七年级数学有理数专题:定义新运算练习(解析版)

合集下载

部编数学七年级下册专题21人教七下册精选新定义题型(解析版)含答案

部编数学七年级下册专题21人教七下册精选新定义题型(解析版)含答案

专题21 人教七下精选新定义题型(解析版)类型一 实数中的新定义题型1.(2022秋•辉县市校级月考)对于任意两个实数a ,b 定义两种运算:aΔb =a(a ≥b)b(a <b),a∇b =b(a ≥b)a(a <b),并且定义运算顺序任然是先做括号内的,例如(﹣2)Δ3=3,(﹣2)∇3=2,[(﹣2)Δ3]∇2=2,那么A B .3C .6D 思路引领:直接利用已知运算规律分别化简,进而得出答案.解:原式=2Δ3=3.故选:B .总结提升:此题主要考查了实数的运算,正确理解题意是解题关键.2.(2022•台山市校级一模)定义:求乘方运算中的指数运算叫做对数,如果N =a x ,则log a N =x .例如log 28=3,那么log 3127× .思路引领:根据已知新定义计算即可确定出结果;解:∵log 3127=log 33﹣3=﹣3,=3=3,∴log 3127×−3×3=﹣9.故答案为:﹣9.总结提升:本题考查了实数的运算,弄清题中的新定义是解本题的关键.3.(2022•南京模拟)新定义一种运算@,其运算法则是x @y =2@(6@8)= .思路引领:先根据新定义求出6@8=7,然后计算2@7即可得到答案.解:由题意得:6@87,∴2@(6@8)=2@7=总结提升:本题主要考查了新定义下的实数运算,正确理解题意是解题的关键.4.(2022秋•永兴县期末)定义[x ]为不大于x 的最大整数,如[2]=2,=1,[4.1]=4,则满足=5,则n 的最大整数为 .思路引领:由题意得:5≤6,然后利用平方运算,进行计算即可解答.解:由题意得:∵56,∴25≤n<36,∴n的最大整数为35.故答案为:35.总结提升:本题考查了无理数的估算,掌握夹逼法,用有理数夹逼无理数是关键.5.(2022秋•隆回县期末)对于正实数a,b作新定义:a⊙b=25⊙x2=4,则x的值为 .思路引领:直接利用已知得出关于x的方程,进而得出答案.解:由题意可得:=4,则10﹣|x|=4,解得:x=±6.故答案为:±6.总结提升:此题主要考查了实数运算,正确理解题意是解题关键.6.(2022秋•朝阳区校级期末)用⊗定义一种新运算:对于任意实数a和b,规定a⊗b=a2﹣ab+1.(1(2⊗⊗= .思路引领:(1)利用新运算的规定列式计算即可;(2)利用新运算的规定列式计算即可.解:(1)∵a⊗b=a2﹣ab+1,∴原式=2×1=2﹣1=3﹣(2)原式=[2+1]=(3﹣+1)=(4﹣=2×(4﹣+1=2﹣6+1=9﹣故答案为:9﹣总结提升:本题主要考查了实数的运算,二次根式的性质,本题是新定义型,理解并熟练应用新定义的规定是解题的关键.7.(2022•苏州模拟)对实数a,b,定义运算“◆”:a◆b=a≥b,例如4◆3,因为4>3,所以4◆3=5,若x,y满足方程组4x−y=8x+2y=20,则x◆y= 32 .思路引领:求出方程组的解得到x与y的值,再利用新定义求出所求即可.解:4x−y=8①x+2y=20②,①×2+②得:9x=36,解得:x=4,把x=4代入②得:y=8,则x◆y=4◆8=4×8=32,故答案为:32.总结提升:本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.8.(2018秋•阳山县期末)对于实数x,y,定义一种新的运算“★”,规定x★y=ax+by,其中a,b为常数,等式右边是通常的加法和乘法运算.如果3★5=12,1★2=3= .思路引领:已知等式利用题中的新定义化简得到方程组,求出方程组的解得到a与b的值,代入原式计算即可求出值.解:已知等式利用题中的新定义化简得:3a+5b=12①a+2b=3②,②×3﹣①得:b=﹣3,把b=﹣3代入①得:a=9,则原式==−3.故答案为:﹣3.总结提升:此题考查了解二元一次方程组,立方根以及实数的运算,解二元一次方程组利用了消元的思想,消元的方法有:代入消元法与加减消元法.9.(2022秋•屯留区期末)对于任意的正实数a和b,我们定义新运算:a∗b=≥b)<b).如:27∗12=求:(5*2)×(18*45)的值.思路引领:根据定义确定好所用计算方法,再进行代入计算.解:∵5>2,18<45,∴(5*2)×(18*45)×(+=3=3[22]=3(5﹣2)=3×3=9,即(5*2)×(18*45)的值是9.总结提升:此题考查了运用新定义进行实数运算的能力,关键是能准确理解并运用新定义,并进行正确地计算.类型二平面直角坐标系中的新定义题型10.(2022春•晋安区期末)定义:f(x,y)=(﹣x,﹣y),g(a,b)=(b,a),例如:f(1,2)=(﹣1,﹣2),g(2,3)=(3,2),则g(f(5,﹣2))=( )A.(2,﹣5)B.(﹣2,5)C.(﹣5,2)D.(﹣2,﹣5)思路引领:直接利用已知f(x,y)=(﹣x,﹣y),g(a,b)=(b,a),进而分析得出答案.解:由题意可得:g(f(5,﹣2))=g(﹣5,2)=(2,﹣5).故选:A.总结提升:此题主要考查了点的坐标,正确运用已知条件分析是解题关键.11.(2022春•景县期中)定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达点Q(至多拐一次弯)的路径长称为P,Q的“实际距离”.如图,若P(2,﹣1),Q(﹣1,0),则P,Q的“实际距离”为4,即PS+SQ=4或PT+TQ=4.图中点A(3,2),B(5,﹣3)为共享单车停放点,嘉淇在点P处,则( )A.他与A处的“实际距离”更近B.他与B处的“实际距离”更近C.他与A处和B处的“实际距离”一样近D.无法判断思路引领:根据实际距离的概念得出距离解答即可.解:P到A处的“实际距离”=|3﹣2|+|2﹣(﹣1)|=1+3=4,P到B处的“实际距离”=|5﹣2|+|﹣3﹣(﹣1)|=3+2=5,故选:A.总结提升:此题主要考查了坐标确定位置,正确理解实际距离的定义是解题关键.12.(2022春•思明区校级期末)给出一个新定义:若平面直角坐标系中的点(a,b)的横、纵坐标满足方程x﹣2y=4,则称点(a,b)是方程x﹣2y=4的坐标点,比如:点(6,1)就是方程x﹣2y=4的坐标点.(1)写出方程x﹣2y=4的另一个坐标点 ;(2)若有一个点(3a,a+2)是方程x﹣2y=4的坐标点,则a的值为 .思路引领:(1)给出x的一个值,代入求y的值;(2)把点的坐标代入方程求解.解:(1)当x=4时,y=0,故答案为:(4,0).(2)由题意得:3a﹣2(a+2)=4,解得:a=8.故答案为:8.总结提升:本题考查了方程的解,理解新定义是解题的关键.13.(2022春•天河区期末)在平面直角坐标系中取任意两点A(x1,y1),B(x2,y2),定义新运算“*”,得到新的C的坐标为(x1y2,x2y1),即(x1,y1)*(x2,y2)=(x1y2,x2y1).若点A在第一象限,点B 在第四象限,根据上述规则计算得到的点C的坐标在第 象限.思路引领:根据每一象限内点的坐标特点进行分析解答.解:∵点A (x 1,y 1)在第一象限,点B (x 2,y 2)在第四象限,∴x 1>0,y 1>0.x 2>0,y 2<0.∴x 1y 2<0,x 2y 1>0,∴点C 的坐标(x 1y 2,x 2y 1)位于第二象限.故选答案为:二.总结提升:本题主要考查了点的坐标,解题的关键的理解新定义的运算法则以及每一象限内点的坐标符号特征.14.(2022春•海淀区校级期中)在平面直角坐标系xOy 中,对于任意两点P 1(x 1,y 1)与P 2(x 2,y 2)的“非常距离”给出如下定义:若|x 1﹣x 2|≥|y 1﹣y 2|,则点P 1与点P 2的“非常距离”为|x 1﹣x 2|;若|x 1﹣x 2|<|y 1﹣y 2|,则点P 1与点P 2的“非常距离”为|y 1﹣y 2|,例如:点P 1(1,2),点P 2(3,5),因为|1﹣3|<|2﹣5|,所以点P 1与点P 2的“非常距离”为|2﹣5|=3,也就是图中线段P 1Q 与线段P 2Q 长度的较大值(点Q 为垂直于y 轴的直线P 1Q 与垂直于x 轴的直线P 2Q 的交点).已知点A(−12,0),B 为y 轴上的一个动点.(1)若点A 与点B 的“非常距离”为2,写出一个满足条件的点B 的坐标 ;(2)直接写出点A 与点B 的“非常距离”的最小值 .思路引领:(1)根据点B 位于y 轴上,可以设点B 的坐标为(0,y ).由“非常距离”的定义可以确定|0﹣y |=2,据此可以求得y 的值;(2)设点B 的坐标为(0,y ).因为|−12−0|≥|0﹣y |,所以点A 与点B 的“非常距离”最小值为|−12−0|=12.解:(1)∵B 为y 轴上的一个动点,∴设点B 的坐标为(0,y ).∵|−12−0|=12≠4,∴|0﹣y |=2,解得y =2或y =﹣2;∴点B 的坐标是(0,2)或(0,﹣2);故答案为:(0,2)或(0,﹣2);(2)∵|−12−0|≥|0﹣y |,∴点A 与点B 的“非常距离”最小值为|−12−0|=12;∴点A 与点B 的“非常距离”的最小值为12.故答案为:12.总结提升:本题考查新定义问题,阅读并理解题意是解题关键.15.(2022春•青山区校级月考)在平面直角坐标系中,对于任意三个不重合的点A ,B ,C 的“矩面积”,给出如下定义:“水平底”a 指任意两点横坐标差的最大值,“铅垂高”h 指任意两点纵坐标差的最大值,“矩面积”S =ah .例如:A (1,2),B (﹣3,1),C (2,﹣2)则“水平底”a =5,“铅垂高”h =4,“矩面积”S =ah =20.若D (1,2),E (﹣2,1),F (0,t )三点的“矩面积”为18,则t 的值为 .思路引领:根据“矩面积”的定义,得出若D (1,2),E (﹣2,1),F (0,t )三点的“矩面积”的“水平底”a =3,由矩面积”S =ah =18,得出“铅垂高”h =18÷3=6,则D 、E 、F 三点的纵坐标差的最大值为2﹣t =6或t ﹣1=6,从而求得t 的值.解:由题意知,D 、E 、F 三点的“矩面积”的“水平底”a =1﹣(﹣2)=3,∵D 、E 、F 三点的“矩面积”S =ah =18,∴D 、E 、F 三点的“铅垂直”h =18÷3=6,当点F 在点D 下方时,2﹣t =6,解得t =﹣4.当点F 在点D 上方时,t ﹣1=6解得:t =7,故答案为:﹣4或,7.总结提升:本题考查坐标确定位置,掌握“矩面积”的定义是解题的关键.16.(2022秋•霍邱县校级月考)在平面直角坐标系中,对于点P 、Q 两点给出如下定义:若点P 到x ,y 轴的距离的较大值等于点Q到x,y轴的距离的较大值,则称P、Q两点为“等距点”.如点P(﹣2,5)和点Q(﹣5,﹣1)就是等距点.(1)已知点B的坐标是(﹣4,2),点C的坐标是(m﹣1,m),若点B与点C是“等距点”,求点C 的坐标;(2)若点D(3,4+k)与点E(2k﹣5,6)是“等距点”,求k的值.思路引领:(1)根据“等距点”的定义解答即可;(2)根据“等距点”的定义分情况讨论即可.解:(1)由题意,可分两种情况:①|m﹣1|=|﹣4|,解得m=﹣3或5(不合题意,舍去);②|m|=|﹣4|,解得m=﹣4(不合题意,舍去)或m=4,综上所述,点C的坐标为(﹣4,﹣3)或(3,4);(2)由题意,可分两种情况:①当|2k﹣5|≥6时,|4+k|=|2k﹣5|,∴4+k=2k﹣5或4+k=﹣(2k﹣5),解得k=9或k=13(不合题意,舍去);②当|2k﹣5|<6时,|4+k|=6,∴4+k=6或4+k=﹣6,解得k=2或k=﹣10(不合题意,舍去);综上所述,k=2或k=9.总结提升:本题主要考查了点的坐标,掌握“等距点”的定义是解答本题的关键.17.(2022春•莆田期末)对于平面直角坐标系中的图形M上的任意点P(x,y),给出如下定义:将点P (x,y)平移到P′(x+e,y﹣e)称为将点P进行“e型平移”,点P′称为将点P进行“e型平移”的对应点;将图形M上的所有点进行“e型平移”称为将图形M进行“e型平移”.例如,将点P(x,y)平移到P′(x+1,y﹣1)称为将点P进行“1型平移”.(1)已知点A(﹣1,2),B(2,3),将线段AB进行“1型平移”后得到对应线段A′B′.①画出线段A′B′,并直接写出A′,B′的坐标;②四边形ABB′A′的面积为 (平方单位);(2)若点A(2﹣a,a+1),B(a+1,a+2),将线段AB进行“2型平移”后得到对应线段A′B′,当四边形ABB′A′的面积为8平方单位,试确定a的值.思路引领:(1)①根据定义平移即可;②根据平移后的图形,写出坐标即可;(2)利用割补法求四边形的面积.解:(1)①A (﹣1,2)“1型平移”后得到A '(0,1),B (2,3)“1型平移”后得到B '(3,2);②S 四边形ABB ′A ′=S △ABB '+S △AB 'A '=12×4×1+12×4×1=4,故答案为:4;(2)A (2﹣a ,a +1)“2型平移”后得到A '(4﹣a ,a ﹣1),B (a +1,a +2)“2型平移”后得到B '(a +3,a ),如图,在四边形外作矩形CDEF ,∴C (2﹣a ,a +2),D (2﹣a ,a ﹣1),E (a +3,a ﹣1),F (a +3,a +2),∴BC =2a ﹣1,AC =1,BF =2,B 'F =2,AD =2,A 'D =2,AE =2a ﹣1,BE '=1,∴CF =2a +1,CD =3,∴S 四边形ABB ′A ′=3(2a +1)−12×(2a ﹣1)×1×2−12×2×2×2=4a ,∵四边形ABB ′A ′的面积为8平方单位,∴4a =8,∴a =2.总结提升:本题考查坐标与图形变化,熟练掌握平面内点的坐标特点,利用割补法求四边形的面积是解题的关键.类型三二元一次方程组中的新定义题型18.(2022春•梁山县期末)对于实数x,y,定义新运算x*y=ax+by+1.其中a,b为常数,等式右边为通常的加法和乘法运算,若2*5=10,4*7=28,则3*6=( )A.18B.19C.20D.21思路引领:已知等式利用题中的新定义化简求出a与b的值,代入原式计算即可得到结果.解:根据题中的新定义得:2a+5b+1=10 4a+7b+1=28,解得a=12b=−3,∴3*6=3×12+6×(﹣3)+1=19.故选:B.总结提升:此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.19.(2022春•万州区校级期中)把y=ax+b(其中a、b是常数,x、y是未知数)这样的方程称为“雅系二元一次方程”.当y=x时,“雅系二元一次方程y=ax+b”中x的值称为“雅系二元一次方程”的“完美值”.例如:当y=x时,“雅系二元一次方程”y=3x﹣4化为x=3x﹣4,其“完美值”为x=2.(1)x=3是“雅系二元一次方程”y=3x+m的“完美值”,求m的值;(2)类比“雅系二元一次方程”y=kx+1(k≠0,k是常数)的定义,对于一个“雅系二元一次不等式”y>kx+1(k≠0,k是常数)的“完美解集”为x>2,请求出k的值.思路引领:(1)由已知可得x=3x+m,将x=3代入即可求m;(2)假设存在,得到x=kx+1,所以(1﹣k)x=1,当k=1时,不存在“完美值”,当k≠1,k≠0时,存在“完美值”x=11−k.解:(1)由已知得:x=3x+m,把x=3代入x=3x+m得:3=9+m,∴m=﹣6;(2)若“雅系二元一次方程”y=kx+1(k≠0,k是常数)存在“完美值”,则有x=kx+1,∴(1﹣k)x=1,当k=1时,不存在“完美值”,当k≠1,k≠0时,存在“完美值”,∵y>kx+1(k≠0,k是常数),则有x>kx+1,∴(1﹣k)x>1,∵完美解集为x>2,∴x>11−k=2,解得k=0.5.总结提升:本题考查二元一次方程的解,新定义;能够理解题意,将所求问题转化为一元一次方程求解是关键.20.(2022春•如皋市期中)定义:数对(x,y)经过运算φ可以得到数对(x',y'),记作φ(x,y)=(x',y'),其中x′=ax+byy′=ax−by(a,b为常数).如,当a=1,b=1时,φ(﹣2,3)=(1,﹣5).(1)当a=2,b=1时,φ(1,0)= ;(2)若φ(2,1)=(0,4),则a= ,b= ;(3)如果组成数对(x,y)的两个数x,y满足x﹣2y=0,xy≠0,且数对(x,y)经过运算φ又得到数对(x,y),求a和b的值.思路引领:(1)当a=1且b=1时,分别求出x′和y′即可得出答案;(2)根据条件列出方程组即可求出a,b的值;(3)根据对任意数对(x,y)经过运算φ又得到数对(x,y),得到ax+by=xax−by=y,,根据x﹣2y=0,得到x=2y,代入方程组即可得到答案.解:(1)当a=2,b=1时,x′=2×1+1×0=2,y′=2×1﹣1×0=2,故答案为:(2,2);(2)根据题意得:2a+b=0 2a−b=4,解得:a=1b=−2,故答案为:1,﹣2;(3)∵对任意数对(x,y)经过运算φ又得到数对(x,y),∴ax+by=x ax−by=y,∵x﹣2y=0,∴x=2y,代入方程组解得:a=34 b=12.总结提升:本题考查了解二元一次方程组,解二元一次方程组的基本思路是消元,把二元方程转化为一元方程是解题的关键.21.(2022春•兴化市月考)对于有理数x,y,定义新运算:x&y=ax+by,x⊗y=ax﹣by,其中a,b是常数.已知1&1=1,3⊗2=8.(1)求a,b的值;(2)若关于x,y的方程组x&y=4−mx⊗y=5m的解也满足方程x+y=5,求m的值;(3)若关于x,y的方程组a1x&b1y=c1a2x⊗b2y=c2的解为x=4y=5,求关于x,y的方程组3a1(x+y)&4b1(x−y)=5c13a2(x+y)⊗4b2(x−y)=5c2的解.思路引领:(1)根据定义新运算得出关于a、b的二元一次方程组,再解方程组即可;(2)根据题意得出关于x、y的二元一次方程组,求出方程组的解,再代入方程x+y=3求解即可;(3)根据定义新运算得出相关方程组,根据方程组的解的定义,利用整体代入的方法解答即可.解:(1)由题意得a+b=13a−2b=8,解得a=2b=−1;(2)依题意得2x−y=4−m2x+5=5m,解得x=m+1y=3m−2,∵x+y=5,∴m+1+3m﹣2=5,解得m=3 2;(3)由题意得2a1+b1y=c12a2+b2y=c2的解为x=4y=5,由方程组3a1(x+y)&4b1(x−y)=5c13a2(x+y)⊗4b2(x−y)=5c2得6a1(x+y)−4b1(x−y)=5c16a2(x+y)+4b2(x−y)=5c2,整理,得2a1⋅35(x+y)−b2⋅45(x−y)=c12a2⋅35(x+y)+b2⋅45(x−y)=c2,(x+y)=4 (x−y)=5,解得x=15524y=524.总结提升:本题考查了二元一次方程组的应用、定义新运算、“整体思想”等知识;熟练掌握“整体思想”,找出等量关系列出方程组是解题的关键.22.(2022春•江阴市期中)对整数x、y定义一种新运算T,规定T(x,y)=ax y﹣by x(其中a、b是常数),如:T(2,1)=a×21﹣b×12=2a﹣b.(1)填空:T(2,﹣1)= (用含a,b的代数式表示);(2)若T(3,2)=10,T(8,﹣1)=−3 4.①求a与b的值;②若T(x,1)=T(1,x),求出此时x的值.思路引领:(1)根据新运算的运算顺序计算即可;(2)①由题意列出二元一次方程组,再解方程组即可;②由题意得2x﹣1=2﹣x,解方程可得x的值.解:(1)由题意得,T(2,﹣1)=a×2﹣1﹣b×(﹣1)2=12a﹣b,故答案为:12a﹣b;(2)①=10a−b=−34,解得a=2,b=1答:a的值是2,b的值是1;(3)由题意得,2x﹣1=2﹣x,解得x=1.总结提升:本题考查二元一次方程组的解,熟练掌握解二元一次方程组的方法是解题关键.类型四一元一次不等式中的新定义问题23.(2022•南谯区开学)定义:对于实数a,符号[a]表示不大于a的最大整数.例如:[5.7]=5,[5]=5,[﹣π]=﹣4,如果[x12]=3,则x的取值范围是( )A.5≤x<7B.5<x<7C.5<x≤7D.5≤x≤7思路引领:根据题意可得:3≤x12<4,然后进行计算即可解答.解:由题意得:3≤x12<4,∴6≤x+1<8,∴5≤x<7,故选:A.总结提升:本题考查了解一元一次不等式组,实数大小比较,理解定义的新运算是解题的关键.24.定义一种法则“?”如下:a?b=a(a>b)b(a≤b),例如:1?2=2,若(﹣2m﹣5)?3=3,则m的取值范围是 .思路引领:根据题中新定义的运算可得出关于m的不等式﹣2m﹣5≤3;接下来求解即可得到m的取值范围.解:∵1⊕2=2,若(﹣2m﹣5)⊕3=3,∴﹣2m﹣5≤3,解得m≥﹣4.故答案为:m≥﹣4.总结提升:本题考查了不等式的解和解集,解答此题的关键是掌握不等式的解及解集的意义.25.(2022秋•临湘市期末)现定义一种新的运算:a*b=a2﹣2b,例如:3*4=32﹣2×4=1,则不等式(﹣2)*x≥0的解集为 .思路引领:直接根据题意得出不等式,进而计算得出答案.解:∵a*b=a2﹣2b,例如:3*4=32﹣2×4=1,∴不等式(﹣2)*x≥0可变形为:4﹣2x≥0,解得:x≤2.故答案为:x≤2.总结提升:此题主要考查了解一元一次不等式,正确将原式变形是解题关键.26.(2022春•舒城县校级月考)在实数范围内定义一种新运算“⊕”,其运算规则为:a⊕b=2a−32(a+b),如1⊕5=2×1−32(1+5)=﹣7.(1)若x⊕4=0,则x= ;(2)解不等式x⊕6>3;(3)求不等式x⊕2>(﹣2)⊕(x+4)的负整数解.思路引领:(1)根据所给的运算列出关于x的方程,解方程即可;(2)根据所给的运算列出关于x的一元一次不等式,求出x的取值范围即可;(3)根据所给的运算列出关于x的一元一次不等式,求出x的取值范围即可.解:(1)∵a⊕b=2a−32(a+b),∴x⊕4=2x−32(x+4)=12x−6,∵x⊕4=0,∴12x−6=0,解得x=12,故答案为:12;(2)由x ⊕6>3,可得2x −32(x +6)>3,解得x >12.(3)∵a ⊕b =2a −32(a +b ),∴x ⊕2=2x −32(x +2)=12x−3,﹣2⊕(x +4)=2×(﹣2)−32(﹣2+x +4)=﹣4+3−32x ﹣6=−32x ﹣7∵x ⊕2>(﹣2)⊕(x +4),∴12x−3>−32x ﹣7,解得x >﹣2,∴不等式的负整数解为﹣1.总结提升:本题考查的是解一元一次方程,解一元一次不等式,根据所给的新运算列出关于x 的一元一次(方程)不等式是解答此题的关键.27.(2022秋•西湖区校级月考)我们定义:如果两个一元一次不等式有公共解(两个不等式解集的公共部分),那么称这两个不等式互为“云不等式”,其中一个不等式是另一个不等式的“云不等式”.(1)在不等式①3x ﹣5<0,②x ≥1,③x ﹣(3x ﹣1)<﹣5④3x 12>x 中,不等式x 12−1≥x 的“云不等式”是 .(填序号)(2)若a ≠﹣2,若关于x 的不等式x +2≥a 与不等式(a +2)x <a +2互为“云不等式”,求a 的取值范围.思路引领:(1)分别求出各不等式的解,再根据“云不等式”的定义即可得出结论;(2)先求出不等式x +2≥a 的取值范围,再分a +2>0和a +2<0两种情况进行讨论.解:(1)①解不等式3x ﹣5<0得,x <53;②x ≥1;③不等式的解集为:x >3;④不等式的解集为x >﹣1.解不等式x 12−1≥x 得,x ≤﹣1.∵只有不等式3x ﹣5<0的解集与不等式x 12−1≥x 有公共部分,∴不等式x12−1≥x的“云不等式”是不等式3x﹣5<0.故答案为:①;(2)不等式x+2≥a的解集为x≥a﹣2,①当a+2>0时,即a>﹣2,可得x<1,根据题意a﹣2<1,即a<3,a的取值范围为a<3;②当a+2<0时,即a<﹣2,可得x>1,此时不论a为小于﹣2的何值均符合题意.故a<3且a≠﹣2.总结提升:本题考查了解一元一次不等式,解出不等式、根据解集判断系数的取值范围是解题的关键.28.(2022春•永春县期中)一个四位数,记千位数字与个位数字之和为x,十位数字与百位数字之和为y,如果x=y,那么称这个四位数为“对称数”.(1)最大的“对称数”为 ,最小的“对称数”为 .(2)若上述定义中的x满足不等式|x+1|<4,则这样的对称数有 个.(3)一个四位的“对称数”M,它的百位数字是千位数字a的3倍,个位数字与十位数字之和为10,且个位数字b −1≤x−22b有3个整数解,求出所有满足条件的“对称数”M的值.思路引领:(1)根据题意,可以写出最小的“对称数”和最大的“对称数”;(2)根据个位数字b −1≤x−22b有3个整数解,可以求得b的值,然后根据题意,可以得到所有满足条件的“对称数”M的值.解:(1)由题意可得,最大的“对称数”是9999,最小的“对称数”为1010,故答案为:9999;1010;(2)∵|x+1|<4,1≤x≤9,x为整数,∴x=1或2,∴当x=1时,对称数有1010,1100,当x=2时,对称数有1111,1201,1021,2110,2200,2020,故定义中的x满足不等式|x+1|<4,则这样的对称数有8个,故答案为:8;(3−1≤x−22b,得b18<x≤4,∵个位数字b −1≤x−22b有3个整数解,∴1≤b18<2,解得7≤b<15,∵b为个位数字,∴b=7,8,9,∵一个四位的“对称数”M,它的百位数字是千位数字a的3倍,个位数字与十位数字之和为10,∴百位数字为3a,十位数字是10﹣b,∴a+b=3a+(10﹣b),∴a=b﹣5,∴当b=7时,a=2,此时对称数”M的值是2637,当b=8时,a=3,此时对称数”M的值是3928,当b=9时,a=4,此时百位数字3a=12不存在,舍去,由上可得,对称数”M的值是2637,3928.总结提升:本题考查由实际问题抽象出一元一次不等式组、一元一次不等式组的整数解,解答本题的关键是明确题意,求出M的值.29.(2022春•如东县期中)对x,y定义一种新运算T,规定:T(x,y)=(mx+ny)(x+2y)(其中m,n 均为非零常数).例如T(1,1)=3m+2n.(1)已知T(1,﹣1)=0,T(0,2)=8.①求m,n的值;②若关于P的不等式组T(2p,2−p)>4T(4p,3−2p)≤a恰好有3个整数解,求a的取值范围.(2)当x2≠y2时,T(x,y)=T(y,x)对于任何有理数x,y都成立,请直接写出m,n满足的关系式.思路引领:(1)①构建方程组即可解决问题;②根据不等式即可解决问题;(2)利用恒等式的性质,根据关系式即可解决问题;解:(1)①由题意,得−(m−n)=0 8n=8,∴m=1 n=1;②由题意,得(2p+2−p)(2p+4−2p)>4①(4p+3−2p)(4p+6−4p)≤a②,解不等式①,得p>﹣1.解不等式②,得p≤a−18 12.∴﹣1<p≤a−18 12.∵恰好有3个整数解,∴2≤a−1812<3.∴42≤a<54.(2)由题意得:(mx+ny)(x+2y)=(my+nx)(y+2x),∴mx2+(2m+n)xy+2ny2=2nx2+(2m+n)xy+my2,∵对任意有理数x,y都成立,∴m=2n.总结提升:本题考查一元一次不等式、二元一次方程组、恒等式等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.30.(2022春•长沙县期末)定义:对于任意实数a,b,如果满足a+b=ab,那么称a,b互为“朋友数”,点(a,b)为“朋友点”.(1)判断下列命题的真假,真命题在括号内打“√”,假命题在括号内打“×”;①1.5与3是互为“朋友数”的; ②若点(a,b)为“朋友点”,则点(b,a)也一定为“朋友点”; ③若点a与b互为相反数,则(a,b)一定不是“朋友点”; ④存在与1互为“朋友数”的实数. (2)填空:若(a,3)为“朋友点”,则a= .(3)已知P(x,y)是平面直角坐标系内的一个点,且它的横、纵坐标是关于x,y的二元一次方程组x−2y=m2−92x+y=2m2+7的解,请判断点P(x,y)是否为“朋友点”?若是,请求出m的值;若不是,请说明理由.思路引领:(1)①由1.5+3=4.5,1.5×3=4.5,可得①是真命题;②若点(a,b)为“朋友点”,则a+b=ab,有b+a=ba,可知②是真命题;③若a=b=0,则a+b=ab,故③是假命题;④设1与x互为“朋友数”,则x+1=x×1,方程无解,可知④是假命题;(2)若(a,3)为“朋友点”,则a+3=a×3,解得a=3 2;(3)由x−2y=m2−92x+y=2m2+7得:x=m2+1y=5,若P(m2+1,5)是“朋友点”,则m2+1+5=(m2+1)×5,可解得m=±12,即可得答案.解:(1)①∵1.5+3=4.5,1.5×3=4.5,∴1.5与3是互为“朋友数”的,①是真命题,故答案为:√;②若点(a,b)为“朋友点”,则a+b=ab,∴b+a=ba,∴点(b,a)也一定为“朋友点”;②是真命题,故答案为:√;③若a=b=0,则a+b=ab,∴此时(a,b)是“朋友点”,③是假命题,故答案为:×;④设1与x互为“朋友数”,则x+1=x×1,方程无解,∴不存在与1互为“朋友数”的实数,④是假命题,故答案为:×;(2)若(a,3)为“朋友点”,则a+3=a×3,解得a=3 2,故答案为:3 2;(3)当m=±12时,P(m2+1,5)是“朋友点“,理由如下:由x−2y=m2−92x+y=2m2+7得:x=m2+1y=5,∴P(m2+1,5),若P(m2+1,5)是“朋友点”,则m2+1+5=(m2+1)×5,解得m=±1 2,∴当m=±12时,P(m2+1,5)是“朋友点”题意,理解“朋友数”和“朋友点”的定义.31.(2022春•灌云县期末)新定义:若一元一次方程的解在一元一次不等式组解集范围内,则称该一元一次方程为该不等式组的“相依方程”,例如:方程x﹣1=3的解为x=4,而不等式组x−1>1x−2<3的解集为2<x<5,不难发现x=4在2<x<5的范围内,所以方程x﹣1=3是不等式组x−1>1x−2<3的“相依方程”.(1)在方程①x﹣3=0;②3x+2=x;③2x﹣10=0中,不等式组x>2x≤5的“相依方程”是 ① ;(填序号)(2)若关于x的方程2x+k=6>x2x13−1的“相依方程”,求k的取值范围.思路引领:(1)求出不等式组的解集,以及各方程的解,判断即可;(2)求出已知不等式组的解集,根据方程为不等式组的“相依方程”,确定出k的范围即可.解:(1)方程①x﹣3=0,解得:x=3;②3x+2=x,解得:x=﹣1;③2x﹣10=0,解得:x=5,不等式组x>2x≤5,解得:2<x≤5,则方程①x﹣3=0是不等式组x>2x≤5的“相依方程”;故答案为:①;(2>x2x13−1,解得:﹣1<x≤1,方程2x+k=6,解得:x=6−k 2,代入得:﹣1<6−k2≤1,解得:4≤k<8.总结提升:此题考查了解一元一次不等式组,以及一元一次方程的解,弄清题中的新定义是解本题的关键.32.(2022春•蜀山区校级期中)阅读理解:我们把|a b c d |称为二阶行列式,规定它的运算法则为|a b c d |=ad ﹣bc ,例如:|2345|=2×5﹣3×4=﹣2.(1)填空:若|−12x−10.5x |=0,则x = 14 ,|213−x x |>0,则x 的取值范围 ;(2)若对于正整数m ,n 满足,1<|1n m 4|<3,求m +n 的值;(3)若对于两个非负数x ,y ,|x−1y 23|=|x −y 2−1|=k ,求实数k 的取值范围.思路引领:(1)根据法则得到﹣x ﹣0.5(2x ﹣1)=0、2x ﹣(3﹣x )>0,然后解得即可.(2)根据法则得到1<4﹣mn <3,解不等式求得1<mn <3,由m 、n 是正整数,则可求得m +n =3;(3)根据法则得到3(x ﹣1)﹣2y =﹣x +2y =k ,解方程组求得x ,y 的值,然后根据题意得关于k 的不等式组,解得即可.解:(1)由题意可得﹣x ﹣0.5(2x ﹣1)=0,整理可得﹣x ﹣x +0.5=0,解得x =14;由题意可得2x ﹣(3﹣x )>0,解得x >1,故答案为14,x >1;(2)由题意可得,1<4﹣mn <3,∴1<mn <3,∵m 、n 是正整数,∴m =1,n =2,或m =2,n =1,∴m +n =3;(3)由题意可得3(x ﹣1)﹣2y =﹣x +2y =k ,∴3x−2y =k +3①−x +2y =k ②,①+②得:2x =2k +3,解得:x =2k 32,将x =2k 32代入②,得:−2k 32+2y =k ,解得y=4k3 4,∵x、均为非负数,≥0≥0,解得k≥−3 4.总结提升:此题主要考查了解一元一次不等式和解一元二次方程组,关键是看懂题目所给的运算法则,根据题意列出等式或不等式.。

