上海市奉贤区2017-2018学年八年级下学期调研测试数学试卷
2017--2018学年度第二学期沪科版(上海)八年级期末考试数学试卷
…………外………内…………○…………绝密★启用前 2017--2018学年度第二学期 沪科版(上海)八年级期末考试数学试卷 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.本卷25题,答卷时间100分钟,满分120分1.(本题3分)已知y 是x 的一次函数,下表中列出了部分对应值,则m 等 A. -1 B. 0 C. -2 D. -12 2.(本题3分)已知点()()1242y y -,,,都在直线23y x b =-+上,则1y 与2y 的大小关系是() A. 12y y > B. 12y y = C. 12y y < D. 不能确定 3.(本题3分)小李驾驶汽车以50千米/小时的速度匀速行驶1小时后,途中靠边停车接了半小时电话,然后继续匀速行驶.已知行驶路程(y 单位:千米)与行驶时间(t 单位:小时)的函数图象大致如图所示,则接电话后小李的行驶速度为() A. 43.5 B. 50 C. 56 D. 58………○…………○……※※在※※装※※订※※…○……线4.(本题3分)已知直线2y x =与y x b =-+的交点的坐标为(1, a ),则方程组2{ y xy x b ==-+的解是( )A. 1{ 2x y ==B. 2{ 1x y ==C. 2{ 3x y ==D. 1{ 3x y == 5.(本题3分)甲、乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.如果设甲每小时做x 个零件,那么下面所列方程中正确的是( )A. 90606x x =-B. 90606x x =+C. 90606x x =+D. 90606x x =-6.(本题3分)若关于x 的分式方程2213m xx x +-=-无解,则m 的值为( )A. -1.5B. 1C. -1.5或2D. -0.5或-1.57.(本题3分)如图,正方形ABCD 中,E 是BD 上一点,BE=BC ,则∠BEC 的度数是( )A. 45°B. 60°C. 67.5°D. 82.5°8.(本题3分)若菱形两条对角线的长分别为6和8,则这个菱形的边长为()A. 5B. 10C. 20D. 149.(本题3分)如图是四个全等的直角三角形围成的,若两条直角边分别为3和4,斜边为5,则向图中随机抛掷一枚飞镖,飞镖落在阴影区域的概率是(不考虑在线上的情形)()A. 35 B. 45 C. 1625 D. 254910.(本题3分)如图,A .B 是边长为1的小正方形组成的网格上的两个格点,在格点中任意放置点C ,恰好能使△ABC 的面积为1的概率是( )…………外…………○…………装……○…………订…………○……学校:___________姓______班级:___________考号…内…………○…………装…………○…………订…………线…………○…………………装…………○… A. 625 B. 15 C. 425 D. 725 二、填空题(计32分) x+2y=5与直线x+y=3的交点坐标是________. 12.(本题4分)有甲、乙两个长方体的蓄水池,将甲池中的水匀速注入乙池,甲、乙两个蓄水池中水的高度y(米)与注水时间x(小时)之间的函数图象如图所示,若要使甲、乙两个蓄水池的蓄水深度相同,则注水的时间应为_______. 13.(本题4分)直线y=kx 过点(x 1,y 1),(x 2,y 2),若x 1-x 2=1,y 1-y 2=-2,则k 的值为______. 14.(本题4分)如图,将一张长方形纸片ABCD 折叠成如图所示的形状,∠EGC=26°,则∠DFG= . 15.(本题4分)如图,E 是正方形ABCD 内一点,如果△ABE 为等边三角形,那么∠DCE=____度. 16.(本题4分)如图,把一个圆形转盘按1∶2∶3∶4的比例分成A ,B ,C ,D 四个扇形区域,自由转动转盘,停止后指针落在C 区域的概率是………○…………17.(本题4分)在一个不透明的盒子中装12个白球,若干个黄球,它们除了颜色不同外,其余都相同,若从中随机摸出一个球是黄球的概率是13,则黄球的个数为________。
2017-2018最新沪教版八年级下册数学全册综合检测试卷(含答案
八年级下册数学全册综合检测二姓名:__________ 班级:_________一、选择题(共12小题;每小题3分,共36分)1.已知一次函数y=x+b的图象经过一、二、三象限,则b的值可以是()A. -2B. -1C. 0D. 22.当ab>0时,y=ax2与y=ax+b的图象大致是()A. B. C. D.3.下列关于矩形的说法中正确的是().A. 矩形的对角线互相垂直且平分B. 矩形的对角线相等且互相平分C. 对角线相等的四边形是矩形D. 对角线互相平分的四边形是矩形4.如图,四边形ABCD中,AB与CD不平行,M,N分别是AD,BC的中点,AB=4,DC=2,则MN的长不可能是()A. 3B. 2.5C. 2D. 1.55.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A. 当AB=BC时,四边形ABCD是菱形B. 当AC⊥BD时,四边形ABCD是菱形C. 当∠ABC=90°时,四边形ABCD是矩形D. 当AC=BD时,四边形ABCD是正方形6.如图,已知四边形ABCD是菱形,过顶点D作DE⊥AD,交对角线AC于点E,若∠DAE=20°,则∠CDE的度数是()A. 70°B. 60°C. 50°D. 40°7.从多边形一条边上的一点(不是顶点)出发,连接各个顶点得到2013个三角形,则这个多边形的边数为()A. 2 011B. 2 015C. 2 014D. 2 0168.在▱ABCD中,AB=6,AD=8,∠ABC=60°,点E是AB的中点,EF⊥AB交BC于F,连接DF,则DF的长为()A. 2B. 8C. 5D. 109.如图,菱形ABCD的边长为20,∠DAB=60,对角线为AC和BD,那么菱形的面积为()A. 50B. 100C. 200D. 40010.有如下命题:1)有两个角相等的梯形是等腰梯形;2)有两条边相等的梯形是等腰梯形;3)两条对角线相等的梯形是等腰梯形;4)等腰梯形上,下底边中点的连线把等腰梯形分成面积相等的两部分.其中正确的命题有()A. 1个B. 2个C. 3个D. 4个11.如图,在平行四边形ABCD中,∠ABC的平分线交AD于E,∠BED=150°,则∠A的大小为()A. 150°B. 130°C. 120°D. 100°12.在四边形ABCD中,若有下列四个条件:①AB∥CD;②AD=BC;③∠A=∠C;④AB=CD.现以其中的两个条件为一组,能判定四边形ABCD是平行四边形的条件有()A. 3组B. 4组C. 5组D. 6组二、填空题(共10题;共30分)13.如图,是甲、乙两家商店销售同一种产品的销售价y(元)与销售量x(件)之间的函数图象.下列说法:①售2件时甲、乙两家售价一样;②买1件时买乙家的合算;③买3件时买甲家的合算;④买甲家的1件售价约为3元,其中正确的说法是(填序号)________14.若关于有增根,则=________;15.若分式方程=5+ 有增根,则a的值为________.16.已知:如图所示,△ABC中,E、F、D分别是AB、AC、BC上的点,且DE∥AC,DF∥A B,要使四边形AEDF是菱形,在不改变图形的前提下,你需添加的一个条件是________,试证明:这个多边形是菱形.17.以方程组的解为坐标的点(x,y)在平面直角坐标系中的第________象限.18.已知一次函数y=kx+b的图象经过两点A(0,1),B(2,0),则当x________时,y≤0.19.如图,在Rt△ABC中,∠B=90°,AB=10,BC>AB,点D在BC上,以AC为对角线的所有平行四边形ADCE 中,DE的最小值是________.20.一个正六边形的内角和是________度,每一个外角是________度.21.如图,在矩形ABCD中,AC,BD相交于点O,根据矩形的性质,AO=OB=OC=0D=AC=BD,由此我们得到直角三角形的一个性质:直角三角形斜边上的中线等于斜边的________ .(1)在矩形ABCD中,AB=1,BC=2,则对角线AC的长等于________ .(2)在矩形ABCD中,AB=1,BC=2,则Rt△ABC中,斜边AC边上的中线等于________ .22.一个正多边形的内角和为720°,则这个正多边形的每一个外角等于________.三、解答题(共4题;共34分)23.已知从n边形的一个顶点出发共有4条对角线,其周长为56,且各边长是连续的自然数,求这个多边形的各边长.24. 如图,△ABC中,点D,E分别是边BC,AC的中点,连接DE,AD,点F在BA的延长线上,且AF=AB,连接EF,判断四边形ADEF的形状,并加以证明.25.如图,在平行四边形ABCD中,已知对角线AC、BD相交于点O,若E、F是AC上两动点,分别从A、C 两点以相同的速度1cm/s向点O运动.(1)当E与F不重合时,四边形DEBF是否是平行四边形?请说明理由;(2)若AC=16cm,BD=12cm,点E,F在运动过程中,四边形DEBF能否为矩形?如能,求出此时的运动时间t的值,如不能,请说明理由.26.某通讯公司推出甲、乙两种通讯收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x(分钟)与收费y(元)之间的函数关系如图所示.(1)有月租费的收费方式是________(填甲或乙),月租费是________元;(2)求出甲、乙两种收费方式中y与自变量x之间的函数关系式.参考答案一、选择题D D B A D C C A C B C A二、填空题13. ①②③14. 415. 416. AE=AF17. 三18. ≥219. 1020. 720;621. 一半;;22. 60°三、解答题23. 解:依题意有n﹣3=4,解得n=7,设最短边为x,则7x+1+2+3+4+5+6=56,解得x=5.故这个多边形的各边长是5,6,7,8,9,10,11.24. 答:四边形ADEF是平行四边形.证明:∵点D,E分别是边BC,AC的中点,∴DE∥BF,DE=AB,∵AF=AB,∴DE=AF,∴四边形ADEF是平行四边形.25. (1)解:当E与F不重合时,四边形DEBF是平行四边形理由:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD;∵E、F两动点,分别从A、C两点以相同的速度向C、A运动,∴AE=CF;∴OE=OF;∴BD、EF互相平分;∴四边形DEBF是平行四边形(2)解:∵四边形DEBF是平行四边形,∴当BD=EF时,四边形DEBF是矩形;∵BD=12cm,∴EF=12cm;∴OE=OF=6cm;∵AC=16cm;∴OA=OC=8cm;∴AE=2cm或AE=14cm;由于动点的速度都是1cm/s,所以t=2(s)或t=14(s);故当运动时间t=2s或14s时,以D、E、B、F为顶点的四边形是矩形.26. (1)甲;30(2)解:由图象可知,甲图象过(0,30),(300,60)两点,设y甲=kx+b,得:,解得:,故y甲=0.1x+30;根据图象可知,乙图象经过原点(0,0),(300,60),设y乙=mx,将(300,60)代入求得:m=0.2,故y乙=0.2x。
2017-2018学年上海市奉贤区八年级下期末数学试卷((有答案))
2017-2018学年上海市奉贤区八年级(下)期末数学试卷一、选择题(本大题共6小题,共18.0分)1.下列函数中,一次函数是()A. B. C. D.2.下列判断中,错误的是()A. 方程是一元二次方程B. 方程是二元二次方程C. 方程是分式方程D. 方程是无理方程3.已知一元二次方程x2-2x-m=0有两个实数根,那么m的取值范围是()A. B. C. D.4.下列事件中,必然事件是()A. “奉贤人都爱吃鼎丰腐乳”B. “2018年上海中考,小明数学考试成绩是满分150分”C. “10只鸟关在3个笼子里,至少有一只笼子关的鸟超过3只”D. “在一副扑克牌中任意抽10张牌,其中有5张A”5.下列命题中,真命题是()A. 平行四边形的对角线相等B. 矩形的对角线平分对角C. 菱形的对角线互相平分D. 梯形的对角线互相垂直二、填空题(本大题共12小题,共24.0分)6.一次函数y=2x-1的图象在轴上的截距为______7.方程x4-8=0的根是______8.方程-x=1的根是______9.一次函数y=kx+3的图象不经过第3象限,那么k的取值范围是______10.用换元法解方程-=1时,如果设=y,那么原方程化成以“y”为元的方程是______11.化简:()-()=______.12.某商品经过两次连续涨价,每件售价由原来的100元涨到了179元,设平均每次涨价的百分比为x,那么可列方程:______13.如果n边形的每一个内角都相等,并且是它外角的3倍,那么n=______14.既是轴对称图形,又是中心对称图形的四边形是______.15.在四边形ABCD中,AB=AD,对角线AC平分∠BAD,AC=8,S四边形ABCD=16,那么对角线BD=______.16.在矩形ABCD中,∠BAD的角平分线交于BC点E,且将BC分成1:3的两部分,若AB=2,那么BC=______17.如图,在平行四边形ABCD中,AC与BD相交于点O∠AOB=60°,BD=4,将△ABC沿直线AC翻折后,点B落在点E处,那么S△AED=______三、解答题(本大题共8小题,共64.0分)18.解方程:-=219.