水平井水力喷射压裂工艺技术

合集下载

水力喷射压裂技术

水力喷射压裂技术

力喷射分段改造技术是90年代末发展起来的目前国外应用比较广泛的技术,其技术原理是根据伯努利方程,将压力能转换为速度,油管流体加压后经喷嘴喷射而出的高速射流(喷嘴喷射速度大于126 m/s)在地层中射流成缝,通过环空注入液体使井底压力刚好控制在裂缝延伸压力以下,射流出口周围流体速度最高,其压力最低,环空泵注的液体在压差作用下进入射流区,与喷嘴喷射出的液体一起被吸入地层,驱使裂缝向前延伸,因井底压力刚好控制在裂缝延伸压力以下,压裂下一层段时,已压开层段不再延伸,因此,不用封隔器与桥塞等隔离工具,实现自动封隔。

通过拖动管柱,将喷嘴放到下一个需要改造的层段,可依次压开所需改造井段。

水力喷射压裂技术可以在裸眼、筛管完井的水平井中进行加砂压裂,也可以在套管井上进行,施工安全性高,可以用一趟管柱在水平井中快速、准确地压开多条裂缝,水力喷射工具可以与常规油管相连接入井, 也可以与大直径连续油管( 60.3 mm)相结合,使施工更快捷,国内外已有数百口井用此技术进行过酸压或加砂压裂处理。

水平井压裂主要分为笼统压裂和分段压裂,笼统压裂产生纵向缝,全井段改造,解除深度井筒伤害;分层压裂产生横切缝,主要用来强化处理低渗油气层,而分层的方法有很多种,水力喷射压裂是其中一种。

水力喷射压裂技术(HJF),是集水力射孔、压裂、隔离一体化的新型增产改造技术,它是借助一种特殊的喷射/压裂工具、利用水动力学原理在直井中分层或在水平井段分段压裂而不需其他机械封隔的方法:通过油管把水力喷射井下装置下到指定层位,地面流体加压,通过井下装置喷嘴形成高压高速射流,在地层中形成一定直径和深度的孔眼;关闭油套环空,保持环空压力略低于地层破裂压力,继续喷射,根据伯努利方程,在孔眼顶部的驻点压力将高于地层破裂压力,此时地层中的裂缝将仅在水力喷射形成的孔眼里破裂、扩展,但水平段端部由于环空压裂液压力低于地层起裂压力而不再开裂所以水力喷射射孔压裂是基于伯努利(Bernoulli)方程式,维持低的井底压力并且进行有效的压裂。

水力喷射压裂技术

水力喷射压裂技术
吐哈油田井下技术作业公司
二、水力喷射压裂技术
3、含砂浓度、砂粒度: 含砂量与切割效能有密切关系。增加含砂量就增加单位时间 内切割目的物的砂粒数。含砂量越高,切割效能越好。但是,含 砂量过高容易引起砂堵影响喷射效果。最优浓度范围为6%~8%。 砂子的直径对射孔直径有直接影响。砂粒直径越大,质量就 越大,因而冲击力越大。但砂粒直径的增加受喷嘴直径的限制。 一般讲,砂粒直径取喷嘴直径的1/6到1/3为最佳。
吐哈油田井下技术作业公司
二、水力喷射压裂技术
4、最优喷射时间: 最优喷射时间,是指在一定的工作压力下,喷射 获得最大深度所需要的时间。当射流达到一定深度后, 继续延长喷射时间既无意义,也不经济。我们认为, 对套管和其他钢材,喷射时间一般在20分钟之内,即 可达到满意的效果,而对其它材料,喷射15-20分钟 即可。
水力喷射压裂技术
井下技术作业公司 2008年12月1日
吐哈油田井下技术作业公司
主要内容
一、国内外水力喷射压裂技术应用 二、水力喷射压裂技术简介 三、水力喷射压裂项目进展状况 四、下步工作安排
吐哈油田井下技术作业公司
一、国内外水力喷射、国内外水力喷射压裂技术应用
吐哈油田井下技术作业公司
二、水力喷射压裂技术简介
(三)水力喷射压裂技术原理
水力喷射压裂是集水力喷砂射孔、压裂、隔离一体化的新型增产改 造技术。流体通过喷射工具,将高压能量转换成动能,产生高速流体冲 击(或切割)套管或岩石形成射孔通道。水力射孔易准确定位,在地层 内形成定向孔,且穿透深,孔径大,在地层中产生导引孔缝来辅助定向 水力压裂,可以降低起裂压力更利于裂缝起裂。
吐哈油田井下技术作业公司
二、水力喷射压裂技术
5、围压: 围压对射流的影响很大,在其他的条件完全相同时,

水平井储层改造新方法-水力喷射压裂技术

水平井储层改造新方法-水力喷射压裂技术

() 2 由高压泵 向油管注入低浓度含砂液体 , 通
压裂 应用于 水平井 改 造增 产效 果并 不 理 想 , 常最 经 多产 生两个 主要 裂缝 区 , 而且 位 置也 不 确定 。许 多
等 +
方 程表 明流体 束 中 的能量 维持 常 量 , 虽然 实 际 上 摩擦缓 慢 消耗 能 量使 其转 化 为热 能 ( 但这 个 简化
高产段仍然没被改造而维持着表皮损害 。水力 J
收稿 日期 :2 0 0 7—0 2 ;修 回日期 :20 8— 7 07—1 0 2— 7 中石油股份公司“ 水平井低渗透改造重大攻关项 目” 。
止 压 裂 缝
图 1 水 力 喷 射 压 裂原 理
水 力 喷射 裂缝 一 旦 形成 , 由于 喷嘴 出 L周 围流 I
作者简介 :刘永亮 (9 1一) 西安石油大学油气井工程硕士研究 生 , 18 , 研究方 向油气 田增产技 术。地 址: 7 06 ) ( 10 5 陕西省西安市 电子二路
关键词 :水力压裂 ; 喷射 压裂 ; 喷砂射孔
中图分类号:T 5 . E3 7 1 文献标识码 :A 文章编号:10 0 6—7 8 2 0 ) 1— 0 1— 3 6 X(0 8 0 07 0
水平井低产主要归因于储层低渗 、 非均质性 , 近 井污染或表皮损害以及无效 的改造技术 。传统水力
确定 。水力喷射压裂是一种利用水射流独特性质 的储层改造新技术。该 技术结合 了水 力射孔和水力压裂技术 , 能 够沿着水平井横向在多个位置独立连续压裂改造 而不使用任何 机械密封装 置。文章 阐述 了该 技术 的原理 和工艺 过程 , 介绍 了其主要技术特点 , 分析了影响该 工艺 的关键 因素 , 出 了该技 术 的局 限性 以及我 国应 用该技术 的难 指 度, 最后 表明射流参数优化是该 技术一个重要方面 , 应该成 为今后的一个研究 重点 。