难点探究专题:有理数中的新定义型与规律探究(4类热点题型讲练)(解析版)-初中数学北师大版7年级上册

难点探究专题:有理数中的新定义型与规律探究(4类热点题型讲练)(解析版)-初中数学北师大版7年级上册

第10讲难点探究专题:有理数中的新定义型与规律探究(4类热点题型讲练)目录【类型一有理数中新定义型的有关运算】......................................................................................................1【类型二一列数中的规律探究问题】..............................................................................................................5【类型三计算中的规律探究问题】..................................................................................................................8【类型四数轴上的规律探究问题】. (12)【类型一有理数中新定义型的有关运算】1.(2023春·贵州毕节·七年级统考期末)设a ,b 为自然数,定义22a b a b ab ∆=+-,则()()3445∆+-∆的值()A .34B .58C .74D .98【答案】C【分析】由22a b a b ab ∆=+-,可知()()()()2222343445453445∆+-=+-⨯+∆+---⨯,计算求解即可.【详解】解:∵22a b a b ab ∆=+-,∴()()()()222243343445474545=+-⨯+-∆+--⨯+=∆-,【类型二一列数中的规律探究问题】【类型三计算中的规律探究问题】例题:(2023·全国·九年级专题练习)计算:1211-=,2213-=,3217-=,42115-=,52131-=,……归纳各计算结果中的个位数字规律,则202221-的个位数字是()A .1B .3C .4D .5【答案】B【分析】根据题目中的式子可以计算出前几个数字,从而可以发现个位数字的变化规律,进而可以得到202221-的个位数字.【详解】解:由1211-=,2213-=,3217-=,42115-=,52131-=,……可知计算结果中的个位数字以1375、、、为一个循环组依次循环,∵202245052÷=⋯,∴202221-的个位数字是3,故选:B .【点睛】本题考查数字的变化类、尾数特征,解答本题的关键是明确题意,发现个位数字的变化特点,求出所求式子的个位数字.【变式训练】1.(2022秋·山东枣庄·七年级枣庄市第十五中学校考阶段练习)观察下列等式:122=,224=,328=,4216=,….通过观察,用你发现的规律确定20232的个位数字是()A .2B .4C .8D .6【答案】C【分析】由题意得,2为底的幂的个位数字是按2,4,8,6这一规律循环的,找到规律后即可求得结果.【详解】解:继续计算:5678232, 264, 2128, 2256====,…,显然个位数字是按2,4,8,6这一规律循环的,而202345053=⨯+,所以20232的个位数字是8;故选:C .【点睛】本题数字规律探索问题,考查了乘方的计算,关键是由特殊到一般找到规律.2.(2023秋·全国·七年级专题练习)观察算式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,….通过观察,用你所发现的规律确定32021的个位数字是()A .3B .9C .7D .1【答案】A【分析】从运算的结果可以看出尾数以3、9、7、1四个数字一循环,用2019除以4,余数是几就和第几个数字相同,由此解决问题即可.【详解】解:已知31=3,末位数字为3,32=9,末位数字为9,33=27,末位数字为7,34=81,末位数字为1,35=243,末位数字为3,36=729,末位数字为9,37=2187,末位数字为7,38=6561,末位数字为1,…由此得到:3的1,2,3,4,5,6,7,8,…次幂的末位数字以3、9、7、1四个数字为一循环,【类型四数轴上的规律探究问题】例题:(2022秋·河北沧州·七年级统考期末)一电子跳蚤落在数轴上的某点k 0处,第一步从k 0向左跳一个单位到k 1,第二步从k 1向右跳2个单位到k 2,第三步由k 2处向左跳3个单位到k 3,第四步由k 3向右跳4个单位k 4…按以上规律跳了100步后,电子跳蚤落在数轴上的数是0,则k 0表示的数是()A .0B .100C .50D .﹣50【答案】D【分析】根据题意写出数字并总结出变化规律,然后计算即可得到答案.【详解】解:根据题意可知:10210320(1)(2)(1)(2)(3)(1)(2)(3)k k k k k k k k =+-=++=+-++=+-=+-+++-……0(1)(2)(3)...(1)n nk k n=+-+++-++-当n =100时,1000000(1)(2)(3) (100)(12)(34)...(9910015050k k k k k =+-+++-+++=+-++-+++-+=+⨯=+=)∴050k =-故选D .【点睛】本题考查了有理数的加法,掌握相关知识,找到数字的变化规律,同时注意解题中需注意的相关事项是本题的解题关键.【变式训练】【答案】1516-【答案】1027。

部编数学七年级上册专题03有理数的混合运算(解析版)含答案

部编数学七年级上册专题03有理数的混合运算(解析版)含答案

2022-2023学年人教版数学七年级上册压轴题专题精选汇编专题03 有理数的混合运算考试时间:120分钟 试卷满分:100分一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2021七上·驻马店期末)若 a 是最大的负整数, b 是绝对值最小的有理数, c 是倒数等于它本身的自然数,则 202220222021a b c ++ 的值为( ) A .2B .0C .2021D .2022【答案】A【完整解答】解:∵a 是最大的负整数, b 是绝对值最小的有理数, c 是倒数等于它本身的自然数, ∴a=-1,b=0,c=1,∴202220222021a b c ++= ()202220221202101-+⨯+=1+0+1=2故答案为:A.【思路引导】由题意可得a=-1,b=0,c=1,然后根据有理数的混合运算法则计算即可.2.(2分)(2021七上·遵化期末)下列计算正确的是( )A .()21237---⨯=B .13434÷⨯=C .()()25219⨯---=D .()()()101824515--÷-+⨯-=-【答案】D【完整解答】解:A .()2123165---⨯=-+=,不符合题意;B .111334344416÷⨯=⨯⨯=,不符合题意;C .()()252110111⨯---=--=-,不符合题意;D .()()()10182********--÷-+⨯-=+-=-,符合题意;故答案为:D .【思路引导】根据含乘方的有理数的混合运算的计算方法求出各选项的结果再判断即可。

3.(2分)(2021七上·拱墅月考)下列计算正确的是( )A .15﹣15×4=0×4=0B .9÷(﹣8)×(﹣18)=9÷1=9C .﹣32﹣(﹣2)3=9﹣8=1D .1111712(()(412164487-÷+=-÷=-【答案】D【完整解答】解:A 、原式=15﹣45=35-,故此选项错误,不符合题意;B 、原式=9×(﹣18)×(﹣18)=964,故此选项错误,不符合题意;C 、原式=﹣9﹣(﹣8)=﹣9+8=﹣1,故此选项错误,不符合题意;D 、原式=1111712()()(412164487-÷+=-÷=-,故此选项错正确,符合题意.故答案为:D.【思路引导】对于A 中的式子,先计算乘法,再计算减法,据此判断;对于B 中的式子,首先将除法化为乘法,然后利用有理数的乘法法则进行计算即可判断;对于C 中的式子,根据有理数的乘方法则可得原式=-9+8,据此判断;对于D 中的式子,首先计算出括号内的值,然后利用有理数的除法法则计算出结果,据此判断.4.(2分)(2021七上·秀洲月考)对于任意不相等的两个实数a ,b ,定义运算:a ※b =a 2﹣b 2+1,例如3※2=32﹣22+1=6,那么(﹣5)※4的值为( )A .﹣40B .﹣32C .18D .10【答案】D【完整解答】解:(-5)※4=(﹣5)2﹣42+1=10.故答案为:D.【思路引导】根据定义的新运算可得(-5)※4=(-5)2-42+1,然后结合有理数的混合运算法则进行计算.5.(2分)(2021七上·达州期中)若a=-3×42,b=(-3×4)2,c=-(3×4)2,则a ,b ,c 的大小关系正确的是( ) A .b >a >c B .b >c >a C .a >b >c D .c >a >b【答案】A【完整解答】解:∵a=-3×42=-48,b=(-3×4)2=144,c=-(3×4)2=-144,-144<-48<144,∴b >a >c.故答案为:A.【思路引导】根据有理数的乘方、乘法法则分别计算出a 、b 、c 的值,然后进行比较即可.6.(2分)(2020七上·运城期中)我们常用的数是十进制数,而计算机程序处理数据使用的只有数码0和1的二进制数,这二者可以相互换算,如将二进制数1011换算成十进制数应为:1×23+0×22+1×21+1×20=11.按此方式,则将十进制数7换算成二进制数应为( ) A .101B .110C .111D .1101【答案】C【完整解答】解:∵7=4+2+1,∴1×22+1×21+1×20=7,∴十进制数7换算成二进制数应为111.故答案为:C .【思路引导】首先7=4+2+1,由此即可把7变为1×22+1×21+1×20=7,从而得出十进制数7换算成二进制数的结果.7.(2分)(2019七上·乌鲁木齐月考)为了求1+2+22+23+…+22016的值,可令S=1+2+22+23+…+22016,则2S=2+22+23+24+…+22017,因此2S-S=22017-1,所以1+2+22+23+…+22016=22017-1. 仿照以上推理计算出1+5+52+53+…+52016的值是( ) A .201651-B .201751-C .2016514-D .2017514-【答案】D【完整解答】设S =1+5+52+53+…+52016,则5S =5+52+53+…+52014+52017,∴4S =52017-1,则S =2017514- ,故答案为:D.【思路引导】设S =1+5+52+53+…+52016①,两边同乘以5可得5S =5+52+53+…+52014+52017②,利用②-①可得4S =52017-1,据此求出S 即可.8.(2分)阅读材料:求值:1+2+22+23+24++22013.解:设S=1+2+22+23+24+…+22013.将等式两边同时乘以2,得2S=2+22+23+24+…+22013+22014将下式减去上式,得2S ﹣S=22014﹣1.即S=1+2+22+23+24++22013=22014﹣1.请你仿照此法计算1+3+32+33+34+…+32018的值是( )A .32018﹣1B .2018312-C .32019﹣1D .2019312-【答案】D【完整解答】设S=1+3+32+33+34+…+22018.将等式两边同时乘以3,得3S=3+32+33+34+…+32018+32019将下式减去上式,得3S ﹣S=32019﹣1.即S=1+3+32+33+34++32018=2019312- .故答案为:D.【思路引导】利用方程的思想设S=1+3+32+33+34+…+22018.将等式两边同时乘以3,可得3S=3+32+33+34+…+32018+32019,然后将下式减去上式求出S 即可.9.(2分)(2018七上·梁平期末)日常生活中我们使用的数是十进制数 . 而计算机使用的数是二进制数,即数的进位方法是“逢二进一” . 二进制数只使用数字0,1,如二进制数1101记为 21101 , 21101 通过式子 321212021⨯+⨯+⨯+ 可以转换为十进制数13,仿照上面的转换方法,将二进制数 211101 转换为十进制数是( ) A .4B .25C .29D .33【答案】C【完整解答】解: 21101 通过式子 321212021⨯+⨯+⨯+ 转换为十进制数13,43221110112121202129∴=⨯+⨯+⨯+⨯+= .故选:C .【思路引导】由题意知, 211101 可表示为 432121212021⨯+⨯+⨯+⨯+ ,然后通过计算,所得结果即为十进制的数.10.(2分)(2019七上·厦门月考)已知 622410(2016),(40)1016a b =⨯--=-- ,2666666665c =-⨯ ,则 ,,a b c 的大小关系是( )A .a b c >>B .c a b>>C .b c a>>D .c b a>>【答案】D【完整解答】解: 6262410(2016)=4102016=64256a =⨯--⨯--2(40)1016=1600-1016=584b =--2666666665=666(666665)666c =-⨯⨯-=∵666>584>-64256∴c b a >>故答案为:D.【思路引导】根据有理数的混合运算,分别求出 ,,a b c 的大小即可.二.填空题(共9小题,满分18分,每题2分)11.(2分)(2022七上·石阡期末)若 ()2350x y -++= ,则 x xy y -= .【答案】110【完整解答】解: 2(3)50x y -++= ,30x ∴-= , 50y += ,解得: 3x = , 5y =- ,33(5)(5)15125110x xy y ∴-=⨯---=-+= .故答案为:110.【思路引导】根据绝对值及偶次幂的非负性,由两个非负数的和为0,则每一个数都为0,可得x-3=0、y+5=0,求出x 、y 的值,然后代入xy-y x 中进行计算.12.(2分)(2021七上·永州月考)用“⊿”定义运算对于任意有理数m 、b 都有m ⊿b = 2b +m.例如:7⊿4= 24 +7=23,则(-9)⊿(-2)= .【答案】5-【完整解答】解:由题意得: 2(9)(2)(2)(9)--=-+-⊿ ,49=- ,5=- ,故答案为: -5 .【思路引导】根据新定义的计算法则把原式转化为有理数的混合运算,再计算即可.13.(2分)(2021七上·交城期中)“ ⊗ ”定义新运算:对于任意的有理数a 和b ,都有21a b b ⊗=+ .例如: 2955126⊗=+= .当m 为有理数时,则 (3)m m ⊗⊗ 等于  .【答案】101【完整解答】解: (3)m m ⊗⊗ = 2(31)m ⊗+ = 10m ⊗ = 2101+ =101. 故答案为:101.【思路引导】根据定义新运算转化为有理数的混合运算,再计算即可.14.(2分)(2021七上·平阳期中)计算:(-1)2018-(π-3.14)0+( 12)-2= .【答案】4【完整解答】解:原式=1-1+4=4.故答案为:4.【思路引导】先进行有理数乘方的运算,然后进行有理数加减混合运算,即得结果.15.(2分)(2021七上·宜兴期中)如果规定这样一种运算法则:a ※b =a 2+2ab ,例如:3※(﹣2)=32+2×3×(﹣2)=﹣3.则(﹣3)※2= .【答案】-3【完整解答】解:由新定义的运算法则可得: 2(3)2(3)2(3)29123-=-+⨯-⨯=-=-※故答案为:-3.【思路引导】将a=-3与b=2代入 a ※b =a 2+2ab 中得出常规算式,按含乘方的有理数的混合运算法则计算即可.16.(2分)(2021七上·绍兴开学考)小明学了计算机运算法则后,编制了一个程序,当他任意输入一个有理数以后,计算机会计算出这个有理数的平方减去2的差.若他第一次输入 12-,然后将所得结果再次输入,那么最后得到的结果是 .【答案】1716【完整解答】解:∵第一次输入12-∴第一次输出的数为217224⎛⎫--=-⎪⎝⎭第二次输入74-∴27172416⎛⎫--= ⎪⎝⎭.故答案为:1716.【思路引导】设这个有理数为x ,将x=12-代入22x -进行计算,可求出结果,再将其结果代入22x -,进行计算即可.17.(1分)(2020七上·蒙山月考)计算: ()1212-÷= 【答案】-42【完整解答】解: ()()121212422-÷=-⨯=- ; 故答案为 42- .【思路引导】根据有理数的除法进行求解即可.18.(2分)(2021八上·抚顺期末)求 220191222++++ 的值,可令 22019S 1222=++++ ,则23202022222S =++++ ,因此 2020221S S -=- .仿照以上推理,计算出23201911112222++++ 的值为 .【答案】2019112-【完整解答】解:令 23201911112222S =++++ , 则 23420201111122222S =++++ ,∴2020111222S S -=- ,∴2020111222S =- ,则 2019112S =-.故答案为: 2019112-【思路引导】根据题目所给计算方法,令 23201911112222S =++++ ,再两边同时乘以 12,求出 12S ,用 12S S - ,求出 12S 的值,进而求出 S 的值.19.(2分)如果有4个不同的正整数 a 、 b 、 c 、 d 满足()()()()20192019201920198a b c d ----= ,那么 a b c d +++ 的最大值为  .【答案】8078【完整解答】解:∵a 、 b 、 c 、 d 是四个不同的正整数, ∴四个括号内是各不相同的整数,不妨设 ()()()()2019201920192019a b c d -<-<-<- ,又∵()()()()20192019201920198a b c d ----= ,∴这四个数从小到大可以取以下几种情况:①-4,-1,1,2;②-2,-1,1,4.∵()()()()2019+2019+2019+2019a b c d ---- = 8076()a b c d -+++ ,∴a b c d +++ =8076- ()()()()2019+2019+2019+2019a b c d ----⎡⎤⎣⎦ ,∴当 ()()()()2019+2019+2019+2019a b c d ---- 越小, a b c d +++ 越大,∴当 ()()()()2019+2019+2019+2019a b c d ---- =-4-1+1+2=-2时,a b c d +++ 取最大值=8076-(-2)=8078.故答案为:8078.【思路引导】根据 a 、 b 、 c 、 d 是四个不同的正整数,可知四个括号内是各不相同的整数,结合乘积为8,进行分类讨论.三.解答题(共10小题,满分63分) 20.(12分)利用因式分解简便运算.(1)(3分)2248482412+⨯+ ,(2)(3分)223.28 1.28 6.56 1.28-⨯+;(3)(3分)2240 3.1580 3.15 1.8540 1.85⨯+⨯⨯+⨯ ;(4)(3分)2382438144+⨯+ .【答案】(1)解: 2248482412+⨯+2(4812)=+3600=(2)解:原式 2(3.28 1.28)=-4=(3)解:原式 ()2240 3.152 3.15 1.85 1.85=⨯+⨯⨯+40(3.15=⨯21.85)+4025=⨯=1000(4)解:原式 22382123812=+⨯⨯+2(3812)=+250=2500=【思路引导】(1)根据完全平方公式进行因式分解,再进行计算即可;(2)根据完全平方公式进行因式分解,再进行计算即可;(3)先提公因式40,再根据完全平方公式进行因式分解,然后进行计算即可;(4)根据完全平方公式进行因式分解,再进行计算即可.21.(4分)(2021七上·嘉祥月考)已知a ,b 互为相反数,c ,d 互为倒数,x=(-2)2,求()()()202120222x a b cd x a b cd -+--++- 的值.【答案】解:∵a ,b 互为相反数,c ,d 互为倒数,x=(-2)2∴a+b=0,cd=1,x=4∴原式= ()()20222401401--⨯-+-=16+4+1=21【思路引导】根据题意得出a+b=0,cd=1,x=4,再代入原式进行计算,即可得出答案.22.(4分)(2021七上·镇巴期末)已知a 的相反数为-2,b 的倒数为 12- ,c 的绝对值为2,求 2a b c ++ 的值.【答案】解: a 的相反数为 2- ,b 的倒数为 12-,c 的绝对值为2, 2a ∴= , 2b =- , 2c =± ,()2222(2)a b c ∴++=+-+±224=-+4=【思路引导】相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0;倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数;绝对值规律总结:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0;根据相反数的定义得, 2a = ;由倒数的定义得, 2b =- ;由绝对值的性质得, 2.c =± 将它们的值分别代入,即可求出 2a b c ++ 的值.23.(5分)(2020七上·卧龙期中)现规定“ ∆ ”为一种新的运算:当 a b ≥ 时, 21a b a ab ∆=-+ ;当a b < 时, 21a b b ab ∆=+- .试计算: [(1)2](3)-∆∆- .【答案】解:原式= 222113⎡⎤+⨯--∆-⎣⎦()()= 13∆-()= 21131-⨯-+()=5.【思路引导】根据规定的新运算先计算(-1)△2,再将结果与(-3)进行同样的运算即可求解.24.(5分)(2020七上·犍为期中)已知a 、b 互为倒数,c 、d 互为相反数, 5m = ,n 是最大的负整数.求代数式 20202()4()ab c d n m --+-+ 的值.【答案】解:由题意得: 101ab c d n =+==-,, ,5m = ,5m ∴=± ,225m ∴= ,则 202022020()4()(1)40(1)25ab c d n m --+-+=--⨯--+ ,10125=-++ ,27= .【思路引导】由 a 、b 互为倒数,c 、d 互为相反数, 5m = ,n 是最大的负整数 ,可得5m =±,101ab c d n =+==-,,,可求出225m = ,然后整体代入进行计算即可.25.(5分)(2020七上·温州月考)若“三角” 表示适算a+b+c ,“方框 表示运算x-y+z+w.求:表示的速算,并计算结果。

专题03 新定义下的实数运算(中档题、压轴题50题)(解析版)

专题03 新定义下的实数运算(中档题、压轴题50题)(解析版)

专题03�新定义下的实数运算(中档题、压轴题50题)(解析版)学校:___________姓名:___________班级:___________考号:___________一、新定义下的实数运算,中档题30题,难度三星1.规定一种新运算ab ad bc cd =-.(1)2345=;(2)若22233235x x x x M -++-+-=--,则M 的化简结果为.【答案】2-2221x x --【分析】本题考查了新定义的计算,解题关键是能熟练运用新定义中的计算规律结合实数的运算法则求解.(1)根据新定义运算法则即可求解;(2)根据新定义运算法则化简即可求解.【详解】解:(1)原式254310122=⨯-⨯=-=-.(2)由题意得:22523332M x x x x =--++-+-(+)()2210515936x x x x =---+-2221x x =--.2.若一个各个数位的数字均不为零的四位数M 满足其千位数字与十位数字的和等于其百位数字与个位数字的和,则称这个数为“间位等和数”;将-个间位等和数的十位数字和个位数字去掉后剩下的两位数记作A ,千位数字和百位数字去掉后剩下的两位数记作B ,令()33A B F M +=,若四位数M 的千位数为a ,百位数字为b ,十位数字为c ,个位数字为d ,则()1573F =,如果()F M 为完全平方数(完全平方数就是这个数可以写成某个整数的平方,如,242=,所以4是完全平方数),那么M 的最小值为.【答案】83;1122.【分析】根据题意得出A 、B 的值,代入()33A B F M +=计算即可解答;由题意可知10A a b =+,10B c d =+,a c b d +=+,代入()33A B F M +=计算得到()3a c F M +=,根据()F M 为完全平方数且取M 的最小值,可得()1F M =,进而求出abcd ,,,的值,即可解答.本题考查了新定义运算,解题关键是读懂题意根据间位等和数的定义正确表示出A 、B ,再结合完全平方③[)1x x -≤,即最大值为1,该选项错误;④[)0.2x x -=不一成立,该选项错误;故答案为:①.4.定义:对于一个两位数x ,如果x 满足个位数字与十位数字互不相同....,且都不为零....,那么称这个两位数为“相异数”.将一个“相异数”的个位数字与十位数字对调后得到一个新的两位数,将这个新两位数与原两位数的求和,再除以11所得的商记为()S x .例如,13a =,对调个位数字与十位数字得到的新两位数31,新两位数与原两位数的和为133144+=,和44除以11的商为44114÷=,所以(13)4S =.(1)下列两位数:40,51,77中,“相异数”为________;(2)计算:(65)S 的值;(3)若一个“相异数”y 的十位数字是k ,个位数字是21k -,且()8S y =,求相异数y .【答案】(1)51(2)11(3)相异数y 是35【分析】本题考查了新定义整数的整除问题,根据定义计算是解题的关键.(1)先确定各数位上的数字,不同的才是“相异数”.(2)根据()S x 的定义计算即可.(3)用幂乘的方式表示相异数,再根据()S x 的定义计算即可.【详解】(1)∵40中有数字0,不符合定义,不是“相异数”,51中十位数字是5,个位数字是1,不同,是“相异数”,77中,十位数字和个位数字都是7,相同,不符合题意,故不是“相异数”.故答案为:51.(2)根据题意,得655621+=1,1211111÷=,故(65)11S =.(3)由“相异数”y 的十位数字是k ,个位数字是21k -,且()8S y =得,()10211021811k k k k +-+-+=⨯,解得3k =,∴212315k -=⨯-=,∴相异数y 是35.5.定义一种新的运算“※”,称为(加乘)运算:A.1B.4C.6D【分析】(1)根据题目中所给的定义求解即可;(2)紧扣题目给出的定义,逐一判断即可;(3)根据[][]11x x +=+,[]{}x x x -=,即[]{}2139x x x ++=-,可变为:{}(){}2139x x x x -++=-,整理:{}11x x -=,则有[]{}{}112x x x x =-=-,根据{}01x ≤<,可得[]11x 9<≤,即有[]10x =,或者[]11x =,问题随之得解.【详解】(1)根据题意:[]3.63=,即:{}[]3.6 3.6 3.60.6=-=,故答案为:3,0.6;(2)∵{}m 表示[]m m -的值,称为m 的小数部分,∴{}01x ≤<,即①正确;根据定义可得:[][]11x x +=+,即②正确;∵{}[]111x x x +=+-+,∴{}[][][]{}11111x x x x x x x x +=+-+=+--=-=,∴即③错误,∵[]x a =,[]{}x x x =-,∴{}a x x =-,∴{}x a x =+,∵{}01x ≤<,∴{}1a a x a ≤+<+,∴即④正确;故正确的有:①②④;(3)∵[][]11x x +=+,[]{}x x x -=,∴[]{}11x x x +=-+,∴[]{}2139x x x ++=-,可变为:{}(){}2139x x x x -++=-,整理:{}11x x -=,即:[]{}{}112x x x x =-=-,。

(必考题)七年级数学上册第一单元《有理数》-解答题专项测试题(含答案解析)

(必考题)七年级数学上册第一单元《有理数》-解答题专项测试题(含答案解析)

