圆锥曲线之轨迹问题(有答案)

合集下载

圆锥曲线的轨迹方程问题(教师版)

圆锥曲线的轨迹方程问题(教师版)

圆锥曲线的轨迹方程问题1.抛物线C :y 2=2px (p >0)的焦点为F ,P 在抛物线C 上,O 是坐标原点,当PF 与x 轴垂直时,△OFP 的面积为1.(1)求抛物线C 的方程;(2)若A ,B 都在抛物线C 上,且OA ⋅OB =-4,过坐标原点O 作直线AB 的垂线,垂足是G ,求动点G 的轨迹方程.【答案】(1)y 2=4x ;(2)x 2+y 2-2x =0x ≠0【解析】(1)当PF 与x 轴垂直时,P p 2,p ,故S △OFP =12×p 2×p =1,故p =2,故抛物线的方程为:y 2=4x .(2)设A y 214,y 1 ,B y 224,y 2,直线AB :x =ty +m ,因为OA ⋅OB =-4,故y 21y 2216+y 1y 2=-4,整理得到:y 21y 22+16y 1y 2+64=0,故y 1y 2=-8.由x =ty +my 2=4x可得y 2-4ty -4m =0,故-4m =-8即m =2,故直线AB :x =ty +2,此直线过定点M 2,0 .因为OG ⊥GM ,故G 的轨迹为以OM 为直径的圆,其方程为:x -0 x -2 +y -0 y -0 =0即x 2+y 2-2x =0.因为直线AB :x =ty +2与x 轴不重合,故G 不为原点,故G 的轨迹方程为:x 2+y 2-2x =0x ≠0 .2.已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的离心率e =233,且经过点P 3,1 .(1)求双曲线C 的方程;(2)设A ,B 在C 上,PA ⊥PB ,过P 点向AB 引垂线,垂足为M ,求M 点的轨迹方程.【答案】(1)x 26-y 22=1;(2)x -92 2+y +122=92(去掉点P )【解析】(1)∵双曲线的离心率e =c a =233,∴c 2=43a 2=a 2+b 2,即a 2=3b 2,将P 3,1 代入C :x 23b 2-y 2b 2=1,即93b 2-1b2=1,解得b 2=2,a 2=6,故双曲线C 的方程为x 26-y 22=1;(2)当直线AB 斜率不存在时,不满足PA ⊥PB ,故不满足题意;当直线AB 斜率存在时,设A x 1,y 1 ,B x 2,y 2 ,AB :y =kx +m ,代入双曲线方程整理得:3k 2-1 x 2+6kmx +3m 2+6 =0.Δ>0,则x 1+x 2=-6km 3k 2-1,x 1x 2=3m 2+63k 2-1,∵PA ⊥PB ,∴x 1-3 x 2-3 +y 1-1 y 2-1 =0,即x 1-3 x 2-3 +kx 1+m -1 kx 2+m -1 =0,整理得18k 2+9km +m 2+m -2=0,即3k +m -1 6k +m +2 =0,当3k +m -1=0时,AB 过P 点,不符合题意,故6k +m +2=0,直线AB 化为y +2=k x -6 ,AB 恒过定点Q 6,-2 ,∴M 在以PQ 为直径的圆上且不含P 点,即M 的轨迹方程为x -92 2+y +12 2=92(去掉点P ).3.已知抛物线C :y =x 2,过点M 1,2 的直线交抛物线C 于A ,B 两点,以A ,B 为切点分别作抛物线C 的两条切线交于点P .(1)若线段AB 的中点N 的纵坐标为32,求直线AB 的方程;(2)求动点P 的轨迹.【答案】(1)x -y +1=0;(2)2x -y -2=0【解析】(1)依题意有:直线AB 的斜率必存在,故可设直线AB 的方程为y -2=k (x -1).由y -2=k (x -1),y =x 2, 可得:x 2-kx +k -2=0.设A (x 1,y 1),B (x 2,y 2),则有x 1+x 2=k ,x 1x 2=k -2.于是:y 1+y 2=x 21+x 22=(x 1+x 2)2-2x 1x 2=k 2-2k +4=3,解得k =1,故直线AB 的方程为x -y +1=0.(2)设P (x 0,y 0),对于抛物线y =x 2,y =2x ,于是:A 点处切线方程为y -y 1=2x 1(x -x 1),点P 在该切线上,故y 0-x 21=2x 1(x 0-x 1),即x 21-2x 0x 1+y 0=0.同理:P 点坐标也满足x 22-2x 0x 2+y 0=0,于是:x 1,x 2是方程x 2-2x 0x +y 0=0的两根,所以x 1+x 2=2x 0,x 1x 2=y 0.又由(1)可知:x 1+x 2=k ,x 1x 2=k -2,于是x 0=k2,y 0=k -2,消k 得y 0=2x 0-2,于是P 的轨迹方程为2x -y -2=0,点P 的轨迹是一条直线.4.已知圆C 与y 轴相切,圆心C 在直线x -2y =0上且在第一象限内,圆C在直线y =x 上截得的弦长为214.(1)求圆C 的方程;(2)已知线段MN 的端点M 的横坐标为-4,端点N 在(1)中的圆C 上运动,线段MN 与y 轴垂直,求线段MN 的中点H 的轨迹方程.【答案】(1)x -4 2+y -2 2=16;(2)4x 2+y -2 2=16【解析】(1)依题意,设所求圆C 的方程为x -a 2+y -b 2=r 2a >0 .所以圆心a ,b 到直线x -y =0d =a -b2,则有d 2+14 2=r 2,即a -b 2+28=2r 2.①由于圆C 与y 轴相切,所以r 2=a 2.②又因为圆C 的圆心在直线x -2y =0上,所以a -2b =0.③联立①②③,解得a =4,b =2,r =4,故所求圆C 的方程为x -4 2+y -2 2=16.(2)设点H 的坐标为x ,y ,点N 的坐标为x 0,y 0 ,点M 的坐标为-4,y ,因为H 是线段MN 的中点,所以x =x 0-42,y =y 0,于是有x 0=2x +4,y 0=y .①因为点N 在第(1)问中圆C 上运动,所以点N 满足x 0-4 2+y 0-2 2=16.②把①代入②,得2x +4-4 2+y -2 2=16,整理,得4x 2+y -2 2=16.此即为所求点H 的轨迹方程.5.已知圆O :x 2+y 2=4与x 轴交于点A (-2,0),过圆上一动点M 作x 轴的垂线,垂足为H ,N 是MH 的中点,记N 的轨迹为曲线C .(1)求曲线C 的方程;(2)过-65,0 作与x 轴不重合的直线l 交曲线C 于P ,Q 两点,设直线AP ,AS 的斜率分别为k 1,k 2.证明:k 1=4k 2.【答案】(1)x 22+y 2=1;(2)证明见解析.【解析】(1)设N (x 0,y 0),则H (x 0,0),∵N 是MH 的中点,∴M (x 0,2y 0),又∵M 在圆O 上,∴ x 20+(2y 0)2=4,即x 204+y 20=1;∴曲线C 的方程为:x 24+y 2=1;(2)①当直线l 的斜率不存在时,直线l 的方程为:x =-65,若点P 在轴上方,则点Q 在x 轴下方,则P -65,45 ,Q -65,-45,直线OQ 与曲线C 的另一交点为S ,则S 与Q 关于原点对称,∴S 65,45,k 1=k AP =45-0-65+2=1,k 2=k AS =45-065+2=14,∴k 1=4k 2;若点P 在x 轴下方,则点Q 在x 轴上方,同理得:P -65,-45 ,Q -65,45 ,S 65,-45,∴k1=k AP=-45-0-65+2=-1,k2=k AS=-45-065+2=-14,∴k1=4k2;②当直线l的斜率存在时,设直线l的方程为:x=my-6 5,,由x=my-65,与x24+y2=1联立可得(m2+4)y2-12m5y-6425=0,其中Δ=144m225+4×(m2+4)×6425>0,设P(x1,y1),Q(x2,y2),则S(-x2,-y2),则y1+y2=12m5m2+4,y1y2=-6425m2+4,∴k1=k AP=y1-0x1+2=y1x1+2,k2=k AS=-y2-0-x2+2=y2x2-2,则k1k2=y1x1+2⋅x2-2y2=y1my2-165my1+45y2=my1y2-165y1my1y2+45(y1+y2)-45y1=-6425m2+4-165y1-6425mm2+4+45⋅125mm2+4-45y1=-6425m2+4-165y1-1625m2+4-45y1=4,∴k1=4k2.6.已知点E(2,0),F22,0,点A满足|AE|=2|AF|,点A的轨迹为曲线C.(1)求曲线C的方程;(2)若直线l:y=kx+m与双曲线:x24-y29=1交于M,N两点,且∠MON=π2(O为坐标原点),求点A到直线l距离的取值范围.【答案】(1)x2+y2=1;(2)655-1,655+1.【解析】(1)设A(x,y),因为|AE|=2|AF|,所以(x-2)2+(y-0)2=2×x-2 22+(y-0)2,平方化简,得x2+y2=1;(2)直线l:y=kx+m与双曲线:x24-y29=1的方程联立,得y=kx+mx2 4-y29=1⇒(4k2-9)x2+8kmx+4m2+36=0,设M(x1,y1),N(x2,y2),所以有4k2-9≠0(8km)2-4⋅(4k2-9)(4m2+36)>0⇒m2+9>4k2且k≠±32,所以x 1+x 2=-8km 4k 2-9,x 1x 2=4m 2+364k 2-9,因为∠MON =π2,所以OM ⊥ON⇒x 1x 2+y 1y 2=0⇒x 1x 2+(kx 1+m )(kx 2+m )=0,化简,得(k 2+1)x 1x 2+km (x 1+x 2)+m 2=0,把x 1+x 2=-8km 4k 2-9,x 1x 2=4m 2+364k 2-9代入,得(k 2+1)⋅4m 2+364k 2-9+km ⋅-8km 4k 2-9 +m 2=0,化简,得m 2=36(k 2+1)5,因为m 2+9>4k 2且k ≠±32,所以有36(k 2+1)5+9>4k 2且k ≠±32,解得k ≠±32,圆x 2+y 2=1的圆心为(0,0),半径为1,圆心(0,0)到直线l :y =kx +m 的距离为d =mk 2+1=65k 2+1k 2+1=655>1,所以点A 到直线距离的最大值为655+1,最小值为655-1,所以点A 到直线距离的取值范围为655-1,655+1 ,7.在平面直角坐标系xOy 中,点D ,E 的坐标分别为-2,0 ,2,0 ,P 是动点,且直线DP 与EP 的斜率之积等于-14.(1)求动点P 的轨迹C 的方程;(2)已知直线y =kx +m 与椭圆:x 24+y 2=1相交于A ,B 两点,与y 轴交于点M ,若存在m 使得OA +3OB =4OM,求m 的取值范围.【答案】(1)x 24+y 2=1x ≠±2 ;(2)-1,-12 ∪12,1 【解析】(1)设P x ,y ,则k EP ⋅k DP =y x -2⋅y x +2=-14x ≠±2 ,所以可得动点P 的轨迹C 的方程为x 24+y 2=1x ≠±2 .(2)设A x 1,y 1 ,B x 2,y 2 ,又M 0,m ,由OA +3OB =4OM得x 1+3x 2,y 1+3y 2 =0,4m ,x 1=-3x 2联立y =kx +m x 24+y 2=1可得4k 2+1 x 2+8kmx +4m 2-4=0∵Δ=(8km )2-4×(4k 2+1)×(4m 2-4)>0,即64k 2-16m 2+16>0∴4k 2-m 2+1>0,且x 1+x 2=-8km4k 2+1x 1x 2=4m 2-44k 2+1,又x 1=-3x 2∴x 2=4km 4k 2+1,则x 1⋅x 2=-3x 22=4km 4k 2+1 2=4m 2-44k 2+1,∴16k 2m 2-4k 2+m 2-1=0,∴k 2=m 2-14-16m 2代入4k 2-m 2+1>0得m 2-11-4m2+1-m 2>0,14<m 2<1,解得m ∈-1,-12 ∪12,1 .∴m 的取值范围是-1,-12 ∪12,1 8.如图,设点A ,B 的坐标分别为(-3,0),(3,0),直线AP ,BP 相交于点P ,且它们的斜率之积为-23.(1)求P 的轨迹方程;(2)设点P 的轨迹为C ,点M 、N 是轨迹为C 上不同于A ,B 的两点,且满足AP ∥OM ,BP ∥ON ,求△MON 的面积.【答案】(1)x 23+y 22=1x ≠±3 ;(2)62【解析】(1)由已知设点P 的坐标为x ,y ,由题意知k AP ⋅k BP =y x +3⋅y x -3=-23x ≠±3 ,化简得P 的轨迹方程为x 23+y 22=1x ≠±3(2)证明:由题意M 、N 是椭圆C 上非顶点的两点,且AP ⎳OM ,BP ⎳ON ,则直线AP ,BP 斜率必存在且不为0,又由已知k AP ⋅k BP =-23.因为AP ⎳OM ,BP ⎳ON ,所以k OM k ON =-23设直线MN 的方程为x =my +t ,代入椭圆方程x 23+y 22=1,得3+2m 2 y 2+4mty +2t 2-6=0....①,设M ,N 的坐标分别为x 1,y 1 ,x 2,y 2 ,则y 1+y 2=-4mt 3+2m 2,y 1y 2=2t 2-63+2m 2又k OM ⋅k ON =y 1y 2x 1x 2=y 1y 2m 2y 1y 2+mt y 1+y 2 +t 2=2t 2-63t 2-6m 2,所以2t 2-63t 2-6m2=-23,得2t 2=2m 2+3又S △MON =12t y 1-y 2 =12t -24t 2+48m 2+723+2m 2,所以S △MON =26t t 24t 2=62,即△MON 的面积为定值62.9.在平面直角坐标系xOy 中,已知直线l :x =1,点F 4,0 ,动点P 到点F 的距离是它到直线l 的距离的2倍,记P 的轨迹为曲线C .(1)求曲线C 的方程;(2)过点F 且斜率大于3的直线交C 于两点,点Q -2,0 ,连接QA 、QB 交直线l 于M 、N 两点,证明:点F 在以MN 为直径的圆上.【答案】(1)x 24-y 212=1;(2)证明见解析【解析】(1)设P x ,y ,由题意得x -4 2+y 2=2x -1 化简得x 24-y 212=1,所以曲线C 的方程为x 24-y 212=1.(2)证明:设A x 1,y 1 、B x 2,y 2 、M 1,m 、N 1,n ,设直线AB 的方程为y =k x -4 且k >3,联立y =k x -4 x 24-y 212=1得3-k 2 x 2+8k 2x -16k 2-12=0,3-k 2≠0,Δ=64k 4+43-k 2 16k 2+12 =144k 2+1 >0,由韦达定理可得x 1+x 2=8k 2k 2-3,x 1x 2=16k 2+12k 2-3,因为点M 在直线QA 上,则k QM =k QA ,即m3=y 1x 1+2,可得m =3y 1x 1+2=3k x 1-4x 1+2,同理可得n =3k x 2-4 x 2+2,FM=-3,m ,FN =-3,n ,所以,FM ⋅FN =9+mn =9+9k 2x 1x 2-4x 1+x 2 +16x 1x 2+2x 1+x 2 +4=9+9k 216k 2+12-32k 2+16k 2-4816k 2+12+16k 2+4k 2-12=0,故点F 在以MN 为直径的圆上.10.已知圆C :x 2+y 2-2x -2y +1=0,O 为坐标原点,动点P 在圆C 外,过P 作圆C 的切线,设切点为M .(1)若点P 运动到(2,3)处,求此时切线l 的方程;(2)求满足条件PM =PO 的点P 的轨迹方程.【答案】(1)x =2或3x -4y +6=0;(2)2x +2y -1=0.【解析】(1)把圆C 的方程化为标准方程为(x -1)2+(y -1)2=1,∴圆心为C (1,1),半径r =1.当l 的斜率不存在时,此时l 的方程为x =2,C 到l 的距离d =1=r ,满足条件.当l 的斜率存在时,设斜率为k ,得l 的方程为y -3=k (x -2),即kx -y +3-2k =0,则k -1+3-2k1+k 2=1,解得k =34.∴l 的方程为y -3=34(x -2),即3x -4y +6=0.综上,满足条件的切线l 的方程为x =2或3x -4y +6=0.(2)设P (x ,y ),则|PM |2=|PC |2-|MC |2=(x -1)2+(y -1)2-1,|PO |2=x 2+y 2,∵|PM |=|PO |.∴(x -1)2+(y -1)2-1=x 2+y 2,整理,得2x +2y -1=0,∴点P 的轨迹方程为2x +2y -1=0.11.已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1、l 2分别交C 于A 、B 两点,交C 的准线于P 、Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明:AR ∥FQ .(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.【答案】(1)证明见解析;(2)y 2=x -1.【解析】(1)由题意可知F 12,0 ,设l 1:y =a ,l 2:y =b 且ab ≠0,A a 22,a ,B b 22,b ,P -12,a ,Q -12,b ,R -12,a +b 2 ,直线AB 方程为2x -(a +b )y +ab =0,∵点F 在线段AB 上,∴ab +1=0,记直线AR 的斜率为k 1,直线FQ 的斜率为k 2,∴k 1=a -b 1+a 2,k 2=b-12-12=-b ,又∵ab +1=0,∴k 1=a -b 1+a 2=a -b a 2-ab =1a =-aba =-b =k 2,∴AR ∥FQ ;(2)设l 1:y =a ,l 2:y =b ,A a 22,a ,B b 22,b ,设直线AB 与x 轴的交点为D x 1,0 ,∴S △ABF =12a -b FD =12a -b x 1-12,又S△PQF=a-b2,∴由题意可得S△PQF=2S△ABF,即a-b2=2×12·a-b⋅x1-12,解得x1=0(舍)或x1=1.设满足条件的AB的中点为E(x,y),则x=a2+b24y=a+b2,当AB与x轴不垂直时,由k AB=k DE可得a-ba22-b22=yx-1,即2a+b=yx-1(x≠1),∴y2=x-1x≠1.当AB与x轴垂直时,E与D重合,也满足y2=x-1.∴AB中点的轨迹方程为y2=x-1.12.已知椭圆C:x2a2+y2b2=1a>b>0的长轴长为4,左顶点A到上顶点B的距离为5,F为右焦点.(1)求椭圆C的方程和离心率;(2)设直线l与椭圆C交于不同的两点M,N(不同于A,B两点),且直线BM ⊥BN时,求F在l上的射影H的轨迹方程.【答案】(1)x24+y2=1,离心率为32;(2)x-322+y+3102=2125【解析】(1)由题意可得:2a=4,a2+b2=5,a2=b2+c2,可得a=2,c=3,b=1,所以椭圆C的方程为x24+y2=1,离心率为e=ca=32.(2)当直线斜率存在时,可设l:y=kx+m代入椭圆方程x24+y2=1,得:4k2+1x2+8kmx+4m2-1=0.设M x 1,y 1 ,N x 2,y 2 ,则x 1+x 2=-8km4k 2+1x 1x 2=4m 2-1 4k 2+1.因为直线BM ,BN 垂直,斜率之积为-1,所以k BM ⋅k BN =-1,所以k BM ⋅k BN =k 2x 1x 2+k m -1 x 1+x 2 +m -1 2x 1x 2=-1.将x 1+x 2=-8km 4k 2+1x 1x 2=4m 2-1 4k 2+1代入,整理化简得:m -1 5m +3 =0,所以m =1或m =-35.由直线l :y =kx +m ,当m =1时,直线l 经过0,1 ,与B 点重合,舍去,当m =-35时,直线l 经过定点E 0,-35,当直线斜率不存在时,可设l :x =t ,则M t ,1-t 24 ,N t ,-1-t 24,因为k BM ⋅k BN =-1,所以1-t 24-1t ×-1-t 24+1t=-1,解得t =0,舍去.综上所述,直线l 经过定点E 0,-35,而F 在l 上的射影H 的轨迹为以EF 为直径的圆,其E 0,-35 ,F 3,0 ,所以圆心32,-310 ,半径r =215,所以圆的方程为x -32 2+y +310 2=2125,即为点H 的轨迹方程.13.在平面直角坐标系xOy 中,A (-3,0),B (3,0),C 是满足∠ACB =π3的一个动点.(1)求△ABC 垂心H 的轨迹方程;(2)记△ABC 垂心H 的轨迹为Γ,若直线l :y =kx +m (km ≠0)与Γ交于D ,E 两点,与椭圆T :2x 2+y 2=1交于P ,Q 两点,且|DE |=2|PQ |,求证:|k |>2.【答案】(1)x 2+(y +1)2=4(y ≠-2);(2)证明见解析.【解析】设△ABC 的外心为O 1,半径为R ,则有R =AB 2sin ∠ACB=2,又∠OO 1B =∠OO 1C =π3,所以OO 1=R cos π3=1,即O 1(0,1),或O 1(0,-1),当O 1坐标为(0,1)时.设C (x ,y ),H x 0,y 0 ,有O 1C =R ,即有x 2+(y -1)2=4(y >0),由CH ⊥AB ,则有x 0=x ,由AH ⊥BC ,则有AH ⋅BC=x 0+3 (x -3)+y 0y =0,所以有y 0=-x 0+3 (x -3)y =3-x 2y =(y -1)2-1y=y -2,y >0,则y 0=y -2>-2,则有x 20+y 0+1 2=4(y 0>-2),所以△ABC 垂心H 的轨迹方程为x 2+(y +1)2=4(y >-2).同理当O 1坐标为(0,-1)时.H 的轨迹方程为x 2+(y -1)2=4(y <2).综上H 的轨迹方程为x 2+(y +1)2=4(y >-2)或x 2+(y -1)2=4(y <2).(2)若取x 2+(y +1)2=4(y >-2),记点(0,-1)到直线l 的距离为d ,则有d =|m +1|1+k 2,所以|DE |=24-d 2=24-(m +1)21+k 2,设P x 1,y 1 ,Q x 2,y 2 ,联立y =kx +m 2x 2+y 2=1,有2+k 2 x 2+2kmx +m 2-1=0,所以Δ=4k 2+2-2m 2 >0,|PQ |=1+k 2⋅Δ2+k 2=21+k 2 k 2+2-2m 2 2+k 2,由|DE |=2|PQ |,可得4-(m +1)21+k 2=4k 2+1 k 2+2-8m 2k 2+1 2+k 2 2≤4k 2+1 k 2+2-8m 2k 2+22,所以4k 2+2+8m 22+k 22≤(m +1)2k 2+1,即有4k 2+1 k 2+2+8k 2+1 m 22+k 22≤(m +1)2,所以2+2m 2-4k 2+1 k 2+2-8k 2+1 m 2k 2+22≥(m -1)2,即2k 2k 2+2k 2m 2k 2+2-1 =(m -1)2⇒k 2m 2k 2+2-1≥0⇒m 2≥1+2k2又Δ>0,可得m 2<1+k 22,所以1+2k2<1+k 22,解得k 2>2,故|k |>2.同理,若取x 2+(y -1)2=4(y <2),由对称性,同理可得|k |> 2.综上,可得|k |> 2.14.在平面直角坐标系中,△ABC 的两个顶点A ,B 的坐标分别为-1,0 ,1,0 ,平面内两点G ,M 同时满足以下3个条件:①G 是△ABC 三条边中线的交点;②M 是△ABC 的外心;③GM ⎳AB .(1)求△ABC 的顶点C 的轨迹方程;(2)若点P 2,0 与(Ⅰ)中轨迹上的点E ,F 三点共线,求PE ⋅PF 的取值范围.【答案】(1)x 2+y 23=1(y ≠0);(2)3,92.【解析】(1)设C x ,y ,G x 0,y 0 ,M x M ,y M ,圆锥曲线的轨迹方程问题第11页因为M 是△ABC 的外心,所以MA =MB ,所以M 在线段AB 的中垂线上,所以x M =-1+12=0.因为GM ⎳AB ,所以y M =y 0.又G 是△ABC 三条边中线的交点,所以G 是△ABC 的重心,所以x 0=-1+1+x 3=x 3,y 0=0+0+y 3=y 3,所以y M =y 0=y 3.又MA =MC ,所以0+1 2+y 3-0 2=0-x 2+y 3-y 2,化简得x 2+y 23=1(y ≠0),所以顶点C 的轨迹方程为x 2+y 23=1(y ≠0).(2)因为P ,E ,F 三点共线,所以P ,E ,F 三点所在直线斜率存在且不为0,设所在直线的方程为y =k x -2 ,联立y =k x -2 ,x 2+y 23=1,得k 2+3 x 2-4k 2x +4k 2-3=0.由Δ=4k 2 2-4k 2+3 4k 2-3 >0,得k 2<1.设E x 1,y 1 ,F x 2,y 2 ,则x 1+x 2=4k 2k 2+3,x 1⋅x 2=4k 2-3k 2+3.所以PE ⋅PF =1+k 22-x 1 ⋅1+k 22-x 2 =1+k 2 ⋅4-2x 1+x 2 +x 1⋅x 2=1+k 2 ⋅4k 2+3 -8k 2+4k 2-3 k 2+3=91+k 2 k 2+3=9-18k 2+3.又0<k 2<1,所以3<k 2+3<4,所以3<PE ⋅PF <92.故PE ⋅PF 的取值范围为3,92 .15.已知A x 1,y 1 ,B x 2,y 2 是抛物线C :y 2=4x 上两个不同的点,C 的焦点为F .(1)若直线AB 过焦点F ,且y 21+y 22=32,求AB 的值;(2)已知点P -2,2 ,记直线PA ,PB 的斜率分别为k PA ,k PB ,且k PA +k PB =-1,当直线AB 过定点,且定点在x 轴上时,点D 在直线AB 上,满足PD ⋅AB =0,求点D 的轨迹方程.【答案】(1)AB =10;(2)x 2+y -1 2=5(除掉点-2,0 ).【解析】(1)由抛物线方程知:F 1,0 ,准线方程为:x =-1.圆锥曲线的轨迹方程问题第12页∵AF =x 1+1=y 214+1,BF =x 2+1=y 224+1,∴AB =AF +BF =y 21+y 224+2=10.(2)依题意可设直线AB :x =ty +m ,由y 2=4x x =ty +m得:y 2-4ty -4m =0,则Δ=16t 2+16m >0,∴y 1+y 2=4t y 1y 2=-4m ⋯①∵k PA +k PB =y 1-2x 1+2+y 2-2x 2+2=y 1-2ty 1+m +2+y 2-2ty 2+m +2=-1,∴2ty 1y 2+m +2 y 1+y 2 -2t y 1+y 2 -4m +2 t 2y 1y 2+t m +2 y 1+y 2 +m +2 2=-1⋯②由①②化简整理可得:8t -4m +m 2-4=0,则有m +2-4t m -2 =0,解得:m =2或m =4t -2.当m =4t -2时,Δ=16t 2+64t -32=16t +2 2-96>0,解得:t >-2+6或t <-2-6,此时AB :x =ty +4t -2=t y +4 -2过定点-2,-4 ,不符合题意;当m =2时,Δ=16t 2+32>0对于∀t ∈R 恒成立,直线AB :x =ty +2过定点E 2,0 ,∴m =2.∵PD ⋅AB =0,∴PD ⊥AB ,且A ,B ,D ,E 四点共线,∴PD ⊥DE ,则点D 的轨迹是以PE 为直径的圆.设D x ,y ,PE 的中点坐标为0,1 ,PE =25,则D 点的轨迹方程为x 2+y -1 2=5.当D 的坐标为-2,0 时,AB 的方程为y =0,不符合题意,∴D 的轨迹方程为x 2+y -1 2=5(除掉点-2,0 ).圆锥曲线的轨迹方程问题第13页。