解方程组:20.布袋中放有x只白球、y只黄球、2只红球,它们除颜色外其他都相同,如果从布袋中随机摸出一个球,恰好是红球的概率是.(1)试写出y与x的函数关系式;(2)当x=6时,求随机地取出一只黄球的概率P.21.如图,矩形ABCD中,对角线AC与BD相交于点O.(1)写出与相反的向量______;(2)填空:++=______;(3)求作:+(保留作图痕迹,不要求写作法).22.中国的高铁技术已经然走在了世界前列,2018年的“复兴号”高铁列车较“和谐号”速度增加每小时70公里.上海火车站到北京站铁路距离约为1400公里,如果选择“复兴号”高铁,全程可以少用1小时,求上海火车站到北京火车站的“复兴号”运行时间.23.已知:如图,在△ABC中,∠ACB=90°,点D是斜边AB的中点,DE∥BC,且CE=CD.(1)求证:∠B=∠DEC;(2)求证:四边形ADCE是菱形.24.如图,一次函数y=2x+4的图象与x,y轴分别相交于点A,B,以AB为边作正方形ABCD(点D落在第四象限).(1)求点A,B,D的坐标;(2)联结OC,设正方形的边CD与x相交于点E,点M在x轴上,如果△ADE与△COM全等,求点M的坐标.25.已知,梯形ABCD中,AD∥BC,∠ABC=90°,AB=3,BC=10,AD=5,M是BC边上的任意一点,联结DM,联结AM.(1)若AM平分∠BMD,求BM的长;(2)过点A作AE⊥DM,交DM所在直线于点E.①设BM=x,AE=y求y关于x的函数关系式;②联结BE,当△ABE是以AE为腰的等腰三角形时,请直接写出BM的长.答案和解析1.【答案】A【解析】解:A、y=x属于一次函数,故此选项正确;B、y=kx(k≠0),故此选项错误;C、y=+1,不符合一次函数的定义,故此选项错误;D、y=x2-2,不符合一次函数的定义,故此选项错误;故选:A.利用一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数,进而判断即可.此题主要考查了一次函数的定义,正确把握一次函数的定义是解题关键.2.【答案】D【解析】解:A、方程x(x-1)=0是一元二次方程,不符合题意;B、方程xy+5x=0是二元二次方程,不符合题意;C、方程-=2是分式方程,不符合题意;D、方程x2-x=0是一元二次方程,符合题意,故选:D.利用各自方程的定义判断即可.此题考查了无理方程,分式的定义,一元二次方程的定义,以及分式方程的定义,熟练掌握各自的定义是解本题的关键.3.【答案】B【解析】解:∵一元二次方程x2-2x-m=0有两个实数根,∴△=4+4m≥0,解得:m≥-1.故选:B.由方程有两个实数根,得到根的判别式的值大于等于0,列出关于m的不等式,求出不等式的解集即可得到m的范围.考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.4.【答案】C【解析】解:A、“奉贤人都爱吃鼎丰腐乳”,是随机事件,故此选项错误;B、“2018年上海中考,小明数学考试成绩是满分150分”,是随机事件,故此选项错误;C、“10只鸟关在3个笼子里,至少有一只笼子关的鸟超过3只”是必然事件,故此选项正确;D、“在一副扑克牌中任意抽10张牌,其中有5张A”,是不可能事件.故选:C.直接利用随机事件以及必然事件、不可能事件的定义分别分析得出答案.此题主要考查了随机事件以及必然事件、不可能事件的定义,正确区分各事件是解题关键.5.【答案】C【解析】解:A.平行四边形的对角线平分,错误;B.菱形的对角线平分对角,错误;C.菱形的对角线互相平分,正确;D.等腰梯形的对角线互相垂直,错误;故选:C.根据菱形、平行四边形、矩形、等腰梯形的性质分别判断得出即可.此题主要考查了菱形、平行四边形、矩形、等腰梯形的性质,熟练掌握相关定理是解题关键.6.【答案】-1【解析】解:一次函数y=2x-1的图象在y轴上的截距是-1,故答案为:-1,根据一次函数的图象与系数的关系即可得出结论.本题考查的是一次函数的性质,熟知一次函数的性质是解答此题的关键.7.【答案】±2【解析】解:x4-8=0,x4=8,x4=16,开方得:x2=4,开方得:x=±2,故答案为±2.移项,系数化成1,再开方即可.本题考查了解高次方程,能把高次方程转化成低次方程是解此题的关键.8.【答案】x=3【解析】解:-x=1,=1+x,2x+10=(1+x)2,x2=9,解得:x=±3,检验:把x=3代入方程-x=1得:左边=右边,所以x=3是原方程的解,把x=3代入方程-x=1得:左边≠右边,所以x=-3不是原方程的解,所以原方程的解为x=3,故答案为:x=3,移项后两边平方,即可得出整式方程,求出方程的解,再进行检验即可.本题考查了解无理方程,能把无理方程转化成有理方程是解此题的关键.9.【答案】k<0【解析】解:∵一次函数y=kx+3的图象不经过第3象限,一次函数y=kx+3的图象即经过第一、二、四象限,∴k<0.故答案为:k<0,先判断出一次函数图象经过第一、二、四象限,则说明x的系数不大于0,由此即可确定题目k的取值范围.本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.10.【答案】3y2-y-1=0【解析】解:-=1,设=y,原方程化为:3y-=1,即3y2-y-1=0,故答案为:3y2-y-1=0.设=y,原方程化为3y-=1,求出即可.本题考查了用换元法解分式方程,能够正确换元是解此题的关键.11.【答案】【解析】解:()-()=--+=(+)-(+)=-=.故答案为:.由去括号的法则可得:()-()=--+,然后由加法的交换律与结合律可得:(+)-(+),继而求得答案.此题考查了平面向量的知识.此题难度不大,注意掌握三角形法则的应用.12.【答案】100(1+x)2=179【解析】解:设平均每次涨价的百分比为x,那么可列方程:100(1+x)2=179.故答案为:100(1+x)2=179.设平均每次涨价的百分比为x,根据原价为100元,表示出第一次涨价后的价钱为100(1+x)元,然后再根据价钱为100(1+x)元,表示出第二次涨价的价钱为100(1+x)2元,根据两次涨价后的价钱为179元,列出关于x的方程此题考查了由实际问题抽象出一元二次方程,属于平均增长率问题,一般情况下,假设基数为a,平均增长率为x,增长的次数为n(一般情况下为2),增长后的量为b,则有表达式a(1+x)n=b,类似的还有平均降低率问题,注意区分“增”与“减”.13.【答案】8【解析】解:∵每个内角都相等,并且是它外角的3倍,设外角为x,可得:x+3x=180°,解得:x=45°,∴边数=360°÷45°=8.故答案为:8.根据正多边形的内角与外角是邻补角求出每一个外角的度数,再根据多边形的边数等于360°除以每一个外角的度数列式计算即可得到边数.本题考查了多边形的内角与外角,熟练掌握多边形的外角和、多边形的每一个外角的度数、多边形的边数三者之间的关系是解题的关键.14.【答案】矩形(答案不唯一)【解析】解:矩形(答案不唯一).根据轴对称图形与中心对称图形的概念,写一个则可.掌握中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.15.【答案】4【解析】解:∵对角线AC平分∠BAD,∴∠BAO=∠DAO,在△BAO与△DAO中,,∴△BAO≌△DAO(SAS),∴∠BOA=∠DOA,∴AC⊥BD,∵AC=8,S四边形ABCD =16,∴BD=16×2÷8=4.故答案为:4.根据角平分线的定义可得∠BAO=∠DAO,根据SAS可证△BAO≌△DAO,再根据全等三角形的性质可得∠BOA=∠DOA,可得AC⊥BD,再根据对角线互相垂直的四边形面积公式计算即可求解.考查了多边形的对角线,角平分线,全等三角形的判定与性质,四边形面积,关键是根据SAS证明△BAO≌△DAO.16.【答案】8或【解析】解:①如图1中,∵四边形ABCD是矩形,AE平分∠BAD,∴∠BAE=∠AEB=45°,∴AB=BE=2,当EC=3BE时,EC=6,∴BC=8.②如图2中,当BE=3EC时,EC=,∴BC=BE+EC=.故答案为8或分两种情形画出图形分别求解即可解决问题;本题考查矩形的性质、等腰直角三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.17.【答案】【解析】解:如图连接EO.∵∠AOB=∠EOA=60°,∴∠EOD=60°,∵OB=OE=OD,∴△EOD是等边三角形,∴∠EDO=∠AOB=60°,∴DE∥AC,2=.∴S故答案为如图连接EO.首先证明△EOD是等边三角形,推出∠EDO=∠AOB=60°,推出DE∥AC,推出S△ADE=S△EOD即可解决问题;此题考查了折叠的性质,平行四边形的性质以及勾股定理的应用等知识.此题难度适中,解题的关键是准确作出辅助线,利用数形结合思想求解.18.【答案】解:方程两边都乘以(x+2)(x-2)得:(x-1)(x+2)-4=2(x+2)(x-2),即x2-x-2=0,解得:x=-1或2,检验:当x=-1时,(x+2)(x-2)≠0,所以x=-1是原方程的解,当x=2时,(x+2)(x-2)=0,所以x=2不是原方程的解,所以原方程组的解为:x=-1【解析】先去分母,把分式方程转化成整式方程,求出整数方程的解,再进行检验即可.本题考查了解分式方程,能把分式方程转化成整式方程是解此题的关键.19.【答案】解:由①得:x=4+y③,把③代入②得:(4+y)2-2y2=(4+y)y,解得:y1=4,y2=-2,代入③得:当y1=4时,x1=8,当y2=-2时,x2=2,所以原方程组的解为:,.【解析】由①得出x=4+y③,把③代入②求出y,把y的值代入③求出x即可.本题考查了解高次方程组,能把高次方程组转化成一元二次方程是解此题的关键.20.【答案】解:(1)因为布袋中放有x只白球、y只黄球、2只红球,且红球的概率是.所以可得:y=14-x(2)把x=6,代入y=14-6=8,所以随机地取出一只黄球的概率P==【解析】(1)让红球的个数除以球的总个数即为从布袋中随机摸出一个球是红球的概率,进而得出函数解析式.(2)让黄球的个数除以球的总个数即为从布袋中随机摸出一个球是黄球的概率.此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.21.【答案】,【解析】解:(1)与相反的向量有,,故答案为有,.(2)∵+=,+=,∴++=故答案为.(3)如图,作平行四边形OBEC,连接AE,即为所求;(1)根据相反的向量的定义即可解决问题;(2)利用三角形加法法则计算即可;(3)如图,作平行四边形OBEC,连接AE,即为所求;本题考查平面向量、作图-复杂作图、矩形的性质等知识,解题的关键是熟练掌握向量的加法法则,属于中考常考题型.22.【答案】解:设复兴号用时x小时,则和谐号用时(x+1)小时,根据题意得:=70+,解得:x=4或x=-5(舍去)答:上海火车站到北京火车站的“复兴号”运行时间为4小时.【解析】复兴号用时x小时,则和谐号用时(x+1)小时,然后依据“复兴号”高铁列车较“和谐号”速度增加每小时70公里列方程求解即可.此题考查了分式方程的应用,关键是分析题意,找到合适的数量关系列出方程,解分式方程时要注意检验.23.【答案】(1)证明:在△ABC 中,∵∠ACB =90°,点D 是斜边AB 的中点, ∴CD =DB ,∴∠B =∠DCB , ∵DE ∥BC ,∴∠DCB =∠CDE , ∵CD =CE ,∴∠CDE =∠CED , ∴∠B =∠CED .(2)证明:∵DE ∥BC , ∴∠ADE =∠B , ∵∠B =∠DEC , ∴∠ADE =∠DEC , ∴AD ∥EC ,∵EC =CD =AD ,∴四边形ADCE 是平行四边形, ∵CD =CE ,∴四边形ADCE 是菱形. 【解析】(1)利用等腰三角形的性质、直角三角形斜边中线定理证明即可;(2)首先证明AD=EC ,AD ∥EC ,可得四边形ADCE 是平行四边形,再根据CD=CE 可得四边形是菱形;本题考查菱形的判定和性质、平行四边形的性质、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.【答案】解:(1)∵一次函数y =2x +4的图象与x ,y 轴分别相交于点A ,B ,∴A (-2,0),B (0,4), ∴OA =2,OB =4,如图1,过点D 作DF ⊥x 轴于F , ∴∠DAF +∠ADF =90°,∵四边形ABCD 是正方形, ∴AD =AB ,∠BAD =90°, ∴∠DAF +∠BAO =90°, ∴∠ADF =∠BAO ,在△ADF 和△BAO 中, ∠ ∠∠ ∠,∴△ADF ≌△BAO (AAS ), ∴DF =OA =2,AF =OB =4, ∴OF =AF -OA =2,∵点D 落在第四象限, ∴D (2,-2);(2)如图2,过点C 作CG ⊥y 轴于G ,连接OC ,作CM ⊥OC 交x 轴于M , 同(1)求点D 的方法得,C (4,2), ∴OC = =2 ,∵A (-2,0),B (0,4), ∴AB =2 ,∵四边形ABCD 是正方形, ∴AD =AB =2 =OC ,∵△ADE与△COM全等,且点M在x轴上,∴△ADE≌△OCM,∴OM=AE,∵OM=OE+EM,AE=OE+OA,∴EM=OA=2,∵C(4,2),D(2,-2),∴直线CD的解析式为y=2x-6,令y=0,∴2x-6=0,∴x=3,∴E(3,0),∴OM=5,∴M(5,0).【解析】(1)先利用坐标轴上点的特点求出点A,B的坐标,再构造全等三角形即可求出点D坐标;(2)先求出点C坐标,进而求出OC,判断出AD=OC,再用待定系数法求出直线CD解析式,即可求出点E坐标,即可得出结论.此题是一次函数综合题,主要考查了待定系数法,正方形的性质,全等三角形的判定和性质,构造全等三角形求出点D坐标是解本题的关键.25.【答案】解:(1)如图1中,作DH⊥BC于H.则四边形ABHD是矩形,AD=BH=5,AB=DH=3.当MA平分∠DMB时,易证∠AMB=∠AMD=∠DAM,可得DA=DM=5,在Rt△DMH中,DM=AD=5,DH=3,∴MH===4,∴BM=BH-MH=1,当AM′平分∠BM′D时,同法可证:DA=DM′,HM′=4,∴BM′=BH+HM′=9.综上所述,满足条件的BM的值为1或9.(2)①如图2中,作MH⊥AD于H.在Rt△DMH中,DM==,∵S△ADM=•AD•MH=•DM•AE,∴5×3=y•∴y=.②如图3中,当AB=AE时,y=3,此时5×3=3,解得x=1或9.如图4中,当EA=EB时,DE=EM,∵AE⊥DM,∴DA=AM=5,在Rt△ABM中,BM==4.综上所述,满足条件的BM的值为1或9或4.【解析】(1)如图1中,作DH⊥BC于H.则四边形ABHD是矩形,AD=BH=5,AB=DH=3.分两种情形求解即可解决问题;(2)①如图2中,作MH⊥AD于H.利用面积法构建函数关系式即可;②分两种情形:如图3中,当AB=AE时,y=3,此时5×3=3,解方程即可;如图4中,当EA=EB时,DE=EM,利用勾股定理求解即可;本题考查四边形综合题、等腰三角形的判定和性质、勾股定理、三角形的面积等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.11。
