工程力学--静力学(北京科大、东北大学版)第4版_第三章习题答案
工程力学材料力学第四版[北京科技大学及东北大学]习题答案解析
工程力学材料力学(北京科技大学与东北大学)第一章轴向拉伸和压缩1-1:用截面法求下列各杆指定截面的内力解:(a):N 1=0,N 2=N 3=P(b):N 1=N 2=2kN(c):N 1=P,N 2=2P,N 3= -P(d):N 1=-2P,N 2=P(e):N 1= -50N,N 2= -90N(f):N 1=0.896P,N 2=-0.732P注(轴向拉伸为正,压缩为负)1-2:高炉装料器中的大钟拉杆如图a所示,拉杆下端以连接楔与大钟连接,连接处拉杆的横截面如图b所示;拉杆上端螺纹的内径d=175mm。
以知作用于拉杆上的静拉力P=850kN,试计算大钟拉杆的最大静应力。
解:σ1=2118504P kNS dπ==35.3Mpaσ2=2228504P kNS dπ==30.4MPa∴σmax=35.3Mpa1-3:试计算图a所示钢水包吊杆的最大应力。
以知钢水包及其所盛钢水共重90kN,吊杆的尺寸如图b所示。
解:下端螺孔截面:σ1=19020.065*0.045P S=15.4Mpa上端单螺孔截面:σ2=2P S =8.72MPa上端双螺孔截面:σ3= 3P S =9.15Mpa∴σmax =15.4Mpa1-4:一桅杆起重机如图所示,起重杆AB为一钢管,其外径D=20mm,内径d=18mm;钢绳CB 的横截面面积为0.1cm2。
已知起重量P=2000N,试计算起重机杆和钢丝绳的应力。
解:受力分析得:F1*sin15=F2*sin45F1*cos15=P+F2*sin45∴σAB=11FS=-47.7MPaσBC=22FS=103.5 MPa1-5:图a所示为一斗式提升机.斗与斗之间用链条连接,链条的计算简图如图b 所示,每个料斗连同物料的总重量P=2000N.钢链又两层钢板构成,如c所示.每个链板厚t=4.5mm,宽h=40mm,H=65mm,钉孔直径d=30mm.试求链板的最大应力.解:F=6PS 1=h*t=40*4.5=180mm 2S2=(H-d)*t=(65-30)*4.5=157.5mm 2∴σmax=2F S =38.1MPa1-6:一长为30cm 的钢杆,其受力情况如图所示.已知杆截面面积A=10cm2,材料的弹性模量E=200Gpa,试求;(1) AC. CD DB 各段的应力和变形.(2) AB 杆的总变形.解: (1)σAC =-20MPa,σCD =0,σDB =-20MPa;△ l AC =NL EA =AC LEA σ=-0.01mm△ l CD =CD LEA σ=0△ L DB =DB LEA σ=-0.01mm(2) ∴ABl ∆=-0.02mm1-7:一圆截面阶梯杆受力如图所示,已知 材料的弹性模量E=200Gpa,试求各段的应力和应变. 解:31.8127AC ACCB CBPMPa S PMPa S σσ====AC AC AC L NL EA EA σε===1.59*104,CB CB CB LNL EA EA σε===6.36*1041-8:为测定轧钢机的轧制力,在压下螺旋与上轧辊轴承之间装置一测压用的压头.压头是一个钢制的圆筒,其外径D=50mm,内径d=40mm,在压头的外表面上沿纵向贴有测变形的电阻丝片.若测得轧辊两端两个压头的纵向应变均为ε=0.9*10-2,试求轧机的总轧制压力.压头材料的弹性模量E=200Gpa. 解:Nl l EA l l ε∆=∆=∴N EA ε=62.54*10N EA N ε∴==1-9:用一板状试样进行拉伸试验,在试样表面贴上纵向和横向的电阻丝来测定试样的改变。
工程力学--材料力学(北京科大、东北大学版)第4版1-3章习题答案
⼯程⼒学--材料⼒学(北京科⼤、东北⼤学版)第4版1-3章习题答案第⼀章参考答案1-1:解:(a):N1=0,N2=N3=P(b):N1=N2=2kN(c):N1=P,N2=2P,N3= -P(d):N1=-2P,N2=P(e):N1= -50N,N2= -90N(f):N1=0.896P,N2=-0.732P注(轴向拉伸为正,压缩为负)1-2:解:σ1=2118504P kNS dπ==35.3Mpaσ2=2228504P kNS d==30.4MPa ∴σmax=35.3Mpa1-3:解:下端螺孔截⾯:σ1=19020.065*0.045P S=15.4Mpa上端单螺孔截⾯:σ2=2PS =8.72MPa上端双螺孔截⾯:σ3= 3PS =9.15Mpa∴σmax =15.4Mpa1-4:解:受⼒分析得:F1*sin15=F2*sin45F1*cos15=P+F2*sin45∴σAB=11FS=-47.7MPaσBC=22FS=103.5 MPa1-5:解:F=6PS1=h*t=40*4.5=180mm2S2=(H-d)*t=(65-30)*4.5=157.5mm2∴σmax=2FS =38.1MPa1-6:解: (1)σAC =-20MPa,σCD =0,σDB =-20MPa;△ l AC =NL EA =AC L△ l CD =CD LEA σ=0△ L DB =DB LEA σ=-0.01mm(2) ∴AB l ?=-0.02mm 1-7:解:31.8127AC ACCB CBPMPa S PMPa S σσ====AC AC AC LNL EA EA σε===1.59*104, CB CB CB LNL EA EA σε===6.36*1041-8:解:Nl l EA l l ε?=?=∴N EA ε=62.54*10N EA N ε∴==1-9:解:208,0.317E GPa ν==1-10:解:[][]max 59.5MPa σσ=<1-11:解:(1)当45oα=,[]11.2σσ=>强度不够(2)当60oα=,[]9.17σσ=< 强度够1-12:解:[]360,200200200*1013.3100*150*10Y p kNS MPa A σσ-==∴=====<∑1-13:解:[]max 200213MPa MPa σ=< 1-14:解: 1.78, 1.26d cm d cm ==拉杆链环 1-15 解:BC F ==70.7 kN70.70.505140F S FS σσ=∴===查表得: 45*45*3 1-16解:(1)[]2401601.5ssn σσ===MPa[][]24PS Pd σσπ≤∴≤24.4D mm∴=(2)2119.51602PPMPa MPaSd σπ===≤?? ???1-17 解:(1)2*250*6154402D F P A N===78.4AC FMPa S σ==300 3.8378.4s n σσ∴===[][]''''60*3.14*15*1542390F S F S Nσσ===='61544014.521542390F n F ===≈1-18 解:P=119kN 1-19 解:::3:4:535()44AB BC AB BC S P S S P S P =∴==拉,[][][]112841123484AB AB S A kNS P kNP kNσ=====同理所以最⼤载荷 84kN 1-20 解: P=33.3 kN 1-21 解:71,,12123A B C P F F P F P ===1-22 解:10MAX MPa σ=-1-23 解:A B X R R R =∴==∑t r l l ?=? t A B l l tα?= 21211111223533131.3cdAF CD MAX Rl Rl l l l l EA EA Rl Rl Rl l EA EA EA EA t EA tR l SMPa A ααασ?=?+?+?=+=+=∴====第⼆章习题2-1 ⼀螺栓连接如图所⽰,已知P=200 kN , =2 cm ,螺栓材料的许⽤切应⼒[τ]=80Mpa ,试求螺栓的直径。
