有理数复习题易错题

合集下载

(易错题精选)初中数学有理数难题汇编附解析

(易错题精选)初中数学有理数难题汇编附解析

(易错题精选)初中数学有理数难题汇编附解析一、选择题1.如图,数轴上每相邻两点距离表示1个单位,点A,B互为相反数,则点C表示的数可能是()A.0 B.1 C.3 D.5【答案】C【解析】【分析】根据相反数的几何意义:在数轴上,一组相反数所表示的点到原点的距离相等,即可确定原点的位置,进而得出点C表示的数.【详解】∵点A,B互为相反数,∴AB的中点就是这条数轴的原点,∵数轴上每相邻两点距离表示1个单位,且点C在正半轴距原点3个单位长度,∴点C表示的数为3.故选C.【点睛】本题考查了相反数和数轴的知识.利用相反数的几何意义找出这条数轴的原点是解题的关键. 2.如图,a、b在数轴上的位置如图,则下列各式正确的是()A.ab>0 B.a﹣b>0 C.a+b>0 D.﹣b<a【答案】B【解析】解:A、由图可得:a>0,b<0,且﹣b>a,a>b∴ab<0,故本选项错误;B、由图可得:a>0,b<0,a﹣b>0,且a>b∴a+b<0,故本选项正确;C、由图可得:a>0,b<0,a﹣b>0,且﹣b>a∴a+b<0;D、由图可得:﹣b>a,故本选项错误.故选B.3.2019-的倒数是()A.2019 B.-2019 C.12019D.12019-【答案】C【解析】【分析】 先利用绝对值的定义求出2019-,再利用倒数的定义即可得出结果. 【详解】2019-=2019,2019的倒数为12019故选C【点睛】 本题考查了绝对值和倒数的定义,熟练掌握相关知识点是解题关键.4.已知a b >,下列结论正确的是( ) A .22a b -<-B .a b >C .22a b -<-D .22a b >【答案】C【解析】【分析】直接利用不等式的性质分别判断得出答案.【详解】A. ∵a>b ,∴a −2>b −2,故此选项错误;B. ∵a>b ,∴|a|与|b|无法确定大小关系,故此选项错误;C.∵a>b ,∴−2a<−2b ,故此选项正确;D. ∵a>b,∴a 2与b 2无法确定大小关系,故此选项错误;故选:C.【点睛】此题考查绝对值,不等式的性质,解题关键在于掌握各性质定义.5.实效m ,n 在数轴上的对应点如图所示,则下列各式子正确的是( )A .m n >B .n m ->C .m n ->D .m n <【答案】C【解析】【分析】从数轴上可以看出m 、n 都是负数,且m <n ,由此逐项分析得出结论即可.【详解】解:因为m 、n 都是负数,且m <n ,|m|<|n|,A 、m >n 是错误的;B 、-n >|m|是错误的;C 、-m >|n|是正确的;D 、|m|<|n|是错误的.故选:C .【点睛】此题考查有理数的大小比较,关键是根据绝对值的意义等知识解答.6.和数轴上的点一一对应的是( )A .整数B .实数C .有理数D .无理数【答案】B【解析】∵实数与数轴上的点是一一对应的,∴和数轴上的点一一对应的是实数.故选B.7.有理数a ,b ,c 在数轴上对应的点如图所示,则下列式子中正确的是( )A .a b >B .a c a c -=-C .a b c -<-<D .b c b c +=+【答案】D【解析】【分析】根据数轴得出a <b <0<c ,|b |<|a |,|b |<|c |,再逐个判断即可.【详解】从数轴可知:a <b <0<c ,|b |<|a |,|b |<|c |.A .a <b ,故本选项错误;B .|a ﹣c |=c ﹣a ,故本选项错误;C .﹣a >﹣b ,故本选项错误;D .|b +c |=b +c ,故本选项正确.故选D .【点睛】本题考查了数轴和有理数的大小比较的应用,解答此题的关键是能根据数轴得出a <b <0<c ,|b |<|a |,|b |<|c |,用了数形结合思想.8.下列说法错误的是( )A .2 a 与()2a -相等B ()2a -2a -C .3 a 3a -D .a 与a -互为相反数【答案】D【解析】【分析】根据乘方、算术平方根、立方根、绝对值,以及相反数的定义,分别对每个选项进行判断,即可得到答案.【详解】解:A 、()2a -=2 a ,故A 正确;B 、()22a a -=,则()2a -与2a -互为相反数,故B 正确;C 、3 a 与3a -互为相反数,故C 正确;D 、a a -=,故D 说法错误;故选:D.【点睛】本题考查了乘方、算术平方根、立方根、绝对值,以及相反数的定义,解题的关键是熟练掌握所学的定义进行解题.9.若x <2,化简()22x -+|3-x|的正确结果是( ) A .-1B .1C .2x -5D .5-2x 【答案】C【解析】分析:本题利用绝对值的化简和二次根式()2a a = 的化简得出即可. 解析:∵x <2,∴()22x -+|3﹣x|=2352x x x -+-=- .故选D.10.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示. 若0b d +=,则下列结论中正确的是( )A .0b c +>B .1c a> C .ad bc > D .a d >【答案】D【解析】【分析】根据数轴上的点表示的数右边的总比左边的大,可得a <b <0<c <d ,根据有理数的运算,可得答案.【详解】由数轴上的点表示的数右边的总比左边的大,得a <b <0<c <d ,A 、b+d =0,∴b+c <0,故A 不符合题意;B 、c a <0,故B 不符合题意;C 、ad <bc <0,故C 不符合题意;D 、|a|>|b|=|d|,故D 正确;故选D .【点睛】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大得出a <b <0<c <d 是解题关键,又利用了有理数的运算.11.已知a 、b 、c 都是不等于0的数,求a b c abc a b c abc+++的所有可能的值有( )个.A .1B .2C .3D .4【答案】C【解析】【分析】根据a b c 、、的符号分情况讨论,再根据绝对值运算进行化简即可得.【详解】由题意,分以下四种情况:①当a b c 、、全为正数时,原式11114=+++=②当a b c 、、中两个正数、一个负数时,原式11110=+--=③当a b c 、、中一个正数、两个负数时,原式11110=--+=④当a b c 、、全为负数时,原式11114=----=-综上所述,所求式子的所有可能的值有3个故选:C .【点睛】本题考查了绝对值运算,依据题意,正确分情况讨论是解题关键.12.已知实数a 、b 在数轴上的位置如图所示,化简|a +b |-2()b a -,其结果是( )A .2a -B .2aC .2bD .2b -【答案】A【解析】【分析】,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知b<0<a,且|a|<|b|,则a+b<0,b-a<0,∴原式=-(a+b)+(b-a)=-a-b+b-a=-2a,故选A.【点睛】.13.下列各组数中互为相反数的是()A.5B.-和(-C.D.﹣5和1 5【答案】B【解析】【分析】直接利用相反数以及绝对值、立方根的定义分别分析得出答案.【详解】解:A、5,两数相等,故此选项错误;B、和-()互为相反数,故此选项正确;C、=-2,两数相等,故此选项错误;D、-5和15,不互为相反数,故此选项错误.故选B.【点睛】本题考查了相反数以及绝对值、立方根的定义,正确把握相关定义是解题关键.14.如果a+b>0,ab>0,那么()A.a>0,b>0 B.a<0,b<0 C.a>0,b<0 D.a<0,b>0【答案】A【解析】解:因为ab>0,可知ab同号,又因为a+b>0,可知a>0,b>0.故选A.15.已知点P的坐标为(a,b)(a>0),点Q的坐标为(c,3),且|a﹣c|+7b-=0,将线段PQ向右平移a个单位长度,其扫过的面积为20,那么a+b+c的值为()A.12 B.15 C.17 D.20【答案】C【解析】【分析】由非负数的性质得到a=c,b=7,P(a,7),故有PQ∥y轴,PQ=7-3=4,由于其扫过的图形是矩形可求得a,代入即可求得结论.【详解】b-=0,∵且|a-c|++7∴a=c,b=7,∴P(a,7),PQ∥y轴,∴PQ=7-3=4,∴将线段PQ向右平移a个单位长度,其扫过的图形是边长为a和4的矩形,∴4a=20,∴a=5,∴c=5,∴a+b+c=5+7+5=17,故选C.【点睛】本题主要考查了非负数的性质,坐标的平移,矩形的性质,能根据点的坐标判断出PQ∥y 轴,进而求得PQ是解题的关键.16.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上的“0cm”和“6cm”分别对应数轴上表示﹣2和实数x的两点,那么x的值为()A.3 B.4 C.5 D.6【答案】B【解析】【分析】根据数轴的定义进行分析即可.【详解】∵由图可知,﹣2到x之间的距离为6,∴x表示的数为:﹣2+6=4,故选:B.【点睛】本题考查了用数轴表示实数,题目较为简单,解题的关键是根据如何根据一个已知点和两点的距离求另一个点.17.实数,a b 在数轴上对应点的位置如图所示,则下列结论正确的是( )A .a b <B .a b <C .0a b +>D .0a b -> 【答案】A【解析】【分析】根据数轴得a<0<b ,且a b >,再根据实数的加法法则,减法法则依次判断即可.【详解】由数轴得a<0<b ,且a b >,∴a+b<0,a-b<0,故A 正确,B 、C 、D 错误,故选:A.【点睛】此题考查数轴,实数的大小比较,实数的绝对值的性质,加法法则,减法法则.18.下列命题中,真命题的个数有( )①带根号的数都是无理数; ②立方根等于它本身的数有两个,是0和1;③0.01是0.1的算术平方根; ④有且只有一条直线与已知直线垂直A .0个B .1个C .2个D .3个【答案】A【解析】【分析】开方开不尽的数为无理数;立方根等于本身的有±1和0;算术平方根指的是正数;在同一平面内,过定点有且只有一条直线与已知直线垂直.【详解】仅当开方开不尽时,这个数才是无理数,①错误;立方根等于本身的有:±1和0,②错误;19.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q【答案】C【解析】试题分析:∵点M ,N 表示的有理数互为相反数,∴原点的位置大约在O 点,∴绝对值最小的数的点是P 点,故选C .考点:有理数大小比较.20.已知235280x y x y +--+=则xy 的值是( )A .19B .-6C .9D .1-6【答案】B【解析】【分析】根据非负数的应用,列出方程组,解方程组,即可求出x 、y 的值,然后得到答案.【详解】 解:∵235280x y x y +--+=,∴2350280x y x y +-=⎧⎨-+=⎩, 解得:23x y =-⎧⎨=⎩, ∴236xy =-⨯=-;故选:B.【点睛】本题考查了非负数的应用,解二元一次方程组,解题的关键是正确求出x 、y 的值.。

初中数学有理数易错题汇编含解析

初中数学有理数易错题汇编含解析

初中数学有理数易错题汇编含解析一、选择题1.下列说法中不正确的是()A.-3 表示的点到原点的距离是|-3|B.一个有理数的绝对值一定是正数C.一个有理数的绝对值一定不是负数D.互为相反数的两个数的绝对值一定相等【答案】B【解析】【分析】根据绝对值的意义以及相反数的意义逐项进行分析即可得答案.【详解】A、根据绝对值的意义|-3|表示在数轴上表示-3的点到原点的距离,故A选项正确,不符合题意;B、若这个有理数为0,则0的绝对值还是0,故B选项错误,符合题意;C、根据绝对值的意义,|a|的绝对值表示在数轴上表示a的点到原点的距离,故任意有理数的绝对值都为非负数,所以不可能为负数,故C选项正确,不符合题意;D、根据相反数的定义可知:只有符号不同的两数互为相反数,可知互为相反数的两数到原点的距离相等,即互为相反数的两个数的绝对值相等,故D选项正确,不符合题意,故选B.【点睛】本题考查了绝对值的意义,绝对值的代数意义为:正数的绝对值等于它本身;负数的绝对值等于它的相反数;0的绝对值还是0;绝对值的几何意义为:|a|表示在数轴上表示a的这个点到原点的距离,熟练掌握绝对值的意义是解本题的关键.2.2019-的倒数是()A.2019 B.-2019 C.12019D.12019-【答案】C【解析】【分析】先利用绝对值的定义求出2019-,再利用倒数的定义即可得出结果.【详解】2019-=2019,2019的倒数为1 2019故选C【点睛】本题考查了绝对值和倒数的定义,熟练掌握相关知识点是解题关键.3.已知235280x y x y +-+-+=则xy 的值是( )A .19B .-6C .9D .1-6【答案】B【解析】【分析】根据非负数的应用,列出方程组,解方程组,即可求出x 、y 的值,然后得到答案.【详解】解:∵235280x y x y +-+-+=,∴2350280x y x y +-=⎧⎨-+=⎩, 解得:23x y =-⎧⎨=⎩, ∴236xy =-⨯=-;故选:B.【点睛】本题考查了非负数的应用,解二元一次方程组,解题的关键是正确求出x 、y 的值.4.如图,在数轴上,点A 表示1,现将点A 沿数轴做如下移动,第一次将点A 向左移动3个单位长度到达点A 1,第二次将点A 1向右移动6个单位长度到达点A 2,第三次将点A 2向左移动9个单位长度到达点A 3,…按照这种移动规律进行下去,第51次移动到点51A ,那么点A 51所表示的数为( )A .﹣74B .﹣77C .﹣80D .﹣83【答案】B【解析】【分析】序号为奇数的点在点A 的左边,各点所表示的数依次减少3 ,序号为偶数的点在点A 的右侧,各点所表示的数依次增加3,即可解答.【详解】解:第一次点A 向左移动3个单位长度至点1A ,则1A 表示的数,1−3=−2;第2次从点A 1向右移动6个单位长度至点2A ,则2A 表示的数为−2+6=4;第3次从点A 2向左移动9个单位长度至点3A ,则3A 表示的数为4−9=−5;第4次从点A 3向右移动12个单位长度至点4A ,则4A 表示的数为−5+12=7;第5次从点A 4向左移动15个单位长度至点5A ,则5A 表示的数为7−15=−8;…;则点51A 表示:()()511312631781772+⨯-+=⨯-+=-+=-, 故选B .5.已知整数1a ,2a ,3a ,4a ⋯满足下列条件:10a =,21|1|a a =-+,32|2|a a =-+,43|3|a a =-+⋯依此类推,则2017a 的值为( )A .1007-B .1008-C .1009-D .2016- 【答案】B【解析】【分析】根据条件求出前几个数的值,再分n 是奇数时,结果等于12n --;n 是偶数时,结果等于2n -;然后把n 的值代入进行计算即可得解. 【详解】解:10a =,21|1|011a a =-+=-+=-,32|2|121a a =-+=--+=-,43|3|132=-+=--+=-a a ,54|4|242=-+=--+=-a a ,……∴n 是奇数时,结果等于12n --;n 是偶数时,结果等于2n -; ∴20172017110082a -=-=-; 故选:B .【点睛】此题考查数字的变化规律,根据所求出的数,观察出n 为奇数与偶数时的结果的变化规律是解题的关键.6.若关于x 的方程22(2)0x k x k +-+=的两根互为倒数,则k 的值为( )A .±1B .1C .-1D .0【答案】C【解析】【分析】根据已知和根与系数的关系12c x x a=得出k 2=1,求出k 的值,再根据原方程有两个实数根,即可求出符合题意的k 的值.【详解】 解:设1x 、2x 是22(2)0x k x k +-+=的两根,由题意得:121=x x ,由根与系数的关系得:212x x k =,∴k 2=1,解得k =1或−1,∵方程有两个实数根,则222=(2)43440∆--=--+>k k k k ,当k =1时,34430∆=--+=-<,∴k =1不合题意,故舍去,当k =−1时,34450∆=-++=>,符合题意,∴k =−1,故答案为:−1.【点睛】本题考查的是一元二次方程根与系数的关系及相反数的定义,熟知根与系数的关系是解答此题的关键.7.如果x 取任意实数,那么以下式子中一定表示正实数的是( )A .xB .C .D .|3x +2| 【答案】C【解析】【分析】利用平方根有意义的条件以及绝对值有意义的条件进而分析求出即可.【详解】A.x 可以取全体实数,不符合题意;B.≥0, 不符合题意; C.>0, 符合题意; D. |3x +2|≥0, 不符合题意.故选C.【点睛】本题考查了平方根和绝对值有意义的条件,正确把握平方根和绝对值有意义的条件是解题关键.8.下面说法正确的是( )A .1是最小的自然数;B .正分数、0、负分数统称分数C.绝对值最小的数是0;D.任何有理数都有倒数【答案】C【解析】【分析】0是最小的自然数,属于整数,没有倒数,在解题过程中,需要关注【详解】最小的自然是为0,A错误;0是整数,B错误;任何一个数的绝对值都是非负的,故绝对值最小为0,C正确;0无倒数,D错误【点睛】本题是有理数概念的考查,主要需要注意0的特殊存在9.下列说法中,正确的是()A.在数轴上表示-a的点一定在原点的左边B.有理数a的倒数是1 aC.一个数的相反数一定小于或等于这个数D.如果a a=-,那么a是负数或零【答案】D【解析】【分析】根据实数与数轴的对应关系、倒数、相反数、绝对值的定义来解答.【详解】解:A、如果a<0,那么在数轴上表示-a的点在原点的右边,故选项错误;B、只有当a≠0时,有理数a才有倒数,故选项错误;C、负数的相反数大于这个数,故选项错误;D、如果a a=-,那么a是负数或零是正确.故选D.【点睛】本题考查了数轴、倒数、相反数、绝对值准确理解实数与数轴的定义及其之间的对应关系.倒数的定义:两个数的乘积是1,则它们互为倒数;相反数的定义:只有符号不同的两个数互为相反数;绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.10.下列语句正确的是()A.近似数0.010精确到百分位B.|x-y|=|y-x|C.如果两个角互补,那么一个是锐角,一个是钝角D .若线段AP=BP ,则P 一定是AB 中点【答案】B【解析】【分析】A 中,近似数精确位数是看小数点后最后一位;B 中,相反数的绝对值相等;C 中,互补性质的考查;D 中,点P 若不在直线AB 上则不成立【详解】A 中,小数点最后一位是千分位,故精确到千分位,错误;B 中,x -y 与y -x 互为相反数,相反数的绝对值相等,正确;C 中,若两个角都是直角,也互补,错误;D 中,若点P 不在AB 这条直线上,则不成立,错误故选:B【点睛】概念的考查,此类题型,若能够举出反例来,则这个选项是错误的11.已知a 、b 、c 都是不等于0的数,求abcabca b c abc +++的所有可能的值有()个.A .1B .2C .3D .4【答案】C【解析】【分析】根据a b c 、、的符号分情况讨论,再根据绝对值运算进行化简即可得.【详解】由题意,分以下四种情况:①当a b c 、、全为正数时,原式11114=+++=②当a b c 、、中两个正数、一个负数时,原式11110=+--=③当a b c 、、中一个正数、两个负数时,原式11110=--+=④当a b c 、、全为负数时,原式11114=----=-综上所述,所求式子的所有可能的值有3个故选:C .【点睛】本题考查了绝对值运算,依据题意,正确分情况讨论是解题关键.12.12a =-,则a 的取值范围是( )A .12a ≥ B .12a > C .12a ≤ D .无解【答案】C【解析】【分析】=|2a-1|,则|2a-1|=1-2a ,根据绝对值的意义得到2a-1≤0,然后解不等式即可.【详解】=|2a-1|,∴|2a-1|=1-2a ,∴2a-1≤0, ∴12a ≤. 故选:C .【点睛】 此题考查二次根式的性质,绝对值的意义,解题关键在于掌握其性质.13.7-的绝对值是 ( )A .17-B .17C .7D .7-【答案】C【解析】【分析】负数的绝对值为这个数的相反数.【详解】|-7|=7,即答案选C.【点睛】掌握负数的绝对值为这个数的相反数这个知识点是解题的关键.14.若30,a -=则+a b 的值是( )A .2B 、1C 、0D 、1-【答案】B【解析】试题分析:由题意得,3﹣a=0,2+b=0,解得,a=3,b=﹣2,a+b=1,故选B .考点:1.非负数的性质:算术平方根;2.非负数的性质:绝对值.15.12的相反数与﹣7的绝对值的和是( )A .5B .19C .﹣17D .﹣5【答案】D【解析】【分析】根据绝对值和相反数的定义进行选择即可.【详解】-12+|-7|=-12+7=-5,故选D .【点睛】本题考查了绝对值和相反数的定义,掌握绝对值和相反数的求法是解题的关键.16.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm ),刻度尺上的“0cm ”和“6cm ”分别对应数轴上表示﹣2和实数x 的两点,那么x 的值为( )A .3B .4C .5D .6【答案】B【解析】【分析】根据数轴的定义进行分析即可.【详解】∵由图可知,﹣2到x 之间的距离为6,∴x 表示的数为:﹣2+6=4,故选:B .【点睛】本题考查了用数轴表示实数,题目较为简单,解题的关键是根据如何根据一个已知点和两点的距离求另一个点.17.已知a ,b ,c 是有理数,当0a b c ++=,0abc <时,求a b c b c a c a b +-+++的值为( )A .1或-3B .1,-1或-3C .-1或3D .1,-1,3或-3 【答案】A【解析】【分析】根据0a b c ++=,0abc <,可知这三个数中只能有一个负数,另两个为正数,把0a b c ++=变形代入代数式求值即可.【详解】解:∵0a b c ++=,∴b c a +=-、a c b +=-、a b c +=-,∵0abc <,∴a 、b 、c 三数中有2个正数、1个负数,则a b c a b c b c a c a b a b c+-=+-+++---, 若a 为负数,则原式=1-1+1=1,若b 为负数,则原式=-1+1+1=1,若c 为负数,则原式=-1-1-1=-3,所以答案为1或-3. 故选:A . 【点睛】 本题考查了绝对值的性质,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,难点在于判断出负数的个数.18.若实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a <-5B .b +d <0C .||||a c <D .c d <【答案】D【解析】【分析】根据数轴得到-5<a<b<0<c<d ,且a d b c >>>,再依次判断各选项即可得到答案.【详解】由数轴得-5<a<b<0<c<d ,且a d b c >>>,∴A 错误;∵b+d>0,故B 错误;∵a c >,∴C 错误;∵d c >,c>0,∴c d <D 正确,故选:D.【点睛】此题考查数轴上数的大小关系,绝对值的性质,有理数的加法法则.19.1是0.01的算术平方根,③错误;在同一平面内,过定点有且只有一条直线与已知直线垂直,④错误故选:A【点睛】本题考查概念的理解,解题关键是注意概念的限定性,如④中,必须有限定条件:在同一平面内,过定点,才有且只有一条直线与已知直线垂直.20.已知实数a 满足2006a a -=,那么22006a -的值是( ) A .2005B .2006C .2007D .2008【答案】C【解析】【分析】先根据二次根式有意义的条件求出a 的取值范围,然后去绝对值符号化简,再两边平方求出22006a -的值.【详解】∵a-2007≥0,∴a ≥2007,∴2006a a -=可化为a 2006a -+=,2006=,∴a-2007=20062,∴22006a -=2007.故选C .【点睛】本题考查了绝对值的意义、二次根式有意义的条件,求出a 的取值范围是解答本题的关键.。