一、解答题1.计算:(1)6÷(-3)×(-32) (2)-32×29-+(-1)2019-5÷(-54) 解析:(1)3;(2)1.【分析】(1)根据有理数的乘除混合运算法则计算即可;(2)根据有理数的混合运算法则计算即可.【详解】解:(1)原式=6×1-3⎛⎫ ⎪⎝⎭ ×(-32)=3; (2)原式=-9×29+(-1)-5×4-5⎛⎫ ⎪⎝⎭ =-2-1+4=1.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 2.计算(1)28()5(0.4)5+----;(2)1571361236⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭; (3)2336()(2)()(6)575⨯---⨯-+-⨯; (4)42019213(20.2)(2)(1)5⎡⎤---+-÷⨯---⎢⎥⎣⎦; (5)24512.5()(0.1)(2)(2)10⎡⎤÷-⨯---+-⎣⎦. 解析:(1)3;(2)3;(3)667-;(4)3-;(5)315.4【分析】 (1)先把运算统一为省略加号的和的形式,再利用加法的运算律,把互为相反数的两数先加,从而可得答案;(2)先把除法转化为乘法,再利用乘法的分配律把运算化为:()()()1573636363612-⨯-+⨯--⨯-,再计算乘法运算,最后计算加减运算即可得到答案;(3)把原式化为:()233662557-⨯+-⨯-⨯,逆用乘法的分配律,同步进行乘法运算,最后计算减法即可得到答案; (4)先计算小括号内的运算与乘方运算,再计算中括号内的运算,再计算乘法运算,最后计算加减运算即可得到答案;(5)先计算乘方运算,同步把除法转化为乘法,再计算小括号内的减法运算,同步进行乘法运算,最后计算加法运算即可得到答案.【详解】解:(1)28()5(0.4)5+---- 2850.45=--+ 3.=(2)1571361236⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭ ()157363612⎛⎫=-+-⨯- ⎪⎝⎭()()()1573636363612=-⨯-+⨯--⨯- 123021=-+3.=(3)2336()(2)()(6)575⨯---⨯-+-⨯ ()233662557=-⨯+-⨯-⨯ 2366557⎛⎫=-⨯+- ⎪⎝⎭ 667=-- 667=- (4)42019213(20.2)(2)(1)5⎡⎤---+-÷⨯---⎢⎥⎣⎦()()1132212⎡⎤⎛⎫=---+-⨯--- ⎪⎢⎥⎝⎭⎣⎦()313212⎛⎫=---+⨯-+ ⎪⎝⎭ ()31212⎛⎫=---⨯-+ ⎪⎝⎭131=--+3.=-(5)24512.5()(0.1)(2)(2)10⎡⎤÷-⨯---+-⎣⎦ ()()1=2.5101632100⨯-⨯-- ()1164=--- 1164=-+ 315.4= 【点睛】本题考查的是含乘方的有理数的混合运算,乘法分配律的应用,掌握运算法则与运算顺序是解题的关键.3.给出四个数:3,4--,2,6,计算“24点”,请列出四个符合要求的不同算式. (可运用加、减、乘、除、乘方运算,可用括号;注意:例如4(123)24⨯++=与(213)424++⨯=只是顺序不同,属同一个算式.)算式1:_________________;算式2_______________;算式3:_________________;算式4_______________;解析:()()342624,-⨯-+⨯=()()342624,-⨯-+-=()()643224,⨯-⨯-+=()()()()43624624.-⨯--÷=-⨯-=【分析】由241212,=+ 可得()342624,-⨯-+⨯=由()2438=-⨯-,可得()()342624,-⨯-+-=由()24124,=-⨯- 可得()()643224,⨯-⨯-+=由()2446=-⨯-,可得()()()()43624624-⨯--÷=-⨯-=,从而可得答案.【详解】解:算式1:()()3426121224,-⨯-+⨯=+=算式2:()()()()34263824,-⨯-+-=-⨯-=算式3:()()()()643224124,⨯-⨯-+=-⨯-=算式4:()()()()()()43624334624,-⨯--÷=-⨯--=-⨯-=故答案为:()()342624,-⨯-+⨯=()()342624,-⨯-+-=()()643224,⨯-⨯-+=()()()()43624624.-⨯--÷=-⨯-=【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法,注意本题答案不唯一,这是一道开放性的题目,同时考查了学生的逆向思维.4.321032(2)(3)5-÷---⨯解析:﹣31.【分析】根据有理数的混合运算法则计算即可.【详解】解:321032(2)(3)5-÷---⨯=10-32÷(﹣8)-9×5=10-(﹣4)-45=10+4-45=14-45=﹣31.【点睛】此题主要考察了有理数的混合运算,解题关键是掌握有理数混合运算法则.5.计算:()22216232⎫⎛-⨯-- ⎪⎝⎭ 解析:2【分析】原式先计算乘方,再运用乘法分配律计算,最后进行加减运算即可.【详解】解:()22216232⎫⎛-⨯-- ⎪⎝⎭=2136()432⨯-- =213636432⨯-⨯- =24-18-4=2.【点睛】 此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.6.计算:329(1)4(2)34⎛⎫--÷-+-⨯ ⎪⎝⎭. 解析:12-. 【分析】 根据有理数的四则混合运算顺序:“先算乘方,再算乘除,然后算加减”进行计算即可.【详解】原式311222⎛⎫=-++-=- ⎪⎝⎭. 【点睛】本题考查了有理数的混合运算,掌握运算法则是解题的关键. 7.在数轴上表示下列各数:14, 1.5,3,0,2.5,52----,并将它们按从小到大的顺序排列.解析:图见解析,1531.502.542--<-<-<<< 【分析】在数轴上表示出各数,再按照从左到右的顺序用“<”号把它们连接起来即可.【详解】解: 5=-5--如图所示:故:1531.502.542--<-<-<<<. 【点睛】本题考查的是有理数的大小比较,熟知数轴的特点是解答此题的关键.8.计算:(1)23(2)14⎛⎫-⨯- ⎪⎝⎭;(2)2331(2)592-+-⨯--÷. 解析:(1)1-;(2)47-.【分析】(1)原式先计算乘方和括号内,然后再计算乘法即可得到答案;(2)原式先计算乘方和化简绝对值,再计算乘除法,最后计算加减运算即可得到答案.【详解】解:(1)23(2)14⎛⎫-⨯- ⎪⎝⎭ 3414⎛⎫=⨯- ⎪⎝⎭ 144⎛⎫=⨯- ⎪⎝⎭1=-.(2)2331(2)592-+-⨯--÷ 21(8)593=-+-⨯-⨯ 1406=---47=-.【点睛】此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.9.小李坚持跑步锻炼身体,他以30分钟为基准,将连续七天的跑步时间(单位:分钟)记录如下:10,-8,12,-6,11,14,-3(超过30分钟的部分记为“+”,不足30分钟的部分记为“-”)(1)小李跑步时间最长的一天比最短的一天多跑几分钟?(2)若小李跑步的平均速度为每分钟0.1千米,请你计算这七天他共跑了多少千米? 解析:(1)22分钟;(2)24千米.【分析】(1)时间差=标准差的最大值-标准差的最小值;(2)先计算出一周的总运动时间,利用路程,速度,时间的关系计算即可.【详解】(1)()14822--=(分钟).故小李跑步时间最长的一天比最短的一天多跑22分钟.(2)()30710812611143240⨯+-+-++-=(分钟),0.124024⨯=(千米).故这七天他共跑了24千米.【点睛】本题考查了有理数的混合运算,熟练运用标准差计算时间差,标准时间计算总时间是解题的关键.10.某农户家准备出售10袋大米,称得质量如下:(单位:千克)182,180,175,173,182,185,183,181,180,183(1)填空:以180千克作为基准数,可用正、负数表示这10袋大米的质量与180的差为 ;(2)试计算这10袋大米的总质量是多少千克?解析:(1)+2,0,−5,-7,+2,+5,+3,+1,0,+3;(2)1804千克【分析】(1)规定超出基准数为正数,则不足部分用负数表示,即可;(2)把第(1)题10个数相加,再加上180×10,即可.【详解】(1)以180千克为基准数,超过180千克的记作正数,低于180千克的记作负数,那么各袋大米的质量分别为:+2,0,−5,-7,+2,+5,+3,+1,0,+3,故答案是:+2,0,−5,-7,+2,+5,+3,+1,0,+3;(2)(+2+0−5-7+2+5+3+1+0+3)+ 180×10=1804(千克),答:这10袋大米的总质量是1804千克.【点睛】本题主要考查正负数的意义以及有理数的加减法的实际应用,熟练掌握有理数的加减法运算法则,是解题的关键.11.计算:(1)14-25+13(2)42111|23|()823---+-⨯÷ 解析:(1)2;(2)4【分析】 (1)根据有理数的加减运算,即可求出答案;(2)先计算乘方、绝对值、然后计算乘除,再计算加减运算,即可得到答案.【详解】解:(1)14251311132-+=-+=;(2)42111|23|()823---+-⨯÷=111834--+⨯⨯ =26-+=4.【点睛】本题考查了有理数的混合运算,解题的关键是掌握运算法则进行解题.12.计算题:(1)3×(﹣4)﹣28÷(﹣7);(2)﹣12020+(﹣2)3×1123⎛⎫-+ ⎪⎝⎭. 解析:(1)﹣8;(2)13. 【分析】(1)先计算乘除,再计算加减,即可得到答案;(2)先计算乘方、然后计算乘法和括号内的运算,再计算加法即可.【详解】解:(1)3×(﹣4)﹣28÷(﹣7)=(﹣12)+4=﹣8;(2)﹣12020+(﹣2)3×1123⎛⎫-+ ⎪⎝⎭. =-1+(-8)×16⎛⎫- ⎪⎝⎭ =413-+=13. 【点睛】本题考查了有理数的加减乘除运算,解题的关键是熟练掌握运算法则进行解题. 13.阅读下面材料:在数轴上6与1-所对的两点之间的距离:6(1)7--=;在数轴上2-与3所对的两点之间的距离:235--=;在数轴上8-与4-所对的两点之间的距离:(8)(4)4---=;在数轴上点A 、B 分别表示数a 、b ,则A 、B 两点之间的距离AB a b b a =-=-. 回答下列问题:(1)数轴上表示2-和5-的两点之间的距离是_______;数轴上表示数x 和3的两点之间的距离表示为_______;数轴上表示数_______和_______的两点之间的距离表示为2x +;(2)七年级研究性学习小组在数学老师指导下,对式子23x x ++-进行探究: ①请你在草稿纸上画出数轴,当表示数x 的点在2-与3之间移动时,32x x -++的值总是一个固定的值为:_______.②请你在草稿纸上画出数轴,要使327x x -++=,数轴上表示点的数x =_______.解析:(1)3;|x−3|;x ,-2;(2)5;−3或4.【分析】(1)根据题意找出数轴上任意点间的距离的计算公式,然后进行计算即可;(2)①先化简绝对值,然后合并同类项即可;②分为x >3和x <−2两种情况讨论.【详解】解:(1)数轴上表示−2和−5的两点之间的距离为:|−2−(−5)|=3;数轴上表示数x 和3的两点之间的距离为:|x−3|;数轴上表示数x 和−2的两点之间的距离表示为:|x +2|;故答案为:3,|x−3|,x ,-2;(2)①当x 在-2和3之间移动时,|x +2|+|x−3|=x +2+3−x=5;②当x >3时,x−3+x +2=7,解得:x=4,当x <−2时,3−x−x−2=7.解得x=−3,∴x=−3或x=4.故答案为:5;−3或4.【点睛】本题主要考查的是绝对值的定义和化简,根据题意找出数轴上任意两点之间的距离公式是解题的关键.14.计算(1)18()5(0.25)4+----(2)2﹣412()(63)7921-+⨯- (3)1373015-⨯ (4)22220103213()2(1)43⎡⎤--⨯-⨯--÷-⎢⎥⎣⎦. 解析:(1)3;(2)37;(3)﹣236;(4)72【分析】 (1)本式为简单的有理数加减运算,从左到右先将分数进行计算,再从左到右计算即可. (2)按照有理数混合运算的顺序,利用乘法分配律直接去括号,再进行运算. (3)将﹣71315分解为﹣7﹣1315,再利用乘方分配律进行计算即可. (4)分别根据有理数的乘方计算出各数,再根据实数混合运算的法则进行计算即可.【详解】解:(1)18()5(0.25)4+---- =118544--+ =3;(2)2﹣412()(63)7921-+⨯- =4122(63)(63)(63)7921⎡⎤-⨯--⨯-+⨯-⎢⎥⎣⎦ =2﹣(﹣36+7﹣6),=2﹣(﹣35)=37;(3)1373015-⨯ =﹣7×30+(﹣1315)×30 =﹣210﹣26=﹣236;(4)22220103213()2(1)43⎡⎤--⨯-⨯--÷-⎢⎥⎣⎦ =341(92)149--⨯-⨯-÷ =912-+=72. 【点睛】此题考查了有理数的混合运算注意:要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.15.设0a >,x ,y 为有理数,定义新运算:||a x a x =⨯※.如323|2|6=⨯=※,()414|1|a a -=⨯-※.(1)计算20210※和()20212-※的值. (2)若0y <,化简()23y -※.(3)请直接写出一组,,a x y 的具体值,说明()a x y a x a y +=+※※※不成立. 解析:(1)0;4042;(2)6y -;(3)1a =,2x =,3y =-(答案不唯一)【分析】(1)根据题意※表示前面的数与后面数的绝对值的积,直接代入数据求解计算;(2)有y<0,得到y 为负数,进而得到-3y 为正数,去绝对值后等于本身-3y ,再代入数据求解即可;(3)按照题意要求写一组具体的,,a x y 的值再验算即可.【详解】解:(1)根据题意得:202102021|0|0=⨯=※; ()202122021|2|4042-=⨯-=※;(2)因为0y <,所以30y ->,所以()()232|3|236y y y y -=⨯-=⨯-=-※;(3)由题意,当,,a x y 分别取1a =,2x =,3y =-时,此时()2311※※(-1)=1-=,而11※2※(-3)=2+3=5+,所以,()a x y a x a y +=+※※※不成立.【点睛】本题是新定义题型,按照题目中给定的运算要求和顺序进行求解即可.16.计算:(1)()11270.754⎛⎫--+-+ ⎪⎝⎭; (2)()()202023111242144⎛⎫-++-⨯--⨯- ⎪⎝⎭; 解析:(1)6;(2)11.【分析】(1)先变成省略括号和形式,同时把小数化分数,把分数相加,同号相加,最后异号相加即可;(2)先算乘方,去绝对值和带分数化假分数,再计算乘法,最后计算加减法即可.【详解】解:(1)()11270.754⎛⎫--+-+ ⎪⎝⎭, =1312744+-+, =1217+-,=13-7,=6;(2)()()202023111242144⎛⎫-++-⨯--⨯- ⎪⎝⎭, =()351124444⎛⎫++⨯--⨯- ⎪⎝⎭=11235++-=11.【点睛】本题考查含有乘方的有理数混合,掌握有理数混合运算的法则,解答的关键是熟练掌握运算法则和运算顺序.17.计算:(1)()()34287⨯-+-÷;(2)()223232-+---.解析:(1)16-;(2)6.【分析】(1)先算乘除,后算加法即可;(2)原式先计算乘方运算,再化简绝对值,最后算加减运算即可求出值.【详解】(1)原式12416=--=-(2)原式34926=-+-=【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.计算:2202013(1)(2)4(1)2-÷-⨯---+-. 解析:33【分析】有理数的混合运算,注意先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】 解:2202013(1)(2)4(1)2-÷-⨯---+- =1(2)4192-÷⨯--+ =192(2)4-⨯⨯--+ =3641-+=33.【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键.19.计算:(1)45(30)(13)+---;(2)32128(2)4-÷-⨯-. 解析:(1)28;(2)-2【分析】 (1)有理数的加减混合运算,从左往右依次计算即可;(2)有理数的混合运算,先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】解:(1)45(30)(13)+---=4530+13-=15+13=28(2)32128(2)4-÷-⨯- =18844-÷-⨯ =11--=-2.【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键.20.一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下:(单位:米)+5,﹣4,+10,﹣8,﹣6,+13,﹣10.(1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线最远距离是多少米?(3)守门员全部练习结束后,他共跑了多少米?解析:(1)回到了球门线的位置;(2)11米;(3)56米【分析】(1)由于守门员从球门线出发练习折返跑,问最后是否回到了球门线的位置,只需将所有数加起来,看其和是否为0即可;(2)计算每一次跑后的数据,绝对值最大的即为所求;(3)求出所有数的绝对值的和即可.【详解】解:(1)(+5)+(﹣4)+(+10)+(﹣8)+(﹣6)+(+13)+(﹣10)=(5+10+13)-(4+8+6+10)=28-28=0.答:守门员最后回到了球门线的位置;(2)(3)|+5|+|﹣4|+|+10|+|﹣8|+|﹣6|+|+13|+|﹣10|=5+4+10+8+6+13+10=56(米).答:守门员全部练习结束后,他共跑了56米.【点睛】本题考查了正数和负数以及有理数加减运算的应用等知识点,解题的关键是理解“正”和“负”的相对性,确定具有相反意义的量.21.计算:(1)2×(-3)3-4×(-3)(2)-22÷(12-13)×(-58)解析:(1)-42;(2)15【分析】(1)先算乘方、乘法,再算加减法即可;(2)先算括号和乘方,再算乘除即可.【详解】(1)原式 =2(27)12⨯-+=-54+12= 42-.(2)原式 =15 4()68 -÷⨯-=5 468⨯⨯=15.【点睛】本题考查了有理数的运算,掌握运算法则及运算顺序是关键.22.如图,数轴上A,B两点之间的距离为30,有一根木棒MN,设MN的长度为x.MN数轴上移动,M始终在左,N在右.当点N移动到与点A,B中的一个重合时,点M所对应的数为9,当点N移动到线段AB的中点时,点M所对应的数是多少?解析:点M所对应的数为24或-6.【分析】设MN=x,然后分类计算即可:①当点N与点A重合时,点M所对应的数为9,则点N对应的数为x+9;②当点N与点B重合时,点M所对应的数为9,则点N对应的数为x+9.【详解】设MN=x,①当点N 与点A 重合时,点M 所对应的数为9,则点N 对应的数为x+9,∵AB=30,∴当N 移动到线段AB 的中点时,点N 对应的数为x+9+15=x+24,∴点M 所对应的数为x+24-x=24;②当点N 与点B 重合时,点M 所对应的数为9,则点N 对应的数为x+9,∵AB=30,∴当N 移动到线段AB 的中点时,点N 对应的数为x+9-15=x-6,∴点M 所对应的数为x-6-x=-6;综上,点M 所对应的数为24或-6.【点睛】本题综合考查了数轴的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.数形结合并分类讨论是解题的关键.23.计算:(1)152|18|()263-⨯-+; (2)20203221124(2)3()3-+÷--⨯. 解析:(1)6;(2)-5【分析】(1)先去掉绝对值,然后根据乘法分配律即可解答本题;(2)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【详解】解:(1)152|18|()263-⨯-+ =18×(12﹣56+23) =18×12﹣18×56+18×23=9﹣15+12=6;(2)20203221124(2)3()3-+÷--⨯ =﹣1+24÷(﹣8)﹣9×19=﹣1+(﹣3)﹣1=﹣5.【点睛】 此题主要考查有理数的混合运算,熟练掌握混合运算顺序是解题关键.24.计算:(1)()()()923126--⨯-+÷-(2)()2235112342⎛⎫-+--÷- ⎪⎝⎭. 解析:(1)1;(2)-1.【分析】 (1)先算乘除,再算加减即可求解;(2)先算乘方,后算除法,最后算加减即可求解.【详解】(1)()()()923126--⨯-+÷-=962--=1;(2)()2235112342⎛⎫-+--÷- ⎪⎝⎭ =11891632-+-÷ =1893216-+-⨯ =892-+-=-1.【点睛】 此题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.25.(1)()()()()413597--++---+;(2)340.2575⎛⎫-÷-⨯ ⎪⎝⎭. 解析:(1)-6;(2)715. 【分析】 (1)原式根据有理数的加减法法则进行计算即可得到答案;(2)原式把除法转换为乘法,再进行乘法运算即可得到答案.【详解】解:(1)()()()()413597--++---+=-4-13-5+9+7=-22+9+7=-13+7=-6;(2)340.2575⎛⎫-÷-⨯ ⎪⎝⎭ =174435⨯⨯ =715. 【点睛】此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.26.计算下列各题:(1)()157362912⎛⎫-+⨯- ⎪⎝⎭; (2)()()2362295321343⎛⎫⎛⎫-÷⨯---+⨯- ⎪ ⎪⎝⎭⎝⎭. 解析:(1)19-;(2) 3.-【分析】 (1)利用乘法的分配律把原式化为:()()()1573636362912⨯--⨯-+⨯-,再计算乘法运算,最后计算加减运算即可得到答案; (2)先计算乘方运算与小括号内的运算,同步把除法转化为乘法,再计算乘法运算,最后计算减法运算即可得到答案.【详解】解:(1)()157362912⎛⎫-+⨯- ⎪⎝⎭; ()()()1573636362912=⨯--⨯-+⨯- 182021=-+-19=-(2)()()2362295321343⎛⎫⎛⎫-÷⨯---+⨯- ⎪ ⎪⎝⎭⎝⎭ ()4452741993⎛⎫=⨯⨯---+⨯ ⎪⎝⎭ 16733⎛⎫=--- ⎪⎝⎭16733=-+ 9 3.3=-=- 【点睛】本题考查的是乘法的分配律的应用,含乘方的有理数的混合运算,掌握以上知识是解题的关键.27.阅读下列材料:(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩,即当0x <时,1x x x x ==--.用这个结论可以解决下面问题:(1)已知a ,b 是有理数,当0ab ≠时,求a b a b+的值; (2)已知a ,b ,c 是有理数,0a b c ++=,0abc <,求b c a c a b a b c +++++的值. 解析:(1)2或2-或0;(2)-1.【分析】(1)分三种情况讨论,①0,0a b >>,②0,0a b <<,③0ab <,分别根据题意化简即可;(2)由0a b c ++=整理出,,a b c b c a a c b +=-+=-+=-,判断a b c ,,中有两正一负,再整体代入,结合题意计算即可.【详解】(1)0ab ≠∴①0,0a b >>,==1+1=2a b a b a b a b ++; ②0,0a b <<,==11=2a b a b a b a b+-----; ③0ab <,=1+1=0a b a b+-, 综上所述,当0ab ≠时,a b a b +的值为:2或2-或0; (2)0a b c ++=,0abc <,,a b c b c a a c b ∴+=-+=-+=-即a b c ,,中有两正一负, ∴==()1b c a c a b a b c a b c a b c a b c a b c+++---++++-++=-. 【点睛】本题考查绝对值的非负性以及有理数的运算等知识,是重要考点,难度一般,掌握相关知识是解题关键.28.计算(1)21145()5-÷⨯-(2)21(2)8(2)()2--÷-⨯-.解析:(1)4125;(2)2.【分析】第(1)和(2)小题都属于有理数的混合运算,根据混合运算的运算顺序:先算乘方,并利用有理数的除法法则将除法转化为乘法,再计算乘法,最后计算加减即可求出结果.【详解】解:(1)21145()5-÷⨯-11116()55=-⨯⨯-16125=+4125=;(2)21(2)8(2)()2--÷-⨯-1148()()22=-⨯-⨯-42=-2=.【点睛】本题考查了有理数的混合运算,解题的关键是确定正确的运算顺序并运用运算法则准确计算.29.体育课上全班男生进行了百米测试,达标成绩为14秒,下面是第一小组8名男生的成绩记录,其中“+”表示成绩大于14秒,“-”表示成绩小于14秒.解析:9秒.【分析】根据平均成绩的计算方法,先列式计算表格中所有数据的平均数,再加上标准成绩即可得出结果.【详解】解:1.20.7010.30.20.30.50.18-++--+++=-(秒)140.113.9-=(秒).答:这个小组8名男生的平均成绩是13.9秒.【点睛】此题考查了有理数的混合运算的实际应用,正确理解题目中正数和负数的含义是列式计算的关键.30.计算(1) ()375244128⎛⎫---⨯- ⎪⎝⎭(2) ()212382455-+--÷-⨯解析:(1)47;(2)4925【分析】 (1)根据乘法分配律,求出算式的值是多少即可;(2)先计算乘方及绝对值运算,再计算乘除法运算,最后算加减运算即可求出值.【详解】解: ()375244128⎛⎫---⨯- ⎪⎝⎭ =18+14+15=47(2)()212|38|2455-+--÷-⨯ =11452455⎛⎫-+-⨯-⨯⎪⎝⎭ =24125+ 4925= 【点睛】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.。

七年级有理数概念题

七年级有理数概念题

七年级有理数概念题有理数是整数和分数的统称,包括正整数、负整数、零以及正分数、负分数。

在学习有理数概念题时,需要掌握有理数的加减乘除运算规则、有理数的大小比较、有理数的绝对值等基本概念。

下面将为您介绍一些七年级有理数概念题的相关内容:1. 有理数的加减法:有理数的加减法遵循以下规则:- 同号相加,取绝对值相加,结果的符号与原数相同。

- 异号相加,取绝对值相减,结果的符号取绝对值较大的数的符号。

通过练习一些有理数的加减法题目,可以帮助学生掌握有理数的加减法规则,提高计算能力。

2. 有理数的乘法:有理数的乘法规则为:- 同号相乘,结果为正数。

- 异号相乘,结果为负数。

在乘法运算中,学生需要注意符号的运用,通过练习有理数的乘法题目,巩固乘法规则,提高计算水平。

3. 有理数的除法:有理数的除法也有相应的规则:- 除数不为0,被除数为0时,商为0。

- 同号相除,结果为正数。

- 异号相除,结果为负数。

在进行有理数的除法运算时,学生需要注意除数不能为0的情况,熟练掌握有理数的除法规则,避免出现计算错误。

4. 有理数的大小比较:在比较有理数的大小时,可以通过绝对值的大小来判断,绝对值大的数较大,绝对值小的数较小。

同时,注意有理数的正负情况,负数的绝对值大于正数的绝对值。

通过练习有理数的大小比较题目,可以帮助学生理解有理数的大小关系,提高比较能力。

5. 有理数的绝对值:有理数的绝对值是数的绝对值,即数到原点的距离,绝对值为正数,不考虑数的符号。

绝对值的概念在有理数的运算中有着重要的作用,通过练习有理数的绝对值题目,可以帮助学生理解绝对值的概念,提高数的理解能力。

通过练习以上的有理数概念题目,可以帮助学生巩固有理数的基本概念,提高有理数的运算能力,加深对数学知识的理解。

希望以上内容能对您有所帮助,有任何疑问,欢迎继续咨询。

专题 有理数的加减运算计算题(50题)(4大题型提分练)(解析版)

专题 有理数的加减运算计算题(50题)(4大题型提分练)(解析版)

七年级上册数学《第2章有理数及其运算》专题有理数加减运算计算题◎有理数的加减混合运算(1)有理数加减混合运算的方法:有理数加减法统一成加法.(2)方法指引:①在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.①转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.◎有理数的加减混合运算常用的方法技★1、互为相反数的两数相结合★2、符号相同的数相结合★3、同分母的分数相结合★4、相加减得整数的相结合-- -凑整法★5、按加数的类型灵活结合★6、先把分数分离整数后再分组相结合-- -拆项法题型一 有理数的加法计算1.(2023秋•河东区校级月考)计算:(1)27+(﹣13);(2)(﹣19)+(﹣91);(3)(﹣2.4)+2.4;(4)53+(−23). 【分析】根据有理数的加法法则进行解题即可.【解答】解:(1)27+(﹣13)=14;(2)(﹣19)+(﹣91)=﹣110;(3)(﹣2.4)+2.4=0;(4)53+(−23)=1. 【点评】本题考查有理数的加法,掌握加法法则是解题的关键.2.计算:(1)(﹣3)+(﹣9);(2)6+(﹣9);(3)15+(﹣22);(4)0+(−25);(5)12+(﹣4);(6)﹣4.5+(﹣3.5).【分析】根据有理数加法的计算法则逐个进行计算即可.【解答】解:(1)(﹣3)+(﹣9)=﹣(3+9)=﹣12;(2)6+(﹣9)=﹣(9﹣6)=﹣3;(3)15+(﹣22)=﹣(22﹣15)=﹣7;(4)0+(−25)=−25;(5)12+(﹣4)=12﹣4=8;(6)﹣4.5+(﹣3.5)=﹣(4.5+3.5)=﹣8.【点评】本题考查有理数加法,掌握有理数加法的计算法则是正确计算的前提.3.(2023秋•南郑区校级月考)计算:(1)(+7)+(﹣6)+(﹣7);(2)(−32)+(−512)+52+(−712). 【分析】根据有理数的加减计算法则求解即可.【解答】解:(1)原式=7﹣6﹣7=﹣6;(2)原式=(−32)−512+52−712=(−32+52)−(512+712)=1﹣1=0.【点评】本题主要考查了有理数的加减混合计算,熟知相关计算法则是解题的关键.4.计算:(1)15+(﹣19)+18+(﹣12)+(﹣14);(2)2.75+(﹣234)+(+118)+(﹣1457)+(﹣5.125). 【分析】(1)去括号利用,再利用加法的交换律与结合律进行计算即可.(2)去括号利用,再利用加法的交换律与结合律进行计算即可.【解答】解:(1)原式=15﹣19+18﹣12﹣14=(15+18)+(﹣19﹣12﹣14)=33+(﹣45)=﹣12;(2)原式=234−234+118−1457−518 =(234−234)+(118−518)﹣1457 =﹣1857. 【点评】本题主要考查了有理数的加法,掌握运算法则,利用加法的交换律与结合律进行计算是解题关键.5.用合理的方法计算下列各题:(1)103+(−114)+56+(−712);(2)(−12)+(−25)+(+32)+185+395. 【分析】(1)把原式写成去掉括号的形式,分别计算正数和负数的和,即可得到答案;(2)应用加法的交换,结合律,即可计算.【解答】解:(1)103+(−114)+56+(−712) =103+56−114−712=256−206 =56;(2)(−12)+(−25)+(+32)+185+395 =(−12+32)+(−25+185+395)=1+11=12.【点评】本题考查有理数的加法,关键是掌握有理数的加法法则.6.(2023秋•桐柏县校级月考)提升计算:(1)(﹣2.4)+(﹣3.7)+(﹣4.6)+5.7;(2)23+(﹣17)+6+(﹣22);(3)(+14)+(+18)+6+(−38)+(−38)+(−6).【分析】(1)根据有理数的加法法则计算即可;(2)根据有理数的加法法则计算即可;(3)根据有理数的加法法则计算即可.【解答】解:(1)(﹣2.4)+(﹣3.7)+(﹣4.6)+5.7=[(﹣2.4)+(﹣4.6)]+[(﹣3.7)+5.7]=﹣7+2=﹣5;(2)23+(﹣17)+6+(﹣22)=(23+6)+[(﹣17)+(﹣22)]=29+(﹣39)=﹣10;(3)(+14)+(+18)+6+(−38)+(−38)+(−6)=[(+14)+(+18)+(−38)]+(−38)+[6+(−6)]=0+(−38)+0=−38.【点评】本题考查了有理数的加法,熟练掌握有理数的加法法则是解题的关键. 题型二 有理数的减法计算7.计算:(1)(﹣73)﹣41;(2)37﹣(﹣14);(3)(−13)−190; (4)37−12. 【分析】根据有理数减法法则进行计算即可.【解答】解:(1)原式=﹣73﹣41=﹣114;(2)原式=37+14=51;(3)原式=−3090−190=−3190; (4)原式=614−714=−114.【点评】本题考查有理数的减法,掌握有理数减法法则是解题的关键.8.计算:(1)(﹣14)﹣(+15);(2)(﹣14)﹣(﹣16);(3)(+12)﹣(﹣9);(4)12﹣(+17);(5)0﹣(+52);(6)108﹣(﹣11).【分析】根据有理数的减法法则进行计算即可.【解答】解:(1)原式=﹣14﹣15=﹣29;(2)原式=﹣14+16=2;(3)原式=12+9=21;(4)原式=12﹣17=﹣5;(5)原式=0﹣52=﹣52;(6)原式=108+11=119.【点评】本题考查有理数的减法,掌握有理数的减法法则是解题的关键.9.计算:(1)(﹣34)﹣(+56)﹣(﹣28);(2)(+25)﹣(−293)﹣(+472).【分析】根据有理数的减法法则,把减法化成加法,写成省略加号和的形式,再利用加法运算律进行简便计算即可.【解答】解:(1)原式=(﹣34)+(﹣56)+(+28)=﹣34﹣56+28=﹣90+28=﹣62;(2)原式=(+25)+(+293)+(−472)=25+293−472=25+586−1416=2086−1416=676.【点评】本题主要考查了有理数的减法,解题关键是熟练掌握有理数的加减法则.10.计算下列各题.(1)(5﹣8)﹣2;(2)(3﹣7)﹣(2﹣9);(3)(﹣3)﹣12﹣(﹣4);(4)0﹣(﹣7)﹣4.【分析】根据有理数的减法法则计算即可,有理数减法法则:减去一个数,等于加上这个数的相反数.【解答】解:(1)(5﹣8)﹣2=﹣3+(﹣2)=﹣5;(2)(3﹣7)﹣(2﹣9)=(﹣4)﹣(﹣7)=﹣4+7=3;(3)(﹣3)﹣12﹣(﹣4)=﹣15+4=﹣11;(4)0﹣(﹣7)﹣4=0+7﹣4=3.【点评】本题考查了有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.11.计算:(1)﹣30﹣(﹣85);(2)﹣3﹣6﹣(﹣15)﹣(﹣10);(3)23−(−23)−34. 【分析】(1)根据有理数的减法法则计算即可;(2)根据有理数的减法法则计算即可;(3)根据有理数的减法法则计算即可.【解答】解:(1)﹣30﹣(﹣85)=﹣30+85=55;(2)﹣3﹣6﹣(﹣15)﹣(﹣10)=﹣3﹣6+15+10=16;(3)23−(−23)−34 =23+23−34=712.【点评】本题考查了有理数的减法,熟练掌握有理数的减法法则是解题的关键.12.(2023秋•新城区校级月考)计算:0.47﹣4﹣(﹣1.53).【分析】原式根据有理数加减法法则进行计算即可得到答案.【解答】解:0.47﹣4﹣(﹣1.53)=0.47﹣4+1.53=(0.47+1.57)﹣4=2﹣4=﹣2.【点评】本题主要考查了有理数的加减,熟练掌握有理数加减法法则是解答本题的关键.13.(2023秋•皇姑区校级期中)计算:16﹣(﹣12)﹣24﹣(﹣18).【分析】将减法统一成加法,然后再计算.【解答】解:原式=16+12+(﹣24)+18=28+(﹣24)+18=4+18=22.【点评】本题考查有理数加减混合运算,掌握有理数加减法运算法则是解题关键.14.(2023秋•射洪市校级月考)计算:(﹣7)﹣(﹣10)﹣(﹣8)﹣(﹣2).【分析】减去一个数,等于加上这个数的相反数,由此计算即可.【解答】解:(﹣7)﹣(﹣10)﹣(﹣8)﹣(﹣2)=﹣7+10+8+2=13.【点评】本题考查了有理数的减法,熟记其运算法则是解题的关键.15.(2024春•闵行区期中)计算:0.125−(−234)−(318−0.25).【分析】按照有理数的减法法则,把减法化成加法,写成省略加号和的形式,然后进行简便计算即可.【解答】解:原式=18+234−318+14=234+14+18−318=3﹣3=0. 【点评】本题主要考查了有理数的减法运算,解题关键是熟练掌握有理数的加减法则.16.计算:4.73−[223−(145−2.63)]−13.【分析】根据有理数的减法法则进行求解即可,先算小括号,再算中括号,能用简便方法的用简便方法.【解答】解:原式=4.73﹣[223−(﹣0.83)]−13 =4.73﹣(83+0.83)−13 =4.73−83−0.83−13=0.9.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解题的基础. 题型三 运用加法运算律进行简便计算17.计算:16+(﹣25)+24+(﹣35).【分析】把括号去掉,用加法的交换律和结合律计算.【解答】解:16+(﹣25)+24+(﹣35),=16﹣25+24﹣35=(16+24)+(﹣25﹣35)=40+(﹣60)=﹣20.【点评】本题考查了有理数加法,掌握有理数加法法则,加法的交换律和结合律的熟练应用是解题关键.18.计算:(﹣34)+(+8)+(+5)+(﹣23)【分析】此题可以运用加法的交换律交换加数的位置,原式可变为[(﹣34)+(﹣23)]+(8+5),然后利用加法的结合律将两个加数相加.【解答】解:(﹣34)+(+8)+(+5)+(﹣23),=[(﹣34)+(﹣23)]+(8+5),=﹣57+13,=﹣44.【点评】本题考查了有理数的加法.解题关键是综合应用加法交换律和结合律,简化计算.19.计算:213+635+(−213)+(−525).【分析】原式1、3项结合,2、4项结合,计算即可得到结果.【解答】解:原式=(213−213)+(635−525)=115. 【点评】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.20.计算:(﹣1.8)+(+0.7)+(﹣0.9)+1.3+(﹣0.2).【分析】利用有理数的加法法则及加法的运算律进行计算即可.【解答】解:原式=[﹣1.8+(﹣0.2)]+(0.7+1.3)+(﹣0.9)=﹣2+2+(﹣0.9)=﹣0.9.【点评】本题考查有理数的加法运算,熟练掌握相关运算法则是解题的关键.21.(2023秋•合江县校级期末)计算:(−312)+(+67)+(−0.5)+(+117).【分析】先把加法写成省略加号、括号和的形式,再利用加法的交换律、结合律求解.【解答】解:原式=﹣312+67−12+117 =(﹣312−12)+(67+117) =﹣4+2=﹣2.【点评】本题考查了有理数的加法,掌握加法的运算法则、运算律是解决本题的关键.22.计算:−0.5+(−314)+(−2.75)+(+712).【分析】先用加法的交换律和结合律,再根据有理数加法法则进行计算.【解答】解:原式=[﹣0.5+(+712)]+[(﹣3.25)+(﹣2.75)] =7+(﹣6)=1.【点评】本题考查了有理数加法,掌握加法法则,用加法的交换律和结合律是解题关键.23.(2023秋•合江县校级期末)计算:(−312)+(+67)+(−0.5)+(+117).【分析】先把加法写成省略加号、括号和的形式,再利用加法的交换律、结合律求解.【解答】解:原式=﹣312+67−12+117 =(﹣312−12)+(67+117) =﹣4+2=﹣2.【点评】本题考查了有理数的加法,掌握加法的运算法则、运算律是解决本题的关键.24.(2023秋•汉中期末)计算:12+(−23)+47+(−12)+(−13). 【分析】利用加法结合律变形后,相加即可得到结果.【解答】解:原式=[12+(−12)]+[(−23)+(−13)]+47 =0﹣1+47=−37.【点评】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.25.(2023春•普陀区期中)计算:(−357)+(+15.5)+(−1627)+(−512).【分析】先按照同分母结合,再算加法.【解答】解:原式=(﹣357−1627)+(15.5﹣5.5)=﹣20+10=﹣10. 【点评】本题考查了有理数的加法,掌握加法运算律是解题的关键.26.(2024春•普陀区期中)计算:−3.19+21921+(−6.81)−(−2221).【分析】将小数与小数结合,分数与分数结合后再运算即可.【解答】解:−3.19+21921+(−6.81)−(−2221) =(﹣3.19﹣6.81)+(21921+2221)=﹣10+5=﹣5. 【点评】本题考查了有理数加减混合运算,分组计算是关键.27.(2023春•浦东新区校级期中)(−2513)+(+15.5)+(−7813)+(−512). 【分析】先将小数化分数,利用加法交换律将分母相同的放一起进行计算.【解答】解:原式=(−2513)+(+1512)+(−7813)+(−512)=[1512+(−512)]+[(−2513)+(−7813)] =10﹣10=0.【点评】本题考查有理数的加法运算,利用加法交换律将分母相同的数放一起进行计算是解题的关键.28.(2023秋•惠城区月考)用适当的方法计算:(1)0.36+(﹣7.4)+0.5+(﹣0.6)+0.14;(2)(﹣51)+(+12)+(﹣7)+(﹣11)+(+36).【分析】(1)利用加法的交换律和结合律,将正数结合在一起,负数结合在一起计算即可;(2)利用加法的交换律和结合律,将正数结合在一起,负数结合在一起计算即可;【解答】解:(1)0.36+(﹣7.4)+0.5+(﹣0.6)+0.14=(0.36+0.14+0.5)+[(﹣7.4)+(﹣0.6)]=1+(﹣8)=﹣7;(2)(﹣51)+(+12)+(﹣7)+(﹣11)+(+36)=[(﹣51)+(﹣7)+(﹣11)]+[(+12)+(+36)]=(﹣69)+48=﹣21.【点评】本题考查有理数的加法,利用运算定律可使计算简便.29.计算:(1)137+(﹣213)+247+(﹣123); (2)(﹣1.25)+2.25+7.75+(﹣8.75).【分析】根据有理数加法法则与运算律进行计算便可.【解答】解:(1)137+(﹣213)+247+(﹣123) =(137+247)+[(﹣213)+(﹣123)]=4+(﹣4)=0;(2)(﹣1.25)+2.25+7.75+(﹣8.75)=[(﹣1.25)+(﹣8.75)]+(2.25+7.75)=(﹣10)+10=0.【点评】本题考查有理数加法,加法运算律,关键是熟记有理数加法运算法则与运算律.30.(2023秋•齐河县校级月考)计算题.(1)5.6+4.4+(﹣8.1);(2)(﹣7)+(﹣4)+(+9)+(﹣5);(3)14+(−23)+56+(−14)+(−13); (4)(﹣9512)+1534+(﹣314)+(﹣22.5)+(﹣15712).【分析】(1)运用加法结合律简便计算即可求解;(2)运用加法交换律和结合律简便计算即可求解;(3)运用加法交换律和结合律简便计算即可求解;(4)运用加法交换律和结合律简便计算即可求解.【解答】解:(1)原式=10﹣8.1=1.9;(2)原式=(﹣7)+[(﹣4)+(﹣5)+(+9)]=﹣7+0=﹣7;(3)原式=[14+(−14)]+[(−23)+(−13)]+56=0+(﹣1)+56=−16;(4)原式=[(﹣9512)+(﹣15712)]+[1534+(﹣314)]+(﹣22.5) =﹣25+1212+(﹣2212) =﹣25+(﹣10)=﹣35.【点评】本题主要考查了有理数的加法,灵活运用加法交换律和结合律进行简便计算是解题的关键. 题型四 有理数的加减混合运算31.(2024春•浦东新区校级期中)计算:(−2513)−(−15.5)+(−7813)+(−512).【分析】根据加法交换律、加法结合律,求出算式的值即可.【解答】解:(−2513)−(−15.5)+(−7813)+(−512)=﹣2513+15.5﹣7813−512 =(﹣2513−7813)+(15.5﹣512)=﹣10+10=0.【点评】此题主要考查了有理数的加减混合运算,解答此题的关键是要明确:(1)在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.(2)转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.32.(2024春•崇明区期中)计算:414−1.5+(512)−(﹣2.75). 【分析】根据有理数加减混合运算法则运算即可.【解答】解:原式=4.25﹣1.5+5.5+2.75=(4.25+2.75)+(5.5﹣1.5)=7+4=11.【点评】本题考查了有理数加减混合运算,分数转化为小数后分组运算是关键.33.(2024春•黄浦区期中)计算:(−7.7)+(−656)+(−3.3)−(−116).【分析】根据有理数的加减混合运算法则进行计算.【解答】解:原式=﹣7.7−416−3.3+76=﹣11−346=−503.【点评】本题考查了有理数的加减混合运算,掌握有理数的加减混合运算法则是关键.34.(2022•南京模拟)计算:(﹣478)﹣(﹣512)+(﹣414)﹣318. 【分析】原式利用减法法则变形,结合后相加即可得到结果.【解答】解:(﹣478)﹣(﹣512)+(﹣414)﹣318 =−478−318+512−414=−8+114=−634.【点评】此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.灵活运用加法结合律进行凑整运算可以简化计算.35.(2023秋•万柏林区校级月考)计算:−|−113|−(−225)−|−313|+(−125).【分析】利用绝对值的意义,加法交换律和有理数加减法运算法则计算即可.【解答】解:−|−113|−(−225)−|−313|+(−125)=−113+225−313−125=−113−313+225−125=−423+1=−323.【点评】本题考查有理数的加减运算,解答时涉及绝对值的意义,加法交换律,掌握有理数加减法运算法则是解题的关键,36.(2023秋•万柏林区校级月考)计算:(1)6﹣(﹣2)+(﹣3)﹣1;(2)−1.2+(−34)−(−1.75)−14.【分析】(1)(2)两个小题均按照有理数的减法法则,把减法化成加法,写成省略加号和括号的形式,进行简便计算即可.【解答】解:(1)原式=6+2﹣3﹣1=8﹣4=4;(2)原式=−1.2−34+1.75−14=−1.2+1.75−34−14=0.55﹣1=﹣0.45.【点评】本题主要考查了有理数的加减运算,解题关键是熟练掌握有理数的加减法则.37.(2023秋•泰兴市期末)计算:(1)(−49)+(−59)﹣(﹣9);(2)(56−12−712)+(−124). 【分析】(1)根据有理数的加减运算法则计算即可;(2)先算括号里面的,然后根据有理数的加法法则计算即可.【解答】解:(1)(−49)+(−59)﹣(﹣9)=−49+(−59)+9=﹣1+9=8;(2)(56−12−712)+(−124) =(1012−612−712)+(−124) =−14+(−124)=−724.【点评】本题考查了有理数的加减运算,熟练掌握有理数的加减运算法则是解题的关键.38.(2023秋•管城区校级月考)计算:(1)20+(﹣13)﹣|﹣9|+15;(2)﹣61﹣|﹣71|﹣9﹣(﹣3).【分析】(1)先根据绝对值的性质进行化简,再写成省略加号和的形式进行简便计算即可;(2)先根据绝对值的性质进行化简,然后进行简便计算即可.【解答】解:(1)原式=20+(﹣13)﹣9+15=20﹣13﹣9+15=20+15﹣13﹣9=35﹣22=13;(2)原式=﹣61﹣71﹣9+3=﹣141+3=﹣138.【点评】本题主要考查了有理数的加减混合运算,解题关键是熟练掌握有理数的加减法则.39.(2023秋•珠海校级月考)计算:(1)4.1﹣(﹣8.9)﹣7.4+(﹣6.6);(2)(−710)+(+23)+(−0.1)+(−2.2)+(+710)+(+3.5).【分析】根据有理数加减运算法则计算即可.【解答】解:(1)4.1﹣(﹣8.9)﹣7.4+(﹣6.6)=4.1+8.9﹣7.4﹣6.6=13﹣14=﹣1;(2)(−710)+(+23)+(﹣0.1)+(﹣2.2)+(+710)+(+3.5)=−710+23﹣0.1﹣2.2+710+3.5=24.2.【点评】本题主要考查了有理数加减运算,掌握有理数加减运算法则是解决问题的关键.40.(2023秋•碑林区校级月考)计算:(1)(﹣2)+3+1+(﹣13)+2;(2)−(−2.5)−(+2.4)+(−312)−1.6.【分析】(1)从左向右依次计算即可;(2)根据加法交换律、加法结合律计算即可.【解答】解:(1)(﹣2)+3+1+(﹣13)+2=1+1﹣13+2=﹣9.(2)−(−2.5)−(+2.4)+(−312)−1.6=2.5﹣2.4﹣3.5﹣1.6=(2.5﹣3.5)+(﹣2.4﹣1.6)=﹣1+(﹣4)=﹣5.【点评】此题主要考查了有理数的加减混合运算,解答此题的关键是要明确:(1)在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.(2)转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.41.(2023秋•乌鲁木齐期末)计算:(1)﹣313+(−12)−(−13)+112; (2)(﹣5.3)+|﹣2.5|+(﹣3.2)﹣(+4.8).【分析】先分别变有理数加减混合运算为有理数加法,再运用加法交换结合律进行求解.【解答】解:(1)−313+(−12)−(−13)+112=(﹣313+13)+(−12+112) =﹣3+1=﹣2;(2)(﹣5.3)+|﹣2.5|+(﹣3.2)﹣(+4.8)=﹣5.3+2.5﹣3.2﹣4.8=2.5﹣(5.3+3.2+4.8)=2.5﹣13.3=﹣10.8.【点评】此题考查了有理数的混合运算能力,关键是能准确确定运算顺序和方法,并进行正确地计算.42.(2023秋•顺德区校级月考)计算:(1)(+13)﹣(+12)﹣(−34)+(−23).(2)(+478)﹣(﹣514)+(﹣414)﹣(+318). 【分析】利用有理数的加减法则计算各题即可.【解答】解:(1)原式=13−12+34−23=4−6+9−812=−112; (2)原式=478+514−414−318=(478−318)+(514−414) =134+1 =234.【点评】本题考查有理数的加减运算,熟练掌握相关运算法则是解题的关键.43.(2023秋•谯城区校级月考)计算题:(1)6﹣(+3)﹣(﹣7)+(﹣2);(2)103+(−114)﹣(−56)+(−712). 【分析】各个小题均把减法写成加法,然后省略加号和括号,进行简便计算即可.【解答】解:(1)原式=6+(﹣3)+7﹣2=6﹣3+7﹣2=6+7﹣3﹣2=13﹣5=8;(2)原式=103−114+56−712 =4012−3312+1012−712 =4012+1012−3312−712 =5012−4012=1012=56.【点评】本题主要考查了有理数的加减混合运算,解题关键是熟练掌握有理数的加减运算法则.44.(2023秋•禅城区校级月考)计算:(1)(+4.3)﹣(﹣4)+(﹣2.3)﹣(+4);(2)0−12−(−3.25)+234−|−712|.【分析】(1)根据有理数加减混合运算法则运算即可;(2)去绝对值后,根据有理数加减混合运算法则运算即可.【解答】解:(1)(+4.3)﹣(﹣4)+(﹣2.3)﹣(+4)=4.3+4﹣2.3﹣4=2;(2)0−12−(−3.25)+234−|−712|=0−12+3.25+234−712 =﹣8+3.25+2.75=﹣8+6=﹣2.【点评】本题考查了有理数加减混合运算,熟练掌握运算法则是解答本题的关键.45.(2023秋•天桥区校级月考)简便运算:(1)31+(﹣28)+28+69;(2)﹣414+8.4﹣(﹣4.75)+335. 【分析】(1)根据有理数的加法交换律和结合律计算即可;(2)据有理数的加法交换律和结合律计算即可.【解答】解:(1)31+(﹣28)+28+69=(31+69)+[(﹣28)+28]=100+0=100;(2)﹣414+8.4﹣(﹣4.75)+335 =(﹣4.25+4.75)+(8.4+3.6)=0.5+12=12.5.【点评】本题考查了有理数的加减混合运算,掌握相关运算法则是解答本题的关键.46.(2023秋•宁阳县期中)计算:(1)13+(﹣24)﹣25﹣(﹣20);(2)(−13)+(−52)+(−23)+(+12);(3)−20.75−3.25+14+1934;(4)−|−23−(+32)|−|−15+(−25)|.【分析】(1)利用有理数的加减法则计算即可;(2)利用有理数的加减法则计算即可;(3)利用有理数的加减法则计算即可;(4)先算绝对值,再算加减即可.【解答】解:(1)原式=﹣11﹣25+20=﹣36+20=﹣16;(2)原式=(−13−23)+(12−52) =﹣1﹣2=﹣3;(3)原式=(﹣20.75+1934)+(14−3.25) =﹣1﹣3=﹣4;(4)原式=﹣|−4+96|﹣|−35| =−136−35=−65+1830 =−8330. 【点评】本题考查有理数的运算,熟练掌握相关运算法则是解题的关键.47.(2023秋•台儿庄区月考)计算题:(1)﹣32﹣(﹣17)﹣23+(﹣15);(2)(−323)−(−2.4)+(−13)−(+425);(3)(−13)﹣(﹣316)﹣(+223)+(﹣616); (4)(﹣45)﹣(+9)﹣(﹣45)+(+9).【分析】(1)先把算式写成省略加号、括号和的形式,再把负数与正数分别相加;(2)(3)先把算式写成省略加号、括号和的形式,再把分母相同的相加;(3)先把算式写成省略加号、括号和的形式,再把互为相反数的两数相加.【解答】解:(1)﹣32﹣(﹣17)﹣23+(﹣15)=﹣32+17﹣23﹣15=﹣70+17=﹣53;(2)(−323)−(−2.4)+(−13)−(+425)=﹣323+2.4−13−4.4 =﹣323−13+2.4﹣4.4=﹣4﹣2=﹣6; (3)(−13)﹣(﹣316)﹣(+223)+(﹣616) =−13+316−223−616 =−13−223+316−616=﹣3﹣3=﹣6;(4)(﹣45)﹣(+9)﹣(﹣45)+(+9)=﹣45﹣9+45+9=(45﹣45)+(9﹣9)=0.【点评】本题考查了有理数的加减法,掌握有理数的加减法法则、加法的交换律和结合律是解决本题的关键.48.(2023秋•临河区月考)(1)(﹣4.3)﹣(+5.8)+(﹣3.2)﹣3.5+(﹣2.7);(2)−|−15|−(+45)−|−37|−|−47|;(3)513+(−423)+(−613);(4)−12+(−13)−(−14)+(−15)−(−16).【分析】(1)利用有理数的加减法则计算即可;(2)利用绝对值的性质及有理数的加减法则计算即可;(3)利用有理数的加减法则计算即可;(4)利用有理数的加减法则计算即可.【解答】解:(1)原式=﹣4.3﹣5.8﹣3.2﹣3.5﹣2.7=﹣(4.3+5.8+3.2+3.5+2.7)=﹣19.5;(2)原式=−15−45−37−47=﹣1﹣1=﹣2;(3)原式=513−613−423 =﹣1﹣423 =﹣523; (4)原式=−12−13+14−15+16=−56+14−15+16=−56+16+14−15=−23+14−15=−40+15−1260=−3760.【点评】本题考查有理数的加减运算,熟练掌握相关运算法则是解题的关键.49.(2023秋•越秀区校级期中)阅读下面的解题方法.计算:﹣556+(﹣923)+1734+(﹣312). 解:原式=[(﹣5)+(−56)]+[(﹣9)+(−23)]+(17+34)+[(﹣3)+(−12)]=[(﹣5)+(﹣9)+17+(﹣3)]+[(−56)+(−23)+34+(−12)]=0+(−54)=−54.上述解题方法叫做拆项法,按此方法计算:(﹣202156)+404323+(﹣202223)+156. 【分析】根据拆项法,可把整数结合在一起,分数结合在一起,再根据有理数的加法,可得答案.【解答】解:原式=[(﹣2021)+(−56)+4043+23+(﹣2022)+(−23)]+(1+56)=[(﹣2011)+4043+(﹣2022)+1]+[(−56)+(−23)+23+(56)] =11+0=11.【点评】本题考查了有理数的加法,拆项法是解题关键.仿照上面的方法,请你计算:(−2022724)+(−202158)+(−116)+4044. 【分析】仿照上述拆项法解题即可.【解答】解:(−2022724)+(−202158)+(−116)+4044=[(﹣2022)+(−724)]+[(﹣2021)+(−58)]+[(﹣1)+(−16)]+4044 =[(﹣2022)+(﹣2021)+(﹣1)+4044]+[(−724)+(−58)+(−16)] 50.(2023秋•襄汾县期中)阅读下面的计算过程,体会“拆项法”计算:﹣556+(﹣923)+1734+(﹣312) 解:原式=[(﹣5)+(−56)]+[(﹣9)+(−23)]+(17+34)+[(﹣3)+(−12)]=[(﹣5)+(﹣9)+17+(﹣3)]+[(−56)+(−23)+34+(−12)]=0+(﹣114)=﹣114 启发应用用上面的方法完成下列计算:(1)(﹣3310)+(﹣112)+235−(﹣212); (2)(﹣200056)+(﹣199923)+400023+(﹣112).【分析】原式根据阅读材料中的方法变形,计算即可得到结果.【解答】解:(1)(﹣3310)+(﹣112)+235−(﹣212) =(﹣3−310)+(﹣1−12)+(2+35)+(2+12)=(﹣3﹣1+2+2)+(−310−12+35+12)=0+310=310;(2)(﹣200056)+(﹣199923)+400023+(﹣112) =(﹣2000−56)+(﹣1999−23)+(4000+23)+(﹣1−12)=(﹣2000﹣1999+4000﹣1)+(−56−23+23−12)=0﹣113 =﹣113. 【点评】此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.。