工程力学材料力学第四版(北京科技大学和东北大学)习题答案解析
工程力学材料力学(科技大学与东北大学)第一章轴向拉伸和压缩1-1:用截面法求下列各杆指定截面的内力 解:(a):N 1=0,N 2=N 3=P (b):N 1=N 2=2kN(c):N 1=P,N 2=2P,N 3= -P (d):N 1=-2P,N 2=P(e):N 1= -50N,N 2= -90N (f):N 1=0.896P,N 2=-0.732P注(轴向拉伸为正,压缩为负)1-2:高炉装料器中的大钟拉杆如图a 所示,拉杆下端以连接楔与大钟连接,连接处拉杆的横截面如图b 所示;拉杆上端螺纹的内径d=175mm 。
以知作用于拉杆上的静拉力P=850kN ,试计算大钟拉杆的最大静应力。
解:σ1= 2118504P kN S d π==35.3Mpaσ2=2228504P kNS d π==30.4MPa∴σmax =35.3Mpa1-3:试计算图a 所示钢水包吊杆的最大应力。
以知钢水包与其所盛钢水共重90kN ,吊杆的尺寸如图b 所示。
解:下端螺孔截面:σ1=19020.065*0.045P S ==15.4Mpa上端单螺孔截面:σ2=2P S =8.72MPa上端双螺孔截面:σ3=3P S =9.15Mpa∴σmax =15.4Mpa1-4:一桅杆起重机如图所示,起重杆AB 为一钢管,其外径D=20mm,内径d=18mm;钢绳CB 的横截面面积为0.1cm 2。
已知起重量P=2000N ,试计算起重机杆和钢丝绳的应力。
解:受力分析得:F 1*sin15=F 2*sin45 F 1*cos15=P+F 2*sin45∴σAB = 11F S =-47.7MPa σBC =22F S =103.5 MPa1-5:图a 所示为一斗式提升机.斗与斗之间用链条连接,链条的计算简图如图b 所示,每个料斗连同物料的总重量P=2000N.钢链又两层钢板构成,如c 所示.每个链板厚t=4.5mm,宽h=40mm,H=65mm,钉孔直径d=30mm.试求链板的最大应力. 解:F=6PS 1=h*t=40*4.5=180mm 2S2=(H-d)*t=(65-30)*4.5=157.5mm 2∴σmax=2F S=38.1MPa1-6:一长为30cm 的钢杆,其受力情况如图所示.已知杆截面面积A=10cm2,材料的弹性模量E=200Gpa,试求;(1)AC. CD DB 各段的应力和变形. (2)AB 杆的总变形.解: (1)σAC =-20MPa,σCD =0,σDB =-20MPa;△l AC =NL EA =AC LEA σ=-0.01mm△l CD =CD LEA σ=0△L DB =DB LEA σ=-0.01mm (2) ∴ABl ∆=-0.02mm1-7:一圆截面阶梯杆受力如图所示,已知材料的弹性模量E=200Gpa,试求各段的应力和应变. 解:AC AC ACLNL EA EA σε===1.59*104,CB CB CBLNL EA EA σε===6.36*1041-8:为测定轧钢机的轧制力,在压下螺旋与上轧辊轴承之间装置一测压用的压头.压头是一个钢制的圆筒,其外径D=50mm,内径d=40mm,在压头的外表面上沿纵向贴有测变形的电阻丝片.若测得轧辊两端两个压头的纵向应变均为ε=0.9*10-2,试求轧机的总轧 制压力.压头材料的弹性模量E=200Gpa. 解:1-9:用一板状试样进行拉伸试验,在试样表面贴上纵向和横向的电阻丝来测定试样的改变。
工程力学(1997修订版)北京科技大学 东北大学-静力学习题解答供参习
第一章 静力学的基本概念受力图第二章 平面汇交力系2-1解:由解析法,23cos 80RX F X P P Nθ==+=∑故: 161.2R F N==2-2解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有故:3R F KN== 方向沿OB 。
2-3 解:所有杆件均为二力杆件,受力沿直杆轴线。
(a ) 由平衡方程有:0.577AB F W =(拉力) 1.155AC F W =(压力) (b ) 由平衡方程有:1.064AB F W =(拉力)0.364AC F W =(压力) (c ) 由平衡方程有:0.5AB F W = (拉力)0.866AC F W =(压力)(d ) 由平衡方程有:0.577AB F W = (拉力)0.577AC F W = (拉力)2-4 解:(a )受力分析如图所示:由x =∑cos 450RA F P -=由Y =∑sin 450RA RB F F P -=(b)解:受力分析如图所示:由 联立上二式,得:2-5解:几何法:系统受力如图所示三力汇交于点D ,其封闭的力三角形如图示所以: 5RA F KN = (压力) 5RB F KN =(与X 轴正向夹150度) 2-6解:受力如图所示:已知,1R F G = ,2AC F G =由x =∑ cos 0AC r F F α-=由0Y =∑ sin 0AC N F F W α+-=2-7解:受力分析如图所示,取左半部分为研究对象由x =∑ cos45cos450RA CB P F F --=联立后,解得: 0.707RA F P = 0.707RB F P =由二力平衡定理 0.707RB CB CB F F F P '===2-8解:杆AB ,AC 均为二力杆,取A 点平衡由x =∑ cos60cos300AC AB F F W ⋅--=联立上二式,解得: 7.32AB F KN =-(受压)27.3AC F KN =(受压)2-9解:各处全为柔索约束,故反力全为拉力,以D ,B 点分别列平衡方程 (1)取D 点,列平衡方程由x =∑ sin cos 0DB T W αα-=(2)取B 点列平衡方程:由0Y =∑ sin cos 0BD T T αα'-=230BD T T ctg Wctg KN αα'∴===2-10解:取B 为研究对象:由0Y =∑sin 0BC F P α-=sin BC PF α∴=取C 为研究对象:由x =∑ cos sin sin 0BC DC CE F F F ααα'--=由0Y =∑ sin cos cos 0BC DC CE F F F ααα--+=联立上二式,且有BC BC F F '= 解得: 取E 为研究对象:由0Y =∑ cos 0NH CE F F α'-=CECE F F '= 故有:2-11解:取A 点平衡:联立后可得: 2cos 75AD AB PF F ==取D 点平衡,取如图坐标系:由对称性及 AD AD F F '=2-12解:整体受力交于O 点,列O 点平衡由x =∑ cos cos300RA DC F F P α+-=联立上二式得: 2.92RA F KN =1.33DC F KN =(压力) 列C 点平衡联立上二式得: 1.67AC F KN =(拉力)1.0BC F KN =-(压力) 2-13解:(1)取DEH 部分,对H 点列平衡联立方程后解得: RD F = (2)取ABCE 部分,对C 点列平衡且 RE RE F F '=联立上面各式得: RA F =(3)取BCE 部分。
工程力学(静力学和材料力学)第四版习题答案解析