(完整版)有理数易错题汇总答案

(完整版)有理数易错题汇总答案

有理数·易错题练习一.多种情况的问题(考虑问题要全面)(1)已知一个数的绝对值是3,这个数为_______;3±此题用符号表示:已知,3=x 则x=_______;3±,5=-x 则x=_______;5± (2)绝对值不大于4的负整数是________;-1,-2,-3 (3)绝对值小于4.5而大于3的整数是________.4±(4)在数轴上,与原点相距5个单位长度的点所表示的数是________;5±(5)在数轴上,A 点表示+1,与A 点距离3个单位长度的点所表示的数是________; 4,-2(6) 平方得412的数是____;23±此题用符号表示:已知,4122=x 则x=_______;23± (7)若|a|=|b|,则a,b 的关系是________;a=b,或a=-b (8)若|a|=4,|b|=2,且|a +b|=a +b ,求a -b 的值. a=4,b=-2时a-b=6,a=4,b=2时为2二.特值法帮你解决含字母的问题(此方法只适用于选择、填空)有理数中的字母表示 ,从三类数中各取1——2个特值代入检验,做出正确的选择(1)若a 是负数,则a_____<___-a ;a --是一个____负____数;(2)已知,x x -=则x 满足__0≤x ______;若,x x =则x 满足___0≥x _____;若x=-x, x 满足______x=0__;若=-<2,2a a 化简____ ;2-a正数0 负数(3)有理数a 、b 在数轴上的对应的位置如图所示: 则( A )-11abA .a + b <0B .a + b >0;C .a -b = 0D .a -b >0(4)如果a 、b 互为倒数,c 、d 互为相反数,且,3=m ,则代数式2ab-(c+d )+m 2=_______。

有理数易错题汇编附答案

有理数易错题汇编附答案

有理数易错题汇编附答案一、选择题1.若a 与b 互为相反数,则下列式子不一定正确的是( )A .0a b +=B .=-a bC .a b =D .a b = 【答案】C 【解析】【分析】依据相反数的概念及性质可确定正确的式子,再通过举反例可证得不一定正确的式子.【详解】解:∵a 与b 互为相反数,∴0a b +=,∴=-a b ,∴a b =,故A 、B 、D 正确, 当1a =时,1b =-,则1=b ,∴a b =;当1a =-时,1b =,则1=b ,∴a b ≠,故C 不一定正确,故选:C .【点睛】本题考查了相反数的定义.解此题的关键是灵活运用相反数的定义判定式子是否正确.2.如图是一个22⨯的方阵,其中每行,每列的两数和相等,则a 可以是( )A .tan 60︒B .()20191-C .0D .()20201-【答案】D【解析】【分析】 根据题意列出等式,直接利用零指数幂的性质以及绝对值的性质和立方根的性质分别化简得出答案.【详解】解:由题意可得:03282a +-=,则23a +=,解得:1a =,Q 3tan 603︒=,()201911-=-,()202011-= 故a 可以是2020(1)-.故选:D .【点睛】 此题考查了零指数幂、绝对值的性质、立方根的性质和实数的运算,理解题意并列出等式是解题关键.3.已知实数a ,b 在数轴上的位置如图所示,下列结论错误的是( )A .1a b <<B .11b <-<C .1a b <<D .1b a -<<-【答案】A【解析】【分析】首先根据数轴的特征,判断出a 、-1、0、1、b 的大小关系;然后根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,逐一判断每个选项的正确性即可.【详解】解:根据实数a ,b 在数轴上的位置,可得a <-1<0<1<b ,∵1<|a|<|b|,∴选项A 错误;∵1<-a <b ,∴选项B 正确;∵1<|a|<|b|,∴选项C 正确;∵-b <a <-1,∴选项D 正确.故选:A .【点睛】此题主要考查了实数与数轴,实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:实数与数轴上的点是一一对应关系.任意一个实数都可以用数轴上的点表示;反之,数轴上的任意一个点都表示一个实数.数轴上的任一点表示的数,不是有理数,就是无理数.4.在实数-3、0、5、3中,最小的实数是( )A .-3B .0C .5D .3【解析】试题分析:本题考查了有理数的大小比较法则的应用,注意:正数都大于0,负数都小于0,正数都大于一切负数,两个负数比较大小,其绝对值大的反而小.根据有理数大小比较的法则比较即可.解:在实数-3、0、5、3中,最小的实数是-3;故选A .考点:有理数的大小比较.5.在数轴上,实数a ,b 对应的点的位置如图所示,且这两个点到原点的距离相等,下列结论中,正确的是( )A .0a b +=B .0a b -=C .a b <D .0ab >【答案】A【解析】由题意可知a<0<1<b ,a=-b ,∴a+b=0,a-b=2a<0,|a|=|b|,ab<0,∴选项A 正确,选项B 、C 、D 错误,故选A.6.已知235280x y x y +--+=则xy 的值是( )A .19B .-6C .9D .1-6【答案】B【解析】【分析】根据非负数的应用,列出方程组,解方程组,即可求出x 、y 的值,然后得到答案.【详解】 解:∵235280x y x y +--+=,∴2350280x y x y +-=⎧⎨-+=⎩, 解得:23x y =-⎧⎨=⎩, ∴236xy =-⨯=-;故选:B.本题考查了非负数的应用,解二元一次方程组,解题的关键是正确求出x 、y 的值.7.已知整数1a ,2a ,3a ,4a ⋯满足下列条件:10a =,21|1|a a =-+,32|2|a a =-+,43|3|a a =-+⋯依此类推,则2017a 的值为( )A .1007-B .1008-C .1009-D .2016- 【答案】B【解析】【分析】根据条件求出前几个数的值,再分n 是奇数时,结果等于12n --;n 是偶数时,结果等于2n -;然后把n 的值代入进行计算即可得解. 【详解】解:10a =,21|1|011a a =-+=-+=-,32|2|121a a =-+=--+=-,43|3|132=-+=--+=-a a ,54|4|242=-+=--+=-a a ,……∴n 是奇数时,结果等于12n --;n 是偶数时,结果等于2n -; ∴20172017110082a -=-=-; 故选:B .【点睛】此题考查数字的变化规律,根据所求出的数,观察出n 为奇数与偶数时的结果的变化规律是解题的关键.8.在有理数2,-1,0,-5中,最大的数是( )A .2B .C .0D .【答案】A【解析】【分析】正数都大于0,负数都小于0,正数大于一切负数,两个负数绝对值大的反而小,据此判断即可.【详解】根据有理数比较大小的方法可得:-5<-1<0<2,所以最大数是2.故选A.【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.9.已知a b >,下列结论正确的是( )A .22a b -<-B .a b >C .22a b -<-D .22a b >【答案】C【解析】【分析】直接利用不等式的性质分别判断得出答案.【详解】A. ∵a>b ,∴a −2>b −2,故此选项错误;B. ∵a>b ,∴|a|与|b|无法确定大小关系,故此选项错误;C.∵a>b ,∴−2a<−2b ,故此选项正确;D. ∵a>b,∴a 2与b 2无法确定大小关系,故此选项错误;故选:C.【点睛】此题考查绝对值,不等式的性质,解题关键在于掌握各性质定义.10.在数轴上,与原点的距离是2个单位长度的点所表示的数是( )A .2B .2-C .2±D .12± 【答案】C【解析】【分析】与原点距离是2的点有两个,是±2.【详解】解:与原点距离是2的点有两个,是±2.故选:C.【点睛】本题考查数轴的知识点,有两个答案.11.小麦做这样一道题“计算()3-+W ”、其中“□”是被墨水污染看不清的一个数,他翻开后面的答案,得知该题计算结果是8,那么”□”表示的数是( )A .5B .-5C .11D .-5或11【答案】D【分析】根据绝对值的性质求得结果,采用排除法判定正确选项.【详解】解:设”□”表示的数是x,则|(-3)+x|=8,∴-3+x=-8或-3+x=8,∴x=-5或11.故选:D.【点睛】本题考查了绝对值的运算,掌握:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.12.下面说法正确的是()A.1是最小的自然数;B.正分数、0、负分数统称分数C.绝对值最小的数是0;D.任何有理数都有倒数【答案】C【解析】【分析】0是最小的自然数,属于整数,没有倒数,在解题过程中,需要关注【详解】最小的自然是为0,A错误;0是整数,B错误;任何一个数的绝对值都是非负的,故绝对值最小为0,C正确;0无倒数,D错误【点睛】本题是有理数概念的考查,主要需要注意0的特殊存在13.下列说法中不正确的是()A.-3 表示的点到原点的距离是|-3|B.一个有理数的绝对值一定是正数C.一个有理数的绝对值一定不是负数D.互为相反数的两个数的绝对值一定相等【答案】B【解析】【分析】根据绝对值的意义以及相反数的意义逐项进行分析即可得答案.【详解】A、根据绝对值的意义|-3|表示在数轴上表示-3的点到原点的距离,故A选项正确,不符合B 、若这个有理数为0,则0的绝对值还是0,故B 选项错误,符合题意;C 、根据绝对值的意义,|a|的绝对值表示在数轴上表示a 的点到原点的距离,故任意有理数的绝对值都为非负数,所以不可能为负数,故C 选项正确,不符合题意;D 、根据相反数的定义可知:只有符号不同的两数互为相反数,可知互为相反数的两数到原点的距离相等,即互为相反数的两个数的绝对值相等,故D 选项正确,不符合题意, 故选B .【点睛】本题考查了绝对值的意义,绝对值的代数意义为:正数的绝对值等于它本身;负数的绝对值等于它的相反数;0的绝对值还是0;绝对值的几何意义为:|a|表示在数轴上表示a 的这个点到原点的距离,熟练掌握绝对值的意义是解本题的关键.14.已知实数a 、b 在数轴上的位置如图所示,化简|a +b |-2()b a -,其结果是( )A .2a -B .2aC .2bD .2b -【答案】A【解析】【分析】根据二次根式的性质可得2a =|a|,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知b <0<a ,且|a|<|b|,则a+b <0,b-a <0,∴原式=-(a+b )+(b-a )=-a-b+b-a=-2a ,故选A .【点睛】此题主要考查了二次根式的性质和绝对值的性质,关键是掌握2a =|a|.15.实数,,a b c 在数轴上的对应点的位置如图所示,若||||a b <,则下列结论中一定成立的是( )A .0b c +>B .2a c +>C .1b a <D .0abc ≥【答案】A【分析】利用特殊值法即可判断.【详解】∵a<c<b ,||||a b <,∴0b c +>,故A 正确;若a<c<0,则2a c +>错误,故B 不成立;若0<a<b ,且||||a b <,则1b a>,故C 不成立; 若a<c<0<b ,则abc<0,故D 不成立,故选:A.【点睛】 此题考查数轴上点的正负,实数的加减乘除法法则,熟记计算法则是解题的关键.16.下列结论中:①若a=b ;②在同一平面内,若a ⊥b ,b//c ,则a ⊥c ;③直线外一点到直线的垂线段叫点到直线的距离;( ) A .1个B .2个C .3个D .4个【答案】B【解析】【分析】【详解】解:①若a=b 0≥②在同一平面内,若a ⊥b,b//c ,则a ⊥c ,正确③直线外一点到直线的垂线段的长度叫点到直线的距离正确的个数有②④两个故选B17.若30,a -=则+a b 的值是( )A .2B 、1C 、0D 、1-【答案】B【解析】试题分析:由题意得,3﹣a=0,2+b=0,解得,a=3,b=﹣2,a+b=1,故选B . 考点:1.非负数的性质:算术平方根;2.非负数的性质:绝对值.18.2-的相反数是( )A .2-B .2C .12D .12- 【答案】B【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B.【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .19.- 14的绝对值是()A.-4 B.14C.4 D.0.4【答案】B【解析】【分析】直接用绝对值的意义求解.【详解】−14的绝对值是14.故选B.【点睛】此题是绝对值题,掌握绝对值的意义是解本题的关键.20.如果x取任意实数,那么以下式子中一定表示正实数的是( )A.x B.C.D.|3x+2|【答案】C【解析】【分析】利用平方根有意义的条件以及绝对值有意义的条件进而分析求出即可.【详解】A.x可以取全体实数,不符合题意;B.≥0, 不符合题意;C. >0, 符合题意;D. |3x+2|≥0, 不符合题意.故选C.【点睛】本题考查了平方根和绝对值有意义的条件,正确把握平方根和绝对值有意义的条件是解题关键.。