七年级数学-上册有理数定义新运算思维开放题(含答案)

七年级数学-上册有理数定义新运算思维开放题(含答案)

七年级数学-上册有理数定义新运算学校:___________姓名:___________班级:___________考号:___________一、单选题。

1.定义一种新运算()2ab a b =+⨯,计算()35-的值为( ) A .7 B .4- C .1 D .42.定义a b ∨表示a 、b 两数中较大的一个,a b ∧表示a 、b 两数中较小的一个,则(5052)(4951)-∨-∨-∧的结果是( )A .50-B .52-C .49-D .513.对于整数a ,b ,c ,d 定义运算a a d cb bcd =-,则2354的值等于( ) A .7 B .7- C .2 D .2-4.对于有理数a 、b 定义一种新运算“⊙”,规定a ⊙b =|a +b |+|a -b |,则(2-)⊙3的值是( )A .6B .5C .4D .25.现定义运算“⊙”对于任意两个整数,a ⊙b =a +b -1,则1⊙(3⊙5)的结果是( )A .7B .8C .9D .106.若a ,b 都是有理数,定义一种新运算“☆”,规定()()a b a b -+-☆=,则()24-☆ 的值为( )A .2B .﹣2C .6D .﹣67.七年级小莉同学在学习完第二章《有理数及其运算》后,对运算产生了浓厚的兴趣.她借助有理数的运算,定义了一种新运算“⊕”,规则如下:2a b ab a ⊕=+.则1(3)42⎛⎫-⊕-⊕= ⎪⎝⎭( ). A .13- B .6 C .24 D .308.现定义运算:对于任意有理数a 、b ,都有23a b a b ⊗=-,如:2131338⊗=-⨯=-,则()523-⊗-⊗的值为( )A .20B .25C .38D .40 9.定义运算11b a b a ⊗=+,比如11523236⊗=+=,下面给出了关于这种运算的几个结论:⊙()1236⊗-=;⊙此运算中的字母均不能取零;⊙a b b a ⊗=⊗;⊙()a b c a c b c ⊗+=⊗+⊗,其中正确是( )A .⊙⊙⊙B .⊙⊙⊙C .⊙⊙⊙D .⊙⊙⊙二、填空题10.定义一种新运算:*a b a b b+=,请你根据这一运算规则计算:2*(3)-=___________; 11.定义一种新运算⊙,即(2)3m n m n ∆=+⨯-,根据规定求6(3)∆-=_____.12.对有理数,a b ,定义运算★如下,+a b b a a b=★,则48-=★________. 13.定义一种新运算“K 运算”,对有理数a ,b ,规定:()2(1)12(1)a b ab a aKb ab ba b ab ⎧-+>⎪⎪=-=⎨⎪-<⎪⎩,其中“K 运算”的运算顺序为:同级运算,依次从左至右进行(可类比有理数的四则运算顺序),则()()231129353K K K K ⎡⎤⎛⎫⎛⎫---+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的运算结果是_________. 14.新定义一种运算:22a b a b =-,例如:2(1)3(1)23165-=--⨯=-=-,则(2)(1)--=_______.三、解答题15.现定义一种新运算:a b ab a b ⊗=+-,如13=13+131⊗⨯-=.(1)求()256⎡⎤⎣-⎦⊗⊗;(2)新定义的运算满足交换律吗?试以()43-⊗和()34⊗-举例说明.16.对于任意有理数a 、b ,定义一种新运算“⊕”,规则如下:()a b ab a b ⊕=+-,例如()3232327⊕=⨯+-=,求()543-⊕⊕⎡⎤⎣⎦.17.用“⊙”定义一种新运算:对于任意有理数a 和b ,规定22a b b ab =+★,如:214421424=+⨯⨯=★.求(4)3-★的值.18.定义新运算:对于任意有理数a ,b .都有()a b a a b b ⊕=--.等式右边是通常的加法、减法及乘法运算.比如:()353(35)5=325=11⊕=⨯--⨯---(1)求()32⊕-的值;(2)求2(1)4⊕-⊕的值.19.在数轴上有A 、B 两点,点B 表示的数为b .对点A 给出如下定义:当0b ≥时,将点A 向右移动2个单位长度,得到点P ;当0b <时,将点A 向左移动b 个单位长度,得到点P .称点P 为点A 关于点B 的“伴侣点”.如图,点A 表示的数为1-.(1)在图中画出当6b =时,点A 关于点B 的“伴侣点”P ;(2)当点P 表示的数为6-,若点P 为点A 关于点B 的“伴侣点”,则点B 表示的数 ;(3)点A 从数轴上表示1-的位置出发,以每秒1个单位的速度向右运动,点B 从数轴上表示8的位置同时出发,以每秒2个单位的速度向左运动,两个点运动的时间为t 秒.⊙点B 表示的数为 (用含t 的式子表示);⊙是否存在t ,使得此时点A 关于点B 的“伴侣点”P 恰好与原点重合?若存在,请求出t 的值;若不存在,请说明理由.20.在有理数的范围内,定义三个数之间的新运算“⊗”:2a b c a b c a b c --+++⊗⊗=,例如()()-123-123-12352--+++⊗⊗==. (1)计算:()()4-28⊗⊗+;(2)计算:()113-73⎛⎫⊗⊗+ ⎪⎝⎭; (3)已知 67-,57-,,17-,0,19,29,,89这十五个数中.从中任取三个数作为 a ,b ,c 的值,进行“a b c ⊗⊗”运算,直接写出所有计算结果中的最小值是 .参考答案:1.D【分析】根据新定义运算的运算法则列式进行计算即可.【详解】解:⊙()2a b a b =+⨯,⊙()()3535222 4.-=-+⨯=⨯=故选D .【点睛】本题考查的是有理数的混合运算,理解新定义的含义是解本题的关键.2.C【分析】原式利用题中的新定义计算即可求出值.【详解】解:根据题中的新定义得:(5052)(4951)-∨-∨-∧(50)(49)=-∨-49=-.故选:C .【点睛】此题考查了有理数的比较大小,弄清题中的新定义是解本题的关键.3.B【分析】根据a bd c =ac ﹣bd ,可以计算出所求式子的值.【详解】解:⊙a bd c =ac ﹣bd , ⊙2354=2×4﹣3×5=8﹣15=﹣7,故选:B .【点睛】本题考查有理数的混合运算、新定义,熟练掌握运算法则是解答本题的关键.4.A【分析】利用题中的新定义的运算法则、有理数的加减运算法则、化简绝对值的知识即可解答.【详解】解:由题意得:(-2)⊙3=|(-2)+3|+|(-2)-3|=1+5=6.故选A .【点睛】本题主要考查了有理数的加减混合运算,理解新定义运算则和有理数混合运算法则是解本题的关键.5.A【分析】根据新定义运算代入,即可求解.【详解】解:根据题意得:3⊙5=3+5-1=7,⊙1⊙(3⊙5)= 1⊙7=1+7-1=7.故选:A .【点睛】本题主要考查了有理数的加减运算,理解新定义运算是解题的关键.6.B【分析】把相应的值代入新运算中,然后根据有理数的加减运算法则进行求解即可.【详解】解:()24-☆=()()24+---=24-=﹣2.故选:B .【点睛】本题主要考查了有理数的加法运算法则、新定义运算法则等知识点,正确理解新定义的运算是解答本题的关键.7.C 【分析】根据新定义先计算142-⊕,再计算()(3)10-⊕-即可求解. 【详解】解:⊙2a b ab a ⊕=+. ⊙11442(4)281022-⊕=-⨯+⨯-=--=- ⊙1(3)42⎛⎫-⊕-⊕ ⎪⎝⎭ ()(3)10=-⊕-3(10)2(3)=-⨯-+⨯-306=-=24.故选:C .【点睛】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.8.D【分析】根据题意写出算式,利用有理数的混合运算法则计算;【详解】解:()523-⊗-⊗,()2=5233⎡⎤-⊗--⨯⎣⎦, ()=55-⊗-,()()2=535--⨯-, =40,故选:D .【点睛】本题考查了有理数的混合运算以及新定义,正确理解新定义,能根据新定义的意思列出算式是解题的关键.9.B【分析】根据题目中的新定义计算各项得到结果,即可做出判断.【详解】⊙()23⊗-=1123-=16,⊙正确; ⊙⊙11b a b a ⊗=+,⊙0a ≠且0b ≠,⊙⊙正确; ⊙⊙11b a b a ⊗=+,11b a b a⊗=+, ⊙a b b a ⊗=⊗,⊙⊙正确;⊙⊙()a b c ⊗+=11a b c++ ,a c b c ⊗+⊗= 1111121a c b c a c b +++=++, ⊙a b c a c b c ⊗+≠⊗+⊗(),⊙⊙错误.综上,正确的结论为⊙⊙⊙,故选B .【点睛】本题考查了新定义运算,熟练利用新定义运算的运算法则计算各项是解决问题的关键.10.13【分析】代入新定义运算,即可求解.【详解】解:根据题意得:()2312*333--==-. 故答案为:13 【点睛】本题考查了新定义下的有理数混合运算,理解新运算的定义是解题关键.11.27【分析】根据新定义列出算式6(3)(62)3(3)∆-=+⨯--,再进一步计算即可.【详解】解:6(3)∆-(62)3(3)=+⨯--833=⨯+243=+27=,故答案为:27.【点睛】此题考查了有理数的混合运算,解题的关键是熟练掌握有理数的混合运算法则.12.8- 【分析】根据新定义运算的法则先列式4848,48-⨯-=-+★再计算即可. 【详解】解:⊙+a b b a a b =★, ⊙4832488,484-⨯--===--+★ 故答案为:8.-【点睛】本题考查的是新定义运算,掌握“有理数的加减乘除混合运算的运算顺序”是解本题的关键. 13.2059##7229【分析】根据()231211,213533⎛⎫⎛⎫-⨯=-⨯-=< ⎪ ⎪⎝⎭⎝⎭,可得()()231254129935393K K K K K K ⎡⎤⎛⎫⎛⎫⎛⎫---+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,再由2541001001932727⎛⎫⨯-=-=> ⎪⎝⎭,可得2546299939K K K ⎛⎫-=- ⎪⎝⎭,然后根据629626219-⨯=-=>,即可求解.【详解】解:⊙()231211,213533⎛⎫⎛⎫-⨯=-⨯-=< ⎪ ⎪⎝⎭⎝⎭, ⊙21235525313353539K -⎛⎫-=-=⨯= ⎪⎝⎭,()112422223333K ⎛⎫⎛⎫--=--⨯-=-+=- ⎪ ⎪⎝⎭⎝⎭ ⊙()()231254129935393K K K K K K ⎡⎤⎛⎫⎛⎫⎛⎫---+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⊙2541001001932727⎛⎫⨯-=-=> ⎪⎝⎭, ⊙25425450126229393999K ⎛⎫⎛⎫-=-⨯+-=--=- ⎪ ⎪⎝⎭⎝⎭, ⊙2546299939K K K ⎛⎫-=- ⎪⎝⎭, ⊙629626219-⨯=-=>, ⊙626212420592999999K ⎛⎫-=-⨯-+=+= ⎪⎝⎭, 即()()2312051293539K K K K ⎡⎤⎛⎫⎛⎫---+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦. 故答案为:2059【点睛】本题考查了有理数的混合运算,理解新运算是解题的关键.14.6【分析】根据新定义的运算求解即可.【详解】解:根据新定义,可得2(2)(1)(2)2(1)426--=--⨯-=+=.故答案为:6.【点睛】本题主要考查了新定义下的有理数运算,理解新定义下运算是解题关键.15.(1)125-(2)不满足交换律,举例见解析【分析】(1)原式利用题中的新定义计算即可得答案;(2)不满足,分别计算()43-⊗和()34⊗-说明即可.【详解】(1)解:根据题中的新定义得:()256⎡⎤⎣-⎦⊗⊗()25256=-⨯--⊗()176=-⊗176176=-⨯--125=-;(2)新定义的运算不满足交换律,例如:()43434319-⊗=-⨯--=-;()()()34343412345⊗-=⨯-+--=-++=-,⊙195-≠-,⊙()()4334-⊗≠⊗-,则不满足交换律.【点睛】本题考查了有理数的混合运算,弄清题中的新定义是解本题的关键.16.119-【分析】根据公式直接计算即可.【详解】解:()543-⊕⊕⎡⎤⎣⎦()()54543=-⨯+--⊕⎡⎤⎣⎦293=-⊕()293293=-⨯+--119=-【点睛】此题考查新定义运算,有理数的混合运算,正确理解公式及所求式子中对应的a 与b 的值是解题的关键.17.−15【分析】根据新定义列式计算即可.【详解】解:2(4)332(4)3-=+⨯-⨯★924=-15=-【点睛】本题考查了新定义,以及有理数的混合运算,根据新定义列出算式是解答本题的关键.18.(1)17;(2)17.【分析】(1)利用题中的新定义化简,计算即可求出值;(2)利用题中的新定义化简,计算即可求出值.【详解】(1)解:由题意可知:()323(32)217⊕-=⨯++=.(2)解:()2(1)=221+1=7-⨯+⊕,()74=7744=17⨯--⊕.【点睛】本题考查新定义问题,掌握有理数的混合运算法则,读懂题目中定义的运算法则是解题的关键.19.(1)画图见解析(2)5-(3)⊙82t -;⊙存在7t =,使得点A 关于点B 的“伴侣点”P 与原点重合【分析】(1)当6b =时,0b ≥,将点A 向右移动2个单位长度,由此求出点P 表示的数,并作图即可;(2)根据点A 和点P 表示的数可知,点P 是由点A 向左平移5个单位得到的,据此求解即可;(3)⊙根据点B 的运动方向和运动速度即可求解;⊙运动的时间为t 秒时,点A 表示的数为1t -+,点B 表示的数为82t -,分为点B 在原点右侧和原点左侧两种情况讨论即可.【详解】(1)解:当6b =时,0b ≥,将点A 向右移动2个单位长度,此时点P 表示的数为:121-+=,作图如下:(2)解:⊙点P 表示的数为6-,点A 表示的数为1-,第11页,共12页⊙点P 是点A 向左移动5个单位长度得到的, ⊙5b =且0b <,⊙=5b -,⊙点B 表示的数为5-,故答案为:5-;(3)解:⊙点B 从数轴上表示8的位置出发,以每秒2个单位的速度向左运动t 秒,则点B 表示的数为82t -, 故答案为:82t -;⊙解:存在7t =,使得点A 关于点B 的“伴侣点”P 与原点重合,理由如下:运动的时间为t 秒时,点A 表示的数为1t -+,点B 表示的数为82t -,分两种情况:当04t <≤时,820t -≥,此时点A 关于点B 的“伴侣点”P 表示的数为:121t t -++=+,由于0t >,故10t +>,不可能与原点重合;当4t >时,820t -<,此时点A 关于点B 的“伴侣点”P 表示的数为:()1821281287t t t t t t t -+--=-+--=-+-+=-,⊙当7t =时,点P 与原点重合,综上,存在7t =,使得点A 关于点B 的“伴侣点”P 与原点重合.【点睛】本题考查了绝对值的化简,用数轴上的点表示有理数,数轴上的动点问题以及有理数的加减法,注意分类讨论.20.(1)6(2)3 (3)67-【分析】(1)直接代入公式计算即可;(2)直接代入公式计算即可;(3)分析a b c --为负数与非负数两种情况下的最小值,最后综合考虑即可.【详解】(1)原式=()()4284282---++-+=6;(2)原式=()()11113737332---++-+第12页,共12页 =()19113-7332+++=3;(3)当a b c --为非负数时,a b c ⊗⊗=2a b c a b c a --+++=, ⊙当6-7a =时,abc ⊗⊗的最小值为6-7; 当a b c --为负数时,a b c ⊗⊗=-2a b c a b c b c +++++=+, ⊙当b c +的值最小时,a b c ⊗⊗的值最小;⊙a b c --为负数,⊙<a b c +,由于a 最小取6-7, ⊙67b c +->, 综上可得,a b c ⊗⊗的最小值为6-7. 【点睛】本题考查了正负数的运算、绝对值运算、代数式的求值等,解题关键是正确代入数值计算,求最小值时应进行分类讨论。

七年级数学上册第一单元《有理数》-解答题专项经典练习题(含解析)(2)

七年级数学上册第一单元《有理数》-解答题专项经典练习题(含解析)(2)