静力学部分第一章基本概念受力图2-1解:由解析法,23cos 80RX F X P P N θ==+=∑故:161.2R F N ==2-2 解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有故:3R F KN ==方向沿OB 。
2-3解:所有杆件均为二力杆件,受力沿直杆轴线。
(a )由平衡方程有:0.577AB F W =(拉力) 1.155AC F W =(压力)(b )由平衡方程有:1.064AB F W =(拉力)0.364AC F W =(压力)(c )由平衡方程有:0.5AB F W = (拉力)0.866AC F W =(压力)(d )由平衡方程有:0.577AB F W = (拉力)0.577AC F W = (拉力)2-4 解:(a )受力分析如图所示:由0x =∑cos 450RA F P -=由0Y =∑sin 450RA RB F F P +-=(b)解:受力分析如图所示:由联立上二式,得:2-5解:几何法:系统受力如图所示三力汇交于点D ,其封闭的力三角形如图示所以:5RA F KN =(压力)5RB F KN =(与X 轴正向夹150度)2-6解:受力如图所示:已知,1R F G =,2AC F G =由0x =∑cos 0AC r F F α-=由0Y =∑sin 0AC N F F W α+-=2-7解:受力分析如图所示,取左半部分为研究对象由0x =∑cos 45cos 450RA CB P F F --=联立后,解得:0.707RA F P =0.707RB F P =由二力平衡定理0.707RB CB CB F F F P '===2-8解:杆AB ,AC 均为二力杆,取A 点平衡由0x =∑cos 60cos300AC AB F F W ⋅--=联立上二式,解得:7.32AB F KN =-(受压)27.3AC F KN =(受压)2-9解:各处全为柔索约束,故反力全为拉力,以D ,B 点分别列平衡方程(1)取D 点,列平衡方程由0x =∑sin cos 0DB T W αα-=(2)取B 点列平衡方程:由0Y =∑sin cos 0BD T T αα'-=230BD T T ctg Wctg KN αα'∴===2-10解:取B 为研究对象:由0Y =∑sin 0BC F P α-=sin BC P F α∴= 取C 为研究对象:由0x =∑cos sin sin 0BC DC CE F F F ααα'--=由0Y =∑sin cos cos 0BC DC CE F F F ααα--+=联立上二式,且有BC BC F F '=解得:取E 为研究对象: 由0Y =∑cos 0NH CE F F α'-=CE CE F F '=故有:2-11解:取A 点平衡: 联立后可得:2cos 75AD AB PF F ==取D 点平衡,取如图坐标系:由对称性与AD AD F F '=2-12解:整体受力交于O 点,列O 点平衡由0x =∑cos cos300RA DC F F P α+-=联立上二式得:2.92RA F KN = 1.33DC F KN =(压力)列C 点平衡联立上二式得:1.67AC F KN =(拉力) 1.0BC F KN =-(压力)2-13解:(1)取DEH 部分,对H 点列平衡联立方程后解得:RD F =(2)取ABCE 部分,对C 点列平衡且RE RE F F '=联立上面各式得:RA F =(3)取BCE 部分。
工程力学第4版(静力学)答案
x
0
FDC
FAC
4 5
0
Y
0
FBC
FAC
3 5
0
联立上二式得: FAC 1.67KN (拉力)
FBC 1.0KN (压力)
2-13 解:
(1)取 DEH 部分,对 H 点列平衡
x 0 FRD
2 5
FRE
0
Y 0 FRD
1 Q 0 5
工程力学(第四版)--静力学 北京科技大学、东北大学
联立上二式,解得: FAB 0.577W (拉力) FAC 1.155W (压力) (b) 由平衡方程有:
X 0 FAC FAB cos 70 0 Y 0 FAB sin 70 W 0
联立上二式,解得: FAB 1.064W (拉力) FAC 0.364W (压力) (c) 由平衡方程有:
工程力学(第四版)--静力学 北京科技大学、东北大学
整理上式后有: FAB sin 75 FAD sin 75 0
取正根 FAB cos 75 FAD cos 75 P 0
FAD
FAB
P 2 cos 75
3-1 解:
第三章 习题
参考答案
(a)MO(P) P l (b)MO (P) P 0 0 (c)MO (P) P sin l P cos 0 Pl sin (d)MO(P) P a (e)MO (P) P (l r) ( f )MO (P) P sin a2 b2 P cos 0 P a2 b2 sin
工程力学(第四版)--静力学 北京科技大学、东北大学
工程力学第4版(静力学)答案
第一章习题下列习题中,凡未标出自重的物体,质量不计。
接触处都不计摩擦。
1-1试分别画出下列各物体的受力图。
1-2试分别画出下列各物体系统中的每个物体的受力图。
1-3试分别画出整个系统以及杆BD,AD,AB(带滑轮C,重物E和一段绳索)的受力图。
1-4构架如图所示,试分别画出杆HED,杆BDC及杆AEC的受力图。
1-5构架如图所示,试分别画出杆BDH,杆AB,销钉A及整个系统的受力图。
1-6构架如图所示,试分别画出杆AEB,销钉A及整个系统的受力图。
1-7构架如图所示,试分别画出杆AEB,销钉C,销钉A及整个系统的受力图。
1-8结构如图所示,力P作用在销钉C上,试分别画出AC,BCE及DEH部分的受力图。
参考答案1-1解:1-2解:1-3解:1-4解:1-5解:1-6解:1-7解:1-8解:第二章 习题参考答案2-1解:由解析法,23cos 80RX F X P P Nθ==+=∑12sin 140RY F Y P P Nθ==+=∑故: 22161.2R RX RY F F F N=+=1(,)arccos2944RYR RF F P F '∠==2-2解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有123cos45cos453RX F X P P P KN==++=∑13sin 45sin 450RY F Y P P ==-=∑故: 223R RX RY F F F KN=+=方向沿OB 。
2-3解:所有杆件均为二力杆件,受力沿直杆轴线。