2017-2018学年人教版八年级下册期末调研考试数学试卷含答案
2018年春部分学校期末调研考试八年级数学试卷一、单项选择题(共10小题,每小题3分,30分)本题共10小题,每小题均给出A ,B ,C ,D 四个选项,有且只有一个答案是正确的,请将正确的答案的代号填在答题卷上,填在试题卷上无效. 1.下列式子属于最简二次根式的是 ( )A .2B .5.0C .8D .31 2.点P (2,-1)在一次函数1+=kx y 的图像上,则的值为 ( )A .1B .-1C .2D .33.若平行四边形中两个内角的度数比为1:3,则其中较小的内角为( )A .45°B .60°C .120°D .135° 4.下列计算结果为32的是( )A .28+B .1218-C .36⨯D .224÷5.矩形、菱形、正方形都具有的性质是( )A .对角线相等B .对角线互相垂直C .对角线互相平分D .对角线平分对角 6.小明家、食堂、图书馆依次在同一条直线上,小明从家去食堂吃早餐,接着云图书馆读报,然后回家。
如图反映了这个过程,小明离家的距离与时间之间的对应关系,下列说法错误的是( )A .小明从家到食堂用了8minB .小明家离食堂0.6km ,食堂离图书馆0.2kmC .小明吃早餐用了30min ,读报用了17minD .小明从图书馆回家的平均速度为0.08km/min7. 为参加市中学生运动会,某校篮球队准备购买10双运动鞋,各种尺码统计如下表: 则这10双运动鞋尺码的中位数和众数分别为( )A .25.5,26B .26,25.5,C .25.5,25.5D .25,268.点A (-1,y 1),B (2,y 2)均在直线b x y +-=2的图像上下列结论正确的是( )A .21y y <B .21y y >C .21y y =D .无法确定9.下图是4×4的正方形网格,每个小正方形的边长为1,每个小正方形的顶点叫格点,点A 、B (均在格点上)的位置如图,若以A 、B 为顶点画面积为2的格点平行四边形,则符合条件的平行四边形的个数有( )A .6B .7C .9D .1110.在平面直角坐标系中,点P 的坐标为(a ,b ),点P 的“变换点”P`的坐标定义如下:当b a ≥时,P`点坐标为(a ,-b );当b a <时,P`点坐标为(b ,-a )。
上海市2017-2018学年八年级数学下学期期末模拟试卷及答案(一)
上海市2017-2018学年八年级数学下学期期末模拟试卷及答案(一)加而增加,则m的取值范围是▲.10.已知等差数列{an}的公差为d,首项为a1,末项为an,且a1+an=20,d=2,则a5=▲.11.已知函数f(x)=2x²+bx+c的图像过点(1,3),且在点(2,8)处的切线斜率为4,则b=▲,c=▲.12.如图,矩形ABCD中,AE=3cm,BF=4cm,且AE⊥BF,那么矩形ABCD的面积为▲平方厘米.13.如图,在三角形ABC中,DE//BC,AD=4cm,BD=5cm,CE=6cm,则AE=▲cm.14.如图,在平行四边形ABCD中,E、F分别是AB、CD的中点,则三角形EFC的面积为▲平方厘米.15.已知函数f(x)=2x³-3x²-kx+1在x=1处有极值,则k=▲.16.已知函数f(x)=x²-2x+3,点P(x,y)在f(x)的图像上,则点P到直线y=x的距离为▲.17.如图,在正方形ABCD中,点E、F分别在AB、BC 边上,且AE=CF,则EF的长度为▲厘米.18.如图,在直角三角形ABC中,AB=3,AC=4,AD是BC上的高,则AD的长度为▲厘米.三、解答题(本大题共8题,共58分)19.(6分)解方程:3x-2=4x+1-2x20.(6分)解不等式:2x-5<3x+2≤4x-121.(6分)已知函数f(x)=2x-1,g(x)=x²,求复合函数(fog)(x)和(gof)(x).22.(8分)如图,在△ABC中,D、E、F分别是BC、AC、AB上的点,且AD⊥BC,BE⊥AC,CF⊥AB.若AD=6,BE=8,CF=10,求△XXX的面积.23.(8分)如图,在长方形ABCD中,E、F分别是BC、CD上的点,且AE=2,BF=3,CE=4,求长方形ABCD的面积.24.(8分)如图,在平行四边形ABCD中,点E、F分别是BC、CD的中点,EF与AB交于点P,连接AP、DP,求证:AP=DP.25.(10分)如图,在△ABC中,D、E、F分别是BC、AC、AB上的点,且AD⊥BC,BE⊥AC,CF⊥AB.若AD=8,BE=6,CF=10,求△XXX的面积.26.(6分)如图,在平行四边形ABCD中,E、F分别是AB、CD的中点,连接AC、BD相交于点P,求证:AP=CP.1.大而增大,那么m的取值范围是多少?2.解方程a^2x+x=1的解是什么?3.解方程2x+3=x的解是多少?4.如图,一次函数y=kx+b的图像与x轴、y轴分别相交于A、B两点,那么当y<0时,自变量x的取值范围是多少?5.2名男生和2名女生抓阄分派2张电影票,恰好2名女生得到电影票的概率是多少?6.如果一个八边形的每一个内角都相等,那么它的一个内角的度数等于多少度?7.在□ABCD中,如果∠A+∠C=140º,那么∠B是多少度?8.在△ABC中,D、E分别是边AB、AC的中点,且DE=6,那么BC是多少?9.在梯形ABCD中,AD//BC,AB=CD,AC⊥BD.如果AD=4,BC=10,那么梯形ABCD的面积等于多少?10.如图,在△ABC中,AB=AC,点M、N分别在边AB、AC上,且XXX⊥AC.将四边形BCNM沿直线MN翻折,点B、C的对应点分别是点B′、C′,如果四边形XXX′C′是平行四边形,那么∠BAC是多少度?三、计算题(本大题共8题,满分58分)11.解方程:x^2(x-1)/(x-1)=1.12.解方程组:{x+2y=1.x-4xy+4y-9=0.13.已知:如图,在△ABC中,设BA=a,BC=b.(1)填空:CA=?(用a、b的式子表示);(2)在图中求作a+b.14.已知直线y=kx+b经过点A(-3,-8),且与直线y=x的公共点B的横坐标为6.(1)求直线y=kx+b的表达式;(2)设直线y=kx+b与y轴的公共点为点C,求△BOC的面积。
2017-2018学年上海市奉贤区八年级(下)期末数学试卷(解析版)
一.选择题(本大题共 6 题,满分 18 分) 1. (3 分)下列函数中,一次函数是( A.y=x B.y=kx ) ) C.y= +1 D.y=x ﹣2
2
2. (3 分)下列判断中,错误的是(
A.方程 x(x﹣1)=0 是一元二次方程 B.方程 xy+5x=0 是二元二次方程 C.方程 D.方程 ﹣ =2 是分式方程 x ﹣x=0 是无理方程
第 4 页(共 18 页)
2017-2018 学年上海市奉贤区八年级(下)期末数学试卷
参考答案与试题解析
一.选择题(本大题共 6 题,满分 18 分) 1. (3 分)下列函数中,一次函数是( A.y=x B.y=kx ) C.y= +1 D.y=x ﹣2
2
【解答】解:A、y=x 属于一次函数,故此选项正确; B、y=kx(k≠0) ,故此选项错误; C、y= +1,不符合一次函数的定义,故此选项错误; D、y=x ﹣2,不符合一次函数的定义,故此选项错误; 故选:A. 2. (3 分)下列判断中,错误的是( )
2 2
3. (3 分)已知一元二次方程 x ﹣2x﹣m=0 有两个实数根,那么 m 的取值范围是( A.m≤﹣1 B.m≥﹣1 ) C.m>﹣1 D.m<﹣1
)
4. (3 分)下列事件中,必然事件是( A. “奉贤人都爱吃鼎丰腐乳”
B. “2018 年上海中考,小明数学考试成绩是满分 150 分” C. “10 只鸟关在 3 个笼子里,至少有一只笼子关的鸟超过 3 只” D. “在一副扑克牌中任意抽 10 张牌,其中有 5 张 A” 5. (3 分)下列命题中,真命题是( A.平行四边形的对角线相等 B.矩形的对角线平分对角 C.菱形的对角线互相平分 D.梯形的对角线互相垂直 6. (3 分)等腰梯形 ABCD 中,AD∥BC,E、F、G、H 分别是 AB、BC、CD、AD 的中点, 那么四边形 EFGH 一定是( A.矩形 B.菱形 ) C.正方形 D.等腰梯形 )
2018届奉贤区中考数学一模及答案
2018届奉贤区中考数学一模及答案2017学年奉贤区调研测试九年级数学2017.12一、选择题(本大题共6题,每题4分,满分24分) 1. 下列函数中是二次函数的是( ) A.2(1)y x =- B.22(1)y x x =-- C.2(1)y a x =- D.221y x =-2. 在Rt ABC中,90C ∠=,如果22,cos 3AC A ==,那么AB 的长是( )A. 3B. 43 C. D.3. 在ABC中,点D 、E 分别在边AB 、AC 上,如果:1:3AD BD =,那么下列条件中能够判断//DE BC 的是( ) A.14DE BC = B.14AD AB = C.14AE AC = D.14AE EC =4. 设n 为正整数,a 为非零向量,那么下列说法不正确的是( ) A. na 表示n 个a 相乘 B.na-表示n 个a -相加C.na与a 是平行向量 D. na-与na 互为相反向量5. 如图1,电线杆CD 的高度为h ,两根拉线AC 与BC 互相垂直(A 、D 、B在同一条直线上),设CAB α∠=,那么拉线BC 的长度为( ) A. sin hα B. cos h α C. tan h αD.cot h α6. 已知二次函数2y axbx c=++的图像上部分点的横坐标x 与纵坐标y 的对应值如下表:那么关于它的图像,下列判断正确的是( )A. 开口向上B. 与x 轴的另一个交点是(3,0)C. 与y 轴交于负半轴D. 在直线1x =左侧部分是下降的二、填空题(本大题共12题,每题4分,满分48分)7. 已知54a b =,那么a bb+=____________. 8. 计算:tan 60cos30-=____________. 9. 如果抛物线25y ax=+的顶点是它的最低点,那么a 的取值范围是____________.10. 如果抛物线22y x =与抛物线2y ax =关于x 轴对称,那么a的值是____________.11. 如果向量a 、b 、x 满足关系式()40a b x --=,那么x =____________.(用向量a 、b 表示)12. 某快递公司十月份快递件数是10万件,如果该公司第四季度每个月快递件数的增长率都为(0)x x >,十二月份的快递件数为y 万件,那么y 关于x 的函数解析式是____________. 13. 如图2,已知123////l ll ,两条直线与这三条平行线分别交于点A 、B 、C 和点D 、E 、F .如果32AB BC =,那么DEDF的值是____________.14. 如果两个相似三角形的面积之比是4:9,那么它们的对应角平分线之比是____________.15. 如图3,已知梯形ABCD ,//AB CD ,对角线AC 、BD 相交于点O,如果2AOBAODSS=,10AB =,那么CD的长是____________. 16. 已知AD 、BE 是ABC的中线,AD 、BE 相交于点F ,如果6AD =,那么AF 的长是____________.17. 如图4,在ABC中,,AB AC AH BC =⊥,垂足为点H ,如果AH BC=,那么sin BAC ∠的值是____________.18. 已知ABC,,8AB AC BC ==,点D 、E 分别在边BC 、AB 上,将ABC 沿着直线DE 翻折,点B 落在边AC 上的点M 处,且4AC AM=,设BD m =,那么ACB ∠的正切值是____________.(用含m 的代数式表示)三、解答题(本大题共7题,满分78分)19.(本题满分 10 分,第(1)小题满分 6 分,第(2)小题满分 4 分) 已知抛物线2241y xx -=-+.(1)求这个抛物线的对称轴和顶点坐标;(2)将这个抛物线平移,使顶点移到点(2,0)P的位置,写出所得新抛物线的表达式和平移的过程.20.