一、解答题1.设0a >,x ,y 为有理数,定义新运算:||a x a x =⨯※.如323|2|6=⨯=※,()414|1|a a -=⨯-※.(1)计算20210※和()20212-※的值. (2)若0y <,化简()23y -※.(3)请直接写出一组,,a x y 的具体值,说明()a x y a x a y +=+※※※不成立. 解析:(1)0;4042;(2)6y -;(3)1a =,2x =,3y =-(答案不唯一) 【分析】(1)根据题意※表示前面的数与后面数的绝对值的积,直接代入数据求解计算; (2)有y<0,得到y 为负数,进而得到-3y 为正数,去绝对值后等于本身-3y ,再代入数据求解即可;(3)按照题意要求写一组具体的,,a x y 的值再验算即可. 【详解】解:(1)根据题意得:202102021|0|0=⨯=※; ()202122021|2|4042-=⨯-=※;(2)因为0y <, 所以30y ->,所以()()232|3|236y y y y -=⨯-=⨯-=-※; (3)由题意,当,,a x y 分别取1a =,2x =,3y =-时,此时()2311※※(-1)=1-=,而11※2※(-3)=2+3=5+,所以,()a x y a x a y +=+※※※不成立. 【点睛】本题是新定义题型,按照题目中给定的运算要求和顺序进行求解即可. 2.给出四个数:3,4--,2,6,计算“24点”,请列出四个符合要求的不同算式. (可运用加、减、乘、除、乘方运算,可用括号;注意:例如4(123)24⨯++=与(213)424++⨯=只是顺序不同,属同一个算式.)算式1:_________________;算式2_______________;算式3:_________________;算式4_______________;解析:()()342624,-⨯-+⨯=()()342624,-⨯-+-=()()643224,⨯-⨯-+=()()()()43624624.-⨯--÷=-⨯-=【分析】由241212,=+ 可得()342624,-⨯-+⨯=由()2438=-⨯-,可得()()342624,-⨯-+-=由()24124,=-⨯- 可得()()643224,⨯-⨯-+=由()2446=-⨯-,可得()()()()43624624-⨯--÷=-⨯-=,从而可得答案.【详解】解:算式1:()()3426121224,-⨯-+⨯=+= 算式2:()()()()34263824,-⨯-+-=-⨯-= 算式3:()()()()643224124,⨯-⨯-+=-⨯-=算式4:()()()()()()43624334624,-⨯--÷=-⨯--=-⨯-= 故答案为:()()342624,-⨯-+⨯=()()342624,-⨯-+-=()()643224,⨯-⨯-+=()()()()43624624.-⨯--÷=-⨯-=【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法,注意本题答案不唯一,这是一道开放性的题目,同时考查了学生的逆向思维. 3.计算: (1)231+-+; (2)()3202111024⎡⎤-⨯+-÷⎣⎦. 解析:(1)6;(2)12- 【分析】(1)先化简绝对值,再算加法即可求解; (2)先算乘方,再算括号里面的,最后算乘除即可. 【详解】(1)原式=2+3+1=6;(2)原式=1(108)4-⨯-÷=124-⨯÷=1124-⨯⨯=12- 【点睛】此题考查有理数的混合运算,掌握运算顺序和运算法则是解答此题的关键. 4.计算下列各式的值: (1)1243 3.55-+- (2)131(48)64⎛⎫-+⨯- ⎪⎝⎭(3)22350(5)1--÷--解析:(1)-24.3;(2)-76;(3)-12【分析】(1)先将减法化为加法,再计算加法即可;(2)利用乘法分配律计算即可;(3)先计算乘方,再计算除法,最后计算减法.【详解】解:(1)原式=24 3.2( 3.5)-++-=-24.3;(2)原式=131(48)(48)(48)64⨯--⨯-+⨯-=488(36)-++-=-76;(3)原式=950251--÷-=921---=9(2)(1)-+-+-=-12.【点睛】本题考查有理数的混合运算.熟记运算顺序和每一步的运算法则是解题关键.5.某超市对2020年下半年每月的利润用下表作了记录:(2)计算该商场下半年6个月的总利润额.解析:(1)填表见解析;(2)40万元.【分析】(1)根据“盈利记为正,则亏损就记为负”直接写出答案即可;(2)把该商场下半年6个月的利润相加即可.【详解】解:(1)盈利记为正,亏损就记为负,填表如下:=36-10+14=40(万元)∴该商场下半年6个月的总利润额为40万元. 【点睛】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.同时 还考查了有理数的加法运算.6.321032(2)(3)5-÷---⨯解析:﹣31. 【分析】根据有理数的混合运算法则计算即可. 【详解】解:321032(2)(3)5-÷---⨯ =10-32÷(﹣8)-9×5 =10-(﹣4)-45 =10+4-45 =14-45 =﹣31. 【点睛】此题主要考察了有理数的混合运算,解题关键是掌握有理数混合运算法则. 7.计算:()22216232⎫⎛-⨯-- ⎪⎝⎭解析:2 【分析】原式先计算乘方,再运用乘法分配律计算,最后进行加减运算即可. 【详解】 解:()22216232⎫⎛-⨯--⎪⎝⎭=2136()432⨯--=213636432⨯-⨯-=24-18-4 =2. 【点睛】此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键. 8.计算: (1)()213433⎛⎫---+-+ ⎪⎝⎭;(2)()()202011232---+-+. 解析:(1)-6;(2)132- 【分析】(1)先化为省略括号的形式,将整数及分数分别相加,再计算加法; (2)先计算乘方,同时计算绝对值及去括号,再计算加减法. 【详解】(1)解:原式=213433-+-+ ()213433⎛⎫=--++ ⎪⎝⎭71=-+6=-;(2)解:原式=11232--+=142- =132-.【点睛】此题考查有理数的混合运算,掌握有理数加减混合运算法则及有理数乘方运算法则是解题的关键.9.某市质量监督局从某公司生产的婴幼儿奶粉中,随意抽取了20袋进行检查,超过标准质量的部分记为正数,不足的部分记为负数,抽查的结果如下表:(2)若每袋奶粉的标准质量为480克,则抽样检测的这些奶粉的总质量是多少克? 解析:(1)多1.75克;(2)9635克 【分析】(1)先计算出平均质量,若正则比标准质量多,若负则比标准质量少;(2)抽样总质量等于标准总质量加上超出的质量,或等于平均每袋质量乘以抽取的袋数. 【详解】解:(1)()()15505551035110203520 1.571-÷=÷=⎡⨯+-⨯+⎤⎣⨯++⨯++⎦⨯⨯(克).所以这批样品每袋的平均质量比标准质量多1.75克.(2)()5428001.56793+⨯=(克) 所以抽样检测的这些奶粉的总质量为9635克. 【点睛】本题考查了有理数的混合运算和正负数的意义.有理数混合运算的顺序:先算乘除再算加减,有括号的先算括号里面的.10.在数轴上表示下列各数:14, 1.5,3,0,2.5,52----,并将它们按从小到大的顺序排列.解析:图见解析,153 1.50 2.542--<-<-<<< 【分析】在数轴上表示出各数,再按照从左到右的顺序用“<”号把它们连接起来即可. 【详解】 解: 5=-5-- 如图所示:故:153 1.50 2.542--<-<-<<<. 【点睛】本题考查的是有理数的大小比较,熟知数轴的特点是解答此题的关键. 11.计算(1))()()(2108243-+÷---⨯-; (2))()(22000112376⎡⎤--⨯--÷-⎥⎢⎦⎣. 解析:(1)20-;(2)116-.【分析】(1)先计算有理数的乘方与乘法,再计算有理数的除法,然后计算有理数的加减法即可得;(2)先计算有理数的乘方,再计算有理数的加减乘除法即可得. 【详解】(1)原式108412=-+÷-,10212=-+-,20=-;(2)原式())(112976=--⨯-÷-, ())(11776=--⨯-÷-,)(7176=-+÷-, 116=--,116=-.【点睛】本题考查了含乘方的有理数混合运算,熟练掌握有理数的运算法则是解题关键. 12.定义:数轴上给定不重合两点A ,B ,若数轴上存在一点M ,使得点M 到点A 的距离等于点M 到点B 的距离,则称点M 为点A 与点B 的“平衡点”.请解答下列问题: (1)若点A 表示的数为-3,点B 表示的数为1,点M 为点A 与点B 的“平衡点”,则点M 表示的数为_______;(2)若点A 表示的数为-3,点A 与点B 的“平衡点”M 表示的数为1,则点B 表示的数为________;(3)点A 表示的数为-5,点C ,D 表示的数分别是-3,-1,点O 为数轴原点,点B 为线段CD 上一点.①设点M 表示的数为m ,若点M 可以为点A 与点B 的“平衡点”,则m 的取值范围是________;②当点A 以每秒1个单位长度的速度向正半轴方向移动时,点C 同时以每秒3个单位长度的速度向正半轴方向移动.设移动的时间为t (0t >)秒,求t 的取值范围,使得点O 可以为点A 与点B 的“平衡点”.解析:(1)-1;(2)5;(3)①43t -≤≤-;②26t ≤≤且 5t ≠ 【分析】(1)根据平衡点的定义进行解答即可; (2)根据平衡点的定义进行解答即可;(3)①先得出点B 的范围,再得出m 的取值范围即可;②根据点A 和点C 移动的距离,求得点A 、C 表示的数,再由平衡点的定义得出答案即可. 【详解】解:(1)(1)点M 表示的数=312-+=−1; 故答案为:−1;(2)点B 表示的数=1×2−(−3)=5; 故答案为:5;(3)①设点B 表示的数为b ,则31b -≤≤-,∵点A 表示的数为-5,点M 可以为点A 与点B 的“平衡点”, ∴m 的取值范围为:43m -≤≤-, 故答案为:43m -≤≤-;②由题意得:点A 表示的数为5t -,点C 表示的数为33t -, ∵点O 为点A 与点B 的平衡点, ∴点B 表示的数为:5t -, ∵点B 在线段CD 上, 当点B 与点C 相遇时,2t =, 当点B 与点D 相遇时,6t =, ∴26t ≤≤,且 5t ≠,综上所述,当26t ≤≤且 5t ≠时,点O 可以为点A 与点B 的“平衡点”. 【点睛】本题考查了实数与数轴,掌握数轴上点的表示方法,以及两点的中点表示方法是解题的关键.13.如图,在数轴上有三个点,,A B C ,回答下列问题:(1)若将点B 向右移动5个单位长度后,三个点所表示的数中最小的数是多少? (2)在数轴上找一点D ,使点D 到,A C 两点的距离相等,写出点D 表示的数; (3)在数轴上找出点E ,使点E 到点A 的距离等于点E 到点B 的距离的2倍,写出点E 表示的数.解析:(1)1- (2)0.5 (3)3-或7- 【分析】(1)根据移动的方向和距离结合数轴即可回答; (2)根据题意可知点D 是线段AC 的中点;(3)在点B 左侧找一点E ,点E 到点A 的距离是到点B 的距离的2倍,依此即可求解. 【详解】解:(1)点B 表示的数为-4+5=1, ∵-1<1<2,∴三个点所表示的数最小的数是-1; (2)点D 表示的数为(-1+2)÷2=1÷2=0.5;(3)点E 在点B 的左侧时,根据题意可知点B 是AE 的中点, AB=|-1+4|=3则点E 表示的数是-4-3=-7.点E 在点B 的右侧时,即点E 在AB 上, 则点E 表示的数为-3. 【点睛】本题主要考查的是有理数大小比较,数轴的认识,找出各点在数轴上的位置是解题的关键.14.(1)在图所示的数轴上标出以下各数:52-,-5.5,-2,+5, 132(2)比较以上各数的大小,用“<”号连接起来;(3) 若点A 对应 5.5-,点B 对应132,请计算点A 与点B 之间的距离.解析:(1)画图见解析;(2) 5.5-<52-<2-<132<+5;(3)9.【分析】(1)先画数轴,根据数轴上原点左边的为负数,原点右边的为正数,在数轴上描出对应各数的点即可得到答案;(2)根据数轴上的数,右边的数大于左边的数,直接用“<”连接即可得到答案; (3)数轴上点A 与点B 对应的数分别为,a b ,则AB a b =-或b a -,根据以上结论代入数据直接计算即可得到答案. 【详解】解:(1)如图,在数轴上表示各数如下:(2)因为数轴上的数,右边的数总大于左边的数: 所以按从小到大排列各数为:5.5-<52-<2-<132<+5(3)因为:A 表示 5.5-,B 表示132, 所以:点A 与点B 之间的距离为:()13 5.5 3.5 5.599.2AB =--=+==【点睛】本题考查的是利用数轴上的点表示有理数,利用数轴比较有理数的大小,数轴上两点之间的距离,绝对值的含义,掌握以上知识是解题的关键. 15.阅读下面材料:在数轴上6与1-所对的两点之间的距离:6(1)7--=; 在数轴上2-与3所对的两点之间的距离:235--=; 在数轴上8-与4-所对的两点之间的距离:(8)(4)4---=;在数轴上点A 、B 分别表示数a 、b ,则A 、B 两点之间的距离AB a b b a =-=-. 回答下列问题:(1)数轴上表示2-和5-的两点之间的距离是_______; 数轴上表示数x 和3的两点之间的距离表示为_______; 数轴上表示数_______和_______的两点之间的距离表示为2x +;(2)七年级研究性学习小组在数学老师指导下,对式子23x x ++-进行探究: ①请你在草稿纸上画出数轴,当表示数x 的点在2-与3之间移动时,32x x -++的值总是一个固定的值为:_______.②请你在草稿纸上画出数轴,要使327x x -++=,数轴上表示点的数x =_______.解析:(1)3;|x−3|;x ,-2;(2)5;−3或4. 【分析】(1)根据题意找出数轴上任意点间的距离的计算公式,然后进行计算即可; (2)①先化简绝对值,然后合并同类项即可;②分为x >3和x <−2两种情况讨论. 【详解】解:(1)数轴上表示−2和−5的两点之间的距离为:|−2−(−5)|=3; 数轴上表示数x 和3的两点之间的距离为:|x−3|; 数轴上表示数x 和−2的两点之间的距离表示为:|x +2|; 故答案为:3,|x−3|,x ,-2;(2)①当x 在-2和3之间移动时,|x +2|+|x−3|=x +2+3−x=5; ②当x >3时,x−3+x +2=7, 解得:x=4,当x <−2时,3−x−x−2=7. 解得x=−3, ∴x=−3或x=4. 故答案为:5;−3或4. 【点睛】本题主要考查的是绝对值的定义和化简,根据题意找出数轴上任意两点之间的距离公式是解题的关键. 16.计算: (1)()11270.754⎛⎫--+-+ ⎪⎝⎭; (2)()()202023111242144⎛⎫-++-⨯--⨯- ⎪⎝⎭;解析:(1)6;(2)11.【分析】(1)先变成省略括号和形式,同时把小数化分数,把分数相加,同号相加,最后异号相加即可;(2)先算乘方,去绝对值和带分数化假分数,再计算乘法,最后计算加减法即可.【详解】解:(1)()11270.754⎛⎫--+-+ ⎪⎝⎭, =1312744+-+, =1217+-,=13-7,=6;(2)()()202023111242144⎛⎫-++-⨯--⨯- ⎪⎝⎭, =()351124444⎛⎫++⨯--⨯- ⎪⎝⎭=11235++-=11.【点睛】本题考查含有乘方的有理数混合,掌握有理数混合运算的法则,解答的关键是熟练掌握运算法则和运算顺序.17.定义:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如222÷÷等.类比有理数的乘方,我们把222÷÷记作32,读作“2的下3次方”,一般地,把n 个(0)a a ≠相除记作n a ,读作“a 的下n 次方”.理解:(1)直接写出计算结果:32=_______.(2)关于除方,下列说法正确的有_______(把正确的序号都填上);①21a =(0)a ≠;②对于任何正整数n ,11n =;③433=4;④负数的下奇数次方结果是负数,负数的下偶数次方结果是正数.应用:(3)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢? 例如:241111222222()2222=÷÷÷=⨯⨯⨯=(幂的形式)试一试:将下列除方运算直接写成幂的形式:65=_______;91()2-=________; (4)计算:3341()(2)2(8)24-÷--+-⨯-.解析:(1)12;(2)①②④;(3)41()5,7(2)-;(4)26-. 【分析】(1)根据a n 表示“a 的下n 次方”的意义进行计算即可;(2)根据a n 表示“a 的下n 次方”的意义计算判断即可;(3)根据a n 表示“a 的下n 次方”的意义,表示出56,91()2-=7(2)-,进而得出答案; (4)按照有理数的运算法则进行计算即可.【详解】(1)23=2÷2÷2=2×12×12=12, 故答案为:12; (2)当a≠0时,a 2=a÷a =1,因此①正确;对于任何正整数n ,1n =1÷1÷1÷…÷1=1,因此②正确;因为34=3÷3÷3÷3=19,而43=4÷4÷4=14,因此③不正确; 根据有理数除法的法则可得,④正确;故答案为:①②④; (3)56=5÷5÷5÷5÷5÷5=5×15×15×15×15×15=(15)4, 同理可得,91()2-==(−2)7, 故答案为:(15)4,(−2)7; (4)3341()(2)2(8)24-÷--+-⨯- =16×(-18)-8+(-8)×2 =-2-8-16=−26.【点睛】 本题考查有理数的混合运算,理解“a n ,表示a 的下n 次方”的意义是正确计算的前提. 18.计算:(1)()2411(10.5)2--23⎡⎤---⨯⨯⎣⎦(2)6÷(-2)3-|-22×3|+3÷2×12+1; 解析:(1)23-;(2)-11 【分析】(1)先计算乘方及括号,再计算乘法,最后计算加减法;(2)先计算乘方和绝对值,再计算乘除法,最后计算加减法.【详解】 (1)()2411(10.5)2--23⎡⎤---⨯⨯⎣⎦=111(2)23--⨯⨯- =113-+ =23-; (2)6÷(-2)3-|-22×3|+3÷2×12+1 =116(8)123122÷--+⨯⨯+ =3312144--++ =-11.【点睛】 此题考查含乘方的有理数的混合运算,掌握运算顺序及运算法则是解题的关键. 19.计算:(1)6÷(-3)×(-32) (2)-32×29-+(-1)2019-5÷(-54) 解析:(1)3;(2)1.【分析】(1)根据有理数的乘除混合运算法则计算即可;(2)根据有理数的混合运算法则计算即可.【详解】解:(1)原式=6×1-3⎛⎫ ⎪⎝⎭ ×(-32)=3;(2)原式=-9×29+(-1)-5×4-5⎛⎫ ⎪⎝⎭=-2-1+4=1.【点睛】 本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.20.(1)371(24)812⎛⎫-+⨯- ⎪⎝⎭;(2)431(2)2(3)----⨯- 解析:(1)-29;(2)13.【分析】(1)利用乘法分配律进行简便运算,即可得出结果;(2)先计算有理数的乘方与乘法,再进行加减运算即可.【详解】解:(1)371(24)812⎛⎫-+⨯- ⎪⎝⎭ 37(1242424)812=-⨯-⨯+⨯ (24914)=--+29=-;(2)431(2)2(3)----⨯-1(8)(6)=-----186=-++13=.【点睛】本题考查了有理数的混合运算,熟练掌握有理数混合运算的运算顺序、运算法则及乘法运算律是解题的关键.21.计算:(1)()()34287⨯-+-÷;(2)()223232-+---.解析:(1)16-;(2)6.【分析】(1)先算乘除,后算加法即可;(2)原式先计算乘方运算,再化简绝对值,最后算加减运算即可求出值.【详解】(1)原式12416=--=-(2)原式34926=-+-=【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.22.计算(1)2125824(3)3 -+-+÷-⨯(2)71113 ()24 61224-+-⨯解析:(1)113-;(2)-19【分析】(1)有理数的混合运算,先算乘方,然后算乘除,最后算加减,如果有小括号先算小括号里面的;(2)使用乘法分配律使得计算简便.【详解】解:(1)2125824(3)3 -+-+÷-⨯=11 4324()33 -++⨯-⨯=8 433 -+-=11 3 -(2)71113 ()24 61224-+-⨯=71113242424 61224-⨯+⨯-⨯=-28+22-13=-19【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键.23.点A、B在数轴上所表示的数如图所示,回答下列问题:(1)将A在数轴上向左移动1个单位长度,再向右移动9个单位长度,得到点C,求出B、C两点间的距离是多少个单位长度?(2)若点B在数轴上移动了m个单位长度到点D,且A、D两点间的距离是3,求m的值.解析:(1)B、C两点间的距离是3个单位长度;(2)m的值为2或8.【分析】(1)利用数轴上平移左移减,右移加可求点C所表示的数为﹣3﹣1+9=5,利用绝对值求两点距离BC=|2﹣5|=3;(2)分类考虑当点D在点A的左侧与右侧,利用AD=3,求出点D所表示的数,再利用BD=m 求出m 的值即可.【详解】解:(1)点C 所表示的数为﹣3﹣1+9=5,∴BC =|2﹣5|=3.(2)当点D 在点A 的右侧时,点D 所表示的数为﹣3+3=0,所以点B 移动到点D 的距离为m =|2﹣0|=2,当点D 在点A 的左侧时,点D 所表示的数为﹣3﹣3=﹣6,所以点B 移动到点D 的距离为m =|2﹣(﹣6)|=8,答:m 的值为2或8.【点睛】本题考查数轴上平移,两点距离问题,利用AD 的距离分类讨论点D 的位置是解题关键. 24.画一条数轴,把1-12,0,3各数和它们的相反数在数轴上表示出来,并比较它们的大小,用“<”号连接. 解析:数轴表示见解析;-3<112-<0<112<3.【分析】先画出数轴,把各数依次表示出来,从左到右用“<”把各数连接起来即可.【详解】解:112-的相反数是112,0的相反数是0,3的相反数是-3,在数轴上的表示如图所示:从左到右用“<”连接为:-3<112-<0<112<3.故答案为:-3<112-<0<112<3.【点睛】本题考查的是数轴的特点、相反数的定义及有理数的大小比较,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.25.计算: (1)4222(37)2(1)-+--⨯-; (2)157(36)2912⎛⎫-+⨯- ⎪⎝⎭. 解析:(1)-2;(2)-19【分析】(1)先括号里,再计算乘方、乘法,最后相加减即可;(2)利用乘法的分配率进行计算.【详解】(1)4222(37)2(1)-+--⨯-=16162-+-=-2;(2)157(36)2912⎛⎫-+⨯- ⎪⎝⎭=157(36)(36)(36)2912⨯--⨯-+⨯- =-18+20-21=-19【点睛】 考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.26.在数轴上,一只蚂蚁从原点O 出发,它先向左爬了2个单位长度到达点A ,再向右爬了3个单位长度到达点B ,最后向左爬了9个单位长度到达点C .(1)写出A ,B ,C 三点表示的数;(2)根据点C 在数轴上的位置回答,蚂蚁实际上是从原点出发,向什么方向爬了几个单位长度?解析:(1)A ,B ,C 三点表示的数分别是-2,1,-8;(2)向左爬了8个单位.【分析】(1)向左用减法,向右用加法,列式求解即可写出答案;(2)根据C 点表示的数,向右为正,向左为负,继而得出答案.【详解】解:(1)A 点表示的数是0-2=-2,B 点表示的数是-2+3=1,C 点表示的数是1-9=-8;(2)∵O 点表示的数是0;C 点表示的数是-8,∴蚂蚁实际上是从原点出发,向左爬了8个单位.【点睛】本题考查了数轴的知识及有理数的加减法的应用,属于基础题,比较简单,理解向左用减法,向右用加法,是关键.27.计算:(1)()()()923126--⨯-+÷-(2)()2235112342⎛⎫-+--÷- ⎪⎝⎭. 解析:(1)1;(2)-1.【分析】 (1)先算乘除,再算加减即可求解;(2)先算乘方,后算除法,最后算加减即可求解.【详解】(1)()()()923126--⨯-+÷-=962--=1;(2)()2235112342⎛⎫-+--÷- ⎪⎝⎭ =11891632-+-÷ =1893216-+-⨯ =892-+-=-1.【点睛】 此题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.28.计算下列各题:(1)()157362912⎛⎫-+⨯- ⎪⎝⎭; (2)()()2362295321343⎛⎫⎛⎫-÷⨯---+⨯- ⎪ ⎪⎝⎭⎝⎭. 解析:(1)19-;(2) 3.-【分析】 (1)利用乘法的分配律把原式化为:()()()1573636362912⨯--⨯-+⨯-,再计算乘法运算,最后计算加减运算即可得到答案; (2)先计算乘方运算与小括号内的运算,同步把除法转化为乘法,再计算乘法运算,最后计算减法运算即可得到答案.【详解】解:(1)()157362912⎛⎫-+⨯- ⎪⎝⎭; ()()()1573636362912=⨯--⨯-+⨯- 182021=-+-19=-(2)()()2362295321343⎛⎫⎛⎫-÷⨯---+⨯- ⎪ ⎪⎝⎭⎝⎭()4452741993⎛⎫=⨯⨯---+⨯ ⎪⎝⎭ 16733⎛⎫=--- ⎪⎝⎭16733=-+ 9 3.3=-=- 【点睛】本题考查的是乘法的分配律的应用,含乘方的有理数的混合运算,掌握以上知识是解题的关键.29.计算(1)21145()5-÷⨯-(2)21(2)8(2)()2--÷-⨯-. 解析:(1)4125;(2)2. 【分析】第(1)和(2)小题都属于有理数的混合运算,根据混合运算的运算顺序:先算乘方,并利用有理数的除法法则将除法转化为乘法,再计算乘法,最后计算加减即可求出结果.【详解】解:(1)21145()5-÷⨯- 11116()55=-⨯⨯- 16125=+ 4125=; (2)21(2)8(2)()2--÷-⨯- 1148()()22=-⨯-⨯- 42=-2=.【点睛】本题考查了有理数的混合运算,解题的关键是确定正确的运算顺序并运用运算法则准确计算.30.把4-,4.5,0,12-四个数在数轴上分别表示出来,再用“<”把它们连接起来.解析:数轴表示见解析,140 4.52-<-<<.【分析】先根据数轴的定义将这四个数表示出来即可,再根据数轴上的表示的数,左边的总小于右边的用“<”将它们连接起来即可得.【详解】将这四个数在数轴上分别表示出来如下所示:则140 4.52-<-<<.【点睛】本题考查了数轴,熟练掌握数轴的定义是解题关键.。

人教版七年级上册数学 第一章 有理数 训练题 (6)-200714(解析版)

人教版七年级上册数学 第一章 有理数 训练题 (6)-200714(解析版)

第一章 有理数 训练题 (6)一、单选题1.已知,a b 两数在数轴上的位置如图所示,则化简代数式12a b a b +--++的结果是( )A .1B .23b +C .23a -D .1-2.马小哈在计算一道有理数运算()3-+■时,一不小心将墨水泼在作业本上了,其中“■”是被墨水污染看不清的一个数,他便问同桌,同桌故弄玄虚地说:“该题计算的结果等于6”,那么被墨水遮住的数是( ) A .3B .3-C .9D .3-或93.港珠澳大桥东起香港国际机场附近的香港口岸人工岛,向西横跨伶仃洋海域后连接珠海和澳门人工岛,止于珠海洪湾;桥隧全长55千米,用科学记数法表示这个数为( ) A .55×104mB .5.5×103 mC .5.5×104mD .0.55×103m4.在数轴上表示5和-3的两点间的距离是( ) A .5+3B .5-3C .-(5+3)D .3-55.如果22(3)m =-,则m 的值是( ) A .-3 B .3C .-3或3D .96.在数轴上表示有理数a ,b ,c 的点如图所示,若0,0ac b c <+<.则下列式子一定成立的是( )A .0a c +>B .0abc <C .||||b c <D .||||b c >7.|﹣2020|的倒数等于( ) A .2020B .﹣2020C .12020D .12020-8.数轴上,2-对应的点在( )A .点A 、B 之间 B .点B 与C 之间C .点C 与D 之间D .点E 与F 之间9.的倒数是A.B.C.D. 210.省统计局日前公布年安徽省人口变动情况抽样调查主要数据公报,数据显示,去年安徽常住人口突破6200万,用科学记数法表示6200万正确的是A.B.C.D.11.2020年初全球处于新型冠状病毒引起的巨变之中,中国有2万名以上的医护人员在短时间就集结完毕,他们是我们心中的“最美逆行者”其中数据2万用科学记数法表示为A.B.C.D.12.下列算式中,计算结果为负数的有A. 1个B. 2个C. 3个D. 4个二、填空题13.计算:=______,14.“壮丽70年,奋斗新时代”.70年来,云南城镇居民收入连续翻番,1950年,云南城镇居民人均可支配收入仅为117.6元,2018年达到33488元,累计增长283.7倍.数据33488用科学记数法表示为__________.15.计算:(-4)×0.25=__________,(+4)×(-18)=______,(-52)×(-103)=_______. 16.近几年来,某市加大教育信息化投入,投资221000000元,初步完成了教育公共云服务平台基础工程,教学点数字教育资源全覆盖.将221000000用科学记数法表示为_____________. 17.计算:12--=_____. 18.绝对值不大于3的所有整数之和是 .三、解答题19.有 8 筐白菜,以每筐 25 千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的纪录如下:回答下列问题:(1)这 8 筐白菜中最接近标准重量的这筐白菜重 千克; (2)这 8 筐白菜的平均重量为多少千克?20.先画数轴,在数轴上表示以下各数,并用“<”号按从小到大的顺序连接起来.()112031322--++-,,,,, 21.(1)(49)(91)(5)(9)--+--+- 16(2)(1)0.8()37-÷⨯-22.计算()3315130.75524828⎛⎫⎛⎫⎛⎫-++-+--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()1215232122346⎛⎫-÷⨯-+-⨯ ⎪⎝⎭23.计算(1)114 1.55( 2.75)45⎛⎫-+--- ⎪⎝⎭ (2)321|2|3182⎛⎫--+⨯- ⎪⎝⎭24.某班10名学生在一次数学测验中的成绩以90分为标准,超过的分数记为正数,不足的分数记为负数,记录如下:-7,-10, +9,+2,-1,+5,-8,+10,+4,+9. (1)最高分和最低分各是多少? (2)求他们的平均成绩. 25.计算(1)-3+2-4×(-5);(2)27211(4)9353⎛⎫÷--⨯- ⎪⎝⎭ 26.对于有理数,a b ,定义一种新运算“”,规定||||ab a b a b =++-.(1)计算()23-的值.(2)当,a b 在数轴上的位置如图所示时,化简ab .(3)当ab ac =时,是否一定有b c =或者b c =-?若是,则说明理由;若不是,则举例说明. (4)已知()8aa a a =+,求a 的值.【答案与解析】一、单选题 1.B 解析:B根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,即可得到结果.由数轴可知b <−1,1<a <2,且|a|>|b|, ∴a +b >0,a -1>0,b+2>0则|a +b|−|a−1|+|b +2|=a +b−(a−1)+(b +2)=a +b−a +1+b +2=2b +3. 故选:B . 【点睛】此题考查了整式的加减,数轴,以及绝对值,判断出绝对值里边式子的正负是解本题的关键.2.D解析:D设这个数为x ,根据绝对值的性质可得−3+x =−6或−3+x =6,求出x 即可. 解:设这个数为x ,则()36x -+=, ∴−3+x =−6或−3+x =6, ∴x =−3或x =9, 故选:D . 【点睛】本题考查了绝对值的性质,注意绝对值等于一个正数的数有两个,它们互为相反数.3.C解析:C科学记数法的表示形式为10n a ⨯的形式,其中1≤|a|<10, n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 解:55千米=55000米,∴55千米,用科学记数法表示这个数为5.5×104m . 故选:C . 【点睛】此题考查科学记数法,解题关键在于掌握科学计数法的一般形式.4.A解析:A= 故选A.5.C解析:C根据有理数乘方的意义和乘法法则进行选择即可. 因为()239-=,()223m =- 所以29m =根据乘法法则可知()()33=9339⨯-⨯-=, 所以3m =± 故答案选C. 【点睛】本题考查的是有理数乘方的意义和乘法法则,能够解答出29m =是解题的关键.6.D解析:D根据各数在数轴上的位置得到a b c <<,结合0,0ac b c <+<对各选项进行分析可得解. 解:由数轴可得a b c <<,又0,0ac b c <+<,0a b c ∴<<<,且b c >0,0,a c abc b c∴+<>> 即A 、B 、C 错误,D 正确, 故选:D 【点睛】本题主要考查了数轴和绝对值,也考查了有理数的运算,掌握运算法则是解题关键.7.C解析:C根据绝对值的性质和倒数的概念求解即可. |﹣2020|,即2020的倒数等于12020. 故答案选:C . 【点睛】本题主要考查绝对值的性质和倒数的概念.8.B解析:B找到能开得尽方的两个数,满足一个比2小,一个比2大,从而确定表示实的点所在的范围.解:因为1<2<4,即1<2<2,所以-2<-2<-1,即表示实数-2的点在点B与点C之间.故选:B.【点睛】本题主要考查了无理数的估算,找到接近-2且能开得尽方的两个数是解决本题的关键.9.A解析:A【分析】本题考查倒数的意义:乘积为1的两个数互为倒数根据倒数的意义进行解答即可.【解答】解:根据倒数的定义可知:的倒数是.故选A.10.B解析:B解:用科学记数法表示6200万正确的是.故选:B.科学记数法的表示形式为的形式,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值时,n是正数;当原数的绝对值时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.11.B解析:B解:将数据“2万”用科学记数法表示为,故选:B.科学记数法的表示形式为的形式,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值时,n是正数;当原数的绝对值时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.12.D二、填空题13.-2;解析:-2;根据乘方的法则计算:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0. 原式=-1-1=-2. 【点睛】本题考查了有理数的乘方法则,解题时牢记法则是关键,此题比较简单,易于掌握.14.{解析}科学记数法的表示形式为a×10n 的形式其中1≤|a|<10n 为整数确定n 的值时要看把原数变成a 时小数点移动了多少位n 的绝对值与小数点移动的位数相同当原数绝对值≥10时n 是正数;当原数的绝对值 解析:43.348810⨯{解析}科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数. 33488=3.3488×104, 故答案为:3.3488×104. 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.15.-1-解析:-1, -12, 253∵(-4)×0.25=-1, (+4)×(-18)=-12, (-52)×(-103)=253. 故答案为(1). -1, (2). -12, (3). 25316.21×108解析:21×108因为科学记数法的正确表示形式为:10n a ⨯(其中110a ≤<,n 是整数),按照科学记数法正确表示形式表示即可.解:因为科学记数法的正确表示形式为:10n a ⨯(其中110a ≤<,n 是整数), 所以将221000000用科学记数法表示为2.21×108, 故答案为: 2.21×108. 【点睛】本题主要考查科学记数法的表示形式,解决本题的关键是要熟练掌握科学记数法的正确表示形式.17.{解析}先化简绝对值然后求其相反数即可解:故答案为:【点睛】本题考查绝对值的化简和求一个数的相反数掌握绝对值的意义和相反数的概念是本题的解题关键解析:12-{解析}先化简绝对值,然后求其相反数即可. 解:1122--=- 故答案为:12-. 【点睛】本题考查绝对值的化简和求一个数的相反数,掌握绝对值的意义和相反数的概念是本题的解题关键.18.0解析:0 【分析】此题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.找出绝对值小于等于10的所有整数,求出之和即可. 【解答】解:绝对值不大于10的整数有:,,,0,1,2,3,它们之和是0. 故答案为0.三、解答题19.(1)24.5;(2)24.5(1)绝对值最小的数,就是最接近标准重量的数; (2)用25加上图中八个数的和的平均重量即可求得.解:(1)最接近的是:绝对值最小的数,因而是250.524.5-=(千克); (2)()251320.532 2.528+-+-+---÷()250.5=+-24.5=(千克).故这8筐白菜的平均重量为24.5千克.故答案为:24.5. 【点睛】本题考查正数和负数表示某种意义的量,有理数的加减法运算,掌握运算法则是关键.20.()1131322-+<-+-<0<<2<{解析}先在数轴上正确描出各数,然后根据数轴上的点表示的数右边的总比左边的大,可得答案.解:()33-+=-,33-=. 如图所示:()1131322-+<-+-<0<<2<. 【点睛】此题主要考查了有理数大小比较的方法,以及在数轴上表示数的方法,以及数轴的特征:当数轴正方向朝右时,右边的数总比左边的数大,要熟练掌握. 21.(1)-144;(2)107(1)先去括号,然后进行加减计算即可; (2)先化为分数,再约分即可. (1)原式=499159144--+-=- (2)原式=456103477⎛⎫-⨯⨯-= ⎪⎝⎭ 【点睛】此题主要考查有理数的混合运算,熟练掌握,即可解题. 22.(1)12;(2)314- (1)先将绝对值计算,然后将分母相同的利用加法交换律计算,最后用有理数的运算法则计算;(2)先利用除法法则计算,然后根据乘法分配律计算21512346⎛⎫+-⨯ ⎪⎝⎭,注意整体思想的处理,最后根据有理数的法则计算. (1)解:原式3335132+544882⎛⎫⎛⎫⎛⎫=-+++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1652=-12=(2)解:原式11215312121222346⎛⎫=-⨯⨯-⨯+⨯-⨯⎪⎝⎭()3-83104=-+-314=-【点睛】掌握有理数的运算法则是解题关键,注意符号的处理.23.(1)0;(2)37 4 -(1)根据有理数的加减法法则及加法运算律计算即可;(2)根据有理数的乘方的意义、乘法法则、加减法法则及绝对值的代数意义计算即可.解:(1)原式=[414﹣(﹣2.75)]+[﹣1.5+(﹣512)]=7+(﹣7)=0;(2)原式=1 2918()8 -+⨯-=9 74 --=374 -.【点睛】本题考查了有理数的混合运算,熟练掌握有理数的运算法则、运算顺序及有理数的加法运算律是解决本题的关键.24.(1)90,80;(2)91.3.试题分析:(1)从题目中的记录中可知,计为+10的考试成绩超过90分最多,即90+10=100(分);计为-10的考试成绩不足90分,与90分差距最大,即90-10=80(分);(2)先求得这组新数的平均数,然后再加上90,即为他们的平均成绩.试题解析:解:(1)∵在记录结果中,+10最大,-10最小,∴90+10=100(分),90-10=80(分),∴最高分为100分,最低分为80分;(-7-10+9+2-1+5-8+10+4+9)÷10+90=13÷10+90=91.3(分)∴他们的平均成绩为91.3分.考点:正负数的意义;有理数的混合运算.25.(1)19;(2)-11 3(1)原式先计算乘法运算,再进行回头运算即可得到结果;(2)原式先计算乘方和括号内的,再计算乘除运算,最后进行加减运算即可.(1)-3+2-4×(-5)=-3+2+20=19;(2)27211(4)9353⎛⎫÷--⨯- ⎪⎝⎭ =771169153÷-⨯ =51633- =113- 【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.26.(1)6;(2)-2b ;(3)不一定,理由见解析;(4)83或-85.(1)原式利用题中的新定义计算即可得到结果;(2)根据数轴上点的位置判断出a+b 与a-b 的正负,利用绝对值的代数意义计算即可得到结果;(3)当a ⊙b=a ⊙c 时,不一定有b=c 或者b=-c ,举例即可;(4)分类讨论a 的正负,利用新定义将已知等式化简,即可求出a 的值.(1)根据题中的新定义得:2⊙(-3)=|2+(-3)|+|2-(-3)|=1+5=6;(2)从a ,b 在数轴上的位置可得a+b <0,a-b >0,∴a ⊙b=|a+b|+|a-b|=-(a+b )+(a-b )=-2b ;(3)由a ⊙b=a ⊙c 得:|a+b|+|a-b|=|a+c|+|a-c|,不一定有b=c 或者b=-c ,例如:取a=5,b=4,c=3,则|a+b|+|a-b|=|a+c|+|a-c|=10,此时等式成立,但b≠c 且b≠-c ;(4)当a≥0时,(a ⊙a )⊙a=2a ⊙a=4a=8+a ,解得:a=83; 当a <0时,(a ⊙a )⊙a=(-2a )⊙a=-4a=8+a ,解得:a=-85. 故a 的值为:83或-85. 【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.。