七年级有理数易错题和易错点

七年级有理数易错题和易错点

七年级有理数易错题和易错点一、易错题1. 求两数之和Tom在试卷上遇到了这样一个问题:计算-5和-3的和。

他心算后填写了答案-8,然而,他的答案是错误的。

究竟是哪里出了问题?答案解析:对于两个负数相加,我们可以使用以下规则:两个相同符号的负数相加,绝对值越大,和越小。

所以,在这个例子中,-5和-3的和应该是-5+(-3)=-8。

2. 求整数的绝对值Lisa在计算|-9|时,填写了答案9。

然而,她的答案是错误的。

你知道正确答案是什么吗?答案解析:绝对值是表示一个数与0的距离,所以无论这个数是正数还是负数,它的绝对值都是正数。

在这个例子中,|-9|的绝对值应该是9。

3. 比较数的大小Mike被要求比较-2和-5的大小,他认为-2比-5大。

然而,他的答案是错误的。

你知道正确答案是什么吗?答案解析:要比较两个负数的大小,可以转化为比较它们的绝对值的大小。

在这个例子中,-2的绝对值是2,-5的绝对值是5,所以-5比-2要大。

二、易错点1. 符号的运算规则有理数的符号运算规则是很容易混淆的一个点。

当两个数的符号相同时,可以直接将它们的绝对值相加,再加上相同的符号。

当两个数的符号不同时,可以转化为相同符号的运算,再进行计算。

2. 绝对值的概念有些学生对绝对值的概念理解不深刻,误以为绝对值只是取一个数的正值。

实际上,绝对值是表示一个数与0的距离,所以它的值总是正数。

3. 负数的大小比较对于负数的大小比较,学生常常会误以为绝对值较大的数就是较小的数。

要纠正这个错误,需要强调负数的绝对值越大,它的值越小。

由于有理数在七年级是一个相对新概念,学生们可能会因为对这些概念的理解不深刻而犯错误。

希望同学们在学习有理数的过程中,注意理解并掌握这些易错点,确保能正确应用有理数的相关知识。

语法知识—有理数的易错题汇编及答案解析

语法知识—有理数的易错题汇编及答案解析

一、填空题1.有理数a 和b 在数轴上的位置如图所示,则下列结论中:(1)a -b >0(2)ab >0(3)-a <b <0(4)-a <-b <a(5)|a |+|b |=|a -b |其中正确的是______(把所有正确结论的序号都选上)2.若()2120a b -++=,则(a +b )2017+a 2018的值为 ______________.3.比较大小:﹣2_____﹣5(填“>”或“<”或“=”).请你说明是怎样判断的_____.4.若2(x ﹣3)的值与3(1+x )的值互为相反数,则x=_____.5.比较大小:﹣34_____﹣0.8(填“>”或“<号”). 6.有理数a ,b 在数轴上的位置如图所示:在下列结论中: ①0ab <;②0a b +>;③32a b >;④3()0a b -<;⑤a b b a <-<<-;⑥b a a b --=;正确的结论有________(只填序号).7.已知有理数x ,y 满足|3x ﹣6|+(12y ﹣2)2=0,则x y 的值是______. 8.12的相反数是______. 9.已知1a b c a b c++=-,则abc abc 的值为___________. 二、解答题10.已知(x+2)2+|y ﹣1|=0,求7x 2y ﹣3+2xy 2﹣6x 2y ﹣2xy 2+4的值.11.(1)材料1:一般地,n 个相同因数a 相乘:n a a aa a ⋅⋅⋅个 记为 n a 如32=8,此时,3叫做以2为底的8的对数,记为log 28(即log 28=3).那么,log 39=________,2231(log 16)log 813+=________; (2)材料2:新规定一种运算法则:自然数1到n 的连乘积用n !表示,例如:1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,…在这种规定下,请你解决下列问题: ①算5!=________;②已知x 为整数,求出满足该等式的15!:16!x x -⨯=.12.已知:数轴上A 、B 两点表示的有理数分别为a 、b ,且2(a 1)b 20-++=,()1求2015(a b)+的值.()2数轴上的点C 与A 、B 两点的距离的和为7,求点C 在数轴上表示的数c 的值.13.把下列各数填入它所属的集合内:5.2,0,π2,227,()4+-,324-,()3--,0.2555,0.0300003- (1)分数集合:{ …}(2)非负整数集合: { …}(3)有理数集合: { …}14.(新知理解)如图①,点C 在线段AB 上,若BC=πAC,则称点C 是线段AB 的圆周率点,线段AC 、BC称作互为圆周率伴侣线段.(1)若AC=3,求AB ; (2)若点D 也是图①中线段AB 的圆周率点(不同于点C ),判断AC ,BD 的等量关系; (解决问题)如图②,现有一个直径为1个单位长度的圆片,将圆片上的某点与数轴上表示1的点重合,并把圆片沿数轴向右无滑动地滚动1周,该点到达点C 的位置.(3)若点M 、N 是线段OC 的圆周率点,求MN 的长;(4)图②中,若点D 在射线OC 上,且线段CD 与以O 、C 、D 中某两个点为端点的线段互为圆周率伴侣线段,请直接写出点D 所表示的数.15.已知实数x 、y 21x -﹣2y+1|=0,求3(x 2﹣2xy )﹣[3x 2﹣2y ﹣2(3xy+y )]的值.16.当 a≠0 时,请解答下列问题:(1)求||a a的值; (2)若 b≠0,且||a a +||b b =0,求ab ab 的值. 17.画一条数轴,并把 4-,()3.5--,122-,0,32-各数在数轴上表示出来,再用“<”把它们连接起来.三、1318.下列实数中的有理数是()A.B.πC.D.19.数轴是数形结合思想的产物.有了数轴以后,可以用数轴上的点直观地表示有理数,这样就建立起了“数”与“形”之间的联系.同时,数轴也是我们研究相反数、绝对值的直观工具.有理数a,b,c在数轴上的位置如图所示,则a的相反数是()A.a B.b C.c D.﹣b20.下列四个数中最小的数是A.B.C.0D.521.若a,b为有理数,有下列结论正确的是()A.如果a>b,那么|a|>|b| B.如果|a|≠|b|,那么a≠bC.如果a>b, 那么a2>b2 D.如果a2>b2,那么a>b22.适合|2a+5|+|2a-3|=8的整数a的值有()A.4个B.5个C.7个D.9个23.点M,N,P和原点O在数轴上的位置如图所示,点M,N,P对应的有理数为a,b,c(对应顺序暂不确定).如果ab<0,a+b>0,ac>bc,那么表示数b的点为()A.点M B.点N C.点P D.点O24.在0,-1,-2,1这四个数中,最小的数是()A.0B.-1C.-2D.125.下列说法正确的有( )①一个数不是正数就是负数;②海拔-155 m表示比海平面低155 m;③负分数不是有理数;④零是最小的数;⑤零是整数,也是正数.A.1个B.2个C.3个D.4个【参考答案】***试卷处理标记,请不要删除一、填空题1.(1)(3)(4)(5)【分析】根据数轴上点的位置关系可得ab的大小根据绝对值的意义判断即可【详解】解:由数轴上点的位置关系得a>0>b|a|>|b|(1)a-b>0正确;(2)ab<0错误;(3)解析:(1)、(3)、(4)、(5)【分析】根据数轴上点的位置关系,可得a、b的大小,根据绝对值的意义,判断即可.解:由数轴上点的位置关系,得a>0>b,|a|>|b|.(1)a-b>0,正确;(2)ab<0,错误;(3)-a<b<0,正确;(4)-a<-b<a,正确,(5)|a|+|b|=|a-b|,正确;故答案为(1),(3),(4),(5).【点睛】本题考查了有理数的大小比较,利用数轴确定a、b的大小即|a|与|b|的大小是解题关键.2.0【分析】根据非负数的性质列式求出ab再根据乘方法则计算即可【详解】由题意得a-1=0b+2=0解得a=1b=-2;则(a+b)2017+a2018=-1+1=0故答案为0【点睛】本题考查的是非负数解析:0【分析】根据非负数的性质列式求出a、b,再根据乘方法则计算即可.【详解】由题意得,a-1=0,b+2=0,解得,a=1,b=-2;则(a+b)2017+a2018=-1+1=0.故答案为0.【点睛】本题考查的是非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.3.>两个负数绝对值大的其值反而小【解析】【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数绝对值大的其值反而小据此判断即可【详解】解:|﹣2|=2|﹣5|=5解析:>两个负数,绝对值大的其值反而小【解析】【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:|﹣2|=2,|﹣5|=5,∵2<5,∴﹣2>﹣5.依据是:两个负数,绝对值大的其值反而小.故答案为>;两个负数,绝对值大的其值反而小.此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.4.6【解析】【分析】利用相反数的性质列出方程求出方程的解即可得到x的值【详解】解:根据题意得:2(x﹣3)+3(1+x)=0去括号得:2x﹣6+3+3x=0移项合并得:5x=3解得:x=06故答案为:解析:6【解析】【分析】利用相反数的性质列出方程,求出方程的解即可得到x的值.【详解】解:根据题意得:2(x﹣3)+3(1+x)=0,去括号得:2x﹣6+3+3x=0,移项合并得:5x=3,解得:x=0.6,故答案为:0.6.【点睛】此题考查了解一元一次方程,以及相反数,熟练掌握运算法则是解本题的关键.5.>【分析】两个负数作比较绝对值大的反而小【详解】∵||<|-08|所以>-08【点睛】考查了两个负数比较大小:两个负数作比较绝对值大的反而小解析:>【分析】两个负数作比较,绝对值大的反而小.【详解】∵|34-|<|-0.8|,所以34->-0.8.【点睛】考查了两个负数比较大小:两个负数作比较,绝对值大的反而小.6.①④⑤⑥【分析】根据ab在数轴上的位置判断出a<0b>0|a|>|b|再根据有理数的运算法则绝对值分别对每一项进行判断即可得出答案【详解】解:由数轴可得:a<0b>0|a|>|b|①ab<0正确;②解析:①④⑤⑥【分析】根据a,b在数轴上的位置判断出a<0,b>0,|a|>|b|,再根据有理数的运算法则、绝对值分别对每一项进行判断,即可得出答案.【详解】解:由数轴可得:a<0,b>0,|a|>|b|,①ab<0正确;②a+b<0错误;③∵a3<0,b2>0,∴a3<b2,故③错误;④∵a-b<0,∴(a-b)3<0,故④正确;⑤a<-b<b<-a,故⑤正确;⑥∵b-a>0,a<0,∴|b-a|-|a|=b-a-(-a)=b,故⑥正确.正确的结论有①④⑤⑥.故答案为①④⑤⑥.【点睛】此题考查了数轴、绝对值,根据a,b在数轴上的位置判断出a<0,b>0,|a|>|b|是本题的关键.7.16【分析】根据非负数的性质可得3x-6=0y-2=0即可解出xy的值再代入代数式即可【详解】解:根据绝对值与一个数的偶次方为非负数可得3x-6=0y-2=0解得x=2y=4将x=2y=4代入可得=解析:16【分析】根据非负数的性质可得3x-6=0,12y-2=0,即可解出x,y的值再代入代数式即可.【详解】解:根据绝对值与一个数的偶次方为非负数可得3x-6=0,12y-2=0,解得x=2 ,y=4,将x=2 ,y=4代入y x可得yx=42=16.故答案为16.【点睛】本题考查了非负数的性质,解题的关键是熟练的掌握非负数的性质.8.﹣【分析】根据只有符号不同的两个数叫做互为相反数解答【详解】的相反数是故答案为【点睛】本题考查的知识点是相反数解题关键是熟记相反数的概念解析:﹣12.【分析】根据只有符号不同的两个数叫做互为相反数解答.【详解】1 2的相反数是12.故答案为12-. 【点睛】 本题考查的知识点是相反数,解题关键是熟记相反数的概念.9.1【解析】∵∴abc 有两个负数一个正数∴==1故答案为1解析:1【解析】 ∵1a b c a b c++=-, ∴a 、b 、c 有两个负数,一个正数, ∴abc abc =abc abc=1, 故答案为1.二、解答题10.5【分析】根据非负数的和为零,可得每个非负数同时为零,可求得x 、y 的值,根据合并同类项系数相加字母及指数不变,可化简整式,然后代入x 、y 的值进行计算即可.【详解】解:由(x +2)2+|y ﹣1|=0,得(x +2)2=0,|y ﹣1|=0,解得x =﹣2,y =1.7x 2y ﹣3+2xy 2﹣6x 2y ﹣2xy 2+4=(7﹣6)x 2y +(2﹣2)xy 2+(﹣3+4)=x 2y +1,当x =﹣2,y =1时,原式=(﹣2)2×1+1=5. 【点睛】本题考查了整式的化简求值,利用非负数的和为零则每个非负数都为零求出x 、y 的值是解题关键.11.(1)2;(2)① 1713;②120 【分析】(1)各式利用题中的新定义计算即可得到结果;材料;(2)①原式利用新定义计算即可得到结果;②已知等式利用题中的新定义化简,求出解即可得到x 的值.【详解】解:(1)2;1713(2)①120;②由题意得:16x-=1 即|x−1|=6∴x-1=6或x-1=-6解之:x=7或﹣5【点睛】本题考查了有理数的混合运算,解题的关键是熟练的掌握有理数的混合运算.12.(1)-1(2)-4或3【解析】【分析】(1)根据(a﹣1)2+|b+2|=0,可以求得a、b的值,从而可以得到(a+b)2015的值;(2)由第(1)问中求得的a的值和数轴上的点C与A、B两点的距离的和为7,可知点C 可能在点B的左侧或点C可能在点A的右侧两种情况,然后进行计算即可解答本题.【详解】(1)∵(a﹣1)2+|b+2|=0,∴a﹣1=0,b+2=0,解得:a=1,b=﹣2,∴(a+b)2015=(1﹣2)2015=(﹣1)2015=﹣1;(2)∵a=1,b=﹣2,数轴上A、B两点表示的有理数分别为a、b,数轴上的点C与A、B 两点的距离的和为7,∴点C可能在点B的左侧或点C可能在点A的右侧.①当点C在点B的左侧时,1﹣c﹣2﹣c=7,解得:c=﹣4;②当点C在点A的右侧时,c﹣1+c﹣(﹣2)=7,解得:c=3.综上所述:点C在数轴上表示的数c的值是﹣4或3.【点睛】本题考查了数轴、非负数的性质,解题的关键是明确题意,找出所求问题需要的条件.13.见解析【分析】按照实有理数的分类,⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数负整数有理数正分数分数负分数求解即可.【详解】解:分数集合:{5.2、227、324-、0.2555}非负整数集合:{0、()3--}有理数集合:{5.2、0、227、()4+-、324-、()3--、0.2555}【点睛】本题考查了有理数,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点,注意整数和正数的区别,注意0是整数,但不是正数是解决本题的关键. 14.(1)3π+3;(2)AC=BD(3)MN=π﹣1;(4)D点所表示的数是1、π、π+1+2、π2+2π+1.【分析】(1)根据线段之间的关系代入解答即可.(2)根据线段的大小比较即可.(3)由题意可知,C点表示的数是π+1,设M点离O点近,且OM=x,根据长度的等量关系列出方程求得x,进一步得到线段MN的长度.(4)根据圆周率伴侣线段的定义可求D点所表示的数.【详解】(1)∵AC=3,BC=πAC,∴BC=3π,∴AB=AC+BC=3π+3.(2)∵点D、C都是线段AB的圆周率点且不重合,∴BC=πAC,AD=πBD,∴设AC=x,BD=y,则BC=πx,AD=πy,∵AB=AC+BC=AD+BD,∴x+πx=y+πy,∴x=y∴AC=BD(3)由题意可知,C点表示的数是π+1,M、N均为线段OC的圆周率点,不妨设M点离O点近,且OM=x,x+πx=π+1,解得x=1,∴MN=π+1﹣1﹣1=π﹣1;(4)设点D表示的数为x,如图1,若CD=πOD,则π+1﹣x=πx,解得x=1;如图2,若OD=πCD,则x=π(π+1﹣x),解得x=π;如图3,若OC=πCD,则π+1=π(x﹣π﹣1),解得x=π++2;如图4,若CD=πOC,则x ﹣(π﹣1)=π(π+1),解得x=π2+2π+1;综上,D 点所表示的数是1、π、π++2、π2+2π+1. 【点睛】本题主要考查了数轴和一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.15.【解析】【分析】根据非负数的性质得出x ,y 的值,再化简代入计算即可.【详解】 21x -﹣2y+1|=0,∴2x ﹣1=0,2x ﹣2y+1=0,解得x=12,y=1, ∴3(x 2﹣2xy )﹣[3x 2﹣2y ﹣2(3xy+y )]=3x 2﹣6xy ﹣3x 2+2y+6xy+2y=4y ,当x=12,y=1时,原式=4y=4. 【点睛】 本题考查了非负数的性质以及整式的化简求值,掌握去括号与合并同类项是解题的关键.16.(1)-1或1;(2)-1【解析】【分析】(1)利用绝对值的代数意义化简即可求出值;(2)根据有理数的乘法法则和绝对值的代数意义化简即可求出值.【详解】解:(1)当a >0时,a a =1; 当a <0时,a a=﹣1; (2)∵0a b a b+=, ∴a ,b 异号, 当a >0,b <0时,ab ab=﹣1; 当a <0,b >0时,ab ab =﹣1;故ab ab =﹣1 【点睛】 此题考查了绝对值,利用绝对值的代数意义化简是解本题的关键.17.-4<122-<0<32- <-(-3.5);数轴见解析; 【分析】在数轴上把各个数表示出来,再根据在数轴上表示的数,右边的总比左边的数大比较即可.【详解】在数轴上表示为:用“<”把它们连接为:()13420 3.522-<-<<-<--. 【点睛】 本题考查的是有理数大小的比较,熟练掌握数轴是解题的关键.三、1318.C解析:C【解析】【分析】有理数包含整数和分数.【详解】解:由有理数的定义可知只有C 是有理数,故选择C.【点睛】本题考查了有理数的定义.19.C解析:C【解析】【分析】根据题意和数轴,相反数的定义可以解答本题.【详解】解:由数轴可得,有理数a 表示﹣2,b 表示﹣3.5,c 表示2,∴a的相反数是c,故选C.【点睛】本题考查数轴、相反数,解答本题的关键是明确题意,利用相反数和数形结合的思想解答.20.A解析:A【解析】【分析】负数<0<正数;负数的绝对值越大,该数越小.【详解】解:<-3<0<5,故选择A.【点睛】本题考查了有理数的比较大小.21.B解析:B【解析】【分析】根据绝对值的性质,举反例对各小题验证即可得解.【详解】解:A:若a=2,b=-3,那么|a|<|b|,故A错误;B:如果|a|≠|b|,那么a≠b,正确;C:若a=2,b=-3,那么a2<b2,故C错误;D:若a=-3,b=2,则a2>b2,但a<b,故D错误.故选B.【点睛】本题考查了有理数的大小比较,绝对值的性质,是基础题,举反例验证更简便. 22.A解析:A【解析】∵|2a+5|+|2a-3|=8,∴250 230aa+>⎧⎨-<⎩,∴53 22a-<<,∴整数a的值有:-2,-1,0,1共4个.故选A.点睛:本题考查了绝对值的化简和一元一次不等式组的解法.根据绝对值的运算法则:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0,可得250230a a +>⎧⎨-<⎩,解不等式组求出a 的整数解.23.A解析:A【分析】根据数轴和ab <0,a+b >0,ac >bc ,可以判断a 、b 、c 对应哪一个点,从而可以解答本题.【详解】∵ab <0,a+b >0,∴数a 表示点M ,数b 表示点P 或数b 表示点M ,数a 表示点P ,则数c 表示点N , ∴由数轴可得,c >0,又∵ac >bc ,∴a >b ,∴数b 表示点M ,数a 表示点P ,即表示数b 的点为M .故选A .【点睛】本题考查了数轴,解题的关键是明确数轴的特点能根据题目中的信息,判断各个数在数轴上对应哪一个点.24.C解析:C【解析】【分析】根据负数小于0和正数,得到最小的数在-2和-1中,然后比较它们的绝对值即可得到答案.【详解】 ∵2=21=1--,,∴-2<-1<0<1,故本题C 为正确选项. 【点睛】本题考查了有理数的大小比较,负数小于0和正数,0小于正数,知道负数的绝对值越大,这个数越小是解决本题的关键.25.A解析:A【分析】利用正数和负数的定义判断即可.【详解】①一个数不是正数就是负数或0,错误;②海拔-155 m 表示比海平面低155 m ,正确;③负分数是有理数,错误;④零不是最小的数,负数比零小,错误;⑤零是整数,不是正数,错误.故选A.【点睛】本题考查了对有理数有关内容的应用,主要考查学生的理解能力和辨析能力,解答此题的关键是掌握正数和负数的定义以及注意0的特殊性.。

初中数学有理数易错题汇编及答案解析

初中数学有理数易错题汇编及答案解析

初中数学有理数易错题汇编及答案解析一、选择题1.在数轴上,与原点的距离是2个单位长度的点所表示的数是( )A .2B .2-C .2±D .12± 【答案】C【解析】【分析】与原点距离是2的点有两个,是±2.【详解】解:与原点距离是2的点有两个,是±2. 故选:C.【点睛】本题考查数轴的知识点,有两个答案.2.已知实数a ,b 在数轴上的位置如图所示,下列结论错误的是( )A .1a b <<B .11b <-<C .1a b <<D .1b a -<<-【答案】A【解析】【分析】首先根据数轴的特征,判断出a 、-1、0、1、b 的大小关系;然后根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,逐一判断每个选项的正确性即可.【详解】解:根据实数a ,b 在数轴上的位置,可得a <-1<0<1<b ,∵1<|a|<|b|,∴选项A 错误;∵1<-a <b ,∴选项B 正确;∵1<|a|<|b|,∴选项C 正确;∵-b <a <-1,∴选项D 正确.故选:A .【点睛】此题主要考查了实数与数轴,实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:实数与数轴上的点是一一对应关系.任意一个实数都可以用数轴上的点表示;反之,数轴上的任意一个点都表示一个实数.数轴上的任一点表示的数,不是有理数,就是无理数.3.如果实数a ,b 在数轴上的对应点的位置如图所示,那么下列结论正确的是( )A .a b <B .a b >-C .2a >-D .b a >【答案】D【解析】【分析】根据数轴可以发现a <b ,且-3<a <-2,1<b <2,由此即可判断以上选项正确与否.【详解】∵-3<a <-2,1<b <2,∴|a|>|b|,∴答案A 错误;∵a <0<b ,且|a|>|b|,∴a+b <0,∴a <-b ,∴答案B 错误;∵-3<a <-2,∴答案C 错误;∵a <0<b ,∴b >a ,∴答案D 正确.故选:D .【点睛】本题考查的是数轴与实数的大小比较等相关内容,会利用数轴比较实数的大小是解决问题的关键.4.-6的绝对值是( )A .-6B .6C .- 16D .16【答案】B【解析】【分析】在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值.【详解】负数的绝对值等于它的相反数,所以-6的绝对值是6故选B【点睛】考点:绝对值.5.实数在数轴上的对应点的位置如图所示,若,则下列结论中错误的是( )A.B.C.D.【答案】A【解析】【分析】根据,确定原点的位置,根据实数与数轴即可解答.【详解】解:,原点在a,b的中间,如图,由图可得:,,,,,故选项A错误,故选:A.【点睛】本题考查了实数与数轴,解决本题的关键是确定原点的位置.6.四个有理数﹣2,1,0,﹣1,其中最小的数是()A.1 B.0 C.﹣1 D.﹣2【答案】D【解析】【分析】根据正数大于零,零大于负数,可得答案.【详解】∵-2<-1<0<1,最小的是-2.故选D.【点睛】本题考查了有理数大小比较,利用正数大于零,零大于负数是解题关键.7.如图是张小亮的答卷,他的得分应是()A.40分B.60分C.80分D.100分【答案】A【解析】【分析】根据绝对值、倒数、相反数、立方以及平均数进行计算即可.【详解】解:①若ab=1,则a与b互为倒数,②(-1)3=-1,③-12=-1,④|-1|=-1,⑤若a+b=0,则a与b互为相反数,故选A.【点睛】本题考查了实数,掌握绝对值、倒数、相反数、立方根以及平均数的定义是解题的关键.8.在有理数2,-1,0,-5中,最大的数是()A.2 B.C.0 D.【答案】A【解析】【分析】正数都大于0,负数都小于0,正数大于一切负数,两个负数绝对值大的反而小,据此判断即可.【详解】根据有理数比较大小的方法可得:-5<-1<0<2,所以最大数是2.故选A.【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.9.数轴上表示数a和数b的两点之间的距离为6,若a的相反数为2,则b为()A.4 B.4-C.8-D.4或8-【答案】D【解析】【分析】根据相反数的性质求出a的值,再根据两点距离公式求出b的值即可.【详解】∵a的相反数为2a+=∴20a=-解得2∵数轴上表示数a和数b的两点之间的距离为6∴6a b -= 解得4b =或8-故答案为:D .【点睛】本题考查了数轴上表示的数的问题,掌握相反数的性质、两点距离公式是解题的关键.10.下列各数中,最大的数是( )A .12-B .14C .0D .-2【答案】B【解析】【分析】将四个数进行排序,进而确定出最大的数即可.【详解】112024-<-<<, 则最大的数是14, 故选B .【点睛】此题考查了有理数大小比较,熟练掌握有理数大小比较的方法是解本题的关键.11.1是0.01的算术平方根,③错误;在同一平面内,过定点有且只有一条直线与已知直线垂直,④错误故选:A【点睛】本题考查概念的理解,解题关键是注意概念的限定性,如④中,必须有限定条件:在同一平面内,过定点,才有且只有一条直线与已知直线垂直.12.实数a b c d 、、、在数轴上的对应点的位置如图所示,则下列结论正确的是( )A .3a >-B .0bd >C .0b c +<D .a b < 【答案】C【解析】【分析】根据数轴上点的位置,可以看出a b c d <<<,43a -<<-,21b -<<-,01c <<,3d =,即可逐一对各个选项进行判断.【详解】解:A 、∵43a -<<-,故本选项错误;B 、∵0b <,0d >,∴0bd <,故本选项错误;C 、∵21b -<<-,01c <<,∴0b c +<,故本选项正确;D 、∵43a -<<-,21b -<<-,则34a <<,12<<b ,∴a b >,故本选项错误;故选:C .【点睛】本题考查了数轴和绝对值,利用数轴上的点表示的数右边的总比左边的大、有理数的运算、绝对值的意义是解题的关键.13.下列各组数中,互为相反数的组是( )A .2-与()22- B .2-与38- C .12-与2 D .2-与2 【答案】A【解析】【分析】根据相反数的概念及性质逐项分析得出答案即可.【详解】A 、-2与()22-=2,符合相反数的定义,故选项正确;B 、-2与38-=-2不互为相反数,故选项错误;C 、12-与2不互为相反数,故选项错误; D 、|-2|=2,2与2不互为相反数,故选项错误.故选:A .【点睛】此题考查相反数的定义,解题关键在于掌握只有符号不同的两个数互为相反数,在本题中要注意理解求|-2|的相反数就是求2的相反数,不要受绝对值中的符号的影响.14.如图,数轴上A ,B 两点分别对应实数a ,b ,则下列结论正确的是( )A .b >aB .ab >0C .a >bD .|a |>|b |【答案】C【解析】【分析】本题要先观察a ,b 在数轴上的位置,得b <-1<0<a <1,然后对四个选项逐一分析.【详解】A 、∵b <﹣1<0<a <1,∴b <a ,故选项A 错误;B 、∵b <﹣1<0<a <1,∴ab <0,故选项B 错误;C 、∵b <﹣1<0<a <1,∴a >b ,故选项C 正确;D 、∵b <﹣1<0<a <1,∴|b |>|a |,即|a |<|b |,故选项D 错误.故选C .【点睛】本题考查了实数与数轴的对应关系,数轴上右边的数总是大于左边的数.15.已知有理数a 、b 在数轴上的位置如图所示,则下列代数式的值最大的是( )A .a +bB .a ﹣bC .|a +b |D .|a ﹣b | 【答案】D【解析】【分析】根据数轴确定出a 是负数,b 是正数,并且b 的绝对值大于a 的绝对值,然后对各选项分析判断,再根据有理数的大小比较,正数大于一切负数,然后利用作差法求出两个正数的大小,再选择答案即可.【详解】由图可知,a<0,b>0,且|b|>|a|,∴−a<b ,A. a+b>0,B. a−b<0,C. |a+b|>0,D. |a−b|>0,因为|a−b|>|a+b|=a+b ,所以,代数式的值最大的是|a−b|.故选:D.【点睛】此题考查有理数的大小比较,数轴,解题关键在于利用绝对值的非负性进行解答.16.数轴上A ,B ,C 三点所表示的数分别是a ,b ,c ,且满足||||||c b a b a c ---=-,则A ,B ,C 三点的位置可能是( )A .B .C .D .【答案】C【解析】【分析】由A 、B 、C 在数轴上的位置判断出a 、b 、c 的大小关系,根据绝对值性质去绝对值符号,判断左右两边是否相等即可.【详解】当a c b <<时,||||c b a b b c a b a c ---=-+-=-,180°-66?38=113?22′′,此选项错误;B 、当a <b <c 时,||||2c b a b c b a b c a b ---=-+-=+-,44A-mB=,此项错误;C 、当c <a <b 时,||||c b a b b c a b a c ---=-+-=-,||a c a c -=-,此项正确D 、当c <b <a 时,||||2c b a b b c a b c a b ---=--+=--+,||a c a c -=-,此选项错误;故选C.【点睛】本题主要考查绝对值性质:正数绝对值等于本身,0的绝对值是0,负数绝对值等于其相反数.17.下列运算正确的是( )A 4 =-2B .|﹣3|=3C 4=± 2D 39【答案】B【解析】【分析】A 、根据算术平方根的定义即可判定;B 、根据绝对值的定义即可判定;C 、根据算术平方根的定义即可判定;D 、根据立方根的定义即可判定.【详解】解:A 、C 42=,故选项错误;B 、|﹣3|=3,故选项正确;D 、9开三次方不等于3,故选项错误.故选B .【点睛】此题主要考查了实数的运算,注意,正数的算术平方根是正数.18.2-的相反数是( )A .2-B .2C .12D .12- 【答案】B【解析】【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B .【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .19.67-的绝对值是( ) A .67 B .76- C .67- D .76【答案】A【解析】【分析】非负数的绝对值还是它本身,负数的绝对值是其相反数,据此进行解答即可.【详解】解:|﹣67|=67,故选择A. 【点睛】本题考查了绝对值的定义.20.若关于x 的方程22(2)0x k x k +-+=的两根互为倒数,则k 的值为( ) A .±1B .1C .-1D .0 【答案】C【解析】【分析】 根据已知和根与系数的关系12c x x a=得出k 2=1,求出k 的值,再根据原方程有两个实数根,即可求出符合题意的k 的值.【详解】解:设1x 、2x 是22(2)0x k x k +-+=的两根,由题意得:121=x x ,由根与系数的关系得:212x x k =,∴k 2=1,解得k =1或−1,∵方程有两个实数根,则222=(2)43440∆--=--+>k k k k ,当k =1时,34430∆=--+=-<,∴k =1不合题意,故舍去,当k =−1时,34450∆=-++=>,符合题意,∴k =−1,故答案为:−1.【点睛】本题考查的是一元二次方程根与系数的关系及相反数的定义,熟知根与系数的关系是解答此题的关键.。

初一数学有理数易错题

初一数学有理数易错题

初一数学有理数易错题1.下列哪个选项是有理数?A.3.14B.2π+1C.0.576D. 10答案:C解析:有理数是指分数和整数,无理数是无限不循环小数。

A是有限小数,属于有理数;B是无限不循环小数,属于无理数;D是无理数。

2.下列哪个选项是正确的?A.(−3)²=−3²B.(−3)²=−3×2C.(−3)²=−3+2D.(−3)²=−3÷2答案:A解析:根据有理数乘方的定义,(−3)²表示2个(−3)相乘,即(−3)²=(−3)×(−3),其结果是9,而其他选项的计算结果均不是9。