水平井压裂工艺技术

水平井压裂工艺技术

水平井压裂工艺技术1. 引言水平井压裂工艺技术是一种常用于油田开发的工艺方法,通过在地下水平井中注入高压液体和固体颗粒,以增加井壁与油层之间的接触面积和裂缝的数量,从而提高油气开采率。

本文将对水平井压裂工艺技术进行详细介绍。

2. 水平井压裂原理水平井压裂是基于岩石力学及流体力学原理,通过在水平井中引入高压液体,使岩石产生裂缝,并在裂缝中注入固体颗粒以保持裂缝的持久性。

其主要原理包括以下几点:•应力超出岩石破裂强度: 通过增加井内压力,使岩石超过其破裂强度,从而产生裂缝。

•固体颗粒填充: 在裂缝中注入固体颗粒,以阻止裂缝的闭合,保持裂缝的持久性。

•液体射孔: 在井脚附近进行液体射孔,使液体与油层接触面积增加,通过喷射作用形成径向裂缝。

•裂缝扩展: 扩大裂缝面积,增加岩石与流体的接触面积,提高油气开采效率。

3. 水平井压裂工艺步骤水平井压裂工艺的实施需要经过以下步骤:3.1 井筒设计井筒设计是水平井压裂工艺中的关键步骤。

设计人员根据油田地质特征和开采需求,确定井深、井径、压裂层位置等参数,选择合适的井筒设计方案。

3.2 固定套管固定套管是为了确保井壁的稳定性和防止井筒坍塌而进行的操作。

在水平井压裂工艺中,需要使用高强度套管并通过水泥固定,以确保井筒的完整性和稳定性。

3.3 液体射孔液体射孔是将高压液体注入到井脚附近岩石中,通过喷射作用形成径向裂缝的过程。

在水平井压裂工艺中,液体射孔是实施压裂的前提条件。

3.4 压裂液注入压裂液注入是水平井压裂工艺的核心步骤。

在该步骤中,高压液体被注入到井筒中,压力超过岩石破裂强度,使岩石产生裂缝,并将固体颗粒混入液体中以保持裂缝的持久性。

3.5 压裂结束与产能测试在完成压裂液注入后,需要进行压裂结束与产能测试。

通过对产出的油气进行采集和分析,评估压裂效果以及井的产能,并进行相应的调整和优化。

4. 压裂液组成与性能压裂液是水平井压裂过程中使用的液体。

根据不同的需求和地质条件,压裂液可以选择不同的组成和性能。

水平井压裂工艺技术现状及展望

水平井压裂工艺技术现状及展望

水平井压裂工艺技术现状及展望
水平井压裂工艺技术是一种常用于增加油气井产能的工艺,它通过在水平井段注入高压液体,破裂储层,扩大储层渗透性,从而提高油气井的产能。

水平井压裂工艺技术在近几十年中取得了显著的发展,但仍然存在一些挑战和改进的空间。

1. 压裂液体的研究:压裂液体是水平井压裂中的关键因素,目前常用的压裂液体包括水基、油基和液体类等,它们各有优缺点。

未来的发展方向是研发出更环保、高效的压裂液体,减少对环境的污染,并提高施工效率。

2. 压裂剂的研究:压裂剂是压裂液中能够产生并维持破裂缝的固体颗粒。

目前常用的压裂剂有石英砂、陶瓷颗粒等,但它们存在流动性差、易堵塞缝道等问题。

未来的发展方向是研发出具有良好流动性和高强度的压裂剂,以提高压裂缝的持续性。

3. 压裂设计的优化:水平井压裂设计是决定压裂效果的关键因素之一。

目前常用的优化方法有试井资料分析、数值模拟等,但这些方法在实际应用中存在一定的局限性。

未来的发展方向是进一步完善水平井压裂设计方法,提高压裂效果和经济效益。

4. 压裂监测技术的发展:压裂监测技术是评估水平井压裂效果和优化压裂设计的重要手段。

目前常用的监测方法有地震勘探、压力监测等,但这些方法存在成本高、实时性差等问题。

未来的发展方向是研发出成本低、实时性强的压裂监测技术,以便更好地评估和优化水平井压裂效果。

水平井压裂工艺技术在油气井增产领域具有广阔的应用前景。

未来的发展方向是通过优化压裂液体、压裂剂和施工设计等,提高水平井压裂效果,降低成本,减少环境污染,并通过先进的监测技术实时评估和优化压裂效果,以达到更高的油气井产能和经济效益。

