωx=sin2ωx +3cos2ωx =2sin 2ωx +π3,对于A ,若f x 相邻两条对称轴的距离为π2,则T =2×π2=π=2π2ω,故ω=1,A 错误,对于B ,当ω=1,f x =2sin 2x +π3 ,当x ∈0,π2 时,2x +π3∈π3,4π3,则f x 的值域为-3,2 ,B 正确,对于C ,当ω=1,f x =2sin 2x +π3,f x 的图象向左平移π6个单位长度得到函数解析式为f x +π6 =2sin 2x +π6 +π3 =2sin 2x +2π3 =2cos 2x +π6,C 正确,对于D ,当x ∈0,π6 时,2ωx +π3∈π3,2ωπ6+π3,若f x 在区间0,π6 上有且仅有两个零点,则2π≤2ωπ6+π3<3π,解得5≤ω<8,故D 正确,故选:BCD 三、填空题23(2024·北京·三模)已知函数f (x )=sin x cos ωx ,x ∈R .①若ω=1,则f (x )的最小正周期是;,②若ω=2,则f (x )的值域是.【答案】π[-1,1]【分析】把ω=1代入,t 明智二倍角的正弦,结合正弦函数的周期求出f (x )的最小正周期;把ω=2代入,利用二倍角的余弦公式,借助换元法,利用导数求出f (x )的值域.【详解】当ω=1时,f (x )=sin x cos x =12sin2x ,函数f (x )的最小正周期为2π2=π;当ω=2时,f (x )=sin x cos2x =sin x (1-2sin 2x ),令sin x =t ∈[-1,1],g (t )=t (1-2t 2)=-2t 3+t ,求导得g (t )=-6t 2+1,当-1≤t <-66或66<t ≤1时,g (t )<0,当-66<t <66时,g (t )>0,函数g (t )在-1,-66 ,66,1 上单调递减,在-66,66上单调递增,g (-1)=1,g 66 =69,g (1)=-1,g -66 =-69,所以g (t )min =-1,g (t )max =1,f (x )的值域是[-1,1].故答案为:π;[-1,1]24(2024·北京·模拟预测)已知函数f (x )=sin ωx -2cos ωx (ω>0),且f α+x =f α-x .若两个不等的实数x 1,x 2满足f x 1 f x 2 =5且x 1-x 2 min =π,则sin4α=.【答案】-45/-0.8【分析】利用辅助角公式化简f (x )的解析式,再由题意可得函数关于x =α对称,且最小正周期T =π,即可求出ω的值,从而得到2α=φ+π2+k π,k ∈Z ,再由二倍角公式及同角三角函数的基本关系计算可得.【详解】因为f (x )=sin ωx -2cos ωx =5sin ωx -φ ,其中tan φ=2,由f α+x =f α-x ,可得f x 关于x =α对称,又两个不等的实数x 1,x 2满足f x 1 f x 2 =5且x 1-x 2 min =π,所以f x 的最小正周期T =π,又ω>0,所以2πω=π,解得ω=2,所以f x =5sin 2x -φ ,所以2α-φ=π2+k π,k ∈Z ,则2α=φ+π2+k π,k ∈Z ,所以sin4α=sin2φ+π2+k π =sin 2φ+π+2k π =-sin2φ=-2sin φcos φsin 2φ+cos 2φ=-2tan φtan 2φ+1=-2×222+1=-45.故答案为:-4525(2024·湖北荆州·三模)设0<α<β<π2,tan α=m tan β,cos α-β =35,若满足条件的α与β存在且唯一,则m =,tan αtan β=.【答案】191【分析】由tan α=m tan β得到sin αcos β=m cos αsin β,再结合cos α-β =35,利用sin α-β =-45,得到cos αsin β=-45m -1 ,sin αcos β=-4m5m -1 ,从而sin α+β =-4m +1 5m -1,再由满足条件的α与β存在且唯一,得到α+β唯一,从而sin α+β =-4m +15m -1=1,求得m 即可.【详解】解:由tan α=m tan β,得sin αcos α=m sin βcos β,即sin αcos β=m cos αsin β,因为0<α<β<π2,tan α=m tan β,所以-π2<α-β<0,0<m <1,又cos α-β =35,所以sin α-β <0,从而sin α-β =sin αcos β-cos αsin β=m -1 cos αsin β=-45,所以cos αsin β=-45m -1,所以sin αcos β=m cos αsin β=-4m5m -1,所以sin α+β =sin αcos β+cos αsin β=-4m +15m -1,因为α,β∈0,π2,所以α+β∈0,π ,因为满足条件的α与β存在且唯一,所以α+β唯一,所以sin α+β =-4m +1 5m -1=1,所以m =19,经检验符合题意,所以tan α=19tan β,则tan α-β =-43=tan α-tan β1+tan αtan β=tan α-9tan α1+9tan 2α,解得tan α=13,所以tan αtan β=9tan 2α=1.故答案为:19,1【点睛】关键点点睛:关键是结合已知得出sin α+β =-4m +15m -1 =1,求出m ,由此即可顺利得解.。

高考数学分类汇编函数(包含导数)

高考数学分类汇编函数(包含导数)

高考数学分类汇编函数(包含导数)一、选择题1.(市回民中学2008-2009学年度上学期高三第二次阶段测试文科) 函数x x x f ln )(+=的零点所在的区间为 ( )A .(-1,0)B .(0,1)C .(1,2)D .(1,e )答案:B.2(市回民中学2008-2009学年度上学期高三第二次阶段测试文科)具有性质:1()()f f x x =-的函数,我们称为满足“倒负”变换的函数,下列函数:①1y x x=-;②1y x x =+;③,(01)0,(1)1(1)x x y x x x⎧⎪<<⎪==⎨⎪⎪->⎩中满足“倒负”变换的函数是( )A .①②B .①③C .②③D .只有① 答案:B.3.(二中2009届高三期末数学试题) 已知0||2||≠=b a ,且关于x 的函数x b a x a x x f ⋅++=23||2131)(在R 上有极值,则与的夹角围为( ) A .)6,0[π B .],6(ππC .],3(ππD .2[,]33ππ答案:C.4.(二中2009届高三期末数学试题)已知函数()f x 是定义在R 上的偶函数,且对任意x ∈R ,都有(1)(3)f x f x -=+。

当[4,6]x ∈时,()21x f x =+,设函数()f x 在区间[2,0]-上的反函数为1()f x -,则1(19)f -的值为 A .2log 3- B .22log 3- C .212log 3-D .232log 3-答案:D.5.(省二中2008—2009学年上学期高三期中考试)已知),(,)1(log )1()3()(+∞-∞⎩⎨⎧≥<--=是x x x ax a x f a 上是增函数,那么实数a 的取值围是()A .(1,+∞)B .(3,∞-)C .)3,23[D .(1,3)答案:C.6.(省二中2008—2009学年上学期高三期中考试) 若关于x 的方程,01)11(2=+++xx a ma (a>0,且1≠a )有解,则m 的取值围是() A .)0,31[- B .]1,0()0,31[ - C .]31,(--∞D .),1(+∞答案:A.7.(省二中2008—2009学年上学期高三期中考试)已知函数)(x f 是定义在R 上的偶函数,且对任意R x ∈,都有)3()1(+=-x f x f 。

历年(2020-2024)全国高考数学真题分类(函数及其基本性质)汇编(附答案)

历年(2020-2024)全国高考数学真题分类(函数及其基本性质)汇编(附答案)