(a ) 由平衡方程有:0X =∑sin 300ACAB FF -=0Y =∑cos300ACFW -=联立上二式,解得:0.577AB F W =(拉力)1.155AC F W=(压力)(b ) 由平衡方程有:0X =∑cos 700ACAB FF -=0Y =∑sin 700ABFW -=联立上二式,解得:1.064AB F W=(拉力)0.364AC F W=(压力)(c ) 由平衡方程有:0X =∑cos 60cos300ACAB FF -=0Y =∑sin 30sin 600ABAC FF W +-=联立上二式,解得:0.5AB F W=(拉力)0.866AC F W=(压力)(d ) 由平衡方程有:0X =∑sin 30sin 300ABAC FF -=0Y =∑cos30cos300ABAC FF W +-=联立上二式,解得:0.577AB F W =(拉力)0.577AC F W=(拉力)2-4解:(a)受力分析如图所示:由x=∑22cos45042RAF P=+15.8RAF KN∴=由Y=∑22sin45042RA RBF F P+-=+7.1RBF KN∴=(b)解:受力分析如图所示:由0x =∑cos 45cos 45010RA RB F F P ⋅--= 0Y =∑sin 45sin 45010RA RB F F P ⋅+-= 联立上二式,得:22.410RA RB F KN F KN==2-5解:几何法:系统受力如图所示三力汇交于点D ,其封闭的力三角形如图示所以: 5RA F KN=(压力)5RB F KN=(与X 轴正向夹150度)2-6解:受力如图所示:已知,1R F G = ,2AC F G =由x =∑cos 0AC r F F α-=12cos G G α∴=由0Y =∑ sin 0AC N F F W α+-=22221sin N F W G W G G α∴=-⋅=--2-7解:受力分析如图所示,取左半部分为研究对象由x =∑cos 45cos 450RA CB P F F --=0Y =∑sin 45sin 450CBRA F F '-=联立后,解得:0.707RA F P=0.707RB F P=由二力平衡定理 0.707RB CB CBF F F P '===2-8解:杆AB ,AC 均为二力杆,取A 点平衡由x =∑cos 60cos300AC AB F F W ⋅--=0Y =∑sin 30sin 600ABAC FF W +-=联立上二式,解得:7.32AB F KN =-(受压)27.3AC F KN=(受压)2-9解:各处全为柔索约束,故反力全为拉力,以D ,B 点分别列平衡方程(1)取D 点,列平衡方程由x =∑sin cos 0DB T W αα-=DB T Wctg α∴==(2)取B 点列平衡方程由0Y =∑ sin cos 0BD T T αα'-=230BDT T ctg Wctg KN αα'∴===2-10解:取B 为研究对象:由0Y =∑ sin 0BC F P α-=sin BC PF α∴=取C 为研究对象:由x =∑cos sin sin 0BCDC CE F F F ααα'--=由0Y =∑ sin cos cos 0BC DC CE F F F ααα--+=联立上二式,且有BCBC F F '= 解得:2cos 12sin cos CE P F ααα⎛⎫=+⎪⎝⎭取E 为研究对象:由0Y =∑ cos 0NH CE F F α'-=CECE F F '=故有:22cos 1cos 2sin cos 2sin NH P PF ααααα⎛⎫=+= ⎪⎝⎭2-11解:取A 点平衡:0x =∑sin 75sin 750ABAD FF -=0Y =∑cos 75cos 750ABAD FF P +-=联立后可得:2cos 75AD AB PF F ==取D 点平衡,取如图坐标系:0x =∑cos5cos800ADND F F '-=cos5cos80ND ADF F '=⋅由对称性及ADAD F F '=cos5cos5222166.2cos80cos802cos 75N ND AD PF F F KN'∴===⋅=2-12解:整体受力交于O 点,列O 点平衡由x=∑cos cos300RA DCF F Pα+-=Y=∑sin sin300RAF Pα-=联立上二式得: 2.92RAF KN=1.33DCF KN=(压力)列C点平衡x=∑405DC ACF F-⋅=Y=∑305BC ACF F+⋅=联立上二式得: 1.67ACF KN=(拉力)1.0BCF KN=-(压力)2-13解:(1)取DEH 部分,对H 点列平衡0x =∑05RD REF F '-= 0Y =∑05RD F Q -=联立方程后解得: 5RD F Q =2REF Q '=(2)取ABCE 部分,对C 点列平衡0x =∑cos 450RERA FF -=0Y =∑sin 450RBRA FF P --=且RE REF F '=联立上面各式得:22 RAFQ=2RBF Q P=+(3)取BCE部分。
工程力学材料力学第四版(北京科技大学与东北大学)习题答案
工程力学材料力学(北京科技大学与东北大学)第一章轴向拉伸和压缩1-1:用截面法求下列各杆指定截面的内力解:(a):N 1=0,N 2=N 3=P(b):N 1=N 2=2kN(c):N 1=P,N 2=2P,N 3= -P(d):N 1=-2P,N 2=P(e):N 1= -50N,N 2= -90N(f):N1=0.896P,N2=-0.732P注(轴向拉伸为正,压缩为负)1-2:高炉装料器中的大钟拉杆如图a所示,拉杆下端以连接楔与大钟连接,连接处拉杆的横截面如图b所示;拉杆上端螺纹的内径d=175mm。
以知作用于拉杆上的静拉力P=850kN,试计算大钟拉杆的最大静应力。
解:σ1=2118504P kNS dπ==35.3Mpaσ2=2228504P kNS dπ==30.4MPa∴σmax=35.3Mpa1-3:试计算图a所示钢水包吊杆的最大应力。
以知钢水包及其所盛钢水共重90kN,吊杆的尺寸如图b所示。
解:下端螺孔截面:σ1=19020.065*0.045P S=15.4Mpa上端单螺孔截面:σ2=2P S =8.72MPa 上端双螺孔截面:σ3= 3P S =9.15Mpa∴σmax =15.4Mpa1-4:一桅杆起重机如图所示,起重杆AB为一钢管,其外径D=20mm,内径d=18mm;钢绳CB的横截面面积为0.1cm2。
已知起重量P=2000N,试计算起重机杆和钢丝绳的应力。
解:受力分析得:F1*sin15=F2*sin45F1*cos15=P+F2*sin45∴σAB=11FS=-47.7MPaσBC=22FS=103.5 MPa1-5:图a所示为一斗式提升机.斗与斗之间用链条连接,链条的计算简图如图b 所示,每个料斗连同物料的总重量P=2000N.钢链又两层钢板构成,如c所示.每个链板厚t=4.5mm,宽h=40mm,H=65mm,钉孔直径d=30mm.试求链板的最大应力.解:F=6PS 1=h*t=40*4.5=180mm 2S2=(H-d)*t=(65-30)*4.5=157.5mm 2∴σmax=2F S =38.1MPa1-6:一长为30cm 的钢杆,其受力情况如图所示.已知杆截面面积A=10cm2,材料的弹性模量E=200Gpa,试求;(1) AC. CD DB 各段的应力和变形.(2) AB 杆的总变形.解: (1)σAC =-20MPa,σCD =0,σDB =-20MPa;△ l AC =NL EA =AC LEA σ=-0.01mm△ l CD =CD LEA σ=0△ L DB =DB LEA σ=-0.01mm(2) ∴ABl ∆=-0.02mm1-7:一圆截面阶梯杆受力如图所示,已知 材料的弹性模量E=200Gpa,试求各段的应力和应变. 解:31.8127AC ACCB CBPMPa S PMPa S σσ====AC AC AC LNL EA EA σε===1.59*104, CB CB CB LNL EA EA σε===6.36*1041-8:为测定轧钢机的轧制力,在压下螺旋与上轧辊轴承之间装置一测压用的压头.压头是一个钢制的圆筒,其外径D=50mm,内径d=40mm,在压头的外表面上沿纵向贴有测变形的电阻丝片.若测得轧辊两端两个压头的纵向应变均为ε=0.9*10-2,试求轧机的总轧制压力.压头材料的弹性模量E=200Gpa. 解:NllEAllε∆=∆=∴NEAε=62.54*10N EA Nε∴==1-9:用一板状试样进行拉伸试验,在试样表面贴上纵向和横向的电阻丝来测定试样的改变。
工程力学材料力学第四版[北京科技大学及东北大学]习题答案解析