水力喷射分段压裂技术

水力喷射分段压裂技术

04
技术实施步骤与注意事 项
现场勘察与准备
1 2
现场地质勘察
了解地层构造、岩性、储层物性等情况,为后续 压裂方案制定提供依据。
设备与材料准备
根据勘察结果,准备相应的压裂设备、材料,确 保满足施工需求。
3
施工场地布置
合理规划施工场地,确保作业安全、高效进行。
设备安装与调试
设备检查
对所有设备进行全面检查,确保设备性能良好、无故障。
应用案例二:天然气开采
总结词
水力喷射分段压裂技术在天然气开采中表现出良好的增产效果,尤其在低渗透气藏中具有显著优势。
详细描述
水力喷射分段压裂技术适用于天然气的开采,尤其在低渗透气藏中表现出良好的增产效果。通过高压 水射流对气藏进行分段压裂,可以增加气藏的渗透性和连通性,从而提高天然气的采收率和产量。此 外,该技术还可降低天然气的开采成本,提高经济效益。
的大规模开发提供有力支持。
应用效果对比分析
总结词
水力喷射分段压裂技术在不同领域的应用效果各异, 但均表现出良好的增产和经济效益。
详细描述
水力喷射分段压裂技术在石油、天然气和地热能开发等 领域均表现出良好的应用效果。在石油开采中,该技术 提高了采收率、降低了成本并减少环境污染;在天然气 开采中,它提高了产量和经济效益;在地热能开发中, 该技术则提高了地热资源的利用率和经济效益。总体而 言,水力喷射分段压裂技术在不同领域的应用效果均显 示出其独特的优势和潜力。
原理
利用水力喷射工具产生高速射流,在 井筒内形成高压,使地层产生裂缝, 然后通过砂浆等支撑剂的填充,保持 裂缝开启,提高油气的渗透性。
技术发展历程
起源
当前状况
水力喷射分段压裂技术起源于20世纪 90年代,最初用于水平井的压裂。

水力喷射压裂技术研究与应用

水力喷射压裂技术研究与应用

水力喷射压裂技术研究与应用引言水力喷射压裂技术是一种通过高压水将岩石破碎的技术,广泛应用于油气开采、地下水开采和岩层改造等领域。

随着我国石油、天然气资源勘探开发深入,水力喷射压裂技术的研究和应用也越来越受到重视。

本文将介绍水力喷射压裂技术的研究现状和应用前景,探讨其在油田开发中的重要作用。

一、水力喷射压裂技术概述水力喷射压裂技术是一种将水以极高的压力注入地层,通过水的冲击力使岩石破裂,从而增加地层渗透性的技术。

它通过高压水射流对地层进行破碎,增加油气流体的渗流能力,从而提高油气产量。

与传统的机械压裂技术相比,水力喷射压裂技术不需要大型设备和复杂的施工流程,施工成本低、效率高,对地层破坏小,有利于环境保护。

水力喷射压裂技术通常包括以下几个步骤:首先是选取合适的压裂液,通常使用水或液体二氧化碳;其次是确定压裂参数,包括压裂液的流量、压力和注入时间等;然后是进行压裂过程监测,通过监测岩石中的应力变化和裂缝扩展情况,以及岩石孔隙度和渗透率的变化情况;最后是对压裂效果进行评估,包括油气产量的变化、地层渗透性的增加等。

二、水力喷射压裂技术的研究现状1. 技术原理研究水力喷射压裂技术的研究主要包括压裂液的选择、压裂参数的确定、岩石破裂机理的研究等方面。

近年来,随着地质勘探和工程技术的进步,对压裂液的研究逐渐深入,不仅在稳定性、黏度、密度等方面进行了优化,还研究了特殊条件下的压裂液配方。

对压裂参数的确定也有了更加准确和系统的研究,通过对地层岩石物理力学性质的研究,确定最佳的压裂参数。

岩石破裂机理的研究也为水力喷射压裂技术提供了理论支持,为进一步提高压裂效果提供了依据。

2. 设备技术研究水力喷射压裂技术的研究还包括相应的设备技术研究。

目前,主要涉及高压水泵、压裂车、压裂管道等设备的研发和改进。

高压水泵是水力喷射压裂技术中最关键的设备之一,其性能的稳定性和耐用性对技术的应用起到了至关重要的作用。

压裂车和压裂管道的设计和制造也决定了施工的高效性和安全性。

水力喷射分段压裂技术究

水力喷射分段压裂技术究

水力喷射分段压裂技术研究技术原理水力喷射分段压裂技术原理是根据伯努利方程,把压能转变为动能,油管流体加压后经喷嘴喷射而出的高速射流(喷嘴喷射速度大于126 m/秒)在地层中射流成缝。

水力喷砂射孔后,接着提高排量,在已射开孔上下部的井眼中产生负压值形成隔离,高速流体在地层岩石中形成孔洞,直接作用于孔洞底部,产生高于地层破裂压力的压势,在地层中造出一条裂缝(如图1所示),然后加砂压裂。

工艺研究水力喷射分段技术是由水力喷射、水力压裂(油管注入)和环空组合注入、注液体封堵剂四种工艺技术组合而成的,具体的工艺如下:①通井和洗井;②向井筒内下入水力喷射分段压裂钻具;③水力喷砂射孔,先泵入基液和携砂液(切割阶段),当携砂液距喷嘴250m左右时,迅速提升泵速以确保获得切割射孔所需的足够的压差;④在喷砂射孔2-3min后,顶替;⑤常规的水力压裂,关闭套放闸门,按照设计环空排量或环空最高压力所允许的最高泵速由环空泵入胍胶基液,按照设计由油管的泵入交联胍胶和砂;⑥压后放喷,冲砂;⑦向井筒内注入液体暂堵剂;⑧上提钻具。

上提钻具至设计位置,压裂下一层,重复③~⑥步。

一套水力喷射压裂钻具和一套压裂机组,这个工艺过程就可重复多次,如图2~5所示。

在最后一个压裂作业结束后,压裂钻具被起出,然后清洗井筒,准备抽汲。

水力喷射分段压裂钻具研究水平井井下作业风险大、周期长、遇卡机率高,所以在设计水力喷射分段压裂钻具时,井下工具设计要求尽可能简化,可操作性好;在喷射和压裂过程中,要求工具定位准确、稳定性好;井下工具耐压、耐温、密封性能满足不同区块储层的压裂要求;喷射器工作寿命必须能够满足一趟管柱压裂两段以上的要求。