历年(2020-2024)全国高考数学真题分类(函数及其基本性质)汇编考点01 直接求函数值1.(2024∙全国新Ⅰ卷∙高考真题)已知函数()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是( ) A .(10)100f > B .(20)1000f > C .(10)1000f <D .(20)10000f <2.(2024∙上海∙高考真题)已知()0,1,0x f x x >=≤⎪⎩则()3f = . 3.(2023∙北京∙高考真题)已知函数2()4log xf x x =+,则12f ⎛⎫= ⎪⎝⎭.4.(2021∙全国甲卷∙高考真题)设()f x 是定义域为R 的奇函数,且()()1f x f x +=-.若1133f ⎛⎫-= ⎪⎝⎭,则53f ⎛⎫= ⎪⎝⎭( )A .53-B .13-C .13D .535.(2021∙浙江∙高考真题)已知R a ∈,函数24,2()3,2,x x f x x a x ⎧->⎪=⎨-+≤⎪⎩若3f f ⎡⎤=⎣⎦,则=a .考点02 函数的定义域与值域1.(2022∙北京∙高考真题)函数1()f x x=的定义域是 . 2.(2020∙山东∙高考真题)函数()1lg f x x=的定义域是( ) A .()0,∞+B .()()0,11,+∞C .[)()0,11,+∞UD .()1,+∞考点03 函数单调性的判断及其应用1.(2024∙全国新Ⅰ卷∙高考真题)已知函数22,0()e ln(1),0x x ax a x f x x x ⎧---<=⎨++≥⎩在R 上单调递增,则a 的取值范围是( ) A .(,0]-∞B .[1,0]-C .[1,1]-D .[0,)+∞2.(2023∙北京∙高考真题)下列函数中,在区间(0,)+∞上单调递增的是( ) A .()ln f x x =-B .1()2xf x =C .1()f x x=-D .|1|()3x f x -=3.(2023∙全国甲卷∙高考真题)已知函数()2(1)e x f x --=.记,,a f b f c f ===⎝⎭⎝⎭⎝⎭,则( )A .b c a >>B .b a c >>C .c b a >>D .c a b >>4.(2023∙全国新Ⅰ卷∙高考真题)设函数()()2x x a f x -=在区间()0,1上单调递减,则a 的取值范围是( )A .(],2-∞-B .[)2,0-C .(]0,2D .[)2,+∞5.(2021∙全国甲卷∙高考真题)下列函数中是增函数的为( )A .()f x x =-B .()23xf x ⎛⎫= ⎪⎝⎭C .()2f x x = D .()f x 6.(2020∙山东∙高考真题)已知函数()f x 的定义域是R ,若对于任意两个不相等的实数1x ,2x ,总有()()21210f x f x x x ->-成立,则函数()f x 一定是( )A .奇函数B .偶函数C .增函数D .减函数7.(2020∙全国∙高考真题)设函数331()f x x x=-,则()f x ( ) A .是奇函数,且在(0,+∞)单调递增 B .是奇函数,且在(0,+∞)单调递减 C .是偶函数,且在(0,+∞)单调递增D .是偶函数,且在(0,+∞)单调递减考点04 函数的奇偶性及其应用1.(2024∙天津∙高考真题)下列函数是偶函数的是( )A .22e 1x x y x -=+ B .22cos 1x x y x +=+C .e 1x x y x -=+D .||sin 4e x x xy +=2.(2024∙上海∙高考真题)已知()3f x x a =+,x ∈R ,且()f x 是奇函数,则=a .3.(2023∙全国甲卷∙高考真题)若()()2π1sin 2f x x ax x ⎛⎫=-+++ ⎪⎝⎭为偶函数,则=a .4.(2023∙全国乙卷∙高考真题)已知e ()e 1xax x f x =-是偶函数,则=a ( )A .2-B .1-C .1D .25.(2023∙全国新Ⅱ卷∙高考真题)若()()21ln 21x f x x a x -=++为偶函数,则=a ( ). A .1-B .0C .12D .16.(2022∙全国乙卷∙高考真题)若()1ln 1f x a b x++-=是奇函数,则=a ,b = . 7.(2021∙全国甲卷∙高考真题)设()f x 是定义域为R 的奇函数,且()()1f x f x +=-.若1133f ⎛⎫-= ⎪⎝⎭,则53f ⎛⎫= ⎪⎝⎭( )A .53-B .13-C .13D .538.(2021∙全国新Ⅱ卷∙高考真题)写出一个同时具有下列性质①②③的函数():f x . ①()()()1212f x x f x f x =;②当(0,)x ∈+∞时,()0f x '>;③()f x '是奇函数.9.(2021∙全国新Ⅰ卷∙高考真题)已知函数()()322x x x a f x -=⋅-是偶函数,则=a .10.(2021∙全国乙卷∙高考真题)设函数1()1xf x x-=+,则下列函数中为奇函数的是( ) A .()11f x --B .()11f x -+C .()11f x +-D .()11f x ++11.(2020∙山东∙高考真题)若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是( )A .[)1,1][3,-+∞B .3,1][,[01]--C .[1,0][1,)-⋃+∞D .[1,0][1,3]-⋃12.(2020∙全国∙高考真题)设函数()ln |21|ln |21|f x x x =+--,则f (x )( )A .是偶函数,且在1(,)2+∞单调递增B .是奇函数,且在11(,)22-单调递减C .是偶函数,且在1(,)2-∞-单调递增D .是奇函数,且在1(,2-∞-单调递减考点05 函数的周期性及其应用1.(2022∙全国新Ⅱ卷∙高考真题)已知函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++-==,则221()k f k ==∑( )A .3-B .2-C .0D .12.(2021∙全国新Ⅱ卷∙高考真题)已知函数()f x 的定义域为R ,()2f x +为偶函数,()21f x +为奇函数,则( ) A .102f ⎛⎫-= ⎪⎝⎭B .()10f -=C .()20f =D .()40f =3.(2021∙全国甲卷∙高考真题)设函数()f x 的定义域为R ,()1f x +为奇函数,()2f x +为偶函数,当[]1,2x ∈时,2()f x ax b =+.若()()036f f +=,则92f ⎛⎫= ⎪⎝⎭( )A .94-B .32-C .74D .52考点06 函数的对称性及其应用1.(2024∙全国新Ⅱ卷∙高考真题)(多选)设函数32()231f x x ax =-+,则( ) A .当1a >时,()f x 有三个零点 B .当0a <时,0x =是()f x 的极大值点C .存在a ,b ,使得x b =为曲线()y f x =的对称轴D .存在a ,使得点()()1,1f 为曲线()y f x =的对称中心2.(2022∙全国新Ⅰ卷∙高考真题)(多选)已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x '=,若322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,则( )A .(0)0f =B .102g ⎛⎫-= ⎪⎝⎭C .(1)(4)f f -=D .(1)(2)g g -=3.(2022∙全国乙卷∙高考真题)已知函数(),()f x g x 的定义域均为R ,且()(2)5,()(4)7f x g x g x f x +-=--=.若()y g x =的图像关于直线2x =对称,(2)4g =,则()221k f k ==∑( )A .21-B .22-C .23-D .24-4.(2020∙全国∙高考真题)已知函数f (x )=sin x +1sin x,则() A .f (x )的最小值为2B .f (x )的图象关于y 轴对称C .f (x )的图象关于直线x π=对称D .f (x )的图象关于直线2x π=对称参考答案 考点01 直接求函数值1.(2024∙全国新Ⅰ卷∙高考真题)已知函数()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是( ) A .(10)100f > B .(20)1000f > C .(10)1000f < D .(20)10000f <【答案】B【答案分析】代入得到(1)1,(2)2==f f ,再利用函数性质和不等式的性质,逐渐递推即可判断. 【答案详解】因为当3x <时()f x x =,所以(1)1,(2)2==f f , 又因为()(1)(2)f x f x f x >-+-,则(3)(2)(1)3,(4)(3)(2)5f f f f f f >+=>+>,(5)(4)(3)8,(6)(5)(4)13,(7)(6)(5)21f f f f f f f f f >+>>+>>+>, (8)(7)(6)34,(9)(8)(7)55,(10)(9)(8)89f f f f f f f f f >+>>+>>+>, (11)(10)(9)144,(12)(11)(10)233,(13)(12)(11)377f f f f f f f f f >+>>+>>+> (14)(13)(12)610,(15)(14)(13)987f f f f f f >+>>+>,(16)(15)(14)15971000f f f >+>>,则依次下去可知(20)1000f >,则B 正确;且无证据表明ACD 一定正确. 故选:B.【名师点评】关键点名师点评:本题的关键是利用(1)1,(2)2==f f ,再利用题目所给的函数性质()(1)(2)f x f x f x >-+-,代入函数值再结合不等式同向可加性,不断递推即可.2.(2024∙上海∙高考真题)已知()0,1,0x f x x >=≤⎪⎩则()3f = .【答案分析】利用分段函数的形式可求()3f .【答案详解】因为()0,1,0x f x x >=≤⎪⎩故()3f =3.(2023∙北京∙高考真题)已知函数2()4log xf x x =+,则12f ⎛⎫= ⎪⎝⎭ .【答案】1【答案分析】根据给定条件,把12x =代入,利用指数、对数运算计算作答. 【答案详解】函数2()4log xf x x =+,所以12211()4log 21122f =+=-=.故答案为:14.(2021∙全国甲卷∙高考真题)设()f x 是定义域为R 的奇函数,且()()1f x f x +=-.若1133f ⎛⎫-= ⎪⎝⎭,则53f ⎛⎫= ⎪⎝⎭( )A .53-B .13-C .13D .53【答案】C【答案分析】由题意利用函数的奇偶性和函数的递推关系即可求得53f ⎛⎫⎪⎝⎭的值.【答案详解】由题意可得:522213333f f f f⎛⎫⎛⎫⎛⎫⎛⎫=+=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 而21111133333f f f f⎛⎫⎛⎫⎛⎫⎛⎫=-==--=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 故5133f ⎛⎫= ⎪⎝⎭.故选:C.【名师点评】关键点名师点评:本题主要考查了函数的奇偶性和函数的递推关系式,灵活利用所给的条件进行转化是解决本题的关键.5.(2021∙浙江∙高考真题)已知R a ∈,函数24,2()3,2,x x f x x a x ⎧->⎪=⎨-+≤⎪⎩若3f f ⎡⎤=⎣⎦,则=a . 【答案】2【答案分析】由题意结合函数的答案解析式得到关于a 的方程,解方程可得a 的值.【答案详解】()()642233f f f f a ⎡⎤=-==-+=⎣⎦,故2a =, 故答案为:2.考点02 函数的定义域与值域1.(2022∙北京∙高考真题)函数1()f x x=的定义域是 . 【答案】()(],00,1-∞⋃【答案分析】根据偶次方根的被开方数非负、分母不为零得到方程组,解得即可;【答案详解】解:因为()1f x x =100x x -≥⎧⎨≠⎩,解得1x ≤且0x ≠, 故函数的定义域为()(],00,1-∞⋃; 故答案为:()(],00,1-∞⋃2.(2020∙山东∙高考真题)函数()1lg f x x=的定义域是( ) A .()0,∞+ B .()()0,11,+∞C .[)()0,11,+∞UD .()1,+∞【答案】B【答案分析】根据题意得到0lg 0x x >⎧⎨≠⎩,再解不等式组即可.【答案详解】由题知:0lg 0x x >⎧⎨≠⎩,解得0x >且1x ≠. 所以函数定义域为()()0,11,+∞ . 故选:B考点03 函数单调性的判断及其应用1.(2024∙全国新Ⅰ卷∙高考真题)已知函数22,0()e ln(1),0x x ax a x f x x x ⎧---<=⎨++≥⎩在R 上单调递增,则a 的取值范围是( ) A .(,0]-∞ B .[1,0]- C .[1,1]- D .[0,)+∞【答案】B【答案分析】根据二次函数的性质和分界点的大小关系即可得到不等式组,解出即可.【答案详解】因为()f x 在R 上单调递增,且0x ≥时,()()e ln 1xf x x =++单调递增,则需满足()02021e ln1aa -⎧-≥⎪⨯-⎨⎪-≤+⎩,解得10a -≤≤, 即a 的范围是[1,0]-. 故选:B.2.(2023∙北京∙高考真题)下列函数中,在区间(0,)+∞上单调递增的是( ) A .()ln f x x =- B .1()2xf x =C .1()f x x=-D .|1|()3x f x -=【答案】C【答案分析】利用基本初等函数的单调性,结合复合函数的单调性判断ABC ,举反例排除D 即可. 【答案详解】对于A ,因为ln y x =在()0,∞+上单调递增,y x =-在()0,∞+上单调递减, 所以()ln f x x =-在()0,∞+上单调递减,故A 错误;对于B ,因为2x y =在()0,∞+上单调递增,1y x=在()0,∞+上单调递减,所以()12xf x =在()0,∞+上单调递减,故B 错误; 对于C ,因为1y x=在()0,∞+上单调递减,y x =-在()0,∞+上单调递减, 所以()1f x x=-在()0,∞+上单调递增,故C 正确;对于D ,因为111221332f -⎛⎫=== ⎪⎝⎭()()112101331,233f f --=====,显然()13x f x -=在()0,∞+上不单调,D 错误.故选:C.3.(2023∙全国甲卷∙高考真题)已知函数()2(1)e x f x --=.记,,222a f b f c f ⎛⎫=== ⎪⎝⎭⎝⎭⎝⎭,则( ) A .b c a >> B .b a c >> C .c b a >> D .c a b >>【答案】A【答案分析】利用作差法比较自变量的大小,再根据指数函数的单调性及二次函数的性质判断即可. 【答案详解】令2()(1)g x x =--,则()g x 开口向下,对称轴为1x =,4112⎛-= ⎝⎭,而22491670-=+=>,41102⎛-=> ⎝⎭,即1122->-由二次函数性质知g g <,4112⎛-= ⎝⎭,而22481682)0-=+-=-=-<,112<-,所以(2g g >,综上,(2g g g <<, 又e x y =为增函数,故a c b <<,即b c a >>. 故选:A.4.(2023∙全国新Ⅰ卷∙高考真题)设函数()()2x x a f x -=在区间()0,1上单调递减,则a 的取值范围是( )A .(],2-∞-B .[)2,0-C .(]0,2D .[)2,+∞【答案】D【答案分析】利用指数型复合函数单调性,判断列式计算作答.【答案详解】函数2x y =在R 上单调递增,而函数()()2x x a f x -=在区间()0,1上单调递减,则有函数22()()24a a y x x a x =-=--在区间()0,1上单调递减,因此12a ≥,解得2a ≥,所以a 的取值范围是[)2,+∞. 故选:D5.(2021∙全国甲卷∙高考真题)下列函数中是增函数的为( )A .()f x x =-B .()23xf x ⎛⎫= ⎪⎝⎭C .()2f x x = D .()f x 【答案】D【答案分析】根据基本初等函数的性质逐项判断后可得正确的选项. 【答案详解】对于A ,()f x x =-为R 上的减函数,不合题意,舍. 对于B ,()23xf x ⎛⎫= ⎪⎝⎭为R 上的减函数,不合题意,舍.对于C ,()2f x x =在(),0∞-为减函数,不合题意,舍.对于D ,()f x =R 上的增函数,符合题意, 故选:D.6.