高二数学圆锥曲线试题答案及解析

高二数学圆锥曲线试题答案及解析

高二数学圆锥曲线试题答案及解析1.已知椭圆的离心率,右焦点为,方程的两个实根,,则点()A.必在圆内B.必在圆上C.必在圆外D.以上三种情况都有可能【答案】A【解析】本题只要判断与2的大小,时,点在圆上;时,点在圆内;时,点在圆外.由已知,,椭圆离心率为,从而,点在圆内,故选A.【考点】1.点与圆的位置关系;2.二次方程根与系数的关系.2.若抛物线y2=4x上的点A到其焦点的距离是6,则点A的横坐标是( )A.5B.6C.7D.8【答案】A【解析】由抛物线的方程可知抛物线的准线为,根据抛物线的定义可知点到其准线的距离也为6,即,所以。

故A正确。

【考点】抛物线的定义。

3.设一个焦点为,且离心率的椭圆上下两顶点分别为,直线交椭圆于两点,直线与直线交于点.(1)求椭圆的方程;(2)求证:三点共线.【答案】(1)(2)详见解析.【解析】(1)利用椭圆的定义和几何性质;(2)直线与圆锥曲线相交问题,可以设而不求,联立直线与椭圆方程,利用韦达定理结合题目条件来证明.试题解析:(1)由题知,,∴,3分∴椭圆.4分(2) 设点,由(1)知∴直线的方程为,∴.5分∴,,8分由方程组化简得:,,.10分∴,∴三点共线.12分【考点】1.椭圆的标准方程;2.直线与圆锥曲线相交问题;3.韦达定理.4.已知双曲线的右焦点为,若过且倾斜角为的直线与双曲线的右支有且只有一个交点,则双曲线离心率的取值范围是( )A.B.C.D.【答案】A【解析】由渐进线的斜率.又因为过且倾斜角为的直线与双曲线的右支有且只有一个交点,所以.所以.故选A.本小题关键是对比渐近线与过焦点的直线的斜率的大小.【考点】1.双曲线的渐近线.2.离心率.3.双曲线中量的关系.5.点P是抛物线y2 = 4x上一动点,则点P到点(0,-1)的距离与到抛物线准线的距离之和的最小值是 .【答案】【解析】抛物线y2 = 4x的焦点,点P到准线的距离与点P到点F的距离相等,本题即求点P到点的距离与到点的距离之和的最小值,画图可知最小值即为点与点间的距离,最小值为.【考点】抛物线的定义.6.准线方程为x=1的抛物线的标准方程是()A.B.C.D.【答案】A【解析】由题意可知:=1,∴p=2且抛物线的标准方程的焦点在x轴的负半轴上故可设抛物线的标准方程为:y2=-2px,将p代入可得y2=-4x.选A.【考点】抛物线的性质点评:本题主要考查抛物线的基本性质以及计算能力.在涉及到求抛物线的标准方程问题时,一定要先判断出焦点所在位置,避免出错.7.动点到两定点,连线的斜率的乘积为(),则动点P在以下哪些曲线上()(写出所有可能的序号)①直线②椭圆③双曲线④抛物线⑤圆A.①⑤B.③④⑤C.①②③⑤D.①②③④⑤【答案】C【解析】由题设知直线PA与PB的斜率存在且均不为零所以kPA •kPB=,整理得,点P的轨迹方程为kx2-y2=ka2(x≠±a);①当k>0,点P的轨迹是焦点在x轴上的双曲线(除去A,B两点)②当k=0,点P的轨迹是x轴(除去A,B两点)③当-1<k<0时,点P的轨迹是焦点在x轴上的椭圆(除去A,B两点)④当k=-1时,点P的轨迹是圆(除去A,B两点)⑤当k<-1时,点P的轨迹是焦点在y轴上的椭圆(除去A,B两点).故选C.【考点】圆锥曲线的轨迹问题.点评:本题考查圆锥曲线的轨迹问题,解题时要认真审题,注意分类讨论思想的合理运用.8.已知F1,F2是椭圆 (a>b>0)的左,右焦点,点P是椭圆在y轴右侧上的点,且∠F1PF2=,记线段PF1与y轴的交点为Q,O为坐标原点,若△F1OQ与四边形OF2PQ的面积之比为1∶2,则该椭圆的离心率等于【答案】-1【解析】根据题意,由于F1,F2是椭圆 (a>b>0)的左,右焦点,点P是椭圆在y轴右侧上的点,且∠F1PF2=,且有△F1OQ与四边形OF2PQ的面积之比为1∶2,则可知为点P到x轴的距离是Q到x轴距离的3:2倍,那么结合勾股定理可知该椭圆的离心率等于-1 ,故答案为-1 。

圆锥曲线 习题及答案

圆锥曲线 习题及答案

金材教育 圆锥曲线未命名一、解答题1.过抛物线L :x y 42=的焦点F 的直线l 交此抛物线于A 、B 两点, ①求||||||||FB FA FB FA ⋅+;②记坐标原点为O ,求△OAB 的重心G 的轨迹方程.③点),(00y x P 为抛物线L 上一定点,M 、N 为抛物线上两个动点,且满足0=⋅,当点M 、N 在抛物线上运动时,证明直线MN 过定点。