水平井水力喷射分段压裂钻具根据以上要求,水平井水力喷射分段压裂钻具主要万向节、偏心定位器、喷射器、球座等关键工具组成,钻具组合如示意图6所示。

水力喷射器(如图7所示)的喷嘴由加入钼的特殊等级碳合物的材料制成,孔眼根据设计要求被放置在几个平面上,针对不同地层的喷嘴尺寸可以不同,在某些地层中,喷嘴外径达到了3.68",内径则为1.99",喷嘴具有超大的壁厚以保证使用寿命。

水力喷射压裂技术研究与应用

水力喷射压裂技术研究与应用

水力喷射压裂技术研究与应用1. 引言随着人类对能源需求的不断增长以及传统能源资源的逐渐枯竭,非常规能源资源的开发和利用变得愈发重要。

页岩气、煤层气等储层的开发就成为目前研究的热点之一。

而水力喷射压裂技术作为非常规能源勘探和开发中的重要手段之一,正扮演着越来越重要的角色。

本文将对水力喷射压裂技术的研究与应用进行深入探讨。

2. 水力喷射压裂技术的原理及特点水力喷射压裂技术是指通过高压液体在井下将岩石进行压裂,从而使天然气和原油等可燃性气体及液体通过裂隙泄漏到井孔中,达到提高气田、油田开采生产的目的。

其原理主要是利用高压液体对目标储层进行压裂,从而增加目标储层的渗透性,提高产能。

与传统的压裂技术相比,水力喷射压裂技术具有以下几个特点:1) 压裂过程中压力分布均匀,裂缝展状效果好;2) 不用添加人工密实剂;3) 无需基质砂层作保证层;4) 液压裂解使用量小,经济效益好。

3. 水力喷射压裂技术的研究进展随着非常规油气能源勘探的不断深入,水力喷射压裂技术的研究也在不断深化。

近年来,基于水力喷射压裂技术的研究成果主要集中在以下几个方面:1) 水力喷射压裂技术的提高:包括液压裂解水质的改善、压裂液体的选取、压裂参数的合理配置等;2) 目标储层特性的研究:包括对储层裂缝的特性、渗透性的影响等;3) 水力喷射压裂技术与环保的结合:包括压裂液回收、废弃液处理等环保技术的研究;4) 水力喷射压裂技术与智能化的结合:包括智能化的压裂液控制、自动化控制等技术研究。

4. 水力喷射压裂技术的应用案例在国内外的一些非常规油气勘探开发中,已经有一些水力喷射压裂技术的成功应用案例。

下面举几个具体的应用案例进行介绍:1) 美国马绍尔盖斯的页岩气勘探:水力喷射压裂技术在这一项目中得到了广泛的应用,并取得了不错的效果。

通过水力喷射压裂技术,该项目的产能明显提高,成为当地的一块明星气田。

2) 中国四川盆地的煤层气开发:在中国四川盆地的煤层气勘探中,水力喷射压裂技术也取得了不错的应用效果。

水平井压裂改造工艺技术介绍

水平井压裂改造工艺技术介绍

水平井压裂改造工艺技术介绍1. 引言水平井压裂改造是一种常见的油气田开发技术,旨在提高地下能源资源的开采效率。

本文将详细介绍水平井压裂改造的工艺技术,包括其定义、工作原理、施工流程和相关的设备要求。

2. 定义水平井压裂改造是指对已经完成垂直井钻探的油气井进行改造,将垂直井在一定深度范围内轨迹转向水平方向,并通过压裂技术增强储层与井筒的沟通,以提高井产能和油气采收率。