3.下列哪个选项是正确的?A.1÷(−3)=−1÷3=−\frac{1}{3}B.(−7)÷(−3)=7÷3=2 (1)C.(−6)÷(−2)=6÷(−2)=−3D.(−16)÷8=(−2)×\frac{1}{8}=−\frac{1}{4}答案:A解析:有理数的除法法则:除以一个不为0的数,等于乘以这个数的倒数。

因此,1÷(−3)=−1÷3=−\frac{1}{3}。

4.下列哪个选项是正确的?A.−\frac{7}{8}<0<\frac{7}{8}<1B.−\frac{7}{8}<0<1<\frac{7}{8}C.−\frac{7}{8}<0<1<\frac{8}{7}D.−\frac{7}{8}<0<\frac{8}{7}<1答案:B解析:有理数比较大小的方法:正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,绝对值大的反而小。

因此,−8/7<0<1<8/7。

5.下列哪个选项是正确的?A.(−4)×(−5)=20B.(−4)×(−5)=−20C.(−4)×(−5)=45D.(−4)×(−5)=50答案:A解析:有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。

人教版七年级数学上册《有理数》易错题练习-有答案

人教版七年级数学上册《有理数》易错题练习-有答案

人教版七年级数学上册《有理数》易错题练习-有答案【易错1例题】正数和负数1.(2021·四川中考真题)如果规定收入为正那么支出为负收入2元记作2+支出5元记作().A.5元B.5-元C.3-元D.7元【答案】B【分析】结合题意根据正负数的性质分析即可得到答案.【详解】根据题意得:支出5元记作5-元故选:B.【点睛】本题考查了正数和负数的知识解题的关键是熟练掌握正负数的性质从而完成求解.【易错2例题】有理数2.(2021·广西三美学校)已知下列各数:5-1340 1.5-513312-.把上述各数填在相应的集合里:正有理数集合:{}负有理数集合:{}分数集合:{}【答案】正有理数集合:11,4,5,333⎧⎫⎨⎬⎩⎭负有理数集合:15, 1.5,2⎧⎫---⎨⎬⎩⎭分数集合:111, 1.5,3,332⎧⎫--⎨⎬⎩⎭【分析】正有理数指的是除了负数0无理数的数字负有理数指小于0的有理数正分数负分数小数统称为分数.【详解】解:正有理数集合:11,4,5,3 33⎧⎫⎨⎬⎩⎭负有理数集合:15, 1.5,2⎧⎫---⎨⎬⎩⎭分数集合:111, 1.5,3,332⎧⎫--⎨⎬⎩⎭.【点睛】本题考查了有理数的分类熟练掌握各类数的属性和特点是解题的关键.【易错3例题】数轴3.(2021·广东七年级月考)已知下列有理数:-42-3.50-231-0.52(1)在数轴上标出这些有理数表示的点(2)设表示-0.5的点为A那么与A点的距离相差4个单位长度的点所表示的数是多少?【答案】(1)答案见解析(2)3.5或−4.5.【分析】(1)根据所给有理数画出数轴标出各数据即可.(2)直接利用数轴结合与A点的距离相差4个单位长度即可得出答案.【详解】(1)如图所示:(2)设表示−0.5的点为A则与A点的距离相差4个单位长度的点所表示的数是:−0.5+4=3.5或−0.5−4=−4.5.【点睛】本题考查数轴根据题意正确的在数轴上表示出各数据是解题关键.【易错4例题】相反数4.(2021·江苏七年级专题练习)2021的相反数为__________.-【答案】2021【分析】利用相反数的定义即可求解.【详解】-解:2021的相反数为2021-.故答案为:2021【点睛】本题考查相反数掌握相反数的定义是解题的关键.【易错5例题】绝对值5.(2021·浙江九年级三模)2021的绝对值是()A.12021B.﹣12021C.2021D.﹣2021【答案】C【分析】根据绝对值的定义即可得出正确选项.【详解】解:2021的绝对值是2021故选:C.【点睛】本题考查求绝对值.正数的绝对值是它本身0的绝对值是0负数的绝对值是它的相反数.【专题训练】一、选择题1.(2021·江苏苏州市·九年级二模)π的相反数是()A.π-B.πC.1π-D.1π【答案】A【分析】根据相反数的定义即可求解.【详解】解:π的相反数是π-故选:A【点睛】此题考查的是相反数的概念是:只有符号不同的两个数互为相反数掌握相反数的概念是解题的关键.2.(【新东方】初中数学20210625-022【初一上】)下列各对量中不具有相反意义的是()A.胜2局与负3局B.盈利3万元与亏损3万元C.气温升高4℃与气温降低10℃D.转盘逆时针转3圈与向右转5圈【答案】D【分析】首先审清题意明确“正”和“负”所表示的意义再根据题意作答.【详解】解:A胜2局与负3局具有相反意义不符合题意B盈利3万元与亏损3万元具有相反意义不符合题意C气温升高4℃与气温降低10℃具有相反意义不符合题意D转盘逆时针转3圈与向右转5圈不具有相反意义符合题意故选D.【点睛】本题主要考查了正数和负数的意义解题关键是理解“正”和“负”的相对性明确什么是一对具有相反意义的量.在一对具有相反意义的量中先规定其中一个为正则另一个就用负表示.3.(【新东方】DY试卷解析初一下数学【00017】)下列关于数轴的图示画法不正确的有()A.4个B.3个C.2个D.1个【答案】B【分析】根据数轴的定义逐一判断即可得到答案.【详解】(1)中数轴的单位长度不一致画法不正确符合题意(2)中数轴没有原点画法不正确符合题意(3)中数轴画法正确不符合题意(4)中数轴没有正方向画法不正确符合题意℃画法不正确的有3个故选B.【点睛】本题主要考查数轴的画法掌握画数轴的三要素:正方向单位长度原点是解题的关键.4.(2021·上海期中)在-125% 23250-0.30.67-4257-中非负数有()A.2个B.3个C.4个D.5个【答案】C【分析】根据非负数的范围即非负数是大于等于零的数即可求解.【详解】解:非负数有:232500.67负数有:-125% -0.32 57 -非负数有4个.故选:C【点睛】本题主要考查了有理数的分类解题的关键是熟练掌握有理数的分类情况.5.(2021·江苏南京一中七年级月考)一个数的绝对值是7这个数是()A.7B.﹣7C.7或﹣7D.不能确定【答案】C【分析】根据绝对值的定义即可求解.【详解】解:℃一个数的绝对值是7℃这个数是7或﹣7.故选:C.【点睛】此题主要考查绝对值的求解解题的关键是熟知绝对值的性质.二填空题6.(2021·福建七年级期末)﹣2的相反数是___.【答案】2【分析】根据一个数的相反数就是在这个数前面添上“-”号 求解即可. 【详解】解:-2的相反数是:-(-2)=2故答案为:2. 【点睛】本题考查了相反数的意义 一个数的相反数就是在这个数前面添上“-”号:一个正数的相反数是负数 一个负数的相反数是正数 0的相反数是0.不要把相反数的意义与倒数的意义混淆.7.(1.有理数(题型篇))如果节约20元钱 记作“+20”元 那么浪费15元钱 记作_______元.【答案】-15 【分析】根据节约20元钱 记作“+20”元 可知浪费记为负 可得结果. 【详解】解:根据题意 节约记为正 浪费记为负 那么浪费15元钱 记作-15元故答案为:-15. 【点睛】本题考查了正负数的意义 解题关键是明确正负数代表意义相反的两个量 节约记为正 浪费记为负. 8.(2021·江苏七年级期末)下列各数:﹣1 2 1.01001…(每两个1之间依次多一个0) 0 227 3.14 其中有理数有_____个.【答案】4.【分析】 根据有理数的定义逐一判断即可.【详解】解:在所列实数中 有理数有﹣1 0227 3.14 故答案为:4.【点睛】本题考查了有理数 掌握有理数的概念是解题的关键.9.(1.有理数(题型篇))如果若|x -2|=1 则x =________.【答案】3或1根据绝对值的性质可得x-2=±1再求出x即可.【详解】解:℃|x-2|=1℃x-2=±1则x-2=1或x-2=-1解得:x=3或1故答案为:3或1.【点睛】此题主要考查了绝对值关键是掌握绝对值等于一个正数的数有两个它们互为相反数.10.(2021·湖南七年级期末)已知A B是数轴上的两点且AB=4.5点B表示的数为1则点A表示的数为___________.【答案】﹣3.5或5.5【分析】根据AB=4.5点B表示的数为1进行分类讨论A可以在B的左边或右边求得点A表示的数.【详解】解:℃AB=4.5B表示1℃A表示的数为1﹣4.5=﹣3.5或1+4.5=5.5.故答案为:﹣3.5或5.5.【点睛】本题考查了数轴上两点之间的距离解题的关键是分类讨论借助数轴来分析.三解答题11.(2021·河北七年级期中)把下列各数填在相应的表示集合的大括号里:﹣2312﹣(﹣96)﹣|﹣3| ﹣4.50|﹣2.5|13.(1)正有理数集合{…} (2)非负整数集合{…} (3)负分数集合{…}.【答案】(1)12﹣(﹣96)|﹣2.5| 13(2)12﹣(﹣96)0|﹣2.5| (3)﹣23﹣4.5化简各数 进而分别利用正有理数 非负整数 负分数分析 再分类填写. 【详解】解:﹣(﹣96)=96 ﹣|﹣3|=﹣3 |﹣2.5|=2.5(1)正有理数集合{12 ﹣(﹣96) |﹣2.5| 13…} (2)非负整数集合{12 ﹣(﹣96) 0 …}(3)负分数集合{﹣23 ﹣4.5 …}. 【点睛】本题主要考查了有理数的相关定义 正确化简各数是解题关键.12.(【新东方】初中数学1283-初一上)把下面的数填入它所属于的集合的大括号内(填序号) ① 5.3- ②5+ ③20% ④0 ⑤27- ⑥7- ⑦3--∣∣ ⑧( 1.8)-- 正数集合{ }整数集合{ }分数集合{ }有理数集合{ }【答案】见解析【分析】根据有理数的分类填空.【详解】解:-|-3|=-3 -(-1.8)=1.8.正数集合{②③⑧}整数集合{②④⑥⑦}分数集合{①③⑤⑧}有理数集合{①②③④⑤⑥⑦⑧}.【点睛】本题考查了有理数 认真掌握正数 负数 整数 分数 正有理数 负有理数 非负数的定义与特点.注意整数和正数的区别 注意0是整数 但不是正数.13.(2020·贵阳市清镇养正学校七年级期中)已知下列各有理数 2.5- 0 3- ()2-- 0.5 1-.(1)画出数轴 在数轴上标出表示这些数的点(2)用>符号把这些数连接起来.【答案】(1)见解析 (2)3->-(-2)>0.5>0>-1>-2.5【分析】(1)求出|-3|=3 -(-2)=2 在数轴上把各个数表示出来(2)根据数轴上右边的数总比左边的数大比较即可.【详解】解:(1)如图(2)3->-(-2)>0.5>0>-1>-2.5.【点睛】本题考查了有理数的大小比较和数轴的应用 关键是求出各个数的大小和在数轴上把各个数表示出来 注意:在数轴上右边的数总比左边的数大.14.(【新东方】初中数学20210625-022【初一上】)在数轴上 A B 两点的数分别用a b 表示 如果2a =- 2b a = 请你在给定的数轴上(1)画出B 点可能的位置 并标上字母(2)计算A B 两点的距离为多少?【答案】(1)见解析 (2)2或6【分析】(1)根据绝对值的意义求出b 值 在数轴上画出即可(2)根据b 值 利用两点间的距离计算方法计算即可.【详解】解:(1)℃a =-2℃2=a℃2224b a ==⨯=b=±℃4画图如下:(2)如图可知:当b=-4时AB=2即A B两点距离为2当b=4时AB=6即A B两点距离为6℃A B两点的距离为2或6.【点睛】本题考查了绝对值的意义数轴上两点之间的距离解题的关键是要进行分类讨论.15.(2021·河南七年级期末)点A B在数轴上所表示的数如图所示回答下列问题:(1)将A在数轴上向左移动1个单位长度再向右移动9个单位长度得到点C求出B C两点间的距离是多少个单位长度?(2)若点B在数轴上移动了m个单位长度到点D且A D两点间的距离是3求m的值.【答案】(1)B C两点间的距离是3个单位长度(2)m的值为2或8.【分析】(1)利用数轴上平移左移减右移加可求点C所表示的数为﹣3﹣1+9=5利用绝对值求两点距离BC=|2﹣5|=3(2)分类考虑当点D在点A的左侧与右侧利用AD=3求出点D所表示的数再利用BD=m求出m的值即可.【详解】解:(1)点C所表示的数为﹣3﹣1+9=5℃BC=|2﹣5|=3.(2)当点D在点A的右侧时点D所表示的数为﹣3+3=0所以点B移动到点D的距离为m=|2﹣0|=2。