【答案】①||||1||||FA FB FA FB +=⋅②98342-=x y ③证明见解析。

【解析】①由F (1,0),设直线l 的方程为 x y x k y 4)1(2=-=与联立得1,42 0422122212222=+=+∴=+--x x k k x x k x x k x k ……2分由222121242||||1||1||kk x x FB FA x FB x FA +=++=++=+=,得, 1||||||||44||||22=⋅++=⋅FB FA FB FA kk FB FA ,所以 …………4分②设3,3423),(212221y y y k k x x x y x G +=+=+=,则 …………5分 由kk x x k x k x k y y 42)()1()1(212121=-+=-+-=+ ……7分 化简得轨迹方程为 98342-=x y …………9分 ③证明:由直线MN 的方程不可能与x 轴平行可设直线MN 的方程为),(),,(),,(,002211y x P y x N y x M a my x +=202221214,4,4x y x y x y ===分别相减得202020101014,4y y x x y y y y x x y y +=--+=--由 1002020101-=--⋅--=⋅x x y y x x y y PM 有,∴1440201-=+⋅+y y y y即 016)(2021021=++++y y y y y y (*式) …………11分联立 044422=--⎩⎨⎧=+=a my y x xy amy x 得,消去 有01644 )*(442002121=++⋅+-⎩⎨⎧-==+y m y a ay y m y y 得式,代入,所以 44020++=my y a ,代入直线MN 的方程有 44020=++=my y my x 2.如图,DP y ⊥轴,点M 在DP 的延长线上,且3DM DP=.当点P 在圆221x y +=上运动时,(1)求点M 的轨迹方程.(2)过点1(1,)3Q 作直线l 与点M 的轨迹相交于A 、B 两点,使点Q 被弦AB 平分,求直线l 的方程.【答案】(1)221(0)9x y x +=≠(2)320x y +-=【解析】 【分析】(1)设()()00,,,M x y P x y ,3DMDP =,所以03x x =,()0,D y ,0y y =,003x x y y⎧=⎪⎨⎪=⎩,代入圆的方程得到轨迹方程,抠掉不满足题意的点即可;(2)设出直线l 的方程为()113y k x =-+,联立直线和椭圆,根据韦达定理列式即可.【详解】(1)解析:设()()00,,,M x y P x y ,则()0,D y ,0y y =,0DP x =,DM x = ∵3DM DP=,所以03x x =∵003x x y y =⎧⎨=⎩∴003x x y y⎧=⎪⎨⎪=⎩①∵P 在圆221x y +=上,∴2201x y +=,代入①得2219x y +=3,0DM DP DP=∴≠Q,∴0x ≠,∴()22109x y x +=≠.(2)由题意知直线l 的斜率存在,l 过点11,3⎛⎫ ⎪⎝⎭,设直线l 的方程为()113y k x =-+,设()()1122,,,A x y B x y ,联立()2211319y k x x y ⎧=-+⎪⎪⎨⎪+=⎪⎩得,()22211191899033k x k k x k ⎛⎫⎛⎫++-++-+-= ⎪ ⎪⎝⎭⎝⎭∵点11,3⎛⎫⎪⎝⎭在椭圆内部,∴不论k 取何值,必定有0∆>.由韦达定理知212218619k kx x k -++=-+ ∵()()1122,,,A x y B x y 的中点是11,3⎛⎫ ⎪⎝⎭,∴122x x +=,即2122186219k kx x k-++=-=+,解得13k =-, ∴直线l 的方程为320x y +-=. 【点睛】本题主要考查直线与圆锥曲线位置关系,所使用方法为韦达定理法:因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用.3.设抛物线的顶点在坐标原点,焦点F 在y 轴上,过点F 的直线交抛物线于,A B两点,线段AB 的长度为8, AB 的中点到x 轴的距离为3. (1)求抛物线的标准方程;(2)设直线m 在y 轴上的截距为6,且抛物线交于,P Q 两点,连结QF 并延长交抛物线的准线于点R ,当直线PR 恰与抛物线相切时,求直线m 的方程.【答案】(1)24x y =; (2)162y x =±+. 【解析】【试题分析】(1)依据题设条件,直接运用抛物线的定义分析求解;(2)依据题设建立直线方程,再与抛物线方程联立,借助坐标之间的关系,建立方程求解:(1)设所求抛物线方程为()()211222(0),,,,x py p A x y B x y =>, 则128AB AF BF y y p =+=++=,又1232y y +=,所以2p =. 即该抛物线的标准方程为24x y =.(2)由题意,直线m 的斜率存在,不妨设直线:6m y kx =+,()()3344,,,P x y Q x y ,由26{4y kx x y =+=消y 得24240x kx --=,即34344{·24x x k x x +==-(*) 抛物线在点233,4x P x ⎛⎫ ⎪⎝⎭处的切线方程为()233342x xy x x -=-, 令1y =-,得23342x x x -=,所以2334,12x R x ⎛⎫--⎪⎝⎭, 而,,Q F R 三点共线,所以QFFR k k =及()0,1F ,得242343111442x x x x ---=-. 即()()22343444160x x x x --+=,整理得()()22343434344216160x x x x x x x x ⎡⎤-+-++=⎣⎦,将(*)式代入上式得214k =,即12k =±, 所以所求直线m 的方程为162y x =±+.4.已知椭圆)0(12222>>=+b a by a x 长轴上有一顶点到两个焦点之间的距离分别为:3+,3-. (1)求椭圆的方程;(2)如果直线 )(R t t x ∈=与椭圆相交于A,B ,若C (-3,0),D(3,0),证明:直线CA 与直线BD 的交点K 必在一条确定的双曲线上;(3)过点Q(1,0 )作直线l (与x 轴不垂直)与椭圆交于M,N 两点,与y 轴交于点R ,若RM μλ==,,求证:μλ+为定值.【答案】(1)1922=+y x (2)直线CA 与直线BD 的交点K 必在双曲线1922=-y x 上. (3)49-=+μλ 【解析】(1)由题意可知a+c,和a-c,所以可求出a,c 的值,进而求出b 的值.(2) 依题意可设),(,),(,),(00y x K y t B y t A ,且有19202=+y t ,然后求出CA 、DB 的方程,解出它们的交点再证明交点坐标是否满足双曲线1922=-y x 的方程即可.(3) 设直线l 的方程为)1(-=x k y ,再设),(33y x M 、),(44y x N 、),0(5y R ,然后直线方程与椭圆C 的方程联立,根据λ=,可找到)1(33x x -λ=,331x x -=λ,同理441x x -=μ,则443311x x x x -+-=μ+λ34343434()21()x x x x x x x x +-=-++,然后再利用韦达定理证明(1)由已知⎪⎩⎪⎨⎧-=-+=+223223c a c a ,得⎪⎩⎪⎨⎧==223c a ,1222=-=c a b ,所以椭圆方程为1922=+y x 4分(2)依题意可设),(,),(,),(00y x K y t B y t A ,且有19202=+y t ,又)3(3:0++=x t y y CA ,)3(3:0---=x t y y DB ,)9(922202---=x t y y , 将19202=+y t 代入即得19,)9(912222=--=y x x y 所以直线CA 与直线BD 的交点K 必在双曲线1922=-y x 上. 9分(3)依题意,直线l 的斜率存在,则设直线l 的方程为)1(-=x k y ,设),0(,),(,),(54433y R y x N y x M ,则N M ,两点坐标满足方程组⎪⎩⎪⎨⎧=+-=19)1(22y x x k y , 消去y 整理得9918)91(2222=-+-+k x k x k ,所以224322439199,9118k k x x k k x x +-=+=+,① 因为RM λ=,所以()[]),(0,1),(33533y x y y x -=-λ,即⎩⎨⎧-=--=35333)1(y y y x x λλ,因为l 与x 轴不垂直,所以13≠x ,则331x x -=λ,又μ=,同理可得441x x -=μ,所以434343434433)(1211x x x x x x x x x xx x ++--+=-+-=+μλ由①式代人上式得49-=+μλ 5.在平面直角坐标系xOy 中, ,M N 是x 轴上的动点,且228OM ON +=,过点,M N分别作斜率为22-的两条直线交于点P ,设点P 的轨迹为曲线E . (Ⅰ)求曲线E 的方程;(Ⅱ)过点()1,1Q 的两条直线分别交曲线E 于点,A C 和,B D ,且//AB CD ,求证直线AB 的斜率为定值.【答案】(Ⅰ)22143x y +=;(Ⅱ)直线AB 的斜率为定值34-. 【解析】试题分析:(Ⅰ)设(),P m n,直线):PM y n x m -=-,令0y =,得,0M m ⎛⎫- ⎪ ⎪⎝⎭,同理得,0N m ⎛⎫ ⎪ ⎪⎝⎭,根据22228OM ON m m ⎛⎫⎛⎫+=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭u u u u r u u u r 化简可得结果;(Ⅱ) 设,,(0)AQ QC BQ QD λλλ==>u u u r u u u r u u u r u u u r,可得1,1A C A C x x y y λλλλ=+-=+-①,同理1,1B D B D x x y y λλλλ=+-=+-②,以上两式结合点差法,可得34C D C D y y x x -=--.试题解析:(Ⅰ)设(),P m n ,直线():2PM y n x m -=-,令0y =,得,0M m ⎛⎫- ⎪ ⎪⎝⎭直线):PN y n x m -=-,令0y =,得,0N m ⎛⎫ ⎪ ⎪⎝⎭.∴22222222828133343n m n OM ON m n m n m ⎛⎫⎛⎫+=-++=+=⇒+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭u u u u r u u u r . ∴曲线E 的方程是22143x y +=; (Ⅱ)∵//AB CD,设,,(0)AQ QC BQ QD λλλ==>u u u r u u u r u u u r u u u r,()()()(),,,,,,,A A B B C C D D A x y B x y C x y D x y ,则()()1,11,1A A C C x y x y λ--=--,即1,1A C A C x x y y λλλλ=+-=+-①,同理1,1B D B D x x y y λλλλ=+-=+-②将()(),,,A A B B A x y B x y ,代入椭圆方程得2222143{143A AB B x y x y+=+=,化简得()()()()34A B A B A B A B x x x x y y y y +-=-+-③ 把①②代入③,得()()()()()()()()()3223422422C D C D C D C D C D C D x x x x x x y y y y y y λλλλλ+--+-=-+-+++-将()(),,,C C D D C x y D x y ,代入椭圆方程,同理得()()()()34C D C D C D C D x x x x y y y y +-=-+-代入上式得()()34C D C D x x y y -=--.即34C D C D y y x x -=--,∴直线AB 的斜率为定值34-. 【方法点睛】本题主要考查椭圆标准方程、直线的斜率、韦达定理、圆锥曲线的定值问题以及点在曲线上问题,属于难题. 探索圆锥曲线的定值问题常见方法有两种:① 从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;② 直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.6.已知圆22:4O x y +=,点(F ,以线段FP 为直径的圆内切于圆O ,记点P 的轨迹为C .(1)求曲线C 的方程;(2)若()()1122,,,A x y B x y 为曲线C 上的两点,记11,2y m x ⎛⎫= ⎪⎝⎭v, 22,2y n x ⎛⎫= ⎪⎝⎭v ,且m n ⊥v v,试问AOB ∆的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.【答案】(1) 2214y x +=;(2)答案见解析. 【解析】试题分析:(1)取(0,F ',连结PF ',设动圆的圆心为M ,由两圆相内切,得122OM FP =-,又12OM PF =',从而得4PF PF FF +=>'',由椭圆定义得椭圆方程;(2)当AB x ⊥轴时,易得1AOB S ∆=,当AB 与x 轴不垂直时,设直线AB 的方程为y kx m =+,与椭圆联立得()2224240k x kmx m +++-=,由0m n ⋅=v v,得121240y y x x +=,结合韦达定理得2224m k =+,由1212AOB S m x x ∆=⋅-利用韦达定理求解即可. 试题解析:(1)取(0,F ',连结PF ',设动圆的圆心为M ,∵两圆相内切, ∴122OM FP =-,又12OM PF =',∴4PF PF FF +=>='',∴点P 的轨迹是以,F F '为焦点的椭圆,其中24,2a c ==2,a c ==,∴2221b a c =-=,∴C 的轨迹方程为2214y x +=. (2)当AB x ⊥轴时,有12x x =, 12y y =-,由m n ⊥v v,得112y x =,又221114y x +=,∴1x =1y =∴11112122AOB S x y ∆=⨯⨯=⨯=. 当AB 与x 轴不垂直时,设直线AB 的方程为y kx m =+,由22{ 14y kx my x =++=得()2224240k x kmx m +++-=,则12224kmx x k -+=+, 212244m x x k -=+,由0m n ⋅=v v,得121240y y x x +=,∴()()121240kx m kx m x x +++=, 整理得()()22121240k x x km x x m ++++=,∴2224m k =+,∴1212AOBS m x x ∆=⋅-12=21m==, 综上所述, AOB ∆的面积为定值1.点睛:定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的. 定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.7.已知椭圆E 的中心在原点,焦点在x 轴上,且其焦点和短轴端点都在圆C :222x y +=上.(1)求椭圆E 的标准方程;(2)点P 是圆C 上一点,过点P 作圆C 的切线交椭圆E 于A ,B 两点,求|AB |的最大值.【答案】(1)22142x y +=;(2)2 【解析】 【分析】(1)由题意设出椭圆的标准方程,由于椭圆焦点和短轴端点都在圆C :222x y +=上,可得到b ,c 的值,即可求出椭圆方程。

圆锥曲线综合训练题(分专题,含答案)

圆锥曲线综合训练题(分专题,含答案)

圆锥曲线综合训练题一、求轨迹方程:1、(1)已知双曲线1C 与椭圆2C :2213649x y +=有公共的焦点,并且双曲线的离心率1e 与椭圆的离心率2e 之比为73,求双曲线1C 的方程. (2)以抛物线28y x =上的点M 与定点(6,0)A 为端点的线段MA 的中点为P ,求P 点的轨迹方程. (1)解:1C 的焦点坐标为(0,13).±213e =由1273e e =得113e =设双曲线的方程为22221(,0)y x a b a b -=>则2222213139a b a b a ⎧+=⎪⎨+=⎪⎩ 解得229,4a b == 双曲线的方程为22194y x -= (2)解:设点00(,),(,)M x y P x y ,则00622x x y y +⎧=⎪⎪⎨⎪=⎪⎩,∴00262x x y y =-⎧⎨=⎩.代入2008y x =得:2412y x =-.此即为点P 的轨迹方程.2、(1)ABC ∆的底边16=BC ,AC 和AB 两边上中线长之和为30,建立适当的坐标系求此三角形重心G 的轨迹和顶点A 的轨迹.(2)△ABC 中,B(-5,0),C(5,0),且sinC-sinB=53sinA,求点A 的轨迹方程.解: (1)以BC 所在的直线为x 轴,BC 中点为原点建立直角坐标系.设G 点坐标为()y x ,,由20=+GB GC ,知G 点的轨迹是以B 、C 为焦点的椭圆,且除去轴上两点.因10=a ,8=c ,有6=b ,故其方程为()013610022≠=+y y x .设()y x A ,,()y x G '',,则()013610022≠'='+'y y x . ①由题意有⎪⎪⎩⎪⎪⎨⎧='='33yy x x ,代入①,得A 的轨迹方程为()0132490022≠=+y y x ,其轨迹是椭圆(除去x 轴上两点).(2)分析:由于sinA 、sinB 、sinC 的关系为一次齐次式,两边乘以2R (R 为外接圆半径),可转化为边长的关系. 解:sinC-sinB=53sinA 2RsinC-2RsinB=53·2RsinA ∴BC AC AB 53=- 即6=-AC AB (*)∴点A 的轨迹为双曲线的右支(去掉顶点) ∵2a=6,2c=10 ∴a=3, c=5, b=4所求轨迹方程为116922=-y x (x>3) 点评:要注意利用定义直接解题,这里由(*)式直接用定义说明了轨迹(双曲线右支) 3、如图,两束光线从点M (-4,1)分别射向直线y = -2上两点P (x 1,y 1)和Q (x 2,y 2)后,反射光线恰好通过椭圆C :12222=+by a x (a >b >0)的两焦点,已知椭圆的离心率为21,且x 2-x 1=56,求椭圆C 的方程. 解:设a =2k ,c =k ,k ≠0,则b =3k ,其椭圆的方程为1342222=-ky k x . 由题设条件得:114)2(120x x k ----=--+, ①224)2(120x x k ----=--+, ②x 2-x 1=56, ③ 由①、②、③解得:k =1,x 1=511-,x 2=-1,所求椭圆C 的方程为13422=+y x . 4、在面积为1的PMN ∆中,21tan =M ,2tan -=N ,建立适当的坐标系,求出以M 、N 为焦点且过P 点的椭圆方程.∴所求椭圆方程为1315422=+y x 解:以MN 的中点为原点,MN 所在直线为x 轴建立直角坐标系,设),(y x P .则⎪⎪⎪⎩⎪⎪⎪⎨⎧==+-=-.1,21,2cy c x yc x y∴⎪⎪⎩⎪⎪⎨⎧===233435c c y c x 且即)32,325(P ∴⎪⎪⎩⎪⎪⎨⎧=-=+,43,13412252222b a ba 得⎪⎩⎪⎨⎧==.3,41522b a (1)求线段PQ 的中点的轨迹方程;(2)设∠POQ 的平分线交PQ 于点R (O 为原点),求点R 的轨迹方程.解:(1)设线段PQ 的中点坐标为M (x ,y ),由Q (4,0)可得点P (2x -4,2y ),代入圆的方程x 2+y 2=4可得(2x -4)2+(2y )2=4,整理可得所求轨迹为(x -2)2+y 2=1.(2)设点R (x ,y ),P (m ,n ),由已知|OP |=2,|OQ |=4,∴21||||=OQ OP ,由角平分线性质可得||||||||RQ PR OQ OP ==21,又∵点R 在线段PQ 上,∴|PR |=21|RQ |,∴点R 分有向线段PQ 的比为21,由定比分点坐标公式可得⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+⨯+=+=+⨯+=32211021342211421n n y m m x ,即⎪⎪⎩⎪⎪⎨⎧=-=23243y n x m ,∴点P 的坐标为⎪⎭⎫ ⎝⎛-23 ,243y x ,代入圆的方程x 2+y 2=4可得42324322=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-y x , 即234⎪⎭⎫ ⎝⎛-x +y 2=916(y ≠0). ∴点R 的轨迹方程为234⎪⎭⎫ ⎝⎛-x +y 2=916(y ≠0).6、已知动圆过定点()1,0,且与直线1x =-相切.(1) 求动圆的圆心轨迹C 的方程;(2) 是否存在直线l ,使l 过点(0,1),并与轨迹C 交于,P Q 两点,且满足0OP OQ ⋅=uu u v uuu v若存在,求出直线l 的方程;若不存在,说明理由.解:(1)如图,设M 为动圆圆心, F ()1,0,过点M 作直线1x =-的垂线,垂足为N ,由题意知:MF MN =, 即动点M 到定点F 与定直线1x =-的距离相等,由抛物线的定义知,点M 的轨迹为抛物线,其中()1,0F 为焦点,1x =-为准线, ∴ 动点R 的轨迹方程为x y 42=(2)由题可设直线l 的方程为(1)(0)x k y k =-≠, 由2(1)4x k y y x=-⎧⎨=⎩得2440y ky k -+=△216160k =->,11k k <->或设),(11y x P ,),(22y x Q ,则124y y k +=,124y y k =由0OP OQ ⋅=u u u r u u u r ,即 ()11,OP x y =u u u r ,()22,OQ x y =u u u r,于是12120x x y y +=,即()()21212110ky y y y --+=,2221212(1)()0k y y k y y k +-++=,2224(1)40k k k k k +-+=g ,解得4k =-或0k =(舍去),又41k =-<-, ∴ 直线l 存在,其方程为440x y +-=7、设双曲线y ax 22231-=的两个焦点分别为F F 12、,离心率为2.(I )求此双曲线的渐近线l l 12、的方程;(II )若A 、B 分别为l l 12、上的点,且2512||||AB F F =,求线段AB 的中点M 的轨迹方程,并说明轨迹是什么曲线;(III )过点N ()10,能否作出直线l ,使l 与双曲线交于P 、Q 两点,且OP OQ →→=·0.若存在,求出直线l 的方程;若不存在,说明理由.解:(I )Θe c a =∴=2422, Θc a a c 22312=+∴==,,∴-=双曲线方程为y x 2231,渐近线方程为y x =±334分(II )设A x y B x y ()()1122,,,,AB 的中点()M x y ,[]Θ2552522101033332233333331012121221221122121212121212122122||||||||()()()()()()AB F F AB F F c x x y y y x y x x x x y y y y y x x y y x x y y x x =∴==⨯=∴-+-===-=+=+∴+=--=+∴+++⎡⎣⎢⎤⎦⎥=又,,,, ∴+=+=321321007532512222()()y x x y ,即则M 的轨迹是中心在原点,焦点在x 轴上,长轴长为103,短轴长为1033的椭圆.(9分) (III )假设存在满足条件的直线l设l y k x l P x y Q x y :,与双曲线交于,、,=-()()()11122[]ΘOP OQ x x y y x x k x x x x k x x x x i →→=∴+=∴+--=∴+-++=·00110101212122121221212()()()()由得则,y k x y x k x k x k x x k k x x k k ii =--=⎧⎨⎪⎩⎪--+-=+=-=--()()()13131633063133312222212221222由(i )(ii )得k 230+= ∴k 不存在,即不存在满足条件的直线l .8、设M 是椭圆22:1124x y C +=上的一点,P 、Q 、T 分别为M 关于y 轴、原点、x 轴的对称点,N 为椭圆C 上异于M 的另一点,且MN⊥MQ,QN 与PT 的交点为E ,当M 沿椭圆C 运动时,求动点E 的轨迹方程.解:设点的坐标112211(,),(,)(0),(,),M x y N x y x y E x y ≠则111111(,),(,),(,),P x y Q x y T x y ----……1分221122221,(1)124 1.(2)124x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩L L L L L L L L ………3分 由(1)-(2)可得1.3MN QN k k •=-…6分又MN⊥MQ,111,,MN MQ MN x k k k y ⋅=-=-所以11.3QN y k x =直线QN 的方程为1111()3yy x x y x =+-,又直线PT 的方程为11.x y x y =-从而得1111,.22x x y y ==-所以112,2.x x y y ==-代入(1)可得221(0),3x y xy +=≠此即为所求的轨迹方程. 9、已知:直线L 过原点,抛物线C 的顶点在原点,焦点在x 轴正半轴上。