3. 工作原理水平井压裂改造通过将井筒定向转向垂直方向的水平段,增加了储层与井筒的接触长度,从而提高了油气流动的能力。

压裂技术则通过施加高压液体流体将储层破裂,使得油气能顺利流入井筒中。

具体工作原理如下: 1. 钻探井筒:先进行垂直井的钻探工作,直至达到目标层位。

2. 轨迹转向:通过钻井工具及技术手段将井筒的轨迹转向水平方向,达到水平井的状态。

3. 压裂液准备:准备高压液体流体,包括液体配方、加砂剂等。

4.压裂操作:将准备好的压裂液体注入井筒,施加高压力使得储层破裂。

5. 压裂结束:压裂操作结束后,通过压裂液体的排放,将砂粒保持在储层缝隙中,增强储层与井筒的沟通。

6. 后续作业:可能需要进行其他作业,如井筒完井、油气生产等。

4. 施工流程水平井压裂改造通常包括以下施工流程:1.井筒定向转向:通过定向钻探技术,将井筒从垂直井转向水平井。

这个过程包括选择下入点、使用定向钻头、使用定向钻井工具等。

2.井筒完井:改造完成后,需要进行井筒的完井工作。

这个过程包括安装套管、水泥固井等。

3.压裂前准备:准备压裂液体,包括选取适当的液体配方、加入砂剂等。

4.压裂操作:将准备好的压裂液体注入井筒,施加高压力,使得储层破裂。

这个过程包括选择压裂技术、压裂参数的确定等。

5.压裂后作业:压裂操作结束后,需要进行相关的后续作业,如排放压裂液体、记录压裂参数等。

6.生产测试:改造完成后,进行生产测试,评估改造效果,并决定后续的开采方案。

5. 设备要求水平井压裂改造主要涉及以下设备:1.钻井设备:包括钻机、钻井套管等。

水平井分段压裂技术

水平井分段压裂技术

混合管直径 靶件渗透率
一、水力喷射分段压裂技术
喷嘴压降(MPa)
5、喷嘴压损与排量关系
100 90 80 70 60 50 40 30 20 10 0 0
Φ=5mm Φ=6mm Φ=6.35mm Φ=5.5mm
0.1
0.2
0.3
0.4
0.5
喷嘴排量(m3/min)
0.6
0.7
0.8
• 随排量的增大,喷嘴压损急剧增加; • 喷嘴直径的增大,喷嘴压损降低。
26 22
钢球
55 49 46 43 40 37
34
31
28 25
➢喷枪结构及滑套材质——硬质合金 ➢销钉剪切力提高
一、水力喷射分段压裂技术
现场施工情况:
➢油管排量2.6-3.4 m3/min,套管排量0.5-1.0 m3/min,油管压力40-50MPa, 套管压力12-20MPa ➢单枪最大过砂量45m3,8层共加砂340m3,使用原胶液2800m3 ➢ 东平2井: 单段(6×Φ6.0mm喷嘴)过砂量55+2=57 m3 ➢最后压了8段,其中第3段和第7段地层亏空严重,没压成。
井斜,°
83.2 81.9 83.1 81.6 81.5 82.3 81.9 82.7 82.6 75.2
狗腿度, °/25m
0.76 1.66 2.6 2.65 1.29 0.77 0.9 3.27 3.77 1.38
套管接箍数据,m
2364.11 2353.38 2139.08 2128.17 2106.58 2095.76 2019.32 2008.5 1997.59 1987.0 1965.25 1954.44 1932.6 1922.67 1824.54 1813.52 1792.07 1781.05 1693.54 1682.53