《易错题》七年级数学上册第一单元《有理数》-解答题专项经典复习题

《易错题》七年级数学上册第一单元《有理数》-解答题专项经典复习题

一、解答题1.计算题:(1)3×(﹣4)﹣28÷(﹣7);(2)﹣12020+(﹣2)3×1123⎛⎫-+⎪⎝⎭.解析:(1)﹣8;(2)13.【分析】(1)先计算乘除,再计算加减,即可得到答案;(2)先计算乘方、然后计算乘法和括号内的运算,再计算加法即可.【详解】解:(1)3×(﹣4)﹣28÷(﹣7)=(﹣12)+4=﹣8;(2)﹣12020+(﹣2)3×1123⎛⎫-+⎪⎝⎭.=-1+(-8)×16⎛⎫-⎪⎝⎭=4 13 -+=13.【点睛】本题考查了有理数的加减乘除运算,解题的关键是熟练掌握运算法则进行解题.2.某粮仓原有大米132吨,某一周该粮仓大米的进出情况如下表:(运进大米记作“+”,运出大米记作“-”,例如:当天运进大米8吨,记作8+吨;当天运出大米15吨,记作15-吨)若经过这一周,该粮仓存有大米88吨.(1)求星期五粮仓大米的进出情况;(2)若大米进出粮仓的装卸费用为每吨15元,求这一周该粮仓需要支付的装卸总费用.解析:(1)星期五粮仓当天运出大米20吨;(2)2700元.【分析】(1)根据有理数的加法,可得答案;(2)根据单位费用乘以总量,可得答案.【详解】(1)m =88﹣(132﹣32+26﹣23﹣16+42﹣21)=﹣20,∴星期五粮仓当天运出大米20吨;(2)(|﹣32|+|+26|+|﹣23|+|﹣16|+|﹣20|+|+42|+|﹣21|)×15=2700(元),答:这一周该粮仓需要支付的装卸总费用为2700元.【点睛】本题考查了用正负数表示相反意义的量及有理数加减法的应用,第(2)问利用单位费用乘以总量是解题关键.3.计算:(1)5721()()129336--÷- (2)22115()(3)(12)23-+÷-⨯---⨯ 解析:(1)37;(2)50.【分析】(1)先把除法转化为乘法,然后根据乘法分配律计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【详解】 (1)原式=572()(36)152824371293--⨯-=-++=. (2)原式=15(3)(3)(14)2145650-+⨯-⨯---⨯=-++=. 【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 4.计算:(1)()()128715--+--; (2)()()3241223125---÷+⨯--. 解析:(1)2-;(2)7.【分析】(1)先去括号,再进行有理数运算即可;(2)根据有理数混合运算顺序和运算法则计算可得.【详解】解:(1)12﹣(﹣8)+(﹣7)﹣15=12+8﹣7﹣15=(12+8)+(﹣7﹣15)=20﹣22=﹣2(2)﹣12﹣(﹣2)3÷45+3×|1﹣(﹣2)2|=﹣12﹣(﹣8)×54+3×|1﹣4|=﹣12+10+3×|﹣3|=﹣12+10+9=7【点睛】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.5.出租车司机张师傅11月1日这一天上午的营运全在一条东西向的街道上进行,如果规定向东为正,那么他这天上午载了五位乘客所行车的里程如下(单位:km):8+,6-,3+,7-,1+.(1)将最后一名乘客送到目的地时,张师傅距出车地点的位置如何?(2)若汽车耗油为0.08L/km,则这天上午汽车共耗油多少升?解析:(1)在出车地点西边1千米处;(2)2升【分析】(1)计算张师傅行驶的路程的和即可;(2)计算出每段路程的绝对值的和后乘以0.08,即为这天上午汽车共耗油数.【详解】解:(1)规定向东为正,则向西为负,(+8)+(-6)+(+3)+(-7)+(+1)=8-6+3-7+1=-1千米.答:将最后一名乘客送到目的地,张师傅在出车地点西边1千米处.(2)(8+6+3+7+1)×0.08=2升.答:这天午共耗油2升.【点睛】本题考查了有理数的混合运算,注意要针对不同情况用不同的计算方法.6.计算:(1)13 |38|44⎛⎫--+- ⎪⎝⎭(2)2202111 (1)236⎛⎫-+⨯-÷⎪⎝⎭(3)221 10.51 339⎛⎫⨯-÷⎪⎝⎭(4)157 (48)2812⎡⎤⎛⎫-⨯--+⎪⎢⎥⎝⎭⎣⎦解析:(1)4;(2)13;(3)14-;(4)26.【分析】(1)先把绝对值化简,再进一步计算可得答案;(2)先计算乘方、除法转化为乘法,再进一步计算即可;(4)先算括号里面的,再把除法化为乘法,进一步计算即可;(4)利用乘法分配律展开,再进一步计算即可.【详解】(1)13 |38|44⎛⎫--+- ⎪⎝⎭=13 544 --=5-1 =4;(2)2202111 (1)236⎛⎫-+⨯-÷⎪⎝⎭=1 1269-+⨯⨯=-1+4 3=13;(3)221 10.51 339⎛⎫⨯-÷⎪⎝⎭=211 1()1 369⨯-÷=519() 3610⨯-⨯=14 -;(4)157 (48)2812⎡⎤⎛⎫-⨯--+⎪⎢⎥⎝⎭⎣⎦=157 (48)()(48)(48)2812 -⨯---⨯+-⨯=24+30-28=26.【点睛】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.7.某校七年级(1)至(4)班计划每班购买数量相同的图书布置班级读书角,但是由于种种原因,实际购书量与计划有出入,下表是实际购书情况:(2)这4个班实际共购书多少本?(3)书店给出一种优惠方案:一次购买不少于15本,其中2本书免费.若每本书的售价为30元,请计算这4个班整体购书的最低总花费是多少元?解析:(1)42,+3,22;(2)118本;(3)3120元.【分析】 (1)由于4班实际购入21本,且实际购买数量与计划购买数量的差值=-9,即可得计划购书量=30,进而可把表格补充完整;(2)把每班实际数量相加即可;(3)根据已知求出总费用即可.【详解】解:(1)由于4班实际购入21本书,实际购入数量与计划购入数量的差值=-9,可得计划购入数量=30(本),所以一班实际购入30+12=42本,二班实际购入数量与计划购入数量的差值=33-30=3本,3班实际购入数量=30-8=22本.故答案依次为42,+3,22;(2)4个班一共购入数量=42+33+22+21=118(本);(3)由118157÷=余13得,如果每次购买15本,则可以购买7次,且最后还剩13本书需单独购买,得最低总花费=30×(15-2)×7+30×13=3120(元)..【点睛】本题考查了正负数的应用.在生活实际中利用正负数的计算能力,并通过相关运算来比较大小,进而得出最佳方案;这里要注意,生活中在选择方案时,要注意所有可能的情况. 8.计算:(1)231+-+;(2)()3202111024⎡⎤-⨯+-÷⎣⎦. 解析:(1)6;(2)12-【分析】 (1)先化简绝对值,再算加法即可求解;(2)先算乘方,再算括号里面的,最后算乘除即可.【详解】(1)原式=2+3+1=6;(2)原式=1(108)4-⨯-÷=124-⨯÷=1124-⨯⨯=12- 【点睛】此题考查有理数的混合运算,掌握运算顺序和运算法则是解答此题的关键.9.计算题:(1)()()121876---+-+;(2)()231513221428⎫⎛---⨯-+ ⎪⎝⎭; (3)2111(3)[]()63⨯--÷-. 解析:(1)29;(2)5-;(3)4【分析】(1)根据有理数的加减法即可解答本题;(2)根据有理数的乘方和乘法分配律即可解答本题;(3)根据有理数的乘方、有理数的乘除法和减法可以解答本题.【详解】解:(1)|-12|-(-18)+(-7)+6=12+18+(-7)+6=30+(-7)+6=23+6=29;(2)23151(32)(21)428---⨯-+ =3513132()428-+⨯-+ =35131323232428-+⨯-⨯+⨯ =-1+24-80+52=-5;(3)16×[1-(-3)2]÷(−13) =16×(1-9)×(-3) =16×(-8)×(-3) =4.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.10.计算:329(1)4(2)34⎛⎫--÷-+-⨯ ⎪⎝⎭. 解析:12-. 【分析】 根据有理数的四则混合运算顺序:“先算乘方,再算乘除,然后算加减”进行计算即可.【详解】原式311222⎛⎫=-++-=- ⎪⎝⎭. 【点睛】本题考查了有理数的混合运算,掌握运算法则是解题的关键.11.如图,将一根木棒放在数轴(单位长度为1cm )上,木棒左端与数轴上的点A 重合,右端与数轴上的点B 重合.(1)若将木棒沿数轴向右水平移动,则当它的左端移动到点B 时,它的右端在数轴上所对应的数为30;若将木棒沿数轴向左水平移动,则当它的右端移动到点A 时,它的左端在数轴上所对应的数为6,由此可得这根木棒的长为________cm ;(2)图中点A 所表示的数是_______,点B 所表示的数是_______;(3)由(1)(2)的启发,请借助“数轴”这个工具解决下列问题:一天,妙妙去问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要37年才出生;你若是我现在这么大,我就119岁啦!”请问奶奶现在多少岁了?解析:(1)8;(2)14,22;(3)奶奶现在的年龄为67岁.【分析】(1)由观察数轴可知三根这样长的木棒的长度,即可求出这根木棒的长;(2)由所求出的这根木棒的长,结合图中的已知条件即可求得A 和B 所表示的数; (3)根据题意,设数轴上小木棒的A 端表示妙妙的年龄,小木棒的B 端表示奶奶的年龄,则小木棒的长表示二人的年龄差,由此参照(1)中的方法结合已知条件分析解答即可.【详解】(1)观察数轴可知三根这样长的木棒长为30624cm -=,则这根木棒的长为2438cm ÷=;(2)由这根木棒的长为8cm ,所以A 点表示为6+8=14,B 点表示为6+8+8=22;(3)借助数轴,把妙妙和奶奶的年龄差看做木棒AB ,奶奶像妙妙这样大时,可看做点B 移动到点A ,此时点A 向左移后所对应的数为37-,可知奶奶比妙妙大()11937352⎡⎤⎣÷⎦--=,则奶奶现在的年龄为1195267-=(岁).【点睛】此题考查认识数轴及用数轴表示有理数和有理数的加减法,难度一般,读懂题干要求是关键.12.在数轴上表示下列各数:14, 1.5,3,0,2.5,52----,并将它们按从小到大的顺序排列.解析:图见解析,1531.502.542--<-<-<<< 【分析】 在数轴上表示出各数,再按照从左到右的顺序用“<”号把它们连接起来即可.【详解】解: 5=-5--如图所示:故:1531.502.542--<-<-<<<. 【点睛】 本题考查的是有理数的大小比较,熟知数轴的特点是解答此题的关键.13.计算:(1)()()30122021π--+---;(2)()41151123618⎛⎫---+÷ ⎪⎝⎭. 解析:(1)18-;(2)-17.【分析】(1)原式第一项利用绝对值代数意义进行化简,第二项利用负整数指数幂的运算法则进行计算,第三项利用零指数幂的运算法则进行化简,最后进行加减运算即可得到答案;(2)原式先计算有理数的乘方,再把除法转化为乘法去括号进行乘法运算,最后进行加减运算即可得到答案.【详解】解:(1)()()30122021π--+---=1118--=18-;(2)()41151123618⎛⎫---+÷⎪⎝⎭ =115118236⎛⎫--+⨯⎪⎝⎭ =115118+1818236-⨯⨯-⨯ =1-9+6-15=-17.【点睛】此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.14.计算:(1)22123()0.8(5)35⎡⎤-⨯--÷-⎢⎥⎣⎦(2)5233(2)4()(12)1234⨯-+-+--⨯- 解析:(1)13;(2)10. 【分析】(1)依据有理数的混合运算的运算顺序和法则依次运算即可;(2)分别计算乘法、绝对值和后面用乘法分配律计算,再将结果相加、减.【详解】解:(1)原式=12790.8()95⎡⎤-⨯-÷-⎢⎥⎣⎦ =95()()527-⨯-=13; (2)原式=52364[(12)(12)(12)]1234-++⨯--⨯--⨯- =64(589)-++-++ =6412-++=10.【点睛】本题考查有理数的混合运算.解决此题的关键是正确把握运算顺序和每一步的运算法则.注意运算律的运用.15.计算:(1)14-25+13(2)42111|23|()823---+-⨯÷ 解析:(1)2;(2)4【分析】 (1)根据有理数的加减运算,即可求出答案;(2)先计算乘方、绝对值、然后计算乘除,再计算加减运算,即可得到答案.【详解】解:(1)14251311132-+=-+=;(2)42111|23|()823---+-⨯÷=111834--+⨯⨯ =26-+=4.【点睛】本题考查了有理数的混合运算,解题的关键是掌握运算法则进行解题.16.体育课上全班男生进行了百米测试,达标成绩为14秒,下面是第一小组8名男生的成绩记录,其中“+”表示成绩大于14秒,“-”表示成绩小于14秒.解析:9秒.【分析】根据平均成绩的计算方法,先列式计算表格中所有数据的平均数,再加上标准成绩即可得出结果.【详解】 解: 1.20.7010.30.20.30.50.18-++--+++=-(秒) 140.113.9-=(秒).答:这个小组8名男生的平均成绩是13.9秒.【点睛】此题考查了有理数的混合运算的实际应用,正确理解题目中正数和负数的含义是列式计算的关键.17.计算:(1)[]2(2)18(3)24-+--⨯÷ (2)()()243513224⎡⎤----⨯÷-⎢⎥⎣⎦ 解析:(1)10;(2)-15【分析】(1)先算乘方,再算乘法,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【详解】(1)解:原式=4+[18-(-6)]÷4=4+24÷4=4+6=10;(2)解:原式=-1-[9-10÷(-2)]=-1-[9-(-5)]=-1-14=-15.【点睛】本题考查了有理数的混合运算,解题的关键是明确有理数混合运算的计算方法. 18.设0a >,x ,y 为有理数,定义新运算:||a x a x =⨯※.如323|2|6=⨯=※,()414|1|a a -=⨯-※.(1)计算20210※和()20212-※的值. (2)若0y <,化简()23y -※.(3)请直接写出一组,,a x y 的具体值,说明()a x y a x a y +=+※※※不成立. 解析:(1)0;4042;(2)6y -;(3)1a =,2x =,3y =-(答案不唯一)【分析】(1)根据题意※表示前面的数与后面数的绝对值的积,直接代入数据求解计算;(2)有y<0,得到y 为负数,进而得到-3y 为正数,去绝对值后等于本身-3y ,再代入数据求解即可;(3)按照题意要求写一组具体的,,a x y 的值再验算即可.【详解】解:(1)根据题意得:202102021|0|0=⨯=※; ()202122021|2|4042-=⨯-=※;(2)因为0y <,所以30y ->,所以()()232|3|236y y y y -=⨯-=⨯-=-※;(3)由题意,当,,a x y 分别取1a =,2x =,3y =-时,此时()2311※※(-1)=1-=,而11※2※(-3)=2+3=5+,所以,()a x y a x a y +=+※※※不成立.【点睛】本题是新定义题型,按照题目中给定的运算要求和顺序进行求解即可.19.某粮库6天内粮食进、出库的吨数如下(“+”表示进库,“-”表示出库)+25,-22,-14,+35,-38,-20(1)经过这6天,仓库里的粮食是增加了还是减少了?)(2)经过这6天,仓库管理员结算时发现库里还存280吨粮,那么6天前仓库里存粮多少吨?(3)如果进出的装卸费都是每吨5元,那么这6天要付多少装卸费?解析:(1)减少了34吨;(2)314吨;(3)770元【分析】(1)求出6天的数据的和即可判断;(2)根据(1)中结果计算即可;(3)求出数据的绝对值的和,再乘5即可;【详解】解:(1)25−22−14+35−38−20=−34<0,答:经过6天,粮库里的粮食减少了34吨;(2)280+34=314(吨),答:6天前粮库里的存量314吨;(3)(25+22+14+35+38+20)×5=770(元),答:这6天要付出770元装卸费.【点睛】本题考查有理数混合运算的实际应用,正确理解题意,列出算式是解题的关键.20.将n个互不相同的整数置于一排,构成一个数组.在这n个数字前任意添加“+”或“-”号,可以得到一个算式.若运算结果可以为0,我们就将这个数组称为“运算平衡”数组.(1)数组1,2,3,4是否是“运算平衡”数组?若是,请在以下数组中填上相应的符号,并完成运算;1 2 3 4 =(2)若数组1,4,6,m是“运算平衡”数组,则m的值可以是多少?(3)若某“运算平衡”数组中共含有n个整数,则这n个整数需要具备什么样的规律?解析:(1)是,+1-2-3+4=0;(2)m=±1,±3,±9,±11;(3)这n个整数互不相同,在这n个数字前任意添加“+”或“-”号后运算结果为0.【分析】(1)根据“运算平衡”数组的定义即可求解;(2)根据“运算平衡”数组的定义得到关于m的方程,解方程即可;(3)根据“运算平衡”数组的定义可以得到n个数的规律.【详解】解:(1)数组1,2,3,4是“运算平衡”数组,+1-2-3+4=0;(2)要使数组1,4,6,m是“运算平衡”数组,有以下情况:1+4+6+m=0;-1+4+6+m=0;1-4+6+m=0;1+4-6+m=0;1+4+6-m=0;-1-4+6+m=0;-1+4-6+m=0;-1+4+6-m=0;1-4-6+m=0;1-4+6-m=0;1+4-6-m=0;-1-4-6+m=0;-1-4+6-m=0,-1+4-6-m=0,1-4-6-m=0;-1-4-6-m=0;共16中情况,经计算得m=±1,±3,±9,±11;(3)这n 个整数互不相同,在这n 个数字前任意添加“+”或“-”号后运算结果为0.【点睛】本题考查了新定义问题,理解“运算平衡”数组的定义是解题关键.21.(1)371(24)812⎛⎫-+⨯- ⎪⎝⎭;(2)431(2)2(3)----⨯- 解析:(1)-29;(2)13.【分析】(1)利用乘法分配律进行简便运算,即可得出结果;(2)先计算有理数的乘方与乘法,再进行加减运算即可.【详解】解:(1)371(24)812⎛⎫-+⨯- ⎪⎝⎭ 37(1242424)812=-⨯-⨯+⨯ (24914)=--+29=-;(2)431(2)2(3)----⨯-1(8)(6)=-----186=-++13=.【点睛】本题考查了有理数的混合运算,熟练掌握有理数混合运算的运算顺序、运算法则及乘法运算律是解题的关键.22.计算:(1)45(30)(13)+---;(2)32128(2)4-÷-⨯-. 解析:(1)28;(2)-2【分析】 (1)有理数的加减混合运算,从左往右依次计算即可;(2)有理数的混合运算,先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】解:(1)45(30)(13)+---=4530+13-=15+13=28(2)32128(2)4-÷-⨯- =18844-÷-⨯ =11--=-2.【点睛】 本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键.23.计算:(1)-8+14-9+20(2)-72-5×(-2) 3+10÷(1-2) 10解析:(1)17;(2)1.【分析】(1)原式利用加法结合律相加即可求出值;(2)原式先计算乘方运算,再计算乘除法运算,最后算加减运算即可求出值.【详解】解:(1)814920--++()()=891420--++=17-+34=17(2)2310752+()(1012)--⨯-÷-()1=4958+10--⨯-÷=49+40+10-=1【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.24.计算:(1)152|18|()263-⨯-+; (2)20203221124(2)3()3-+÷--⨯. 解析:(1)6;(2)-5【分析】(1)先去掉绝对值,然后根据乘法分配律即可解答本题;(2)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【详解】解:(1)152|18|()263-⨯-+=18×(12﹣56+23) =18×12﹣18×56+18×23=9﹣15+12=6;(2)20203221124(2)3()3-+÷--⨯ =﹣1+24÷(﹣8)﹣9×19=﹣1+(﹣3)﹣1=﹣5.【点睛】 此题主要考查有理数的混合运算,熟练掌握混合运算顺序是解题关键.25.画一条数轴,把1-12,0,3各数和它们的相反数在数轴上表示出来,并比较它们的大小,用“<”号连接.解析:数轴表示见解析;-3<112-<0<112<3.【分析】先画出数轴,把各数依次表示出来,从左到右用“<”把各数连接起来即可.【详解】解:112-的相反数是112,0的相反数是0,3的相反数是-3,在数轴上的表示如图所示:从左到右用“<”连接为:-3<112-<0<112<3.故答案为:-3<112-<0<112<3.【点睛】本题考查的是数轴的特点、相反数的定义及有理数的大小比较,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.26.计算: (1)4222(37)2(1)-+--⨯-; (2)157(36)2912⎛⎫-+⨯- ⎪⎝⎭. 解析:(1)-2;(2)-19【分析】(1)先括号里,再计算乘方、乘法,最后相加减即可;(2)利用乘法的分配率进行计算.【详解】(1)4222(37)2(1)-+--⨯-=16162-+-=-2;(2)157(36)2912⎛⎫-+⨯- ⎪⎝⎭=157(36)(36)(36)2912⨯--⨯-+⨯- =-18+20-21=-19【点睛】 考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.27.计算下列各题:(1)()157362912⎛⎫-+⨯- ⎪⎝⎭; (2)()()2362295321343⎛⎫⎛⎫-÷⨯---+⨯- ⎪ ⎪⎝⎭⎝⎭. 解析:(1)19-;(2) 3.-【分析】 (1)利用乘法的分配律把原式化为:()()()1573636362912⨯--⨯-+⨯-,再计算乘法运算,最后计算加减运算即可得到答案; (2)先计算乘方运算与小括号内的运算,同步把除法转化为乘法,再计算乘法运算,最后计算减法运算即可得到答案.【详解】解:(1)()157362912⎛⎫-+⨯- ⎪⎝⎭; ()()()1573636362912=⨯--⨯-+⨯- 182021=-+-19=-(2)()()2362295321343⎛⎫⎛⎫-÷⨯---+⨯- ⎪ ⎪⎝⎭⎝⎭()4452741993⎛⎫=⨯⨯---+⨯ ⎪⎝⎭ 16733⎛⎫=--- ⎪⎝⎭16733=-+ 9 3.3=-=- 【点睛】本题考查的是乘法的分配律的应用,含乘方的有理数的混合运算,掌握以上知识是解题的关键.28.阅读下列材料:(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩,即当0x <时,1x x x x ==--.用这个结论可以解决下面问题:(1)已知a ,b 是有理数,当0ab ≠时,求a b a b+的值; (2)已知a ,b ,c 是有理数,0a b c ++=,0abc <,求b c a c a b a b c +++++的值. 解析:(1)2或2-或0;(2)-1.【分析】(1)分三种情况讨论,①0,0a b >>,②0,0a b <<,③0ab <,分别根据题意化简即可;(2)由0a b c ++=整理出,,a b c b c a a c b +=-+=-+=-,判断a b c ,,中有两正一负,再整体代入,结合题意计算即可.【详解】(1)0ab ≠∴①0,0a b >>,==1+1=2a b a b a b a b ++; ②0,0a b <<,==11=2a b a b a b a b+-----; ③0ab <,=1+1=0a b a b+-, 综上所述,当0ab ≠时,a b a b +的值为:2或2-或0; (2)0a b c ++=,0abc <,,a b c b c a a c b ∴+=-+=-+=-即a b c ,,中有两正一负, ∴==()1b c a c a b a b c a b c a b c a b c a b c+++---++++-++=-. 【点睛】本题考查绝对值的非负性以及有理数的运算等知识,是重要考点,难度一般,掌握相关知识是解题关键.29.高速公路养护小组,乘车沿东西方向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):+17,-9,+7,-15,-3,+11,-6,-8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)若汽车耗油量为0.2升/千米,则这次养护共耗油多少升?解析:(1)最后到达的地方在出发点的东边,距出发点15千米;(2)这次养护共耗油19.4升.【分析】(1)求出这一组数的和,结果是正数则在出发点的东边,是负数则在出发点的西侧; (2)所走的路程是这组数据的绝对值的和,然后乘以0.2,即可求得耗油量.【详解】解:(1)17﹣9+7﹣15﹣3+11﹣6﹣8+5+16,=17+7+11+5+16-(9+15+3+6+8),=15.答:最后到达的地方在出发点的东边,距出发点15千米;(2)(17971531168516)0.2++-+++-+-+++-+-++++⨯, =97×02,=19.4(升).答:这次养护共耗油19.4升.【点睛】本题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.也考查了有理数的加减运算.30.把4-,4.5,0,12-四个数在数轴上分别表示出来,再用“<”把它们连接起来.解析:数轴表示见解析,140 4.52-<-<<. 【分析】先根据数轴的定义将这四个数表示出来即可,再根据数轴上的表示的数,左边的总小于右边的用“<”将它们连接起来即可得.【详解】将这四个数在数轴上分别表示出来如下所示:则140 4.52-<-<<.【点睛】本题考查了数轴,熟练掌握数轴的定义是解题关键.。

有理数易错题汇编含答案

有理数易错题汇编含答案

有理数易错题汇编含答案一、选择题1.若a 与b 互为相反数,则下列式子不一定正确的是( )A .0a b +=B .=-a bC .a b =D .a b = 【答案】C【解析】【分析】依据相反数的概念及性质可确定正确的式子,再通过举反例可证得不一定正确的式子.【详解】解:∵a 与b 互为相反数,∴0a b +=,∴=-a b , ∴a b =,故A 、B 、D 正确,当1a =时,1b =-,则1=b ,∴a b =;当1a =-时,1b =,则1=b ,∴a b ≠,故C 不一定正确,故选:C .【点睛】本题考查了相反数的定义.解此题的关键是灵活运用相反数的定义判定式子是否正确.2.16的绝对值是( ) A .﹣6B .6C .﹣16D .16【答案】D【解析】【分析】 利用绝对值的定义解答即可.【详解】16的绝对值是16, 故选D .【点睛】本题考查了绝对值得定义,理解定义是解题的关键.3.已知实数a ,b ,c ,d ,e ,f ,且a ,b 互为倒数,c ,d 互为相反数,e 的绝对值为2,f 的算术平方根是8,求23125c d ab e f ++++的值是( ) A .922+ B .922- C .922+或922- D .132 【答案】D【解析】【分析】 根据相反数,倒数,以及绝对值的意义求出c+d ,ab 及e 的值,代入计算即可.【详解】由题意可知:ab=1,c+d=0,2=±e ,f=64,∴2222e =±=(),33644f ==, ∴23125c d ab e f ++++ =11024622+++=; 故答案为:D【点睛】 此题考查了实数的运算,算术平方根,绝对值,相反数以及倒数和立方根,熟练掌握运算法则是解本题的关键.4.在数轴上,实数a ,b 对应的点的位置如图所示,且这两个点到原点的距离相等,下列结论中,正确的是( )A .0a b +=B .0a b -=C .a b <D .0ab >【答案】A【解析】由题意可知a<0<1<b ,a=-b ,∴a+b=0,a-b=2a<0,|a|=|b|,ab<0,∴选项A 正确,选项B 、C 、D 错误,故选A.5.有理数a ,b ,c 在数轴上对应的点如图所示,则下列式子中正确的是( )A .a b >B .a c a c -=-C .a b c -<-<D .b c b c +=+【答案】D【解析】【分析】根据数轴得出a <b <0<c ,|b |<|a |,|b |<|c |,再逐个判断即可.【详解】从数轴可知:a <b <0<c ,|b |<|a |,|b |<|c |.A .a <b ,故本选项错误;B .|a ﹣c |=c ﹣a ,故本选项错误;C .﹣a >﹣b ,故本选项错误;D .|b +c |=b +c ,故本选项正确.故选D .【点睛】本题考查了数轴和有理数的大小比较的应用,解答此题的关键是能根据数轴得出a <b <0<c ,|b |<|a |,|b |<|c |,用了数形结合思想.6.如图,在数轴上,点A 表示1,现将点A 沿数轴做如下移动,第一次将点A 向左移动3个单位长度到达点A 1,第二次将点A 1向右移动6个单位长度到达点A 2,第三次将点A 2向左移动9个单位长度到达点A 3,…按照这种移动规律进行下去,第51次移动到点51A ,那么点A 51所表示的数为( )A .﹣74B .﹣77C .﹣80D .﹣83 【答案】B【解析】【分析】序号为奇数的点在点A 的左边,各点所表示的数依次减少3 ,序号为偶数的点在点A 的右侧,各点所表示的数依次增加3,即可解答.【详解】解:第一次点A 向左移动3个单位长度至点1A ,则1A 表示的数,1−3=−2;第2次从点A 1向右移动6个单位长度至点2A ,则2A 表示的数为−2+6=4;第3次从点A 2向左移动9个单位长度至点3A ,则3A 表示的数为4−9=−5;第4次从点A 3向右移动12个单位长度至点4A ,则4A 表示的数为−5+12=7;第5次从点A 4向左移动15个单位长度至点5A ,则5A 表示的数为7−15=−8;…;则点51A 表示:()()511312631781772+⨯-+=⨯-+=-+=-, 故选B .7.在数轴上,点A ,B 在原点O 的两侧,分别表示数a 和3,将点A 向左平移1个单位长度,得到点C .若OC OB =,则a 的值为( ).A .3-B .2-C .1-D .2 【答案】B【解析】【分析】先用含a 的式子表示出点C ,根据CO =BO 列出方程,求解即可.【详解】解:由题意知:A 点表示的数为a ,B 点表示的数为3, C 点表示的数为a -1.因为CO =BO ,所以|a -1| =3, 解得a =-2或4,∵a <0,∴a =-2.故选B .【点睛】本题主要考查了数轴和绝对值方程的解法,用含a 的式子表示出点C ,是解决本题的关键.8.若关于x 的方程22(2)0x k x k +-+=的两根互为倒数,则k 的值为( )A .±1B .1C .-1D .0 【答案】C【解析】【分析】 根据已知和根与系数的关系12c x x a =得出k 2=1,求出k 的值,再根据原方程有两个实数根,即可求出符合题意的k 的值.【详解】解:设1x 、2x 是22(2)0x k x k +-+=的两根,由题意得:121=x x ,由根与系数的关系得:212x x k =, ∴k 2=1,解得k =1或−1,∵方程有两个实数根,则222=(2)43440∆--=--+>k k k k ,当k =1时,34430∆=--+=-<,∴k =1不合题意,故舍去,当k =−1时,34450∆=-++=>,符合题意,∴k =−1,故答案为:−1.【点睛】本题考查的是一元二次方程根与系数的关系及相反数的定义,熟知根与系数的关系是解答此题的关键.9.下列四个数中,是正整数的是( )A .﹣2B .﹣1C .1D .12【答案】C【解析】【分析】正整数是指既是正数又是整数,由此即可判定求解.【详解】A 、﹣2是负整数,故选项错误;B 、﹣1是负整数,故选项错误;C 、1是正整数,故选项正确;D 、12不是正整数,故选项错误. 故选:C .【点睛】 考查正整数概念,解题主要把握既是正数还是整数两个特点.10.在数轴上,与原点的距离是2个单位长度的点所表示的数是( )A .2B .2-C .2±D .12± 【答案】C【解析】【分析】与原点距离是2的点有两个,是±2.【详解】解:与原点距离是2的点有两个,是±2.故选:C.【点睛】本题考查数轴的知识点,有两个答案.11.已知整数01234,,,,,a a a a a 满足下列条件:01021320,1,2,3==-+=-+=-+a a a a a a a 以此类推,2019a 的值为( )A .1007-B .1008-C .1009-D .1010- 【答案】D【解析】通过几次的结果,发现并总结规律,根据发现的规律推算出要求的字母表示的数值.【详解】解:00a =,101011a a =-+=-+=-,212121a a =-+=--+=-,323132a a =-+=--+=-,434242a a =-+=--+=-,545253a a =-+=--+=-,656363a a =-+=--+=-,767374a a =-+=--+=-,……由此可以看出,这列数是0,-1,-1,-2,-2,-3,-3,-4,-4,……,(2019+1)÷2=1010,故20191010a =-,故选:D .【点睛】本题考查了绝对值的运算,对于计算规律的发现和总结.12.已知一个数的绝对值等于2,那么这个数与2的和为( )A .4B .0C .4或—4D .0或4 【答案】D【解析】【分析】先根据绝对值的定义,求出这个数,再与2相加【详解】∵这个数的绝对值为2∴这个数为2或-22+2=4,-2+2=0故选:D【点睛】本题考查求绝对值的逆定理,需要注意,一个数的绝对值为正数a ,则这个为±a13.已知实数a 满足2006a a -=,那么22006a -的值是( ) A .2005B .2006C .2007D .2008【答案】C【解析】先根据二次根式有意义的条件求出a 的取值范围,然后去绝对值符号化简,再两边平方求出22006a -的值.【详解】∵a-2007≥0,∴a ≥2007,∴2006a a -=可化为a 2006a -+=,2006=,∴a-2007=20062,∴22006a -=2007.故选C .【点睛】本题考查了绝对值的意义、二次根式有意义的条件,求出a 的取值范围是解答本题的关键.14.下列说法中不正确的是( )A .-3 表示的点到原点的距离是|-3|B .一个有理数的绝对值一定是正数C .一个有理数的绝对值一定不是负数D .互为相反数的两个数的绝对值一定相等【答案】B【解析】【分析】根据绝对值的意义以及相反数的意义逐项进行分析即可得答案.【详解】A 、根据绝对值的意义|-3|表示在数轴上表示-3的点到原点的距离,故A 选项正确,不符合题意;B 、若这个有理数为0,则0的绝对值还是0,故B 选项错误,符合题意;C 、根据绝对值的意义,|a|的绝对值表示在数轴上表示a 的点到原点的距离,故任意有理数的绝对值都为非负数,所以不可能为负数,故C 选项正确,不符合题意;D 、根据相反数的定义可知:只有符号不同的两数互为相反数,可知互为相反数的两数到原点的距离相等,即互为相反数的两个数的绝对值相等,故D 选项正确,不符合题意, 故选B .【点睛】本题考查了绝对值的意义,绝对值的代数意义为:正数的绝对值等于它本身;负数的绝对值等于它的相反数;0的绝对值还是0;绝对值的几何意义为:|a|表示在数轴上表示a 的这个点到原点的距离,熟练掌握绝对值的意义是解本题的关键.15.已知有理数a、b在数轴上的位置如图所示,则下列代数式的值最大的是()A.a+b B.a﹣b C.|a+b| D.|a﹣b|【答案】D【解析】【分析】根据数轴确定出a是负数,b是正数,并且b的绝对值大于a的绝对值,然后对各选项分析判断,再根据有理数的大小比较,正数大于一切负数,然后利用作差法求出两个正数的大小,再选择答案即可.【详解】由图可知,a<0,b>0,且|b|>|a|,∴−a<b,A. a+b>0,B. a−b<0,C. |a+b|>0,D. |a−b|>0,因为|a−b|>|a+b|=a+b,所以,代数式的值最大的是|a−b|.故选:D.【点睛】此题考查有理数的大小比较,数轴,解题关键在于利用绝对值的非负性进行解答.16.7-的绝对值是()A.17-B.17C.7D.7-【答案】C【解析】【分析】负数的绝对值为这个数的相反数.【详解】|-7|=7,即答案选C.【点睛】掌握负数的绝对值为这个数的相反数这个知识点是解题的关键.17.如图,数轴上有三个点A、B、C,若点A、B表示的数互为相反数,则图中点C对应的数是()A.﹣2 B.0 C.1 D.4【解析】【分析】首先确定原点位置,进而可得C 点对应的数.【详解】∵点A 、B 表示的数互为相反数,AB=6∴原点在线段AB 的中点处,点B 对应的数为3,点A 对应的数为-3,又∵BC=2,点C 在点B 的左边,∴点C 对应的数是1,故选C .【点睛】本题主要考查了数轴,关键是正确确定原点位置.18.在﹣6,0,﹣1,4这四个数中,最大的数是( )A .4B .﹣6C .0D .﹣1 【答案】A【解析】【分析】根据正数大于0,负数小于0,负数绝对值大的其值反而小即可求解.【详解】∵4>0>﹣1>﹣6,∴最大的数是4.故选A .【点睛】此题主要考查了有理数的大小的比较,解题的关键利用正负数的性质可以解决问题.19.若225a =,3b =,且a >b ,则a b +=( )A .±8或±2B .±8C .±2D .8或2【答案】D【解析】【分析】结合已知条件,根据平方根、绝对值的含义,求出a ,b 的值,又因为a >b ,可以分为两种情况:①a=5,b=3;②a=5,b=-3,分别将a 、b 的值代入代数式求出两种情况下的值即可.【详解】∵225a =,|b|=3,∴a=±5,b=±3,∵a >b ,∴a=5,a=-5(舍去) ,当a=5,b=3时,a+b=8;当a=5,b=-3时,a+b=2,故选:D .本题主要考查了代数式的求值,本题用到了分类讨论的思想,关键在于熟练掌握平方根、绝对值的含义.20.在-3,-1,0,3这四个数中,比-2小的数是()A.-3 B.-1 C.0 D.3【答案】A【解析】【分析】根据两个负数比较大小,绝对值较大的数反而小,正数比负数大,逐个判断与-2的大小关系即可.【详解】<-<-<<解:∵-32103∴比-2小的数是-3故选:A【点睛】本题考查有理数的大小比较,掌握负数比较大小的方法是关键.。