工程力学材料力学(北京科技大学与东北大学)第一章轴向拉伸和压缩1-1:用截面法求下列各杆指定截面的内力解:(a):N1=0,N2=N3=P(b):N1=N2=2kN(c):N1=P,N2=2P,N3= -P(d):N1=-2P,N2=P(e):N1= -50N,N2= -90N(f):N1=0.896P,N2=-0.732P注(轴向拉伸为正,压缩为负)1-2:高炉装料器中的大钟拉杆如图a所示,拉杆下端以连接楔与大钟连接,连接处拉杆的横截面如图b所示;拉杆上端螺纹的内径d=175mm。
以知作用于拉杆上的静拉力P=850kN,试计算大钟拉杆的最大静应力。
解:σ1=2118504P kNS dπ==35.3Mpaσ2=2228504P kNS dπ==30.4MPa∴σmax=35.3Mpa1-3:试计算图a所示钢水包吊杆的最大应力。
以知钢水包及其所盛钢水共重90kN,吊杆的尺寸如图b所示。
解:下端螺孔截面:σ1=19020.065*0.045P S=15.4Mpa上端单螺孔截面:σ2=2P S =8.72MPa 上端双螺孔截面:σ3= 3P S =9.15Mpa∴σmax =15.4Mpa1-4:一桅杆起重机如图所示,起重杆AB为一钢管,其外径D=20mm,内径d=18mm;钢绳CB 的横截面面积为0.1cm2。
已知起重量P=2000N,试计算起重机杆和钢丝绳的应力。
解:受力分析得:F1*sin15=F2*sin45F1*cos15=P+F2*sin45∴σAB=11FS=-47.7MPaσBC=22FS=103.5 MPa1-5:图a所示为一斗式提升机.斗与斗之间用链条连接,链条的计算简图如图b 所示,每个料斗连同物料的总重量P=2000N.钢链又两层钢板构成,如c所示.每个链板厚t=4.5mm,宽h=40mm,H=65mm,钉孔直径d=30mm.试求链板的最大应力.解:F=6PS 1=h*t=40*4.5=180mm 2S2=(H-d)*t=(65-30)*4.5=157.5mm 2∴σmax=2F S =38.1MPa1-6:一长为30cm 的钢杆,其受力情况如图所示.已知杆截面面积A=10cm2,材料的弹性模量E=200Gpa,试求;(1) AC. CD DB 各段的应力和变形.(2) AB 杆的总变形.解: (1)σAC =-20MPa,σCD =0,σDB =-20MPa;△ l AC =NL EA =AC LEA σ=-0.01mm△ l CD =CD LEA σ=0△ L DB =DB LEA σ=-0.01mm(2) ∴ABl∆=-0.02mm1-7:一圆截面阶梯杆受力如图所示,已知材料的弹性模量E=200Gpa,试求各段的应力和应变.解:31.8127ACACCBCBPMPaSPMPaSσσ====ACACACLNLEA EAσε===1.59*104,CBCBCBLNLEA EAσε===6.36*1041-8:为测定轧钢机的轧制力,在压下螺旋与上轧辊轴承之间装置一测压用的压头.压头是一个钢制的圆筒,其外径D=50mm,内径d=40mm,在压头的外表面上沿纵向贴有测变形的电阻丝片.若测得轧辊两端两个压头的纵向应变均为ε=0.9*10-2,试求轧机的总轧制压力.压头材料的弹性模量E=200Gpa.解:QNllEAllε∆=∆=∴NEAε=62.54*10N EA Nε∴==1-9:用一板状试样进行拉伸试验,在试样表面贴上纵向和横向的电阻丝来测定试样的改变。
工程力学材料力学第四版[北京科技大学及东北大学]习题答案解析
工程力学材料力学(北京科技大学与东北大学)第一章轴向拉伸和压缩1-1:用截面法求下列各杆指定截面的内力解:(a):N1=0,N2=N3=P(b):N1=N2=2kN(c):N1=P,N2=2P,N3= -P(d):N1=-2P,N2=P(e):N1= -50N,N2= -90N(f):N1=0.896P,N2=-0.732P注(轴向拉伸为正,压缩为负)1-2:高炉装料器中的大钟拉杆如图a所示,拉杆下端以连接楔与大钟连接,连接处拉杆的横截面如图b所示;拉杆上端螺纹的内径d=175mm。
以知作用于拉杆上的静拉力P=850kN,试计算大钟拉杆的最大静应力。
解:σ1=2118504P kNS dπ==35.3Mpaσ2=2228504P kNS dπ==30.4MPa∴σmax=35.3Mpa1-3:试计算图a 所示钢水包吊杆的最大应力。
以知钢水包及其所盛钢水共重90kN ,吊杆的尺寸如图b 所示。
解:下端螺孔截面:σ1=19020.065*0.045P S=15.4Mpa上端单螺孔截面:σ2=2P S =8.72MPa上端双螺孔截面:σ3= 3P S =9.15Mpa∴σmax =15.4Mpa1-4:一桅杆起重机如图所示,起重杆AB为一钢管,其外径D=20mm,内径d=18mm;钢绳CB的横截面面积为0.1cm2。
已知起重量P=2000N,试计算起重机杆和钢丝绳的应力。
解:受力分析得:F1*sin15=F2*sin45F1*cos15=P+F2*sin45∴σAB=11FS=-47.7MPaσBC=22FS=103.5 MPa1-5:图a所示为一斗式提升机.斗与斗之间用链条连接,链条的计算简图如图b 所示,每个料斗连同物料的总重量P=2000N.钢链又两层钢板构成,如c所示.每个链板厚t=4.5mm,宽h=40mm,H=65mm,钉孔直径d=30mm.试求链板的最大应力.解:F=6PS1=h*t=40*4.5=180mm2S2=(H-d)*t=(65-30)*4.5=157.5mm2∴σmax=2FS=38.1MPa1-6:一长为30cm的钢杆,其受力情况如图所示.已知杆截面面积A=10cm2,材料的弹性模量E=200Gpa,试求;(1)AC. CD DB 各段的应力和变形.(2)AB杆的总变形.解: (1)σAC=-20MPa,σCD=0,σDB=-20MPa;△ l AC =NL EA =AC LEA σ=-0.01mm△ l CD =CD LEA σ=0△ L DB =DB LEA σ=-0.01mm (2) ∴ABl ∆=-0.02mm1-7:一圆截面阶梯杆受力如图所示,已知 材料的弹性模量E=200Gpa,试求各段的应力和应变. 解:31.8127AC ACCB CBPMPa S PMPa S σσ====AC AC ACLNL EA EA σε===1.59*104,CBCBCBLNLEA EAσε===6.36*1041-8:为测定轧钢机的轧制力,在压下螺旋与上轧辊轴承之间装置一测压用的压头.压头是一个钢制的圆筒,其外径D=50mm,内径d=40mm,在压头的外表面上沿纵向贴有测变形的电阻丝片.若测得轧辊两端两个压头的纵向应变均为ε=0.9*10-2,试求轧机的总轧制压力.压头材料的弹性模量E=200Gpa.解:NllEAllε∆=∆=∴NEAε=62.54*10N EA Nε∴==1-9:用一板状试样进行拉伸试验,在试样表面贴上纵向和横向的电阻丝来测定试样的改变。
工程力学材料力学第四版[北京科技大学及东北大学]习题答案解析
工程力学材料力学(北京科技大学与东北大学)第一章轴向拉伸和压缩1-1:用截面法求下列各杆指定截面的内力解:(a):N1=0,N2=N3=P(b):N1=N2=2kN(c):N1=P,N2=2P,N3= -P(d):N1=-2P,N2=P(e):N1= -50N,N2= -90N(f):N1=0.896P,N2=-0.732P注(轴向拉伸为正,压缩为负)1-2:高炉装料器中的大钟拉杆如图a所示,拉杆下端以连接楔与大钟连接,连接处拉杆的横截面如图b所示;拉杆上端螺纹的内径d=175mm。