水力喷射压裂技术研究与应用

水力喷射压裂技术研究与应用

水力喷射压裂技术研究与应用
水力喷射压裂技术是一种将高压水射入井孔,使岩石产生裂缝,从而增加储层渗透率和产能的油气开发技术。

这种技术的研究与应用对于提高油气田储层的开采率具有重要意义。

本文将从水力喷射压裂技术的原理、研究现状及应用前景等方面进行介绍。

一、水力喷射压裂技术的原理
水力喷射压裂技术是通过管道将高压水射入井孔,形成高速射流冲击岩石,使岩石产生裂缝,从而改善储层渗透性和增加油气的产能。

在使用水力喷射压裂技术时,要首先选择合适的注水井,并通过高压泵将水注入到井下,在井孔中形成高速射流,冲击岩层,形成裂缝。

水力喷射压裂技术可以提高油气井的产量,同时也有利于油气田的长期开发。

二、水力喷射压裂技术的研究现状
目前,水力喷射压裂技术已经成为油气田开发中的重要技术手段之一。

在国内外,有很多研究机构在水力喷射压裂技术领域进行了深入的研究。

尤以美国在该领域的研究和应用最为广泛。

美国的石油开发企业对水力喷射压裂技术进行了大量的实验和应用,积累了丰富的经验。

美国的一些油气田通过水力喷射压裂技术,成功地提高了产能,使生产效益大幅度提高。

国内也有不少研究机构在水力喷射压裂技术方面进行了大量的研究,取得了一些重要的研究成果。

一些国内的油气田也开始应用水力喷射压裂技术,取得了一些成功的实践经验。

在未来,随着技术的不断进步,水力喷射压裂技术将得到更广泛的应用。

随着油气资源的逐渐枯竭,传统的油气开采技术已经不能满足日益增长的能源需求,水力喷射压裂技术将成为油气田开发的重要手段。

加大对水力喷射压裂技术的研究和应用力度,促进水力喷射压裂技术的进一步发展是十分必要的。

水平井压裂工艺技术

水平井压裂工艺技术

水平井压裂工艺技术随着油田开发和开采工作的不断深入,如今的油藏压力已经迅速下降,这对油田的开发和生产带来了巨大的挑战。

为了解决这一问题,水平井压裂工艺技术应运而生。

水平井压裂工艺技术是一种通过使用高压泵将带有特殊添加剂的液体注入到水平井中的一种工艺。

这种添加剂旨在增加岩石的孔隙度和渗透率,从而提高油藏的产能。

压裂技术的原理是在岩石裂缝中注入高压液体,以破裂岩石并扩大裂缝,使更多的油或气能够流入到井筒中。

水平井压裂工艺技术主要由以下步骤组成:1. 确定压裂目标:通过分析油藏的地质特征、储层性质、石油和天然气存在的形式等因素,确定进行压裂的目标位置。

2. 编制施工方案:根据目标位置,制定压裂施工方案,包括压裂液的配方、注入压力和流量的控制等。

3. 钻井和完井:按照施工方案进行钻井和完井,将水平井和储层连接起来。

4. 压裂注水:使用高压泵将特殊添加剂配制成的压裂液注入到水平井中,通过岩石的裂缝和孔隙进入到储层中。

5. 压裂压力监测:监测压裂过程中的压力变化,以确保压裂液能够充分地破裂岩石并扩大裂缝。

6. 压裂液回收:在压裂注水后,对压裂液进行回收处理,以避免对环境造成污染。

通过水平井压裂工艺技术,可以有效地改善油田的产能和生产效率。

此外,这种技术还可以降低开采成本和环境影响,提高油气的回收率和利用率。

与传统的垂直井开采相比,水平井压裂工艺技术具有以下优势:1. 压裂液注入量大:水平井具有较大的井筒面积,可容纳更多的压裂液注入,从而增加油藏的产能。

2. 压裂液分布均匀:由于水平井具有较长的井段,压裂液在井段中的分布相对均匀,能够更好地破裂岩石并扩大裂缝。

3. 压裂程度可控:水平井压裂过程中,压裂液的注入流量和压力可进行实时调整和监测,以控制压裂程度,避免过度压裂造成资源浪费。

4. 压裂液回收高效:由于水平井压裂工艺技术能够将压裂液注入到靠近油藏的位置,使得压裂液回收更加高效,降低对环境的影响。

综上所述,水平井压裂工艺技术是一种有效提高油田产能和生产效率的工艺技术。

水力喷射压裂技术

水力喷射压裂技术

2. 油管内泵入射孔工作液, 水力射孔
3. 油管内泵入压裂工作液维 持喷嘴压降、环空加压, 诱导孔内起裂、裂缝延伸
4. 回拉工具定位,第二段裂 缝射孔、压裂
5. 重复4,完成多段压裂
4、5
二、技术简介
2.3 工作机理
2.3.1 诱导压裂机理 射流动压转化原理 V2/2+P/ρ=C 射孔过程:Pv+Ph<FIP,不压裂(孔内双向流 动:射流入孔,反溅返流) 环空加压后,Pv+Ph+Pa>FEP,射流诱导起裂 (调整环空压力,可适应不同地层的压裂)
4. 每段分别作业,作业规模缩小、周期短、成本低。 5. 及时反洗、返排;实时微型压裂测试与监测,控制有效性高 6. 井底破裂压力低,无效裂缝少,可采用高砂比 7. 适应性广。可适应裸眼水平井等多种井况,可用于多种压裂方式
施工用喷射工具串
F138-p150
1704-1704.5m,总烃值1.3-1.6%,含 油砂岩占岩屑含量20%
6
2.1 1.0-2.1 40.5 20 2.1 1.0-2.1 38 18
2 24 110.9 41.54 26.7-40.5 4.28 0.7 42.7 12.7-9 4.3 2 27 94.1 38.31 34.2-37.3 4.2 0.9 46.8 11-10 3.2
四、国内外技术应用情况
1877-1877.5m,总烃值1.2-1.5%,含油砂岩 占岩屑含量20%
1950-1950.5m,总烃值2-2.5%, 含油砂岩占岩屑含量30%
2194-2194.5m,总烃值1.2-1.4%,含油砂岩占岩屑 含量5%
1607-1607.5m,总烃值1.2-1.4%,含油砂岩占岩屑含量 5%

气田水平井水力喷射工具压裂技术资料解读

气田水平井水力喷射工具压裂技术资料解读

气田水平井水力喷射工具压裂技术服务规范二零一四年十月目录前言 (3)一、压裂设备 (5)二、压裂工具 (7)三、压裂施工基本程序 (9)四、压裂液原理 (10)五、压裂的基础知识 (11)六、常规压裂 (18)七、限流法与投球法压裂 (19)前言近30年来,水力压裂技术得到快速发展,取得了众多科研成果,形成适用于不同温度条件的压裂液体系、适合不同闭合压力条件的支撑剂系列,研制出高性能的施工设备,创建了新的设计模型和分析、诊断方法,使压裂工艺技术日趋完善,现已成为油气田开发过程中不可缺少的一项工艺技术。

1、压裂用压力将地层压开一条或几条水平的或垂直的裂缝,并用支撑剂将裂缝支撑起来,减小油、气、水的流动阻力,沟通油、气、水的流动通道,从而达到增产增注的效果。

2、压裂的作用①穿透近井地带的伤害区,使井恢复其自然产能。

(解除近井地层的伤害)②在地层中延伸有导流的通道,使产量超过自然水平。

(增加地层向井筒供油面)③改变地层中的液体流动。

(油藏管理手段)3、压裂的种类(根据造缝介质不同)①高能气体压裂利用特定的发射药或推进剂在油气井的目的层段高速燃烧,产生高温高压气体,压裂地层形成多条自井眼呈放射状的径向裂缝,清除油气层污染及堵塞物,有效地降低表皮系数,从而达到油气井增产的目的的一种工艺技术。

②干法压裂利用100%的液体二氧化碳和石英砂进行压裂,无水无任何添加剂,压后压裂液几乎完全排出地层,可避免地层伤害。

其关键技术是混合砂子进入液体二氧化碳中的二氧化碳混合器。

适用于对驱替液、冻胶或表面活性剂的伤害敏感的地层,适合的储层包括渗水层、低压层及有微粒运移的储层以及水敏性储层。

③水力压裂水力压裂就是利用地面压裂车组将一定粘度的液体以足够高的压力和足够大的排量沿井筒注入井中。

由于注入速度远远大于油气层的吸收速度,所以多余的液体在井底憋起高压,当压力超过岩石抗张强度后,油气层就会开始破裂形成裂缝。

当裂缝延伸一段时间后,继续注入携带有支撑剂的混砂液扩展延伸裂缝,并使之充填支撑剂。

水平井水力喷射分段压裂技术

水平井水力喷射分段压裂技术

滑套工具尺寸
名称
第七级 第六级 第五级 第四级 第三级 第二级 第一级 单向阀内孔
60型滑套
50
46
42
38
34
30
26
22
低密度
钢球
55
49-48 45-44
41-40
37-36
33-32 29-28
25
2.0~2.6
二、水力喷射压裂工具设计研制
5 ½″套管不动管柱10段加砂压裂工具已加工完毕
➢ 采用投球滑套工具,不动管柱常规油管水力喷射分段压裂技术8h完成三段压裂,衬管完井(裸眼) 水平井首次试验成功。
➢ 分别完成40m3、30m3、30m3陶粒的施工,油管排量3.0~3.3m3/min,最高砂浓度700kg/m3,泵压65~ 76MPa,环空排量0.9~1.5m3/min。
➢ 完井仅0.3×104m3/d,压裂后测试天然气无阻流量16.1×104m3/d,增产倍比达到50倍以上,高于邻 井单层压裂11.4×104m3/d的平均水平。
6、喷嘴压损与排量关系
100 90 80 70
Φ=5mm Φ=6mm Φ=6.35mm Φ=5.5mm
60
50
40
30
20
10
0 0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
喷嘴排量(m3/min)
• 随排量的增大,喷嘴压损急剧增加; • 喷嘴直径的增大,喷嘴压损降低。
二、水力喷射分段压裂机理与参数 7、围压对喷射压力的影响
水平井水力喷射分段压裂技术
提纲
一、前言 二、水力喷射分段压裂机理与参数 三、水力喷射压裂工具设计研制 四、现场施工工艺设计与应用 五、结论与展望

水平井的水力喷射压裂技术的研究

水平井的水力喷射压裂技术的研究

水平井的水力喷射压裂技术的研究发布时间:2021-09-22T02:45:18.587Z 来源:《工程管理前沿》2021年5月14期作者:靳玉强[导读] 水力喷射压裂工艺作为一类集射孔、压裂等一体化技术靳玉强中国石油天然气股份有限公司玉门油田分公司油田作业公司甘肃省酒泉市 735000摘要:水力喷射压裂工艺作为一类集射孔、压裂等一体化技术,主要适用于低渗透油藏直井、水平井的增产改造,具有良好的应用成效。