高二数学圆锥曲线与方程试题答案及解析

高二数学圆锥曲线与方程试题答案及解析

高二数学圆锥曲线与方程试题答案及解析1.若动点与定点和直线的距离相等,则动点的轨迹是()A.椭圆B.双曲线C.抛物线D.直线【答案】D【解析】因为定点F(1,1)在直线上,所以到定点F的距离和到定直线l的距离相等的点的轨迹是直线,就是经过定点A与直线,垂直的直线.故选D.【考点】1.抛物线的定义;2.轨迹方程.2. F1、F2是定点,|F1F2|=6,动点M满足|MF1|+|MF2|=6,则点M的轨迹是()A.椭圆B.直线C.线段D.圆【答案】C【解析】主要考查椭圆的定义、椭圆的标准方程。

解:因为|MF1|+|MF2|=6=|F1F2|,所以点M的轨迹是线段,故选C。

3.椭圆内有一点P(3,2)过点P的弦恰好以P为中点,那么这弦所在直线的方程为()A.B.C.D.【答案】B【解析】主要考查椭圆的定义、直线与椭圆的位置关系。

利用“点差法”求弦的斜率,由点斜式写出方程。

故选B。

4.如果抛物线y 2=ax的准线是直线x=-1,那么它的焦点坐标为()A.(1, 0)B.(2, 0)C.(3, 0)D.(-1, 0)【答案】A【解析】由已知,所以=4,抛物线的焦点坐标为(1, 0),故选A。

【考点】本题主要考查抛物线的定义、标准方程、几何性质。

点评:熟记抛物线的标准方程及几何性质。

5.圆心在抛物线y 2=2x上,且与x轴和该抛物线的准线都相切的一个圆的方程是()A.x2+ y 2-x-2 y -=0B.x2+ y 2+x-2 y +1="0"C.x2+ y 2-x-2 y +1=0D.x2+ y 2-x-2 y +=0【答案】D【解析】由抛物线定义知,此圆心到焦点距离等于到准线距离,因此圆心横坐标为焦点横坐标,代入抛物线方程的圆心纵坐标,1,且半径为1,故选D。

【考点】本题主要考查抛物线的定义、标准方程、几何性质,同时考查了圆的切线问题。

点评:抛物线问题与圆的切线问题有机结合,利用抛物线定义,简化了解答过程。

高考数学圆锥曲线专题训练(附答案解析)

高考数学圆锥曲线专题训练(附答案解析)

高中数学圆锥曲线专题*注意事项:1、填写答题卡的内容用2B铅笔填写2、提前xx 分钟收取答题卡阅卷人一、单选题(共10题;共20分)得分1. ( 2分) 波罗尼斯(古希腊数学家,的公元前262-190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,它将圆锥曲线的性质网罗殆尽,几乎使后人没有插足的余地.他证明过这样一个命题:平面内与两定点距离的比为常数k(k>0,且k≠1)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.现有椭圆=1(a>b>0),A,B为椭圆的长轴端点,C,D为椭圆的短轴端点,动点M满足=2,△MAB面积的最大值为8,△MCD面积的最小值为1,则椭圆的离心率为()A. B. C. D.2. ( 2分) 古希腊数学家阿波罗尼奥斯的著作圆锥曲线论中给出了圆的另一种定义:平面内,到两个定点A、B距离之比是常数的点M的轨迹是圆若两定点A、B的距离为3,动点M满足,则M点的轨迹围成区域的面积为A. B. C. D.3. ( 2分) 已知、为双曲线的左、右焦点,过右焦点的直线,交的左、右两支于、两点,若为线段的中点且,则双曲线的离心率为()A. B. C. D.4. ( 2分) 已知双曲线的右焦点为,点,为双曲线左支上的动点,且周长的最小值为16,则双曲线的离心率为()A. 2B.C.D.5. ( 2分) 关于曲线:性质的叙述,正确的是()A. 一定是椭圆B. 可能为抛物线C. 离心率为定值D. 焦点为定点6. ( 2分) 古希腊数学家阿波罗尼奧斯(约公元前262~公元前190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,他证明过这样一个命题:平面内与两定点距离的比为常数k(k>0,k≠1)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.在平面直角坐标系中,设A(﹣3,0),B(3,0),动点M满足=2,则动点M的轨迹方程为()A. (x﹣5)2+y2=16B. x2+(y﹣5)2=9C. (x+5)2+y2=16D. x2+(y+5)2=97. ( 2分) 已知是双曲线上一点,且在轴上方,,分别是双曲线的左、右焦点,,直线的斜率为,的面积为,则双曲线的离心率为()A. 3B. 2C.D.8. ( 2分) 在正四面体中,点为所在平面上的动点,若与所成角为定值,则动点的轨迹是()A. 圆B. 椭圆C. 双曲线D. 抛物线9. ( 2分) 已知,及抛物线方程为,点在抛物线上,则使得为直角三角形的点个数为()A. 1个B. 2个C. 3个D. 4个10. ( 2分) 已知双曲线的左、右焦点分别为,,若双曲线上存在点P使,则离心率的取值范围是()A. B. C. D.阅卷人二、填空题(共10题;共10分)得分11. ( 1分) 已知正实数是的等比中项,则圆锥曲线=1的离心率为________12. ( 1分) 设抛物线的焦点为F,过点F的直线l与抛物线交于A,B两点,且,则弦长________.13. ( 1分) 已知双曲线:(,)的左,右焦点分别为,,过右支上一点作双曲线的一条渐近线的垂线,垂足为.若的最小值为,则双曲线的离心率为________.14. ( 1分) 若椭圆的离心率为,则的短轴长为________.15. ( 1分) 从抛物线图象上一点作抛物线准线的垂线,垂足为,且,设为抛物线的焦点,则的面积为________.16. ( 1分) 设抛物线的焦点为,过点的直线与抛物线交于,两点,且,点是坐标原点,则的面积为________17. ( 1分) 已知双曲线的下焦点为,虚轴的右端点为,点在的上支,为坐标原点,直线和直线的倾斜角分别为,,若,则的最小值为________.18. ( 1分) 已知为椭圆的左焦点,过点的直线交椭圆于两点,若,则直线的斜率为________.19. ( 1分) 椭圆的左、右焦点分别为、,点P在椭圆C上,已知,则________.20. ( 1分) 已知椭圆的右顶点为A,左,右焦点为F1,F2,过点F2与x轴垂直的直线与椭圆的一个交点为B.若|F1F2|=2,|F2B| ,则点F1到直线AB的距离为________.阅卷人三、解答题(共30题;共280分)得分21. ( 10分) 已知椭圆E:=1(a>b>0)的上、下焦点分别为F1,F2,点D在椭圆上,DF2⊥F1F2,△F1F2D的面积为2 ,离心率e= ,抛物线C:x2=2py(p>0)的准线l经过D点.(1)求椭圆E与抛物线C的方程;(2)过直线l上的动点P作抛物线的两条切线,切点为A,B,直线AB交椭圆于M,N两点,当坐标原点O落在以MN为直径的圆外时,求点P的横坐标t的取值范围.22. ( 10分) 椭圆C1:+y2=1,椭圆C2:(a>b>0)的一个焦点坐标为(,0),斜率为1的直线l与椭圆C2相交于A、B两点,线段AB的中点H的坐标为(2,﹣1).(1)求椭圆C2的方程;(2)设P为椭圆C2上一点,点M、N在椭圆C1上,且,则直线OM与直线ON的斜率之积是否为定值?若是,求出该定值;若不是,请说明理由.23. ( 10分) 已知A(1,)是离心率为的椭圆E:+ =1(a>b>0)上的一点,过A作两条直线交椭圆于B、C两点,若直线AB、AC的倾斜角互补.(1)求椭圆E的方程;(2)试证明直线BC的斜率为定值,并求出这个定值;(3)△ABC的面积是否存在最大值?若存在,求出这个最大值?若不存在,说明理由.24. ( 10分) 设抛物线C1:y2=8x的准线与x轴交于点F1,焦点为F2.以F1,F2为焦点,离心率为的椭圆记为C2.(Ⅰ)求椭圆C2的方程;(Ⅱ)设N(0,﹣2),过点P(1,2)作直线l,交椭圆C2于异于N的A、B两点.(ⅰ)若直线NA、NB的斜率分别为k1、k2,证明:k1+k2为定值.(ⅱ)以B为圆心,以BF2为半径作⊙B,是否存在定⊙M,使得⊙B与⊙M恒相切?若存在,求出⊙M的方程,若不存在,请说明理由.25. ( 10分) 在平面直角坐标系xOy中,椭圆:的离心率为,y轴于椭圆相交于A、B两点,,C、D是椭圆上异于A、B的任意两点,且直线AC、BD相交于点M,直线AD、BC相交于点N.(1)求椭圆的方程;(2)求直线MN的斜率.26. ( 10分) 已知椭圆C:(a>b>0)的离心率为,左、右焦点分别为F1,F2,点G在椭圆C上,且• =0,△GF1F2的面积为2.(1)求椭圆C的方程;(2)直线l:y=k(x﹣1)(k<0)与椭圆Γ相交于A,B两点.点P(3,0),记直线PA,PB的斜率分别为k1,k2,当最大时,求直线l的方程.27. ( 10分) 已知椭圆的中心在原点,焦点在轴上,左右焦点分别为,,且,点在椭圆上.(1)求椭圆的方程;(2)过的直线与椭圆相交于两点,且的面积为,求以为圆心且与直线相切的圆的方程.28. ( 10分) 设椭圆+ =1(a>b>0)的左焦点为F,右顶点为A,离心率为.已知A是抛物线y2=2px(p>0)的焦点,F到抛物线的准线l的距离为.(Ⅰ)求椭圆的方程和抛物线的方程;(Ⅱ)设l上两点P,Q关于x轴对称,直线AP与椭圆相交于点B(B异于A),直线BQ与x轴相交于点D.若△APD的面积为,求直线AP的方程.29. ( 10分) 如图,在平面直角坐标系中,已知椭圆的左、右顶点分别为,,过右焦点的直线与椭圆交于,两点(点在轴上方).(1)若,求直线的方程;(2)设直线,的斜率分别为,.是否存在常数,使得?若存在,求出的值;若不存在,请说明理由.30. ( 10分) 已知抛物线y2=2px(p>0)的焦点为F与椭圆C的一个焦点重合,且抛物线的准线与椭圆C 相交于点.(1)求抛物线的方程;(2)过点F是否存在直线l与椭圆C交于M,N两点,且以MN为对角线的正方形的第三个顶点恰在y轴上?若存在,求出直线l的方程;若不存在,请说明理由.31. ( 10分) 已知椭圆的长轴长为4,离心率为.(I)求C的方程;(II)设直线交C于A,B两点,点A在第一象限, 轴,垂足为M, 连结BM并延长交C于点N.求证:点A在以BN为直径的圆上.32. ( 10分) 已如椭圆E:()的离心率为,点在E上.(1)求E的方程:(2)斜率不为0的直线l经过点,且与E交于P,Q两点,试问:是否存在定点C,使得?若存在,求C的坐标:若不存在,请说明理由33. ( 5分) 已知点P(x,y)满足条件.(Ⅰ)求点P的轨迹C的方程;(Ⅱ)直线l与圆O:x2+y2=1相切,与曲线C相较于A,B两点,若,求直线l的斜率.34. ( 5分) 设直线l:y=k(x+1)(k≠0)与椭圆3x2+y2=a2(a>0)相交于A、B两个不同的点,与x轴相交于点C,记O为坐标原点.(Ⅰ)证明:a2>;(Ⅱ)若,求△OAB的面积取得最大值时的椭圆方程.35. ( 15分) 已知点在抛物线上,是直线上的两个不同的点,且线段的中点都在抛物线上.(Ⅰ)求的取值范围;(Ⅱ)若的面积等于,求的值.36. ( 5分) 如图,曲线Γ由曲线C1:(a>b>0,y≤0)和曲线C2:(a>0,b>0,y>0)组成,其中点F1,F2为曲线C1所在圆锥曲线的焦点,点F3,F4为曲线C2所在圆锥曲线的焦点,(Ⅰ)若F2(2,0),F3(﹣6,0),求曲线Γ的方程;(Ⅱ)如图,作直线l平行于曲线C2的渐近线,交曲线C1于点A、B,求证:弦AB的中点M必在曲线C2的另一条渐近线上;(Ⅲ)对于(Ⅰ)中的曲线Γ,若直线l1过点F4交曲线C1于点C、D,求△CDF1面积的最大值.37. ( 5分) 已知椭圆的离心率为,,分别是椭圆的左右焦点,过点的直线交椭圆于,两点,且的周长为12.(Ⅰ)求椭圆的方程(Ⅱ)过点作斜率为的直线与椭圆交于两点,,试判断在轴上是否存在点,使得是以为底边的等腰三角形若存在,求点横坐标的取值范围,若不存在,请说明理由.38. ( 10分) 如图,已知点F为抛物线C:()的焦点,过点F的动直线l与抛物线C交于M,N两点,且当直线l的倾斜角为45°时,.(1)求抛物线C的方程.(2)试确定在x轴上是否存在点P,使得直线PM,PN关于x轴对称?若存在,求出点P的坐标;若不存在,请说明理由.39. ( 10分) 已知椭圆过点,且离心率为.(1)求椭圆的标准方程;(2)若点与点均在椭圆上,且关于原点对称,问:椭圆上是否存在点(点在一象限),使得为等边三角形?若存在,求出点的坐标;若不存在,请说明理由.40. ( 5分) 已知椭圆E: 过点(0,1)且离心率.(Ⅰ)求椭圆E的方程;(Ⅱ)设动直线l与两定直线l1:x﹣y=0和l2:x+y=0分别交于P,Q两点.若直线l总与椭圆E有且只有一个公共点,试探究:△OPQ的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.41. ( 10分) 已知抛物线,抛物线与圆的相交弦长为4. (1)求抛物线的标准方程;(2)点为抛物线的焦点,为抛物线上两点,,若的面积为,且直线的斜率存在,求直线的方程.42. ( 10分) 设椭圆的左、右焦点分别为,、,,点在椭圆上,为原点.(1)若,,求椭圆的离心率;(2)若椭圆的右顶点为,短轴长为2,且满足为椭圆的离心率).①求椭圆的方程;②设直线:与椭圆相交于、两点,若的面积为1,求实数的值.43. ( 10分) 已知椭圆C:(a>b>0)的右焦点为F(1,0),且点P在椭圆C上,O为坐标原点.(1)求椭圆C的标准方程;(2)设过定点T(0,2)的直线l与椭圆C交于不同的两点A,B,且∠AOB为锐角,求直线l的斜率k的取值范围.44. ( 10分) 在圆上任取一点,过点作轴的垂线段,为垂足,当点在圆上运动时,点在线段上,且,点的轨迹为曲线.(1)求曲线的方程;(2)过抛物线:的焦点作直线交抛物线于,两点,过且与直线垂直的直线交曲线于另一点,求面积的最小值,以及取得最小值时直线的方程.45. ( 10分) 已知点,分别是椭圆的长轴端点、短轴端点,为坐标原点,若,.(1)求椭圆的标准方程;(2)如果斜率为的直线交椭圆于不同的两点(都不同于点),线段的中点为,设线段的垂线的斜率为,试探求与之间的数量关系.46. ( 10分) 已知椭圆E:+ =1(a>b>0)过点,且离心率e为.(1)求椭圆E的方程;(2)设直线x=my﹣1(m∈R)交椭圆E于A,B两点,判断点G 与以线段AB为直径的圆的位置关系,并说明理由.47. ( 10分) 已知椭圆C:=1(a>b>0),圆Q:(x﹣2)2+(y﹣)2=2的圆心Q在椭圆C 上,点P(0,)到椭圆C的右焦点的距离为.(1)求椭圆C的方程;(2)过点P作互相垂直的两条直线l1,l2,且l1交椭圆C于A,B两点,直线l2交圆Q于C,D两点,且M为CD的中点,求△MAB的面积的取值范围.48. ( 10分) 已知椭圆C:+ =1(a>b>0)的离心率为,椭圆短轴的一个端点与两个焦点构成的三角形的面积为.(1)求椭圆C的方程;(2)已知动直线y=k(x+1)与椭圆C相交于A、B两点.①若线段AB中点的横坐标为﹣,求斜率k的值;②若点M(﹣,0),求证:• 为定值.49. ( 10分) 已知椭圆的焦距为分别为椭圆的左、右顶点,为椭圆上的两点(异于),连结,且斜率是斜率的倍.(1)求椭圆的方程;(2)证明:直线恒过定点.50. ( 10分) 如图,中心为坐标原点O的两圆半径分别为,,射线OT与两圆分别交于A、B两点,分别过A、B作垂直于x轴、y轴的直线、,交于点P.(1)当射线OT绕点O旋转时,求P点的轨迹E的方程;(2)直线l:与曲线E交于M、N两点,两圆上共有6个点到直线l的距离为时,求的取值范围.答案解析部分一、单选题1.【答案】D【考点】椭圆的简单性质【解析】【解答】设A(-a,0),B(a,0),M(x,y).∵动点M满足=2,则 =2,化简得.∵△MAB面积的最大值为8,△MCD面积的最小值为1,∴,解得,∴椭圆的离心率为.故答案为:D.【分析】设A(-a,0),B(a,0),M(x,y).∵动点M满足=2,则利用两点距离公式得出,∵△MAB面积的最大值为8,△MCD面积的最小值为1,利用三角形面积公式求出a,b的值,再利用椭圆中a,b,c三者的关系式结合离心率公式变形求出椭圆的离心率。