以知作用于拉杆上的静拉力P=850kN,试计算大钟拉杆的最大静应力。
解:σ1=2118504P kNS dπ==35.3Mpaσ2=2228504P kNS dπ==30.4MPa∴σmax=35.3Mpa1-3:试计算图a所示钢水包吊杆的最大应力。
以知钢水包及其所盛钢水共重90kN,吊杆的尺寸如图b所示。
解:下端螺孔截面:σ1=19020.065*0.045P S=15.4Mpa上端单螺孔截面:σ2=2P S =8.72MPa上端双螺孔截面:σ3= 3P S =9.15Mpa∴σmax =15.4Mpa1-4:一桅杆起重机如图所示,起重杆AB为一钢管,其外径D=20mm,内径d=18mm;钢绳CB 的横截面面积为0.1cm2。
已知起重量P=2000N,试计算起重机杆和钢丝绳的应力。
解:受力分析得:F1*sin15=F2*sin45F1*cos15=P+F2*sin45∴σAB=11FS=-47.7MPaσBC=22FS=103.5 MPa1-5:图a所示为一斗式提升机.斗与斗之间用链条连接,链条的计算简图如图b 所示,每个料斗连同物料的总重量P=2000N.钢链又两层钢板构成,如c所示.每个链板厚t=4.5mm,宽h=40mm,H=65mm,钉孔直径d=30mm.试求链板的最大应力.解:F=6PS 1=h*t=40*4.5=180mm 2S2=(H-d)*t=(65-30)*4.5=157.5mm 2∴σmax=2F S =38.1MPa1-6:一长为30cm 的钢杆,其受力情况如图所示.已知杆截面面积A=10cm2,材料的弹性模量E=200Gpa,试求;(1) AC. CD DB 各段的应力和变形.(2) AB 杆的总变形.解: (1)σAC =-20MPa,σCD =0,σDB =-20MPa;△ l AC =NL EA =AC LEA σ=-0.01mm△ l CD =CD LEA σ=0△ L DB =DB LEA σ=-0.01mm(2) ∴ABl∆=-0.02mm1-7:一圆截面阶梯杆受力如图所示,已知材料的弹性模量E=200Gpa,试求各段的应力和应变.解:31.8127ACACCBCBPMPaSPMPaSσσ====ACACACLNLEA EAσε===1.59*104,CBCBCBLNLEA EAσε===6.36*1041-8:为测定轧钢机的轧制力,在压下螺旋与上轧辊轴承之间装置一测压用的压头.压头是一个钢制的圆筒,其外径D=50mm,内径d=40mm,在压头的外表面上沿纵向贴有测变形的电阻丝片.若测得轧辊两端两个压头的纵向应变均为ε=0.9*10-2,试求轧机的总轧制压力.压头材料的弹性模量E=200Gpa.解:NllEAllε∆=∆=∴NEAε=62.54*10N EA Nε∴==1-9:用一板状试样进行拉伸试验,在试样表面贴上纵向和横向的电阻丝来测定试样的改变。
工程力学材料力学第四版[北京科技大学及东北大学]习题答案解析
3-11有一减速器如图所示。已知电动机的转速n=960r/min,功率 =5kw;轴的材料为45钢, =40MPa试按扭转强度计算减速器第一轴的直径。
=40Mpa.
解:(1)外力偶矩的计算
(2)两轴各截面传递的扭矩
(3)实心轴所需直径由 得 选d=45mm.
(4)空心轴的外、内选择由 得
选 所以 。
3-9图示AB轴的转速n=120r/min,从B轮上输入功率 =40kw,此功率的一半通过锥齿轮传给垂直轴V,另一半功率由水平轴H传走。已知锥齿轮的节圆直径
限为多少?
解:
2-6一减速机上齿轮与轴通过平键连接。已知键受外力P=12 kN,所用平键的尺寸为b=28 mm,h=16 mm,l=60 mm,键的许用应
力[τ]=87 Mpa,[ ]=100 Mpa。试校核键的强度。
解:
所以都满足
2-7图示连轴器,用四个螺栓连接,螺栓对称的安排在直径D=480 mm的圆周上。这个连轴结传递的力偶矩m=24 kN·m,求螺
(2)若连接汽缸与汽缸盖的螺栓直径 =30 mm,螺栓所用材料的许用应力[ ]=60 MPa,试求所需的螺栓数。
解:(1)
1-18起重吊钩上端借助螺母支搁,吊钩螺纹部分的外径d=63.5 mm,内径 =55 mm;材料为20钢,许用应力[ ]=50 Mpa。试
根据吊钩螺纹部分的强度确定吊钩的许用起重量P。
下所能冲剪圆孔的最小直径D和钢板的最大厚度 。
解:
2-4已知图示铆接钢板的厚度 =10 mm,铆钉的直径为[τ]=140 Mpa,许用挤压应力[ ]=320 Mpa,P=24 kN,试做强度校核。
解:
2-5图示为测定剪切强度极限的试验装置。若已经低碳钢试件的直径D=1 cm,剪断试件的外力P=50.2Kn,问材料的剪切强度极
工程力学第4版(静力学)答案
第一章习题下列习题中,凡未标出自重的物体,质量不计。
接触处都不计摩擦。
1-1试分别画出下列各物体的受力图。
1-2试分别画出下列各物体系统中的每个物体的受力图。
1-3试分别画出整个系统以及杆BD,AD,AB(带滑轮C,重物E和一段绳索)的受力图。
1-4构架如图所示,试分别画出杆HED,杆BDC及杆AEC的受力图。
1-5构架如图所示,试分别画出杆BDH,杆AB,销钉A及整个系统的受力图。
1-6构架如图所示,试分别画出杆AEB,销钉A及整个系统的受力图。
1-7构架如图所示,试分别画出杆AEB,销钉C,销钉A及整个系统的受力图。
1-8结构如图所示,力P作用在销钉C上,试分别画出AC,BCE及DEH部分的受力图。
参考答案1-1解:1-2解:1-3解:1-4解:1-5解:1-6解:1-7解:1-8解:第二章 习题参考答案2-1解:由解析法,23cos 80RX F X P P Nθ==+=∑12sin 140RY F Y P P Nθ==+=∑故:161.2R F N==1(,)arccos2944RYR RF F P F '∠==2-2解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有123cos45cos453RX F X P P P KN ==++=∑13sin 45sin 450RY F Y P P ==-=∑故: 3R F KN==方向沿OB 。
2-3解:所有杆件均为二力杆件,受力沿直杆轴线。
(a ) 由平衡方程有:0X =∑sin 300ACAB FF -=0Y =∑cos300ACFW -=联立上二式,解得:0.577AB F W =(拉力)1.155AC F W=(压力)(b ) 由平衡方程有:0X =∑cos 700ACAB FF -=0Y =∑sin 700ABFW -=联立上二式,解得:1.064AB F W=(拉力)0.364AC F W=(压力)(c ) 由平衡方程有:0X =∑cos 60cos300ACAB FF -=0Y =∑sin 30sin 600ABAC FF W +-=联立上二式,解得:0.5AB F W=(拉力)0.866AC F W=(压力)(d ) 由平衡方程有:0X =∑sin 30sin 300ABAC FF -=0Y =∑cos30cos300ABAC FF W +-=联立上二式,解得:0.577AB F W=(拉力)0.577AC F W=(拉力)2-4解:(a )受力分析如图所示:由0x =∑ cos 450RA F P =15.8RA F KN∴=由Y =∑ sin 450RA RB F F P +-=7.1RB F KN∴=(b)解:受力分析如图所示:由0x =∑cos 45cos 450RA RB F F P -= 0Y =∑sin 45sin 450RA RB