(本题满分10 分,第(1)小题满分6 分,第(2)小题满分 4 分)已知:如图5,在平行四边形ABCD 中,AD=2,点 E 是边BC 的中点,AE、BD 相交于点F,过点 F 作FG∥BC,交边DC 于点G.(1)求FG的长;(2)设,==,用a、AD a DC bb的线性组合表示AF21.(本题满分 10 分,每小题满分各 5 分) 已知:如图 6,在 Rt ABC中,290,3,cot 2ACB BC ABC ∠==∠=,点D 是AC 的中点. (1)求线段BD 的长;(2)点E 在边AB 上,且CE CB =,求ACE的面积22.(本题满分10 分,第(1)小题满分4 分,第(2)小题满分 6 分)如图7,为了将货物装入大型的集装箱卡车,需要利用传送带AB 将货物从地面传送到高 1.8 米(即BD=1.8 米)的操作平台BC 上.已知传送带AB 与地面所成斜坡的坡角37∠=︒BAD.(1)求传送带AB 的长度;(2)因实际需要,现将操作平台和传送带进行改造,如图中虚线所示,操作平台加高0.2 米(即0.2BF=米),传送带与地面所成斜坡的坡度i=1:2,求改造后传送带EF 的长度.(精确到0.1 米)(参考数值:sin370.60,cos370.80,tan370.75,2 1.41,5 2.24≈≈≈≈≈)23.(本题满分12 分,每小题满分各6 分)已知:如图8,四边形90∠=︒,,对角线BD⊥AD,ABCD DCB点 E 是边AB 的中点,CE 与BD 相交于点F,2·=.BD AB BC(1)求证:BD 平分∠ABC ; (2) 求证:··BE CF BC EF =.24. (本题满分 12 分,每小题满分各 4 分)如图9,在平面直角坐标系xOy 中,抛物线238y x bx c =++与x 轴相交于点(2,0)A -和点B ,与y 轴相交于点(0,3)C -,经过点A 的射线AM 与y 轴相交于点E ,与抛物线的另一个交点为点F ,且13AE EF =. (1)求这条抛物线的表达式,并写出它的对称轴;(2)求FAB ∠的余切值;(3)点D 是点C 关于抛物线对称轴的对称点,点 P 是 y轴上一点,且AFP DAB ∠=∠,求点 P 的坐标.25.(本题满分 14 分,第(1)小题满分 3 分,第(1)小题满分 5 分,第(1)小题满分 6 分)已知:如图10,在梯形ABCD 中,//,90,2AB CD D AD CD ∠===,点E 在边AD 上(不与点A 、D 重合),45,CEB EB ∠=与对角线AC 相交于点F ,设DE x =.(1)用含x 的代数式表示线段CF 的长;(2)如果把CAE 的周长记作CAE C ,BAF 的周长记作BAF C ,设CAE BAF C y C =,求y 关于x 的函数关系式,并写出它的定义域; (3)当ABE ∠的正切值是35时,求AB的长.参考答案1-6 DACABB7. 958. 2 9. 0a > 10. 2- 11. 4b a - 12. 210(1)y x =+13. 35 14. 2:3 15. 5 16. 4 17. 45 18.19. (1)对称轴:直线1x =-; 顶点坐标(1,3)-(2)22(2)y x =--或2288y x x =-+-;向右平移3个单位,向下平移3个单位20. (1)43 (2)1233a b +21. (1 (222. (1)3米 (2)4.5米23. (1)证明略; (2)证明略24. (1)233384y x x =--;对称轴:直线1x =(2)43(3)1(0,6)P 或21020,7P ⎛⎫- ⎪⎝⎭25. (1)24)4x +(2)2y x=+,定义域:02x << (3)52AB =。
上海市2017-2018学年八年级数学下学期期末模拟试卷及答案(共五套)
上海市2017-2018学年八年级数学下学期期末模拟试卷及答案(共五套)上海市2017-2018学年八年级数学下学期期末模拟试卷及答案(一)(考试时间90分钟,满分100分)考生注意:1.本试卷含三个大题,共26题.2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答 题一律无效.3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证 明或计算的主要步骤. 4.本次考试可使用科学计算器.一、选择题:(本大题共6题,每题3分,满分18分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】 1.下列方程中,不是分式方程的是 (A )21xx-=; (B 1223x +=-+;(C )22112x x x x ++=+; (D 2112x x +=-. 2.一次函数23y x =-+的图像一定经过(A )第一、二、三象限; (B )第一、三、四象限; (C )第二、三、四象限; (D )第一、二、四象限.3.已知C 是线段AB 的中点,那么下列结论中正确的是(A )0AC BC +=uuu r uu u r;(B )0AC BC -=uuu r uu u r;(C )0AC BC +=uuu r uu u r r;(D )0AC BC -=uuu r uu u r r.4.小杰两手中仅有一只手中有硬币.他让小敏猜哪只手中有硬币.下列说法正确的是(A )第一次猜中的概率与重放后第二次猜中的概率不一样; (B )第一次猜不中后,小杰重放后再猜1次肯定能猜中; (C )第一次猜中后,小杰重放后再猜1次肯定猜不中; (D )每次猜中的概率都是0.5.5.如图,在梯形ABCD 中,AB // CD ,AD = DC = CB ,AC ⊥BC ,那么下列结论不正确的是(A)AC = 2CD;(B)DB⊥AD;(C)∠ABC = 60º;(D)∠DAC =∠CAB.6.下列命题中,假命题是(A)有一组对角是直角且一组对边平行的四边形是矩形;(B)有一组对角是直角且一组对边相等的四边形是矩形;(C)有两个内角是直角且一组对边平行的四边形是矩形;(D)有两个内角是直角且一组对边相等的四边形是矩形.二、填空题(本大题共12题,每题2分,满分24分)7.一次函数35y x=--的图像在y轴上的截距为▲.8.已知直线y k x b=+经过点(-2,2),并且与直线21y x=+平行,那么b=▲.9.如果一次函数(2)y m x m=-+的函数值y随x的值增大而增大,那么m的取值范围是▲.10.关于x的方程21a x x+=的解是▲.11.方程x的解是▲.12.如图,一次函数y k x b=+的图像与x轴、y轴分别相交于A、B两点,那么当y < 0时,自变量x的取值范围是▲.13.2名男生和2名女生抓阄分派2张电影票,恰好2名女生得到电影票的概率是▲.14.如果一个八边形的每一个内角都相等,那么它的一个内角的度数等于▲度.15.在□ABCD中,如果∠A +∠C = 140º,那么∠B =▲度.16.在△ABC中,D、E分别是边AB、AC的中点,且DE = 6,那么BC =▲.17.在梯形ABCD中,AD // BC,AB = CD,AC⊥BD.如果AD = 4,BC = 10,那么梯形ABCD的面积等于▲.18.如图,在△AB C中,AB = AC,点M、N分别在边AB、AC上,且MN⊥AC.将四边形BCNM沿直线MN翻折,点B、C的对应点分别是点B′、C′,如果四边形ABB′C′是平行四边形,那么∠BAC =▲度.(第12题图)AB C(第18题图)A BCD(第5题图)三、计算题(本大题共8题,满分58分) 19.(本题满分6分)解方程:2(1)11x x x x--=-.20.(本题满分6分)解方程组:2221,4490.x y x x y y +=⎧⎨-+-=⎩21.(本题共2小题,每小题3分,满分6分)已知:如图,在△ABC 中,设BA a =uu r r ,BC b =uu u r r.(1)填空:CA =uu r ▲ ;(用a r 、b r的式子表示)(2)在图中求作a b +r r.(不要求写出作法,只需写出结论即可.) 22.(本题共2小题,每小题3分,满分6分)已知直线y k x b =+经过点A (–3,–8),且与直线23y x =的公共点B 的横坐标为6.(1)求直线y k x b =+的表达式;(2)设直线y k x b =+与y 轴的公共点为点C ,求△BOC 的面积.(第21题图)xyO(第22题图)23.(本题共2小题,每小题4分,满分8分)已知:如图,在正方形ABCD 中,点E 在边BC 上,点F 在边CD 的延长线上,且BE = DF . (1)求∠AEF 的度数;(2)如果∠AEB = 75º,AB = 2,求△FEC 的面积.24.(本题满分8分)某中学八年级学生到离学校15千米的青少年营地举行庆祝十四岁生日活动,先遣队与大部队同时从学校出发.已知先遣队每小时比大部队多行进1千米,预计比大部队早半小时到达目的地.求先遣队与大部队每小时各行进了多少千米. 25.(本题共2小题,其中第(1)小题5分,第(2)小题3分,满分8分)已知:如图,在□ABCD 中,E 为边CD 的中点,联结AE 并延长,交边BC 的延长线于点F .(1)求证:四边形ACFD 是平行四边形; (2)如果∠B +∠AFB = 90º,求证:四边形ACFD 是菱形.A BCDEF (第23题图)ABCDE F(第25题图)26.(本题共3小题,其中第(1)小题3分,第(2)小题4分,第(3)小题3分,满分10分)已知:如图,在梯形ABCD 中,AD // BC ,AB ⊥BC,AB E 是边AB 的中点,联结DE 、CE ,且DE ⊥CE .设AD = x ,BC = y . (1)如果∠BCD = 60º,求CD 的长;(2)求y 关于x 的函数解析式,并写出自变量x 的取值范围; (3)联结BD .如果△BCD 是以边CD 为腰的等腰三角形,求x 的值.A B C D E (第26题图) A B C D E (备用图)参考答案及评分标准一、选择题:(本大题共6题,每题3分,满分18分) 1.B ; 2.D ; 3.C ; 4.D ; 5.A ; 6.C .二、填空题(本大题共12题,每题2分,满分24分) 7.-5; 8.6; 9.m > 2; 10.211x a =+; 11.x = 3; 12.x < 2; 13.16; 14.135; 15.110; 16.12; 17.49; 18.60.三、计算题(本大题共8题,满分58分) 19.解:设1xy x =-. 则原方程可化为21y y-=.………………………………………………(1分) 解得 12y =,21y =-.……………………………………………………(2分)当12y =时,得21xx =-.解得 12x =.………………………………(1分)当21y =-时,得11x x =--.解得 212x =. ……………………………(1分)经检验:12x =,212x =是原方程的根. ∴原方程的根是12x =,212x =. ……………………………………(1分) 20.解:由②,得 2(2)9x y -=.…………………………………………………(1分)即得 23x y -=,23x y -=-. …………………………………………(1分)则原方程组可化为21,23x y x y +=⎧⎨-=⎩;21,23.x y x y +=⎧⎨-=-⎩………………………………………………(2分) 解这两个方程组,得112,12x y =⎧⎪⎨=-⎪⎩;221,1.x y =-⎧⎨=⎩………………………………………………………(2分)21.(1)a b -r r;(2)作图正确,2分;结论正确,1分.22.解:(1)由 x = 6,得 2643y =⨯=.∴ 点B (6,4). ……………………(1分)由直线y k x b =+经过点A 、B ,得38,6 4.k b k b -+=-⎧⎨+=⎩…………………………………………………………(1分)解得 4,34.k b ⎧=⎪⎨⎪=-⎩∴ 所求直线表达式为443y x =-.…………………………………(1分) (2)当 x = 0时,得 4y =-.得 C (0,- 4).…………………………(1分)于是,由点B (6,4)、C (0,- 4), 得146122BOC S ∆=⨯⨯=.………………………………………………(2分)∴ △BOC 的面积为12.23.解:(1)由正方形ABCD ,得 AB = AD ,∠B =∠ADF =∠BAD = 90º.……(1分)在△ABE 和△ADF 中,∵ AB = AD ,∠B =∠ADF = 90º,BE = DF , ∴△ABE≌△ADF .……………………………………………………(1分)∴ ∠BAE =∠F AD ,AE = AF .∴ ∠BAD =∠BAE +∠EAD =∠F AD +∠EAD = 90º. 即得∠EAF=90º.……………………………………………………(1分)又∵ AE = AF ,∴ ∠AEF =∠AFE =45º. …………………………(1分)(2)∵ ∠AEB = 75º,∠AEF = 45º,∴ ∠BEF = 120º.即得 ∠FEC = 60º.……………………………………………………(1分)由正方形ABCD ,得 ∠C = 90º.∴ ∠EFC = 30º. ∴EF=2EC .…………………………………………………………(1分)设EC = x .则 EF = 2x ,2BE DF x ==-,4CF x =-. 在Rt △CEF 中,由勾股定理,得 222CE CF EF +=. 即得 222(4)4x x x +-=.解得 12x =,22x =-(不合题意,舍去).∴ 2EC =,6CF =- …………………………………(1分)∴ 112)(61222CEF S EC CF ∆=⋅=-=.