圆锥曲线之轨迹问题(有答案)

圆锥曲线之轨迹问题(有答案)

圆 锥 曲 线 之 轨 迹 问 题一、临阵磨枪1.直接法(五部法):如果动点满足的几何条件本身就是一些几何量的等量关系,或这些几何条件简单明了且易于表达,我们只须把这种关系“翻译”成含,x y 的等式就得到曲线的轨迹方程。

这种求轨迹的方法称之为直接法。

2.定义法:若动点轨迹的条件符合某一基本轨迹的定义(如圆、椭圆、双曲线、抛物线的定义),则可根据定义直接求出动点的轨迹方程。

3.坐标转移法(代入法):有些问题中,其动点满足的条件不便于等式列出,但动点是随着另一动点(称之为相关点)而运动的,如果相关点所满足的条件是明显的,或是可分析的,这时我们可以用动点坐标表示相关点坐标,根据相关点所满足的方程即可求得动点的轨迹方程,这种求轨迹的方法坐标转移法,也称相关点法或代入法。

4.参数法:有时求动点应满足的几何条件不易求出,也无明显的相关点,但却较易发现(或经分析可发现)这个动点的运动常常受到另一个变量(角度、斜率、比值、截距或时间等)的制约,即动点坐标(,)x y 中的,x y 分别随另一变量的变化而变化,我们可以把这个变量设为参数,建立轨迹的参数方程,这种方法叫做参数法,如果需要得到轨迹的普通方程,只要消去参变量即可。

5.交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这类问题常可通过解方程组得出交点含参数的坐标,再消去参数得出所求轨迹方程,此种方法称为交轨法。

二、小试牛刀1.已知M (-3,0),N (3,0)6=-PN PM ,则动点P 的轨迹方程为 析:MN PM PN =-Q ∴点P 的轨迹一定是线段MN 的延长线。

故所求轨迹方程是 0(3)y x =≥2.已知圆O 的方程为222=+y x ,圆O '的方程为010822=+-+x y x ,由动点P 向两圆所引的切线长相等,则动点P 的轨迹方程为析:∵圆O 与圆O '外切于点M(2,0) ∴两圆的内公切线上的点向两圆所引的切线长都相等, 故动点P 的轨迹就是两圆的内公切线,其方程为2x =3.已知椭圆)0(12222>>=+b a by a x ,M 是椭圆上一动点,1F 为椭圆的左焦点,则线段1MF 的中点P 的轨迹方程为析:设P (,)x y 00(,)M x y 又1(,0)F c - 由中点坐标公式可得:00002222x c x x x c y y y y -⎧=⎪=+⎧⎪⇒⎨⎨=⎩⎪=⎪⎩ 又点00(,)M x y 在椭圆)0(12222>>=+b a b y a x 上 ∴2200221(0)x y a b a b +=>> 因此中点P 的轨迹方程为2222(2)41x c y a b++= 4.已知A 、B 、C 是不在同一直线上的三点,O 是平面ABC 内的一定点,P 是动点,若[)+∞∈+=-,0),21(λλBC AB OA OP ,则点P 的轨迹一定过三角形ABC 的 重 心。

2024高考巴蜀圆锥曲线解答题解析

2024高考巴蜀圆锥曲线解答题解析

2024高考巴蜀圆锥曲线解答题解析一、解答题1.(23-24高三下·重庆·阶段练习)已知抛物线()2:20E y px p =>,O 是坐标原点,过()4,0的直线与E 相交于A ,B 两点,满足OA OB ⊥.(1)求抛物线E 的方程;(2)若()0,2P x 在抛物线E 上,过()4,2Q -的直线交抛物线E 于M ,N 两点,直线PM ,PN 的斜率都存在,分别记为1k ,2k ,求12k k ⋅的值.3【点睛】方法点睛:求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.2.(23-24高三下·重庆·阶段练习)已知抛物线2:4,,C x y M N =为抛物线C 上两点,,M N 处的切线交于点()00,P x y ,过点P 作抛物线C 的割线交抛物线于,A B 两点,Q 为AB 的中点.(1)若点P 在抛物线C 的准线上,(i )求直线MN 的方程(用含0x 的式子表示);(ii )求PMN 面积的取值范围.(2)若直线MQ 交抛物线C 于另一点D ,试判断并证明直线ND 与AB 的位置关系.【答案】(1)(i )012y x =【详解】(1)(i )设点221212,,,44x x M x N x ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,因为抛物线2:4C x y =,得12y x '=,则()21111:42MP x l y x x x -=-,整理得2111124y x x x =-①,()22221:42NP x l y x x x -=-,整理得2221124y x x x =-②,联立①②得()0120121214x x x y x x ⎧=+⎪⎪⎨⎪=⎪⎩,因为点P 在抛物线C 的准线上,即直线1y =-上,所以124x x =-,设直线MN 的方程为y kx b =+,斜率必存在,联立24=+⎧⎨=⎩y kx bx y ,消去y 得2440x kx b --=,所以212012Δ161604244k b x xk x x x b ⎧=+>⎪+==⎨⎪=-=-⎩,得0121k x b ⎧=⎪⎨⎪=⎩.所以直线MN 的方程为0112y xx =+;(ii )由(i )得21x x -=(2)直线ND 与AB 平行,证明:直线AB 斜率必存在,设消去y 得20444x kx kx -++=则()2034340161610444k kx x x k x x kx ⎧-+>⎪+=⎨⎪=+⎩,得则直线(21:4MQ x l y k x x '-=-()2122011214442x k k x x x k x ----=-整理得()(221284k x x k ---则2211112842D kx k x kx x x k x -+-=-则2101284142D kx k kx y k x ⎛-+-= -⎝【点睛】方法点睛:对于直线和圆锥曲线相交的问题,我们一般联立方程,然后用韦达定理来解决问题,特别是当一个交点知道的情况下,3.(23-24高三下·重庆·阶段练习)已知()()122,0,2,0C C -,动点P 满足1PC 与2PC 的斜率之积为定值14.(1)求动点P 的轨迹Γ的方程;(2)过点()4,0M 的直线l 与曲线Γ交于,A B 两点,且,A B 均在y 轴右侧,过点A 作直线:1l x '=的垂线,垂足为D .(i )求证:直线BD 过定点;(ii )求MBD 面积的最小值.【答案】(1)(22104x y y -=≠(2)(i )证明见解析;(ii )3【分析】(1)设动点P 的坐标,由题意列式并化简,即可得答案;(2)(i )设直线方程:l x my =结合题意有(2212212240Δ644884124m m m m y y m y y m ⎧-≠⎪=-⎪⎪-⎨+=⎪-⎪⎪⋅=<-⎩解得22m -<<,且122my y =又直线BD 的方程为1y y -=令0y =,则()122111y x x y y -=--()(122121235422=y y y y y y y y ++-=-4.(23-24高三上·重庆·阶段练习)已知点00(,)P x y 是椭圆E :221(0)a b a b +=>>上的动点,离心率2e =设椭圆左、右焦点分别为12,F F ,且12|||4|PF PF +=(1)求椭圆E 的标准方程;(2)若直线12,PF PF 与椭圆C 的另一个交点分别为A ,B ,问PAB 面积是否存在最大值,若存在,求出最大值;若不存在,请说明理由.【点睛】方法点睛:圆锥曲线中最值或范围问题的常见解法:(1)几何法,若题目的条件和结论能明显体现几何特征和意义,(2)代数法,若题目的条件和结论能体现某种明确的函数关系,则可首先建立目标函数,再求这个函数的最值或范围.5.(23-24高三上·重庆·期中)已知椭圆C :()2210a b a b+=>>的左、右焦点分别为()()121,01,0F F -,,椭圆C 上一动点A 在第二象限内,点A 关于x 轴的对称点为点B ,当AB 过焦点1F 时,直线2AF 过点30,4⎛⎫⎪⎝⎭.(1)求椭圆C 的方程;(2)点B 与焦点2F 所在直线交椭圆C 于另一点P ,直线AP 交x 轴于点T ,求TAB △面积最大时,点A 横坐标的值.【答案】(1)22143x y +=(2)13-设直线PB 的方程为1x my =+,联立得()2234690m y my ++-=,由于直线则12122269,343m y y y y m m -+=-=++直线PA 的方程为(21121y y y y x x ++=-令0y =,得(1121212y my y x y x x y y ==++即(4,0)T ;()()1114||432TABS x AB x =-⋅=-6.(23-24高三上·重庆渝中·阶段练习)已知椭圆C :()2210a b a b +=>>的上、下顶点分别为A ,B ,左顶点为D ,ABD △(1)求椭圆C 的方程;(2)过椭圆外一点(),0M m 的直线交椭圆于P ,Q 两点,已知点P 与点P '关于x 轴对称,直线P Q '与x 轴交于点K ;若AKB ∠是钝角,求m 的取值范围.【点睛】方法点睛:求解椭圆的方程,关键是求得所以需要两个条件,如本题中,等边三角形以及等边三角形的面积,一共两个条件,用这两个条件列方程组,即可求得,a 7.(23-24高三上·重庆渝中·阶段练习)如图3所示,点1F ,A 分别为椭圆2222:1(0)x y E a b a b+=>>的左焦点和右顶点,点F 为抛物线2:16C y x =的焦点,且124OF OA OF ==(O 为坐标原点).(1)求椭圆E 的方程;(2)过点1F 作直线l 交椭圆E 于B ,D 两点,连接AB ,AD 并延长交抛物线的准线于点M ,N ,求证:1MF N ∠为定值.8.(23-24高三上·重庆渝中·阶段练习)已知椭圆()22:10x y C a b a b +=>>的离心率为e =,且经过点()1,e .(1)求椭圆C 的方程;(2)若A ,F 分别为椭圆C 的上顶点和右焦点,直线()3:0l y kx k =->与椭圆C 交于点B ,D ,F 到直线AB ,AD 的距离分别为1d 和2d ,求证:12d d =.。

圆锥曲线(轨迹)方程的求法

圆锥曲线(轨迹)方程的求法

圆锥曲线(轨迹)方程的求法作者:刘坚吴自强来源:《高中生学习·高二版》2017年第02期直接法例1 已知三点[O(0,0),A(-2,1),B(2,1),]曲线[C]上任意一点[M(x,y)]满足[|MA+MB|=OM∙(OA+OB)+2]. 求曲线[C]的方程.解析由题意得,[MA=(-2-x,1-y),][MB=(2-x,1-y)].所以[|MA+MB|=(-2x)2+(2-2y)2,][OM∙(OA+OB)=(x,y)∙(0,2)=2y].由题意得,[(-2x)2+(2-2y)2=2y+2].化简得,曲线[C]的方程为[x2=4y].解读本题以平面向量为载体,通过向量的代数运算,求出动点所满足的方程(或等式),化简之后即可得到轨迹方程,此法称为直接法. 注意:化简时,一定要具有等价性.定义法例2 已知圆[M]:[(x+1)2+y2=1],圆[N]:[(x-1)2+y2=9],动圆[P]与[M]外切并且与圆[N]内切,圆心[P]的轨迹为曲线[C]. 求曲线[C]的方程.解析由题意得,圆[M]的圆心为[M](-1,0),半径[r1=1];圆[N]的圆心为[N](1,0),半径[r2]=3. 设动圆[P]的圆心为[P(x,y)],半径为[R].∵圆[P]与圆[M]外切,且与圆[N]内切,∴[PM+PN=(R+r1)+(r2-R)=r1+r2=4].由椭圆的定义可知,曲线[C]是以[M,N]为左右焦点,实半轴长为2,短半轴长为[3]的椭圆(左顶点除外),其方程为[x24+y23=1(x≠-2)].解读通过图形的几何性质判断动点的轨迹是何种图形,再求其轨迹方程,这种方法叫作定义法. 运用定义法,求其轨迹,做到以下两点:一要熟练掌握常用轨迹的定义,如线段的垂直平分线、圆、椭圆、双曲线、抛物线等;二要熟练掌握平面几何中的一些性质定理. 此种方法在高考中经常出现,如2016年全国卷I的第20题,就是这种类型.相关点法例 3 设点[A]是单位圆:[x2+y2=1]上的任意一点,[l]是过点[A]与[x]轴垂直的直线,点[D]是直线[l]与[x]轴的交点,点[M]在直线[l]上,且满足[DM=mDA][(m>0,][且m≠1).] 当点[A]在圆上运动时,记点[M]的轨迹为曲线[C].求曲线[C]的方程,判断曲线[C]为何种圆锥曲线,并求其焦点坐标.解析如图,设[M(x,y)],[A(x0,y0)],由[DM=mDA(m>0,且m≠1)]得,[x=x0,y=my0].所以[x=x0,y0=1my].①因為点[A]在单位圆上运动,所以[x02+y02=1].②将①式代入②式得,所求曲线[C]的方程为[x2+y2m2=1(m>0,且m≠1).]因为[m∈(0,1)⋃(1,+∞)],所以当[01]时,曲线[C]是焦点在[y]轴上的椭圆,两焦点坐标分别为[(0,-m2-1),(0,m2-1).]解读用相关点法求曲线方程时一般有两个动点,一个是主动点,另一个是被动点. 例如本题中的点[A]是主动点,点[M]是被动点. 当题目中的条件同时具有以下特征时,一般可用相关点法求其轨迹方程:(1)某个动点[A]在已知方程的曲线上移动;(2)另一个动点[M]随点[A]的变化而变化;(3)在变化过程中点[A]和点[M]满足一定的规律.参数法例4 过抛物线[y2=2px(p>0)]的顶点[O]作两条互相垂直的弦[OA],[OB],再以[OA],[OB]为邻边作矩形[AOBM],如图,求点[M]的轨迹方程.解析设[M(x,y),A(x1,y1),B(x2,y2)],[OA]的斜率为[k](显然[k≠0]),则[OB]的斜率为[-1k].[OA]所在直线方程为[y=kx].代入[y2=2px]得,[x1=2pk2,y1=2pk],即[A(2pk2,2pk)].[OB]所在直线方程为[y=-1kx],代入[y2=2px]得,[x2=2pk2,y2=-2pk,]即[B(2pk2,-2pk)].[∴OB=(2pk2,-2pk),OA=(2pk2,2pk)].[OM=OA+OB=(2pk2+2pk2,2pk-2pk)].所以[x=2p(1k-k)2+4p,y=2p(1k-k).]消去[(1k-k)]得,[y2=2p(x-4p)(p>0),]即为点[M]的轨迹方程.解读在利用参数法求解时,要选择合适的参数,并注意参数的取值范围. 同时,求轨迹方程的关键是消参.例5 如图,椭圆方程为[x2a2+y2b2=1(a>b>0)],[O]为坐标原点,[A],[B]两点均在椭圆上,且[OA⊥OB,OH⊥AB]于点[H],求点[H]的轨迹方程.解析设[OA=r1,OB=r2],[∠AOx=θ,]设[H(x,y),][则A(r1cosθ,r1sinθ),][B(r2cos(π2+θ),r2sin(π2+θ))].[∵A,B]均在椭圆上,[∴r21cos2θa2+r21sin2θb2=1,r22sin2θa2+r22cos2θb2=1.][∴1r21=cos2θa2+sin2θb2,1r22=sin2θa2+cos2θb2.]相加得,[1r21+1r22=1a2+1b2.]又在[Rt△AOB]中,利用面积相等得,[12r1r2=12OH⋅AB].[∴OH2=r21r22r21+r22=a2b2a2+b2].[∴][x2+y2=a2b2a2+b2].[∴]点[H]的轨迹方程为[x2+y2=a2b2a2+b2].解讀此题利用三角函数的定义,巧妙设置参数,大大简化了运算量,这种技巧要多积累.交轨法例6 如图,椭圆[C0:x2a2+y2b2=1(a>b>0)],[a,b]为常数,动圆[C1:x2+y2=t12],[b解析设[A(x1,y1),]由对称性可知,[B(x1,-y1).]又[A1(-a,0),A2(a,0),]则直线[A1A]的方程为[y=y1x1+a(x+a)],①直线[A2B]的方程为[y=-y1x1-a(x-a)].②由①②得,[y2=-y21x21-a2(x2-a2)].③又点[A(x1,y1)]在椭圆[C0]上,故[x21a2+y21b2=1].从而[y21=b2a2(a2-x12)].代入③得,[x2a2-y2b2=1][(x解读交轨法求轨迹方程,一般用于求两动曲线交点的轨迹方程,其过程是选出一个适当的参数,求出两动曲线的方程或动点坐标适合的含参数的等式,再消去参数,即得所求动点轨迹的方程.待定系数法例7 设椭圆[E]的方程为[x2a2+y2b2=1(a>b>0)],点[O]为坐标原点,点[A]的坐标为[(a,0)],点[B]的坐标为[(0,b)],点[M]在线段[AB]上,满足[BM=2MA],直线[OM]的斜率为[510].(1)求椭圆[E]的离心率[e];(2)设点[C]的坐标为[(0,-b)],点[N]为线段[AC]的中点,点[N]关于直线[AB]的对称点的纵坐标为[72],求椭圆[E]的方程.解析本题主要考查椭圆、平面几何的性质,第(1)小题用待定系数法求椭圆的方程,第(2)小题可将已知条件转化为方程组求解.(1)如图,由题意得,点[M]的坐标为[(2a3,b3)],又[kOM=510],即[b2a=510],即[a=5b],所以[c=a2-b2=2b],故[e=ca=255.](2)由题意和(1)的计算结果可得,直线[AB]的方程为[x5b+yb=1],点[N]的坐标为[(52b,-b2)].设点[N]关于直线[AB]的对称点[S]的坐标为[(x1,72)],则线段[NS]的中点[T]的坐标为[(54b+x12,-b4+74)].又点[T]在直线[AB]上,且[kNS∙kAB=-1],从而有[54b+x125b+-b4+74b=1,72+b2x1-5b2=5.]解得,[b=3],所以[a=35].故椭圆[E]的方程为[x245+y29=1].解读本题以椭圆的性质和平面几何的知识为依托,将方程中的系数与直线的斜率和对称问题联系在一起,充分考查了平面几何的知识和数形转化的思想.。