有理数易错题汇编及解析

有理数易错题汇编及解析

有理数易错题汇编及解析一、选择题1.方程|2x+1|=7的解是( )A .x=3B .x=3或x=﹣3C .x=3或x=﹣4D .x=﹣4【答案】C【解析】【分析】根据绝对值的意义,将原方程转化为两个一元一次方程后求解.【详解】 解:由绝对值的意义,把方程217x +=变形为: 2x +1=7或2x +1=-7,解得x =3或x =-4故选C .【点睛】本题考查了绝对值的意义和一元一次方程的解法,对含绝对值的方程,一般是根据绝对值的意义,去除绝对值后再解方程.2.已知实数a ,b 在数轴上的位置如图所示,下列结论错误的是( )A .1a b <<B .11b <-<C .1a b <<D .1b a -<<-【答案】A【解析】【分析】首先根据数轴的特征,判断出a 、-1、0、1、b 的大小关系;然后根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,逐一判断每个选项的正确性即可.【详解】解:根据实数a ,b 在数轴上的位置,可得a <-1<0<1<b ,∵1<|a|<|b|,∴选项A 错误;∵1<-a <b ,∴选项B 正确;∵1<|a|<|b|,∴选项C 正确;∵-b <a <-1,∴选项D 正确.故选:A .【点睛】此题主要考查了实数与数轴,实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:实数与数轴上的点是一一对应关系.任意一个实数都可以用数轴上的点表示;反之,数轴上的任意一个点都表示一个实数.数轴上的任一点表示的数,不是有理数,就是无理数.3.在数轴上,实数a ,b 对应的点的位置如图所示,且这两个点到原点的距离相等,下列结论中,正确的是( )A .0a b +=B .0a b -=C .a b <D .0ab >【答案】A【解析】由题意可知a<0<1<b ,a=-b ,∴a+b=0,a-b=2a<0,|a|=|b|,ab<0,∴选项A 正确,选项B 、C 、D 错误,故选A.4.下列说法错误的是( )A .2 a 与()2a -相等B ()2a -2a -C .3 a 3a -D .a 与a -互为相反数【答案】D【解析】【分析】根据乘方、算术平方根、立方根、绝对值,以及相反数的定义,分别对每个选项进行判断,即可得到答案.【详解】解:A 、()2a -=2 a ,故A 正确;B ()22a a -=()2a -2a -B 正确;C 、3 a 3a -C 正确;D 、a a -=,故D 说法错误;故选:D.【点睛】本题考查了乘方、算术平方根、立方根、绝对值,以及相反数的定义,解题的关键是熟练掌握所学的定义进行解题.5.在数轴上,点A ,B 在原点O 的两侧,分别表示数a 和3,将点A 向左平移1个单位长度,得到点C .若OC OB =,则a 的值为( ).A .3-B .2-C .1-D .2 【答案】B【解析】【分析】先用含a 的式子表示出点C ,根据CO =BO 列出方程,求解即可.【详解】解:由题意知:A 点表示的数为a ,B 点表示的数为3, C 点表示的数为a -1.因为CO =BO ,所以|a -1| =3, 解得a =-2或4,∵a <0,∴a =-2.故选B .【点睛】本题主要考查了数轴和绝对值方程的解法,用含a 的式子表示出点C ,是解决本题的关键.6.若关于x 的方程22(2)0x k x k +-+=的两根互为倒数,则k 的值为( )A .±1B .1C .-1D .0 【答案】C【解析】【分析】 根据已知和根与系数的关系12c x x a =得出k 2=1,求出k 的值,再根据原方程有两个实数根,即可求出符合题意的k 的值.【详解】解:设1x 、2x 是22(2)0x k x k +-+=的两根,由题意得:121=x x ,由根与系数的关系得:212x x k =, ∴k 2=1,解得k =1或−1,∵方程有两个实数根,则222=(2)43440∆--=--+>k k k k ,当k =1时,34430∆=--+=-<,∴k =1不合题意,故舍去,当k =−1时,34450∆=-++=>,符合题意,∴k =−1,故答案为:−1.本题考查的是一元二次方程根与系数的关系及相反数的定义,熟知根与系数的关系是解答此题的关键.7.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示. 若0b d +=,则下列结论中正确的是( )A .0b c +>B .1c a> C .ad bc > D .a d >【答案】D【解析】【分析】根据数轴上的点表示的数右边的总比左边的大,可得a <b <0<c <d ,根据有理数的运算,可得答案.【详解】由数轴上的点表示的数右边的总比左边的大,得a <b <0<c <d ,A 、b+d =0,∴b+c <0,故A 不符合题意;B 、c a<0,故B 不符合题意; C 、ad <bc <0,故C 不符合题意;D 、|a|>|b|=|d|,故D 正确;故选D .【点睛】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大得出a <b <0<c <d 是解题关键,又利用了有理数的运算.8.在数轴上,与原点的距离是2个单位长度的点所表示的数是( )A .2B .2-C .2±D .12± 【答案】C【解析】【分析】与原点距离是2的点有两个,是±2.【详解】解:与原点距离是2的点有两个,是±2.【点睛】本题考查数轴的知识点,有两个答案.9.在﹣3,﹣1,1,3四个数中,比2大的数是( )A .﹣3B .﹣1C .1D .3 【答案】D【解析】【分析】根据有理数比较大小的方法解答即可.【详解】解:比2大的数是3.故选:D .【点睛】本题考查了有理数比较大小,掌握有理数比较大小的比较方法是解题的关键.10.12a =-,则a 的取值范围是( )A .12a ≥ B .12a > C .12a ≤ D .无解【答案】C【解析】【分析】=|2a-1|,则|2a-1|=1-2a ,根据绝对值的意义得到2a-1≤0,然后解不等式即可.【详解】=|2a-1|,∴|2a-1|=1-2a ,∴2a-1≤0, ∴12a ≤. 故选:C .【点睛】 此题考查二次根式的性质,绝对值的意义,解题关键在于掌握其性质.11.不论a 取什么值,下列代数式的值总是正数的是( )A .1a +B .1a +C .2aD .2(1)a +【答案】B【分析】直接利用绝对值的性质以及偶次方的性质分别分析得出答案.【详解】A 、|a +1|≥0,故此选项错误;B 、|a|+1>0,故此选项正确;C 、a 2≥0,故此选项错误;D 、(a+1)2≥0,故此选项错误;故选B .【点睛】此题主要考查了偶次方的性质以及绝对值的性质,正确把握相关定义是解题关键.12.实数,,a b c 在数轴上的对应点的位置如图所示,若||||a b <,则下列结论中一定成立的是( )A .0b c +>B .2a c +>C .1b a <D .0abc ≥【答案】A【解析】【分析】利用特殊值法即可判断.【详解】∵a<c<b ,||||a b <,∴0b c +>,故A 正确;若a<c<0,则2a c +>错误,故B 不成立; 若0<a<b ,且||||a b <,则1b a>,故C 不成立; 若a<c<0<b ,则abc<0,故D 不成立,故选:A.【点睛】 此题考查数轴上点的正负,实数的加减乘除法法则,熟记计算法则是解题的关键.13.下列各组数中互为相反数的是( )A .52(5)-B .2--和(2)-C .38-38-D .﹣5和15【答案】B【解析】【分析】直接利用相反数以及绝对值、立方根的定义分别分析得出答案.【详解】解:A 、5和()25-=5,两数相等,故此选项错误;B 、-|-2|=-2和-(-2)=2互为相反数,故此选项正确;C 、-38=-2和38-=-2,两数相等,故此选项错误;D 、-5和15,不互为相反数,故此选项错误. 故选B .【点睛】 本题考查了相反数以及绝对值、立方根的定义,正确把握相关定义是解题关键.14.下列运算正确的是( )A .4 =-2B .|﹣3|=3C .4=± 2D .39=3【答案】B【解析】【分析】A 、根据算术平方根的定义即可判定;B 、根据绝对值的定义即可判定;C 、根据算术平方根的定义即可判定;D 、根据立方根的定义即可判定.【详解】解:A 、C 、42=,故选项错误;B 、|﹣3|=3,故选项正确;D 、9开三次方不等于3,故选项错误.故选B .【点睛】此题主要考查了实数的运算,注意,正数的算术平方根是正数.15.实数a,b,c 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a b >B .0a b +>C .0ac >D .a c >【答案】D【解析】【分析】根据数轴的特点:判断a 、b 、c 正负性,然后比较大小即可.【详解】根据数轴的性质可知:a <b <0<c ,且|c|<|b|<|a|;所以a >b ,0a b +>,ac >0错误;|a|>|c|正确;故选D .【点睛】本题考查实数与数轴的关系,关键是根据实数在数轴上的位置判断字母的正负性,根据实数在数轴上离原点的距离判断绝对值的大小.16.- 14的绝对值是( ) A .-4B .14C .4D .0.4【答案】B【解析】【分析】 直接用绝对值的意义求解. 【详解】 −14的绝对值是14. 故选B .【点睛】 此题是绝对值题,掌握绝对值的意义是解本题的关键.17.有理数,a b 在数轴上的位置如图所示,以下说法正确的是( )A .0a b +=B .0a b ->C .0ab >D .b a <【答案】D【解析】【分析】由图可判断a 、b 的正负性,a 、b 的绝对值的大小,即可解答.【详解】根据数轴可知:-2<a <-1,0<b <1,∴a+b <0,|a|>|b|,ab <0,a-b <0.所以只有选项D 成立.故选:D .【点睛】此题考查了数轴的有关知识,利用数形结合思想,可以解决此类问题.数轴上,原点左边的点表示的数是负数,原点右边的点表示的数是正数.18.已知a ,b ,c 是有理数,当0a b c ++=,0abc <时,求a b c b c a c a b +-+++的值为( )A .1或-3B .1,-1或-3C .-1或3D .1,-1,3或-3 【答案】A【解析】【分析】根据0a b c ++=,0abc <,可知这三个数中只能有一个负数,另两个为正数,把0a b c ++=变形代入代数式求值即可.【详解】解:∵0a b c ++=,∴b c a +=-、a c b +=-、a b c +=-,∵0abc <,∴a 、b 、c 三数中有2个正数、1个负数, 则a b c a b c b c a c a b a b c+-=+-+++---, 若a 为负数,则原式=1-1+1=1,若b 为负数,则原式=-1+1+1=1,若c 为负数,则原式=-1-1-1=-3,所以答案为1或-3.故选:A .【点睛】 本题考查了绝对值的性质,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,难点在于判断出负数的个数.19.下列命题中,真命题的个数有( )①带根号的数都是无理数; ②立方根等于它本身的数有两个,是0和1; ③0.01是0.1的算术平方根; ④有且只有一条直线与已知直线垂直A .0个B .1个C .2个D .3个【答案】A【解析】【分析】开方开不尽的数为无理数;立方根等于本身的有±1和0;算术平方根指的是正数;在同一平面内,过定点有且只有一条直线与已知直线垂直.【详解】仅当开方开不尽时,这个数才是无理数,①错误;立方根等于本身的有:±1和0,②错误;20.如图,数轴上A,B两点分别对应实数a,b,则下列结论正确的是()A.b>a B.ab>0 C.a>b D.|a|>|b|【答案】C【解析】【分析】本题要先观察a,b在数轴上的位置,得b<-1<0<a<1,然后对四个选项逐一分析.【详解】A、∵b<﹣1<0<a<1,∴b<a,故选项A错误;B、∵b<﹣1<0<a<1,∴ab<0,故选项B错误;C、∵b<﹣1<0<a<1,∴a>b,故选项C正确;D、∵b<﹣1<0<a<1,∴|b|>|a|,即|a|<|b|,故选项D错误.故选C.【点睛】本题考查了实数与数轴的对应关系,数轴上右边的数总是大于左边的数.。

有理数易错题汇编附答案解析

有理数易错题汇编附答案解析
B、 c <0,故 B 不符合题意; a
C、ad<bc<0,故 C 不符合题意; D、|a|>|b|=|d|,故 D 正确; 故选 D. 【点睛】 本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大得出 a<b<0<c< d 是解题关键,又利用了有理数的运算.
8.若 a 与 b 互为相反数,则下列式子不一定正确的是( )
20.在–2,+3.5,0, 2 ,–0.7,11 中.负分数有( ) 3
A.l 个
B.2 个
C.3 个
பைடு நூலகம்
【答案】B
【解析】
根据负数的定义先选出负数,再选出分数即可.
解:负分数是﹣ 2 ,﹣0.7,共 2 个. 3
故选 B.
D.4 个
3.有理数 a , b , c 在数轴上对应的点如图所示,则下列式子中正确的是( )
A. a b
B. a c a c
C. a b c
D. b c b c
【答案】D 【解析】
【分析】
根据数轴得出 a<b<0<c,|b|<|a|,|b|<|c|,再逐个判断即可. 【详解】
从数轴可知:a<b<0<c,|b|<|a|,|b|<|c|. A.a<b,故本选项错误; B.|a﹣c|=c﹣a,故本选项错误; C.﹣a>﹣b,故本选项错误;
的是( )
A. b c 0
【答案】A
B. a c 2
C. b 1 a
D. abc 0
【解析】
【分析】
利用特殊值法即可判断. 【详解】
∵a<c<b, | a || b | ,∴ b c 0,故 A 正确;
若 a<c<0,则 a c 2错误,故 B 不成立;

初中数学七年级上册数学《有理数》易错题

初中数学七年级上册数学《有理数》易错题

《有理数》易错题,附答案第1节 正数和负数1.易错点:对正数和负数的概念理解不清1、下列说法正确的是_____________(填序号)①不带“-”号的数都是正数;①一个数不是正数就是负数;①带负号的数是负数;①0℃表示没有温度;①若a 是正数,则-a 一定是负数。

参考答案1、①第2节 有理数 2.易错点:对有理数的相关概念理解不清 1、下列有关有理数的说法正确的是( ) A .有限小数和无限循环小数不是有理数 B .正整数与负整数构成整数 C .整数和分数统称为有理数 D .非负整数即为正整数 2、【变式1】下列有关有理数的说法中,正确的是( ) A .0不是有理数 B .﹣2是整数 C .0.5不是分数 D .有理数就是正数和负数 3、【变式2】下列说法:①0是最小的整数;①最大的负整数是﹣1;①正有理数和负有理数统称有理数;①无限小数不是有理数。

其中正确的有______(填序号) 参考答案 1、C 2、B 3、① 3.易错点:非负数、非正数中漏掉0 1、在-5,4.2,21 ,0,+10,3这六个数是,非负数是____________________,非负整数是_____________。

2、【变式1】比-3大的负整数有__________,比3小的非负整数是_________。

参考答案 1、4.2,0,+10,3;0,+10,3 2、-2,-1;2,1,0 4.易错点:数轴上到某点的距离为正数的点有两个 1、到原点的距离为35个单位长度的点表示的数是__________。

2、【变式1】已知在数轴上A 点表示的数是7,B 点到A 点的距离是3个单位长度,则B 点表示的数是_________。

3、【变式2】如果数轴上的点A 对应的有理数为-2,那么与点A 相距3个单位长度的点所对应的有理数为_______。

参考答案1、35或-352、4或103、-5或15.易错点:误以为数轴上的点只能表示有理数 1、下列说法正确的是( ) A .数轴上的点都表示有理数 B .数轴上右边的数不一定比左边的数大C .数轴上的点离原点越远,表示的数越大D .有理数都能在数轴上表示参考答案 1、D 6.易错点:对相反数的概念理解不清 1、-a 的相反数是_______。

七年级上册有理数的易错题

七年级上册有理数的易错题

有理数是初中数学的一个重要概念,以下是七年级上册有理数的一些常见易错题:
1.下列说法正确的是( )
A. 0是最小的整数
B. 有理数就是正数和负数的统称
C. 0是最小的负数
D. 0是最小的非负数
2.下列结论中,不正确的是( )
A. 有理数就是正数、负数和0的统称
B. 有理数都可以写成分数的形式,而无理数不能
C. 0既不是正数也不是负数
D. 正整数、0、负整数统称为整数
3.已知a,b 是两个有理数,若a > b,则下列结论错误的是( )
A. a + 1 > b + 1
B. a - 1 > b - 2
C. a/2 > b/2
D. a^2 > b^2
4.下列各组数中,数值相等的是( )
A. -2^3 和(-2)^3
B. (-3)^4 和-3^4
C. -2 × 3^2 和-2^2 × 3
D. (-1/2)^-2 和(1/2)^-2
5.下列各组数中,互为相反数的有( )
① -(-5) 和-(+5) ;② +(-5) 和-(+5) ;③ -|5| 和+|-5| ;
④ -|+5| 和+|-5|.
A. ①②
B. ②③
C. ③④
D. ①④
6.下列结论中正确的是( )
A.0是正数也不是负数
B.0是整数但不是自然数
C.0是非正数
D.0是非负数
7.下列语句中,正确的是()
A. 有理数就是正数和负数的统称
B. 零是最小的整数
C. 任何有理数都可以用分数表示
D. 有理数包括正有理
数、零和负有理数。