部编数学七年级上册专题01有理数(解析版)含答案

部编数学七年级上册专题01有理数(解析版)含答案

专题01 有理数一、单选题1.下列叙述正确的是( )A .不是正数的数一定是负数B .正有理数包括整数和分数C .整数不是正整数就是负整数D .有理数绝对值越大,离原点越远【答案】D【分析】根据有理数的分类,绝对值的意义进行解答即可.【解析】A.不是正数的数是负数或零,故A 错误;B.正有理数包括正整数和正分数,故B 错误;C.整数有正整数、负整数和零,故C 错误;D.有理数绝对值越大,离原点越远,故D 正确.故选:D .【点睛】本题主要考查了有理数的分类和绝对值的意义,解题的关键熟练掌握整数和分数统称为有理数.2.﹣|﹣2022|的相反数为( )A .﹣2022B .2022C .﹣12022D .12022【答案】B【分析】根据绝对值、相反数的概念求解即可.只有符号不同的两个数互为相反数,任何数的绝对值是非负数.【解析】Q ﹣|﹣2022|2022=-,\2022-的相反数是2022.故选:B .【点睛】本题考查相反数、绝对值的概念,属于基础题,熟练掌握概念是解决本题的关键.3.在有理数3-,(3)--,|3|-,23-,2(3)-,5(3)-,53-中,负数有( )A .2个B .3个C .4个D .5个【答案】C【分析】先根据相反数的定义,绝对值的性质,有理数的乘方进行计算,然后根据负数小于0进行判断即可.【解析】解:-3是负数,-(-3)=3是正数,|-3|=3是正数,-32=-9是负数,(-3)2=9是正数,(-3)5=-243是负数,-35=-243是负数,所以,负数有-3,-32,(-3)5,-35共4个.故选:C .【点睛】本题考查了正数和负数,熟练掌握相反数的定义,绝对值的性质,有理数的乘方准确化简计算是解题的关键.4.如图所示,根据有理数a ,b ,c 在数轴上的位置,比较a ,b ,c 的大小关系是( )A .a >b >cB .a >c >bC .b >c >aD .c >b >a【答案】D 【分析】根据数轴上的点表示的数右边的总比左边的大,可得答案.【解析】解:由题意,得c >b >a ,故选:D .【点睛】本题考查了有理数的大小比较,利用数轴上的点表示的数右边的总比左边的大是解题关键.5.若|1|a -与2b -互为相反数,则a +b 的值为( )A .3B .-3C .0D .3或﹣3a+b=1+2=3,故选:A.【点睛】本题考查了非负数的性质,利用非负数互为相反数得出这两个数为零是解题关键.6.用四舍五入法按要求对0.06547分别取近似值,其中错误的是( )A.0.1(精确到0.1)B.0.06(精确到百分位)C.0.065(精确到千分位)D.0.0655(精确到0.0001)【答案】B【分析】根据一个近似数精确到哪位,就是对它后边的一位进行四舍五入,分别对每一项进行分析即可.【解析】解:A. 0.06547≈ 0.1(精确到0.1),正确,此选项不符合题意;B. 0.06547≈0.07(精确到百分位),不正确,此选项符合题意;C. 0.06547≈0.065(精确到千分位),正确,故本选项不符合题意;D. 0.06547≈0.0655(精确到0.0001),正确,此选项不符合题意故选:B.【点睛】本题考查了近似数,需要同学们熟记一个近似数精确到哪位,就是对它后边的一位进行四舍五入.7.截止到2021年9月17日,全球感染新冠病毒确诊共226844344例,用科学记数法表示为(保留两个有效数字)( )A.23×107B.22×107C.2.3×108D.2.2×108【答案】C【分析】根据科学记数法从末端开始向左数小数点跳动的次数,一直数到最前面的2右边即可,数到几,就是10的几次方,注意结果保留两位小数.【解析】226844344的小数点从最后一个4右边跳到最前面的2右边,共跳了8下,故226844344=882.2684434410 2.310´»´故选C【点睛】本题考查科学记数法的应用,熟练掌握科学记数法是本题关键.8.下列运算正确的是()A.11303022-´=´=B.22232(32)636´=´=-C.1116636236æö¸-=¸=ç÷èøD.156215(62)5¸¸=¸¸=【答案】C9.已知点A 为数轴上表示-2的点,当点A 沿数轴移动4个单位长度到达B 时,点B 所表示的数为( )A .6B .-2C .2或-6D .-2或6【答案】C【分析】数轴上点的坐标变化和平移规律:左减右加.此题注意考虑两种情况:可以向左移或向右移.【解析】解:∵点A 为数轴上的表示-2的点,①当点A 沿数轴向左移动4个单位长度时,点B 所表示的有理数为-2-4=-6;②当点A 沿数轴向右移动4个单位长度时,点B 所表示的有理数为-2+4=2.综上所述,点B 所表示的数是2或-6,故选:C .【点睛】本题考查了数轴,解决本题的关键是注意数的大小变化和平移之间的规律:左减右加.与点A 的距离为4个单位长度的点B 有两个,一个向左,一个向右.10.如图是一个数字运算程序,当输入x 的值为1-时,输出的值为( )A .8B .4C .4-D .8-【答案】C 【分析】把1x =-代入程序计算得到结果.【解析】解:把1x =-代入得:()()()132éù---´-ëû=()22´-=4-故选:C.【点睛】此题考查有理数的混合运算,理解运算程序是解决问题的关键.11.一根1米长的绳子,第一次剪去绳子的14,第二次剪去剩下绳子的14,如此剪下去,第六次剪去后剩下绳子的长度是()A.514æöç÷èø米B.534æöç÷èø米C.614æöç÷èø米D.634æöç÷èø米12.观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64…,则22018的末位数是()A.2B.4C.6D.8【答案】B【分析】由题中可以看出,以2为底的幂的末位数字是2,4,8,6依次循环的,故个位的数字是以4为周期变化的,用2018÷4,计算一下看看有多少个周期即可.【解析】解:以2为底的幂的末位数字是2,4,8,6依次循环的,∵2018÷4=504…2,∴22018的个位数字是4.故选B.【点睛】此题主要考查了找规律,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的关键是找到以2为底的幂的末位数字的循环规律.二、填空题13.比较大小:-23_________-34,-(+3)_________-|-3|.14.一种零件,标明的要求是0.040.0310f +-,这种零件的合格品的最大直径是________,最小直径是_______,若直径是9.96,此零件为________(选填“合格品”或“不合格品”).【答案】 10.04 9.97 不合格品【分析】首先要弄清标明的要求是0.040.0310f +-的含义,根据具体的直径要求不难求得最大直径和最小直径,然后检验直径是9.96是否在要求的范围内,在就是合格,否则不合格.【解析】解:∵一种零件,标明直径的要求是0.040.0310f +-,∴这种零件的合格品最大的直径是:10+0.04=10.04;最小的直径是:10−0.03=9.97,∵9.96<9.97,∴直径是9.96,此零件为不合格品,故答案为:10.04,9.97,不合格品.【点睛】本题考查实际生活中符号与数学知识的联系,理解“正”和“负”的相对性,确定合格品的直径范围是解决问题的关键.15.计算:1(1)(9)9-¸-´=______.16.如果210a b -++=,那么a b ¸=__ .17.若5a =,3b =,且a b >,则a b +=__________.18.若,a b 互为相反数,,c d 互为倒数,e 的绝对值是1,则20221a b e cd-+-的值为________.19.如图,数轴上A、B两点所表示的数分别是﹣6和4,点C是线段AB的中点,则点C所表示的数是_____.【答案】-1【分析】先求出AB的长度,再根据点C是线段AB的中点,求出AC的长度,进一步即可求出点C表示的数.【解析】解:∵数轴上A、B两点所表示的数分别是﹣6和4,∴AB=4﹣(﹣6)=10,∵点C是线段AB的中点,∴AC=5,∴﹣6+5=﹣1,∴点C表示的数是﹣1,故答案为:﹣1.【点睛】本题考查了数轴,熟练掌握数轴上两点之间的距离是解题的关键.20.观察下列算式:1111212=-´,1112323=-´,1113434=-´,......用你所发现的规律计算111223++´´ (11989999100)++´´=_____.三、解答题21.把下列各数填在相应的集合内:﹣3,4,﹣2,15-,﹣0.58,0, 3.4-&,0.618,139,3.14.整数集合:{ …};分数集合:{ …};负有理数集合:{ …};非正整数集合:{ …}.22.已知下列有理数:3,0,(3),|4|,22-----.(1)画出数轴,并将这些有理数在数轴上表示出来;(2)把以上有理数用“<”连接起来.23.计算题:(1)()()()()8479--++---(2)11833æö-¸´-ç÷èø(3)()()3124102æö-´--´-ç÷èø(4)()()213142--+¸-´(5)()157362612æö+-´-ç÷èø(6)()()()324224éù-´-+---ëû24.计算题(1)﹣27+(﹣32)+(﹣8)+72;(2)(+4.3)﹣(﹣4)+(﹣2.3)﹣(+4);(3)﹣4﹣2´32+(﹣2´32);(4) 33(48)(2)(25)(4)(2)-¸---´-+-;(5)21151() 2.4533612éù--+´¸êúëû;(6)233122(3)(1)6||293--´-¸-.25.某服装厂一周计划生产2100件上衣,计划平均每天生产300件,由于各种原因实际每天生产量与计划量相比有出入,下表是某周的生产情况(超产为正,减产为负,单位:件)星期一二三四五六日增减+3-1-4+10-9+5-4(1)根据记录可知该服装厂一周共生产上衣多少件?(2)产量最多的一天比产量最少的一天多生产多少件?(3)该服装厂实行计件工资制,每生产一件上衣40元,每天超额完成任务每个奖10元,每天少生产一个扣5元,那么该服装厂工人这一周的工资总额是多少?【答案】(1)该服装厂一周共生产上衣2100件(2)产量最多的一天比产量最少的一天多生产19件(3)该服装厂工人这一周的工资总额是84090元【分析】(1)由计划产量加上超过或不足的量即可得到答案;(2)直接列式()109+--计算即可;(3)由总产量乘以40,再加上奖励工资,减去扣罚工资可得答案.(1)解:300×7+3-1-4+10-9+5-4=2100(件),答:该服装厂一周共生产上衣2100件.(2)+10-(-9)=19(件),答:产量最多的一天比产量最少的一天多生产19件.(3)2100×40+3×10-5-4×5+10×10-5×9+5×10-5×4=84090(元),答:该服装厂工人这一周的工资总额是84090元.【点睛】本题考查正负数的实际应用,有理数混合运算的实际应用,解题的关键是理解正负数的实际意义.26.如图所示,数轴上点A,B,C各表示有理数a,b,c.(1)试判断:b+c,b﹣a,a﹣c的符号;(2)化简:|b+c|﹣|b﹣a|﹣|a﹣c|.【答案】(1)b+c<0,b﹣a<0,a﹣c>0(2)﹣2a【分析】(1)根据数轴判断a,b,c的正负性,再进行简单的判断即可求解;(2)根据(1)中的结论以及绝对值的非负性进而得出解答.(1)解:根据题意得:c<b<0<a,∴b+c<0,b﹣a<0,a﹣c>0;(2)解:由(1)得b+c<0,b﹣a<0,a﹣c>0;原式=﹣b﹣c+b﹣a﹣a+c=﹣2a.【点睛】本题考查了数轴的基本性质和绝对值非负性的应用,解决本题的关键是判断好各个数值的正负.27.如图,用粗线在数轴上表示了一个“范围”,这个“范围”包含所有大于1小于2的有理数.请你在数轴上表示出一范围,使得这个范围同时满足以下三个条件:(1)至少有100对互为相反数和100对互为倒数;(2)有最小的正整数;(3)这个范围内最大的数与最小的数表示的点的距离大于3但小于4.【答案】见解析(答案不唯一)【分析】任何两点之间都有无数个数,由(1)可知两点只要分别位于原点的两侧,包含原点即可;(2)最小的正整数是1,因而包含1即可;由(3)得:范围两端点之间的距离大于3但小于4.同时满足以上三个条件即可.【解析】解:答案不唯一,例如:.【点睛】本题考查了数轴的知识,任何实数均可在数轴上表示出来,注意按要求作图.28.请完成以下问题(1)有理数a,b,c所对应的点在数轴上的位置如图所示,试比较a,﹣a,b,﹣b,c,﹣c,0的大小,并用“<”连接.(2)有理数a、b、m、n、x满足下列条件:a与b互为倒数,m与n互为相反数,x的绝对值为最小的正整数,求2021(m+n)+2020x3﹣2019ab的值.【答案】(1)c<b<a<0<-a<-b<-c(2)1或-4039【分析】(1)利用相反数的意义将-a,-b,-c在数轴上表示出来,利用在数轴上右边的总比左边的大即可将各数用“<”连接;(2)利用倒数,相反数和绝对值的意义得到相关字母的式子和x的值,利用整体代入的方法代入计算即可得出结论.(1)将-a ,-b , -c 在数轴上表示出来如下:∵在数轴上右边的总比左边的大,a , -a ,b , -b ,c , -c 用“<”连接如下:c < b < a <0<-a < -b < -c .(2)∵ a 与b 互为倒数,∴ab = 1;∵m 与n 互为相反数,∴m +n = 0;∵x 的绝对值为最小的正整数,∴x =士1,所以当x = 1时,原式=2012×0+2020×13-2019×1= 2020- 2019= 1;当x = -1时,原式=2012×0+2020×(-1)3-2019×1=-2020-2019=-4039【点睛】本题主要考查了数轴,有理数大小的比较,相反数,绝对值,倒数的意义,利用倒数,相反数和绝对值的意义得到相关字母的式子和x 的值是解题的关键.29.(1)已知a 、b 是有理数,且3a =3,a 与b 互为倒数,试求2a +34ab 的值.(2)|1110099-|+|11101100-|﹣|1110199-|.30.探索研究:(1)比较下列各式的大小(用“<”“>”或“=”连接)①|3||2|+-_________|32|-;②1123+_______1123+;③|6||3|+-________|63|-.(2)通过以上比较,请你归纳出当a ,b 为有理数时||||a b +与||a b +的大小关系.(直接写出结果)(3)根据(2)中得出的结论,当||20152015x x +=-时,x 的取值范围是________.若123415a a a a +++=,12345a a a a +++=,则12a a +=________.31.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是_____;表示3-和2两点之间的距离是_____;一般地,数轴上表示数m 和数n 的两点之间的距离等于||m n -.如果表示数a 和2-的两点之间的距离是3,那么=a _____;(2)若数轴上表示数a 的点位于4-与2之间,求|4||2|a a ++-的值;(3)当a 取何值时,|5||1||4|a a a ++-+-的值最小,最小值是多少?请说明理由.32.观察下列各等式,并回答问题:1 12´=1﹣12;123´=12﹣13;134´=13﹣14;145´=14﹣15;…(1)填空:1n(n1)+=______(n是正整数)(2)计算:112´+123´+134´+145´+…+120042005´=______.(3)计算:112´+123´+134´+145´+…+1n(n1)+=______.(4)求113´+135´+157´+179´+…+120132015´的值.33.材料:一般地,n 个相同的因数a 相乘:na a a ×14243L 记为n a .如328=,此时,3叫做以2为底8的对数,记为2log 8(即2log 83=).一般地,若n ab =(0a >且1a ¹,0b >),则n 叫做以a 为底b 的对数,记为log a b (即log a b n =).如4381=,则4叫做以3为底81的对数,记为3log 81(即3log 814=).问题:(1)计算以下各对数的值:2log 4=______,2log 16=______,2log 64=______;(2)观察(1)中三数4、16、64之间满足怎样的关系式为______;2log 4、2log 16、2log 64之间又满足怎样的关系式:______;(3)由(2)的结果,你能归纳出一个一般性的结论吗?log log a a M N +=______(0a >且1a ¹,0M >,0N >).【答案】(1)2、4、6(2)41664´=,222log 4log 16log 64+=(3)log a MN【分析】(1)根据对数的定义求解;(2)认真观察,不难找到规律:4×16=64,222log 4log 16log 64+=;(3)由特殊到一般,得出结论:log log log a a a M N MN +=.(1)∵22=4,42=16,62=64,∴2log 42=,2log 164=,2log 646=,故答案为:2、4、6;(2)4×16=64,由题意可得:2log 42=,2log 164=,2log 646=,∴222log 4log 16log 64+=,故答案为:4×16=64,222log 4log 16log 64+=;(3)由(2)易知log log log a a a M N MN +=,故答案为:log a MN .【点睛】本题是开放性的题目,难度较大.借考查对数,实际考查学生对指数的理解、掌握的程度;要求学生不但能灵活、准确的应用其运算法则,还要会类比、归纳,推测出对数应有的性质.34.请利用绝对值的性质,解决下面问题:(1)已知a ,b 是有理数,当a >0时,则||a a =______;当b <0时,则||b b =______.(2)已知a ,b ,c 是有理数,a +b +c =0,abc <0,求||||b c a c a b +++||a b c ++的值.(3)已知a ,b ,c 是有理数,当abc ≠0时,求||||a b a b +||c c +的值.35.(阅读理解)求若干个相同的有理数(均不等于0)的除法运算叫做除方,如:5÷5÷5,(﹣8)÷(﹣8)÷(﹣8)÷(﹣8)等,类比有理数的乘方,我们把5÷5÷5记作 5③,读作“5的圈3次方”,(﹣8)÷(﹣8)÷(﹣8)÷(﹣8)记作(-8)④,读作“﹣8的圈4次方”一般的把a a a an a¸¸¸¸L个记作aⓝ,读作“a的圈n次方”.(1)直接写出计算结果:(-6)④=____________;(2)[类比探究]有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?试一试:将下列运算结果直接写成幂的形式:(-17)ⓝ=____________(-1a)ⓝ=____________(n≥2且n为正整数)(3)[实践应用]计算①11()(4)()6 43-´--¸④⑤④③②11111()((()(55555+++++L②③④⑤ⓝ(其中n=2022)。

七年级数学上册人教版期末新定义题型复习导学案及配套作业(解析版)

七年级数学上册人教版期末新定义题型复习导学案及配套作业(解析版)