圆锥曲线经典好题目(带答案)

圆锥曲线经典好题目(带答案)

圆锥曲线练习题一、填空题1. 一个动点到两个定点A ,B 的距离的差为定值(小于两个定点A ,B 的距离),则动点的轨迹为________.2. (2011·海安中学模拟)若椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,线段F 1F 2被抛物线y 2=2bx 的焦点F 分成5∶3的两段,则此椭圆的离心率为________.3. 已知动圆过定点(0,-1),且与定直线y =1相切,则动圆圆心的轨迹方程为________.4. (2010·天津)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线方程是y =3x ,它的一个焦点与抛物线y 2=16x 的焦点相同,则双曲线的方程为________.5. 已知P 为抛物线y 2=4x 的焦点,过P 的直线l 与抛物线交于A ,B 两点,若Q 在直线l 上,且满足|AP →|·|QB →|=|AQ →|·|PB →|,则点Q 总在定直线x =-1上.试猜测:如果P 为椭圆x 225+y 29=1的左焦点,过P 的直线l 与椭圆交于A ,B 两点,若Q 在直线l 上,且满足|AP →|·|QB →|=|AQ →|·|PB →|,则点Q 总在定直线________上.6. 过抛物线y 2=2px (p >0)的焦点F 作倾斜角为45°的直线交抛物线于A 、B 两点,若线段AB 的长为8,则p =________.7. (2010·重庆)已知以F 为焦点的抛物线y 2=4x 上的两点A 、B 满足AF →=3FB →,则弦AB 的中点到准线的距离为________.8. 已知过椭圆的左焦点F 1且倾斜角为60°的直线交椭圆于A 、B 两点,若F 1A =2F 1B ,则椭圆的离心率为________.二、解答题9. 抛物线的顶点在原点,它的准线过双曲线x 2a 2-y 2b2=1的一个焦点,且与双曲线实轴垂直,已知抛物线与双曲线的交点为⎝⎛⎭⎫32,6.求抛物线与双曲线的方程.10. 如图,已知过抛物线y 2=2px (p >0)的焦点的直线x -my +m =0与抛物线交于A 、B 两点,且△OAB (O 为坐标原点)的面积为22,求m 6+m 4的值.O lxyA B F ·M第17题 11. 如图,已知抛物线:C 22(0)y px p =>的准线为l ,焦点为F .⊙M 的圆心在x 轴的正半轴上,且与y 轴相切.过原点O 作倾斜角为3π的直线n ,交l 于点A , 交⊙M 于另一点B ,且2AO OB ==.(Ⅰ)求⊙M 和抛物线C 的方程;(Ⅱ)若P 为抛物线C 上的动点,求PM PF ⋅的最小值; (Ⅲ)过l 上的动点Q 向⊙M 作切线,切点为,S T ,求证:直线ST 恒过一个定点,并求该定点的坐标.12. 如图,已知椭圆x 2a 2+y 2b2=1(a >b >0)的长轴为AB ,过点B 的直线l 与x 轴垂直.直线(2-k )x -(1+2k )y +(1+2k )=0(k ∈R )所经过的定点恰好是椭圆的一个顶点,且椭圆的离心率e=32. (1)求椭圆的标准方程;(2)设P 是椭圆上异于A 、B 的任意一点,PH ⊥x 轴,H 为垂足,延长HP 到点Q 使得HP=PQ ,连结AQ 延长交直线l 于点M ,N 为MB 的中点.试求OQ →·NQ →的值,并由此判断直线QN 与以AB 为直径的圆O 的位置关系.参考答案1. 双曲线的一支 解析:由双曲线的定义可知是双曲线的一支,故填双曲线的一支.2. 255 解析:由题意可知FF 2=38F 1F 2,即c -b 2=38⨯2c ,化简得c =2b ,所以c 2=4(a 2-c 2),此椭圆的离心率e =c a =255.3. x 2=-4y 解析:圆心到定点(0,-1)的距离与到定直线y =1的距离相等,都等于圆的半径,由抛物线的定义可知,动圆圆心的轨迹是以定点为焦点,定直线为准线的抛物线,其方程为x 2=-4y .4. x 24-y 212=1 解析:由渐近线方程可知ba =3,① 因为抛物线的焦点为(4,0),所以c =4,② 又c 2=a 2+b 2,③联立①②③,解得a 2=4,b 2=12,所以双曲线的方程为x 24-y 212=1.5. x =-254解析:x =-1是抛物线的准线,应用类比推理可知点Q 所在的定直线为椭圆的左准线,其方程为x =-254.6. 2 解析:由题意可知过焦点的直线方程为y =x -p 2,联立有⎩⎪⎨⎪⎧y 2=2px ,y =x -p 2⇒x 2-3px +p 24=0, 由AB =x 1+x 2+p =8,得4p =8⇒p =2. 7. 83解析:如图,过点A 、B 作准线的垂线交准线于A 1B 1,过B 作BC ⊥AA 1于C ,设BF =m ,由抛物线的定义知AA 1=3m ,BB 1=m ,∴△ABC 中,AC =2m ,AB =4m ,k AB =3,直线AB 方程为y =3(x -1),与抛物线方程联立消y 得3x 2-10x +3=0,所以AB 中点到准线距离为x 1+x 22+1=53+1=83.8. 23解析:如图,过B 作AC 的垂线,垂足为E ,由题意和椭圆第二定义可知E 为AC 的中点,cos 60︒=AE AB =DB 3BF 1=13e ,故e =23.9. 由题意知,抛物线焦点在x 轴上,开口方向向右,可设抛物线方程为y 2=2px (p >0),将交点⎝⎛⎭⎫32,6代入得p =2,故抛物线方程为y 2=4x ,焦点坐标为(1,0),这也是双曲线的一个焦点,则c =1.又点⎝⎛⎭⎫32,6也在双曲线上,因此有94a 2-6b2=1.又a 2+b 2=1,解得a 2=14,b 2=34,因此,双曲线的方程为4x 2-4y 23=1.10. 设A (x 1,y 1),B (x 2,y 2),由题意可知,p2=-m ,将x =my -m 代入抛物线方程整理得y 2-2pmy +2pm =0,由韦达定理得y 1+y 2=2pm ,y 1y 2=2pm ,∴(y 1-y 2)2=(y 1+y 2)2-4y 1y 2=(2pm )2-8pm =16m 4+16m 2,又△OAB 的面积 S =12⨯p 2|y 1-y 2|=12⨯(-m )⨯4m 4+m 2=22,两边平方即可得m 6+m 4=2. 11.解:(Ⅰ)因为1cos602122p OA =⋅=⨯=,即2p =,所以抛物线C 的方程为24y x = 设⊙M 的半径为r ,则122cos 60OB r =⋅=, 所以M 的方程为22(2)4x y -+=(Ⅱ)设(,)(0)P x y x ≥,则(2,)(1,)PM PF x y x y ⋅=----=222322x x y x x -++=++ 所以当0x =时, PM PF ⋅有最小值为2(Ⅲ)以点Q 为圆心,QS 为半径作⊙Q,则线段ST 即为⊙Q 与⊙M 的公共弦设点(1,)Q t -,则22245QS QM t =-=+,所以⊙Q 的方程为222(1)()5x y t t ++-=+ 从而直线TS 的方程为320x ty --=(*)因为230x y ⎧=⎪⎨⎪=⎩一定是方程(*)的解,所以直线TS 恒过一个定点,且该定点坐标为2(,0)312. (1)将(2-k )x -(1+2k )y +(1+2k )=0整理得 (-x -2y +2)k +2x -y +1=0.解方程组⎩⎪⎨⎪⎧-x -2y +2=0,2x -y +1=0,得直线所经过的定点(0,1),所以b =1.由离心率e =32得a =2,所以椭圆的标准方程为x 24+y 2=1.。

(完整版)圆锥曲线知识点+例题+练习含答案(整理).docx

(完整版)圆锥曲线知识点+例题+练习含答案(整理).docx

(完整版)圆锥曲线知识点+例题+练习含答案(整理).docx圆锥曲线⼀、椭圆:( 1)椭圆的定义:平⾯内与两个定点F1 , F2的距离的和等于常数(⼤于| F1 F2 |)的点的轨迹。

其中:两个定点叫做椭圆的焦点,焦点间的距离叫做焦距。

注意: 2a | F1F2 | 表⽰椭圆;2a | F1F2|表⽰线段F1F2; 2a| F1F 2 |没有轨迹;(2)椭圆的标准⽅程、图象及⼏何性质:中⼼在原点,焦点在x 轴上中⼼在原点,焦点在y 轴上标准⽅程图形x2y2y2x2a2b 21( a b 0)a 2b21(ab 0)yB 2yB 2P F2 PA 1 A 2x A 1xA 2OF1O F21B 1FB 1顶点对称轴焦点焦距离⼼率通径2b2aA1 (a,0), A2 (a,0)A1( b,0), A2 (b,0)B1 (0, b), B2(0, b)B1( 0,a), B2 (0, a) x 轴,y轴;短轴为2b,长轴为2aF1 (c,0), F2(c,0)F1 ( 0,c), F2 (0,c)| F1 F2 | 2c(c 0)c2 a 2 b 2(0 e 1) (离⼼率越⼤,椭圆越扁)a(过焦点且垂直于对称轴的直线夹在椭圆内的线段)3.常⽤结论:(1)椭圆x2y21(a b 0) 的两个焦点为F1, F2,过F1的直线交椭圆于A, B两a2 b 2点,则ABF 2的周长=(2)设椭圆x2y2221( a b 0)左、右两个焦点为 F1, F2,过 F1且垂直于对称轴的直线a b交椭圆于 P, Q 两点,则 P, Q 的坐标分别是| PQ |⼆、双曲线:( 1)双曲线的定义:平⾯内与两个定点F1 , F2的距离的差的绝对值等于常数(⼩于| F1F2 | )的点的轨迹。

其中:两个定点叫做双曲线的焦点,焦点间的距离叫做焦距。

注意: | PF1 || PF2 | 2a 与 | PF2 | | PF1 |2a ( 2a| F1F2 | )表⽰双曲线的⼀⽀。

高三数学圆锥曲线试题答案及解析

高三数学圆锥曲线试题答案及解析

高三数学圆锥曲线试题答案及解析1.设、是定点,且均不在平面上,动点在平面上,且,则点的轨迹为()A.圆或椭圆B.抛物线或双曲线C.椭圆或双曲线D.以上均有可能【答案】D【解析】以为高线,为顶点作顶角为的圆锥面,则点就在这个圆锥面上,用平面截这个圆锥面所得截线就是点的轨迹,它可能是圆、椭圆、抛物线、双曲线,因此选D.【考点】圆锥曲线的性质.2.已知点是双曲线右支上一点,是双曲线的左焦点,且双曲线的一条渐近线恰是线段的中垂线,则该双曲线的离心率是( )A.B.C.D.【答案】D【解析】设直线:求直线与渐近线的交点,解得:是的中点,利用中点坐标公式,得,在双曲线上,所以代入双曲线方程得:,整理得,解得.故选D.【考点】1.双曲线的几何性质;2.双曲线的方程.3.已知椭圆的焦点重合,则该椭圆的离心率是.【答案】【解析】抛物线的焦点为,椭圆的方程为:,所以离心率.【考点】1、椭圆与抛物线的焦点;2、圆的离心率.4.已知双曲线的左、右焦点分别为,以为直径的圆与双曲线渐近线的一个交点为,则此双曲线的方程为()A.B.C.D.【答案】C【解析】由条件得:,即,而,渐近线为,在上,所以,得,所以双曲线方程为.【考点】1.双曲线方程的求法;2.双曲线的渐近线.5.已知动点到定点和的距离之和为.(Ⅰ)求动点轨迹的方程;(Ⅱ)设,过点作直线,交椭圆异于的两点,直线的斜率分别为,证明:为定值.【答案】(Ⅰ);(Ⅱ)证明过程详见解析.【解析】本题考查椭圆的基本量间的关系及韦达定理的应用.第一问是考查椭圆的基本量间的关系,比较简单;第二问是直线与椭圆相交于两点,先设出两点坐标,本题的突破口是在消参后的方程中找出两根之和、两根之积,整理斜率的表达式,但是在本问中需考虑直线的斜率是否存在,此题中蕴含了分类讨论的思想的应用.试题解析:(Ⅰ)由椭圆定义,可知点的轨迹是以为焦点,以为长轴长的椭圆.由,得.故曲线的方程为. 5分(Ⅱ)当直线的斜率存在时,设其方程为,由,得. 7分设,,,.从而.11分当直线的斜率不存在时,得,得.综上,恒有. 12分【考点】1.三角形面积公式;2.余弦定理;3.韦达定理;4.椭圆的定义.6.已知双曲线的左、右焦点分别为,以为直径的圆与双曲线渐近线的一个交点为,则此双曲线的方程为()A.B.C.D.【答案】C【解析】由条件得:,即,而,渐近线为,在上,所以,得,所以双曲线方程为.【考点】1.双曲线方程的求法;2.双曲线的渐近线.7.已知椭圆的中心在坐标原点,右准线为,离心率为.若直线与椭圆交于不同的两点、,以线段为直径作圆.(1)求椭圆的标准方程;(2)若圆与轴相切,求圆被直线截得的线段长.【答案】(1);(2).【解析】(1)先根据题中的条件确定、的值,然后利用求出的值,从而确定椭圆的方程;(2)先确定点的坐标,求出圆的方程,然后利用点(圆心)到直线的距离求出弦心距,最后利用勾股定理求出直线截圆所得的弦长.试题解析:(1)设椭圆的方程为,由题意知,,解得,则,,故椭圆的标准方程为 5分(2)由题意可知,点为线段的中点,且位于轴正半轴,又圆与轴相切,故点的坐标为,不妨设点位于第一象限,因为,所以, 7分代入椭圆的方程,可得,因为,解得, 10分所以圆的圆心为,半径为,其方程为 12分因为圆心到直线的距离 14分故圆被直线截得的线段长为 16分【考点】椭圆的方程、点到直线的距离、勾股定理8.已知为抛物线的焦点,抛物线上点满足(Ⅰ)求抛物线的方程;(Ⅱ)点的坐标为(,),过点F作斜率为的直线与抛物线交于、两点,、两点的横坐标均不为,连结、并延长交抛物线于、两点,设直线的斜率为,问是否为定值,若是求出该定值,若不是说明理由.【答案】(Ⅰ),(Ⅱ).【解析】(Ⅰ)利用抛物线的定义得到,再得到方程;(Ⅱ)利用点的坐标表示直线的斜率,设直线的方程,通过联立方程,利用韦达定理计算的值.试题解析:(Ⅰ)由题根据抛物线定义,所以,所以为所求. 2分(Ⅱ)设则,同理 4分设AC所在直线方程为,联立得所以, 6分同理 (8分)所以 9分设AB所在直线方程为联立得, 10分所以所以 12分【考点】抛物线标准方程,直线与抛物线位置关系的应用.9.极坐标系中椭圆C的方程为以极点为原点,极轴为轴非负半轴,建立平面直角坐标系,且两坐标系取相同的单位长度. (Ⅰ)求该椭圆的直角标方程;若椭圆上任一点坐标为,求的取值范围;(Ⅱ)若椭圆的两条弦交于点,且直线与的倾斜角互补,求证:.【答案】(Ⅰ)(Ⅱ)详见解析【解析】将椭圆的极坐标方程转化为一般标准方程,再利用换元法求范围,利用参数方程代入,计算得到结果.试题解析:(Ⅰ)该椭圆的直角标方程为, 2分设,所以的取值范围是 4分(Ⅱ)设直线的倾斜角为,直线的倾斜角为,则直线的参数方程为(为参数),(5分)代入得:即 7分同理 9分所以(10分)【考点】极坐标、参数方程,换元法应用.10.已知直线,,过的直线与分别交于,若是线段的中点,则等于()A.12B.C.D.【答案】B【解析】设、,所以、.所以.故选B.【考点】两点之间的距离点评:主要是考查了两点之间的距离的运用,属于基础题。

高考数学解答题(新高考)圆锥曲线中的轨迹方程问题 (典型例题+题型归类练)(解析版)

高考数学解答题(新高考)圆锥曲线中的轨迹方程问题 (典型例题+题型归类练)(解析版)

专题01 圆锥曲线中的轨迹方程问题(典型例题+题型归类练)目录类型一:定义法求轨迹方程类型二:直接法类型三:代入法(相关点法)类型四:点差法一、必备秘籍1、曲线方程的定义一般地,如果曲线C 与方程(,)0F x y =之间有以下两个关系: ①曲线C 上的点的坐标都是方程(,)0F x y =的解; ②以方程(,)0F x y =的解为坐标的点都是曲线C 上的点.此时,把方程(,)0F x y =叫做曲线C 的方程,曲线C 叫做方程(,)0F x y =的曲线. 2、求曲线方程的一般步骤:(1)建立适当的直角坐标系(如果已给出,本步骤省略); (2)设曲线上任意一点的坐标为),(y x ; (3)根据曲线上点所适合的条件写出等式; (4)用坐标表示这个等式,并化简; (5)确定化简后的式子中点的范围.上述五个步骤可简记为:求轨迹方程的步骤:建系、设点、列式、化简、确定点的范围. 3、求轨迹方程的方法: 3.1定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。