语法知识—有理数的易错题汇编附答案

语法知识—有理数的易错题汇编附答案

一、填空题1.如图,某点从数轴上的A 点出发,第1次向右移动1个单位长度至B 点,第2次从B 点向左移动2个单位长度至C 点,第3次从C 点向右移动3个单位长度至D 点,第4次从D 点向左移动4个单位长度至E 点,…,依此类推,经过_________次移动后该点到原点的距离为2019个单位长度.2.若2|3|(2)0x y ++-=,则2x y +的值为___________. 3.比较大小:56-______67-.(填“>”、“=”或“<”) 4.有理数a 、b 、c 在数轴上的位置如图所示,且a b =,化简c a c b a b -+-++=________.5.比较大小:(﹣2)3__()2-3 6.已知()2-230a b ++=,则()2019a b +=___________7.有理数,,a b c 在数轴上的位置如图所示,化简||||||a a b c a +-+-的值为________.8.已知2322(25)0y x x y ++++-=,则x =__,y =__.9.数轴上点O 表示原点,点A 表示数﹣4,点P 表示数x ,当PA =PO 时,|x|=_____.二、解答题10.已知22332A x y xy =+-,2222B xy y x =--.(1)求23A B -.(2)若|23|1x -=,29y =,且||x y y x -=-,求23A B -的值.11.已知数轴上,点O 为原点,点A 对应的数为9,点B 对应的数为b ,点C 在点B 右侧,长度为2个单位的线段BC 在数轴上移动.(1)如图,当线段BC 在O 、A 两点之间移动到某一位置时,恰好满足线段AC =OB ,求此时b 的值;(2)当线段BC 在数轴上沿射线AO 方向移动的过程中,若存在AC ﹣OB =13AB ,求此时满足条件的b 的值;(3)当线段BC 在数轴上移动时,满足关系式|AC ﹣OB |=711|AB ﹣OC |,则此时b 的取值范围是12.阅读下面一段文字:在数轴上点A ,B 分别表示数a ,b.A ,B 两点间的距离可以用符号AB 表示,利用有理数减法和绝对值可以计算A ,B 两点之间的距离AB .例如:当a=2,b=5时,AB =5-2=3;当a=2,b=-5时,AB =5--2=7;当a=-2,b=-5时,AB =5(2)---=3.综合上述过程,发现点A 、B 之间的距离AB =b a -(也可以表示为a b -).请你根据上述材料,探究回答下列问题: (1)数轴上表示1和3两点之间的距离是 ; (2)表示数a 和-2的两点间距离是6,则a= ;(3)如果数轴上表示数a 的点位于-4和3之间,求43a a ++-的值.(4)是否存在数a ,使代数式123a a a -+-+-的值最小?若存在,请求出代数式的最小值,并直接写出数a 的值或取值范围,若不存在,请简要说明理由.13.如图,数轴上有两定点A 、B ,点A 表示的数为6,点B 在点A 的左侧,且AB=20,动点P 从点A 出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t 秒(t>0).(1)写出数轴上点B 表示的数______,点P 表示的数用含t 的式子表示:_______; (2)设点M 是AP 的中点,点N 是PB 的中点.点P 在直线AB 上运动的过程中,线段MN 的长度是否会发生变化?若发生变化,请说明理由;若不变化,求出线段MN 的长度. (3)动点R 从点B 出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P 、R 同时出发;当点P 运动多少秒时?与点R 的距离为2个单位长度.14.画出数轴并在数轴上表示出下面的有理数,然后把它们用“<”连接起来. -2,|-1.5|,0,-(-3),122,(-1)2019 15.在数轴上表示下列各数,再将其按从大到小的顺序用“>”连接起来 |3|,﹣5,0,﹣2.5,﹣22,﹣(﹣1).三、1316.已知实数a ,b 在数轴上的位置如图所示,下列结论错误的是( )A .1<﹣b <aB .|b|<1<|a|C .1<|b|<aD .﹣1<﹣b <a17.设有理数a 、b 在数轴上对应的位置如图所示,化简a b a b a --+-的结果是( )A .2a b -+B .2a b --C .a -D .b18.如图,A B ,两点表示的有理数分别是,a b ,则下列式子正确的是( )A .()()110a b +->B .()()110a b -->C .0a b ->D .0ab >19.下列关于0的说法错误的是( )A .任何情况下,0的实际意义就是什么都没有B .0是偶数不是奇数C .0不是正数也不是负数D .0是整数也是有理数20.若x 、y 互为相反数,c 、d 互为倒数,m 的绝对值为9,则20192020()3x y cd m +⎛⎫--+ ⎪⎝⎭的值为( )A .8B .9C .10D .8或10-21.a b 、互为倒数,mn 、互为相反数,则代数式()382m n ab +-的值是( ) A .32-B .94-C .32 D .9422.若实数a ,b 在数轴上的位置如图所示,则下列判断正确的是( )A .a>0B .ab>0C .a<bD .a ,b 互为倒数23.互不相等的三个有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C 。

语法知识—有理数的易错题汇编附解析

语法知识—有理数的易错题汇编附解析

一、填空题1.大于-112而小于213的整数有是___________;2.在数,,,2357--中,最小的数是 _____ .3.已知有理数a 、b 、c 在数轴上对应的点如图所示,则cb _____ab .(填“>”或“<”或“=”)4.已知|x|=3,则x 的值是___.5.若|x ﹣3|+(y+2)2=0,则x 2y 的值为_____. 6.已知|x ﹣2|+|y+2|=0,则x+y=_____.二、解答题7.如图所示,数轴上从左到右的三个点A ,B ,C 所对应数的分别为a ,b ,c .其中点A 、点B 两点间的距离AB 的长是2019,点B 、点C 两点间的距离BC 的长是1000,(1)若以点C 为原点,直接写出点A ,B 所对应的数; (2)若原点O 在A ,B 两点之间,求|a |+|b |+|b ﹣c |的值; (3)若O 是原点,且OB =19,求a +b ﹣c 的值.8.已知如图,在数轴上有A 、B 两点,所表示的数分别是n ,n+6,A 点以每秒5个单位长度的速度向右运动,同时点B 以每秒3个单位长度的速度也向右运动,设运动时间为t 秒. (1)当n=1时,经过t 秒A 点表示的数是_______,B 点表示的数是______,AB=________; (2)当t 为何值时,A 、B 两点重合;(3)在上述运动的过程中,若P 为线段AB 的中点,数轴上点C 表示的数是n+10.是否存在t 值,使得线段PC=4,若存在,求t 的值;若不存在,请说明理由.9.已知:a 、b 表示有理数,请你比较+a b 和a 的大小. 10.观察思考:若数轴上点A 表示的数是a ,点B 表示的数是b(1)若a =2,b =4,则线段AB 中点表示的数是______; (2)若a =1,b =-3,则线段AB 中点表示的数是______; (3)若a =-3,b =-5,则线段AB 中点表示的数是______;(4)归纳:用关于a 、b 的代数式表示线段AB 中点所表示的数:______;(5)若a =-8,b =2,现点A 以每秒一个单位的速度沿数轴向负方向移动,同时点B 以每秒3个单位的速度沿数轴向正方向移动,几秒后,线段AB 的中点表示的数是2.5? 11.材料阅读:已知点A 、B 在数轴上分别表示有理数a 、b ,|a ﹣b |表示A 、B 两点之间的距离.如:|1﹣2|表示数轴上1与2两点之间的距离,所以数轴上1与2两点之间的距离是|1﹣2|=1.(1)数轴上表示﹣2和﹣5的两点之间的距离是 ;(2)数轴上表示x 和﹣1的两点A 和B 之间的距离是 ,如果|AB |=2,那么x 为 ;(3)若x 表示一个有理数,则|x ﹣1|+|x +3|有最小值吗?若有,请求出最小值;若没有,请说明理由.三、1312.若m 的相反数是n ,下列结论正确的是( ) A .m 一定是正数 B .一定是负数 C .0m n +=D .m 一定大于n13.点A ,B ,C 和原点O 在数轴上,点A ,B ,C 对应的有理数为a ,b ,c .若0ab <,0a b +>,0a b c ++<,那么以下符合题意的是( )A .B .C .D .14.如图,数轴上的A ,B 两点所表示的数分别是a ,b ,如果a b >,且0ab >,那么该数轴的原点O 的位置应该在( )A .点A 的左边B .点B 的右边C .点A 与点B 之间靠近点AD .点A 与点B 之间靠近点B15.已知a 、b 、c 在数轴上位置如图,则|a+b|+|a+c|=( )A .0B .a+bC .b-cD .a+c16.数轴上点A ,M ,B 分别表示数a ,+a b ,b ,那么下列运算结果一定是正数的是( )A .+a bB .-a bC .abD .a b -17.已知数a,b 在数轴上表示的点的位置如图所示,则下列结论正确的是( )、 ①a<b<0,②|b|>|a|,③a·b<0,④a+1>a+b.A .①②B .①④C .②③D .③④18.在6,-5,25-,3.7⋅,0,124-,1.5,19中,分数有( ) A .2 个B .3 个C .4 个D .5 个19.已知有理数a,b,c ,在数轴上的位置如图,下列结论错误的是( )A .|a-b|=a-bB .a+b+c<0C .–c-b+a<0D .|c|-|a|+|-b|+|-a|=-c-b20.若a 的相反数是2,则a 的值为( ) A .2B .﹣2C .﹣12D .±2 21.已知有理数a ,b ,c ,d 在数轴上对应的点如图所示,每相邻两个点之间的距离是1个单位长度.若3a =4b ﹣3,则c ﹣2d 为( )A .﹣3B .﹣4C .﹣5D .﹣6 22.在有理数2,-1,0,-5中,最大的数是( )A .2B .C .0D .23.如图,数轴A 、B 上两点分别对应实数a 、b ,则下列结论正确的是( )A .a +b>0B .ab >0C .110a b+> D .11-0a b< 24.有理数a 、b 在数轴上的位置如下图所示,则下列判断正确的是( )A .0ab >B .0a b> C .a b < D .0a b >>25.如图,在数轴上有A .B 、C 、D 、E 五个整数点(即各点均表示整数),且AB=2BC=3CD=4DE ,若A .E 两点表示的数的分别为 -13和12,那么,该数轴上上述五个点所表示的整数中,离线段AE 的中点最近的整数是( )A .-2B .-1C .0D .2【参考答案】***试卷处理标记,请不要删除一、填空题1.-1012【解析】【分析】根据题意先画出数轴然后根据整数定义即可解答【详解】如图所示:∴大于-1而小于2的整数有-1012故答案是:-1012【点睛】由于引进了数轴我们把数和点对应起来也就是把数和形解析:-1,0,1,2【解析】【分析】根据题意先画出数轴,然后根据整数定义即可解答.【详解】如图所示:∴大于-112而小于213的整数有-1,0,1,2.故答案是:-1,0,1,2.【点睛】由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.2.-5【解析】【分析】先根据有理数的大小比较法则比较大小即可得出答案【详解】∵-5<-2<3<7∴最小的数是-5故答案为-5【点睛】本题考查了对有理数的大小比较法则的应用注意:正数都大于0负数都小于0解析:-5【解析】【分析】先根据有理数的大小比较法则比较大小,即可得出答案.【详解】∵-5<-2<3<7,∴最小的数是-5,故答案为-5.【点睛】本题考查了对有理数的大小比较法则的应用,注意:正数都大于0,负数都小于0,正数都大于负数,两个负数比较大小,其绝对值大的反而小.3.>【解析】【分析】利用有理数abc在数轴上对应的位置即可解答【详解】解:由图知c<b<0a>0即cb>0ab<0所以cb>ab【点睛】本题考查数轴上点的大小属于基础题解析:>【解析】 【分析】利用有理数a 、b 、c 在数轴上对应的位置即可解答. 【详解】解:由图知c<b<0,a>0, 即cb>0,ab<0, 所以cb>ab. 【点睛】本题考查数轴上点的大小,属于基础题.4.±3【分析】由绝对值的性质即可得出x=±3【详解】∵|±3|=3|x|=3∴x=±3故答案为±3【点睛】本题主要考查绝对值的性质关键在于求出3和-3的绝对值都为3解析:±3 【分析】由绝对值的性质,即可得出x =±3. 【详解】 ∵|±3|=3,|x |=3, ∴x =±3. 故答案为±3. 【点睛】本题主要考查绝对值的性质,关键在于求出3和-3的绝对值都为3.5.-18【解析】【分析】根据非负数的性质列出方程求出xy 的值再代入x2y 中即可【详解】由题意可得:x-3=0y+2=0解得x=3y=-2则x2y==-18故答案为:-18【点睛】本题考查了非负数的性质解析:- 18 【解析】 【分析】根据非负数的性质列出方程求出x 、y 的值,再代入x 2y 中即可. 【详解】由题意可得:x-3=0,y+2=0, 解得x=3,y=-2 则x 2y=232⨯-()=-18 故答案为:-18. 【点睛】本题考查了非负数的性质,几个非负数的和为0时,这几个非负数都为0.初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).6.0【解析】【分析】直接利用绝对值的性质得出xy 的值进而得出答案【详解】∵|x -2|+|y+2|=0∴x=2y=-2∴x+y=2-2=0故答案为0【点睛】此题主要考查了非负数的性质正确应用绝对值的性质解析:0【解析】【分析】直接利用绝对值的性质得出x,y的值,进而得出答案.【详解】∵|x-2|+|y+2|=0,∴x=2,y=-2,∴x+y=2-2=0.故答案为0.【点睛】此题主要考查了非负数的性质,正确应用绝对值的性质是解题关键.二、解答题7.(1)点A所对应的数是﹣3019,点B所对应的数﹣1000;(2)|a|+|b|+|b﹣c|=3019;(3)a+b﹣c=﹣3038或a+b﹣c=﹣3000.【解析】【分析】(1)根据数轴的定义可求点A,B所对应的数;(2)先根据绝对值的性质求得|a|+|b|=2019,|b−c|=1000,再代入计算即可求解;(3)分两种情况:原点O在点B的左边;原点O在点B的右边;进行讨论即可求解.【详解】(1)点A所对应的数是﹣1000﹣2019=﹣3019,点B所对应的数﹣1000;(2)当原点O在A,B两点之间时,|a|+|b|=2019,|b﹣c|=1000,|a|+|b|+|b﹣c|=2019+1000=3019;(3)若原点O在点B的左边,则点A,B,C所对应数分别是a=﹣2000,b=19,c=1019,则a+b﹣c=﹣2000+19﹣1019=﹣3000;若原点O在点B的右边,则点A,B,C所对应数分别是a=﹣2038,b=﹣19,c=981则a+b﹣c=﹣2038+(﹣19)﹣981=﹣3038.【点睛】本题主要考查了数轴及绝对值,解题的关键是能把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,8.(1)5t+1;3t+7;26t-;(2)t=3时,A、B两点重合;(3)存在t的值,使得线段PC=4,此时114t=或3t4=.【分析】(1)将n =1代入点A 、B 表示的数中,然后根据数轴上左减右加的原则可表示出经过t 秒A 点表示的数和B 点表示的数,再根据两点间的距离公式即可求出AB 的长度; (2)根据点A 、B 重合即可得出关于t 的一元一次方程,解之即可得出结论; (3)根据点A 、B 表示的数结合点P 为线段AB 的中点即可找出点P 表示的数,根据PC =4即可得出关于t 的一元一次方程,解之即可得出结论. 【详解】(1) ∵当n =1时,n +6=1+6=7,∴经过t 秒A 点表示的数是5t +1,B 点表示的数3t +7, ∴AB =(3t +7)-( 5t +1)=()()375126t t t +-+=-, 故答案为:5t+1;3t+7;26t -(2)根据题意得,5363t n t n t +=++=,解得, ∴t=3时,A 、B 两点重合; (3)∵P 是线段AB 的中点,∴点P 表示的数为()536243t n t n t n ++++÷=++, ∵PC=4,所以1134310444t n n t t ++--===,解得或, ∴存在t 的值,使得线段PC=4,此时11344t t ==或. 【点睛】本题考查了一元一次方程的应用、两点间的距离、数轴以及列代数式,解题的关键是:(1)找出点A 、B 表示的数;(2)根据两点重合列出关于t 的一元一次方程;(3)根据PC 的长列出关于t 的含绝对值符号的一元一次方程. 9.详见解析. 【解析】 【分析】分类讨论即可求解. 【详解】当b 0>时,a b a +>; 当b 0=时,a b a +=; 当b 0<时,a b a +<. 【点睛】本题考查了有理数的大小比较,属于简单题,分类讨论是解题关键. 10.(1)3;(2)-1;(3)-4;(4)2a b+;(5)5.5秒. 【解析】 【分析】(1)-(4)归纳总结得到结果即可;(5)设x 秒后,线段AB 的中点表示的数是2.5,根据题意列出方程,求出方程的解即可得到结果. 【详解】(1)若a=2,b=4,则线段AB 中点表示的数是3; (2)若a=1,b=-3,则线段AB 中点表示的数是-1; (3)若a=-3,b=-5,则线段AB 中点表示的数是-4;(4)归纳:用关于a 、b 的代数式表示线段AB 中点所表示的数:2a b; (5)设x 秒后,线段AB 的中点表示的数是2.5, 根据题意得:-8-x+2+3x=2.5×2, 解得:x=5.5,则5.5秒后,线段AB 的中点表示的数是2.5. 【点睛】此题考查了一元一次方程的应用,数轴,以及两点间的距离,弄清题意是解本题的关键. 11.(1)3;(2)|x +1|,1或﹣3;(3)代数式|x ﹣1|+|x +3|有最小值,为4. 【解析】 【分析】(1)直接根据数轴上A 、B 两点之间的距离|AB|=|a-b|.代入数值运用绝对值即可求任意两点间的距离;(2)直接根据数轴上A 、B 两点之间的距离|AB|=|a-b|.代入数值运用绝对值即可求任意两点间的距离;(3)根据绝对值的性质,根据得到结论. 【详解】(1)数轴上表示﹣2和﹣5的两点之间的距离是|﹣2﹣(﹣5)|=3. 故答案为3;(2)数轴上表示x 和﹣1的两点A 和B 之间的距离是|x ﹣(﹣1)|=|x+1|,如果|AB|=2,那么x 为1或﹣3. 故答案为|x+1|,1或﹣3;(3)当代数式|x ﹣1|+|x+3|有最小值,理由:根据数轴上两点之间的距离定义有:|x ﹣1|+|x+3|表示x 与﹣3两点的距离之和, 根据几何意义分析可知:当x 在﹣3与1之间时,|x ﹣1|+|x+3|有最小值4. 【点睛】此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.三、13 12.C解析:C 【分析】根据互为相反数的两个数和为0,即可解题. 【详解】解:∵互为相反数的两个数和为0, ∴0,m n += 故选C. 【点睛】本题考查了相反数的性质,属于简单题,熟悉相反数的概念是解题关键.13.B解析:B 【解析】 【分析】根据数轴和0ab <,0a b +>,0a b c ++<,可以判断a 、b 、c 对应哪一个点,从而可以解答本题. 【详解】根据条件可知点A 在数轴原点的右侧,B 、C 点在原点的左侧,且|b|>|c|>|a|,符合条件的数轴只有选项B. 故B. 【点睛】本题考查数轴,解题的关键是明确数轴的特点能根据题目中的信息,判断各个数在数轴上对应哪一个点.14.B解析:B 【分析】根据同号得正判断a,b 同号,再根据数轴即可求解. 【详解】 解:∵ab 0>, ∴a,b 同号, 由数轴可知a <b, ∵a b >,∴a,b 为负数,原点在B 的右边, 故选B. 【点睛】本题考查了数轴的应用,属于简单题,会用数轴比较有理数大小是解题关键.15.C解析:C 【解析】 【分析】先根据各点在数轴上的位置,判断出绝对值里边式子的符号,再去绝对值符号,合并同类项即可. 【详解】根据数轴得:c <a <0<b ,且|c|>|b|>|a|, ∴a+b >0,a+c <0, 则原式= a+b-a-c =b-c . 故选:C . 【点睛】本题考查的是整式的加减,熟知数轴上右边的数总比左边的大,正确的去掉绝对值符号是解答此题的关键.16.A解析:A 【解析】 【分析】先根据数轴判断出a 、b 的正负性及a 、b 之间的关系,然后对各选项逐一分析即可. 【详解】 ∵a <+a b , ∴b >0. ∵+a b <b , ∴a <0. ∵AM >BM ,∴a b a a b b +->+-, ∴b a >.∵a <0,b >0,b a >,A. ∵a <0,b >0,b a >,a b +>0,故正确;B. ∵a <0,b >0, 0a b -<,故不正确;C. ∵a <0,b >0, 0ab <,故不正确;D. ∵a <0,b >0,b a >, 0a b -<,故不正确; 故选A. 【点睛】本题考查的是利用数轴比较大小及数轴上两点之间的距离,数轴上两点之间的距离等于两点所表示数的差的绝对值.17.D解析:D 【解析】 【分析】根据数轴得出a<0<b<1,|a|>|b|,再根据有理数的加法、乘法法则以及不等式的性质进行判断即可.∵从数轴可知:a<0<b<1,|a|>|b|,∴①错误,②错误,a•b<0,a+1>a+b,∴③正确,④正确,故选D.【点睛】本题考查了数轴,有理数的大小比较,不等式的基本性质的应用,有理数的加法、乘法法则的应用正确识图,熟练运用相关知识是解题的关键.18.D解析:D【解析】【分析】根据有理数的概念,解答即可,整数和分数统称为有理数.【详解】整数和分数统称为有理数,整数:6,-5,0,;分数:25-,3.7⋅,124-,1.5,19;故选:D.【点睛】本题考查的知识点是分数的概念,解题关键是正确区分分数和整数.19.C解析:C【解析】【分析】根据数轴比较实数a、b、c,a>0,b<0,c<0,-c>-b>a,即可分析得出答案.【详解】由数轴可知,a>0,b<0,c<0,-c>-b>a,则A、|a-b|=a-b,此选项正确,不符合题意;B、a+b+c<0,此选项正确,不符合题意;C、-c-b+a>0,此选项错误,符合题意;D、|c|-|a|+|-b|+|-a|=-c-a-b+a=-c-b,此选项正确,不符合题意.故选C.【点睛】此题主要考查了利用数轴进行实数大小的比较.由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.20.B解析:B根据相反数的意义求解即可.【详解】解:由a的相反数是2,得:a=-2,故选B.【点睛】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“-”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.21.A解析:A【分析】根据3a=4b-3求出b的值,进而求出a,c,d的值,即可确定出所求式子的值.【详解】∵a=b−1,3a=4b−3,∴b=0解得:c=1,a=−1,d=2,则原式=1-2×2=-3.故选A.【点睛】此题考查数轴上点的表示,以及有理数的加减混合运算,熟练掌握运算法则是解本题的关键.根据已知条件和图形,找到b=a+1也是非常关键的.22.A解析:A【解析】【分析】正数都大于0,负数都小于0,正数大于一切负数,两个负数绝对值大的反而小,据此判断即可.【详解】根据有理数比较大小的方法可得:-5<-1<0<2,所以最大数是2.故选A.【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.23.C解析:C【分析】本题要先观察a,b在数轴上的位置,得b<-1<0<a<1,然后对四个选项逐一分析.A、因为b<-1<0<a<1,所以|b|>|a|,所以a+b<0,故选项A错误;B、因为b<0<a,所以ab<0,故选项B错误;C、因为b<-1<0<a<1,所以1a+1b>0,故选项C正确;D、因为b<-1<0<a<1,所以1a-1b>0,故选项D错误.故选C.【点睛】本题考查了实数与数轴的对应关系,数轴上右边的数总是大于左边的数.24.C解析:C【分析】先根据各点在数轴上的位置判断出各数的符号,再对各选项进行逐一判断即可.【详解】∵由图可知,a<﹣1<0<b<1,∴ab<0,故A错误;ab<0,故B错误;a<b,故C正确;a<0<b,故D错误.故选C.【点睛】本题考查了数轴,熟知数轴上右边的数总比左边的大是解答此题的关键.25.B解析:B【解析】【分析】根据已知点求AE的中点,AE长为25,其长为12.5,然后根据AB=2BC=3CD=4DE求出A、C、B、D、E五点的坐标,最后根据这五个坐标找出离中点最近的点即可.【详解】根据图示知,AE=25,∴AE=12.5,∴AE的中点所表示的数是-0.5;∵AB=2BC=3CD=4DE,∴AB:BC:CD:DE=12:6:4:3;而12+6+4+3恰好是25,就是A点和E点之间的距离,∴AB=12,BC=6,CD=4,DE=3,∴这5个点的坐标分别是-13,-1,5,9,12,∴在上面的5个点中,距离-0.5最近的整数是-1.故选B.【点睛】此题综合考查了有理数与数轴,数轴上两点的距离。