(2020∙山东∙高考真题)已知函数()f x 的定义域是R ,若对于任意两个不相等的实数1x ,2x ,总有()()21210f x f x x x ->-成立,则函数()f x 一定是( )A .奇函数B .偶函数C .增函数D .减函数【答案】C【答案分析】利用函数单调性定义即可得到答案. 【答案详解】对于任意两个不相等的实数1x ,2x ,总有()()21210f x f x x x ->-成立,等价于对于任意两个不相等的实数12x x <,总有()()12f x f x <. 所以函数()f x 一定是增函数. 故选:C7.(2020∙全国∙高考真题)设函数331()f x x x =-,则()f x ( ) A .是奇函数,且在(0,+∞)单调递增 B .是奇函数,且在(0,+∞)单调递减 C .是偶函数,且在(0,+∞)单调递增 D .是偶函数,且在(0,+∞)单调递减【答案】A【答案分析】根据函数的答案解析式可知函数的定义域为{}0x x ≠,利用定义可得出函数()f x 为奇函数,再根据函数的单调性法则,即可解出.【答案详解】因为函数()331f x x x =-定义域为{}0x x ≠,其关于原点对称,而()()f x f x -=-, 所以函数()f x 为奇函数. 又因为函数3y x =在()0,+?上单调递增,在(),0-?上单调递增,而331y x x -==在()0,+?上单调递减,在(),0-?上单调递减,所以函数()331f x x x =-在()0,+?上单调递增,在(),0-?上单调递增.故选:A .【名师点评】本题主要考查利用函数的答案解析式研究函数的性质,属于基础题.考点04 函数的奇偶性及其应用1.(2024∙天津∙高考真题)下列函数是偶函数的是( )A .22e 1x x y x -=+ B .22cos 1x x y x +=+C .e 1x xy x -=+D .||sin 4e x x xy +=【答案】B【答案分析】根据偶函数的判定方法一一判断即可.【答案详解】对A ,设()22e 1x xf x x -=+,函数定义域为R ,但()112e 1f ---=,()112e f -=,则()()11f f -≠,故A 错误;对B ,设()22cos 1x x g x x +=+,函数定义域为R , 且()()()()()2222cos cos 11x x x x g x g x x x -+-+-===+-+,则()g x 为偶函数,故B 正确;对C ,设()e 1x xh x x -=+,函数定义域为{}|1x x ≠-,不关于原点对称, 则()h x 不是偶函数,故C 错误; 对D ,设()||sin 4e x x x x ϕ+=,函数定义域为R,因为()sin141e ϕ+=,()sin141e ϕ---=, 则()()11ϕϕ≠-,则()x ϕ不是偶函数,故D 错误. 故选:B.2.(2024∙上海∙高考真题)已知()3f x x a =+,x ∈R ,且()f x 是奇函数,则=a .【答案】0【答案分析】根据奇函数的性质可求参数a .【答案详解】因为()f x 是奇函数,故()()0f x f x -+=即()330x a x a ++-+=,故0a =, 故答案为:0.3.(2023∙全国甲卷∙高考真题)若()()2π1sin 2f x x ax x ⎛⎫=-+++ ⎪⎝⎭为偶函数,则=a .【答案】2【答案分析】利用偶函数的性质得到ππ22f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,从而求得2a =,再检验即可得解.【答案详解】因为()()()22π1sin 1cos 2y f x x ax x x ax x ⎛⎫==-+++=-++ ⎪⎝⎭为偶函数,定义域为R ,所以ππ22f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,即22ππππππ222222s 1co 1cos a a ⎛⎫⎛⎫⎛⎫-+=-+ ⎪ -⎪ ⎪⎝⎭⎝⎭--⎝+⎭,则22πππ2π1212a -⎛⎫⎛⎫=+- ⎪⎪⎭⎝⎭= ⎝,故2a =,此时()()2212cos 1cos f x x x x x x =-++=++, 所以()()()()221cos s 1co f x x x x x f x -=-++++-==, 又定义域为R ,故()f x 为偶函数, 所以2a =. 故答案为:2.4.(2023∙全国乙卷∙高考真题)已知e ()e 1xaxx f x =-是偶函数,则=a ( ) A .2- B .1- C .1 D .2【答案】D【答案分析】根据偶函数的定义运算求解.【答案详解】因为()e e 1x ax x f x =-为偶函数,则()()()()1e e e e 0e 1e 1e 1a x x x x ax ax axx x x f x f x ---⎡⎤--⎣⎦--=-==---, 又因为x 不恒为0,可得()1e e 0a x x --=,即()1e e a x x -=, 则()1x a x =-,即11a =-,解得2a =. 故选:D.5.(2023∙全国新Ⅱ卷∙高考真题)若()()21ln 21x f x x a x -=++为偶函数,则=a ( ). A .1- B .0C .12D .1【答案】B【答案分析】根据偶函数性质,利用特殊值法求出a 值,再检验即可.【答案详解】因为()f x 为偶函数,则 1(1)(1)(1)ln (1)ln 33f f a a =-∴+=-+,,解得0a =, 当0a =时,()21ln21x x x f x -=+,()()21210x x -+>,解得12x >或12x <-,则其定义域为12x x ⎧⎨⎩或12x ⎫<-⎬⎭,关于原点对称.()()()()()()()121212121ln ln ln ln 21212121f x x x x x x x x x f x x x x x ---+⎫-=---⎛==== ⎪-+-++⎝-⎭-, 故此时()f x 为偶函数. 故选:B.6.(2022∙全国乙卷∙高考真题)若()1ln 1f x a b x++-=是奇函数,则=a ,b = . 【答案】 12-; ln 2.【答案分析】根据奇函数的定义即可求出. 【答案详解】[方法一]:奇函数定义域的对称性 若0a =,则()f x 的定义域为{|1}x x ≠,不关于原点对称0a ∴≠若奇函数的1()||1f x ln a b x =++-有意义,则1x ≠且101a x+≠- 1x ∴≠且11x a≠+,函数()f x 为奇函数,定义域关于原点对称,111a ∴+=-,解得12a =-, 由(0)0f =得,102ln b +=,2b ln ∴=,故答案为:12-;2ln .[方法二]:函数的奇偶性求参 111()111a ax ax a f x ln a b ln b ln b x x x-+--=++=+=+--- 1()1ax a f x lnb x++-=++函数()f x 为奇函数11()()2011ax a ax a f x f x lnln b x x--++∴+-=++=-+2222(1)201a x a lnb x -+∴+=-22(1)1210112a a a a +∴=⇒+=⇒=- 1222241,22b ln b ln a b ln ln -==-⇒=∴=-=[方法三]:因为函数()1ln 1f x a b x++-=为奇函数,所以其定义域关于原点对称. 由101a x+≠-可得,()()110x a ax -+-≠,所以11a x a +==-,解得:12a =-,即函数的定义域为()()(),11,11,-∞-⋃-⋃+∞,再由()00f =可得,ln 2b =.即()111ln ln 2ln 211x f x x x+=-++=--,在定义域内满足()()f x f x -=-,符合题意. 故答案为:12-;ln 2.7.(2021∙全国甲卷∙高考真题)设()f x 是定义域为R 的奇函数,且()()1f x f x +=-.若1133f ⎛⎫-= ⎪⎝⎭,则53f ⎛⎫= ⎪⎝⎭( )A .53-B .13-C .13D .53【答案】C【答案分析】由题意利用函数的奇偶性和函数的递推关系即可求得53f ⎛⎫⎪⎝⎭的值.【答案详解】由题意可得:522213333f f f f⎛⎫⎛⎫⎛⎫⎛⎫=+=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 而21111133333f f f f⎛⎫⎛⎫⎛⎫⎛⎫=-==--=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 故5133f ⎛⎫= ⎪⎝⎭.故选:C.【名师点评】关键点名师点评:本题主要考查了函数的奇偶性和函数的递推关系式,灵活利用所给的条件进行转化是解决本题的关键.8.(2021∙全国新Ⅱ卷∙高考真题)写出一个同时具有下列性质①②③的函数():f x . ①()()()1212f x x f x f x =;②当(0,)x ∈+∞时,()0f x '>;③()f x '是奇函数.【答案】()4f x x =(答案不唯一,()()2*n x N f n x =∈均满足)【答案分析】根据幂函数的性质可得所求的()f x .【答案详解】取()4f x x =,则()()()()44421121122x f x f x x x x f x x ===,满足①, ()34f x x '=,0x >时有()0f x ¢>,满足②, ()34f x x '=的定义域为R ,又()()34f x x f x ''-=-=-,故()f x '是奇函数,满足③.故答案为:()4f x x =(答案不唯一,()()2*n x N f n x =∈均满足)9.(2021∙全国新Ⅰ卷∙高考真题)已知函数()()322x xx a f x -=⋅-是偶函数,则=a .【答案】1【答案分析】利用偶函数的定义可求参数a 的值.【答案详解】因为()()322x x x a f x -=⋅-,故()()322x xf x x a --=-⋅-,因为()f x 为偶函数,故()()f x f x -=,时()()332222x x x x x a x a --⋅-=-⋅-,整理得到()()12+2=0x xa --,故1a =, 故答案为:110.(2021∙全国乙卷∙高考真题)设函数1()1xf x x-=+,则下列函数中为奇函数的是( ) A .()11f x -- B .()11f x -+C .()11f x +-D .()11f x ++【答案】B【答案分析】分别求出选项的函数答案解析式,再利用奇函数的定义即可. 【答案详解】由题意可得12()111x f x x x-==-+++, 对于A ,()2112f x x--=-不是奇函数; 对于B ,()211f x x-=+是奇函数; 对于C ,()21122f x x +-=-+,定义域不关于原点对称,不是奇函数; 对于D ,()2112f x x ++=+,定义域不关于原点对称,不是奇函数. 故选:B【名师点评】本题主要考查奇函数定义,考查学生对概念的理解,是一道容易题.11.(2020∙山东∙高考真题)若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x的取值范围是( )A .[)1,1][3,-+∞B .3,1][,[01]--C .[1,0][1,)-⋃+∞D .[1,0][1,3]-⋃【答案】D【答案分析】首先根据函数奇偶性与单调性,得到函数()f x 在相应区间上的符号,再根据两个数的乘积大于等于零,分类转化为对应自变量不等式,最后求并集得结果.【答案详解】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =, 所以()f x 在(0,)+∞上也是单调递减,且(2)0f -=,(0)0f =,所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞ 时,()0f x <, 所以由(10)xf x -≥可得:0210x x <⎧⎨-≤-≤⎩或0012x x >⎧⎨≤-≤⎩或0x = 解得10x -≤≤或13x ≤≤,所以满足(10)xf x -≥的x 的取值范围是[1,0][1,3]-⋃, 故选:D.【名师点评】本题考查利用函数奇偶性与单调性解抽象函数不等式,考查分类讨论思想方法,属中档题. 12.(2020∙全国∙高考真题)设函数()ln |21|ln |21|f x x x =+--,则f (x )( )A .是偶函数,且在1(,)2+∞单调递增B .是奇函数,且在11(,)22-单调递减C .是偶函数,且在1(,)2-∞-单调递增D .是奇函数,且在1(,2-∞-单调递减【答案】D【答案分析】根据奇偶性的定义可判断出()f x 为奇函数,排除AC ;当11,22x ⎛⎫∈- ⎪⎝⎭时,利用函数单调性的性质可判断出()f x 单调递增,排除B ;当1,2x ⎛⎫∈-∞- ⎪⎝⎭时,利用复合函数单调性可判断出()f x 单调递减,从而得到结果.【答案详解】由()ln 21ln 21f x x x =+--得()f x 定义域为12x x ⎧⎫≠±⎨⎬⎩⎭,关于坐标原点对称,又()()ln 12ln 21ln 21ln 21f x x x x x f x -=----=--+=-, ()f x \为定义域上的奇函数,可排除AC ;当11,22x ⎛⎫∈- ⎪⎝⎭时,()()()ln 21ln 12f x x x =+--,()ln 21y x =+Q 在11,22⎛⎫- ⎪⎝⎭上单调递增,()ln 12y x =-在11,22⎛⎫- ⎪⎝⎭上单调递减,()f x \在11,22⎛⎫- ⎪⎝⎭上单调递增,排除B ;当1,2x ⎛⎫∈-∞- ⎪⎝⎭时,()()()212ln 21ln 12ln ln 12121x f x x x x x +⎛⎫=----==+ ⎪--⎝⎭,2121x μ=+- 在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,()ln f μμ=在定义域内单调递增,根据复合函数单调性可知:()f x 在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,D 正确.故选:D.【名师点评】本题考查函数奇偶性和单调性的判断;判断奇偶性的方法是在定义域关于原点对称的前提下,根据()f x -与()f x 的关系得到结论;判断单调性的关键是能够根据自变量的范围化简函数,根据单调性的性质和复合函数“同增异减”性得到结论.考点05 函数的周期性及其应用1.(2022∙全国新Ⅱ卷∙高考真题)已知函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++-==,则221()k f k ==∑( )A .3-B .2-C .0D .1【答案】A【答案分析】法一:根据题意赋值即可知函数()f x 的一个周期为6,求出函数一个周期中的()()()1,2,,6f f f 的值,即可解出. 【答案详解】[方法一]:赋值加性质因为()()()()f x y f x y f x f y ++-=,令1,0x y ==可得,()()()2110f f f =,所以()02f =,令0x =可得,()()()2f y f y f y +-=,即()()f y f y =-,所以函数()f x 为偶函数,令1y =得,()()()()()111f x f x f x f f x ++-==,即有()()()21f x f x f x ++=+,从而可知()()21f x f x +=--,()()14f x f x -=--,故()()24f x f x +=-,即()()6f x f x =+,所以函数()f x 的一个周期为6.因为()()()210121f f f =-=-=-,()()()321112f f f =-=--=-,()()()4221f f f =-==-,()()()5111f f f =-==,()()602f f ==,所以一个周期内的()()()1260f f f +++= .由于22除以6余4, 所以()()()()()221123411213k f k f f f f ==+++=---=-∑.故选:A .