3.2直接法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(,)x y 表示该等量关系式,即可得到轨迹方程。

3.3代入法(相关点法):如果动点P 的运动是由另外某一点P '的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线y x 、例题5.(2022·湖北武汉·模拟预测)已知P 是平面上的动点,且点P 与(2,0),(2,0)F F -的距离之差的的直线分别与x 轴的正半轴和y 为坐标原点.若2BP PA =,且1OQ AB ⋅=,则点,则0,0a b >>,(,BP x y ∴=,(PA a =-2BP PA =,a ∴又(),AB a b =-=,(,OQ x =-,1OQ AB ⋅=,()332x x ⎛⎫∴-⋅-+ ⎪⎝⎭)2230,0x y y +=>.故答案为:)2302x y +>.例题2.(2022·全国·高二课时练习)已知定点()0,4A ,满足12NR NM =,又12NR NM =,可得例题5.(2022·全国·高二课时练习)已知两个定点AP OB PB ⋅=(O 为坐标原点).(1)求动点P 的轨迹【答案】(1)24y x =设(),P x y ,()AP x =+,()1,0OB =,(1PB =-,(AP OB x ⋅=+()221x B y P =-+,因为AP OB PB ⋅=,则)221x x y +=-+,所以222121x x x x ++=-+,即24y x =.例题6.(2022·四川·富顺第二中学校高二阶段练习(文))已知直线线l 垂直于轴,动点在直线l 上,且OP OQ ⊥,记点的轨迹为C ,设点P 的坐标为(),x y ,则(Q x OP OQ ⊥,∴0OP OQ ⋅= 220x y -=,0x =时,P 、O 、Q 三点共线,不符合题意,故曲线C 的方程为(22x y x =≠ 412NR NM =;AP OB PB ⋅=;OP OQ ⊥等,根据这些已知条件直接转化为代数式求解.类型三:代入法(相关点法)21y =上运动时,连接A 与定点故答案为:()()22211x y -+-=,)()0,+∞.()22,x y ,(1221y y k-=)221212y y +=圆a=,24∴动圆圆心6.(2022·和2,动圆【答案】动圆O O=,大圆O的半径为5.过动点P分别作7.(2022·全国·高二课时练习)如图,圆O与圆O内切,且4【答案】圆心为(6,0),半径为3的圆.【详解】如图,以O O所在直线为x轴,以O O的中点为原点,设动点(,)P x y ,(,0)Q t (01)t ≤≤, 高二专题练习)在ABC 中,2BC y x =⨯+足,且33QM QP =. 求动点M 的轨迹Γ的方程;【答案】(1)221x y +=;0,),(,)y M x y ,则Q ,所以0(,0),(,QP x QM x y ==,由33QM QP =得x y ⎧=⎪⎨⎪⎩,即()22313x y +=,故动点的轨迹Γ的方程为x【答案】点M的轨迹方程为:x2+y2=a2(a>0).表示圆心在原点半径为a的圆.M x y,若A、B不与原点重合时,则AOB是直角三角形,且∠O为直角,设线段AB的中点(,)为半径的圆,。

圆锥曲线题型归纳(经典含答案)

圆锥曲线题型归纳(经典含答案)
(2)S△ABF1=|OF1|·|x1-x2|=4·,∴当k=0时,(S△ABF1)Max=12。▋
9.设椭圆中心在坐标原点, 是它的两个顶点,直线 与AB相交于点 ,与椭圆相交于 、 两点.
(1)若 ,求 的值;(2)求四边形 面积的最大值.
(1)解:依题设得椭圆的方程为 ,
直线 的方程分别为 , .如图,设 ,其中 ,且 满足方程 ,故 .①
所以 , ,由 ,得 .
将②、③代入上式,整理得 ,………………………10分
所以 ,即 或 .经检验,都符合条件①.
当 时,直线 的方程为 .
显然,此时直线 经过定点 点.即直线 经过点 ,与题意不符.
当 时,直线 的方程为 .显然,此时直线 经过定点 点,且不过点 .
综上, 与 的关系是: ,且直线 经过定点 点.…………13分
6. 在椭圆 求一点P,是它到直线l:x+2y+10=0的距离最小,并求最大最小值。
目标:复习研究圆锥曲线上的点与直线的距离问题的一般处理方法。
提示:(1)可等价转化为与直线l平行的椭圆的切线与直线l之间的距离;(1)也可以用椭圆的参数方程。
解法一:设直线m:x+2y+m=0与椭圆 相切,则 ,消去x,得8y2+4my+m2-4=0,
(2)-(1)得
即 ,又直线AB过点(1,1)
所以直线AB的方程为:
2.直线l经过点A(1,2),交椭圆 于两点P1、P2,
(1)若A是线段P1P2的中点,求l的方程;(2)求P1P2的中点的轨迹.
解:(1)设P1(x1,y1)、P2(x2,y2),

…………*
∵A(1,2)是线段P1P2的中点,∴x1+x2=2,y1+y2=4,

圆锥曲线(求轨迹方程)

圆锥曲线(求轨迹方程)

专题 圆锥曲线(求轨迹方程)求轨迹方程的常用方法(1)直接法:直接利用条件建立x ,y 之间的关系或F (x ,y )=0;(2)定义法:先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程;(3)代入转移法(相关点法):动点P (x ,y )依赖于另一动点Q (x 0,y 0)的变化而变化,并且Q (x 0,y 0)又在某已知曲线上,则可先用x ,y 的代数式表示x 0,y 0,再将x 0,y 0代入已知曲线得要求的轨迹方程.1.一个区别——“轨迹方程”与“轨迹”“求动点的轨迹方程”和“求动点的轨迹”是不同的.前者只须求出轨迹的方程,标出变量x ,y 的范围;后者除求出方程外,还应指出方程的曲线的图形,并说明图形的形状、位置、大小等有关的数据.2.双向检验——求轨迹方程的注意点求轨迹方程,要注意曲线上的点与方程的解是一一对应关系,检验应从两个方面进行:一是方程的化简是否是同解变形;二是是否符合实际意义,注意轨迹上特殊点对轨迹的“完备性与纯粹性”的影响.考向一 直接法求轨迹方程【例1】 已知动点P (x ,y )与两定点M (-1,0),N (1,0)连线的斜率之积等于常数λ(λ≠0).(1)求动点P 的轨迹C 的方程;(2)试根据λ的取值情况讨论轨迹C 的形状.【解】 (1)由题意可知,直线PM 与PN 的斜率均存在且均不为零,所以k PM ·k PN =y x +1·y x -1=λ,整理得x 2-y 2λ=1(λ≠0,x ≠±1).即动点P 的轨迹C 的方程为x 2-y 2λ=1(λ≠0,x ≠±1).(2)①当λ>0时,轨迹C 为中心在原点,焦点在x 轴上的双曲线(除去顶点);②当-1<λ<0时,轨迹C 为中心在原点,焦点在x 轴上的椭圆(除去长轴的两个端点); ③当λ=-1时,轨迹C 为以原点为圆心,1为半径的圆除去点(-1,0),(1,0).④当λ<-1时,轨迹C 为中心在原点,焦点在y 轴上的椭圆(除去短轴的两个端点).【对点练习1】已知A ,B 为平面内两定点,过该平面内动点M 作直线AB 的垂线,垂足为N .若MN →2=λAN →·NB →,其中λ为常数,则动点M 的轨迹不可能是( )A .圆B .椭圆C .抛物线D .双曲线【解析】以AB 所在直线为x 轴,AB 的中垂线为y 轴,建立坐标系,设M (x ,y ),A (-a,0),B (a,0),则N (x,0).因为MN →2=λAN →·NB →,所以y 2=λ(x +a )(a -x ),即λx 2+y 2=λa 2,当λ=1时,是圆的轨迹方程;当λ>0且λ≠1时,是椭圆的轨迹方程;当λ<0时,是双曲线的轨迹方程;当λ=0时,是直线的轨迹方程.综上,方程不表示抛物线的方程.【答案】 C图8-8- 2 图8-8- 1考向二 定义法求轨迹方程【例2】已知两个定圆O 1和O 2,它们的半径分别是1和2,且|O 1O 2|=4.动圆M 与圆O 1内切,又与圆O 2外切,建立适当的坐标系,求动圆圆心M 的轨迹方程,并说明轨迹是何种曲线.【解】 如图所示,以O 1O 2的中点O 为原点,O 1O 2所在直线为x 轴建立平面直角坐标系.由|O 1O 2|=4,得O 1(-2,0),O 2(2,0).设动圆M 的半径为r ,则由动圆M 与圆O 1内切,有|MO 1|=r -1;由动圆M 与圆O 2外切,有|MO 2|=r +2.∴|MO 2|-|MO 1|=3.∴点M 的轨迹是以O 1,O 2为焦点,实轴长为3的双曲线的左支.∴a =32,c =2,∴b 2=c 2-a 2=74.∴点M 的轨迹方程为4x 29-4y 27=1⎝ ⎛⎭⎪⎫x ≤-32.【对点练习2】如图8-8-1所示,已知圆A :(x +2)2+y 2=1与点B (2,0),分别求出满足下列条件的动点P 的轨迹方程.(1)△P AB 的周长为10;(2)圆P 与圆A 外切,且过B 点(P 为动圆圆心);(3)圆P 与圆A 外切,且与直线x =1相切(P 为动圆圆心).【解】(1)根据题意,知|P A |+|PB |+|AB |=10,即|P A |+|PB |=6>4=|AB |,故P 点轨迹是椭圆,且2a =6,2c =4,即a =3,c =2,b = 5.因此其轨迹方程为x 29+y 25=1(y ≠0).(2)设圆P 的半径为r ,则|P A |=r +1,|PB |=r ,因此|P A |-|PB |=1.由双曲线的定义知,P 点的轨迹为双曲线的右支,且2a =1,2c =4,即a =12,c =2,b =152,因此其轨迹方程为4x 2-415y 2=1⎝ ⎛⎭⎪⎫x ≥12. (3)依题意,知动点P 到定点A 的距离等于到定直线x =2的距离,故其轨迹为抛物线,且开口向左,p =4. 因此其轨迹方程为y 2=-8x .考向三 代入法(相关点法)求轨迹方程【例3】如图8-8-2所示,设P 是圆x 2+y 2=25上的动点,点D 是P 在x 轴上的投影,M 为PD 上一点,且|MD |=45|PD |.(1)当P 在圆上运动时,求点M 的轨迹C 的方程;(2)求过点(3,0)且斜率为45的直线被C 所截线段的长度.【解】(1)设M 的坐标为(x ,y ),P 的坐标为(x P ,y P ),由已知得⎩⎪⎨⎪⎧x P=x ,y P =54y . ∵P 在圆上,∴x 2+⎝ ⎛⎭⎪⎫54y 2=25,即C 的方程为x 225+y 216=1.图8-8-5(2)过点(3,0)且斜率为45的直线方程为y =45(x -3),设直线与C 的交点为A (x 1,y 1),B (x 2,y 2),将直线方程y =45(x -3)代入C 的方程,得x 225+(x -3)225=1,即x 2-3x -8=0.∴x 1=3-412,x 2=3+412.∴线段AB 的长度为|AB |=(x 1-x 2)2+(y 1-y 2)2=⎝ ⎛⎭⎪⎫1+1625(x 1-x 2)2=4125×41=415.【对点练习2】(2014·合肥模拟)如图8-8-5所示,以原点O 为圆心的两个同心圆的半径分别为3和1,过原点O 的射线交大圆于点P ,交小圆于点Q ,P 在y 轴上的射影为M .动点N 满足PM →=λPN →且PM →·QN→=0. (1)求点N 的轨迹方程;(2)过点A (0,3)作斜率分别为k 1,k 2的直线l 1,l 2与点N 的轨迹分别交于E ,F 两点,k 1·k 2=-9.求证:直线EF 过定点.【解】(1)由PM →=λPN →且PM →·QN →=0可知N ,P ,M 三点共线且PM ⊥QN . 过点Q 作QN ⊥PM ,垂足为N ,设N (x ,y ),∵|OP |=3,|OQ |=1,由相似可知P (3x ,y ).∵P 在圆x 2+y 2=9上,(3x )2+y 2=9,即y 29+x 2=1. 所以点N 的轨迹方程为y 29+x 2=1.(2)证明:设E (x E ,y E ),F (x F ,y F ),依题意,由⎩⎪⎨⎪⎧ y =k 1x +3,y 29+x 2=1⇒(k 21+9)x 2+6k 1x =0,① 解得x =0或x =-6k 1k 21+9. 所以x E =-6k 1k 21+9,y E =k 1⎝ ⎛⎭⎪⎫-6k 1k 21+9+3=27-3k 21k 21+9, ∴E ⎝ ⎛⎭⎪⎫-6k 1k 21+9,27-3k 21k 21+9. ∵k 1k 2=-9,∴k 2=-9k 1.用k 2=-9k 1替代①中的k 1, 同理可得F ⎝ ⎛⎭⎪⎫6k 1k 21+9,3k 21-27k 21+9. 显然E ,F 关于原点对称,∴直线EF 必过原点O .【达标训练】一、选择题1.若M ,N 为两个定点,且|MN |=6,动点P 满足PM →·PN →=0,则P 点的轨迹是( )A .圆B .椭圆C .双曲线D .抛物线 2.已知点F ⎝ ⎛⎭⎪⎫14,0,直线l :x =-14,点B 是l 上的动点.若过B 垂直于y 轴的直线与线段BF 的垂直平分线交于点M ,则点M 的轨迹是( )A .双曲线B .椭圆C .圆D .抛物线3.(2014·天津模拟)平面直角坐标系中,已知两点A (3,1),B (-1,3),若点C 满足OC →=λ1OA →+λ2OB →(O 为原点),其中λ1,λ2∈R ,且λ1+λ2=1,则点C 的轨迹是( )图8-8-4 A .直线 B .椭圆 C .圆 D .双曲线4.(2014·合肥模拟)如图8-8-4所示,A 是圆O 内一定点,B 是圆周上一个动点,AB 的中垂线CD 与OB 交于E ,则点E 的轨迹是( )A .圆B .椭圆C .双曲线D .抛物线5.设过点P (x ,y )的直线分别与x 轴的正半轴和y 轴的正半轴交于A ,B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点,若BP →=2P A →, 且OQ →·AB →=1,则点P 的轨迹方程是 ( )A.32x 2+3y 2=1(x >0,y >0)B.32x 2-3y 2=1(x >0,y >0)C .3x 2-32y 2=1(x >0,y >0)D .3x 2+32y 2=1(x >0,y >0)6.已知动点P 在曲线2x 2-y =0上移动,则点A (0,-1)与点P 连线中点的轨迹方程是( )A .y =2x 2B .y =8x 2C .2y =8x 2-1D .2y =8x 2+1二、填空题7.平面上有三个点A (-2,y ),B ⎝ ⎛⎭⎪⎫0,y 2,C (x ,y ),若AB →⊥BC →,则动点C 的轨迹方程是_______________________.8.动圆与⊙C 1:x 2+y 2=1外切,与⊙C 2:x 2+y 2-8x +12=0内切,则动圆圆心的轨迹是_______________________.9.已知△ABC 的顶点B (0,0),C (5,0),AB 边上的中线长|CD |=3,则顶点A 的轨迹方程为_______________________.10.(2014·佛山模拟)在△ABC 中,A 为动点,B ,C 为定点,B ⎝ ⎛⎭⎪⎫-a 2,0,C ⎝ ⎛⎭⎪⎫a 2,0(a >0),且满足条件sin C -sin B =12sin A ,则动点A 的轨迹方程是_____________.三、解答题11.已知定点F (0,1)和直线l 1:y =-1,过定点F 与直线l 1相切的动圆的圆心为点C .(1)求动点C 的轨迹方程;(2)过点F 的直线l 2交轨迹于P ,Q 两点,交直线l 1于点R ,求RP →·RQ →的最小值.12.(2011·课标全国卷)在平面直角坐标系xOy 中,已知点A (0,-1),B 点在直线y =-3上,M 点满足MB →∥OA →,MA →·AB →=MB →·BA →,M 点的轨迹为曲线C .(1)求C 的方程;(2)P 为C 上的动点,l 为C 在P 点处的切线,求O 点到l 距离的最小值.13.(2013·课标全国卷Ⅱ)在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为2 3.(1)求圆心P 的轨迹方程;(2)若P 点到直线y =x 的距离为22,求圆P 的方程.【达标训练】 参考答案一、选择题1.A. 【解析】∵PM →·PN →=0,∴PM ⊥PN ,∴点P 的轨迹是以线段MN 为直径的圆.2.D. 【解析】由已知:|MF |=|MB |,由抛物线定义知,点M 的轨迹是以F 为焦点,l 为准线的抛物线.3.A .【解析】设C (x ,y ),因为OC →=λ1OA →+λ2OB →,所以(x ,y )=λ1(3,1)+λ2(-1,3),即⎩⎨⎧ x =3λ1-λ2,y =λ1+3λ2,解得⎩⎪⎨⎪⎧ λ1=y +3x 10,λ2=3y -x 10,又λ1+λ2=1,所以y +3x 10+3y -x 10=1,即x +2y =5,所以点C 的轨迹为直线,故选A.4.B .【解析】由题意知,|EA |+|EO |=|EB |+|EO |=r (r 为圆的半径)且r >|OA |,故E 的轨迹为以O ,A 为焦点的椭圆,故选B.5.A. 【解析】设P (x ,y ),A (x A,0),B (0,y B ),则BP →=(x ,y -y B ),P A →=(x A -x ,-y ),∵BP →=2P A →,∴⎩⎨⎧ x =2(x A -x ),y -y B =-2y ,即⎩⎪⎨⎪⎧ x A =32x ,y B=3y .∴A ⎝ ⎛⎭⎪⎫32x ,0,B (0,3y ). 又Q (-x ,y ),∴OQ →=(-x ,y ),AB →=⎝ ⎛⎭⎪⎫-32x ,3y ,∴OQ →·AB →=32x 2+3y 2=1, 则点P 的轨迹方程是32x 2+3y 2=1(x >0,y >0).6.C .【解析】设AP 中点M (x ,y ),P (x ′,y ′),则x =x ′2,y =y ′-12,∴⎩⎨⎧x ′=2x ,y ′=2y +1, 代入2x 2-y =0,得2y =8x 2-1,故选C.二、填空题7.y 2=8x 。