…………(1分)∴ △FEC 的面积为12.24.解:设先遣队每小时行进x 千米,则大部队每小时行进(1)x -千米. ……(1分) 根据题意,得1515112x x -=-.……………………………………………(3分)解得 16x =,25x =-. ……………………………………………………(2分)经检验:16x =,25x =-是原方程的根,25x =-不合题意,舍去.……(1分)∴ 原方程的根为x = 6. ∴ 1615x -=-=.答:先遣队与大部队每小时分别行进6千米和5千米.…………………(1分)25.证明:(1)在□ABCD 中,AD // BF .∴∠ADC=∠FCD .…………………………………………………(1分)∵ E 为CD 的中点,∴ DE = CE .………………………………(1分)在△ADE 和△FCE 中,,,,AED FEC ADE FCE DE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ △ADE ≌△FCE .………………………………………………(1分)∴ AD = FC . 又∵ AD // FC ,∴ 四边形ACFD 是平行四边形.…………………………………(2分)(2)在△ABF 中,∵ ∠B +∠AFB = 90º,∴ ∠BAF = 90º.…………(1分)又∵ 四边形ABCD 是平行四边形,∴ AD = BC . ∵ AD = FC ,∴ BC = CF . 即得AC=CF .………………………………………………………(1分)∵ 四边形ACDF 是平行四边形, ∴四边形ACDF是菱形.…………………………………………(1分)26.解:(1)过点D 作DH ⊥BC ,垂足为点H .∵ AD // BC ,AB ⊥BC ,DH ⊥BC ,∴ DH AB ==. ………(1分)在Rt △DHC 中,∵ ∠BCD = 60º,∴ ∠CDH = 30º.∴ CD =2CH .………………(1分)设CH = x ,则 CD = 2x .利用勾股定理,得 222CH DH CD +=.即得 2224x x +=.解得 2x =(负值舍去). ∴CD=4.……………………………………………………………(1分) (2)在边CD 上截取一点F ,使DF = CF .∵ E 为边AB 的中点,DF = CF , ∴ 11()()22EF AD BC x y =+=+. ∵ DE ⊥CE ,∴ ∠DEC = 90º. 又∵DF=CF,∴2CD EF x y ==+.………………………………(1分)由AB ⊥BC ,DH ⊥BC ,得 ∠B =∠DHC = 90º.∴ AB // DH . 又∵ AB = DH ,∴ 四边形ABHD 是平行四边形. ∴ BH = AD = x . 即得CH y x =-.……………………………………………………(1分)在Rt △DHC 中,利用勾股定理,得 222CH DH CD +=. 即得 22()12()y x x y -+=+. 解得3y x=.……………………………………………………………(1分) ∴ 所求函数解析式为3y x=. 自变量x的取值范围是x >,且x 1分)(3)当△BCD 是以边CD 为腰的等腰三角形时,有两种可能情况:CD = BD 或CD = BC .(i )如果CD = BD ,由DH ⊥BC ,得 BH = CH . 即得 y = 2x .利用 3y x =,得 32x x =.解得 1x =,2x =经检验:1x =2x =,且2x =不合题意,舍去. ∴x =1分) (ii )如果CD = BC ,则 x y y +=.即得 x = 0(不合题意,舍去).…………………………………(1分)∴x =1分)上海市2017-2018学年八年级数学下学期期末模拟试卷及答案(二)一、选择题(本大题共6题,每题2分,满分12分)1. 下列方程中,属于无理方程的是………………………………( ) (A )03=+x ;(B )052=-x x ;(C )032=-+x ;(D )06=-x x2. 解方程33131122-=--+x x x x 时,去分母方程两边同乘的最简公分母是………( )(A ))1)(1(-+x x ; (B ))1)(1(3-+x x ; (C ))1)(1(-+x x x ; (D ))1)(1(3-+x x x .3.下列图形中,是中心对称图形,但不是轴对称图形的是…………………………( )(A )矩形; (B )平行四边形; (C ) 直角梯形; (D )等腰梯形. 4.关于x 的函数)1(+=x k y 和xky =(0≠k )在同一坐标系中的图像大致是…………( )(A ) (B) (C) (D)5.布袋中有大小一样的3个白球和2个黑球,从袋中任意摸出1个球,下列判断正确的是………………………………………………………………………………………………( )(A )摸出的球一定是白球; (B )摸出的球一定是黑球; (C )摸出的球是白球的可能性大; (D )摸出的球是黑球的可能性大. 6.顺次连接等腰梯形四边中点所得的四边形一定是……………………………………( )(A )等腰梯形 (B )平行四边形 (C )矩形 (D )菱形二、填空题(本大题共12题,每题3分,满分36分)7. 如果一次函数m x m y +-=)13(的函数值y 随x 的值增大而减少,那么m 的取值范围是 .8. 将一次函数x y 2=的图象向上平移3个单位,平移后,若y>0,那么x 的取值范围是 .9. 一次函数的图像在y 轴上的截距为3,且与直线12+-=x y 平行,那么这个一次函数的解析式是___________.DCBA10.方程27)1(3-=+x 的解是 .11. 当m 取 时,关于 x 的方程x m mx 2=+无解12. 在一个不透明的盒子中放入标号分别为1,2,3,4,5,6,7,8,9 的形状、大小、质地完全相同的9 个球,充分混合后,从中取出一个球,标号能被3 整除的概率是 .13. 一个多边形的内角和是外角和的4倍,那么这个多边形是 边形. 14. 在菱形ABCD 中,对角线AC 、BD 相交于点O ,P 为AB 边中点,菱形ABCD 的周长为24,那么OP 的长等于 .15. 直线)0(111<+=k b x k y 与)0(222>+=k b x k y 相交于点)0,2(-,且两直线与y 轴围成的三角形面积为6,那么12b b -的值是 .16.如图,在梯形ABCD 中,AB ∥CD ,∠ABC =︒90,如果AB =5,BC =4,CD =3,那么AD =____________. 第16题 第17题第18题17. 如图,四边形ABCD 的对角线交于点O ,从下列条件:①AD ∥BC ,②A B C D =,③AO CO =,④ABC ADC ∠=∠中选出两个可使四边形ABCD 是平行四边形,则你选的两个条件是 .(填写一组序号即可) 18. 如图,在四边形ABCD 中,∠ADC=∠ABC=90°,AD=CD ,DP ⊥AB 于P .若四边形ABCD 的面积是18,则DP 的长是 . 三、简答题:(本大题共4题,每题6分,满分24分)19.解方程: 011=-+-x x 20. 解方程组:⎩⎨⎧=+=--320222y x y xy xP DC B A21.解方程:022331222=++-+x x x x22. 如图,在平行四边形ABCD 中,点P 是BC 边的中点,设==,, (1)试用向量,表示向量,那么= .;(2)在图中求作:-. (保留作图痕迹,不要求写作法,写出结果).四、解答题:(第23和24题,每题6分,第25和26题,每题8分,满分28分)23.如图,梯形ABCD 中AD ∥BC ,AB = DC ,(1)求证:四边形AEFG 是平行四边形(2)当∠FGC=2∠EFB 时,求证:四边形AEFGABD FE M25题图1C24.某市为了美化环境,计划在一定的时间内完成绿化面积200万亩的任务,后来市政府调整了原定计划,不但绿化面积在原计划的基础上增加20%,而且要提前1年完成任务。
2017-2018学年上海市奉贤区八年级(下)期末数学试卷
2017-2018学年上海市奉贤区八年级(下)期末数学试卷一.选择题(本大题共6题,满分18分)1.(3分)下列函数中,一次函数是()A.y=x B.y=kx C.y=+1D.y=x2﹣2 2.(3分)下列判断中,错误的是()A.方程x(x﹣1)=0是一元二次方程B.方程xy+5x=0是二元二次方程C.方程﹣=2是分式方程D.方程x2﹣x=0是无理方程3.(3分)已知一元二次方程x2﹣2x﹣m=0有两个实数根,那么m的取值范围是()A.m≤﹣1B.m≥﹣1C.m>﹣1D.m<﹣1 4.(3分)下列事件中,必然事件是()A.“奉贤人都爱吃鼎丰腐乳”B.“2018年上海中考,小明数学考试成绩是满分150分”C.“10只鸟关在3个笼子里,至少有一只笼子关的鸟超过3只”D.“在一副扑克牌中任意抽10张牌,其中有5张A”5.(3分)下列命题中,真命题是()A.平行四边形的对角线相等B.矩形的对角线平分对角C.菱形的对角线互相平分D.梯形的对角线互相垂直6.(3分)等腰梯形ABCD中,AD∥BC,E、F、G、H分别是AB、BC、CD、AD 的中点,那么四边形EFGH一定是()A.矩形B.菱形C.正方形D.等腰梯形二.填空题.(本大题共12题,每小题2分,共24分)7.(2分)一次函数y=2x﹣1的图象在轴上的截距为8.(2分)方程x4﹣8=0的根是9.(2分)方程﹣x=1的根是10.(2分)一次函数y=kx+3的图象不经过第3象限,那么k的取值范围是11.(2分)用换元法解方程﹣=1时,如果设=y,那么原方程化成以“y”为元的方程是12.(2分)化简:()﹣()=.13.(2分)某商品经过两次连续涨价,每件售价由原来的100元涨到了179元,设平均每次涨价的百分比为x,那么可列方程:14.(2分)如果n边形的每一个内角都相等,并且是它外角的3倍,那么n= 15.(2分)既是轴对称图形,又是中心对称图形的四边形是.16.(2分)在四边形ABCD中,AB=AD,对角线AC平分∠BAD,AC=8,S四边形ABCD=16,那么对角线BD=.17.(2分)在矩形ABCD中,∠BAD的角平分线交于BC点E,且将BC分成1:3的两部分,若AB=2,那么BC=18.(2分)如图,在平行四边形ABCD中,AC与BD相交于点O∠AOB=60°,BD=4,=将△ABC沿直线AC翻折后,点B落在点E处,那么S△AED三.解答题.19.解方程:﹣=220.解方程组:21.布袋中放有x只白球、y只黄球、2只红球,它们除颜色外其他都相同,如果从布袋中随机摸出一个球,恰好是红球的概率是.(1)试写出y与x的函数关系式;(2)当x=6时,求随机地取出一只黄球的概率P.22.如图,矩形ABCD中,对角线AC与BD相交于点O.(1)写出与相反的向量;(2)填空:++=;(3)求作:+(保留作图痕迹,不要求写作法).23.中国的高铁技术已经然走在了世界前列,2018年的“复兴号”高铁列车较“和谐号”速度增加每小时70公里.上海火车站到北京站铁路距离约为1400公里,如果选择“复兴号”高铁,全程可以少用1小时,求上海火车站到北京火车站的“复兴号”运行时间.24.已知:如图,在△ABC中,∠ACB=90°,点D是斜边AB的中点,DE∥BC,且CE=CD.(1)求证:∠B=∠DEC;(2)求证:四边形ADCE是菱形.25.如图,一次函数y=2x+4的图象与x,y轴分别相交于点A,B,以AB为边作正方形ABCD(点D落在第四象限).(1)求点A,B,D的坐标;(2)联结OC,设正方形的边CD与x相交于点E,点M在x轴上,如果△ADE 与△COM全等,求点M的坐标.26.已知,梯形ABCD中,AD∥BC,∠ABC=90°,AB=3,BC=10,AD=5,M是BC 边上的任意一点,联结DM,联结AM.(1)若AM平分∠BMD,求BM的长;(2)过点A作AE⊥DM,交DM所在直线于点E.①设BM=x,AE=y求y关于x的函数关系式;②联结BE,当△ABE是以AE为腰的等腰三角形时,请直接写出BM的长.2017-2018学年上海市奉贤区八年级(下)期末数学试卷参考答案与试题解析一.选择题(本大题共6题,满分18分)1.(3分)下列函数中,一次函数是()A.y=x B.y=kx C.y=+1D.y=x2﹣2【分析】利用一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数,进而判断即可.【解答】解:A、y=x属于一次函数,故此选项正确;B、y=kx(k≠0),故此选项错误;C、y=+1,不符合一次函数的定义,故此选项错误;D、y=x2﹣2,不符合一次函数的定义,故此选项错误;故选:A.【点评】此题主要考查了一次函数的定义,正确把握一次函数的定义是解题关键.2.(3分)下列判断中,错误的是()A.方程x(x﹣1)=0是一元二次方程B.方程xy+5x=0是二元二次方程C.方程﹣=2是分式方程D.方程x2﹣x=0是无理方程【分析】利用各自方程的定义判断即可.【解答】解:A、方程x(x﹣1)=0是一元二次方程,不符合题意;B、方程xy+5x=0是二元二次方程,不符合题意;C、方程﹣=2是分式方程,不符合题意;D、方程x2﹣x=0是一元二次方程,符合题意,故选:D.【点评】此题考查了无理方程,分式的定义,一元二次方程的定义,以及分式方程的定义,熟练掌握各自的定义是解本题的关键.3.(3分)已知一元二次方程x2﹣2x﹣m=0有两个实数根,那么m的取值范围是()A.m≤﹣1B.m≥﹣1C.m>﹣1D.m<﹣1【分析】由方程有两个实数根,得到根的判别式的值大于等于0,列出关于m的不等式,求出不等式的解集即可得到m的范围.