有理数易错题汇编及答案解析

有理数易错题汇编及答案解析

有理数易错题汇编及答案解析一、选择题1.已知有理数a 、b 在数轴上的位置如图所示,则下列代数式的值最大的是( )A .a +bB .a ﹣bC .|a +b |D .|a ﹣b | 【答案】D【解析】【分析】根据数轴确定出a 是负数,b 是正数,并且b 的绝对值大于a 的绝对值,然后对各选项分析判断,再根据有理数的大小比较,正数大于一切负数,然后利用作差法求出两个正数的大小,再选择答案即可.【详解】由图可知,a<0,b>0,且|b|>|a|,∴−a<b ,A. a+b>0,B. a−b<0,C. |a+b|>0,D. |a−b|>0,因为|a−b|>|a+b|=a+b ,所以,代数式的值最大的是|a−b|.故选:D.【点睛】此题考查有理数的大小比较,数轴,解题关键在于利用绝对值的非负性进行解答.2.已知a b >,下列结论正确的是( )A .22a b -<-B .a b >C .22a b -<-D .22a b >【答案】C【解析】【分析】直接利用不等式的性质分别判断得出答案.【详解】A. ∵a>b ,∴a −2>b −2,故此选项错误;B. ∵a>b ,∴|a|与|b|无法确定大小关系,故此选项错误;C.∵a>b ,∴−2a<−2b ,故此选项正确;D. ∵a>b,∴a 2与b 2无法确定大小关系,故此选项错误;故选:C.【点睛】此题考查绝对值,不等式的性质,解题关键在于掌握各性质定义.3.实数在数轴上的对应点的位置如图所示,若,则下列结论中错误的是()A.B.C.D.【答案】A【解析】【分析】根据,确定原点的位置,根据实数与数轴即可解答.【详解】解:,原点在a,b的中间,如图,由图可得:,,,,,故选项A错误,故选:A.【点睛】本题考查了实数与数轴,解决本题的关键是确定原点的位置.4.四个有理数﹣2,1,0,﹣1,其中最小的数是()A.1 B.0 C.﹣1 D.﹣2【答案】D【解析】【分析】根据正数大于零,零大于负数,可得答案.【详解】∵-2<-1<0<1,最小的是-2.故选D.【点睛】本题考查了有理数大小比较,利用正数大于零,零大于负数是解题关键.5.下列各数中,比-4小的数是()-B.5-C.0 D.2A. 2.5【答案】B【解析】【分析】根据有理数的大小比较法则比较即可.【详解】∵0>−4,2>−4,−5<−4,−2.5>−4,∴比−4小的数是−5,故答案选B.【点睛】本题考查了有理数大小比较,解题的关键是熟练的掌握有理数的大小比较法则.6.在数轴上,点A ,B 在原点O 的两侧,分别表示数a 和3,将点A 向左平移1个单位长度,得到点C .若OC OB =,则a 的值为( ).A .3-B .2-C .1-D .2 【答案】B【解析】【分析】先用含a 的式子表示出点C ,根据CO =BO 列出方程,求解即可.【详解】解:由题意知:A 点表示的数为a ,B 点表示的数为3, C 点表示的数为a -1.因为CO =BO ,所以|a -1| =3, 解得a =-2或4,∵a <0,∴a =-2.故选B .【点睛】本题主要考查了数轴和绝对值方程的解法,用含a 的式子表示出点C ,是解决本题的关键.7.实数a b c d 、、、在数轴上的对应点的位置如图所示,则下列结论正确的是( )A .3a >-B .0bd >C .0b c +<D .a b < 【答案】C【解析】【分析】根据数轴上点的位置,可以看出a b c d <<<,43a -<<-,21b -<<-,01c <<,3d =,即可逐一对各个选项进行判断.【详解】解:A 、∵43a -<<-,故本选项错误;B 、∵0b <,0d >,∴0bd <,故本选项错误;C 、∵21b -<<-,01c <<,∴0b c +<,故本选项正确;D 、∵43a -<<-,21b -<<-,则34a <<,12<<b ,∴a b >,故本选项错误;故选:C .【点睛】本题考查了数轴和绝对值,利用数轴上的点表示的数右边的总比左边的大、有理数的运算、绝对值的意义是解题的关键.8.已知一个数的绝对值等于2,那么这个数与2的和为( )A .4B .0C .4或—4D .0或4 【答案】D【解析】【分析】先根据绝对值的定义,求出这个数,再与2相加【详解】∵这个数的绝对值为2∴这个数为2或-22+2=4,-2+2=0故选:D【点睛】本题考查求绝对值的逆定理,需要注意,一个数的绝对值为正数a ,则这个为±a9.若x <2+|3-x|的正确结果是( ) A .-1B .1C .2x -5D .5-2x 【答案】C【解析】a = 的化简得出即可.解析:∵x <2+|3﹣x|=2352x x x -+-=- .故选D.10.12a =-,则a 的取值范围是( )A .12a ≥ B .12a > C .12a ≤ D .无解【答案】C【解析】【分析】根据二次根式的性质得2(21)a -=|2a-1|,则|2a-1|=1-2a ,根据绝对值的意义得到2a-1≤0,然后解不等式即可.【详解】解:∵2(21)a -=|2a-1|,∴|2a-1|=1-2a ,∴2a-1≤0,∴12a ≤. 故选:C .【点睛】 此题考查二次根式的性质,绝对值的意义,解题关键在于掌握其性质.11.下列命题中,真命题的个数有( )①带根号的数都是无理数; ②立方根等于它本身的数有两个,是0和1;③0.01是0.1的算术平方根; ④有且只有一条直线与已知直线垂直A .0个B .1个C .2个D .3个【答案】A【解析】【分析】开方开不尽的数为无理数;立方根等于本身的有±1和0;算术平方根指的是正数;在同一平面内,过定点有且只有一条直线与已知直线垂直.【详解】仅当开方开不尽时,这个数才是无理数,①错误;立方根等于本身的有:±1和0,②错误;12.已知实数a 、b 在数轴上的位置如图所示,化简|a +b |-2()b a -,其结果是( )A .2a -B .2aC .2bD .2b -【答案】A【解析】【分析】2a ,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知b <0<a ,且|a|<|b|,则a+b <0,b-a <0,∴原式=-(a+b )+(b-a )=-a-b+b-a=-2a ,故选A .【点睛】 此题主要考查了二次根式的性质和绝对值的性质,关键是掌握2a =|a|.13.实数,,a b c 在数轴上的对应点的位置如图所示,若||||a b <,则下列结论中一定成立的是( )A .0b c +>B .2a c +>C .1b a <D .0abc ≥【答案】A【解析】【分析】利用特殊值法即可判断.【详解】∵a<c<b ,||||a b <,∴0b c +>,故A 正确;若a<c<0,则2a c +>错误,故B 不成立; 若0<a<b ,且||||a b <,则1b a>,故C 不成立; 若a<c<0<b ,则abc<0,故D 不成立,故选:A.【点睛】 此题考查数轴上点的正负,实数的加减乘除法法则,熟记计算法则是解题的关键.14.2-的相反数是( )A .2-B .2C .12D .12- 【答案】B【解析】【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B .【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .15.67-的绝对值是( ) A .67 B .76- C .67- D .76【答案】A 【解析】【分析】非负数的绝对值还是它本身,负数的绝对值是其相反数,据此进行解答即可.【详解】解:|﹣67|=67,故选择A. 【点睛】本题考查了绝对值的定义.16.有理数,a b 在数轴上的位置如图所示,以下说法正确的是( )A .0a b +=B .0a b ->C .0ab >D .b a <【答案】D【解析】【分析】由图可判断a 、b 的正负性,a 、b 的绝对值的大小,即可解答. 【详解】根据数轴可知:-2<a <-1,0<b <1,∴a+b <0,|a|>|b|,ab <0,a-b <0.所以只有选项D 成立.故选:D .【点睛】此题考查了数轴的有关知识,利用数形结合思想,可以解决此类问题.数轴上,原点左边的点表示的数是负数,原点右边的点表示的数是正数.17.已知a ,b ,c 是有理数,当0a b c ++=,0abc <时,求a b c b c a c a b+-+++的值为( )A .1或-3B .1,-1或-3C .-1或3D .1,-1,3或-3 【答案】A【解析】根据0a b c ++=,0abc <,可知这三个数中只能有一个负数,另两个为正数,把0a b c ++=变形代入代数式求值即可.【详解】解:∵0a b c ++=,∴b c a +=-、a c b +=-、a b c +=-,∵0abc <,∴a 、b 、c 三数中有2个正数、1个负数, 则a b c a b c b c a c a b a b c+-=+-+++---, 若a 为负数,则原式=1-1+1=1,若b 为负数,则原式=-1+1+1=1,若c 为负数,则原式=-1-1-1=-3,所以答案为1或-3.故选:A .【点睛】 本题考查了绝对值的性质,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,难点在于判断出负数的个数.18.下列各组数中互为相反数的一组是( )A .3与13B .2与|-2|C .(-1) 2与1D .-4与(-2) 2【答案】D【解析】 考点:实数的性质.专题:计算题. 分析:首先化简,然后根据互为相反数的定义即可判定选择项.解答:解:A 、两数数值不同,不能互为相反数,故选项错误;B 、2=|-2|,两数相等,不能互为相反数,故选项错误.C 、(-1)2=1,两数相等;不能互为相反数,故选项错误;D 、(-2)2=4,-4与4互为相反数,故选项正确;故选D .点评:此题主要考查相反数定义:互为相反数的两个数相加等于0.19.小麦做这样一道题“计算()3-+”、其中“□”是被墨水污染看不清的一个数,他翻开后面的答案,得知该题计算结果是8,那么”□”表示的数是( )A .5B .-5C .11D .-5或11【答案】D【分析】根据绝对值的性质求得结果,采用排除法判定正确选项.【详解】解:设”□”表示的数是x ,则|(-3)+x|=8,∴-3+x=-8或-3+x=8,∴x=-5或11.故选:D .【点睛】本题考查了绝对值的运算,掌握:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.20.下列各组数中,互为相反数的组是( )A .2-B .2-C .12-与2D . 【答案】A【解析】【分析】根据相反数的概念及性质逐项分析得出答案即可.【详解】A 、-2=2,符合相反数的定义,故选项正确;B 、-2不互为相反数,故选项错误;C 、12-与2不互为相反数,故选项错误; D 、|-2|=2,2与2不互为相反数,故选项错误.故选:A .【点睛】此题考查相反数的定义,解题关键在于掌握只有符号不同的两个数互为相反数,在本题中要注意理解求|-2|的相反数就是求2的相反数,不要受绝对值中的符号的影响.。

(易错题精选)初中数学有理数的运算知识点复习

(易错题精选)初中数学有理数的运算知识点复习

(易错题精选)初中数学有理数的运算知识点复习一、选择题1.一周时间有604800秒,604800用科学记数法表示为( )A .2604810⨯B .56.04810⨯C .66.04810⨯D .60.604810⨯ 【答案】B【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】604800的小数点向左移动5位得到6.048,所以数字604800用科学记数法表示为56.04810⨯,故选B .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数,表示时关键要正确确定a 的值以及n 的值.2.已知一天有86400秒,一年按365天计算共有31536000秒,用科学记数法表示31536000正确的是( )A .63.153610⨯B .73.153610⨯C .631.53610⨯D .80.3153610⨯ 【答案】B【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】将31536000用科学记数法表示为73.153610⨯.故选B .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1<10a ≤,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.广西北部湾经济区包括南宁、北海、钦州、防城港、玉林、崇左六个市,户籍人口约2400万,该经济区户籍人口用科学记数法可表示为( )A .2.4×103B .2.4×105C .2.4×107D .2.4×109【答案】C【解析】【分析】 科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将2400万用科学记数法表示为:2.4×107.故选C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.已知实数a ,b ,c ,d ,e ,f ,且a ,b 互为倒数,c ,d 互为相反数,e 的绝对值为,f 的算术平方根是8,求2125c d ab e ++++( )A .92B .92C .92+92-D .132 【答案】D【解析】【分析】 根据相反数,倒数,以及绝对值的意义求出c+d ,ab 及e 的值,代入计算即可.【详解】由题意可知:ab=1,c+d=0,=e f=64,∴222e =±=(4=,∴2125c d ab e ++++=11024622+++=; 故答案为:D【点睛】 此题考查了实数的运算,算术平方根,绝对值,相反数以及倒数和立方根,熟练掌握运算法则是解本题的关键.5.现在网购是人们喜爱的一种消费方式,2018年天猫“双11”全球狂欢节某网店的总交易额超过1207000元,1207000用科学记数法表示为( )A .61.20710⨯B .70.120710⨯C .512.0710⨯D .51.20710⨯【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】1207000=1.207×106,故选A .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.6.2018年汕头市龙湖区的GDP 总量约为389亿元,其中389亿用科学记数法表示为( ) A .3.89×1011B .0.389×1011C .3.89×1010D .38.9×1010【答案】C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】389亿用科学记数法表示为89×1010.故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.7.设n 是自然数,则n n 1(1)(1)2+-+-的值为( ) A .0B .1C .﹣1D .1或﹣1 【答案】A【解析】试题分析:当n 为奇数时,(n +1)为偶数, n n 1(1)(1)2+-+-=(1)12-+=0; 当n 为偶数时,(n +1)为奇数,n n 1(1)(1)2+-+-=1(1)2+-=0.点睛:本题考查有理数乘方,解答本题的关键是明确有理数乘方的计算方法,利用分类讨论的数学思想解答.8.(﹣1)4可表示为()A.(﹣1)×4 B.(﹣1)+(﹣1)+(﹣1)+(﹣1)C.﹣1×1×1×1 D.(﹣1)×(﹣1)×(﹣1)×(﹣1)【答案】D【解析】【分析】根据有理数乘法的定义可得出结论.【详解】(﹣1)4=(-1)×(-1)×(-1)×(-1).故答案选D.【点睛】本题考查的知识点是有理数的乘方,解题的关键是熟练的掌握有理数的乘方.9.一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为()A.4 B.6 C.7 D.10【答案】B【解析】【分析】把8.1555×1010写成不用科学记数法表示的原数的形式即可得.【详解】∵8.1555×1010表示的原数为81555000000,∴原数中“0”的个数为6,故选B.【点睛】本题考查了把科学记数法表示的数还原成原数,科学记数法的表示的数a×10n还成成原数时, n>0时,小数点就向右移动n位得到原数;n<0时,小数点则向左移动|n|位得到原数.10.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是()A.81 B.508 C.928 D.1324【答案】B【解析】类比于现在我们的十进制“满十进一”,可以表示满七进一的数为:千位上的数×73+百位上的数×72+十位上的数×7+个位上的数.【详解】解:孩子自出生后的天数是:1×73+3×72+2×7+4=508,故选:B .【点睛】本题是以古代“结绳计数”为背景,按满七进一计算自孩子出生后的天数,运用了类比的方法,根据图中的数字列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.11.下列用科学记数法表示正确的是( )A .10.000567 5.6710-=-⨯B .40.0012312.310=⨯C .20.0808.010-=⨯D .5696000 6.9610--=⨯【答案】C【解析】分析: 绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.详解: A. 40.000567 5.6710--=-⨯,故错误;B. 30.0012312.310,-=⨯故错误;C. 20.0808.010-=⨯,正确;D. 5696000 6.9610-=⨯,故错误.故选:C.点睛: 本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.12.据资料显示,地球的海洋面积约为36000万平方千米,请用科学记数法表示地球海洋面积约为多少平方千米( ).A .73610⨯B .83.610⨯C .90.3610⨯D .43.610⨯【答案】B【解析】【分析】先将36000万平方千米化为360000000平方千米,再根据科学计数法的概念进行表示,即可得到答案.【详解】36000万平方千米=360000000平方千米,将360000000用科学记数法表示为83.610⨯,则用科学记数法表示地球海洋面积约为83.610⨯平方千米,故选:B .【点睛】本题考查科学计数法.科学记数法的形式为:10n a ⨯,其中110a ≤≤,n 为整数.13.去年端午节假期第一天,国内游客人数达3050万人次,将数据“3050万”用科学记数法表示为( )A .63.0510⨯B .630.510⨯C .73.0510⨯D .83.0510⨯【答案】C【解析】【分析】根据科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】3050万=30500000=73.0510⨯,故选:C .【点睛】此题考查科学记数法的表示方法.解题关键在于掌握科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.14.一根1m 长的小棒,第一次截去它的12 ,第二次截去剩下的12,如此截下去,第五次后剩下的小棒的长度是( ) A .12m B .15m C .116m D .132m 【答案】D【解析】【分析】 根据题意和乘方的定义可以解答本题.【详解】 解:第一次是12m ,第二次是211112224⎛⎫⨯== ⎪⎝⎭m ,第三次是31111122228⎛⎫⨯⨯== ⎪⎝⎭m ,第四次是411216⎛⎫= ⎪⎝⎭m ,…, ∴第五次后剩下的小棒的长度是511232⎛⎫= ⎪⎝⎭m ,故选:D .【点睛】本题考查了有理数的乘方运算,此题的关键是联系生活实际,从中找出规律,利用有理数的乘方解答.15.根据制定中的通州区总体规划,将通过控制人口总量上限的方式,努力让副中心远离“城市病”.预计到2035年,副中心的常住人口规模将控制在130万人以内,初步建成国际一流的和谐宜居现代化城区.130万用科学记数法表示为( )A .61.310⨯B .413010⨯C .51310⨯D .51.310⨯【答案】A【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值是易错点,由于130万有7位,所以可以确定n=7-1=6.【详解】130万=1 300 000=1.3×106.故选A .【点睛】此题考查科学记数法表示较大的数的方法,准确确定a 与n 值是关键.16.下面是一名学生所做的4道练习题:①224-=;②336a a a +=;③44144mm -=;④()3236xy x y =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 有理数易错题
(1)已知一个数的绝对值是3,这个数为_______;
此题用符号表示:已知,3=x 则x=_______;,5=-x 则x=_______;
(2)绝对值不大于4的负整数是________;
(3)绝对值小于4.5而大于3的整数是________.
(4)在数轴上,与原点相距5个单位长度的点所表示的数是________;
(5)在数轴上,A 点表示+1,与A 点距离3个单位长度的点所表示的数是________;
(6) 平方得412的数是____;此题用符号表示:已知,4
122=x 则x=_______; (7)若|a|=|b|,则a,b 的关系是________;
(8)若|a|=4,|b|=2,且|a +b|=a +b ,求a -b 的值.
二.特值法帮你解决含字母的问题(此方法只适用于选择、填空)
有理数中的字母表示 ,从三类数中各取1——2个特值代入检验,做出正确的选择
(1)若a 是负数,则a________-a ;a --是一个________数;
(2)已知,x x -=则x 满足________;若,x x =则x 满足________;若x=-x, x 满足________;
若=-<2,2a a 化简____ ;
(3)有理数a 、b 在数轴上的对应的位置如图所示: 则( )0-11a
b
A .a + b <0
B .a + b >0;
C .a -b = 0
D .a -b >0
(4)如果a 、b 互为倒数,c 、d 互为相反数,且,
3=m ,则代数式2ab-(c+d )+m 2=_______。

(5)若ab ≠0,则b
b a a
+的值为_______;(注意0没有倒数,不能做除数) 在有理数的乘除乘方中字母带入的数多为1,0,-1,进行检验
(6)一个数的平方是1,则这个数为________;用符号表示为:若,12=x
则x=_______;
一个数的立方是-1,则这个数为_______;
倒数等于它自身的数为_______;
三.一些易错的概念
(1)在有理数集合里,________最大的负数,________最小的正数,________绝对值最小的有理数. 正数 0 负数
(2)在数轴的原点左侧且到原点的距离等于6个单位长度的点所表示的数的绝对值是________.
(3)若|a-1|+|b+2|=0,则a=_______;b=________;(属于“0+0=0”型)
(4)下列代数式中,值一定是正数的是( )
A .x 2 B.|-x+1| C.(-x)2+2 D.-x 2+1
(5)现规定一种新运算“*”:a *b =b a ,如3*2=23=9,则(2
1)*3=( ) (6)判断:(注意0的问题) ①0除以任何数都得0;( )
②任何一个数的平方都是正数,( )③a 的倒数是a
1.( ) ④两个相反的数相除商为-1.( )⑤0除以任何数都得0.( )
⑥有理数a 的平方与它的立方相等,那么a= 1 ;
四.比较大小
3-- -(-4) -3.14 -
π 65- 87- 五.易错计算 ① 61)3161(12⨯-÷- ② 75.04.34
353.075.053.1⨯-⨯+⨯-
③ -22 -(1-51×0.2)÷(-2)3 ④ (6
712743-+)×(-60)
⑤ ()8142033--÷- ⑥ ()()2010201111---。

相关文档
最新文档