[方法二]:【最优解】构造特殊函数由()()()()f x y f x y f x f y ++-=,联想到余弦函数和差化积公式()()cos cos 2cos cos x y x y x y ++-=,可设()cos f x a x ω=,则由方法一中()()02,11f f ==知2,cos 1a a ω==,解得1cos 2ω=,取3πω=, 所以()2cos3f x x π=,则()()()()2cos 2cos 4cos cos 333333f x y f x y x y x y x y f x f y ππππππ⎛⎫⎛⎫++-=++-== ⎪ ⎪⎝⎭⎝⎭,所以()2cos 3f x xπ=符合条件,因此()f x 的周期263T ππ==,()()02,11f f ==,且()()()()()21,32,41,51,62f f f f f =-=-=-==,所以(1)(2)(3)(4)(5)(6)0f f f f f f +++++=, 由于22除以6余4,所以()()()()()221123411213k f k f f f f ==+++=---=-∑.故选:A .【整体点评】法一:利用赋值法求出函数的周期,即可解出,是该题的通性通法;法二:作为选择题,利用熟悉的函数使抽象问题具体化,简化推理过程,直接使用具体函数的性质解题,简单明了,是该题的最优解.2.(2021∙全国新Ⅱ卷∙高考真题)已知函数()f x 的定义域为R ,()2f x +为偶函数,()21f x +为奇函数,则( ) A .102f ⎛⎫-= ⎪⎝⎭B .()10f -=C .()20f =D .()40f =【答案】B【答案分析】推导出函数()f x 是以4为周期的周期函数,由已知条件得出()10f =,结合已知条件可得出结论.【答案详解】因为函数()2f x +为偶函数,则()()22f x f x +=-,可得()()31f x f x +=-, 因为函数()21f x +为奇函数,则()()1221f x f x -=-+,所以,()()11f x f x -=-+, 所以,()()()311f x f x f x +=-+=-,即()()4f x f x =+, 故函数()f x 是以4为周期的周期函数,因为函数()()21F x f x =+为奇函数,则()()010F f ==, 故()()110f f -=-=,其它三个选项未知. 故选:B.3.(2021∙全国甲卷∙高考真题)设函数()f x 的定义域为R ,()1f x +为奇函数,()2f x +为偶函数,当[]1,2x ∈时,2()f x ax b =+.若()()036f f +=,则92f ⎛⎫= ⎪⎝⎭( )A .94-B .32-C .74D .52【答案】D【答案分析】通过()1f x +是奇函数和()2f x +是偶函数条件,可以确定出函数答案解析式()222f x x =-+,进而利用定义或周期性结论,即可得到答案. 【答案详解】[方法一]:因为()1f x +是奇函数,所以()()11f x f x -+=-+①; 因为()2f x +是偶函数,所以()()22f x f x +=-+②.令1x =,由①得:()()()024f f a b =-=-+,由②得:()()31f f a b ==+, 因为()()036f f +=,所以()462a b a b a -+++=⇒=-,令0x =,由①得:()()()11102f f f b =-⇒=⇒=,所以()222f x x =-+.思路一:从定义入手.9551222222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 1335112222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=-+=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 511322=2222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=-+=--+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭所以935222f f⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭. [方法二]:因为()1f x +是奇函数,所以()()11f x f x -+=-+①; 因为()2f x +是偶函数,所以()()22f x f x +=-+②.令1x =,由①得:()()()024f f a b =-=-+,由②得:()()31f f a b ==+, 因为()()036f f +=,所以()462a b a b a -+++=⇒=-,令0x =,由①得:()()()11102f f f b =-⇒=⇒=,所以()222f x x =-+.思路二:从周期性入手由两个对称性可知,函数()f x 的周期4T =. 所以91352222f f f⎛⎫⎛⎫⎛⎫==-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故选:D .【名师点评】在解决函数性质类问题的时候,我们通常可以借助一些二级结论,求出其周期性进而达到简便计算的效果.考点06 函数的对称性及其应用1.(2024∙全国新Ⅱ卷∙高考真题)(多选)设函数32()231f x x ax =-+,则( ) A .当1a >时,()f x 有三个零点 B .当0a <时,0x =是()f x 的极大值点C .存在a ,b ,使得x b =为曲线()y f x =的对称轴D .存在a ,使得点()()1,1f 为曲线()y f x =的对称中心【答案】AD【答案分析】A 选项,先答案分析出函数的极值点为0,x x a ==,根据零点存在定理和极值的符号判断出()f x 在(1,0),(0,),(,2)a a a -上各有一个零点;B 选项,根据极值和导函数符号的关系进行答案分析;C 选项,假设存在这样的,a b ,使得x b =为()f x 的对称轴,则()(2)f x f b x =-为恒等式,据此计算判断;D 选项,若存在这样的a ,使得(1,33)a -为()f x 的对称中心,则()(2)66f x f x a +-=-,据此进行计算判断,亦可利用拐点结论直接求解.【答案详解】A 选项,2()666()f x x ax x x a '=-=-,由于1a >,故()(),0,x a ∞∞∈-⋃+时()0f x '>,故()f x 在()(),0,,a ∞∞-+上单调递增, (0,)x a ∈时,()0f x '<,()f x 单调递减,则()f x 在0x =处取到极大值,在x a =处取到极小值, 由(0)10=>f ,3()10f a a =-<,则(0)()0f f a <, 根据零点存在定理()f x 在(0,)a 上有一个零点,又(1)130f a -=--<,3(2)410f a a =+>,则(1)(0)0,()(2)0f f f a f a -<<,则()f x 在(1,0),(,2)a a -上各有一个零点,于是1a >时,()f x 有三个零点,A 选项正确; B 选项,()6()f x x x a '=-,a<0时,(,0),()0x a f x '∈<,()f x 单调递减, ,()0x ∈+∞时()0f x '>,()f x 单调递增,此时()f x 在0x =处取到极小值,B 选项错误;C 选项,假设存在这样的,a b ,使得x b =为()f x 的对称轴,即存在这样的,a b 使得()(2)f x f b x =-, 即32322312(2)3(2)1x ax b x a b x -+=---+,根据二项式定理,等式右边3(2)b x -展开式含有3x 的项为303332C (2)()2b x x -=-,于是等式左右两边3x 的系数都不相等,原等式不可能恒成立, 于是不存在这样的,a b ,使得x b =为()f x 的对称轴,C 选项错误; D 选项,方法一:利用对称中心的表达式化简(1)33f a =-,若存在这样的a ,使得(1,33)a -为()f x 的对称中心,则()(2)66f x f x a +-=-,事实上,32322()(2)2312(2)3(2)1(126)(1224)1812f x f x x ax x a x a x a x a +-=-++---+=-+-+-,于是266(126)(1224)1812a a x a x a -=-+-+-即126012240181266a a a a -=⎧⎪-=⎨⎪-=-⎩,解得2a =,即存在2a =使得(1,(1))f 是()f x 的对称中心,D 选项正确. 方法二:直接利用拐点结论任何三次函数都有对称中心,对称中心的横坐标是二阶导数的零点,32()231f x x ax =-+,2()66f x x ax '=-,()126f x x a ''=-,由()02af x x ''=⇔=,于是该三次函数的对称中心为,22a a f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭, 由题意(1,(1))f 也是对称中心,故122aa =⇔=, 即存在2a =使得(1,(1))f 是()f x 的对称中心,D 选项正确. 故选:AD【名师点评】结论名师点评:(1)()f x 的对称轴为()(2)x b f x f b x =⇔=-;(2)()f x 关于(,)a b 对称()(2)2f x f a x b ⇔+-=;(3)任何三次函数32()f x ax bx cx d =+++都有对称中心,对称中心是三次函数的拐点,对称中心的横坐标是()0f x ''=的解,即,33b b f a a ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭是三次函数的对称中心 2.(2022∙全国新Ⅰ卷∙高考真题)(多选)已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x '=,若322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,则( )A .(0)0f =B .102g ⎛⎫-= ⎪⎝⎭C .(1)(4)f f -=D .(1)(2)g g -=【答案】BC【答案分析】方法一:转化题设条件为函数的对称性,结合原函数与导函数图象的关系,根据函数的性质逐项判断即可得解.【答案详解】[方法一]:对称性和周期性的关系研究对于()f x ,因为322f x ⎛⎫- ⎪⎝⎭为偶函数,所以332222f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭即3322f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭①,所以()()3f x f x -=,所以()f x 关于32x =对称,则(1)(4)f f -=,故C 正确; 对于()g x ,因为(2)g x +为偶函数,(2)(2)g x g x +=-,(4)()g x g x -=,所以()g x 关于2x =对称,由①求导,和()()g x f x '=,得333333222222f x f x f x f x g x g x ''⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫''-=+⇔--=+⇔--=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦,所以()()30g x g x -+=,所以()g x 关于3(,0)2对称,因为其定义域为R ,所以302g ⎛⎫= ⎪⎝⎭,结合()g x 关于2x =对称,从而周期34222T ⎛⎫=⨯-= ⎪⎝⎭,所以13022g g ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,()()()112g g g -==-,故B 正确,D 错误; 若函数()f x 满足题设条件,则函数()f x C +(C 为常数)也满足题设条件,所以无法确定()f x 的函数值,故A 错误.故选:BC.[方法二]:【最优解】特殊值,构造函数法.由方法一知()g x 周期为2,关于2x =对称,故可设()()cos πg x x =,则()()1sin ππf x x c =+,显然A ,D 错误,选BC.故选:BC.[方法三]: 因为322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数, 所以332222f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭即3322f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,(2)(2)g x g x +=-, 所以()()3f x f x -=,(4)()g x g x -=,则(1)(4)f f -=,故C 正确;函数()f x ,()g x 的图象分别关于直线3,22x x ==对称, 又()()g x f x '=,且函数()f x 可导, 所以()()30,32g g x g x ⎛⎫=-=- ⎪⎝⎭, 所以()(4)()3g x g x g x -==--,所以()(2)(1)g x g x g x +=-+=, 所以13022g g ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,()()()112g g g -==-,故B 正确,D 错误; 若函数()f x 满足题设条件,则函数()f x C +(C 为常数)也满足题设条件,所以无法确定()f x 的函数值,故A 错误.故选:BC.【点评】方法一:根据题意赋值变换得到函数的性质,即可判断各选项的真假,转化难度较高,是该题的通性通法;方法二:根据题意得出的性质构造特殊函数,再验证选项,简单明了,是该题的最优解.3.(2022∙全国乙卷∙高考真题)已知函数(),()f x g x 的定义域均为R ,且()(2)5,()(4)7f x g x g x f x +-=--=.若()y g x =的图像关于直线2x =对称,(2)4g =,则()221k f k ==∑( )A .21-B .22-C .23-D .24-【答案】D【答案分析】根据对称性和已知条件得到()(2)2f x f x +-=-,从而得到()()()352110f f f +++=- ,()()()462210f f f +++=- ,然后根据条件得到(2)f 的值,再由题意得到()36g =从而得到()1f 的值即可求解.【答案详解】因为()y g x =的图像关于直线2x =对称,所以()()22g x g x -=+,因为()(4)7g x f x --=,所以(2)(2)7g x f x +--=,即(2)7(2)g x f x +=+-,因为()(2)5f x g x +-=,所以()(2)5f x g x ++=,代入得[]()7(2)5f x f x ++-=,即()(2)2f x f x +-=-,所以()()()()35212510f f f +++=-⨯=- ,()()()()46222510f f f +++=-⨯=- .因为()(2)5f x g x +-=,所以(0)(2)5f g +=,即()01f =,所以()(2)203f f =--=-.因为()(4)7g x f x --=,所以(4)()7g x f x +-=,又因为()(2)5f x g x +-=,联立得,()()2412g x g x -++=,所以()y g x =的图像关于点()3,6中心对称,因为函数()g x 的定义域为R ,所以()36g =因为()(2)5f x g x ++=,所以()()1531f g =-=-.所以()()()()()()()()221123521462213101024()k f f f f f f f f f k =+++++++++=----=-⎡⎤⎡⎤⎣⎦⎣⎦=∑ . 故选:D【名师点评】含有对称轴或对称中心的问题往往条件比较隐蔽,考生需要根据已知条件进行恰当的转化,然后得到所需的一些数值或关系式从而解题.4.(2020∙全国∙高考真题)已知函数f (x )=sin x +1sin x ,则() A .f (x )的最小值为2B .f (x )的图象关于y 轴对称C .f (x )的图象关于直线x π=对称D .f (x )的图象关于直线2x π=对称【答案】D【答案分析】根据基本不等式使用条件可判断A;根据奇偶性可判断B;根据对称性判断C,D.【答案详解】sin x 可以为负,所以A 错;1sin 0()()sin ()sin x x k k Z f x x f x x π≠∴≠∈-=--=-∴Q Q ()f x 关于原点对称; 11(2)sin (),()sin (),sin sin f x x f x f x x f x x x ππ-=--≠-=+=Q 故B 错; ()f x ∴关于直线2x π=对称,故C 错,D 对故选:D【名师点评】本题考查函数定义域与最值、奇偶性、对称性,考查基本答案分析判断能力,属中档题.。