【解答】解:∵一元二次方程x2﹣2x﹣m=0有两个实数根,∴△=4+4m≥0,解得:m≥﹣1.故选:B.【点评】考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.4.(3分)下列事件中,必然事件是()A.“奉贤人都爱吃鼎丰腐乳”B.“2018年上海中考,小明数学考试成绩是满分150分”C.“10只鸟关在3个笼子里,至少有一只笼子关的鸟超过3只”D.“在一副扑克牌中任意抽10张牌,其中有5张A”【分析】直接利用随机事件以及必然事件、不可能事件的定义分别分析得出答案.【解答】解:A、“奉贤人都爱吃鼎丰腐乳”,是随机事件,故此选项错误;B、“2018年上海中考,小明数学考试成绩是满分150分”,是随机事件,故此选项错误;C、“10只鸟关在3个笼子里,至少有一只笼子关的鸟超过3只”是必然事件,故此选项正确;D、“在一副扑克牌中任意抽10张牌,其中有5张A”,是不可能事件.故选:C.【点评】此题主要考查了随机事件以及必然事件、不可能事件的定义,正确区分各事件是解题关键.5.(3分)下列命题中,真命题是()A.平行四边形的对角线相等B.矩形的对角线平分对角C.菱形的对角线互相平分D.梯形的对角线互相垂直【分析】根据菱形、平行四边形、矩形、等腰梯形的性质分别判断得出即可.【解答】解:A.平行四边形的对角线平分,错误;B.菱形的对角线平分对角,错误;C.菱形的对角线互相平分,正确;D.等腰梯形的对角线互相垂直,错误;故选:C.【点评】此题主要考查了菱形、平行四边形、矩形、等腰梯形的性质,熟练掌握相关定理是解题关键.6.(3分)等腰梯形ABCD中,AD∥BC,E、F、G、H分别是AB、BC、CD、AD 的中点,那么四边形EFGH一定是()A.矩形B.菱形C.正方形D.等腰梯形【分析】连接AC、BD,根据线段的中位线定理得到EF=AC,EF∥AC,HG=AC,GH∥AC,推出EF=HG,EF∥HG,得到平行四边形EFGH,根据EF=EH,即可推出答案.【解答】解:连接AC、BD,∵等腰梯形ABCD,AD∥BC,AB=DC,∴AC=BD,∵E、F、G、H分别是AB、BC、CD、AD的中点,∴EF=AC,EF∥AC,HG=AC,GH∥AC,EH=BD,∴EF=HG,EF∥HG,∴四边形EFGH是平行四边形,EF=EH,∴平行四边形EFGH是菱形.故选:B.【点评】本题主要考查对等腰梯形的性质,平行四边形的判定,三角形的中位线定理,菱形的判定等知识点的理解和掌握,能综合运用这些性质进行推理是解此题的关键.二.填空题.(本大题共12题,每小题2分,共24分)7.(2分)一次函数y=2x﹣1的图象在轴上的截距为﹣1【分析】根据一次函数的图象与系数的关系即可得出结论.【解答】解:一次函数y=2x﹣1的图象在y轴上的截距是﹣1,故答案为:﹣1,【点评】本题考查的是一次函数的性质,熟知一次函数的性质是解答此题的关键.8.(2分)方程x4﹣8=0的根是±2【分析】移项,系数化成1,再开方即可.【解答】解:x4﹣8=0,x4=8,x4=16,开方得:x2=4,开方得:x=±2,故答案为±2.【点评】本题考查了解高次方程,能把高次方程转化成低次方程是解此题的关键.9.(2分)方程﹣x=1的根是x=3【分析】移项后两边平方,即可得出整式方程,求出方程的解,再进行检验即可.【解答】解:﹣x=1,=1+x,2x+10=(1+x)2,x2=9,解得:x=±3,检验:把x=3代入方程﹣x=1得:左边=右边,所以x=3是原方程的解,把x=3代入方程﹣x=1得:左边≠右边,所以x=﹣3不是原方程的解,所以原方程的解为x=3,故答案为:x=3,【点评】本题考查了解无理方程,能把无理方程转化成有理方程是解此题的关键.10.(2分)一次函数y=kx+3的图象不经过第3象限,那么k的取值范围是k <0【分析】先判断出一次函数图象经过第一、二、四象限,则说明x的系数不大于0,由此即可确定题目k的取值范围.【解答】解:∵一次函数y=kx+3的图象不经过第3象限,一次函数y=kx+3的图象即经过第一、二、四象限,∴k<0.故答案为:k<0,【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.11.(2分)用换元法解方程﹣=1时,如果设=y,那么原方程化成以“y”为元的方程是3y2﹣y﹣1=0【分析】设=y,原方程化为3y﹣=1,求出即可.【解答】解:﹣=1,设=y,原方程化为:3y﹣=1,即3y2﹣y﹣1=0,故答案为:3y2﹣y﹣1=0.【点评】本题考查了用换元法解分式方程,能够正确换元是解此题的关键.12.(2分)化简:()﹣()=.【分析】由去括号的法则可得:()﹣()=﹣﹣+,然后由加法的交换律与结合律可得:(+)﹣(+),继而求得答案.【解答】解:()﹣()=﹣﹣+=(+)﹣(+)=﹣=.故答案为:.【点评】此题考查了平面向量的知识.此题难度不大,注意掌握三角形法则的应用.13.(2分)某商品经过两次连续涨价,每件售价由原来的100元涨到了179元,设平均每次涨价的百分比为x,那么可列方程:100(1+x)2=179【分析】设平均每次涨价的百分比为x,根据原价为100元,表示出第一次涨价后的价钱为100(1+x)元,然后再根据价钱为100(1+x)元,表示出第二次涨价的价钱为100(1+x)2元,根据两次涨价后的价钱为179元,列出关于x 的方程【解答】解:设平均每次涨价的百分比为x,那么可列方程:100(1+x)2=179.故答案为:100(1+x)2=179.【点评】此题考查了由实际问题抽象出一元二次方程,属于平均增长率问题,一般情况下,假设基数为a,平均增长率为x,增长的次数为n(一般情况下为2),增长后的量为b,则有表达式a(1+x)n=b,类似的还有平均降低率问题,注意区分“增”与“减”.14.(2分)如果n边形的每一个内角都相等,并且是它外角的3倍,那么n=8【分析】根据正多边形的内角与外角是邻补角求出每一个外角的度数,再根据多边形的边数等于360°除以每一个外角的度数列式计算即可得到边数.【解答】解:∵每个内角都相等,并且是它外角的3倍,设外角为x,可得:x+3x=180°,解得:x=45°,∴边数=360°÷45°=8.故答案为:8.【点评】本题考查了多边形的内角与外角,熟练掌握多边形的外角和、多边形的每一个外角的度数、多边形的边数三者之间的关系是解题的关键.15.(2分)既是轴对称图形,又是中心对称图形的四边形是矩形(答案不唯一).【分析】根据轴对称图形与中心对称图形的概念,写一个则可.【解答】解:矩形(答案不唯一).【点评】掌握中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.16.(2分)在四边形ABCD中,AB=AD,对角线AC平分∠BAD,AC=8,S四边形ABCD=16,那么对角线BD=4.【分析】根据角平分线的定义可得∠BAO=∠DAO,根据SAS可证△BAO≌△DAO,再根据全等三角形的性质可得∠BOA=∠DOA,可得AC⊥BD,再根据对角线互相垂直的四边形面积公式计算即可求解.【解答】解:∵对角线AC平分∠BAD,∴∠BAO=∠DAO,在△BAO与△DAO中,,∴△BAO≌△DAO(SAS),∴∠BOA=∠DOA,∴AC⊥BD,=16,∵AC=8,S四边形ABCD∴BD=16×2÷8=4.故答案为:4.【点评】考查了多边形的对角线,角平分线,全等三角形的判定与性质,四边形面积,关键是根据SAS证明△BAO≌△DAO.17.(2分)在矩形ABCD中,∠BAD的角平分线交于BC点E,且将BC分成1:3的两部分,若AB=2,那么BC=8或【分析】分两种情形画出图形分别求解即可解决问题;【解答】解:①如图1中,∵四边形ABCD是矩形,AE平分∠BAD,∴∠BAE=∠AEB=45°,∴AB=BE=2,当EC=3BE时,EC=6,∴BC=8.②如图2中,当BE=3EC时,EC=,∴BC=BE+EC=.故答案为8或【点评】本题考查矩形的性质、等腰直角三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.18.(2分)如图,在平行四边形ABCD中,AC与BD相交于点O∠AOB=60°,BD=4,将△ABC沿直线AC翻折后,点B落在点E处,那么S△AED=【分析】如图连接EO.首先证明△EOD是等边三角形,推出∠EDO=∠AOB=60°,推出DE∥AC,推出S△ADE =S△EOD即可解决问题;【解答】解:如图连接EO.∵∠AOB=∠EOA=60°,∴∠EOD=60°,∵OB=OE=OD,∴△EOD是等边三角形,∴∠EDO=∠AOB=60°,∴DE∥AC,∴S△ADE =S△EOD=×22=.故答案为【点评】此题考查了折叠的性质,平行四边形的性质以及勾股定理的应用等知识.此题难度适中,解题的关键是准确作出辅助线,利用数形结合思想求解.三.解答题.19.解方程:﹣=2【分析】先去分母,把分式方程转化成整式方程,求出整数方程的解,再进行检验即可.【解答】解:方程两边都乘以(x+2)(x﹣2)得:(x﹣1)(x+2)﹣4=2(x+2)(x ﹣2),即x2﹣x﹣2=0,解得:x=﹣1或2,检验:当x=﹣1时,(x+2)(x﹣2)≠0,所以x=﹣1是原方程的解,当x=2时,(x+2)(x﹣2)=0,所以x=2不是原方程的解,所以原方程组的解为:x=﹣1【点评】本题考查了解分式方程,能把分式方程转化成整式方程是解此题的关键.20.解方程组:【分析】由①得出x=4+y③,把③代入②求出y,把y的值代入③求出x即可.【解答】解:由①得:x=4+y③,把③代入②得:(4+y)2﹣2y2=(4+y)y,解得:y1=4,y2=﹣2,代入③得:当y1=4时,x1=8,当y2=﹣2时,x2=2,所以原方程组的解为:,.【点评】本题考查了解高次方程组,能把高次方程组转化成一元二次方程是解此题的关键.21.布袋中放有x只白球、y只黄球、2只红球,它们除颜色外其他都相同,如果从布袋中随机摸出一个球,恰好是红球的概率是.(1)试写出y与x的函数关系式;(2)当x=6时,求随机地取出一只黄球的概率P.【分析】(1)让红球的个数除以球的总个数即为从布袋中随机摸出一个球是红球的概率,进而得出函数解析式.(2)让黄球的个数除以球的总个数即为从布袋中随机摸出一个球是黄球的概率.【解答】解:(1)因为布袋中放有x只白球、y只黄球、2只红球,且红球的概率是.所以可得:y=14﹣x(2)把x=6,代入y=14﹣6=8,所以随机地取出一只黄球的概率P==【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.22.如图,矩形ABCD中,对角线AC与BD相交于点O.(1)写出与相反的向量,;(2)填空:++=;(3)求作:+(保留作图痕迹,不要求写作法).【分析】(1)根据相反的向量的定义即可解决问题;(2)利用三角形加法法则计算即可;(3)如图,作平行四边形OBEC,连接AE,即为所求;【解答】解:(1)与相反的向量有,,故答案为有,.(2)∵+=,+=,∴++=故答案为.(3)如图,作平行四边形OBEC,连接AE,即为所求;【点评】本题考查平面向量、作图﹣复杂作图、矩形的性质等知识,解题的关键是熟练掌握向量的加法法则,属于中考常考题型.23.中国的高铁技术已经然走在了世界前列,2018年的“复兴号”高铁列车较“和谐号”速度增加每小时70公里.上海火车站到北京站铁路距离约为1400公里,如果选择“复兴号”高铁,全程可以少用1小时,求上海火车站到北京火车站的“复兴号”运行时间.【分析】复兴号用时x小时,则和谐号用时(x+1)小时,然后依据“复兴号”高铁列车较“和谐号”速度增加每小时70公里列方程求解即可.【解答】解:设复兴号用时x小时,则和谐号用时(x+1)小时,根据题意得:=70+,解得:x=4或x=﹣5(舍去)答:上海火车站到北京火车站的“复兴号”运行时间为4小时.【点评】此题考查了分式方程的应用,关键是分析题意,找到合适的数量关系列出方程,解分式方程时要注意检验.24.已知:如图,在△ABC中,∠ACB=90°,点D是斜边AB的中点,DE∥BC,且CE=CD.(1)求证:∠B=∠DEC;(2)求证:四边形ADCE是菱形.【分析】(1)利用等腰三角形的性质、直角三角形斜边中线定理证明即可;(2)首先证明AD=EC,AD∥EC,可得四边形ADCE是平行四边形,再根据CD=CE 可得四边形是菱形;【解答】(1)证明:在△ABC中,∵∠ACB=90°,点D是斜边AB的中点,∴CD=DB,∴∠B=∠DCB,∵DE∥BC,∴∠DCB=∠CDE,∵CD=CE,∴∠CDE=∠CED,∴∠B=∠CED.(2)证明:∵DE∥BC,∴∠ADE=∠B,∵∠B=∠DEC,∴∠ADE=∠DEC,∴AD∥EC,∵EC=CD=AD,∴四边形ADCE是平行四边形,∵CD=CE,∴四边形ADCE是菱形.【点评】本题考查菱形的判定和性质、平行四边形的性质、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.25.如图,一次函数y=2x+4的图象与x,y轴分别相交于点A,B,以AB为边作正方形ABCD(点D落在第四象限).(1)求点A,B,D的坐标;(2)联结OC,设正方形的边CD与x相交于点E,点M在x轴上,如果△ADE 与△COM全等,求点M的坐标.【分析】(1)先利用坐标轴上点的特点求出点A,B的坐标,再构造全等三角形即可求出点D坐标;(2)先求出点C坐标,进而求出OC,判断出AD=OC,再用待定系数法求出直线CD解析式,即可求出点E坐标,即可得出结论.