本文主要分析水平井水力喷射分段压裂基本原理、特征,明晰影响压裂实际工艺参数,介绍三种不同的管柱压裂工艺。

关键词:水平井;水力喷射压裂;技术要点水力压裂历经半个世纪发展,尤其自80年代末以来,处于压裂设计、添加剂、压裂设备等均获取大幅度提升,促使水力压裂技术在多领域获取新的突破。

现下水力压裂作为一项新工艺技术,其进一步改变流动方式,从本质层面降低实际渗流阻力,可实现增产增注的目标。

一、水力喷射压裂基本原理及特征1、水力喷射压裂的基本原理水力喷射压裂技术基本原理为,充分借助水力喷射压裂工具,通过两个环节完成地层裂缝开启,首先需将喷射分段压裂管放置于初期设定部位,实现水力喷射,利用高压射流处于地层内形成喷射孔道,其次待孔道形成后,压裂液通过油管内由喷嘴射入孔道内,同时环空注入基液补偿地层其他缺失的部位,以此保证环空自身压力,将孔道内压力提升至一定程度,保证孔内压力吻合压开地层实际水平,以免进入孔内压裂液从孔口返出环空,促使地层产生裂缝并逐步向更深层次延伸,从而实现对油气井改造增产目标。

射流射入孔道内实现增压过程中,压裂液定点注入仅产生局部增压,不会处于井筒内部其他部位产生高压,促使形成新的裂缝,亦或发现有裂缝再次张开。

水力喷射压裂工艺本质在于借力高速射流,可处于井下产生一个低压区域,保证环孔流体进入施工层段,无需选用机械进行密封。

2、水力喷射压裂射流密封计算模型结合实践数据系统性分析,射流密封压力与多个因素相关,其与喷嘴流量系数、试验回归系数、喷嘴直径均呈正相关,与套管控孔眼实际直径成反比,通过对试验数据进行回归性分析,最终获取计算模型公式如下:式中:K为试验数据回归系数;C为喷嘴流量系数,无量纲;p为射流密封压力,MPa,Pd为射流压力,MPa,D为套管孔眼直径mm,d 为喷嘴直径mm。

水力喷射分段压裂技术研究

水力喷射分段压裂技术研究

水力喷射分段压裂技术研究技术背景:水平井低产主要归因于储层低渗、非均质性,近井污染或表皮损害以及无效的改造技术。

传统水力压裂应用于水平井改造增产效果并不理想,经常最多产生两个主要裂缝区,而且位置也不确定。

许多高产段仍然没被改造而维持着表皮损害。

水力喷射压裂技术就是最近引入的可代替传统压裂工艺的有效方法。

水力喷射压裂工艺技术是近年石油工程领域的新技术,它将水力喷射射孔和水力压裂工艺合为一体,且自身具有独特的定位性,能够快速准确的进行多层压裂而不用机械密封装置。

该技术在国外水平井已应用于几百口井,在一些低压、低产、低渗、多薄互层的油气层压裂改造中取得了较好的效果。

水力喷射压裂技术原理:水力喷射压裂技术结合了水力射孔和水力压裂的新型增产工艺。

该工艺由三个过程共同完成,水力喷砂射孔、水力压裂(通过普通油管或钻杆或连续油管)以及环空挤压(通过另外一个泵)。

通过安装在施工管柱上的水力喷射工具,利用水击作用在地层形成一个(或多个)喷射孔道,从而在近井地带产生微裂缝,裂缝产生后环空增加一定压力使产生的微裂缝得以延伸,实现水力喷射压裂(见图1)。