2010-2019高考数学理科真题分类汇编专题二 函数概念与基本初等函数 第五讲函数与方程含答案

2010-2019高考数学理科真题分类汇编专题二  函数概念与基本初等函数 第五讲函数与方程含答案

专题二 函数概念与基本初等函数Ⅰ第五讲 函数与方程2019年1.(2019全国Ⅱ理12)设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是 A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦2.(2019江苏14)设(),()f x g x 是定义在R 上的两个周期函数,()f x 的周期为4,()g x 的周期为2,且()f x 是奇函数.当2(]0,x ∈时,()1)f x ,(2),01()1,122k x x g x x +<≤⎧⎪=⎨-<≤⎪⎩,其中k >0.若在区间(0,9]上,关于x 的方程()()f x g x =有8个不同的实数根,则k 的取值范围是 .3.(2019浙江9)已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩,若函数()y f x ax b =--恰有3个零点,则A .a <-1,b <0B .a <-1,b >0C .a >-1,b <0D .a >-1,b >02010-2018年一、选择题1.(2018全国卷Ⅰ)已知函数0()ln 0⎧=⎨>⎩,≤,,,x e x f x x x ()()=++g x f x x a .若()g x 存在2个零点,则a 的取值范围是 A .[1,0)-B .[0,)+∞C .[1,)-+∞D .[1,)+∞2.(2017新课标Ⅲ)已知函数211()2()x x f x x x a ee --+=-++有唯一零点,则a =A .12-B .13C .12D .13.(2017山东)已知当[0,1]x ∈时,函数2(1)y mx =-的图象与y m =的图象有且只有一个交点,则正实数m 的取值范围是 A .(])0,123,⎡+∞⎣B .(][)0,13,+∞C .()23,⎡+∞⎣D .([)3,+∞4.(2016年天津)已知函数()f x =2(4,0,log (1)13,03)ax a x a x x x ⎧+<⎨++≥-+⎩(0a >,且1a ≠)在R 上单调递减,且关于x 的方程|()|2f x x =-恰好有两个不相等的实数解,则a 的取值范围是 A .(0,23] B .[23,34] C .[13,23]{34} D .[13,23){34} 5.(2015安徽)下列函数中,既是偶函数又存在零点的是A .y cos x =B .y sin x =C .y ln x =D .21y x =+ 6.(2015福建)若,a b 是函数()()20,0f x x px q p q =-+>> 的两个不同的零点,且,,2a b - 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q +的值等于A .6B .7C .8D .97.(2015天津)已知函数()()22,22,2x x f x x x ⎧-≤⎪=⎨->⎪⎩ 函数()()2g x b f x =-- ,其中 b R ∈ ,若函数()()y f x g x =- 恰有4个零点,则b 的取值范围是A .7(,)4+∞ B .7(,)4-∞ C .7(0,)4 D .7(,2)48.(2015陕西)对二次函数2()f x ax bx c =++(a 为非零整数),四位同学分别给出下列结论,其中有且仅有一个结论是错误的,则错误的结论是 A .-1是()f x 的零点 B .1是()f x 的极值点 C .3是()f x 的极值 D .点(2,8)在曲线()y f x =上9.(2014山东)已知函数()12+-=x x f ,()kx x g =.若方程()()f x g x =有两个不相等的实根,则实数k 的取值范围是A .),(210B .),(121C .),(21D .),(∞+210.(2014北京)已知函数()26log f x x x=-,在下列区间中,包含()f x 零点的区间是 A .()0,1 B .()1,2 C .()2,4 D .()4,+∞11.(2014重庆)已知函数13,(1,0]()1,(0,1]x f x x x x ⎧-∈-⎪=+⎨⎪∈⎩, 且()()g x f x mx m =--在(1,1]-内有且仅有两个不同的零点,则实数m 的取值范围是A .]21,0(]2,49(⋃--B .]21,0(]2,411(⋃-- C .]32,0(]2,49(⋃-- D .]32,0(]2,411(⋃--12.(2014湖北)已知()f x 是定义在R 上的奇函数,当0x ≥时,2()=3f x x x -.则函数()()+3g x f x x =-的零点的集合为A .{1,3}B .{3,1,1,3}-- C.{23} D.{21,3}- 13.(2013安徽)已知函数32()f x x ax bx c =+++有两个极值点12,x x ,若112()f x x x =<,则关于x 的方程23(())2()0f x af x b ++=的不同实根个数为A .3B .4C .5D .614.(2013重庆)若a b c <<,则函数()()()()()()()f x x a x b x b x c x c x a =--+--+--的两个零点分别位于区间A .(),a b 和(),b c 内B .(),a -∞和(),a b 内C .(),b c 和(),c +∞内D .(),a -∞和(),c +∞内15.(2013湖南)函数()2ln f x x =的图像与函数()245g x x x =-+的图象的交点个数为A .3B .2C .1D .0 16.(2013天津)函数0.5()2|log |1x f x x =-的零点个数为A .1B .2C .3D .417.(2012北京)函数121()()2xf x x =-的零点个数为A .0B .1C .2D .3 18.(2012湖北)函数2()cos f x x x =在区间[0,4]上的零点个数为A .4B .5C .6D .719.(2012辽宁)设函数)(x f ()x R ∈满足()()f x f x -=,()(2)f x f x =-,且当[]0,1x ∈时,()3=f x x .又函数()()=cos g x x x π,则函数()()()h x g x f x =-在13[,]22-上的零点个数为A .5B .6C .7D .8 20.(2011天津)对实数a 与b ,定义新运算“⊗”:,1,, 1.a ab a b b a b -≤⎧⊗=⎨->⎩ 设函数()()22()2,.f x x x x x R =-⊗-∈若函数()y f x c =-的图像与x 轴恰有两个公共点,则实数c 的取值范围是 A .(]3,21,2⎛⎫-∞-⋃- ⎪⎝⎭ B .(]3,21,4⎛⎫-∞-⋃-- ⎪⎝⎭C .11,,44⎛⎫⎛⎫-∞⋃+∞ ⎪⎪⎝⎭⎝⎭ D .311,,44⎛⎫⎡⎫--⋃+∞ ⎪⎪⎢⎝⎭⎣⎭21.(2011福建)若关于x 的方程210x mx ++=有两个不相等的实数根,则实数m 的取值范围是A .(-1,1)B .(-2,2)C .(-∞,-2)∪(2,+∞)D .(-∞,-1)∪(1,+∞) 22.(2011全国新课标)函数11y x =-的图像与函数2sin (24)y x x π=-≤≤的图像所有交点的横坐标之和等于A .2B .4C .6D .823.(2011山东)已知()f x 是R 上最小正周期为2的周期函数,且当02x <≤时,3()f x x x =-,则函数()y f x =的图象在区间[0,6]上与x 轴的交点的个数为A .6B .7C .8D .924.(2010年福建)函数223,0()2ln ,0x x x f x x x ⎧+-=⎨-+>⎩≤,的零点个数为A .0B .1C .2D .325.(2010天津)函数()23xf x x =+的零点所在的一个区间是A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2) 26.(2010广东)“14m <”是“一元二次方程20x x m ++=有实数解”的 A .充分非必要条件 B .充分必要条件 C .必要非充分条件 D .非充分非必要条件27.(2010浙江)设函数()4sin(21)f x x x =+-,则在下列区间中函数()f x 不.存在零点的是A .[]4,2--B .[]2,0-C .[]0,2D .[]2,4 二、填空题28.(2018全国卷Ⅲ)函数()cos(3)6f x x π=+在[0,]π的零点个数为________.29.(2018天津)已知0a >,函数222,0,()22,0.x ax a x f x x ax a x ⎧++=⎨-+->⎩≤若关于x 的方程()f x ax=恰有2个互异的实数解,则a 的取值范围是 .30.(2018江苏)若函数32()21()f x x ax a =-+∈R 在(0,)+∞内有且只有一个零点,则()f x 在[1,1]-上的最大值与最小值的和为 .31.(2018浙江)已知λ∈R ,函数24,()43,x x f x x x x λλ-⎧=⎨-+<⎩≥,当2λ=时,不等式()0f x <的解集是_____.若函数()f x 恰有2个零点,则λ的取值范围是______.32.(2018浙江)我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一.凡百钱,买鸡百只,问鸡翁、母、雏各几何?”设鸡翁,鸡母,鸡雏个数分别为x ,y ,z ,则1001531003x y z x y z ++=⎧⎪⎨++=⎪⎩,当81z =时,x = ,y = .33.(2017江苏)设()f x 是定义在R 且周期为1的函数,在区间[0,1)上,2,(),x x Df x x x D⎧∈=⎨∉⎩其中集合1{|,}n D x x n n-==∈*N ,则方程()lg 0f x x -=的解的个数是 . 34.(2016年山东)已知函数2||,()24,x x m f x x mx m x m ⎧=⎨-+>⎩≤ 其中0m >,若存在实数b ,使得关于x 的方程()f x b =有三个不同的根,则m 的取值范围是_________. 35.(2015湖北)函数2π()4coscos()2sin |ln(1)|22x f x x x x =---+的零点个数为 . 36.(2015北京)设函数()()()2142 1.xa x f x x a x a x ⎧-<⎪=⎨--⎪⎩≥‚‚‚①若1a =,则()f x 的最小值为;②若()f x 恰有2个零点,则实数a 的取值范围是.37.(2015湖南)已知函数32,(),x x af x x x a ⎧=⎨>⎩≤,若存在实数b ,使函数()()g x f x b =-有两个零点,则a 的取值范围是 .38.(2014江苏)已知)(x f 是定义在R 上且周期为3的函数,当)3,0[∈x 时,|212|)(2+-=x x x f .若函数a x f y -=)(在区间]4,3[-上有10个零点(互不相同),则实数a 的取值范围是 .39.(2014福建)函数()⎩⎨⎧>+-≤-=0,ln 620,22x x x x x x f 的零点个数是_________.40.(2014天津)已知函数2()|3|f x x x =+,x ∈R .若方程()|1|0f x a x --=恰有4个互异的实数根,则实数a 的取值范围为__________.41.(2012福建)对于实数a 和b ,定义运算“*”:22,,,,a ab a b a b b ab a b ⎧-*=⎨->⎩… 设()f x =(21)(1)x x -*-,且关于x 的方程为()f x m =(m ∈R )恰有三个互不相等的实数根123,,x x x ,则123x x x 的取值范围是____________.42.(2011北京)已知函数32,2()(1),2x f x x x x ⎧≥⎪=⎨⎪-<⎩,若关于x 的方程()f x =k 有两个不同的实根,则数k 的取值范围是_______.43.(2011辽宁)已知函数a x e x f x +-=2)(有零点,则a 的取值范围是_____.专题二 函数概念与基本初等函数Ⅰ第五讲 函数与方程答案部分 2019年1.解析:因为(1)2()f x f x +=,所以()2(1)f x f x =-,当(0,1]x ∈时,1()(1),04f x x x ⎡⎤=-∈-⎢⎥⎣⎦, 当(1,2]x ∈时,1(0,1]x -∈,1()2(1)2(1)(2),02f x f x x x ⎡⎤=-=--∈-⎢⎥⎣⎦, 当(2,3]x ∈时,1(1,2]x -∈,[]()2(1)4(2)(3)1,0f x f x x x =-=--∈-, 当(2,3]x ∈时,由84(2)(3)9x x --=-解得73x =或83x =,若对任意(,]x m ∈-∞,都有8()9f x -…,则73m ….故选B .2.解析 作出函数()f x 与()g x 的图像如图所示,由图可知,函数()f x 与1()(12,34,56,78)2g x x x x x =-<<<<剟剟仅有2个实数根;要使关于x 的方程()()f x g x =有8个不同的实数根,则()f x =,(0,2]x ∈与()(2)g x k x =+,(0,1]x ∈的图象有2个不同交点, 由(1,0)到直线20kx y k -+=的距离为11=,解得0)k k =>,因为两点(2,0)-,(1,1)连线的斜率13k =,所以13k <…,即k的取值范围为1[3.3.解析:当0x <时,()(1)y f x ax b x ax b a x b =--=--=--,最多一个零点;当0x …时,32321111()(1)(1)3232y f x ax b x a x ax ax b x a x b =--=-++--=-+-, 2(1)y x a x '=-+,当10a +…,即1a -…时,0y '>,()y f x ax b =--在上递增,()y f x ax b=--最多一个零点不合题意;当10a +>,即1a >-时,令0y '>得(1,)x a ∈++∞,函数递增,令0y '<得(0,1)x a ∈+,函数递减;函数最多有2个零点;根据题意函数()y f x ax b =--恰有3个零点函数()y f x ax b =--在(,0)-∞上有一个零点,在[0,)+∞上有2个零点, 如下图:所以01b a <-且3211(1)(1)(1)032b a a a b ->⎧⎪⎨+-++-<⎪⎩, 解得0b <,10a ->,31(1)6b a >-+. 故选C .2010-2018年1.C 【解析】函数()()=++g x f x x a 存在 2个零点,即关于x 的方程()=--f x x a 有2个不同的实根,即函数()f x 的图象与直线=--y x a 有2个交点,作出直线=--y x a 与函数()f x 的图象,如图所示,由图可知,1-≤a ,解得1≥a ,故选C . 2.C 【解析】令()0f x =,则方程112()2x x a ee x x --++=-+有唯一解,设2()2h x x x =-+,11()x x g x e e --+=+,则()h x 与()g x 有唯一交点,又11111()2x x x x g x ee e e--+--=+=+≥,当且仅当1x =时取得最小值2.而2()(1)11h x x =--+≤,此时1x =时取得最大值1,()()ag x h x =有唯一的交点,则12a =.选C . 3.B 【解析】当01m <≤时,11m≥,函数2()(1)y f x mx ==-,在[0,1]上单调递减,函数()y g x m ==,在[0,1]上单调递增,因为(0)1f =,(0)g m =,2(1)(1)f m =-,(1)1g m =+,所以(0)(0)f g >,(1)(1)f g <,此时()f x 与()g x 在[0,1]x ∈有一个交点;当1m >时,101m<<,函数2()(1)y f x mx ==-,在 1[0,]m 上单调递减,在1[,1]m 上单调递增,此时(0)(0)f g <,在1[0,]m无交点, 要使两个函数的图象有一个交点,需(1)(1)f g ≥,即2(1)1m m -+≥,解得3m ≥. 选B .4.C 【解析】当0x <时,()f x 单调递减,必须满足4302a --…,故304a <…,此时函数()f x 在[0,)+∞上单调递减,若()f x 在R 上单调递减,还需31a …,即13a …,所以1334a 剟.当0x …时,函数|()|y f x =的图象和直线2y x =-只有一个公共点,即当0x …时,方程|()|2f x x =-只有一个实数解.因此,只需当0x <时,方程|()|2f x x =-只有一个实数解,根据已知条件可得,当0x <时,方程2(43)x a x +-+32a x =-,即22(21)320x a x a +-+-=在(,0)-∞上恰有唯一的实数解.