F F P +-= 联立上二式,得:22.410RA RB F KN F KN==2-5解:几何法:系统受力如图所示三力汇交于点D ,其封闭的力三角形如图示所以: 5RA F KN=(压力)5RB F KN=(与X 轴正向夹150度)2-6解:受力如图所示:已知,1R F G = ,2AC F G =由x =∑cos 0AC r F F α-=12cos G G α∴=由0Y =∑ sin 0AC N F F W α+-=2sin N F W G W α∴=-⋅=2-7解:受力分析如图所示,取左半部分为研究对象由x =∑cos 45cos 450RA CB P F F --=0Y =∑sin 45sin 450CBRA F F '-=联立后,解得:0.707RA F P=0.707RB F P=由二力平衡定理 0.707RB CB CBF F F P '===2-8解:杆AB ,AC 均为二力杆,取A 点平衡由x =∑cos 60cos300AC AB F F W ⋅--=0Y =∑sin 30sin 600ABAC FF W +-=联立上二式,解得:7.32AB F KN =-(受压)27.3AC F KN=(受压)2-9解:各处全为柔索约束,故反力全为拉力,以D ,B 点分别列平衡方程(1)取D 点,列平衡方程由x =∑sin cos 0DB T W αα-=DB T Wctg α∴==(2)取B 点列平衡方程由0Y =∑ sin cos 0BD T T αα'-=230BDT T ctg Wctg KN αα'∴===2-10解:取B 为研究对象:由0Y =∑ sin 0BC F P α-=sin BC PF α∴=取C 为研究对象:由x =∑cos sin sin 0BCDC CE F F F ααα'--=由0Y =∑ sin cos cos 0BC DC CE F F F ααα--+=联立上二式,且有BCBC F F '= 解得:2cos 12sin cos CE P F ααα⎛⎫=+⎪⎝⎭取E 为研究对象:由0Y =∑ cos 0NH CE F F α'-=CECE F F '=故有:22cos 1cos 2sin cos 2sin NH P PF ααααα⎛⎫=+= ⎪⎝⎭2-11解:取A 点平衡:0x =∑sin 75sin 750ABAD FF -=0Y =∑cos 75cos 750ABAD FF P +-=联立后可得:2cos 75AD AB PF F ==取D 点平衡,取如图坐标系:0x =∑cos5cos800ADND F F '-=cos5cos80ND ADF F '=⋅由对称性及ADAD F F '=cos5cos5222166.2cos80cos802cos 75N ND AD PF F F KN'∴===⋅=2-12解:整体受力交于O 点,列O 点平衡由x=∑cos cos300RA DCF F Pα+-=Y=∑sin sin300RAF Pα-=联立上二式得: 2.92RAF KN=1.33DCF KN=(压力)列C点平衡x=∑405DC ACF F-⋅=Y=∑305BC ACF F+⋅=联立上二式得: 1.67ACF KN=(拉力)1.0BCF KN=-(压力)2-13解:(1)取DEH 部分,对H 点列平衡0x =∑0RD REF F '-=Y =∑0RD F Q -=联立方程后解得: RD F =2REF Q '=(2)取ABCE 部分,对C 点列平衡0x =∑cos 450RERA FF -=0Y =∑sin 450RBRA FF P --=且RE REF F '=联立上面各式得:RA F =2RB F Q P=+(3)取BCE 部分。
工程力学--材料力学(北京科大、东北大学版)第4版第三章习题答案
第三章习题3-1试求图视各轴在指定横截面1-1、2-2和3-3上的扭矩,并在各截面上表示出钮矩的方向。
3-2试绘出下列各轴的钮矩图,并求。
3-3试绘下列各轴的扭矩图,并求出。
已知ma=200N.m,mb=400N.m,mc=600N,m.3-4 一传动轴如图所示,已知ma=130N..cm, mb=300N.cm , mc=100N.cm, md=70N.cm;各段轴的直径分别为:Dab=5cm, Dbc=7.5cm, Dcd=5cm(1)画出扭矩图;(2)求1-1、2-2、3-3截面的最大切应力。
3-5 图示的空心圆轴,外径D=8cm,内径d=6.25cm,承受扭矩m=1000N.m.(1)求、(2)绘出横截面上的切应力分布图;(3)求单位长度扭转角,已知G=80000Mpa.3-6 已知变截面钢轴上的外力偶矩=1800N.m, =1200N.m, 试求最大切应力和最大相对扭矩。
已知G=80*Pa.3-7一钢轴的转矩n=240/min. 传递功率=44.1kN.m.已知=40Mpa,=,G=80*MPa, 试按强度和刚度条件计算轴的直径解:轴的直径由强度条件确定,。
3-8图示实心轴通过牙嵌离合器把功率传给空心轴。
传递的功率=7.5kw,轴的转速n=100r/min,试选择实心轴直径和空心轴外径。
已知/=0.5,=40Mpa.3-9 图示AB轴的转速n=120r/min,从B轮上输入功率=40kw,此功率的一半通过锥齿轮传给垂直轴V,另一半功率由水平轴H传走。
已知锥齿轮的节圆直径=600mm;各轴直径为=100mm, =80mm, =60mm, =20MPa,试对各轴进行强度校核。
3-10 船用推进器的轴,一段是实心的,直径为280mm,另一段是空心的,其内径为外径的一半。
在两段产生相同的最大切应力的条件下,求空心部分轴的外径D.3-11 有一减速器如图所示。
已知电动机的转速n=960r/min, 功率=5kw;轴的材料为45钢,=40MPa 试按扭转强度计算减速器第一轴的直径。
工程力学材料力学第四版[北京科技大学及东北大学]习题答案解析
工程力学材料力学(北京科技大学与东北大学)第一章轴向拉伸和压缩1-1:用截面法求下列各杆指定截面的内力解:(a):N 1=0,N 2=N 3=P(b):N 1=N 2=2kN(c):N 1=P,N 2=2P,N 3= -P(d):N 1=-2P,N 2=P(e):N 1= -50N,N 2= -90N(f):N 1=0.896P,N 2=-0.732P注(轴向拉伸为正,压缩为负)1-2:高炉装料器中的大钟拉杆如图a所示,拉杆下端以连接楔与大钟连接,连接处拉杆的横截面如图b所示;拉杆上端螺纹的内径d=175mm。
以知作用于拉杆上的静拉力P=850kN,试计算大钟拉杆的最大静应力。
解:σ1=2118504P kNS dπ==35.3Mpaσ2=2228504P kNS dπ==30.4MPa∴σmax=35.3Mpa1-3:试计算图a所示钢水包吊杆的最大应力。
以知钢水包及其所盛钢水共重90kN,吊杆的尺寸如图b所示。
解:下端螺孔截面:σ1=19020.065*0.045P S=15.4Mpa上端单螺孔截面:σ2=2P S =8.72MPa上端双螺孔截面:σ3= 3P S =9.15Mpa∴σmax =15.4Mpa1-4:一桅杆起重机如图所示,起重杆AB为一钢管,其外径D=20mm,内径d=18mm;钢绳CB 的横截面面积为0.1cm2。
已知起重量P=2000N,试计算起重机杆和钢丝绳的应力。