【解答】解:(1)∵一次函数y=2x+4的图象与x,y轴分别相交于点A,B,∴A(﹣2,0),B(0,4),∴OA=2,OB=4,如图1,过点D作DF⊥x轴于F,∴∠DAF+∠ADF=90°,∵四边形ABCD是正方形,∴AD=AB,∠BAD=90°,∴∠DAF+∠BAO=90°,∴∠ADF=∠BAO,在△ADF和△BAO中,,∴△ADF≌△BAO(AAS),∴DF=OA=2,AF=OB=4,∴OF=AF﹣OA=2,∵点D落在第四象限,∴D(2,﹣2);(2)如图2,过点C作CG⊥y轴于G,连接OC,作CM⊥OC交x轴于M,同(1)求点D的方法得,C(4,2),∴OC==2,∵A(﹣2,0),B(0,4),∴AB=2,∵四边形ABCD是正方形,∴AD=AB=2=OC,∵△ADE与△COM全等,且点M在x轴上,∴△ADE≌△OCM,∴OM=AE,∵OM=OE+EM,AE=OE+OA,∴EM=OA=2,∵C(4,2),D(2,﹣2),∴直线CD的解析式为y=2x﹣6,令y=0,∴2x﹣6=0,∴x=3,∴E(3,0),∴OM=5,∴M(5,0).【点评】此题是一次函数综合题,主要考查了待定系数法,正方形的性质,全等三角形的判定和性质,构造全等三角形求出点D坐标是解本题的关键.26.已知,梯形ABCD中,AD∥BC,∠ABC=90°,AB=3,BC=10,AD=5,M是BC 边上的任意一点,联结DM,联结AM.(1)若AM平分∠BMD,求BM的长;(2)过点A作AE⊥DM,交DM所在直线于点E.①设BM=x,AE=y求y关于x的函数关系式;②联结BE,当△ABE是以AE为腰的等腰三角形时,请直接写出BM的长.【分析】(1)如图1中,作DH⊥BC于H.则四边形ABHD是矩形,AD=BH=5,AB=DH=3.分两种情形求解即可解决问题;(2)①如图2中,作MH⊥AD于H.利用面积法构建函数关系式即可;②分两种情形:如图3中,当AB=AE时,y=3,此时5×3=3,解方程即可;如图4中,当EA=EB时,DE=EM,利用勾股定理求解即可;【解答】解:(1)如图1中,作DH⊥BC于H.则四边形ABHD是矩形,AD=BH=5,AB=DH=3.当MA平分∠DMB时,易证∠AMB=∠AMD=∠DAM,可得DA=DM=5,在Rt△DMH中,DM=AD=5,DH=3,∴MH===4,∴BM=BH﹣MH=1,当AM′平分∠BM′D时,同法可证:DA=DM′,HM′=4,∴BM′=BH+HM′=9.综上所述,满足条件的BM的值为1或9.(2)①如图2中,作MH⊥AD于H.在Rt△DMH中,DM==,=•AD•MH=•DM•AE,∵S△ADM∴5×3=y•∴y=.②如图3中,当AB=AE时,y=3,此时5×3=3,解得x=1或9.如图4中,当EA=EB时,DE=EM,∵AE⊥DM,∴DA=AM=5,在Rt△ABM中,BM==4.综上所述,满足条件的BM的值为1或9或4.【点评】本题考查四边形综合题、等腰三角形的判定和性质、勾股定理、三角形的面积等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.。
2017-2018学年上海市奉贤区八年级下期末数学试卷(有答案)
2017-2018学年上海市奉贤区八年级(下)期末数学试卷一、选择题(本大题共6小题,共18.0分)1. 下列函数中,一次函数是( ) A. y =x B. y =kx C. y =1x +1 D. y =x 2−22. 下列判断中,错误的是( )A. 方程x(x −1)=0是一元二次方程B. 方程xy +5x =0是二元二次方程C. 方程x+3x+3−x 3=2是分式方程D. 方程√2x 2−x =0是无理方程3. 已知一元二次方程x 2-2x -m =0有两个实数根,那么m 的取值范围是( )A. m ≤−1B. m ≥−1C. m >−1D. m <−14. 下列事件中,必然事件是( )A. “奉贤人都爱吃鼎丰腐乳”B. “2018年上海中考,小明数学考试成绩是满分150分”C. “10只鸟关在3个笼子里,至少有一只笼子关的鸟超过3只”D. “在一副扑克牌中任意抽10张牌,其中有5张A ”5. 下列命题中,真命题是( )A. 平行四边形的对角线相等B. 矩形的对角线平分对角C. 菱形的对角线互相平分D. 梯形的对角线互相垂直二、填空题(本大题共12小题,共24.0分)6. 一次函数y =2x -1的图象在轴上的截距为______7. 方程12x 4-8=0的根是______8. 方程√2x +10-x =1的根是______9. 一次函数y =kx +3的图象不经过第3象限,那么k 的取值范围是______10. 用换元法解方程3x 22x+1-2x+1x 2=1时,如果设x 22x+1=y ,那么原方程化成以“y ”为元的方程是______ 11. 化简:(AB ⃗⃗⃗⃗⃗ −CD ⃗⃗⃗⃗⃗ )-(AC ⃗⃗⃗⃗⃗ −BD⃗⃗⃗⃗⃗⃗ )=______. 12. 某商品经过两次连续涨价,每件售价由原来的100元涨到了179元,设平均每次涨价的百分比为x ,那么可列方程:______13. 如果n 边形的每一个内角都相等,并且是它外角的3倍,那么n =______14. 既是轴对称图形,又是中心对称图形的四边形是______.15. 在四边形ABCD 中,AB =AD ,对角线AC 平分∠BAD ,AC =8,S 四边形ABCD =16,那么对角线BD =______.16. 在矩形ABCD 中,∠BAD 的角平分线交于BC 点E ,且将BC 分成1:3的两部分,若AB =2,那么BC =______17. 如图,在平行四边形ABCD 中,AC 与BD 相交于点O ∠AOB =60°,BD =4,将△ABC 沿直线AC 翻折后,点B 落在点E 处,那么S △AED =______三、解答题(本大题共8小题,共64.0分)18. 解方程:x−1x−2-4x 2−4=219. 解方程组:{x 2−2y 2=xy x−y=420. 布袋中放有x 只白球、y 只黄球、2只红球,它们除颜色外其他都相同,如果从布袋中随机摸出一个球,恰好是红球的概率是18.(1)试写出y 与x 的函数关系式;(2)当x =6时,求随机地取出一只黄球的概率P .21. 如图,矩形ABCD 中,对角线AC 与BD 相交于点O .(1)写出与DO⃗⃗⃗⃗⃗⃗ 相反的向量______; (2)填空:AO ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗⃗ =______; (3)求作:OC⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ (保留作图痕迹,不要求写作法).22. 中国的高铁技术已经然走在了世界前列,2018年的“复兴号”高铁列车较“和谐号”速度增加每小时70公里.上海火车站到北京站铁路距离约为1400公里,如果选择“复兴号”高铁,全程可以少用1小时,求上海火车站到北京火车站的“复兴号”运行时间.23. 已知:如图,在△ABC 中,∠ACB =90°,点D 是斜边AB 的中点,DE ∥BC ,且CE =CD .(1)求证:∠B =∠DEC ;(2)求证:四边形ADCE 是菱形.24. 如图,一次函数y =2x +4的图象与x ,y 轴分别相交于点A ,B ,以AB 为边作正方形ABCD (点D 落在第四象限).(1)求点A ,B ,D 的坐标;(2)联结OC ,设正方形的边CD 与x 相交于点E ,点M 在x 轴上,如果△ADE 与△COM 全等,求点M 的坐标.25.已知,梯形ABCD中,AD∥BC,∠ABC=90°,AB=3,BC=10,AD=5,M是BC边上的任意一点,联结DM,联结AM.(1)若AM平分∠BMD,求BM的长;(2)过点A作AE⊥DM,交DM所在直线于点E.①设BM=x,AE=y求y关于x的函数关系式;②联结BE,当△ABE是以AE为腰的等腰三角形时,请直接写出BM的长.答案和解析1.【答案】A【解析】解:A、y=x属于一次函数,故此选项正确;B、y=kx(k≠0),故此选项错误;C、y=+1,不符合一次函数的定义,故此选项错误;D、y=x2-2,不符合一次函数的定义,故此选项错误;故选:A.利用一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数,进而判断即可.此题主要考查了一次函数的定义,正确把握一次函数的定义是解题关键.2.【答案】D【解析】解:A、方程x(x-1)=0是一元二次方程,不符合题意;B、方程xy+5x=0是二元二次方程,不符合题意;C、方程-=2是分式方程,不符合题意;D、方程x2-x=0是一元二次方程,符合题意,故选:D.利用各自方程的定义判断即可.此题考查了无理方程,分式的定义,一元二次方程的定义,以及分式方程的定义,熟练掌握各自的定义是解本题的关键.3.【答案】B【解析】解:∵一元二次方程x2-2x-m=0有两个实数根,∴△=4+4m≥0,解得:m≥-1.故选:B.由方程有两个实数根,得到根的判别式的值大于等于0,列出关于m的不等式,求出不等式的解集即可得到m的范围.考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.4.【答案】C【解析】解:A、“奉贤人都爱吃鼎丰腐乳”,是随机事件,故此选项错误;B、“2018年上海中考,小明数学考试成绩是满分150分”,是随机事件,故此选项错误;C、“10只鸟关在3个笼子里,至少有一只笼子关的鸟超过3只”是必然事件,故此选项正确;D、“在一副扑克牌中任意抽10张牌,其中有5张A”,是不可能事件.故选:C.直接利用随机事件以及必然事件、不可能事件的定义分别分析得出答案.此题主要考查了随机事件以及必然事件、不可能事件的定义,正确区分各事件是解题关键.5.【答案】C【解析】解:A.平行四边形的对角线平分,错误;B.菱形的对角线平分对角,错误;C.菱形的对角线互相平分,正确;D.等腰梯形的对角线互相垂直,错误;故选:C.根据菱形、平行四边形、矩形、等腰梯形的性质分别判断得出即可.此题主要考查了菱形、平行四边形、矩形、等腰梯形的性质,熟练掌握相关定理是解题关键.6.【答案】-1【解析】解:一次函数y=2x-1的图象在y轴上的截距是-1,故答案为:-1,根据一次函数的图象与系数的关系即可得出结论.本题考查的是一次函数的性质,熟知一次函数的性质是解答此题的关键.7.【答案】±2【解析】解:x4-8=0,x4=8,x4=16,开方得:x2=4,开方得:x=±2,故答案为±2.移项,系数化成1,再开方即可.本题考查了解高次方程,能把高次方程转化成低次方程是解此题的关键.8.【答案】x=3【解析】解:-x=1,=1+x,2x+10=(1+x)2,x2=9,解得:x=±3,检验:把x=3代入方程-x=1得:左边=右边,所以x=3是原方程的解,把x=3代入方程-x=1得:左边≠右边,所以x=-3不是原方程的解,所以原方程的解为x=3,故答案为:x=3,移项后两边平方,即可得出整式方程,求出方程的解,再进行检验即可.本题考查了解无理方程,能把无理方程转化成有理方程是解此题的关键.9.【答案】k<0【解析】解:∵一次函数y=kx+3的图象不经过第3象限,一次函数y=kx+3的图象即经过第一、二、四象限,∴k<0.故答案为:k<0,先判断出一次函数图象经过第一、二、四象限,则说明x的系数不大于0,由此即可确定题目k 的取值范围.本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.10.【答案】3y2-y-1=0【解析】解:-=1,设=y,原方程化为:3y-=1,即3y2-y-1=0,故答案为:3y2-y-1=0.设=y,原方程化为3y-=1,求出即可.本题考查了用换元法解分式方程,能够正确换元是解此题的关键.11.【答案】0⃗【解析】解:()-()=--+=(+)-(+)=-=.故答案为:.由去括号的法则可得:()-()=--+,然后由加法的交换律与结合律可得:(+)-(+),继而求得答案.此题考查了平面向量的知识.此题难度不大,注意掌握三角形法则的应用.12.【答案】100(1+x)2=179【解析】解:设平均每次涨价的百分比为x,那么可列方程:100(1+x)2=179.故答案为:100(1+x)2=179.设平均每次涨价的百分比为x,根据原价为100元,表示出第一次涨价后的价钱为100(1+x)元,然后再根据价钱为100(1+x)元,表示出第二次涨价的价钱为100(1+x)2元,根据两次涨价后的价钱为179元,列出关于x的方程此题考查了由实际问题抽象出一元二次方程,属于平均增长率问题,一般情况下,假设基数为a,平均增长率为x,增长的次数为n(一般情况下为2),增长后的量为b,则有表达式a(1+x)n=b,类似的还有平均降低率问题,注意区分“增”与“减”.13.【答案】8【解析】解:∵每个内角都相等,并且是它外角的3倍,设外角为x,可得:x+3x=180°,解得:x=45°,∴边数=360°÷45°=8.故答案为:8.根据正多边形的内角与外角是邻补角求出每一个外角的度数,再根据多边形的边数等于360°除以每一个外角的度数列式计算即可得到边数.本题考查了多边形的内角与外角,熟练掌握多边形的外角和、多边形的每一个外角的度数、多边形的边数三者之间的关系是解题的关键.14.【答案】矩形(答案不唯一)【解析】解:矩形(答案不唯一).根据轴对称图形与中心对称图形的概念,写一个则可.掌握中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.15.【答案】4【解析】解:∵对角线AC平分∠BAD,∴∠BAO=∠DAO,在△BAO与△DAO中,,∴△BAO≌△DAO(SAS),∴∠BOA=∠DOA,∴AC⊥BD,∵AC=8,S四边形ABCD=16,∴BD=16×2÷8=4.故答案为:4.