判别式24(21)4(32)4(1)(43)a a a a ∆=---=--,当34a =时,0∆=,此时12x =-满足题意;令2()2(21)32h x x a x a =+-+-,由题意得(0)0h <,即320a -<,即23a <时,方程22(21)320x a x a +-+-=有一个正根、一个负根,满足要求;当(0)0h =,即23a =时,方程22(21)320x a x a +-+-=有一个为0、一个根为23-,满足要求;当(0)0h >,即320a ->,即2334a <<时对称轴(21)0a --<,此时方程22(21)320x a x a +-+-=有两个负根,不满足要求;综上实数a 的取值范围是123[,]{}334. 5.A 【解析】cos y x =是偶函数且有无数多个零点,sin y x =为奇函数,ln y x =既不是奇函数又不是偶函数,21y x =+是偶函数但没有零点.故选A .6.D 【解析】由韦达定理得a b p +=,a b q ⋅=,则0,0a b >>,当,,2a b -适当排序后成等比数列时,2-必为等比中项,故4a b q ⋅==,4b a=.当适当排序后成等差数列时,2-必不是等差中项,当a 是等差中项时,422a a=-,解得1a =,4b =; 当4a是等差中项时,82a a =-,解得4a =,1b =,综上所述,5a b p +==,所以p q +9=,选D .7.D 【解析】由()()22,2,2,2,x x f x x x -≤⎧⎪=⎨->⎪⎩得222,0(2),0x x f x x x --≥⎧⎪-=⎨<⎪⎩, 所以222,0()(2)42,0222(2),2x x x y f x f x x x x x x x ⎧-+<⎪=+-=---≤≤⎨⎪--+->⎩, 即222,0()(2)2,0258,2x x x y f x f x x x x x ⎧++<⎪=+-=≤≤⎨⎪-+>⎩, ()()()(2)y f x g x f x f x b =-=+--,所以()()y f x g x =-恰有4个零点等价于方程()(2)0f x f x b +--=有4个不同的解,即函数y b =与函数()(2)y f x f x =+-的图象的4个公共点,由图象可知724b <<. x8.A 【解析】由A 知0a b c -+=;由B 知()2f x ax b '=+,20a b +=;由C 知()2f x ax b '=+,令()0f x '=可得2b x a =-,则()32bf a-=,则2434ac b a -=; 由D 知428a b c ++=,假设A 选项错误,则2020434428a b c a b ac b a a b c -+≠⎧⎪+=⎪⎪⎨-=⎪⎪++=⎪⎩,得5108a b c =⎧⎪=-⎨⎪=⎩,满足题意,故A 结论错误,同理易知当B 或C 或D 选项错误时不符合题意,故选A . 9.B 【解析】如图所示,方程()()f x g x =有两个不相等的实根等价于两个函数的图象有两个不同的交点,结合图象可知,当直线y kx =的斜率大于坐标原点与点(2,1)的连续的斜率,且小于直线1y x =-的斜率时符合题意,故选112k <<.10.C 【解析】∵2(1)6log 160f =-=>,2(2)3log 220f =-=>,231(4)log 4022f =-=-<,∴()f x 零点的区间是()2,4. 11.A 【解析】()()g x f x mx m =--在(1,1]-内有且仅有两个不同的零点就是函数()y f x =的图象与函数(1)y m x =+的图象有两个交点,在同一直角坐标系内作出函数13,(1,0]()1,(0,1]x f x x x x ⎧-∈-⎪=+⎨⎪∈⎩,和函数(1)y m x =+的图象,如图,当直线(1)y m x =+与13,(1,0]1y x x =-∈-+和,(0,1]y x x =∈都相交时 102m <≤;当直线(1)y m x =+与13,(1,0]1y x x =-∈-+有两个交点时,由(1)131y m x y x =+⎧⎪⎨=-⎪+⎩,消元得13(1)1m x x -=++,即2(1)3(1)10m x x +++-=, 化简得2(23)20mx m x m ++++=,当940m ∆=+=,即94m =-时直线 (1)y m x =+与13,(1,0]1y x x =-∈-+相切,当直线(1)y m x =+过点(0,2)- 时,2m =-,所以9(,2]4m ∈--,综上实数m 的取值范围是91(,2](0,]42--⋃.12.D 【解析】当0x ≥时,函数()g x 的零点即方程()3f x x =-的根,由233x x x -=-,解得1x =或3;当0x <时,由()f x 是奇函数得2()()3()f x f x x x -=-=--,即()f x =23x x --,由()3f x x =-得2x =--. 13.A 【解析】2'()32f x x ax b =++,12,x x 是方程2320x ax b ++=的两根,由23(())2()0f x af x b ++=,则又两个()f x 使得等式成立,11()x f x =,211()x x f x >=,其函数图象如下:x21)=x 1如图则有3个交点,故选A.14.A 【解析】由a b c <<,可得()()()0f a a b a c =-->,()()()0f b b c b a =--<,()()()0f c c a c b =-->.显然()()0f a f b ⋅<,()()0f b f c ⋅<,所以该函数在(,)a b 和(,)b c 上均有零点,故选A .15.B 【解析】二次函数()245g x x x =-+的图像开口向上,在x 轴上方,对称轴为2x =,(2)1g =; (2)2ln 2ln 41f ==>.所以(2)(2)g f <,从图像上可知交点个数为2.16.B 【解析】令()0f x =,可得0.51log 2x x =,由图象法可知()f x 有两个零点. 17.B 【解析】因为()f x 在[0,)+∞内单调递增,又1(0)10,(1)02f f =-<=>,所以()f x 在[0,)+∞内存在唯一的零点.18.C 【解析】0)(=x f ,则0=x 或0cos 2=x ,Z k k x ∈+=,22ππ,又[]4,0∈x ,4,3,2,1,0=k 所以共有6个解.选C .19.B 【解析】由题意()()f x f x -=知,所以函数()f x 为偶函数,所以()(2)(2)f x f x f x =-=-,所以函数()f x 为周期为2的周期函数,且(0)0f =,(1)1f =,而()|cos()|g x x x π=为偶函数,且113(0)()()()0222g g g g ==-==,在同一坐标系下作出两函数在13[,]22-上的图像,发现在13[,]22-内图像共有6个公共点,则函数()()()h x g x f x =-在13[,]22-上的零点个数为6,故选B .20.B 【解析】由题意知,若222()1x x x ---≤,即312x -≤≤时,2()2f x x =-;当222()1x x x --->,即1x <-或32x >时,2()f x x x =-,要使函数()y f x c =-的图像与x 轴恰有两个公共点,只须方程()0f x c -=有两个不相等的实数根即可,即函数()y f x =的图像与直线y c =有两个不同的交点即可,画出函数()y f x =的图像与直线y c =,不难得出答案B .21.C 【解析】由一元二次方程有两个不相等的实数根,可得判别式0∆>,即240m ->,解得2m <-或2m >,故选C . 22.D 【解析】图像法求解.11y x =-的对称中心是(1,0)也是2sin (24)y x x π=-≤≤的中心,24x -≤≤他们的图像在1x =的左侧有4个交点,则1x =右侧必有4个交点.不妨把他们的横坐标由小到大设为1,2345678,,,,,,x x x x x x x x , 则182736452x x x x x x x x +=+=+=+=,所以选D23.B 【解析】因为当02x ≤<时, 3()f x x x =-,又因为()f x 是R 上最小正周期为2的周期函数,且(0)0f =,所以(6)(4)(2)(0)0f f f f ====,又因为(1)0f =,所以(3)0f =,(5)0f =,故函数()y f x =的图象在区间[0,6]上与x 轴的交点的个数为7个,选B .24.C 【解析】当0x ≤时,令2230x x +-=解得3x =-;当0x >时,令2ln 0x -+=解得100x =,所以已知函数有两个零点,选C . 25.B 【解析】因为1(1)230f --=-<,0(0)2010f =-=>,所以选B . 26.A 【解析】20x x m ++=有实数解等价于140m ∆=-≥,即14m ≤.当14m <时,14m ≤成立,但14m ≤时,14m <不一定成立,故选A .27.A 【解析】(0)4sin10f =>,(2)4sin 52f =-,由于52ππ<<,所以(2)0f <,故函数()f x 在[0,2]上存在零点;由于(1)4sin(1)10f -=-+<,故函数()f x 在[1,0]-上存在零点,在[0,2]上也存在零点,令52[2,4]4x π-=∈, 则52552()4sin 0424f πππ--=->,而(2)0f <, 所以函数在[2,4]上存在零点,故选A . 28.3【解析】由题意知,cos(3)06x π+=,所以362x k πππ+=+,k ∈Z ,所以93k x ππ=+,k ∈Z ,当0k =时,9x π=;当1k =时,49x π=;当2k =时,79x π=,均满足题意,所以函数()f x 在[0,]π的零点个数为3.29.(48),【解析】当0x ≤时,由22x ax a ax ++=,得2a x ax =--;当0x >时,由222x ax a ax -+-=,得22a x ax =-+.令22,0(),0x ax x g x x ax x ⎧--=⎨-+>⎩≤,作出直线y a =,2y a =,函数()g x 的图象如图所示,()g x 的最大值为222424a a a -+=,由图象可知,若()f x ax =恰有2个互异的实数解,则224a a a <<,得48a <<. 30.3-【解析】2()622(3)f x x ax x x a '=-=-(a ∈R ),当0a ≤时()0f x '>在(0,)+∞上恒成立,则()f x 在(0,)+∞上单调递增,又(0)1f =,所以此时()f x 在(0,)+∞内无零点,不满足题意.当0a >时,由()0f x '>得3a x >,由()0f x '<得03a x <<,则()f x 在(0,)3a上单调递减,在(,)3a +∞上单调递增,又()f x 在(0,)+∞内有且只有一个零点,所以3()10327a a f =-+=,得3a =,所以32()231f x x x =-+, 则()6(1)f x x x '=-,当(1,0)x ∈-时,()0f x '>,()f x 单调递增,当(0,1)x ∈时,()0f x '<,()f x 单调递减,则max ()(0)1f x f ==,(1)4f -=-,(1)0f =,则min ()4f x =-,所以()f x 在[1,1]-上的最大值与最小值的和为3-.31.(1,4);(1,3](4,)+∞【解析】若2λ=,则当2x ≥时,令40x -<,得24x <≤;当2x <时,令2430x x -+<,得12x <<.综上可知14x <<,所以不等式()0f x <的解集为(1,4).令40x -=,解得4x =;令2430x x -+=,解得1x =或3x =.因为函数()f x 恰有2个零点,结合函数的图象(图略)可知13λ<≤或4λ>.32.8;11【解析】因为81z =,所以195373x y x y +=⎧⎨+=⎩,解得811x y =⎧⎨=⎩.33.8【解析】由于()[0,1)f x ∈,则需考虑110x ≤<的情况,在此范围内,x ∈Q 且x D ∈时,设*,,,2qx p q p p=∈≥N ,且,p q 互质, 若lg x ∈Q ,则由lg (0,1)x ∈,可设*lg ,,,2nx m n m m=∈≥N ,且,m n 互质, 因此10n mq p=,则10()nm q p =,此时左边为整数,右边为非整数,矛盾, 因此lg x ∉Q ,因此lg x 不可能与每个周期内x D ∈对应的部分相等, 只需考虑lg x 与每个周期x D ∉的部分的交点,画出函数图象,图中交点除外(1,0)其他交点横坐标均为无理数,属于每个周期x D ∉的部分,且1x =处11(lg )1ln10ln10x x '==<,则在1x =附近仅有一个交点,因此方程()lg 0f x x -=的解的个数为8.34.(3,)+∞【解析】由题意,当x m >时,222()24()4f x x mx m x m m m =-+=-+-,其顶点为2(,4)m m m -;当x m …时,函数()f x 的图象与直线x m =的交点为(,)Q m m .①当24m m m m>⎧⎨-⎩…,即03m <…时,函数()f x 的图象如图1所示,此时直线y b =与函数()f x 的图象有一个或两个不同的交点,不符合题意;②当240m m m m ⎧-<⎨>⎩,即3m >时,函数()f x 的图象如图2所示,则存在实数b 满足24m m b m -<…,使得直线y b =与函数()f x 的图象有三个不同的交点,符合题意.综上,m 的取值范围为(3,)+∞.图1 图235.2【解析】因为2()4coscos()2sin |ln(1)|22x f x x x x π=---+ 2(1cos )sin 2sin |ln(1)|x x x x =+⋅--+=sin 2|ln(1)|x x -+36.1- 1[,1)2[2,)+∞【解析】①若1a =,则21()4()(2) 1.x a x f x x a x a x ⎧-<=⎨--⎩≥‚‚‚,作出函数()f x 的图象如图所示,由图可知()f x 的最小值为1-.②当1a ≥时,要使()f x 恰好有3个零点,需满足120a -≤,即2a ≥.所以2a ≥;当1a <时,要使()f x 恰好有2个零点,需满足11220a a a <⎧⎨->⎩≤,解得112a <≤.37.),1()0,(+∞-∞ 【解析】分析题意可知,问题等价于方程)(3a xb x ≤=与方程)(2a x b x >=的根的个数和为2,若两个方程各有一个根:则可知关于b 的不等式组⎪⎪⎩⎪⎪⎨⎧≤->≤a b a b a b 31有解,从而1>a ;若方程)(3a x b x ≤=无解,方程)(2a xb x >=有2个根:则可知关于b 的不等式组⎪⎩⎪⎨⎧>->ab ab 31有解,从而0<a ;综上,实数a 的取值范围是),1()0,(+∞-∞ .38.1(0,)2【解析】函数()y f x a =-在区间[3,4]-上有互不相同的10个零点,即函数()y fx =与y a =的图象有10个不同的交点,在坐标系中作出函数()y f x =在一个周期内的图象,可知102a <<.39.2【解析】当0x ≤时,令220x -=,解得x =当0x >时,()26ln f x x x =-+,∵1()20f x x'=+>,∴()f x 在(0,)+∞上单调递增,因为(1)40f =-<,(3)ln30f =>,所以函数()26ln f x x x =-+在(0,)+∞有且只有一个零点,所以()f x 的零点个数为2.40.01a <<或9a >【解析】法一 显然0a >.(ⅰ)当(1)y a x =--与23y x x =--相切时,1a =,此时()|1|0f x a x --=恰有3个互异的实数根. (ⅱ)当直线(1)y a x =-与函数23y x x =+相切时,9a =,此时()|1|0f x a x --=恰有2个互异的实数根.结合图象可知01a <<或9a >.法二:显然1a ¹,所以231x xa x +=-.令1t x =-,则45a t t =++.因为4(,4]t t +∈-∞-[4,)+∞,所以45t t++Î(,1][9,)-∞+∞.结合图象可得01a <<或9a >.41.116-()【解析】由定义运算“*”可知 22(21)(21)(1),211()(1)(21)(1),211x x x x x f x x x x x x ⎧------=⎨----->-⎩…=222,0,0x x x x x x ⎧-⎨-+>⎩…,如图可知满足题意的m 的范围是104m <<,不妨设123x x x <<,当0x >时,2x x -+=m ,即20x x m -+=∴231x x +=;∴2232310()24x x x x +<<= 当0x …时,由212,(0)4x x x -=<,得14x -= 10x <<1230x x x << 42.(0,1)【解析】当2x <时,2()3(1)0f x x '=-≥,说明函数在(,2)-∞上单调递增,函数的值域是(,1)-∞,又函数在[2,)+∞上单调递减,函数的值域是(0,1],因此要使方程()f x k =有两个不同实根,则01k <<.43.(,2ln 22]-∞-【解析】由原函数有零点,可将问题转化为方程20xe x a -+=有解问题,即方程2x a x e =-有解.令函数()2x g x x e =-,则()2x g x e '=-,令()0g x '=,得ln 2x =,所以()g x 在(,ln 2)-∞上是增函数,在(ln 2,)+∞上是减函数,所以()g x 的最大值为(ln 2)2ln 22g =-,所以(,2ln 22]a ∈-∞-.。