该技术基于伯努力方程:方程表明流体束中的能量维持常量,虽然实际上摩擦缓慢消耗能量使其转化为热能(但这个简化方程不包含温度因素)。

由方程可知流体束的速度变化引起压力反向变化。

喷嘴出口处速度最高压力就最低,随着流体不断深入孔道速度逐渐减小,压力不断升高,到孔道端处速度达到最低压力最高。

常规造缝方法需要对整个井筒加压,大多数情况下观察到的破裂压力比裂缝扩展压力要大得多,而且井内的每个裂缝都必须克服该压力。

水力喷射压裂通过喷射流体在孔道内动能到压能的转换利用喷射滞止压力破岩从而在喷射点处产生微裂缝。

由于能量集中在孔道端处,井筒不受破裂压力的影响,从而消除了压力曲线中地层破裂时的压力峰值(见图2),并且近井筒扭曲问题很少出现。

水力喷射裂缝一旦形成,由于喷嘴出口周围流体速度最高,其压力就最低,故流体会自动泵入裂缝而不会流到其它地方。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正循环低 替 , 用高压水射流携带 粉砂或 利 压 裂砂套 管开 孔 , 排量一般 在 1 0 - 3 O / 02 O L 9 mi , n 砂量一 般为 1 0 .m 射 孔结束后可 . ~2 O , 关 套管 闸门 , 据压 力上升情 况 , 根 判断 射孔效 果。
b. 裂 阶 段 : 压 来自3水力喷射压裂应用情况
截止 2 0 年 6 0 7 月底 , 庆油 田共进行 了 1 长 3 口井 5 2层次水 力喷 射压裂施 工 , 施工顺利 , 均
为一次成 功 , 取得 良好的增产 效果 。 3 1水 力喷射压裂工 艺过程 .
a. 喷砂射 孔阶段 :
1水 力喷射压 裂技术原理
2水平井水力 喷射压 裂优点
从上 世纪 9 0年 代开始 , 长庆 油田开 始 了 水 平井开发 试验 , 裂先 后经历 了三种方式 : 压 2 1 填砂 打液体胶塞技 术 . 采用该 工艺 技术时 , 油管传输 射孔 , 先 再 压裂, 排液 求产后填 砂打液体胶 塞封隔 已压 裂 段, 再重 复前 面工序射 孔 、压 裂 、排液 、填砂 打 塞 , 井压 裂完成 后钻 塞冲 砂至井 底( 全 见图 3。 ) 该 工艺 的 优 点是 密 封 可靠 ,便 于清 除 、 施工安 全 , 点是 作业 周 期长 。 缺
水 力喷 射分 段压 裂技 术原理 是 根据 伯努 利方程 : 把压能 转变为动能(p 度) 一种将 g速 , 是 水 力喷砂 射孔与 水 力压裂结 合起 来 的工 艺技 术, 可以根据需要精 确的布置 不同尺寸 的多条 裂缝 。利 用这种 技术 可以精 确 的控 制水平 井 水力压裂裂 缝的位置 , 尤其对 于裸眼完井 的低 渗透水平井 来说 , 一种最有效 的压裂增产措 是 施。 已知 油藏的最佳裂缝 延伸方 向时 , 采用带 有可 调整定 位的 喷射 系统或 具有 固定 喷射位 置的 共面调 整喷 射工具 进行 水 力喷射 压裂作 业, 使喷射面 与裂缝延 伸 面大致相 符 , 喷嘴 数量和喷嘴 尺寸根据 油
套管 注 入 系统 开泵 , 设计 注入 平 衡液 按 体, 排量一般 为 7 0 L ri , 0 / n 同时 正循 环打前 a 置液 , 按泵 注程 序加 砂直 至结 束 。 从施 工曲线 可以看 出( 见图 5 , 力喷射 )水 压裂 施工压 力对 排量比较敏感 , 提升排 量时压 力 有 明显 的上 升 , 压 裂施 工前 加一 个砂 量 在 2 左右 的段塞进 行喷砂射孔 。在射 孔以后 , m 压 裂过程施 工压 力持续升高 , 高速 水射流在裂 缝 中 的摩 阻作 用 比较 明显 , 停泵 后压 力 下降
22 机 械工具分段 压裂技术 . 通洗 井 下 桥塞 至预 定位 置坐封 一释放 桥 塞 一井筒 试压 一射 孔 一压裂 一试油 求产 一 打捞桥塞 。压裂第二 段时重复 以上工序 , 依次 完成全 井压裂( 见图 4 。 ) 水 力喷射 压 裂可 以实现 一趟 钻具 射孔 压 裂两段 , 与填砂打液 体胶塞分段压 裂和机械工 具 分段压裂 相比 , 有工艺简单 , 具 劳动强度低 , 作业 周期 短 , 储 层伤 害小等 优 点。 对
维普资讯
! Q
Sci ence and Tec ol hn ogy nno I vat o i n Her
工 业 技 术
水平井水 力喷 射压裂 工艺技术
曹欣 韩 文哲 高银锁 兰建平 ( 长庆石 油勘探局 井下技术作业处 陕西西安 7 0 1 1 2) 0 摘 要: 水平井 可以沟通更 多的层 系和油气通 道 , 而获得更 大的泄 流面积 , 从 当今油 气田开发 的技术发 展的趋势 。传统 的填砂打液 体胶 塞及封 隔器分隔压裂 劳动强度大 , 作业 周期长。本文 介绍 了水 力喷 射压裂的原理 和长庆油 田水 平井水力喷射压 裂应用情况 , 现场施工和 应用效 果表 明水 力喷 射压 裂是 水平井 分段 压裂的 方 向。 关键词 : 水平井 水力喷射 压裂 增产技术 TE3 中图分类号 : E T 3 文献标 识码 : A 文章编号 : 6 3 0 3 (0 7 1 () 0 2 — 2 1 7 — 5 42 0 ) 1a 0 3 0 水 平井 技术 可以 大大 地改 善油 气 田开发 的经 济性 , 高油气 田开 发的效 果和效 益 , 提 特 别是提 高那些非均质的 、连 通性 差的 、低渗和 薄 层等油气藏的开 发效 果和效 益 , 以及有效地 解决 油 田后期 开发 中出现 的水 锥 、气锥 和高 含水等 问题 ; 国内外的水平 井压裂技术 发展很 快, 关于 水平井水 力压裂的 力学问题 、设计方 案及 其影 响 因素 、产 能预 测及评 价 等 已进 行 了较深 入的研 究 。 近 年来 , 平井技术在 世界范 围内得到 了 水 迅速 发展 。 中石油水 平井 开发 呈逐 年上 升趋 势 , 2 0 年 已完钻水平 井 5 2口, 0 7 06 2 2 0 年计 划部署 6 0口水平井 。因此 , 0 水平井压 裂技术 具 有 良好 的 应 用前 景 。 井状况而设计 。 水 力喷射压 裂利用 专门 的喷射工具 ( 图 见 1由油管或连续油管连接 沿着水平井井身可 以 ) 在指 定的 位置 定位 。该 工艺 技术 首先利 用液 体动能在 油藏岩石 中喷射 出一 条通道 , 然后将 这些通道发 展成裂缝 , 液体 能量隔离这 些液体 使之 流进 裂缝 中 。在 一 口井 中某一位 置 完成 处理后 , 可将喷射 工具移至下 一个需要进 行压 裂的 区段 , 并且其 施工规模 可以随需要而 改变 ( 图2 。 见 ) 施 工过 程 中利用 压裂 车泵 入高 压液 体形 成高速水射 流 , 在欲 实施射 孔作业井段定 位后 由携带石英 砂的高速流 体对套管产 生冲击 , 从 而在套管上 刺穿开 孔并 穿透岩 层 , 形成 一定直 径一定深 度的孔道 , 高速动 能接触岩石后 变为 水压能 , 压开 地层 产生 裂缝并 由支撑 剂充 填 , 在水射 流基 部的 涡流 区 由套管 泵入液 体进 行 填充 , 从而保 证所有 支撑剂进入 地层并对裂缝 形 成 有效 支 撑 。
相关文档
最新文档