期末新定义题型复习(解析版)类型一有理数中的新定义1.(2022秋•尤溪县)七年级小莉同学在学习完第二章《有理数及其运算》后,对运算产生了浓厚的兴趣.她借助有理数的运算,定义了一种新运算“⊕”,规则如下:a⊕b=ab+2a.则(−3)⊕(−4⊕12)=()A.﹣13B.6C.24D.30思路引领:根据新定义先计算−4⊕12,再计算(﹣3)⊕(﹣10)即可求解.解:由题意得:(−3)⊕(−4⊕12)=(﹣3)⊕[﹣4×12+2×(﹣4)]=(﹣3)⊕(﹣2﹣8)=(﹣3)⊕(﹣10)=﹣3×(﹣10)+2×(﹣3)=30﹣6=24.故选:C.总结提升:本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.2.(2022秋•新吴区期中)现定义新运算“※”,对任意有理数a、b,规定a※b=a b﹣ab,则﹣1※2022的值()A.2023B.2022C.﹣2023D.﹣2021思路引领:根据新运算得出﹣1※2022=﹣(12022﹣1×2022),再根据有理数的运算法则进行计算即可.解:﹣1※2022=(﹣1)2022﹣(﹣1)×2022=1+2022=2023,故选:A.总结提升:本题考查了有理数的混合运算,能正确根据有理数的运算法则进行计算是解此题的关键.3.(2022秋•海陵区校级期中)定义一种对正整数n的“F”运算:①当n为奇数时,结果为3n+5;②当n为偶数时,结果为n2k (其中k是使n2k为奇数的正整数),并且运算可以重复进行,例如,取n=26,则:若n=49,则第2022次“F运算”的结果是()A.31B.49C.62D.98思路引领:根据运行的框图依次计算,发现其运算结果的循环规律:6次一循环,再计算求解即可.解:本题提供的“F运算”,需要对正整数n分情况(奇数、偶数)循环计算,由于n=49为奇数应先进行F①运算,即3×49+5=152(偶数),需再进行F②运算,即152÷23=19(奇数),再进行F①运算,得到3×19+5=62(偶数),再进行F②运算,即62÷21=31(奇数),再进行F①运算,得到3×31+5=98(偶数),再进行F②运算,即98÷21=49,再进行F①运算,得到3×49+5=152(偶数),…,即第1次运算结果为152,…,第4次运算结果为31,第5次运算结果为98,…,可以发现第6次运算结果为49,第7次运算结果为152,则6次一循环,2022÷6=337,则第2022次“F运算”的结果是49.故选:B.总结提升:本题主要考查有理数的混合运算和数字的变化规律,解题的关键是经过运算发现其数字的变化规律.4.(2022秋•越秀区校级月考)已知a、b皆为有理数,定义运算符号为※:当a>b时,a ※b=2a;当a<b时,a※b=2b﹣a,则3※2﹣[(﹣2)※3]等于()A.﹣2B.5C.﹣6D.10思路引领:原式利用题中的新定义计算即可求出值.解:根据题中的新定义得:3※2=2×3=6,(﹣2)※3=2×3﹣(﹣2)=6+2=8,则原式=6﹣8=﹣2.故选:A.总结提升:此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键.5.(2022秋•靖江市校级月考)对于有理数a 、b 定义一种新运算“⊙”,规定a ⊙b =|a +b |+|a ﹣b |,则(﹣2)⊙3的值是( ) A .6B .5C .4D .2思路引领:原式利用题中的新定义计算即可求出值.解:根据题中的新定义得: 原式=|﹣2+3|+|﹣2﹣3| =1+5 =6. 故选:A .总结提升:此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键. 6.(2022秋•鄞州区校级期中)正整数中各位数字的立方和与其本身相等的数称为“水仙花数”.例如153,13+53+33=153,因此“153”为“水仙花数”,则下列各数中:①370,②371,③407,④502,“水仙花数”的个数是( ) A .1B .2C .3D .4思路引领:根据正整数中各位数字的立方和与其本身相等的数称为“水仙花数”,分别判断得出答案即可. 解:①∵33+73+03=370,∴370为“水仙花数”,故此选项正确; ②∵33+73+13=371,∴371为“水仙花数”,故此选项正确; ③∵43+03+73=407,∴407为“水仙花数”,故此选项正确; ④∵53+03+23≠502,∴546不是“水仙花数”,故此选项错误. 故选:C .总结提升:此题主要考查了有理数的混合运算,有理数的乘方以及新定义,根据“水仙花数”的定义得出是解题关键.7.(2022秋•江阴市期中)现定义运算“*”,对于任意有理数a ,b 满足a *b ={2a −b ,a ≥b a −2b ,a <b .如5*3=2×5﹣3=7,12*1=12−2×1=−32,若x *3=5,则有理数x 的值为( ) A .4 B .11 C .4或11 D .1或11思路引领:分x ≥3与x <3两种情况求解. 解:当x ≥3,则x *3=2x ﹣3=5,x =4; 当x <3,则x *3=x ﹣2×3=5,x =11,但11>3,这与x<3矛盾,所以此种情况舍去.即:若x*3=5,则有理数x的值为4,故选:A.总结提升:本题考查了有理数的混合运算,解一元一次方程,解题的关键是理解题目所给的定义中包含的运算及运算顺序.类型二整式加减中的新定义8.(2022秋•黄浦区期中)定义:对于一个数x,我们把[x]称作x的相伴数;若x≥0,则[x]=x﹣1;若x<0,则[x]=x+1.例[32]=12,[﹣2]=﹣1;已知当a>0,b<0时有[a]=[b]+1,则代数式(b﹣a)3﹣3a+3b的值为.思路引领:根据定义的新运算可得a﹣1=b+1+1,从而可得a﹣b=3,然后利用整体的思想进行计算即可解答.解:当a>0,b<0时,[a]=[b]+1,∴a﹣1=b+1+1,∴a﹣b=3,∴(b﹣a)3﹣3a+3b=﹣(a﹣b)3﹣3(a﹣b)=﹣33﹣3×3=﹣27﹣9=﹣36,故答案为:﹣36.总结提升:本题考查了代数式求值,熟练掌握求代数式值中的整体思想是解题的关键.9.(2022秋•浦东新区期中)定义a﹣b=0,则称a、b互容,若2x2﹣2与x+4互容,则6x2﹣3x﹣9=.思路引领:先根据新定义求出2x2﹣x=6,再把6x2﹣3x﹣9化为3(2x2﹣x)﹣9的形式,整体代入计算即可.解:∵2x2﹣2与x+4互容,∴2x2﹣2﹣(x+4)=0,∴2x2﹣x=6,∴6x2﹣3x﹣9=3(2x2﹣x)﹣9=3×6﹣9=9,故答案为:9.总结提升:本题考查了代数式的求值,掌握乘法分配律的逆运算,把(2x2﹣x)看做一个整体进行计算是解题关键.10.(2022秋•涪城区期中)定义如下运算程序,则输入a=4,b=﹣2时,输出的结果为.思路引领:由程序框图将a=4,b=﹣2代入a+b计算可得答案.解:∵a=4,b=﹣2,a>b,∴输出结果为代入a+b=4+(﹣2)=2.故答案为:2.总结提升:此题考查了代数式的求值与有理数的运算,熟练掌握运算法则是解本题的关键.11.(2022•三水区校级三模)定义:若a﹣b=0,则称a与b互为平衡数,若2x2﹣2与x+4互为平衡数,则代数式6x2﹣3x﹣9=.思路引领:根据题意,2x2﹣2与x+4互为平衡数,得2x2﹣2﹣x﹣4=0,得到2x2﹣x=6,即可求出答案.解:∵2x2﹣2与x+4互为平衡数,∴2x2﹣2﹣x﹣4=0,∴2x2﹣x=6,∴6x2﹣3x=18,∴6x2﹣3x﹣9=18﹣9=9.故答案为:9.总结提升:本题考查整式的加减,解答本题的关键是明确整式加减的计算方法.12.(2022秋•古田县期中)(1)先化简,后求值:−13x−2(x−13y2)+(−23x+13y2):(其中x=﹣2,y=2 3).(2)定义一种新运算:观察下列各式:1*2=1×3+2=5,4*(﹣2)=4×3﹣2=10,3*4=3×3+4=13,6*(﹣1)=6×3﹣1=17.①请你想想:a*b=;②若a≠b,那么a*b b*a(填“=”或“≠”);③先化简,再求值:(a﹣b)*(a+2b),其中a=1,b=﹣7.思路引领:(1)先利用去括号的法则去掉括号后,合并同类项,再将x,y值代入运算即可;(2)①利用题干中各式中的规律解答即可;②利用①中的规律解答即可;③利用①中的规律得到关于a,b的关系式,化简后将a,b的值代入运算即可.解:(1)原式=−13x﹣2x+23y2−23x+13y2=(−13−2−23)x+(23+13)y2=﹣3x+y2,当x=﹣2,y=23时,原式=﹣3×(﹣2)+(2 3 )2=6+4 9=589;(2)①a*b=3a+b,故答案为:3a+b;②∵a*b=3a+b,b*a=3b+a,又∵a≠b,∴3a+b≠3b+a,∴a*b≠b*a,故答案为:≠;③(a﹣b)*(a+2b)=3(a﹣b)+(a+2b)=3a﹣3b+a+2b=4a﹣b.当a=1,b=﹣7时,原式=4×1﹣(﹣7)=4+7=11.总结提升:本题主要考查了整式的加减,化简求值,本题是阅读型题目,寻找题干中各式的规律并熟练应用是解题的关键.类型四一元一次方程中的新定义13.(2021秋•河口区期末)如果规定“*”的意义为:a*b=a+2b2(其中a,b为有理数),那么方程3*x =52的解是x = .思路引领:分析题意,运用定义的新运算法则,可得3*x =3+2x2;不难得出3+2x 2=52,解方程即可解答本题. 解:由题意得: 3*x =3+2x2, ∵3*x =52, ∴3+2x 2=52,解得x =1. 故答案为:1.总结提升:本题考查的是一道定义新运算的题目,需结合题中定义的新运算法则进行求解.14.(2021秋•如皋市期末)定义:如果一个一元一次方程的一次项系数与常数项的差刚好是这个方程的解的2倍,则称这个方程为妙解方程.如:方程3x +9=0中,3﹣9=﹣6,方程的解为x =﹣3,则方程3x +9=0为妙解方程.请根据上述定义解答:关于x 的一元一次方程3x +a ﹣b =0是妙解方程,则b ﹣a = . 思路引领:利用题中的新定义解答即可.解:解关于x 的一元一次方程3x +a ﹣b =0,得x =b−a3, ∵关于x 的一元一次方程3x +a =0是妙解方程, 3﹣(a ﹣b )=2×b−a3, 9+3(b ﹣a )=2(b ﹣a ), ∴b ﹣a =﹣9. 故答案为:﹣9.总结提升:此题考查了一元一次方程的解,弄清题中的新定义是解本题的关键. 15.(2022秋•隆安县期中)我们将|a b c d |这样的式子称为二阶行列式,它的运算法则公式表示就是|a bc d|=ad ﹣bc ,例如|1234|=1×4﹣2×3=4﹣6=﹣2.(1)请你依此法则计算二阶行列式|3−243|.(2)请化简二阶行列式|2x −3x +224|,并求当x =4时二阶行列式的值.思路引领:(1)根据|a bc d|=ad ﹣bc ,可以求得所求式子的值;(2)根据|a bc d|=ad ﹣bc ,可以将题目中的式子化简,然后将x =4代入化简后的式子即可.解:(1)由题意可得, |3−243| =3×3﹣(﹣2)×4 =9+8 =17; (2)|2x −3x +224|=4(2x ﹣3)﹣2(x +2) =8x ﹣12﹣2x ﹣4 =6x ﹣16,当x =4时,原式=6×4﹣16=24﹣16=8.总结提升:本题考查整式的加减、有理数的混合运算、新定义,解答本题的关键是明确新定义,会用新定义解答问题.16.(2022秋•西城区校级期中)定义如下:存在数a ,b ,使得等式a2+b 4=a+b 2+4成立,则称数a ,b 为一对“互助数”,记为(a ,b ).比如:(0,0)是一对“互助数”. (1)若(1,b )是一对“互助数”,则b 的值为 ;(2)若(﹣2,x )是一对“互助数”,求代数式(﹣x 2+3x ﹣1)−15(−52x 2+5x ﹣15)的值;(3)若(m ,n )是一对“互助数”,满足等式m −14n ﹣(6m +2n ﹣2)=0,求m 和n 的值.思路引领:(1)根据“互助数”的定义即可求得b 的值;(2)根据“互助数”的定义求出x 的值,再对所求代数式进行去括号,合并同类项,最后把x 的值代入化简后的代数式中即可求解;(3)根据“互助数”的定义求得n =﹣4m ①,再将所求等式化简得−5m −94n +2=0②,将①代入②中即可求解.解:(1)∵(1,b )是一对“互助数”, ∴12+b 4=1+b 2+4,解得:b =﹣4, 故答案为:﹣4;(2)∵(﹣2,x )是一对“互助数”, ∴﹣1+x4=−2+x2+4,解得:x =8,(﹣x 2+3x ﹣1)−15(−52x 2+5x ﹣15) =−x 2+3x −1+12x 2−x +3 =−12x 2+2x +2, 当x =8时,原式=−12×64+16+2=﹣14; (3)∵(m ,n )是一对“互助数”, ∴m 2+n 4=m+n 2+4,化简得:n =﹣4m ①,由m −14n ﹣(6m +2n ﹣2)=0化简得, −5m −94n +2=0②, 把①代入②中得,−5m −94×(−4m)+2=0, 解得:m =−12, 则n =−4×(−12)=2, ∴m =−12,n =2.总结提升:此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键. 17.(2022秋•邗江区期中)定义:若a +b =6,则称a 与b 是关于6的实验数.(1)4与 是关于6的实验数; 与5﹣2x 是关于6的实验数.(用含x 的代数式表示).(2)若a =x 2﹣4x +2,b =x 2﹣2(x 2﹣2x ﹣2),判断a 与b 是否是关于6的实验数,并说明理由.(3)若c =6x 2﹣8x +4,d =﹣2(3x 2﹣4x +k ),且c 与d 是关于6的实验数,求k 的值. 思路引领:(1)由4+2=6,6﹣(5﹣2x )可得答案;(2)列出算式a +b =a +b =x 2﹣4x +2+x 2﹣2(x 2﹣2x ﹣2 )去括号、合并同类项得出其结果,判断结果是否等于3即可;(3)由c 与d 是关于6的实验数知c +d =6,据此可得6x 2﹣8x +4﹣2(3x 2﹣4x +k )=6,进一步求解可得答案.解:(1)∵4+2=6,6﹣(5﹣2x )=1+2x ,∴4与2是关于6的实验数,1+2x 与5﹣2x 是关于6的实验数,故答案为:1+2x ;(2)a 与b 是关于6 的实验数,理由:∵a +b =x 2﹣4x +2+x 2﹣2(x 2﹣2x ﹣2 ) =x 2﹣4x +2+x 2﹣2x 2+4x +4 =6,∴a 与b 是关于6的实验数;(3)∵c 与d 是关于6的实验数,c =6x 2﹣8x +4,d =﹣2(3x 2﹣4x +k ), ∴c +d =6x 2﹣8x +4﹣2(3x 2﹣4x +k )=6, 解得k =﹣1. ∴k 的值为﹣1.总结提升:本题主要考查整式的加减,解题的关键是理解并掌握实验数的定义及整式加减运算顺序和法则.18.(2022秋•丰泽区校级期中)定义:对于一个有理数x ,我们把[x ]称作x 的“⻘一值”.若x ≥0,则有理数x 的“⻘一值”[x ]=x ﹣2;若x <0,则有理数x 的“⻘一值”[x ]=x +2.例:[1]=1﹣2=﹣1;[﹣1]=﹣1+2=1. (1)求有理数﹣2和32的“⻘一值”;(2)已知有理数a >0,b <0,且它们的“⻘一值”相等,则[a ]=[b ],试求代数式(b ﹣a )2﹣2a +2b 的值;(3)对于一个有理数x ,满⻘⻘程:[2x ]+[x +1]=4,请直接写出满⻘⻘程的解x 的值. 思路引领:(1)根据定义:若x ≥0,则有理数x 的“青一值”[x ]=x +1;若x <0,则有理数x 的“青一值”[x ]=x ﹣1,进行计算即可解答;(2)根据定义:若x ≥0,则有理数x 的“青一值”[x ]=x +1;若x <0,则有理数x 的“青一值”[x ]=x ﹣1,可得a ﹣b =﹣2,然后代入式子中,进行计算即可解答;(3)分三种情况:当x ≥0时,当﹣1≤x <0时,当x <﹣1时,然后分别进行计算即可解答.解:(1)[﹣2]=﹣2﹣1=﹣3; [32]=32+1=52,∴[﹣2]=﹣3;[32]=52;(2)∵a >0,b <0, ∴[a ]=a +1, [b ]=b ﹣1, ∵[a ]=[b ],∴a+1=b﹣1,∴a﹣b=﹣2,∴(b﹣a)2﹣2a+2b=(a﹣b)2﹣2(a﹣b)=(﹣2)2﹣2×(﹣2)=4+4=8;(3)分三种情况:当x≥0时,[2x]=2x+1,[x+1]=x+1+1=x+2,∵[2x]+[x+1]=4,∴2x+1+x+2=4,解得:x=1 3;当﹣1≤x<0时,[2x]=2x﹣1,[x+1]=x+1+1=x+2,∵[2x]+[x+1]=4,∴2x﹣1+x+2=4,解得:x=1(舍去);当x<﹣1时,[2x]=2x﹣1,[x+1]=x+1﹣1=x,∵[2x]+[x+1]=4,∴2x﹣1+x=4,解得:x=53(舍去);综上所述:x=1 3.总结提升:本题考查了有理数的混合运算,整式的混合运算﹣化简求值,解一元一次方程,理解定义中的[x]称作x的“青一值”是解题的关键.19.(2021秋•桃江县期末)阅读材料:在数轴上,如果把表示数1的点称为基准点,记作点P.对于两个不同的点M和N,若点M、N到点P的距离相等,则称点M与点N互为基准变换点.如图7中,点M表示数﹣1,点N表示数3,它们与表示数1的点P的距离都是2个单位长度,则点M与点N 互为基准变换点.解决问题:(1)若点A表示数a,点B表示数b,且点A与点B互为基准变换点.利用上述规定解决下列问题:①画图说明,当a=0、4、﹣3时,b的值分别是多少?②利用(1)中的结论,探索a与b的关系,并用含a的式子表示b;③当a =2021时,求b 的值.(2)对点A 进行如下操作:先把点A 表示的数乘以52,再把所得的数表示的点沿数轴向左移动3个单位长度得到点B ,若点A 与点B 互为基准变换点,求点A 表示的数.思路引领:(1)①根据互为基准变换点的定义画图,即可得到答案; ②观察①可得a 与b 的关系; ③结合②,把a =2021代入即可;(2)表示出B 表示的数,再由点A 与点B 互为基准变换点列方程可得答案. 解:(1)①由图可得:a =0时,b =2,a =4时,b =﹣2,a =﹣3时,b =5; ②a 与b 的关系为a +b =2, ∴b =2﹣a ;③a =2021时,b =2﹣2021=﹣2019; (2)设点A 表示的数为x ,根据题意得:52a ﹣3=2﹣x ,解得:x =107, ∴点A 表示的数是107.总结提升:本题考查数轴及列代数式,解题的关键是读懂题意,理解互为基准变换点的定义.20.(2022秋•西城区校级期中)阅读下列材料:定义:已知点A ,B ,C 为数轴上任意三点,若CB =12CA ,则称点C 是[A ,B ]的相关点. 例如:如图1,点C 是[A ,B ]的相关点,点D 不是[A ,B ]的相关点,但点D 是[B ,A ]的相关点.根据这个定义解决下面问题:(1)如图2,M ,N 为数轴上两点,点M 表示的数是﹣2,点N 表示的数是4,若点G 是[M ,N ]的相关点,则点G 表示的数是 ;(2)数轴上点E 所表示的数为﹣10,点F 所表示的数为20.一动点P 从点F 出发,以每秒2个单位的速度沿数轴向左运动,另一个动点Q 从点E 出发,以每秒1个单位的速度沿数轴向右运动,设运动时间为t 秒.问当t 为何值时,P 为[F ,Q ]的相关点?思路引领:(1)根据新定义列方程可得答案;(2)表示出P 表示的数是20﹣2t ,Q 表示的数是﹣10+t ,再根据新定义列方程可得答案. 解:(1)设点G 表示的数是x ,根据题意得:GN =12GM ,即|x ﹣4|=12[x ﹣(﹣2)], 解得x =10或x =2, 故答案为:10或2;(2)P 表示的数是20﹣2t ,Q 表示的数是﹣10+t , ∵P 为[F ,Q ]的相关点,∴PQ =12PF ,即|(20﹣2t )﹣(﹣10+t )|=12×2t , 解得t =10或t =30,∴当t 为10或30时,P 为[F ,的相关点.总结提升:本题考查一元一次方程的应用,涉及新定义,解题的关键是读懂题意,能根据新定义列出方程解决问题.21.(2022秋•江都区期中)定义:如果两个一元一次方程的解之和为1,我们就称这两个方程为“美好方程”.例如:方程2x ﹣1=3和x +1=0为“美好方程”.(1)方程4x ﹣(x +5)=1与方程﹣2y ﹣y =3是“美好方程”吗?请说明理由; (2)若关于x 的方程x2+m =0与方程3x ﹣2=x +4是“美好方程”,求m 的值;(3)若关于x 方程2x ﹣n +3=0与x +5n ﹣1=0是“美好方程”,求n 的值.思路引领:(1)分别求得两个方程的解,再利用“美好方程”的定义进行判断即可; (2)分别求得两个方程的解,利用“美好方程”的定义列出关于m 的方程解答即可; (3)分别求得两个方程的解,利用“美好方程”的定义列出关于n 的方程解答即可. 解:(1)方程4x ﹣(x +5)=1与方程﹣2y ﹣y =3是“美好方程”,理由如下: 由4x ﹣(x +5)=1,解得x =2; 由﹣2y ﹣y =3,解得y =﹣1.∵﹣1+2=1,∴方程4x ﹣(x +5)=1与方程﹣2y ﹣y =3是“美好方程”. (2)由3x ﹣2=x +4,解得x =3; 由x2+m =0解得x =﹣2m .∵方程3x ﹣2=x +4与方程x2+m =0是“美好方程”,∴﹣2m +3=1, 解得m =1.(3)由2x ﹣n +3=0,解得x =n−32; 由x +5n ﹣1=0,解得x =1﹣5n ;∵关于x 方程2x ﹣n +3=0与x +5n ﹣1=0是“美好方程”, ∴n−32+1﹣5n =1,解得n =−13.总结提升:本题主要考查了一元一次方程的解,解一元一次方程,利用同解方程的意义解答是解题的关键,本题是新定义型,理解并熟练应用新定义解答也是解题的关键. 22.(2022秋•大丰区期中)在数轴上有A 、B 两点,点B 表示的数为b .对点A 给出如下定义:当b ≥0时,将点A 向右移动2个单位长度,得到点P ;当b <0时,将点A 向左移动|b |个单位长度,得到点P .称点P 为点A 关于点B 的“伴侣点”.如图,点A 表示的数为﹣1.(1)在图中画出当b =6关于点B 的“伴侣点”P ;(2)当点P 表示的数为﹣6,若点P 为点A 关于点B 的“伴侣点”,则点B 表示的数 ; (3)点A 从数轴上表示﹣1的位置出发,以每秒1个单位的速度向右运动,点B 从数轴上表示8的位置同时出发,以每秒2个单位的速度向左运动,两个点运动的时间为t 秒.①点B 表示的数为 (用含t 的式子表示);②是否存在t ,使得此时点A 关于点B 的“伴侣点”P 恰好与原点重合?若存在,请求出t 的值;若不存在,请说明理由.思路引领:(1)求出P 表示的数,再画图即可; (2)根据已知可得B 运动后表示的数; (3)①根据左减右加即可解答;②分两种情况:当8﹣2t ≥0,P 表示的数是﹣1+t +2=t +1=0,当8﹣2t <0时,P 表示的数是:﹣1+t ﹣(2t ﹣8)=7﹣t =0,即可得到答案. 解:(1)∵b =6>0,∴将点A向右移动2个单位得到点p:﹣1+2=1,∴点P表示的数为1,数轴表示如图:;(2)∵点P表示的数为﹣6,点P为点A关于点B的“伴侣点”P在点A的左边5个单位,∴|b|=5,又∵b<0,∴b=﹣5,即点B表示的数为﹣5,故答案为:﹣5;(3)①点B表示的数为:8﹣2t,故答案为:8﹣2t;②存在,理由如下:根据题意得:点A表示的数为﹣1+t,当8﹣2t≥0时,解得t≤4,即将点A向右平移2个单位长度,得到点P,表示的数为:t+1,此时t+1=0,解得:t=﹣1,与t>0不符,舍去;当8﹣2t<0时,解得t>4,即将A向左平移|b|个单位长度得点p为:﹣1+t﹣(2t﹣8)=7﹣t,与原点重合,∴7﹣t=0,解得:t=7,即当t=7时,点P与原点重合.总结提升:本题考查数轴上的动点问题,解题的关键是用含t的代数式表示点运动后所表示的数.23.(2022春•开福区校级月考)方程的解的定义:使方程两边相等的未知数的值.如果一个方程的解都是整数,那么这个方程叫做“立信方程”.(1)若“立信方程”2x+1=1的解也是关于x的方程1﹣2(x﹣m)=3的解,则m=;(2)若关于x的方程x2+3x﹣4=0的解也是“立信方程”6x+2x2﹣3﹣n=0的解,则n =;(3)若关于x的方程ax=2a3﹣3a2﹣5a+4的解也是关于x的方程9x﹣3=kx+14的解,且这两个方程都是“立信方程”,求符合要求的正整数a和正整数k的值.思路引领:(1)根据“立信方程”的定义解答即可;(2)先求出x2+3x﹣4=0的解,再把其中的解代入求解即可求n的解;(3)利用“立信方程”以及a和k为正整数求解.(1)∵2x+1=1,解得x=0;把x=0代入1﹣2(x﹣m)=3,得:1﹣2(0﹣m)=3,∴1+2m=3,解得:m=1;(2)解方程x2+3x﹣4=0,(x﹣1)(x+4)=0,解得:x1=1或x2=﹣4,把x1=1代入6x+2x2﹣3﹣n=0得:6×1+2×12﹣3﹣n=0,解得:n=5;把x2=﹣4代入6x+2x2﹣3﹣n=0得:6×(﹣4)+2×(﹣4)2﹣3﹣n=0,解得:n=5;故满足条件的n的值为5.(3)因a为正整数,则a≠0,又∵ax=2a3﹣3a2﹣5a+4,∴x=2a2−3a−5+4 a,∵两方程均为立信方程,∴x的值为整数,∴4a为整数,∴此时a可取1,4,2,﹣1,﹣4,﹣2,∴x=﹣2,16,﹣1,﹣4,38,7,同理9x﹣3=kx+14,∴(9﹣k)x=17,显然,此时k≠9,则x=179−k,∴9﹣k可取8,﹣810,26,∴此时x=17,1,﹣17,﹣1,∴两方程相同的解为x=﹣1,此时对应的a=2,k=26,故符合要求的正整数a的值为2,k的值为26.总结提升:本题考查了一元一次方程的解的应用,能理解立信方程的意义是解此题的关键.类型四几何图形初步中的新定义24.(2020秋•上城区期末)定义:当点C在线段AB上,AC=nAB时,我们称n为点C在线段AB上的点值,记作d C※AB=n.甲同学猜想:点C在线段AB上,若AC=2BC;则d C※AB=2 3.乙同学猜想:点C是线段AB的三等分点,则d C※AB=1 3.关于甲,乙两位同学的猜想,下列说法正确的是()A.甲正确,乙不正确B.甲不正确,乙正确C.两人都正确D.两人都不正确思路引领:根据题意,由点C在线段AB上,若AC=2BC,可得AC=23AB,故可判断甲;点C是线段AB的三等分点,则AC=13AB或AC=23AB,故可判断乙.解:∵点C在线段AB上,若AC=2BC,∴AC=23AB,即n=23,∴d C※AB=23.故甲的猜想正确;∵点C是线段AB的三等分点,∴AC=13AB或AC=23AB,∴d C※AB=13或23.故乙的猜想不正确.故选:A.总结提升:25.定义:如果两个角的差的绝对值等于90°,就可以称这两个角互为垂角,例如:∠1=120°,∠2=30°,|∠1﹣∠2|=90°,则∠1和∠2互为垂角(本题所有角都是指大于0°且小于180°的角).如果有一个角的垂角等于这个角的补角的45,那么这个角的度数为()A.150°B.130°C.30°或130°D.30°或150°思路引领:根据题意需分类讨论,根据题意中数量关系列出方程,从而解决此题.解:设这个角度数为x.当这个角大于它的垂角,则这个角的垂角为x﹣90°.∴x﹣90°=45(180°−x).∴x=130°.当这个角小于它的垂角,则这个角的垂角为90°+x.∴90°+x=45(180°−x).∴x=30°.综上:这个角的度数为130°或30°.故选:C.总结提升:本题主要考查解一元一次方程、绝对值,熟练掌握解一元一次方程是解决本题的关键.26.(2021春•长宁区校级期末)同一直线上有A、B、C三点,若点C、A之间的距离与点C、B之间的距离之比是1:2,则称点C为点A和点B的牛点.如果点P是点M和点N的牛点,且PM=1,则MN=.思路引领:根据两点间的距离分两种情况求解即可.解:(1)如图,∵PM:PN=1:2,∴PM=MN,∵PM=1,∴MN=1;(2)如图,∵PM:PN=1:2且PM=1,∴PN=1×2=2,∴MN=PM+PN=2+1=3.故MN的长为3或1.故答案为:1或3.总结提升:此题考查了两点间的距离,根据题意分两种情况求解是解题的关键.27.(2021秋•兰山区期末)我们定义:若两个角差的绝对值等于60°,则称这两个角互为“正角”,其中一个角是另一个角的“正角”.如:∠1=110°,∠2=50°,|∠1﹣∠2|=60°,则∠1和∠2互为“正角”.如图,已知∠AOB=120°,射线OC平分∠AOB,∠EOF在∠AOB的内部,若∠EOF=60°,则图中互为“正角”的共有对.思路引领:根据“正角”的定义解答即可.解:∵∠AOB=120°,射线OC平分∠AOB,∴∠AOC =∠BOC =12∠AOB =60°,∴∠AOB ﹣∠AOC =60°,∠AOB ﹣∠BOC =60°, 又∵∠EOF =60°, ∴∠AOB ﹣∠EOF =60°, ∵∠EOF =∠AOC =60°,∴∠AOF ﹣∠AOE =60°,∠AOF ﹣∠COF =60°, ∠BOE ﹣∠EOC =60°,∠BOE ﹣∠BOF =60°,∴图中互为“正角”的共有∠AOB 与∠AOC ,∠AOB 与∠BOC ,∠AOB 与∠EOF ,∠AOF 与∠AOE ,∠AOF 与∠COF ,∠BOE 与∠EOC ,∠BOE 与∠BOF 共7对. 故答案为:7总结提升:本题考查了角平分线的定义,理清题意是解答本题的关键.28.(2019秋•莆田期末)定义:若α﹣β=90°,且90°<α<180°,则我们称β是α的差余角.例如:若α=110°,则α的差余角β=20°.(1)如图1,点O 在直线AB 上,射线OE 是∠BOC 的角平分线,若∠COE 是∠AOC 的差余角,求∠BOE 的度数;(2)如图2,点O 在直线AB 上,若∠BOC 是∠AOE 的差余角,那么∠BOC 与∠BOE 有什么数量关系;(3)如图3,点O 在直线AB 上,若∠COE 是∠AOC 的差余角,且OE 与OC 在直线AB 的同侧,∠AOC−∠BOC∠COE请你探究是否为定值?若是,请求出定值;若不是,请说明理由.思路引领:(1)根据角平分线的定义得到∠COE =∠BOE =12∠BOC ,根据题意得到∠AOC ﹣∠COE =∠AOC −12∠BOC =90°,于是得到结论;α (2)根据角的和差即可得到结论;(3)如图3,由∠COE 是∠AOC 的差余角,得到∠AOC =90°+∠COE ,∠BOC =90°﹣∠COE ,如图4,由∠COE 是∠AOC 的差余角,得到∠AOC =90°+∠COE ,于是得到结论.解:(1)∵OE 是∠BOC 的角平分线, ∴∠COE =∠BOE =12∠BOC , ∵∠COE 是∠AOC 的差余角,∴∠AOC ﹣∠COE =∠AOC −12∠BOC =90°, ∵∠AOC +∠BOC =180°, ∴∠BOC =60°, ∴∠BOE =30°;(2)∵∠BOC 是∠AOE 的差余角,∴∠AOE ﹣∠BOC =∠AOC +∠COE ﹣∠COE ﹣∠BOE =∠AOC ﹣∠BOE =90°, ∵∠AOC +∠BOC =180°, ∴∠BOC +∠BOE =90°;(3)答:是,理由:如图3,∵∠COE 是∠AOC 的差余角, ∴∠AOC ﹣∠COE =∠AOE =90°,∴∠AOC =90°+∠COE ,∠BOC =90°﹣∠COE , ∴∠AOC−∠BOC∠COE=90°+∠COE−90°+∠COE∠COE=2(定值);如图4,∵∠COE 是∠AOC 的差余角, ∴∠AOC ﹣∠COE =90°, ∴∠AOC =90°+∠COE ,∵∠BOC =180°﹣∠AOC =180°﹣(90°+∠COE )=90°﹣∠COE , ∴∠AOC−∠BOC∠COE=90°+∠COE−90°+∠COE∠COE=2(定值),综上所述,∠AOC−∠BOC∠COE为定值.总结提升:本题考查了余角和补角,角的和差的计算,正确的理解题意是解题的关键. 29.(2021秋•松滋市期末)定义:从一个角的顶点出发,在角的内部引两条射线,如果这两条射线所成的角等于这个角的一半,那么这两条射线所成的角叫做这个角的内半角.如图①所示,若∠COD=12∠AOB,则∠COD是∠AOB的内半角.(1)如图①所示,已知∠AOB=70°,∠AOC=15°,∠COD是∠AOB的内半角,则∠BOD=.(2)如图②,已知∠AOB=63°,将∠AOB绕点O按顺时针方向旋转一个角度α(0<α<63°)至∠COD,当旋转的角度α为何值时,∠COB是∠AOD的内半角?(3)已知∠AOB=30°,把一块含有30°角的三角板如图③叠放,将三角板绕顶点O 以3°/秒的速度按顺时针方向旋转,如图④,问:在旋转一周的过程中,且射线OD始终在∠AOB的外部,射线OA,OB,OC,OD能否构成内半角?若能,请直接写出旋转的时间;若不能,请说明理由.思路引领:(1)根据“内半角”的定义,可求出∠COD的度数,再根据∠BOD=∠AOB ﹣∠AOC﹣∠COD,可得出结论;(2)由旋转可分别求出∠BOC和∠AOD的度数,再根据“内半角”的定义,可列出等式60−α=60+α2,即可求出α的值;(3)由旋转可知,分四种情况,分别进行讨论,根据“内半角”的定义,可求出对应的时间.解:(1)如图1,∵∠AOB=70°,∠COD是∠AOB的内半角,∴∠COD=12∠AOB=35°,∵∠AOC=15°,∴∠BOD=∠AOB﹣∠AOC﹣∠COD=70°﹣15°﹣35°=20°;故答案为:20°.(2)如图2,由旋转可知,∠AOC=∠BOD=α,∴∠BOC=63°﹣α,∠AOC=63°+α,∵∠COB是∠AOD的内半角,∴∠COB=12∠AOD,即63″﹣α=63°+α2,解得α=21°,当旋转的角度α为21°时,∠COB是∠AOD的内半角;(3)能,理由如下,由旋转可知,∠AOC =∠BOD =3°t ;根据题意可分以下四种情况: ①当射线OC 在∠AOB 内,如图4,此时,∠BOC =30°﹣3°t ,∠AOC =30°+3°t , 则∠COB 是∠AOD 的内半角,∴∠COB =12∠AOD ,即30°﹣3°t =12(30°+3°t ), 解得t =103(秒); ②当射线OC 在∠AOB 外部,有以下两种情况,如图5,图6, 如图5,此时,∠BOC =3°t ﹣30°,∠AOC =30°+3°t , 则∠COB 是∠AOD 的内半角,∴∠COB =12∠AOD ,即3°t ﹣30°=12(30°+3°t ), 解得t =30(秒);如图6,此时,∠BOC =360°﹣3°t +30°,∠AOC =360°﹣3°t ﹣30°, 则∠AOD 是∠BOC 的内半角,∴∠AOD =12∠BOC ,即360°﹣3°t ﹣30°=12(360°﹣3°t +30°), 解得t =90(秒);综上,在旋转一周的过程中,射线OA 、OB 、OC 、OD 构成内半角时,旋转的时间分别为:103秒;30秒;90秒.总结提升:本题属于新定义类问题,主要考查旋转中角度的表示,及角度的和差运算;由旋转正确表达对应的角是本题解题关键.30.(2021秋•武侯区期末)【阅读理解】定义:在一条直线同侧的三条具有公共端点的射线之间若满足以下关系,其中一条射线分别与另外两条射线组成的角恰好满足2倍的数量关系,则称该射线是另外两条射线的“双倍和谐线”.如图1,点P在直线l上,射线PR,PS,PT位于直线l同侧,若PS平分∠RPT,则有∠RPT=2∠RPS,所以我们称射线PR是射线PS,PT的“双倍和谐线”.【迁移运用】(1)如图1,射线PS(选填“是”或“不是”)射线PR,PT的“双倍和谐线”;射线PT(选填“是”或“不是”)射线PS,PR的“双倍和谐线”;(2)如图2,点O在直线MN上,OA⊥MN,∠AOB=40°,射线OC从ON出发,绕点O以每秒4°的速度逆时针旋转,运动时间为t秒,当射线OC与射线OA重合时,运动停止.①当射线OA是射线OB,OC的“双倍和谐线”时,求t的值;②若在射线OC旋转的同时,∠AOB绕点O以每秒2°的速度逆时针旋转,且在旋转过程中,射线OD平分∠AOB.当射线OC位于射线OD左侧且射线OC是射线OM,OD 的“双倍和谐线”时,求∠CON的度数.思路引领:(1)利用“双倍和谐线”的意义结合图形进行判断即可;(2)①由题意得:∠AOC=90°﹣4°t,∠AOB=40°,利用分类讨论的思想方法分∠AOC=2∠AOB或∠AOB=2∠AOC两种情况讨论解答,依据上述等式列出方程,解方程即可求得结论;②由题意得:∠CON=4°t,∠AON=90°+2°t,∠AOD=20°,∠DON=∠AON﹣∠AOD=70°+2°t,利用分类讨论的思想方法分∠COM=2∠COD或∠COD=2∠COM两种情况讨论解答,依据上述等式列出方程,解方程即可求得结论.解:(1)∵PS平分∠RPT,∴∠RPS=∠TPS,∴射线PS不是射线PR,PT的“双倍和谐线”;∵PS平分∠RPT,∴∠TPR=2∠TPS.∴射线PT 是射线PS ,PR 的“双倍和谐线”. 故答案为:不是;是;(2)①由题意得:∠AOC =90°﹣4°t ,∠AOB =40°. ∵射线OA 是射线OB ,OC 的“双倍和谐线”, ∴∠AOC =2∠AOB 或∠AOB =2∠AOC . 当∠AOC =2∠AOB 时,如图,则:90﹣4t =2×40. 解得:t =52.当∠AOB =2∠AOC 时,如图,则:40=2(90﹣4t ). 解得:t =352. 综上,当射线OA 是射线OB ,的“双倍和谐线”时,t 的值为52或352.②由题意得:∠CON =4°t ,∠AON =90°+2°t ,∠AOD =20°,∠DON =∠AON ﹣∠AOD =70°+2°t .∵当射线OC 与射线OA 重合时,运动停止, ∴此时∠AON =∠CON . ∴90+2t =4t . ∴t =45.∴当t =45秒时,运动停止,此时∠AON =180°.∵射线OC 位于射线OD 左侧且射线OC 是射线OM ,OD 的“双倍和谐线”, ∴∠COM =2∠COD 或∠COD =2∠COM . 当∠COM =2∠COD 时,如图,即:180°﹣∠CON=2(∠CON﹣∠DON),则:180﹣4t=2(4t﹣70﹣2t).解得:t=40.∴∠CON=4°×40=160°.当∠COD=2∠COM时,如图,即:∠CON﹣∠DON=2(180°﹣∠CON).则:4t﹣(70+2t)=2(180﹣4t).解得:t=43.∴∠CON=4°×43=172°.综上,当射线OC位于射线OD左侧且射线OC是射线OM,OD的“双倍和谐线”时,∠CON的度数为160°或172°.总结提升:本题主要考查了角的计算,角平分线的定义,本题是新定义型,理解并熟练应用新定义是解题的关键.配套作业1.(2022秋•西城区校级期中)用“☆“定义一种新运算:对于任意有理数x和y,x☆y=a2x+ay﹣2(a为常数).例如:4☆3=a2×4+a•3﹣2=4a2+3a﹣2.若1☆2=3,则2☆4的值为()A.6B.10C.8D.12思路引领:根据x☆y=a2x+ay﹣2,1☆2=3,可以得到a2+2a的值,然后将所求式子变形,再将a2+2a的值代入计算即可.解:∵x☆y=a2x+ay﹣2,1☆2=3,∴a2×1+a×2﹣2=3,∴a2+2a﹣2=3,∴a2+2a=5,∴2☆4。

七年级数学(上册)有理数计算题专题复习50道(附含答案解析)

七年级数学(上册)有理数计算题专题复习50道(附含答案解析)

2017-2018学年七年级数学上册有理数计算题专题复习50道一、计算题:1.计算:-4-28-(-19)+(-24)2.计算:(+-)×(-24)3.计算:4.计算:5.计算:100÷(-2)2-(-2).6.计算:7.计算:(-2.75)×(-24);8.9.计算:-2-|-3|+(-2)2 10.计算:-82+3×(-2)2+(-6)÷(-)211.计算:(-)2÷(-)4×(-1)6-()×48.12.计算:13.计算:14.计算:15.计算:-6+(-2)3×()÷()2÷(-3).16.计算:25.7+(-7.3)+(-13.7)+7.3. 17.计算:(-2)3+[18-(-3)×2]÷418.计算:-6-4+7 19.计算:20.计算:(-12)×(-)21.计算:-36×(-+)22.计算:(-2)3-(-13)÷(-). 23.计算:24.计算:25.计算:26.计算:(-3.59)×(-)-2.41×(-)+6×(-)27.计算:28.计算:29.计算:(-+)÷(-); 30.计算:31.计算:32.计算:-22÷(-1)2-×[4-(-5)2]33.计算:34.计算:35.计算:1÷(-1)+0÷(-4)×(-2010) 36.计算:(-72)+37-(-22)+(-17)37.计算:-22+(-33)×(-)3-12÷(-2)2.38.计算:-14-(1-0.5)× [10-(-2)2]-(-1)3.39.计算:-12×4-(-6)×5 40.计算:-0.52+41.计算:12-(-16)+(-4)-5 42.计算:-14-×[2-(-3)2]43.计算:3x2-3(x2-2x+1)+4 44.计算:45.计算:(-3)4÷(1.5)2-6×(-)+|-32-9| 46.计算:-54×÷(-4)×47.计算:48.计算:49.计算:50.计算:参考答案1.解:原式=-32+19-24=-372.解:(+-)×(-24)=-12-20+14=-18;3.4.5;4.原式=-45-35+70=-10;5.原式=22.6.答案为:-1;7.(-2.75)×(-24)=-3-32+66=31;8.-7;9.原式=-2-3+4=-110.解:原式=-64+3×4-6=-64+12-54=-52-54=-106;11.原式=×16×1-(×48+×48-×48)=1-(66+64-132)=1-(-2)=3.12..13.答案为:0;14.-1115.原式=10.16.解:原式=25.7+7.3+[(-7.3)+(-13.7)]=33-21=12.17.解:原式=-8+(18+6)÷4=-8+6=-2;18.原式=-10+7=-3;19.20.(-12)×(-)=(-12)×+(-12)×=9+7-10=6;21.原式=-28+30-27=-25;22.原式=-8+13×(-2)=-3423.解:原式.24.答案为:13/12.25.答案为:-1;26.原式=-×(-3.59-2.41+6)=0.27.-428.29.原式=(-+)×(-36)=×(-36)-×(-36)+×(-36)=-8+9-2=-1.30.原式==-7200+10=-719031.32.原式=3;33.0;34.-6;35.原式=-1+0=-136.原式=-72+37+22-17=-89+59=-30;37.原式=-4+(-27)×(-)-3=-4+8-3=138.解:原式=-1-× [10-4]-(-1)=-1-1+1=-1.39.原式=-48+30=-18;40.原式=-16.41.原式=28-4-5=1942.答案为:43.2x2+6x+144.2545.原式=55.46.原式=54×××=6;47.原式=36.48.原式=-9+6+25=22;49.原式=-85;50.16;。

七年级数学有理数专题: 定义新运算练习(解析版)

七年级数学有理数专题:  定义新运算练习(解析版)

【分析】求 2014i+2013i﹣2012i+2011i+…+5i﹣4i+3i﹣2i+1i 的结果的个位数,只用 分别求 2014i,2013i,2012i,…,3i,2i,1i 的个位数即可,然后通过加减,再 求结果的个位数. 【解答】解:由新定义 ni=1×2×3×…×n 可知: 2014i=1×2×3×4×5×6×…×2012×2013×2014 2013i=1×2×3×4×5×6×…×2012×2013 2012i=1×2×3×4×5×6×…×2012 … 5i=1×2×3×4×5 由观察很容易知道,2014i,2013i,2012i,…,6i,5i 的因式中均含有 2×5,所 以他们的个位数都为 0; 又因为: 4i=1×2×3×4=24 3i=1×2×3=6 2i=1×2=2 1i=1 所以 2014i+2013i﹣2012i+2011i+…﹣4i+3i﹣2i+1i 的个位数为:0﹣4+6﹣2+1=1. 故选:B. 【点评】本题注意两点:第一,没有必要把每个数算出来,只要求算出各个部分 的个位数即可,注意 2×5=10,含有 2×5 部分的个位数皆为 0;第二,注意运算 符号的变化,有加有减.
5.如果 P↑表示 P+1,P↓表示 P﹣1,则 4↑×3↓等于 ( A.9↓ B.10↓C.11↓D.12↑ E.13↓

【分析】 根据定义的新运算, 计算 4↑×3↓的结果, 再把结果用新运算表示即可. 【解答】解:根据定义的新运算得, 4↑×3↓=(4+1)×(3﹣1)=5×2=10, 因为 9↑=10 或 11↓=10,所以 4↑×3↓=9↑=11↓. 故选:C.
第 3页(共 24页)