2012年-2021年(10年)全国高考数学真题分类汇编(理科) 不等式选讲(精解精析版)

2012年-2021年(10年)全国高考数学真题分类汇编(理科) 不等式选讲(精解精析版)

2012-2021十年全国高考数学真题分类汇编(理科)不等式选讲(精解精析版)1.(2021年高考全国乙卷理科)已知函数()3f x x a x =-++.(1)当1a =时,求不等式()6f x ≥的解集;(2)若()f x a >-,求a 的取值范围.【答案】(1)(][),42,-∞-+∞ .(2)3,2⎛⎫-+∞ ⎪⎝⎭.解析:(1)当1a =时,()13f x x x =-++,13x x -++表示数轴上的点到1和3-的距离之和,则()6f x ≥表示数轴上的点到1和3-的距离之和不小于6,故4x ≤-或2x ≥,所以()6f x ≥的解集为(][),42,-∞-+∞ .(2)依题意()f x a >-,即3a x a x -+>-+恒成立,333x a x x a a x -++-+=≥++,故3a a +>-,所以3a a +>-或3a a +<,解得32a >-.所以a 的取值范围是3,2⎛⎫-+∞ ⎪⎝⎭.【点睛】解绝对值不等式的方法有零点分段法、几何意义法.2.(2020年高考数学课标Ⅰ卷理科)已知函数()|31|2|1|f x x x =+--.(1)画出()y f x =的图像;(2)求不等式()(1)f x f x >+的解集.【答案】(1)详解解析;(2)7,6⎛⎫-∞-⎪⎝⎭.【解析】(1)因为()3,1151,1313,3x x f x x x x x ⎧⎪+≥⎪⎪=--<<⎨⎪⎪--≤-⎪⎩,作出图象,如图所示:(2)将函数()f x 的图象向左平移1个单位,可得函数()1f x +的图象,如图所示:由()3511x x --=+-,解得76x =-.所以不等式()(1)f x f x >+的解集为7,6⎛⎫-∞-⎪⎝⎭.【点睛】本题主要考查画分段函数的图象,以及利用图象解不等式,意在考查学生的数形结合能力,属于基础题.3.(2020年高考数学课标Ⅱ卷理科)已知函数2()|21|f x x a x a =-+-+.(1)当2a =时,求不等式()4f x 的解集;(2)若()4f x ,求a 的取值范围.【答案】(1)32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭;(2)(][),13,-∞-+∞ .解析:(1)当2a =时,()43f x x x =-+-.当3x ≤时,()43724f x x x x =-+-=-≥,解得:32x ≤;当34x <<时,()4314f x x x =-+-=≥,无解;当4x ≥时,()43274f x x x x =-+-=-≥,解得:112x ≥;综上所述:()4f x ≥的解集为32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭.(2)()()()()22222121211f x x a x a x a x a a a a =-+-+≥---+=-+-=-(当且仅当221a x a -≤≤时取等号),()214a ∴-≥,解得:1a ≤-或3a ≥,a ∴的取值范围为(][),13,-∞-+∞ .【点睛】本题考查绝对值不等式的求解、利用绝对值三角不等式求解最值的问题,属于常考题型.4.(2020年高考数学课标Ⅲ卷理科)设a ,b ,c ∈R ,a +b +c =0,abc =1.(1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c 【答案】(1)证明见解析(2)证明见解析.解析:(1)2222()2220a b c a b c ab ac bc ++=+++++= ,()22212ab bc ca a b c ∴++=-++.1,,,abc a b c =∴ 均不为0,则2220a b c ++>,()222120ab bc ca a b c ∴++=-++<;(2)不妨设max{,,}a b c a =,由0,1a b c abc ++==可知,0,0,0a b c ><<,1,a b c a bc =--= ,()222322224b c b c bc bc bc a a a bc bc bc++++∴=⋅==≥=.当且仅当b c =时,取等号,a ∴≥,即max{,,}a b c .【点睛】本题主要考查了不等式的基本性质以及基本不等式的应用,属于中档题.5.(2019年高考数学课标Ⅲ卷理科)设,,x y z R ∈,且1x y z ++=.(1)求222(1)(1)(1)x y z -++++的最小值;(2)若2221(2)(1)()3x y z a -+-+-≥成立,证明:3a -≤或1a -≥.【答案】【答案】(1)43;(2)见详解.【官方解析】(1)由于2[(1)(1)(1)]x y z -++++222(1)(1)(1)2[(1)(1)(1)(1)(1)(1)]x y z x y y z z x =-+++++-++++++-2223(1)(1)(1)x y z ⎡⎤-++++⎣⎦故由已知得232(1)(1)143()x y z -++++≥,当且仅当511,,333x y z ==-=-时等号成立.所以232(1)(1)(1)x y z -++++的最小值为43.(2)由于2[(2)(1)()]x y z a -+-+-222(2)(1)()2[(2)(1)(1)()()(2)]x y z a x y y z a z a x =-+-+-+--+--+--2223(2)(1)()x y z a ⎡⎤-+-+-⎣⎦故由已知得2222(2)(2)(1)()3a x y z a +-+-+-,当且仅当4122,,333aa a x y z ---===时等号成立.因此222(2)(1)()x y z a -+-+-的最小值为2(2)3a +由题设知2(2)133a +,解得3a -≤或1a -≥.【解法2】柯西不等式法(1)22222222[(1)(1)(1)](111)[(1)(1)(1)](1)4x y z x y z x y z -++++++-++++=+++=≥,故2224(1)(1)(1)3x y z -++++≥,当且仅当511,,333x y z ==-=-时等号成立.所以222(1)(1)(1)x y z -++++的最小值为43.(2)2221(2)(1)()3x y z a -+-+-≥,所以222222[(2)(1)()](111)1x y z a -+-+-++≥.当且仅当4122,,333aa a x y z ---===时等号成立.22222222[(2)(1)()](111)(21)(2)x y z a x y z a a -+-+-++=-+-+-=+成立.所以2(2)1a +≥成立,所以有3a -≤或1a -≥.【点评】本题两问思路一样,既可用基本不等式,也可用柯西不等式求解,属于中档题型.6.(2019年高考数学课标全国Ⅱ卷理科)已知函数()()2f x x a x x x a =-+--.()1当1a =时,求不等式()0f x <的解集;()2当(),1x ∈-∞时,()0f x <,求a 的取值范围.【答案】()1(),1-∞;()2[)1,+∞【官方解析】()1当1a =时,()=|1| +|2|(1)f x x x x x ---.当1x <时,2()2(1)0f x x =--<;当1x ≥时,()0f x ≥.所以,不等式()0f x <的解集为(,1)-∞.()2因为()=0f a ,所以1a ≥.当1a ≥,(,1)x ∈-∞时,()=() +(2)()=2()(1)<0f x a x x x x a a x x -----所以,a 的取值范围是[1,)+∞.【分析】()1根据1a =,将原不等式化为()1210x x x x -+--<,分别讨论1x <,12x <≤,2x ≥三种情况,即可求出结果;()2分别讨论1a ≥和1a <两种情况,即可得出结果.【解析】()1当1a =时,原不等式可化为()1210x x x x -+--<;当1x <时,原不等式可化为,即()210x ->,显然成立,此时解集为(),1-∞;当12x <≤时,原不等式可化为()()()1210x x x x -+--<,解得1x <,此时解集为空集;当2x ≥时,原不等式可化为()()()1210x x x x -+--<,即()210x -<,显然不成立;此时解集为空集;综上,原不等式的解集为(),1-∞;()2当1a ≥时,因为(),1x ∈-∞,所以由()0f x <可得()()()20a x x x x a -+--<,即()()10x a x -->,显然恒成立;所以1a ≥满足题意;当1a <时,()()()2,1()21,x a a x f x x a x x a-<⎧⎪=⎨--<⎪⎩≤,因为1a x <≤时,()0f x <显然不能成立,所以1a <不满足题意;综上,a 的取值范围是[)1,+∞.【点评】本题主要考查含绝对值的不等式,熟记分类讨论的方法求解即可,属于常考题型.7.(2019年高考数学课标全国Ⅰ卷理科)已知a ,b ,c 为正数,且满足1abc =.证明:(1)222111a b c a b c++++≤;(2)333()()()24a b b c c a +++++≥.【答案】解:(1)因为2222222,2,2a b ab b c bc c a ac +++≥≥≥,又1abc =,故有222111ab bc ca a b c ab bc ca abc a b c ++++++==++≥.所以222111a b c a b c++++≤.(2)因为, , a b c 为正数且1abc =,故有333()()()a b b c c a +++++≥3(+)(+)(+)a b b c a c=324⨯⨯⨯=≥所以333()()()24a b b c c a +++++≥.8.(2018年高考数学课标Ⅲ卷(理))【选修4—5:不等式选讲】(10分)设函数()211f x x x =++-.(1)画出()y f x =的图象;(2)当[)0,x ∈+∞时,()f x ax b ≤+,求a b +的最小值.【答案】【官方解析】(1)()13,212,123,1x x f x x x x x ⎧-<-⎪⎪⎪=+-≤<⎨⎪≥⎪⎪⎩()y f x =的图像如图所示(2)由(1)知,()y f x =的图像与y 轴交点的纵坐标为2,且各部分所在直线斜率的最大值为3,故当且仅当3a ≥且2b ≥时,()f x ax b ≤+在[)0,+∞成立,因此a b +的最小值为5.【民间解析】(1)()211f x x x =++-3,112,12132x x x x x x ⎧⎪>⎪⎪=+-≤≤⎨⎪⎪-<-⎪⎩,可作出函数()f x的图象如下图(2)依题意可知()f x ax b ≤+在[)1,+∞上恒成立,在[)0,1上也恒成立当1x ≥时,()3f x x ax b =≤+恒成立即()30a x b -+≥在[)1,+∞上恒成立所以30a -≥,且30a b -+≥,此时3a ≥,3a b +≥当01x ≤<时,()2f x x ax b =+≤+即()120a x b -+-≥恒成立结合3a ≥,可知20b -≥即2b ≥综上可知32a b ≥⎧⎨≥⎩,所以当3a =,2b =时,a b +取得最小值5.9.(2018年高考数学课标Ⅱ卷(理))[选修4-5:不等式选讲](10分)设函数()5|||2|f x x a x =-+--.(1)当1a =时,求不等式()0f x ≥的解集;(2)若()1f x ≤,求a 的取值范围.【答案】解析:(1)当1a =时,24,1,()2,12,26, 2.x x f x x x x +-⎧⎪=-<⎨⎪-+>⎩≤ ≤可得()0≥f x 的解集为{}|23≤≤x x -.(2)()1f x ≤等价于|||2|4≥x a x ++-.而|||2||2|≥x a x a ++-+,且当2x =时等号成立,故()1f x ≤等价于|2|4≥a +.由|2|4≥a +可得6≤a -或2≥a ,所以a 的取值范围是(][),62,-∞-+∞ .10.(2018年高考数学课标卷Ⅰ(理))[选修4–5:不等式选讲](10分)已知()|1||1|f x x ax =+--.(1)当1a =时,求不等式()1f x >的解集;(2)若(0,1)x ∈时不等式()f x x >成立,求a 的取值范围.【答案】解析:(1)当1a =时,()|1||1|f x x x =+--,即2,1,()2,11,2, 1.x f x x x x -≤-⎧⎪=-<<⎨⎪≥⎩故不等式()1f x >的解集为1{|}2x x >.(2)当(0,1)x ∈时|1||1|x ax x +-->成立等价于当(0,1)x ∈时|1|1ax -<成立.若0a ≤,则当(0,1)x ∈时|1|1ax -≥;若0a >,|1|1ax -<的解集为20x a <<,所以21a≥,故02a <≤.综上,a 的取值范围为(0,2].11.(2017年高考数学新课标Ⅰ卷理科)[选修4—5:不等式选讲]已知函数()24f x x ax =-++,()11g x x x =++-.(1)当1a =时,求不等式()()f x g x ≥的解集;(2)若不等式()()f x g x ≥的解集包含[]1,1-,求a 的取值范围2017年高考数学新课标Ⅰ卷理科【答案】(1)112x x ⎧-+⎪-≤≤⎨⎬⎪⎪⎩⎭;(2)[]1,1-.【分析】(1)将1a =代入,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤,对x 按1x <-,11x -≤≤,1x >讨论,得出最值的解集;(2)当[1,1]x ∈-时,()2g x =.若()()f x g x ≥的解集包含[1,1]-,等价于当[]1,1x ∈-时,()2f x ≥,则()f x 在[]1,1-的最小值必为()1f -与()1f 之一,所以()12f -≥且()12f ≥,得11a -≤≤,所以a的取值范围为[]1,1-.【解析】(1)当1a =时,不等式()()f x g x ≥等价于21140x x x x -+++--<①当1x <-时,①式化为2340x x --≤,无解;当11x -≤≤时,①式化为220x x --≤,从而11x -≤≤;当1x >时,①式化为240x x +-≤,从而11712x -+<≤所以不等式()()f x g x ≥的解集为11712x x ⎧-+⎪-≤≤⎨⎪⎪⎩⎭(2)当[]1,1x ∈-时,()2g x =所以()()f x g x ≥的解集包含[]1,1-,等价于当[]1,1x ∈-时,()2f x ≥又()f x 在[]1,1-的最小值必为()1f -与()1f 之一,所以()()1212f f -≥⎧⎪⎨≥⎪⎩,得11a -≤≤.所以a 的取值范围为[]1,1-.【考点】绝对值不等式的解法,恒成立问题【点评】零点分段法是解答绝对值不等式问题的常用方法,也可以将绝对值函数转化为分段函数,借助图像解题.12.(2017年高考数学课标Ⅲ卷理科)[选修4—5:不等式选讲](10分)已知函数()12f x x x =+--.(1)求不等式()1f x ≥的解集;(2)若不等式()2f x x x m ≥-+的解集非空,求m 的取值范围.【答案】(Ⅰ){}1x x ≥;(Ⅱ)5-,4⎛⎤∞ ⎥⎝⎦【解析】(1)因为()3, 11221, 123, 2x f x x x x x x -<-⎧⎪=+--=-≤≤⎨⎪>⎩所以不等式()1f x ≥等价于131x <-⎧⎨-≥⎩或12211x x -≤≤⎧⎨-≥⎩或231x >⎧⎨≥⎩由131x <-⎧⎨-≥⎩⇒x 无解;由1222x x -≤≤⎧⎨≥⎩12x ⇒≤≤;由231x >⎧⎨≥⎩2x ⇒≥综上可得不等式()1f x ≥的解集为[)1,+∞.(2)解法一:先求不等式()2f x x x m ≥-+的解集为空集时m 的取值范围不等式()2f x x x m ≥-+的解集为空集等价于不等式()2m f x x x >-+恒成立记()()2F x f x x x =-+2223, 131, 123, 2x x x x x x x x x ⎧-+-<-⎪-+-≤≤⎨⎪-++>⎩,则()maxm F x >⎡⎤⎣⎦当1x <-时,()()2211131524F x x x x F ⎛⎫=-+-=---<-=- ⎪⎝⎭当12x -≤≤时,()223535312424F x x x x F ⎛⎫⎛⎫=-+-=--+≤=⎪ ⎪⎝⎭⎝⎭当2x >时,()()2211332124F x x x x F ⎛⎫=-++=--+<= ⎪⎝⎭所以()max 3524F x F ⎛⎫==⎡⎤⎪⎣⎦⎝⎭所以不等式()2f x x x m ≥-+的解集为空集时,54m >所以不等式()2f x x x m ≥-+的解集非空时,m 的取值范围为5,4⎛⎤-∞ ⎥⎝⎦.解法二:原式等价于存在x R ∈,使2()f x x x m -+≥成立,即2max [()]f x x x m-+≥设2()()g x f x x x=-+由(1)知2223,1()31,123,2x x x g x x x x x x x ⎧-+-≤-⎪=-+--<<⎨⎪-++≥⎩当1x ≤-时,2()3g x x x =-+-,其开口向下,对称轴112x =>-所以()()11135g x g ≤-=---=-当12x -<<时,()231g x x x =-+-,其开口向下,对称轴为32x =所以()399512424g x g ⎛⎫≤=-+-=⎪⎝⎭当2x ≥时,()23g x x x =-++,其开口向下,对称轴为12x =所以()()24231g x g ≤=-++=综上()max 54g x =⎡⎤⎣⎦所以m 的取值范围为5,4⎛⎤-∞ ⎥⎝⎦.【考点】绝对值不等式的解法【点评】绝对值不等式的解法有三种:法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想;法二:利用“零点分段法”求解,体现了分类讨论的思想;法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.13.(2017年高考数学课标Ⅱ卷理科)[选修4-5:不等式选讲](10分)已知330,0,2a b a b >>+=,证明:(1)33()()4a b a b ++≥;(2)2a b +≤.【答案】【命题意图】不等式证明,柯西不等式【基本解法】(1)解法一:由柯西不等式得:55222222332()()))()4a b a b a b a b⎡⎤⎡⎤++=+⋅+≥+=⎣⎦⎣⎦解法二:5566553325533()()()2a b a b a b ab a b a b ab a b a b++=+++=+++-33233332()2()4a b a b a b ≥++-=+=解法三:()()()()()2555533553342a b a b a b a b a bab a b a b ++-=++-+=+-又0,0a b >>,所以()255332220ab a b a b ab a b +-=-≥.当a b =时,等号成立.所以,()()5540a b a b++-≥,即55()()4a b ab ++≥.(2)解法一:由332a b +=及2()4a b ab +≤得2222()()()()3a b a b ab a b a b ab ⎡⎤=+⋅+-=+⋅+-⎣⎦2233()()()4()4a b a b a b a b ⎡⎤+≥+⋅+-⎢⎥⎣⎦+=所以2a b +≤.解法二:(反证法)假设2a b +>,则2a b >-,两边同时立方得:3323(2)8126a b b b b >-=-+-,即3328126a b b b +>-+,因为332a b +=,所以261260b b -+<,即26(1)0b -<,矛盾,所以假设不成立,即2a b +≤.解法三:因为332a b +=,所以:()()()3333322333843344a b a b a baa b ab b a b +-=+-+=+++--()()()()222333a b a b a b a b a b =-+-=-+-.又0,0a b >>,所以:()()230a b a b -+-≤。