圆锥曲线中的轨迹方程问题-(解析版)

圆锥曲线中的轨迹方程问题-(解析版)

专题1 圆锥曲线的轨迹方程问题轨迹与轨迹方程高考题中在选择题或填空题中单独考查,在解答题中也会出现轨迹与轨迹方程的问题.本文主要研究圆锥曲线中关于轨迹方程求法。

首先正确理解曲线与方程的概念,会用解析几何的基本思想和坐标法研究几何问题,用方程的观点实现几何问题的代数化解决,并能根据所给条件选择适当的方法求曲线的轨迹方程,常用方法有:直译法、定义法、相关点法、参数(交轨)法等方法1、直译法:若动点运动的条件是一些已知(或通过分析得出)几何量的等量关系,可转化成含x,y 的等式,就得到轨迹方程。

直译法知识储备:两点间距离公式,点到直线的距离公式,直线的斜率(向量)公式。

经典例题:1.(2020·江苏徐州市·高三月考)古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名,他发现:平面内到两个定点A 、B 的距离之比为定值λ(1λ≠)的点所形成的图形是圆.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆.已知在平面直角坐标系xOy 中,()2,0A -、()4,0B ,点P 满足12PA PB =,设点P 所构成的曲线为C ,下列结论正确的是( ) A .C 的方程为()22416x y ++= B .在C 上存在点D ,使得D 到点()1,1的距离为3 C .在C 上存在点M ,使得2MO MA = D .在C 上存在点N ,使得224NO NA += 【答案】ABD【分析】设点P 的坐标,利用12PA PB =,即可求出曲线C 的轨迹方程,然后假设曲线C 上一点坐标,根据BCD 选项逐一列出所满足条件,然后与C 的轨迹方程联立,判断是否有解,即可得出答案.【详解】设点P (x ,y ),()2,0A -、()4,0B ,由12PA PB =,12=,化简得x 2+y 2+8x =0,即:(x +4)2+y 2=16,故A 选项正确;曲线C 的方程表示圆心为(﹣4,0),半径为4的圆,圆心与点(1,1)=﹣4,+4,而3∈﹣4,故B 正确;对于C 选项,设M (x 0,y 0),由|MO |=2|MA |,=又 ()2200416x y ++=,联立方程消去y 0得x 0=2,解得y 0无解,故C 选项错误;对于D 选项,设N (x 0,y 0),由|NO |2+|NA |2=4,得 ()2222000024x y x y ++++=,又()2200416x y ++=,联立方程消去y 0得x 0=0,解得y 0=0,故D 选项正确.2.(2020·湖南省高三期末)点(,)P x y 与定点(1,0)F 的距离和它到直线:4l x =距离的比是常数12. 求点P 的轨迹方程;【答案】22143x y +=12=,化简即可求出;12=,化简得:223412x y +=,故1C 的方程为22143x y +=.【点睛】该题考查的是有关解析几何的问题,涉及到的知识点是动点轨迹方程的求解.3.(2021年湖南省高三月考)已知动点P 到定点A (5,0)的距离与到定直线165x =的距离的比是54,求P 点的轨迹方程.【答案】轨迹方程是221169x y -=.【分析】利用动点P 到定点A (5,0)的距离与到定直线165x =的距离的比是54可得方程,化简由此能求出轨迹M 的方程.【详解】由题意,设P (x ,y ),则()22252516165x y x -+=⎛⎫- ⎪⎝⎭,化简得轨迹方程是221169x y -=. 故答案为221.169x y -=【点睛】本题主要考查轨迹方程的求法,属于基础题.由2、3题推广:圆锥曲线统一定义(第二定义):到定点的距离与到定直线的距离的比e 是常数的点的轨迹叫做圆锥曲线。

圆锥曲线轨迹问题(解析版)

圆锥曲线轨迹问题(解析版)

第四讲 有关圆锥曲线轨迹问题根据动点的运动规律求出动点的轨迹方程,这是解析几何的一大课题:一方面求轨迹方程的实质是将“形”转化为“数”,将“曲线”转化为“方程”,通过对方程的研究来认识曲线的性质;另一方面求轨迹方程是培养学生数形转化的思想、方法以及技巧的极好教材。

该内容不仅贯穿于“圆锥曲线”的教学的全过程,而且在建构思想、函数方程思想、化归转化思想等方面均有体现和渗透。

求轨迹方程的的基本步骤:建设现代化(检验)建(坐标系)设(动点坐标)限(限制条件,动点、已知点满足的条件)代(动点、已知点坐标代入)化(化简整理)检验(要注意定义域“挖”与“补”)求轨迹方程的的基本方法:直接法、定义法、相关点法、参数法、交轨法、向量法等。

1.直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y 的等式,就得到轨迹方程,这种方法称之为直接法; 例1、已知直角坐标系,点Q (2,0),圆C 方程为122=+y x ,动点M 到圆C 的切线长与MQ的比等于常数)0(>λλ,求动点M 的轨迹。

【解析】设MN 切圆C 于N ,则222ONMO MN -=。

),(y x M ,则2222)2(1y x y x +-=-+λ化简得0)41(4))(1(22222=++-+-λλλx y x 当1=λ时,方程为54x =,表示一条直线。

当1≠λ时,方程化为2222222)1(31)12(-+=+--λλλλy x 表示一个圆。

【练习】如图,圆1O 与圆2O 的半径都是1,124O O =. 过动点P 分别作圆2O 、圆2O 的切线PM PN ,(M N ,分别为切点),使得2PM PN =. 试建立适当的坐标系,并求动点P 的轨迹方程.【解析】以12O O 的中点O 为原点,12O O 所在直线为x 轴,建立如图所示的平面直角坐标系,则1(20)O -,,2(20)O ,. 由已知2PM PN =,得222PM PN =. 因为两圆半径均为1,所以221212(1)PO PO -=-.设()P x y ,,则2222(2)12[(2)1]x y x y ++-=-+-, 即22(6)33x y -+=.(或221230x y x +-+=)评析:1、用直接法求动点轨迹一般有建系,设点,列式,化简,证明五个步骤,最后的y xQMNO证明可以省略,但要注意“挖”与“补”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆 锥 曲 线 之 轨 迹 问 题一、临阵磨枪1.直接法(五部法):如果动点满足的几何条件本身就是一些几何量的等量关系,或这些几何条件简单明了且易于表达,我们只须把这种关系“翻译”成含,x y 的等式就得到曲线的轨迹方程。

这种求轨迹的方法称之为直接法。

2.定义法:若动点轨迹的条件符合某一基本轨迹的定义(如圆、椭圆、双曲线、抛物线的定义),则可根据定义直接求出动点的轨迹方程。

3.坐标转移法(代入法):有些问题中,其动点满足的条件不便于等式列出,但动点是随着另一动点(称之为相关点)而运动的,如果相关点所满足的条件是明显的,或是可分析的,这时我们可以用动点坐标表示相关点坐标,根据相关点所满足的方程即可求得动点的轨迹方程,这种求轨迹的方法坐标转移法,也称相关点法或代入法。

4.参数法:有时求动点应满足的几何条件不易求出,也无明显的相关点,但却较易发现(或经分析可发现)这个动点的运动常常受到另一个变量(角度、斜率、比值、截距或时间等)的制约,即动点坐标(,)x y 中的,x y 分别随另一变量的变化而变化,我们可以把这个变量设为参数,建立轨迹的参数方程,这种方法叫做参数法,如果需要得到轨迹的普通方程,只要消去参变量即可。

5.交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这类问题常可通过解方程组得出交点含参数的坐标,再消去参数得出所求轨迹方程,此种方法称为交轨法。

二、小试牛刀1.已知M (-3,0),N (3,0)6=-PN PM ,则动点P 的轨迹方程为 析:MN PM PN =- ∴点P 的轨迹一定是线段MN 的延长线。

故所求轨迹方程是 0(3)y x =≥2.已知圆O 的方程为222=+y x ,圆O '的方程为010822=+-+x y x ,由动点P 向两圆所引的切线长相等,则动点P 的轨迹方程为 析:∵圆O 与圆O '外切于点M(2,0) ∴两圆的内公切线上的点向两圆所引的切线长都相等, 故动点P 的轨迹就是两圆的内公切线,其方程为2x =3.已知椭圆)0(12222>>=+b a by a x ,M 是椭圆上一动点,1F 为椭圆的左焦点,则线段1MF 的中点P 的轨迹方程为析:设P (,)x y 00(,)M x y 又1(,0)F c - 由中点坐标公式可得:00002222x c x x x c y y y y -⎧=⎪=+⎧⎪⇒⎨⎨=⎩⎪=⎪⎩ 又点00(,)M x y 在椭圆)0(12222>>=+b a b y a x 上∴2200221(0)x y a b a b +=>> 因此中点P 的轨迹方程为2222(2)41x c y a b++= 4.已知A 、B 、C 是不在同一直线上的三点,O 是平面ABC 内的一定点,P 是动点,若[)+∞∈+=-,0),21(λλ,则点P 的轨迹一定过三角形ABC 的 重 心。

析:设点D 为BC 的中点,显然有OP OA AP -=12AB BC AB BD AD +=+=[),0,AP AD λλ=∈+∞故点P 的轨迹是射线AD , 所以,轨迹一定过三角形的重心。

三、大显身手1、直接法例1、设过点P (x,y )的直线分别与x 轴的正半轴和y 轴的正半轴交于A 、B 两点,点Q 与点P 关于y 轴对称,若,2=且1=⋅,则P 点的轨迹方程为解:设(,0),(0,)A a B b 又(,)P x y 所以(,),(,)BP x y b PA a x y =-=--又,2= 所以32()223x a x a xy b y b y ⎧=-=⎧⎪⇒⎨⎨-=-⎩⎪=⎩33(,0),(0,3)(,3)22A xB y AB x y ∴∴=-而Q 点与P 点关于y 轴对称,∴点Q 的坐标为(,)x y - 即(,)OQ x y =-又1=⋅ 所以223312x y += 这个方程即为所求轨迹方程。

变式1、已知两点M (-2,0),N (2,0),点P 满足0=⋅+⋅MP MN ,动点P 的轨迹方程为解:设(,)P x y则:4,(4,0),(2,).MN MP MN NP x y ====-又0=⋅+⋅MP MN4(2)0x ∴-= 化简得所求轨迹方程为:28y x =-2、定义法例2、已知圆A 的方程为100)3(22=+-y x ,点B (-3,0),M 为圆O 上任意一点,BM 的中垂线交AM 于点P ,求点P 的轨迹方程。

解:由题意知:BP MP =AM PA MP PA PB =+=+∴又圆A 的半径为10,所以 10=AM10=+∴PB PA即点P 的轨迹是以定点A(3,0) B(-3,0)为焦点,10为长轴的椭圆 (椭圆与长轴所在的对称轴的两交点除外)其轨迹方程为)5(1162522±≠=+x y x 变式2、已知椭圆)0(12222>>=+b a by a x 的焦点为21,F F ,P 是椭圆上的任意一点,如果M 是线段P F 1的中点,则动点M 的轨迹方程是解:因为M 是线段P F 1的中点,连接OM ,则221PF OM =1121PF MF = 由椭圆的定义知:a PF PF 221=+a PF PF MO MF =+=+)(21211 即点M 到定点O 、定点1F 的距离和为定值a ,故动点M 的轨迹是以O 、1F 为焦点,以a 为长轴的椭圆,其方程为14)2(42222=++by a c x (说明:此题也可以用代入法解决)3、坐标转移法(代入法)例3、从双曲线122=-y x 上一点Q 引直线x+y=2的垂线,垂足为N ,求线段QN 的中点P 的轨迹方程。

解:设Q ),(00y x 则由⎩⎨⎧=-+=+--02000y x y x y x 可得 N 点坐标 ⎪⎩⎪⎨⎧++-=+-=22220000y x y y x x 设),(y x P 由中点坐标公式可得:⎩⎨⎧-+=-+=⇒⎪⎩⎪⎨⎧++-=+-=23223222322232000000y x y y x x y x y y x x 又点Q ),(00y x 在双曲线122=-y x 上, 所以 4442020=-y x 代入得4)23()23(22=-+--+y x y x化简得 21)21()21(22=---y x 即为所求轨迹方程。

变式3、自抛物线x y 22=上任意一点P 向其准线l 引垂线,垂足为Q ,连接顶点O 与P 的直线和连接焦点F 与Q 的直线交于R ,求点R 的轨迹方程。

解:设),(),,(00y x P y x R ∵抛物线的方程是x y 22=∴),21(),0,21(0y Q F -所以 直线OP 的方程是000=-x x x y 直线QF 的方程是 02100=-+y y x y 联立两方程得:⎪⎩⎪⎨⎧--=--=12212200x y y x x x 又 0202x y =所以 )122(2)122(2--=--x xx y 化简得:0222=-+x y x 即为所求轨迹方程。

4、参数法例4、设椭圆方程为1422=+y x ,过点M (0,1)的直线l 交椭圆于A 、B ,点P 满足)(21+=,点)21,21(N ,当直线l 绕点M 旋转时,求:(1)动点P 的轨迹方程; (2)NP 的最大、最小值。

解:(1)设直线l 的方程为1+=kx y 代入椭圆方程得032)4(22=-++kx x k设),(),,(2211y x B y x A 则 22142kkx x +-=+ 2422)(222121++-=++=+∴kk x x k y y 设动点P 的坐标为),(y x ,由)(21+=可得 ⎪⎩⎪⎨⎧+=+=+-=+=22122144242k y y y k k x x x 消去参数k 即得所求轨迹方程为:0422=-+y y x 当斜率k 不存在时,点P 的坐标为(0,0)显然在轨迹上,故动点P 的轨迹方程为0422=-+y y x 。

(2)P 点的轨迹方程可以化为1)21(41622=-+y x所以可设点P 的坐标为)sin 2121,cos 41(αα+ 则21cos 41cos 163)sin 21()21cos 41(2222+--=+-=ααααPN127)32(cos 1632++-=α所以 当32cos -=α时 621max =PN 当1cos =α时 41min=PN 变式4、过抛物线x y 22=的顶点作互相垂直的两弦OA 、OB.(1) 求弦AB 的中点的轨迹方程;(2)证明:直线AB 与x 轴的交点为定点。

解:(1)由题意知OA 的斜率存在且不为零,设为k则直线OA 的方程为kx y =与抛物线x y 22=联立可得点A 的坐标为)2,2(2kk 同理可得点B 的坐标为)2,2(2k k - 设弦AB 的中点为M (x,y )则⎪⎩⎪⎨⎧-=+=kk y k k x 1122消去k 得弦AB 的中点的轨迹方程为22-=x y(2)直线AB 的斜率为21k kk AB -= 所以,其方程为)2(1222k x kk k y --=+ 令0=y 得2=x 故直线AB 与x 轴的焦点为定点(2,0)5、交轨法例5、垂直于x 轴的直线交双曲线1222=-by a x 于M 、N 两点,21,A A 为双曲线的顶点,求直线M A 1与N A 2的交点P 的轨迹方程,并指出轨迹的形状。

解:.解:(1)设M 点的坐标为(x 1,y 1),则N 点坐标为(x 1,-y 1),又有)0,(),0,(21a A a A -则A 1M 的方程为:y =)(11a x ax y ++ ① A 2N 的方程为:y =-)(11a x ax y -- ② ①×②得:y 2=-)(2222121a x ax y --③又因点M 在双曲线上,故).(,12212221221221a x a b y b y a x -==-即代入③并整理得2222by a x +=1.此即为P 的轨迹方程.变式5、设点A 、B 为抛物线)0(22>=p px y 上除原点以外的两个动点,已知O A ⊥OB, OM ⊥AB 于M ,求点M 的轨迹方程,并说明它表示什么曲线。

解:设OA=y=kx, 则x ky OB 1:-=, ⎪⎩⎪⎨⎧==pxy kx y 22 得)2,2(2k p k p A 同理 B(2pk 2, -2pk)22222111112222k kk k k kkk pk k p pk k p k AB -=-=-+=-+=AB:23222121)2(12k pk x k k pk x k k pk y ---=--=+ )2(11211221222232p x kkk pk x k k k pk pk x k k y --=---=----=....① 而op: x kk y 21-=.....② ∵ M 为AB 与OM 的交点,联立①②⎪⎪⎩⎪⎪⎨⎧--=--=)2......(..........1)1).......(2(122x k k y p x k k y(1)×(2)消去k, y 2=-(x-2p)x, ∴ x 2+y 2-2px=0(x ≠0)即为所求.四、享受战果1、已知4),0,2(),0,2(=+-PN PM N M ,则动点P 的轨迹方程为 析:满足条件的点在线段MN 上,故轨迹方程是0(22)y x =-≤≤2、经过抛物线px y 22=焦点的弦的中点的轨迹方程为析:设过焦点的弦AB 所在的直线方程为()2py k x =-代入抛物线方程消去y 的 2222222()2(2)024p k p k x px k x p k x -=⇒-++= 设1122(,),(,)A x y B x y AB 的中点为(,)M x y则 []21221212(2)22()22x x p k x k y y k p y x x p k ⎧++==⎪⎪⎨+⎪==+-=⎪⎩消去参数k 得2()2py p x =-这就是所求轨迹方程。

相关文档
最新文档