七上数学专题:关于新定义

七上数学专题:关于新定义

7上第6次辅导:关于新定义热身计算(1)|﹣22+(﹣3)2|﹣(﹣)3(2)2×(﹣3)2﹣33﹣6÷(﹣2)(3)﹣81÷×(﹣)(4)+(﹣)﹣(﹣)+(﹣)﹣(+)(5)﹣12020+(﹣5)×[(﹣2)3+2]﹣(﹣4)2÷(﹣)(6)﹣32×(﹣)2+(﹣+)×(﹣24).例1.对于有理数a,b,定义一种新运算”⊙”,规定a⊙b=|a+b|+|a﹣b|.(1)计算:2⊙(﹣3)的值;(2)当a,b在数轴上的位置如图所示时,化简:a⊙b.例2.有三种运算程序如图所示,按要求完成下列各题:(1)如图①,当输入数x=﹣1时,输出数y=;(2)如图②,第一个带?号的运算框内,应填;第二个带?号运算框内,应填;第三个带?号运算框内,应填.(3)如图③,当输入数为3时,则输出结果为.例3.如图,这是一个数值转换机的示意图.(1)若输入x的值为﹣6,输入y的值为4,则输出的结果为;(2)若输入x的值为4,输出的结果为﹣11,则输入y的值为.例4.记M(1)=﹣2,M(2)=(﹣2)×(﹣2),M(3)=(﹣2)×(﹣2)×(﹣2),…,M(n)=(1)填空:M(5)=,M(1000)是一个(填“正数”或“负数”).(2)计算M(6)+M(7)的值.(3)当M(n)<0时,求2014M(n)+1007M(n+1)的值.例5.在数学中,为了简便,记k=1+2+3+…+(n﹣1)+n.1!=1,2!=2×1,3!=3×2×1,…,n!=n×(n﹣l)×(n﹣2)×…×3×2×1.求.例6.我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算,如将(101)2,(1011)2换算成十进制数为:(101)2=1×22+0×21+1=4+0+1=5;(1011)2=1×23+0×22+1×21+1=11;两个二进制数可以相加减,相加减时,将对应数位上的数相加减.与十进制中的“逢十进一”、“退一还十”相类似,应用“逢二进一”、“退一还二”的运算法则,如:(101)2+(11)2=(1000)2;(110)2﹣(11)2=(11)2,用竖式运算如右侧所示.(1)按此方式,将二进制(1001)2换算成十进制数的结果是.(2)计算:(10101)2+(111)2=(结果仍用二进制数表示);(110010)2﹣(1111)2=(结果用十进制数表示).例7.高斯函数[x],也称为取整函数,即[x]表示不超过x的最大整数,例如:[2.9]=2,[﹣1.5]=﹣2.试探索:(1)[﹣5]=,[π]=;(2)[2.7]+[2.3]=;(3)[]+[]+[]+[]+[]+[]=.例8.请根据所给资料完成解答.资料1:用户和QQ等级由用户的活跃天数决定,用四个标识图展示,从低到高分别为星星、月亮、太阳、皇冠,其中一个星星代表1级,并且规定4星星=1月亮,4月亮=1太阳,4太阳=1皇冠.资料2:假设某用户的等级为n,则要达到该等级所需要的活跃天数d可以用公式:D=N2+4×N来计算.例如:要达到1级所需要的活跃天数为12+4×1=5天,2级需要的活跃天数为22+4×2=12天.如图,沈老师的qq等级是3个太阳1个月亮,回答下列问题:(1)沈老师的qq等级为级.(2)沈老师的活跃天数d的范围是怎样的?例9.数学兴趣小组遇到这样一个问题:一个数乘以2后加8,然后除以4,再减去这个数的,则结果为多少?小组内5成员分别令这个数为﹣5、3、﹣4、6、2,发现结果一样.(1)请从上述5个数中任取一个数计算结果.(2)有这样一个猜想:无论这个数是几,其计算结果一样,这个猜想对吗?请说明理由.如果你觉得这个猜想不对,请你提出一个新的猜想.例10.定义:对于一个两位数x,如果x满足个位数字与十位数字互不相同,且都不为零,那么称这个两位数为“相异数”,将一个“相异数”的个位数字与十位数字对调后得到一个新的两位数,将这个新两位数与原两位数的求和,同除以11所得的商记为S(x).例如,a=13,对调个位数字与十位数字得到的新两位数31,新两位数与原两位数的和为13+31=44,和44除以11的商为44÷11=4,所以S(13)=4.(1)下列两位数:20,29,77中,“相异数”为,计算:S(43)=;(2)若一个“相异数”y的十位数字是k,个位数字是2(k﹣1),且S(y)=10,求相异数y;(3)小慧同学发现若S(x)=5,则“相异数”x的个位数字与十位数字之和一定为5,请判断小慧发现”是否正确?如果正确,说明理由;如果不正确,举出反例.例11.【概念学习】规定:求若干个相同的有理数(均不等0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”.一般地,把(a≠0)记作aⓝ读作“a的圈n次方”【初步探究】(1)直接写出计算结果:2③=,(﹣)④=。

新人教版初中数学七年级上册第二单元《有理数的运算》测试卷(解析版)

新人教版初中数学七年级上册第二单元《有理数的运算》测试卷(解析版)

新人教版初中数学七年级上册第二单元《有理数的运算》测试卷(解析版)1.(3分)(2024九下·唐河模拟)中原熟,天下足.处于中原的河南一直是我国重要的粮食大省,最近几年粮食总产量更是连续突破1300亿斤,为保证国家粮食安全做出了突出贡献.数据“1300亿”用科学记数法表示为()A.1.3×1011B.1.3×1010C.0.13×1012D.0.13×10102.(3分)(2017九下·莒县开学考)已知P=210×3×58,则P可用科学记数法表示为()A.12×108B.1.2×109C.1.2×108D.12×1093.(3分)(2023七上·石家庄月考)下列各组中互为相反数的是()A.−2与−12B.|−2|和2C.−2.5与|−2|D.−12与|−1 2|4.(3分)(2024九下·哈尔滨模拟)某冰箱冷藏室的温度是5℃,冷冻室的温度是−20℃,则冷藏室比冷冻室温度高()A.15℃B.−15℃C.−25℃D.25℃5.(3分)(2023七上·天河期中)两个数的和是正数,那么这两个数()A.都是正数B.一正一负C.都是负数D.至少有一个是正数6.(3分)(2024七上·长安月考)下图是某地十二月份某一天的天气预报,则该天的温差是()A.7℃B.8℃C.−7℃D.13℃7.(3分)(2024七上·孟村期末)已知有理数a、b在数轴上的位置如图所示,下列结论正确的是()A.a>b B.ab<0C.b−a>0D.a+b>08.(3分)(2023七上·上思期中)若|x|=−x,则x是()A.正数B.负数C.正数或零D.负数或零9.(3分)(2022·泗县模拟)第七次全国人口普查数据显示,全国人口共141178万人,比第六次人口普查增加7206万人.数据“7206万”用科学记数法表示正确的是()A.0.7206×108B.7.206×106C.7.206×107D.72.06×107 10.(3分)(2017七上·下城期中)下列计算正确的是().A.(−3)−(−5)=−8B.−32=−9C.√−4=−2D.√9=±3二、填空题(每题3分,共15分)(共5题;共15分)11.(3分)(2023七上·襄州期中)定义一种新运算,对于任意有理数a和b,规定a▲b=-a+b,如:2▲(-1)=-2+(-1)=-3,则-3▲4的值为12.(3分)(2023七上·淮安期中)比较大小:−|−2|−(−3)(用“>”、“<”、“=”填空)13.(3分)(2024·福田一模)如图1,“幻方”源于我国古代夏禹时期的“洛书”。

中考新定义新运算专题练习

中考新定义新运算专题练习

1.对于两个不相等的实数a 、b ,定义一种新的运算如下, )0(*>+-+=b a ba b a b a ,如:523232*3=-+=, 那么)4*5(*6= 。

2.对实数a .b ,定义运算☆如下:a☆b=(,0(,0b b a a b a a a b a -⎧⎪⎨⎪⎩>≠)≤≠), 例如2☆3=32-=18,计算:[2☆(﹣4)]×[(﹣4)☆(﹣2)]=3.对于不小于3的自然数n ,规定如下一种操作:<n>表示不是n 的约数的最小自然数.如<7>=2,<12>=5,等等,则<19>×<98>=4.用“?”定义新运算:对于任意实数a ,b 都有a?b =b 2+1,例如7?4=42+1=17,那么5?3= ,m?(m? 2)= .5.在有理数范围内规定一种新运算“*”,其规则为a*b =a 2-b 2,根据这个规则,求2*5的结果为 .6.用“←”与“→”定义:对于任意实数a ,b ,都有a ←b=a , a →b =b ,例如:3←2=3, 3→2=2,则(2006→2005)←(2004→2003)= .7.若(x 1,y 1)?(x 2,y 2)=x 1x 2+y 1y 2,则(4,5)?(6,8)= .12.对于实数a,b,定义运算“﹡”:a ﹡b=22(),).a ab a b ab ba b ⎧-≥⎪⎨-<⎪⎩(例如4﹡2,因为4>2,所以4﹡224428=-⨯=.若1x ,2x 是一元二次方程2560x x -+=的两个根,则1x ﹡2x =13.我们把按照一定顺序排列的一列数称为数列,如1,3,9,19,33,…就是一个数列,如果一个数列从第二个数起,每一个数与它前一个数的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做这个等差数列的公差.如2,4,6,8,10就是一个等差数列,它的公差为2.如果一个数列的后一个数与前一个数的差组成的新数列是等差数列,则称这个数列为二阶等差数列.例如数列1,3,9,19,33,…,它的后一个数与前一个数的差组成的新数列是2,6,10,14,…,这是一个公差为4的等差数列,所以,数列1,3,9,19,33,…是一个二阶等差数列.那么,请问二阶等差数列1,3,7,13,…的第五个数应是 .14.在平面直角坐标系中,对于平面内任意一点(x ,y ),若规定以下两种变换:①f(x ,y )=(y ,x ).如f (2,3)=(3,2);②g(x,y)=(-x,-y),如g(2,3)=(-2,-3).按照以上变换有:f(g(2,3))=f(-2,-3)=(-3,-2),那么g(f(-6,7))等于 .14.现定义两种运算:“”,“”,对于任意两个整数a,b,a⊕b=a+b-1,a⊗b=a×b-1,求4⊗[(6⊕8)⊕(3⊗5)]的值.15.若两个二次函数图象的顶点,开口方向都相同,则称这两个二次函数为“同簇二次函数”。

全国通用版七年级数学有理数专题练习-------定义新运算题库(含解析)

全国通用版七年级数学有理数专题练习-------定义新运算题库(含解析)

(6)=4,则 G(36)+G(42)= 【考点】定义新运算之直接运算
。 【难度】2 星
【题型】计算
【解析】36 的约数有:1、2、3、4、6、9、12、18、36。42 的约数有:1、2、3、6、7、14、21、42。所
以有 G(36) G(42) 9 8 17 。 【答案】 17
【巩固】如果 a & b a b 10 ,那么 2 & 5
原式 (6 4) 2 5 .
【答案】 5
【巩固】x 为正数,<x>表示不超过 x 的质数的个数,如<5.1>=3,即不超过 5.1 的质数有 2,3,5 共 3 个.那么
<<19>+<93>+<4>×<1>×<8>>的值是
.
【考点】定义新运算之直接运算
【难度】3 星
【题型】计算
【解析】<19>为不超过 19 的质数,有 2,3,5,7,11,13,17,19 共 8 个.<93>为不超过的质数,共 24 个,易知

【考点】定义新运算之直接运算
【难度】2 星
【题型】计算
【解析】2&5=2+5÷10=2.5 【答案】 2.5
【例 7】 “华”、“杯”、“赛”三个字的四角号码分别是“2440”、“4199”和“3088”,将“华杯赛”的
编码取为 244041993088,如果这个编码从左起的奇数位的数码不变,偶数位的数码改变为关于
果 1 4=2 3,那么 3 4 等于________。
【考点】定义新运算之直接运算
【难度】2 星

山东七年级数学上册第一单元《有理数》-解答题专项经典练习卷(培优)

山东七年级数学上册第一单元《有理数》-解答题专项经典练习卷(培优)

一、解答题1.设0a >,x ,y 为有理数,定义新运算:||a x a x =⨯※.如323|2|6=⨯=※,()414|1|a a -=⨯-※.(1)计算20210※和()20212-※的值. (2)若0y <,化简()23y -※.(3)请直接写出一组,,a x y 的具体值,说明()a x y a x a y +=+※※※不成立. 解析:(1)0;4042;(2)6y -;(3)1a =,2x =,3y =-(答案不唯一)【分析】(1)根据题意※表示前面的数与后面数的绝对值的积,直接代入数据求解计算;(2)有y<0,得到y 为负数,进而得到-3y 为正数,去绝对值后等于本身-3y ,再代入数据求解即可;(3)按照题意要求写一组具体的,,a x y 的值再验算即可.【详解】解:(1)根据题意得:202102021|0|0=⨯=※; ()202122021|2|4042-=⨯-=※;(2)因为0y <,所以30y ->,所以()()232|3|236y y y y -=⨯-=⨯-=-※;(3)由题意,当,,a x y 分别取1a =,2x =,3y =-时,此时()2311※※(-1)=1-=,而11※2※(-3)=2+3=5+,所以,()a x y a x a y +=+※※※不成立.【点睛】本题是新定义题型,按照题目中给定的运算要求和顺序进行求解即可.2.计算:(1)5721()()129336--÷- (2)22115()(3)(12)23-+÷-⨯---⨯ 解析:(1)37;(2)50.【分析】(1)先把除法转化为乘法,然后根据乘法分配律计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【详解】(1)原式=572()(36)152824371293--⨯-=-++=. (2)原式=15(3)(3)(14)2145650-+⨯-⨯---⨯=-++=.本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 3.计算:(1)231+-+;(2)()3202111024⎡⎤-⨯+-÷⎣⎦. 解析:(1)6;(2)12-【分析】 (1)先化简绝对值,再算加法即可求解;(2)先算乘方,再算括号里面的,最后算乘除即可.【详解】(1)原式=2+3+1=6;(2)原式=1(108)4-⨯-÷=124-⨯÷=1124-⨯⨯=12- 【点睛】此题考查有理数的混合运算,掌握运算顺序和运算法则是解答此题的关键.4.计算下列各式的值:(1)1243 3.55-+-(2)131(48)64⎛⎫-+⨯- ⎪⎝⎭(3)22350(5)1--÷--解析:(1)-24.3;(2)-76;(3)-12【分析】(1)先将减法化为加法,再计算加法即可;(2)利用乘法分配律计算即可;(3)先计算乘方,再计算除法,最后计算减法.【详解】解:(1)原式=24 3.2( 3.5)-++-=-24.3;(2)原式=131(48)(48)(48)64⨯--⨯-+⨯- =488(36)-++-=-76;(3)原式=950251--÷-=921---=9(2)(1)-+-+-【点睛】本题考查有理数的混合运算.熟记运算顺序和每一步的运算法则是解题关键.5.计算:(1)113623⎛⎫-⨯- ⎪⎝⎭(2)2233(3)3(2)|4|-÷-+⨯-+-解析:(1)2;(2)-21.【分析】(1)根据有理数的混合运算法则即可求解;(2)根据有理数的混合运算法则即可求解.【详解】解:(1)113623⎛⎫-⨯-⎪⎝⎭ =1136623-⨯+⨯ =332-+=2;(2)2233(3)3(2)|4|-÷-+⨯-+-=993(8)4-÷+⨯-+=1244--+=-21.【点睛】此题主要考查有理数的运算,解题的关键是熟知其运算法则.6.计算:(1)()4235524757123⎛⎫÷--⨯-÷- ⎪⎝⎭; (2)()3218223427⎛⎫-⨯+-⨯- ⎪⎝⎭. 解析:(1)0;(2)1-.【分析】(1)原式先把除法转换为乘法,再逆用乘法分配律进行计算即可得到答案;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.【详解】解:(1)()4235524757123⎛⎫÷--⨯-÷- ⎪⎝⎭45355171271234⎛⎫=⨯--⨯+⨯ ⎪⎝⎭ 4535571271212=-⨯-⨯+ 43517712⎛⎫=--+⨯ ⎪⎝⎭ 5012=⨯ 0=; (2)()3218223427⎛⎫-⨯+-⨯- ⎪⎝⎭ ()98427427⎛⎫-⨯+-⨯- ⎝=⎪⎭98=-+1=-.【点睛】此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.7.计算:(1)()110822⎫⎛---÷-⨯- ⎪⎝⎭(2)()2313232154⎫⎛-⨯--⨯-÷- ⎪⎝⎭解析:(1)12- ;(2)0【分析】(1)先去绝对值,同时把除变乘,再计算乘法,最后加减即可(2)先计算乘方和括号内的,把除变乘,再计算乘法,最后加减法即可【详解】(1)()110822⎫⎛---÷-⨯-⎪⎝⎭ =1110822⎛⎫⎛⎫--⨯-⨯- ⎪ ⎪⎝⎭⎝⎭ =102--=-12(2)()2313232154⎫⎛-⨯--⨯-÷- ⎪⎝⎭=()()2386154-⨯---⨯-=243660--+=0【点睛】本题考查有理数的混合运算,解答的关键是熟练掌握运算法则和运算顺序.8.以1厘米为1个单位长度用直尺画数轴时,数轴上互为相反数的点A和点B刚好对着直尺上的刻度2和刻度8.(1)写出点A和点B表示的数;(2)写出在点B左侧,并与点B距离为9.5厘米的直尺左端点C表示的数;(3)若直尺长度为a厘米,移动直尺,使得直尺的长边CD的中点与数轴上的点A重合,求此时左端点C表示的数.解析:(1)点A表示的数是-3,点B表示的数是3;(2)点C表示的数是-6.5;(3)3-0.5a【分析】(1)根据AB=8-2=6,点A和点B表示的数是互为相反数,即可得到结果;(2)利用点B表示的数3减去9.5即可得到答案;(3)利用中点表示的数向左移动0.5a个单位计算即可.【详解】(1)∵AB=8-2=6,点A和点B表示的数是互为相反数,∴点A表示的数是-3,点B表示的数是3;(2)点C表示的数是:3-9.5=-6.5;(3)∵直尺长度为a厘米,直尺中点表示的数是-3,∴直尺此时左端点C表示的数-3-0.5a.【点睛】此题考查利用数轴表示数,数轴上两点之间的距离,数轴上点移动的规律,熟记数轴上点移动的规律进行计算是解题的关键.9.在数轴上表示下列各数:14, 1.5,3,0,2.5,52----,并将它们按从小到大的顺序排列.解析:图见解析,153 1.50 2.542--<-<-<<<【分析】在数轴上表示出各数,再按照从左到右的顺序用“<”号把它们连接起来即可.【详解】解: 5=-5--如图所示:故:153 1.50 2.542--<-<-<<<. 【点睛】本题考查的是有理数的大小比较,熟知数轴的特点是解答此题的关键.10.计算(1)1140336177⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭(2)()()341110.5123⎡⎤---⨯⨯--⎣⎦解析:(1)-6;(2)52-【分析】(1)根据加法运算律计算即可;(2)先算括号里面,再算括号外面的即可;【详解】(1)1140336177⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭, ()1140363177⎛⎫=-++-+ ⎪⎝⎭, 42=--,=-6;(2)()()341110.5123⎡⎤---⨯⨯--⎣⎦, 111923=--⨯⨯, 312=--, 52=-. 【点睛】本题主要考查了有理数的混合运算,准确应用加法运算律解题的关键.11.把4-,4.5,0,12-四个数在数轴上分别表示出来,再用“<”把它们连接起来.解析:数轴表示见解析,140 4.52-<-<<. 【分析】 先根据数轴的定义将这四个数表示出来即可,再根据数轴上的表示的数,左边的总小于右边的用“<”将它们连接起来即可得.【详解】将这四个数在数轴上分别表示出来如下所示:则140 4.52-<-<<.【点睛】本题考查了数轴,熟练掌握数轴的定义是解题关键.12.计算(1)3124623⎛⎫⎛⎫-÷-+⨯- ⎪ ⎪⎝⎭⎝⎭(2)()()34011 1.950.50|5|5---+-⨯⨯--+.解析:(1)14;(2)0【分析】(1)先计算乘法和除法,再计算加法;(2)分别计算乘方、乘法和绝对值,再计算加法和减法.【详解】解:(1)原式=2124633⎛⎫⎛⎫-⨯-+⨯- ⎪ ⎪⎝⎭⎝⎭()162=+-14=;(2)原式011055=-++-+=0.【点睛】本题考查有理数的混合运算.(1)中注意要先把除法化为乘法再计算;(2)中注意多个有理数相乘时,只要有一个因数为0,那么积就为0.13.计算:(1)14-25+13(2)42111|23|()823---+-⨯÷解析:(1)2;(2)4【分析】(1)根据有理数的加减运算,即可求出答案;(2)先计算乘方、绝对值、然后计算乘除,再计算加减运算,即可得到答案.【详解】解:(1)14251311132-+=-+=;(2)42111|23|()823---+-⨯÷=111834--+⨯⨯ =26-+=4.【点睛】本题考查了有理数的混合运算,解题的关键是掌握运算法则进行解题.14.某粮仓原有大米132吨,某一周该粮仓大米的进出情况如下表:(运进大米记作“+”,运出大米记作“-”,例如:当天运进大米8吨,记作8+吨;当天运出大米15吨,记作15-吨)若经过这一周,该粮仓存有大米88吨.(1)求星期五粮仓大米的进出情况;(2)若大米进出粮仓的装卸费用为每吨15元,求这一周该粮仓需要支付的装卸总费用. 解析:(1)星期五粮仓当天运出大米20吨;(2)2700元.【分析】(1)根据有理数的加法,可得答案;(2)根据单位费用乘以总量,可得答案.【详解】(1)m =88﹣(132﹣32+26﹣23﹣16+42﹣21)=﹣20,∴星期五粮仓当天运出大米20吨;(2)(|﹣32|+|+26|+|﹣23|+|﹣16|+|﹣20|+|+42|+|﹣21|)×15=2700(元),答:这一周该粮仓需要支付的装卸总费用为2700元.【点睛】本题考查了用正负数表示相反意义的量及有理数加减法的应用,第(2)问利用单位费用乘以总量是解题关键.15.计算(1) ()375244128⎛⎫---⨯- ⎪⎝⎭ (2) ()212382455-+--÷-⨯解析:(1)47;(2)4925【分析】 (1)根据乘法分配律,求出算式的值是多少即可;(2)先计算乘方及绝对值运算,再计算乘除法运算,最后算加减运算即可求出值.【详解】解: ()375244128⎛⎫---⨯- ⎪⎝⎭=18+14+15=47(2)()212|38|2455-+--÷-⨯ =11452455⎛⎫-+-⨯-⨯⎪⎝⎭ =24125+ 4925= 【点睛】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.16.计算(1)21145()5-÷⨯-(2)21(2)8(2)()2--÷-⨯-. 解析:(1)4125;(2)2. 【分析】第(1)和(2)小题都属于有理数的混合运算,根据混合运算的运算顺序:先算乘方,并利用有理数的除法法则将除法转化为乘法,再计算乘法,最后计算加减即可求出结果.【详解】解:(1)21145()5-÷⨯-11 116()55 =-⨯⨯-16125=+4125=;(2)21(2)8(2)()2--÷-⨯-1148()()22=-⨯-⨯-42=-2=.【点睛】本题考查了有理数的混合运算,解题的关键是确定正确的运算顺序并运用运算法则准确计算.17.计算:(﹣1)2014+15×(﹣5)+8解析:8【分析】先算乘方,再算乘法,最后算加法,由此顺序计算即可.【详解】原式=1+15×(﹣5)+8=1﹣1+8=8.【点睛】此题考查有理数的混合运算,注意运算的顺序与符号的判定.18.计算:(1)157(36)2612⎛⎫--⨯-⎪⎝⎭(2)2138(2)3⎛⎫⨯-+÷-⎪⎝⎭解析:(1)33;(2)1.【分析】(1)根据乘法分配律可以解答本题;(1)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【详解】解:(1)原式=157(36)(36)(36)2612⨯--⨯--⨯-= -18+30+21=33;(2)原式= -1+2=1.【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.19.某粮库6天内粮食进、出库的吨数如下(“+”表示进库,“-”表示出库)+25,-22,-14,+35,-38,-20(1)经过这6天,仓库里的粮食是增加了还是减少了?)(2)经过这6天,仓库管理员结算时发现库里还存280吨粮,那么6天前仓库里存粮多少吨?(3)如果进出的装卸费都是每吨5元,那么这6天要付多少装卸费?解析:(1)减少了34吨;(2)314吨;(3)770元【分析】(1)求出6天的数据的和即可判断;(2)根据(1)中结果计算即可;(3)求出数据的绝对值的和,再乘5即可;【详解】解:(1)25−22−14+35−38−20=−34<0,答:经过6天,粮库里的粮食减少了34吨;(2)280+34=314(吨),答:6天前粮库里的存量314吨;(3)(25+22+14+35+38+20)×5=770(元),答:这6天要付出770元装卸费.【点睛】本题考查有理数混合运算的实际应用,正确理解题意,列出算式是解题的关键. 20.计算:(1)()2411(10.5)2--23⎡⎤---⨯⨯⎣⎦(2)6÷(-2)3-|-22×3|+3÷2×12+1; 解析:(1)23-;(2)-11 【分析】(1)先计算乘方及括号,再计算乘法,最后计算加减法;(2)先计算乘方和绝对值,再计算乘除法,最后计算加减法.【详解】 (1)()2411(10.5)2--23⎡⎤---⨯⨯⎣⎦=111(2)23--⨯⨯- =113-+ =23-;(2)6÷(-2)3-|-22×3|+3÷2×12+1 =116(8)123122÷--+⨯⨯+ =3312144--++ =-11.【点睛】 此题考查含乘方的有理数的混合运算,掌握运算顺序及运算法则是解题的关键. 21.计算:(1)117483612⎛⎫-+-⨯ ⎪⎝⎭; (2)20213281(2)(3)3---÷⨯-. 解析:(1)36-;(2)26.【分析】(1)利用乘法分配律进行简便运算即可;(2)先算乘方,再算乘除,最后计算加减即可.【详解】解:(1)117483612⎛⎫-+-⨯ ⎪⎝⎭ 1174848483612=-⨯+⨯-⨯ 16828=-+-36=-;(2)20213281(2)(3)3---÷⨯- 31(89)8=---⨯⨯ 127=-+26=.【点睛】本题考查了有理数的混合运算,掌握有理数运算的相关运算法则并灵活运用运算律准确计算是解题的关键.22.计算:(1)6÷(-3)×(-32) (2)-32×29-+(-1)2019-5÷(-54) 解析:(1)3;(2)1.【分析】(1)根据有理数的乘除混合运算法则计算即可;(2)根据有理数的混合运算法则计算即可.【详解】解:(1)原式=6×1-3⎛⎫⎪⎝⎭×(-32)=3;(2)原式=-9×29+(-1)-5×4-5⎛⎫⎪⎝⎭=-2-1+4=1.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.23.计算(1)(-5)+(-7);(2)(-1)100×5+(-2)4÷4解析:(1)-12;(2)9【分析】(1)同号相加,取相同符号,并把绝对值相加,据此计算即可;(2)先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【详解】解:(1)(-5)+(-7)=-(5+7)=-12.(2)(-1)100×5+(-2)4÷4=5+16÷4=5+4=9.【点睛】本题主要考查了有理数的加法及有理数的混合运算,熟练掌握运算法则是解本题的关键.24.一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下:(单位:米)+5,﹣4,+10,﹣8,﹣6,+13,﹣10.(1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线最远距离是多少米?(3)守门员全部练习结束后,他共跑了多少米?解析:(1)回到了球门线的位置;(2)11米;(3)56米【分析】(1)由于守门员从球门线出发练习折返跑,问最后是否回到了球门线的位置,只需将所有数加起来,看其和是否为0即可;(2)计算每一次跑后的数据,绝对值最大的即为所求;(3)求出所有数的绝对值的和即可.【详解】解:(1)(+5)+(﹣4)+(+10)+(﹣8)+(﹣6)+(+13)+(﹣10)=(5+10+13)-(4+8+6+10)=28-28=0.答:守门员最后回到了球门线的位置;(2)第1次第2次第3次第4次第5次第6次第7次55-4=11+10=1111-8=33-6=﹣3-3+13=1010-10=0答:在练习过程中,守门员离开球门线最远距离是11米;(3)|+5|+|﹣4|+|+10|+|﹣8|+|﹣6|+|+13|+|﹣10|=5+4+10+8+6+13+10=56(米).答:守门员全部练习结束后,他共跑了56米.【点睛】本题考查了正数和负数以及有理数加减运算的应用等知识点,解题的关键是理解“正”和“负”的相对性,确定具有相反意义的量.25.如图,数轴上A,B两点之间的距离为30,有一根木棒MN,设MN的长度为x.MN数轴上移动,M始终在左,N在右.当点N移动到与点A,B中的一个重合时,点M所对应的数为9,当点N移动到线段AB的中点时,点M所对应的数是多少?解析:点M所对应的数为24或-6.【分析】设MN=x,然后分类计算即可:①当点N与点A重合时,点M所对应的数为9,则点N对应的数为x+9;②当点N与点B重合时,点M所对应的数为9,则点N对应的数为x+9.【详解】设MN=x,①当点N与点A重合时,点M所对应的数为9,则点N对应的数为x+9,∵AB=30,∴当N移动到线段AB的中点时,点N对应的数为x+9+15=x+24,∴点M所对应的数为x+24-x=24;②当点N与点B重合时,点M所对应的数为9,则点N对应的数为x+9,∵AB=30,∴当N移动到线段AB的中点时,点N对应的数为x+9-15=x-6,∴点M所对应的数为x-6-x=-6;综上,点M所对应的数为24或-6.【点睛】本题综合考查了数轴的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.数形结合并分类讨论是解题的关键.26.已知:b是最小的正整数,且a、b满足(c-5)2+|a+b|= 0请回答问题:(1)请直接写出a、b、c的值:a=,b=,c=,(2)数轴上a,b,c所对应的点分别为A,B,C,则B,C两点间的距离为;(3)在(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,设运动了t秒,①此时A表示的数为;此时B表示的数为;此时C表示的数为;②若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.请问:BC-AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.解析:(1)-1;1;5;(2)4;(3)①-1-t;1+2t;5+5t;②BC-AB的值为2,不随着时间t的变化而改变.【分析】(1)先根据b是最小的正整数,求出b,再根据c2+|a+b|=0,即可求出a、c;(2)由(1)得B和C的值,通过数轴可得出B、C的距离;(3)①在(2)的条件下,通过运动速度和运动时间可表示出A、B、C;②先求出BC=3t+4,AB=3t+2,从而得出BC-AB=2.【详解】解:(1)∵b是最小的正整数,∴b=1.∵(c-5)2+|a+b|=0,∴a=-1,c=5;故答案为:-1;1;5;(2)由(1)知,b=1,c=5,b、c在数轴上所对应的点分别为B、C,B、C两点间的距离为4;(3)①点A以每秒1个单位长度的速度向左运动,运动了t秒,此时A表示的数为-1-t;点B以每秒2个单位长度向右运动,运动了t秒,此时B表示的数为1+2t;点C以5个单位长度的速度向右运动,运动了t秒,此时C表示的数为5+5t.②BC-AB的值不随着时间t的变化而改变,其值是2,理由如下:∵点A都以每秒1个单位的速度向左运动,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,∴BC =5+5t –(1+2t )=3t +4,AB =1+2t –(-1-t )=3t +2,∴BC -AB =(3t +4)-(3t +2)=2.【点睛】本题考查了数轴与绝对值,通过数轴把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.27.计算:(1)4222(37)2(1)-+--⨯-; (2)157(36)2912⎛⎫-+⨯- ⎪⎝⎭. 解析:(1)-2;(2)-19【分析】(1)先括号里,再计算乘方、乘法,最后相加减即可;(2)利用乘法的分配率进行计算.【详解】(1)4222(37)2(1)-+--⨯-=16162-+-=-2;(2)157(36)2912⎛⎫-+⨯- ⎪⎝⎭=157(36)(36)(36)2912⨯--⨯-+⨯- =-18+20-21=-19【点睛】 考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.28.计算:(1)()()()923126--⨯-+÷-(2)()2235112342⎛⎫-+--÷- ⎪⎝⎭. 解析:(1)1;(2)-1.【分析】(1)先算乘除,再算加减即可求解;(2)先算乘方,后算除法,最后算加减即可求解.【详解】(1)()()()923126--⨯-+÷-=962--=1;(2)()2235112342⎛⎫-+--÷- ⎪⎝⎭ =11891632-+-÷ =1893216-+-⨯ =892-+-=-1.【点睛】 此题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.29.探索代数式222a ab b -+与代数式2()a b -的关系(1)当5a =,2b =-时,分别计算两个代数式的值.(2)你发现了什么规律?(3)利用你发现的规律计算:2220182201820192019-⨯⨯+解析:(1)49, 49;(2)a 2−2ab +b 2=(a−b )2;(3)1.【分析】(1)将a 、b 的值分别代入a 2−2ab +b 2与(a−b )2计算可得;(2)根据(1)中的两式的计算结果即可归纳总结出关系式;(3)原式变形后,利用完全平方公式计算可得结果.【详解】解:(1)当a =5,b =−2时,a 2−2ab +b 2=52−2×5×(−2)+(−2)2=25+20+4=49,(a−b )2=[5−(−2)]2=72=49;(2)根据(1)的计算,可得规律:a 2−2ab +b 2=(a−b )2;(3)20182−2×2018×2019+20192=(2018−2019)2=(−1)2=1.【点睛】本题考查了代数式的求值及完全平方公式的应用,解题的关键是掌握代数式的求值方法以及利用完全平方公式简便运算.30.赣州享有“世界橙乡”的美誉,中华名果赣南脐橙热销世界各地.刚大学毕业的小明把自家的脐橙产品放到了网上售卖,他原计划每天卖100kg 脐橙,但由于种种原因,实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:kg ).)根据记录的数据可知前三天共卖出kg(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售kg;(3)若脐橙按4.5元/kg出售,且小明需为买家支付运费(平均0.5元/kg),则小明本周一共赚了多少元?解析:(1)296;(2)29;(3)2868元【分析】(1)将前三天的销售量相加即可;(2)根据表格销量最多的一天为周六,最少的一天为周五,用周六的销量减去周五的销量即可得到答案;(3)先计算出本周的总销量,再乘以每千克的利润即可.【详解】(1)4-3-5+300=296(kg),故答案为:296;(2)(+21)-(-8)=29(kg),故答案为:29;(3)4-3-5+14-8+21-6=17(kg),17+100×7=717(kg),717×(4.5-0.5)=2868(元),小明本周一共赚了2868元.【点睛】此题考查正负数的实际应用,有理数混合运算的实际应用,正确理解表格意义列式计算是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档