历年(2020-2023)全国高考数学真题分类(函数)汇编(附答案)

历年(2020-2023)全国高考数学真题分类(函数)汇编(附答案)

历年(2020‐2023)全国高考数学真题分类(函数)汇编【2023年真题】1.(2023·新课标I 卷 第4题) 设函数()()2x x a f x -=在区间(0,1)单调递减,则a 的取值范围是( ) A. (,2]-∞-B. [2,0)-C. (0,2]D. [2,)+∞2.(2023·新课标II 卷 第4题)若21()()ln 21x f x x a x -=++为偶函数,则a =( ) A. 1-B. 0C.12D. 13.(2023·新课标I 卷 第10题)(多选) 噪声污染问题越来越受到重视,用声压级来度量声音的强弱,定义声压级020lgp pL p =⨯,其中常数00(0)p p >是听觉下限阈值,p 是实际声压.下表为不同声源的声压级: 声源 与声源的距离/m声压级/dB 燃油汽车1060~90混合动力汽车1050~60电动汽车1040已知在距离燃油汽车、混合动力汽车、电动汽车10m 处测得实际声压分别为1p ,2p ,3p ,则( ) A. 12p p …B. 2310p p >C. 30100p p =D. 12100p p …4. (2023·新课标I 卷 第11题)(多选)已知函数()f x 的定义域为R ,22()()()f xy y f x x f y =+,则( ) A. (0)0f = B. (1)0f =C. ()f x 是偶函数D. 0x =为()f x 的极小值点【2022年真题】5.(2022·新高考I 卷 第12题)(多选)已知函数()f x 及其导函数()f x '的定义域为R ,记()().g x f x ='若3(2)2f x -,(2)g x +均为偶函数,则( )A. (0)0f =B. 1()02g -=C. (1)(4)f f -=D. (1)(2)g g -=6.(2022·新高考II 卷 第8题)若函数()f x 的定义域为R ,且()()()()f x y f x y f x f y ++-=,(1)1f =,则221()k f k ==∑( )A. 3-B. 2-C. 0D. 1【2021年真题】7.(2021·新高考I 卷 第13题)已知函数3()(22)x x f x x a -=⋅-是偶函数,则a =__________. 8.(2021·新高考II 卷 第7题)已知5log 2a =,8log 3b =,12c =,则下列判断正确的是( ) A. c b a << B. b a c << C. a c b << D. a b c <<9.(2021·新高考II 卷 第8题)设函数()f x 的定义域为R ,且(2)f x +为偶函数,(21)f x +为奇函数,则 ( )A. 102f ⎛⎫-= ⎪⎝⎭B. (1)0f -=C. (2)0f =D. (4)0f =10.(2021·新高考II 卷 第14题)写出一个同时具有下列性质①②③的函数()f x :_________. ①()()()1212f x x f x f x =;②当(0,)x ∈+∞时,()0f x '>;③()f x '是奇函数.【2020年真题】11.(2020·新高考I 卷 第6题)基本再生数0R 与世代间隔T 是新冠肺炎流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:()rt I t e =描述累计感染病例数()I t 随时间(t 单位:天)的变化规律,指数增长率 r 与0R ,T 近似满足01.R rT =+有学者基于已有数据估计出0 3.28R =, 6.T =据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln 20.69)≈( ) A. 1.2天B. 1.8天C. 2.5天D. 3.5天12.(2020·新高考I 卷、II 卷 第8题)若定义在R 上的奇函数()f x 在(,0)-∞单调递减,且(2)0f =,则满足(1)0xf x -…的x 的取值范围是( ) A. [1,1][3,)-⋃+∞ B. [3,1][0,1]--⋃ C. [1,0][1,)-⋃+∞D. [1,0][1,3]-⋃13.(2020·新高考II 卷 第7题)已知函数2()lg(45)f x x x =--在(,)a +∞上单调递增,则a 的取值范围是( ) A. (2,)+∞ B. [2,)+∞ C. (5,)+∞ D. [5,)+∞14.(2020·新高考I 卷 第12题)(多选)信息熵是信息论中的一个重要概念.设随机变量X 所有可能的取值为1,2, ,n ,且()0(1,2,,)i P X i p i n ==>= ,11ni i p ==∑,定义X 的信息熵21()logni i i H X p p ==-∑( )A. 若1n =,则()0H x =B. 若2n =,则()H x 随着1p 的增大而增大C. 若i p =1n(1,2,i =,)n ,则()H x 随着n 的增大而增大 D. 若2n m =,随机变量Y 的所有可能取值为1,2, ,m ,且()P Y j ==j p +21j m p +-(1,2,j = ,)m ,则()H X ()H Y参考答案1.(2023·新课标I 卷 第4题)解:结合复合函数单调性的性质,易得12a …,所以a 的取值范围是[2,);+∞故选.D 2.(2023·新课标II 卷 第4题)解:()f x 为偶函数,(1)(1)f f =-,1(1)ln(1)ln 33a a ∴+=-+,0a ∴=,故选.B 3.(2023·新课标I 卷 第10题)(多选) 解:1211200220lg20lg 20lg 0p p p L L p p p -=⨯-⨯=⨯> ,121pp ∴>,12p p ∴>,所以A 正确; 223320lg 10p L L p -=⨯ …,231lg 2p p ∴…,1223p e p ∴…,所以B 错误;33020lg40p L p =⨯= ,30100pp ∴=,所以C 正确; 112220lg 905040p L L p -=⨯-= …,12lg 2p p ∴…,12100pp ∴…,所以D 正确. 故选ACD4. (2023·新课标I 卷 第11题)(多选)解:选项A ,令0x y ==,则(0)0(0)0(0)f f f =⨯+⨯,则(0)0f =,故A 正确; 选项B ,令1x y ==,则(1)1(1)1(1)f f f =⨯+⨯,则(1)0f =,故B 正确; 选项C ,令1x y ==-,则22(1)(1)(1)(1)(1)f f f =-⨯-+-⨯-,则(1)0f -=, 再令1y =-,则22()(1)()(1)f x f x x f -=-+-,即()()f x f x -=,故C 正确;选项D ,不妨设()0f x =为常函数,且满足原题22()()()f xy y f x x f y =+,而常函数没有极值点,故D 错误. 故选:.ABC5.(2022·新高考I 卷 第12题)(多选)解:由3(2)2f x -为偶函数可知()f x 关于直线32x =对称,由(2)g x +为偶函数可知()g x 关于直线2x =对称,结合()()g x f x =',根据()g x 关于直线2x =对称可知()f x 关于点(2,)t 对称, 根据()f x 关于直线32x =对称可知:()g x 关于点3(,0)2对称,综上,函数()f x 与()g x 均是周期为2的周期函数,所以有(0)(2)f f t ==,所以A 不正确;(1)(1)f f -=,(4)(2)f f =,(1)(2)f f =,故(1)(4)f f -=,所以C 正确.13()()022g g -==,(1)(1)g g -=,所以B 正确;又(1)(2)0g g +=,所以(1)(2)0g g -+=,所以D 不正确. 6.(2022·新高考II 卷 第8题)解:令1y =得(1)(1)()(1)()(1)()(1)f x f x f x f f x f x f x f x ++-=⋅=⇒+=-- 故(2)(1)()f x f x f x +=+-,(3)(2)(1)f x f x f x +=+-+, 消去(2)f x +和(1)f x +得到(3)()f x f x +=-,故()f x 周期为6; 令1x =,0y =得(1)(1)(1)(0)(0)2f f f f f +=⋅⇒=,(2)(1)(0)121f f f =-=-=-, (3)(2)(1)112f f f =-=--=-, (4)(3)(2)2(1)1f f f =-=---=-, (5)(4)(3)1(2)1f f f =-=---=, (6)(5)(4)1(1)2f f f =-=--=,故221()3[(1)(2)(6)](19)(20)(21)(22)k f k f f f f f f f ==+++++++∑(1)(2)(3)(4)1(1)(2)(1)3f f f f =+++=+-+-+-=-即7.(2021·新高考I 卷 第13题)解: 函数3()(22)x x f x x a -=⋅-是偶函数;33()(22)=()()(22)x x x x f x x a f x x a --∴=⋅--=-⋅-, 化简可得3(2222)0x x x x x a a --⋅-+⋅-=, 解得1a =,故答案为1.8.(2021·新高考II 卷 第7题)解:5881log 2log log log 32a b =<==<=, 即.a c b << 故选.C9.(2021·新高考II 卷 第8题)解:因为函数为偶函数,则()()22f x f x +=-,可得()()31f x f x +=-, 因为函数为奇函数,则()()1221f x f x -=-+,所以()()11f x f x -=-+, 所以,(3)(1)f x f x +=-+,即(4)(2)()f x f x f x +=-+=, 故函数是以4为周期的周期函数,因为函数()()21F x f x =+为奇函数,则()()010F f ==, 故()()110f f -=-=,其它三个选项未知. 故选.B10.(2021·新高考II 卷 第14题)解:取2()f x x =,则22212121212()()()()f x x x x x x f x f x ===,满足①,()2f x x '=,0x >时有,满足②, ()2f x x '=的定义域为R ,又()2()f x x f x ''-=-=-,故是奇函数,满足③.故答案为:2()(f x x =答案不唯一,()()2*nf x x n N =∈均满足)11.(2020·新高考I 卷 第6题)解:将0 3.28R =,6T =代入01R rT =+, 得01 3.2810.386R r T--===,(2)f x +(21)f x +()f x ()0f x '>由()0.38tI t e=得()()ln 0.38I t t =,当增加1倍时,,所需时间为故选.B12.(2020·新高考I 卷、II 卷 第8题)解:根据题意,不等式(1)0xf x -…可化为()010x f x ≥⎧⎨-≥⎩ 或()010x f x ≤⎧⎨-≤⎩, 由奇函数性质得(2)-(2)0f f -==,()f x 在(0,)+∞上单调递减,所以或,解得13x 剟或10.x -剟 满足(1)0xf x -…的x 的取值范围是[1,0][1,3].x ∈-⋃ 故选.D13.(2020·新高考II 卷 第7题) 解:由2450x x -->,得1x <-或 5.x > 令245t x x =--,外层函数lg y t =是其定义域内的增函数,∴要使函数2()lg(45)f x x x =--在(,)a +∞上单调递增,则需内层函数245t x x =--在(,)a +∞上单调递增且恒大于0,则(,)(5,)a +∞⊆+∞,即 5.a …a ∴的取值范围是[5,).+∞故选:.D14.(2020·新高考I 卷 第12题)(多选)解:A 选项中,由题意知11p =,此时2()1log 10H X =-⨯=,故A 正确; B 选项中,由题意知121p p +=,且1(0,1)p ∈,121222121121()log log log (1)log (1)H X p p p p p p p p =--=----,设22()log (1)log (1)f x x x x x =----,(0,1)x ∈ ,则222111()log log (1)log (1)ln 2ln 2f x x x x '=--+-+=-,当1(,1)2x ∈时,()0f x '<,当1(0,)2x ∈时,()0f x '>,故当11(0,2p ∈ 时,()H X 随着1p 的增大而增大,当11(,1)2p ∈ 时,()H X 随着1p 的增大而减小,故B 错误;C 选项中,由题意知2211()(log H X n log n n n=⨯-=,故()H X 随着n 的增大而增大,故C 正确;D 选项中,由题意知j21j2j 21j j 1()()log ()mm m H Y p pp p +-+-==-++∑,2j 2j j 2j 21j 221j j 1j 1()log (log log )mmm m H X p p p p p p +-+-===-=-+∑∑,j 21jj 21j2j 21j 2j 221jj 1j 1()()log ()(log log )m m mmp p pp m m H X H Y p p p p +-+-++-+-==-=+-+∑∑j 21j j 21jj 21jj 21jj 21j j 21j j 21j 22j 1j 1j 21j j 21j()()()=log log m m m m p p pp mmm m m pp pp m m p p p p p p p p p p +-+-+-+-++-+-+-==+-+-+++=∑∑j 21j21j j 2j 1j21j=log (1)(1)0,m mpp m m p p p p +-+-=+-++>∑故D 错误. 故答案为: .AC。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年全国高考理科数学试题分类汇编2:函数一、选择题1 .(2013年高考江西卷(理))函数的定义域为A.(0,1)B.[0,1)C.(0,1]D.[0,1] 【答案】D2 .(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))若a b c <<,则函数()()()()()()()f x x a x b x b x c x c x a =--+--+--的两个零点分别位于区间( )A.(),a b 和(),b c 内B.(),a -∞和(),a b 内C.(),b c 和(),c +∞内D.(),a -∞和(),c +∞内【答案】A3 .(2013年上海市春季高考数学试卷(含答案))函数12()f x x -=的大致图像是( )【答案】A4 .(2013年高考四川卷(理))设函数()f x =(a R ∈,e 为自然对数的底数).若曲线sin y x=上存在00(,)x y 使得00(())f f y y =,则a 的取值范围是( )(A)[1,]e (B)1[,-11]e -, (C)[1,1]e + (D)1[-1,1]e e -+【答案】A5 .(2013年高考新课标1(理))已知函数()f x =22,0ln(1),0x x x x x ⎧-+≤⎨+>⎩,若|()f x |≥ax ,则a 的取值范围是A.(,0]-∞B.(,1]-∞C.[2,1]-D.[2,0]-【答案】D6 .(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))函数()()21=log 10f x x x ⎛⎫+> ⎪⎝⎭的反函数()1=f x -(A)()1021x x >- (B)()1021xx ≠- (C)()21x x R -∈ (D)()210x x -> 【答案】A7 .(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))已知y x ,为正实数,则A.y x yx lg lg lg lg 222+=+ B.y x y x lg lg )lg(222∙=+ C.y x yx lg lg lg lg 222+=∙ D.y x xy lg lg )lg(222∙=【答案】D8 .(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))已知函数()f x 为奇函数,且当0x >时,21()f x x x=+,则(1)f -= (A) 2- (B) 0 (C) 1 (D) 2【答案】A9 .(2013年高考陕西卷(理))在如图所示的锐角三角形空地中, 欲建一个面积不小于300m 2的内接矩形花园(阴影部分), 则其边长x (单位m )的取值范围是(A) [15,20] (B) [12,25] (C) [10,30] (D) [20,30] 【答案】C10.(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))y =()63a -≤≤的最大值为( ) A.9 B.92C.3【答案】B11.(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知函数()f x 的定义域为()1,0-,则函数()21f x -的定义域为 (A)()1,1- (B)11,2⎛⎫- ⎪⎝⎭ (C)()-1,0 (D)1,12⎛⎫⎪⎝⎭【答案】B12.(2013年高考湖南卷(理))函数()2ln f x x =的图像与函数()245g x x x =-+的图像的交点个数为A.3B.2C.1D.0 【答案】B13.(2013年高考四川卷(理))函数231x x y =-的图象大致是( )【答案】C14.(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已知函数()()()()222222,228.f x x a x a g x x a x a =-++=-+--+设()()(){}()()(){}{}()12max ,,min ,,max ,H x f x g x H x f x g x p q ==表示,p q 中的较大值,{}min ,p q 表示,p q 中的较小值,记()1H x 得最小值为,A ()2H x 得最小值为B ,则A B -= (A)2216a a -- (B)2216a a +- (C)16- (D)16【答案】B15.(2013年普通高等学校招生统一考试广东省数学(理)卷(纯WORD 版))定义域为R 的四个函数3y x =,2x y =,21y x =+,2sin y x =中,奇函数的个数是( )A . 4 B.3C.2D.【答案】C16.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))若函数3()=+b +f x x x c 有极值点1x ,2x ,且11()=f x x ,则关于x 的方程213(())+2()+=0f x f x b 的不同实根个数是 (A)3 (B)4 (C) 5 (D)6 【答案】A17.(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))函数0.5()2|log |1x f x x =-的零点个数为(A) 1 (B) 2 (C) 3 (D) 4 【答案】B18.(2013年高考北京卷(理))函数f (x )的图象向右平移1个单位长度,所得图象与y =e x关于y 轴对称,则f (x )=A.1e x +B. 1e x -C. 1e x -+D. 1e x --【答案】D19.(2013年上海市春季高考数学试卷(含答案))设-1()f x 为函数()f x =的反函数,下列结论正确的是( ) (A) 1(2)2f-= (B) 1(2)4f -= (C) 1(4)2f-= (D) 1(4)4f -=【答案】B20.(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))若函数()21=f x x ax x ++在1,+2⎛⎫∞ ⎪⎝⎭是增函数,则a 的取值范围是 (A)[-1,0] (B)[1,)-+∞ (C)[0,3] (D)[3,)+∞【答案】D二、填空题21.(2013年上海市春季高考数学试卷(含答案))函数2log (2)y x =+的定义域是_______________【答案】(2,)-+∞22.(2013年高考上海卷(理))方程1313313x x-+=-的实数解为________ 【答案】3log 4x =.23.(2013年高考上海卷(理))对区间I 上有定义的函数()g x ,记(){|(),}g I y y g x x I ==∈,已知定义域为[0,3]的函数()y f x =有反函数1()y fx -=,且11([0,1))[1,2),((2,4])[0,1)f f --==,若方程()0f x x -=有解0x ,则0_____x =【答案】02x =.24.(2013年高考新课标1(理))若函数()f x =22(1)()xx ax b -++的图像关于直线2x =-对称,则()f x 的最大值是______. 【答案】16.25.(2013年上海市春季高考数学试卷(含答案))方程28x=的解是_________________【答案】326.(2013年高考湖南卷(理))设函数(),0,0.x x x f x a b c c a c b =+->>>>其中(1)记集合{}(,,),,M a b c a b c a =不能构成一个三角形的三条边长,且=b ,则(,,)a b c M ∈所对应的()f x 的零点的取值集合为____.(2)若,,a b c ABC ∆是的三条边长,则下列结论正确的是______.(写出所有正确结论的序号) ①()(),1,0;x f x ∀∈-∞>②,,,xxxx R xa b c ∃∈使不能构成一个三角形的三条边长; ③若()()1,2,0.ABC x f x ∆∃∈=为钝角三角形,则使【答案】(1)]10(, (2)①②③27.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))已知)(x f 是定义在R 上的奇函数.当0>x 时,x x x f 4)(2-=,则不等式x x f >)(的解集用区间表示为___________.【答案】()()+∞-,50,528.(2013年高考上海卷(理))设a 为实常数,()y f x =是定义在R 上的奇函数,当0x <时,2()97a f x x x=++,若()1f x a ≥+对一切0x ≥成立,则a 的取值范围为________【答案】87a ≤-. 三、解答题29.(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))设函数22()(1)f x ax a x =-+,其中0a >,区间|()>0I x f x =(Ⅰ)求的长度(注:区间(,)αβ的长度定义为βα-); (Ⅱ)给定常数(0,1)k ∈,当时,求长度的最小值.【答案】解: (Ⅰ))1,0(0])1([)(22aa x x a a x x f +∈⇒>+-=.所以区间长度为21a a+.(Ⅱ) 由(Ⅰ)知,aa a al 1112+=+=恒成立令已知k kk k k k a k k -1110-111.1-10),1,0(2>+∴>⇒>++≤≤<∈. 22)1(11)1(1111)(k kk k l k a a a a g -+-=-+-≥⇒-=+=⇒这时时取最大值在 所以2)1(111k kl k a -+--=取最小值时,当.30.(2013年上海市春季高考数学试卷(含答案))本题共有3个小题,第1小题满分5分,第2小题满分7分,第3小题满分6分.已知真命题:“函数()y f x =的图像关于点( )P a b 、成中心对称图形”的充要条件为“函数()y f x a b =+- 是奇函数”.(1)将函数32()3g x x x =-的图像向左平移1个单位,再向上平移2个单位,求此时图像对应的函数解析式,并利用题设中的真命题求函数()g x 图像对称中心的坐标; (2)求函数22()log 4xh x x=- 图像对称中心的坐标; (3)已知命题:“函数 ()y f x =的图像关于某直线成轴对称图像”的充要条件为“存在实数a 和b,使得函数()y f x a b =+- 是偶函数”.判断该命题的真假.如果是真命题,请给予证明;如果是假命题,请说明理由,并类比题设的真命题对它进行修改,使之成为真命题(不必证明).【答案】(1)平移后图像对应的函数解析式为32(1)3(1)2yx x =+-++,整理得33y x x =-,由于函数33y x x =-是奇函数,由题设真命题知,函数()g x 图像对称中心的坐标是(1 2)-,. (2)设22()log 4xh x x=-的对称中心为( )P a b ,,由题设知函数()h x a b +-是奇函数. 设()(),f x h x a b =+-则22()()log 4()x a f x b x a +=--+,即222()log 4x af x b a x +=---.由不等式2204x aa x+>--的解集关于原点对称,得2a =.此时22(2)()log (2 2)2x f x b x x+=-∈--,,.任取(2,2)x ∈-,由()()0f x f x -+=,得1b =, 所以函数22()log 4xh x x=-图像对称中心的坐标是(2 1),. (3)此命题是假命题.举反例说明:函数()f x x =的图像关于直线y x =-成轴对称图像,但是对任意实数a 和b ,函数()y f x a b =+-,即y x a b =+-总不是偶函数.修改后的真命题:“函数()y f x =的图像关于直线x a =成轴对称图像”的充要条件是“函数()y f x a =+是偶函数”.。

相关文档
最新文档