解:受力分析得:F1*sin15=F2*sin45F1*cos15=P+F2*sin45∴σAB=11FS=-47.7MPaσBC=22FS=103.5 MPa1-5:图a所示为一斗式提升机.斗与斗之间用链条连接,链条的计算简图如图b 所示,每个料斗连同物料的总重量P=2000N.钢链又两层钢板构成,如c所示.每个链板厚t=4.5mm,宽h=40mm,H=65mm,钉孔直径d=30mm.试求链板的最大应力.解:F=6PS 1=h*t=40*4.5=180mm 2S2=(H-d)*t=(65-30)*4.5=157.5mm 2∴σmax=2F S =38.1MPa1-6:一长为30cm 的钢杆,其受力情况如图所示.已知杆截面面积A=10cm2,材料的弹性模量E=200Gpa,试求;(1) AC. CD DB 各段的应力和变形.(2) AB 杆的总变形.解: (1)σAC =-20MPa,σCD =0,σDB =-20MPa;△ l AC =NL EA =AC LEA σ=-0.01mm△ l CD =CD LEA σ=0△ L DB =DB LEA σ=-0.01mm(2) ∴ABl ∆=-0.02mm1-7:一圆截面阶梯杆受力如图所示,已知 材料的弹性模量E=200Gpa,试求各段的应力和应变. 解:31.8127AC ACCB CBPMPa S PMPa S σσ====AC AC AC L NL EA EA σε===1.59*104,CB CB CB LNL EA EA σε===6.36*1041-8:为测定轧钢机的轧制力,在压下螺旋与上轧辊轴承之间装置一测压用的压头.压头是一个钢制的圆筒,其外径D=50mm,内径d=40mm,在压头的外表面上沿纵向贴有测变形的电阻丝片.若测得轧辊两端两个压头的纵向应变均为ε=0.9*10-2,试求轧机的总轧制压力.压头材料的弹性模量E=200Gpa. 解:Nl l EA l l ε∆=∆=∴N EA ε=62.54*10N EA N ε∴==1-9:用一板状试样进行拉伸试验,在试样表面贴上纵向和横向的电阻丝来测定试样的改变。
工程力学第4版(静力学)答案
第一章习题下列习题中,凡未标出自重的物体,质量不计。
接触处都不计摩擦。
1-1试分别画出下列各物体的受力图。
1-2试分别画出下列各物体系统中的每个物体的受力图。
1-3试分别画出整个系统以及杆BD,AD,AB(带滑轮C,重物E和一段绳索)的受力图。
1-4构架如图所示,试分别画出杆HED,杆BDC及杆AEC的受力图。
1-5构架如图所示,试分别画出杆BDH,杆AB,销钉A及整个系统的受力图。
1-6构架如图所示,试分别画出杆AEB,销钉A及整个系统的受力图。
1-7构架如图所示,试分别画出杆AEB,销钉C,销钉A及整个系统的受力图。
1-8结构如图所示,力P作用在销钉C上,试分别画出AC,BCE及DEH部分的受力图。
参考答案1-1解:1-2解:1-3解:1-4解:1-5解:1-6解:1-7解:1-8解:第二章习题参考答案2-1解:由解析法,23cos 80RX F X P P N12sin 140RY F Y P P N故:22161.2R RX RY F F F N1(,)arccos 2944RYR RF F P F2-2解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有123cos45cos453RX F X P P P KN 13sin 45sin 450RY F Y P P 故:223R RX RY F F F KN 方向沿OB 。
2-3解:所有杆件均为二力杆件,受力沿直杆轴线。
(a )由平衡方程有:0X sin 300AC AB F F 0Y cos300AC F W联立上二式,解得:0.577AB F W (拉力)1.155AC F W (压力)(b )由平衡方程有:0X cos700AC AB F F 0Y sin 700AB F W 联立上二式,解得:1.064AB F W (拉力)0.364AC F W (压力)(c )由平衡方程有:0X cos60cos300AC AB F F0Y sin 30sin 600AB AC F F W 联立上二式,解得:0.5AB F W (拉力) 0.866AC F W (压力)(d )由平衡方程有:0X sin 30sin 300AB AC F F 0Y cos30cos300AB AC F F W 联立上二式,解得:0.577AB F W (拉力) 0.577AC F W (拉力)2-4解:(a)受力分析如图所示:由x224cos45042RAF P15.8RAF KN由0Y222sin45042RA RBF F P7.1RBF KN(b)解:受力分析如图所示:由0x3cos45cos45010RARB F F P 0Y1sin 45sin 45010RA RB F F P 联立上二式,得:22.410RA RBF KN F KN2-5解:几何法:系统受力如图所示三力汇交于点D ,其封闭的力三角形如图示所以:5RAF KN(压力)5RBF KN(与X 轴正向夹150度)2-6解:受力如图所示:已知,1R F G ,2AC F G 由x cos 0AC rF F 12cosG G 由0Ysin 0AC NF F W 22221sinNF WG WG G 2-7解:受力分析如图所示,取左半部分为研究对象由x cos 45cos450RA CB P F F 0Ysin 45sin 450CB RA F F 联立后,解得:0.707RAF P0.707RBF P由二力平衡定理0.707RB CB CBF F F P2-8解:杆AB ,AC 均为二力杆,取A 点平衡由x cos 60cos30AC AB F F W 0Ysin 30sin 60AB AC F F W联立上二式,解得:7.32AB F KN(受压)27.3ACF KN(受压)2-9解:各处全为柔索约束,故反力全为拉力,以D ,B 点分别列平衡方程(1)取D 点,列平衡方程由x sincos 0DB T W 0DBT Wctg (2)取B 点列平衡方程由0Y sin cos 0BD T T 230BD T T ctg WctgKN2-10解:取B 为研究对象:由0YsinBC F P sinBCP F 取C 为研究对象:由x cos sin sin 0BC DC CE F F F 由Ysin cos cos 0BC DC CE F F F 联立上二式,且有BC BCF F 解得:2cos12sincosCEPF取E 为研究对象:由0YcosNHCE F F CE CEF F 故有:22cos1cos2sin cos2sinNHP P F 2-11解:取A 点平衡:x sin 75sin 750AB AD F F 0Ycos75cos75AB AD F F P 联立后可得:2cos 75AD ABP F F 取D 点平衡,取如图坐标系:x cos5cos80AD ND F F cos5cos80NDADF F由对称性及AD ADF F cos5cos5222166.2cos80cos802cos 75N NDADP F F F KN2-12解:整体受力交于O 点,列O 点平衡由xcos cos300RA DCF F PY sin sin300RAF P联立上二式得: 2.92RAF KN1.33DCF KN(压力)列C点平衡x405DC ACF FY35BC ACF F联立上二式得: 1.67ACF KN(拉力)1.0BCF KN(压力)2-13解:(1)取DEH部分,对H点列平衡0 x25RD REF F0 Y15RDF Q联立方程后解得:5RDF Q2REF Q(2)取ABCE部分,对C点列平衡xcos450RE RAF FY sin450RB RAF F P且RE REF F联立上面各式得:22RAF Q2RBF QP(3)取BCE 部分。