根据角平分线的定义可得∠BAO=∠DAO,根据SAS可证△BAO≌△DAO,再根据全等三角形的性质可得∠BOA=∠DOA,可得AC⊥BD,再根据对角线互相垂直的四边形面积公式计算即可求解.考查了多边形的对角线,角平分线,全等三角形的判定与性质,四边形面积,关键是根据SAS 证明△BAO≌△DAO.16.【答案】8或83【解析】解:①如图1中,∵四边形ABCD是矩形,AE平分∠BAD,∴∠BAE=∠AEB=45°,∴AB=BE=2,当EC=3BE时,EC=6,∴BC=8.②如图2中,当BE=3EC时,EC=,∴BC=BE+EC=.故答案为8或分两种情形画出图形分别求解即可解决问题;本题考查矩形的性质、等腰直角三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.17.【答案】√3【解析】解:如图连接EO.∵∠AOB=∠EOA=60°,∴∠EOD=60°,∵OB=OE=OD,∴△EOD是等边三角形,∴∠EDO=∠AOB=60°,∴DE∥AC,∴S△ADE=S△EOD=×22=.故答案为如图连接EO.首先证明△EOD是等边三角形,推出∠EDO=∠AOB=60°,推出DE∥AC,推出S△ADE=S△EOD即可解决问题;此题考查了折叠的性质,平行四边形的性质以及勾股定理的应用等知识.此题难度适中,解题的关键是准确作出辅助线,利用数形结合思想求解.18.【答案】解:方程两边都乘以(x +2)(x -2)得:(x -1)(x +2)-4=2(x +2)(x -2),即x 2-x -2=0,解得:x =-1或2,检验:当x =-1时,(x +2)(x -2)≠0,所以x =-1是原方程的解,当x =2时,(x +2)(x -2)=0,所以x =2不是原方程的解,所以原方程组的解为:x =-1【解析】先去分母,把分式方程转化成整式方程,求出整数方程的解,再进行检验即可.本题考查了解分式方程,能把分式方程转化成整式方程是解此题的关键.19.【答案】解:由①得:x =4+y ③,把③代入②得:(4+y )2-2y 2=(4+y )y ,解得:y 1=4,y 2=-2,代入③得:当y 1=4时,x 1=8,当y 2=-2时,x 2=2,所以原方程组的解为:{y 1=4x 1=8,{y 2=−2x 2=2. 【解析】由①得出x=4+y ③,把③代入②求出y ,把y 的值代入③求出x 即可.本题考查了解高次方程组,能把高次方程组转化成一元二次方程是解此题的关键.20.【答案】解:(1)因为布袋中放有x 只白球、y 只黄球、2只红球,且红球的概率是18.所以可得:y =14-x(2)把x =6,代入y =14-6=8,所以随机地取出一只黄球的概率P =86+8+2=12【解析】(1)让红球的个数除以球的总个数即为从布袋中随机摸出一个球是红球的概率,进而得出函数解析式.(2)让黄球的个数除以球的总个数即为从布袋中随机摸出一个球是黄球的概率.此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.21.【答案】OD ⃗⃗⃗⃗⃗⃗ ,BO ⃗⃗⃗⃗⃗⃗ AC⃗⃗⃗⃗⃗ 【解析】解:(1)与相反的向量有,,故答案为有,.(2)∵+=,+=,∴++= 故答案为.(3)如图,作平行四边形OBEC ,连接AE ,即为所求;(1)根据相反的向量的定义即可解决问题;(2)利用三角形加法法则计算即可;(3)如图,作平行四边形OBEC ,连接AE ,即为所求;本题考查平面向量、作图-复杂作图、矩形的性质等知识,解题的关键是熟练掌握向量的加法法则,属于中考常考题型.22.【答案】解:设复兴号用时x小时,则和谐号用时(x+1)小时,根据题意得:1400x =70+1400x+1,解得:x=4或x=-5(舍去)答:上海火车站到北京火车站的“复兴号”运行时间为4小时.【解析】复兴号用时x小时,则和谐号用时(x+1)小时,然后依据“复兴号”高铁列车较“和谐号”速度增加每小时70公里列方程求解即可.此题考查了分式方程的应用,关键是分析题意,找到合适的数量关系列出方程,解分式方程时要注意检验.23.【答案】(1)证明:在△ABC中,∵∠ACB=90°,点D是斜边AB的中点,∴CD=DB,∴∠B=∠DCB,∵DE∥BC,∴∠DCB=∠CDE,∵CD=CE,∴∠CDE=∠CED,∴∠B=∠CED.(2)证明:∵DE∥BC,∴∠ADE=∠B,∵∠B=∠DEC,∴∠ADE=∠DEC,∴AD∥EC,∵EC=CD=AD,∴四边形ADCE是平行四边形,∵CD=CE,∴四边形ADCE是菱形.【解析】(1)利用等腰三角形的性质、直角三角形斜边中线定理证明即可;(2)首先证明AD=EC,AD∥EC,可得四边形ADCE是平行四边形,再根据CD=CE可得四边形是菱形;本题考查菱形的判定和性质、平行四边形的性质、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.【答案】解:(1)∵一次函数y=2x+4的图象与x,y轴分别相交于点A,B,∴A(-2,0),B(0,4),∴OA=2,OB=4,如图1,过点D作DF⊥x轴于F,∴∠DAF+∠ADF=90°,∵四边形ABCD是正方形,∴AD=AB,∠BAD=90°,∴∠DAF+∠BAO=90°,∴∠ADF=∠BAO,在△ADF和△BAO中,{∠AFD=∠BOA ∠ADF=∠BAO AD=AB,∴△ADF≌△BAO(AAS),∴DF=OA=2,AF=OB=4,∴OF=AF-OA=2,∵点D落在第四象限,∴D(2,-2);(2)如图2,过点C作CG⊥y轴于G,连接OC,作CM⊥OC交x轴于M,同(1)求点D的方法得,C(4,2),∴OC=√42+22=2√5,∵A(-2,0),B(0,4),∴AB=2√5,∵四边形ABCD是正方形,∴AD=AB=2√5=OC,∵△ADE与△COM全等,且点M在x轴上,∴△ADE≌△OCM,∴OM=AE,∵OM=OE+EM,AE=OE+OA,∴EM=OA=2,∵C(4,2),D(2,-2),∴直线CD的解析式为y=2x-6,令y=0,∴2x-6=0,∴x=3,∴E(3,0),∴OM=5,∴M(5,0).【解析】(1)先利用坐标轴上点的特点求出点A,B的坐标,再构造全等三角形即可求出点D坐标;(2)先求出点C坐标,进而求出OC,判断出AD=OC,再用待定系数法求出直线CD解析式,即可求出点E坐标,即可得出结论.此题是一次函数综合题,主要考查了待定系数法,正方形的性质,全等三角形的判定和性质,构造全等三角形求出点D坐标是解本题的关键.25.【答案】解:(1)如图1中,作DH⊥BC于H.则四边形ABHD是矩形,AD=BH=5,AB=DH=3.当MA平分∠DMB时,易证∠AMB=∠AMD=∠DAM,可得DA=DM=5,在Rt△DMH中,DM=AD=5,DH=3,∴MH=√DM2−DH2=√52−32=4,∴BM=BH-MH=1,当AM′平分∠BM′D时,同法可证:DA=DM′,HM′=4,∴BM′=BH+HM′=9.综上所述,满足条件的BM的值为1或9.(2)①如图2中,作MH⊥AD于H.在Rt △DMH 中,DM =√32+(5−x)2=√x 2−10x +34,∵S △ADM =12•AD •MH =12•DM •AE ,∴5×3=y •√x 2−10x +34 ∴y =15√x2−10x+34x 2−10x+34.②如图3中,当AB =AE 时,y =3,此时5×3=3√x 2−10x +34, 解得x =1或9.如图4中,当EA =EB 时,DE =EM ,∵AE ⊥DM ,∴DA =AM =5,在Rt △ABM 中,BM =√52−32=4.综上所述,满足条件的BM 的值为1或9或4.【解析】(1)如图1中,作DH ⊥BC 于H .则四边形ABHD 是矩形,AD=BH=5,AB=DH=3.分两种情形求解即可解决问题;(2)①如图2中,作MH ⊥AD 于H .利用面积法构建函数关系式即可;②分两种情形:如图3中,当AB=AE 时,y=3,此时5×3=3,解方程即可;如图4中,当EA=EB 时,DE=EM ,利用勾股定理求解即可;本题考查四边形综合题、等腰三角形的判定和性质、勾股定理、三角形的面积等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017学年奉贤区调研测试八年级数学试卷
201806
一.选择题(本大题共6题,满分18分)
1. 下列函数中,一次函数是( )
x y A =. b kx y B +=. 11.+=
x
y C 2.2-=x y D 2. 下列判断中,错误的是( ) A .方程0)1(x =-x 是一元二次方程 B .方程05xy =+x 是二元二次方程
C .方程23
33x =-++x x 是分式方程 D .方程0x 22=-x 是无理方程 3. 已知一元二次方程022=--m x x 有两个实数根,那么m 的取值范围是( )
.A 1m -≤ .B 1m -≥ .C 1m -> .D 1m -<
4. 下列事件中,必然事件是( )
.A “奉贤人都爱吃鼎丰腐乳”
.B “2018年上海中考,小明数学考试成绩是满分150分”
.C “10只鸟关在3个笼子里,至少有一只笼子关的鸟超过3只”
D.“在一副扑克牌中任意抽10张牌,其中有5张A ”
5. 下列命题中,真命题是( )
.A 平行四边形的对角线相等;.B 矩形的对角线平分对角;
.C 菱形的对角线互相平分;.D 梯形的对角线互相垂直;
6. 等腰梯形ABCD 中,、
、、G F E BC AD ,//H 分别是AD CD BC AB 、、、的中点,那么四边形EFGH 一定是( )
.A 矩形;.B 菱形;.C 正方形;.D 等腰梯形;
二.填空题。
(本大题共12题,每小题2分,共24分)
7. 一次函数12-=x y 的图像在轴上的截距为
8. 方程08x 2
14=-的根是 9. 方程110x 2=-+x 的根是
10. 一次函数3y +=kx 的图像不经过第3象限,那么k 的取值范围是
11. 用换元法解方程11212x 322=+-+x
x x 时,如果设y x =+12x 2
,那么原方程化成以“y ”为元的方程是
12. 化简:=--()(-
13. 某商品经过两次连续涨价,每件售价由原来的100元涨到了179元,设平均每次涨价的
百分比为x ,那么可列方程:
14. 如果n 边形的每一个内角都相等,并且是它外角的3倍,那么=n
15. 既是轴对称图形有事中心对称图形的四边形为 (填写一种情况即可)
16. 在四边形ABCD 中,AD AB =,对角线AC 平分BAD ∠,16,8==ABCD S AC 四边形,
那么对角线BD =
17. 在矩形ABCD 中,BAD ∠的角平分线交于BC 点E ,且将BC 分成1:3的两部分,若
2=AB ,那么=BC
18. 如图,在平行四边形ABCD 中,AC 与BD 相交于点O 4,60=︒=∠BD AOB ,将
ABC Δ沿直线AC 翻折后,点B 落在点E 处,那么=AED S Δ
三.解答题。
19. 解方程:24421-x 2=----x x 20. 解方程组:⎩⎨⎧=-=xy
y x 2224y -x
21.布袋中放有x 只白球、y 只黄球、2只红球,它们除颜色外其他都相同,如果从布袋中随机摸出一个球,恰好是红球的概率是
8
1。
(1)试写出y 与x 的函数关系式;
(2)当6=x 时,求随机地取出一只黄球的概率P
22.如图,矩形ABCD 中,对角线AC 与BD 相交于点O 。
(1)写出与DO 相反的向量
(2)填空:=++OB BC AO
(3)求做:+(保留作图痕迹,不要求写做法)。
21. 中国的高铁技术已经然走在了世界前列,2018年的“复兴号”高铁列车较“和谐号”
速度增加每小时70公里。
上海火车站到北京站铁路距离约为1400公里,如果选择“复兴号”
高铁,全程可以少用1小时,求上海火车站到北京火车站的“复兴号运行时间。
24.已知:如图,在ABC ∆中,ACB ∠=︒90,点D 是斜边AB 的中点,BC DE //,且
CD CE =。
(1)求证:DEC B ∠=∠;
(2)求证:四边形ADCE 是菱形。
25.如图,一次函数42+=x y 的图像与y x ,轴分别相交于点B A ,,以AB 为边作正方形
ABCD (点D 落在第四象限)。
(1)求点D B A ,,的坐标;
(2)联结OC ,设正方形的边CD 与x 相交于点E ,点M 在x 轴上,如果ADE ∆与
COM ∆全等,求点M 的坐标。
26.已知,梯形ABCD 中,BC AD //,
︒=∠90ABC ,5,10,3===AD BC AB ,M 是BC 边上的任意一点,联结DM ,联结AM 。
(1)若AM 平分BMD ∠,求BM 的长;
(2)过点A 作DM AE ⊥,交DM 所在直线于点E .
①设y AE x BM ==,求y 关于x 的函数关系式;
②联结BE ,当ABE ∆是以AE 为腰的等腰三角形时,请直接写出BM 的长。
2017学年奉贤区调研测试八年级数学答案
一.选择题
A ,,D ,C ,D ,C B
二.填空题
7-11:1-,2±,3x =,0k ≤,0132=--y y
12-16:,179x 1100
2=+)(,8,矩形,4, 17-18:8或
3
8,3 三.解答题
19. 1-=x 20. ⎩⎨⎧==84x y 或者⎩
⎨⎧=-=22y x 21. (1)x -=14y (2)2
1 22.(1), (2)
(3) 略
23.解:设和谐号速度为x 小时每公里,则复兴号列车速度为70x +小时每公里 1
1400
1400
=- 280x =
4350
140070x 1400==+
22. (1))2,2(),4,0(),0,2(--D B A
(2))0,3(M
26 . (1)1或9 (2)y=3410341015
22
+-+-x x x x (3)4。