第二章 《有理数及其运算》易错题及难题
第二章 有理数及其运算(知识归纳+题型突破)(解析版)
第二章有理数1.了解具有相反意义的量,正负数的概念;2.理解有理数、相反数、绝对值、倒数的概念,能正确解题;3.理解数轴的概念,并能正确画出数轴,,在数轴上表示数;4.理解有理数加法、减法、乘法、除法法则、;5.理解有理数乘方定义及运算;6.能掌握加法、减法的运算定律和运算技巧,熟练计算;能掌握乘法的运算定律和运算技巧,熟练计算;7.通过将减法转化成加法和将除法转化成乘法,初步培养学生数学的归一思想8.进一步掌握有理数的五则混合运算;9.理解科学记数法,了解近似数;10.能运用科学记数法表示较大的数.知识点1 正数和负数1.概念正数:大于0的数叫做正数。
负数:在正数前面加上负号“—”的数叫做负数。
注:0既不是正数也不是负数,是正数和负数的分界线,是整数,自然数,有理数。
(不是带“—”号的数都是负数,而是在正数前加“—”的数。
)2.意义:在同一个问题上,用正数和负数表示具有相反意义的量。
知识点2:有理数1.概念整数:正整数、0、负整数统称为整数。
分数:正分数、负分数统称分数。
(有限小数与无限循环小数都是有理数。
)注:正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。
2.分类:两种⑴按正、负性质分类:⑵按整数、分数分类:正有理数正整数正整数有理数正分数整数0零有理数负整数负有理数负整数分数正分数负分数负分数知识点3:数轴1.概念:规定了原点、正方向、单位长度的直线叫做数轴。
三要素:原点、正方向、单位长度2.对应关系:数轴上的点和有理数是一一对应的。
比较大小:在数轴上,右边的数总比左边的数大。
3.应用求两点之间的距离:两点在原点的同侧作减法,在原点的两侧作加法。
(注意不带“+”“—”号)知识点3 :相反数1.概念代数:只有符号不同的两个数叫做相反数。
(0的相反数是0)几何:在数轴上,离原点的距离相等的两个点所表示的数叫做相反数。
2.性质:若a与b互为相反数,则a+b=0,即a=-b;反之,若a+b=0,则a与b互为相反数。
七年级数学上册2有理数及其运算易错课堂二新版北师大版
对应训练
1.下列各结论成立的是( D ) A.若|m|=|n|,则m=n B.若m>n,则|m|>|n| C.若|m|>|n|,则m>n D.若m<n<0,则|m|>|n| 2.数轴上A,B,C三点所表示的数分别为a,b,c,其中AB=BC,如 果|a|>|c|>|b|,那么该数轴的原点的位置应该在( C ) A.点A的左边 B.点A与点B之间 C.点B与点C之间 D.点C的右边 3.绝对值大于1小于3的整数为_±__2_.
第2章 有理数及其错 例❶ 已知a=-3,|a|=|b|,则b=_±__3_. 错解:-3 错因分析:对绝对值的三种情况分析不全面,认为|a|=|b|,则a=b ,于是b=-3. 正解:±3 牛牛文档分 享 牛牛文档分 享
对应训练 7.计算:(-5)×15÷(-15)×5 解:原式=(-5)×15×(-5)×5=25 8.计算:-42-(-7)÷12×2
解:原式=-16-(-7)×2×2=-16+28=12
9.计算:2×(-3)2-6÷(-3)×(-13)2 解:原式=2×9-6×(-13)×19=18+29=1829
www.Leabharlann 牛牛文档分 享二、有理数的乘方运算,易出错 例❷ 计算:(1)-34;(2)(213)3;(3)342. 错因分析:对乘方的意义理解有误,不能认清底数和指数.
第二章。《有理数及其运算》易错题及难题
第二章。
《有理数及其运算》易错题及难题第二章《有理数及其运算》易错题、难题考点一:有理数的分类及应用1.下列说法正确的是().A.数是最小的整数。
B.若│a│=│b│,则a=b。
C.互为相反数的两数之和为零。
D.两个有理数,大的离原点远。
2.若两个有理数的和是正数,那么一定有结论()A.两个加数都是正数。
B.两个加数有一个是正数。
C.一个加数正数,另一个加数为零。
D.两个加数不能同为负数。
3.求1-2+3-4+5-6+……+2015-2018的结果不可能是()A.奇数。
B.偶数。
C.负数。
D.整数。
4.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg,(25±0.•2)kg,(25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A、0.8kg。
B、0.6kg。
C、0.5kg。
D、0.4kg。
考点二:数轴5.a,b,c三个数在数轴上的位置如图所示,则下列结论中错误的是()A.a+b<0.B.a+c<0.C.a-b>0.D.b-c<0.6.在数轴上表示下列各数:﹣5,-|-3.5|,2,接起来。
7.-11/22,|-53/64|,+4.并用“<”号把这些数连接起来。
11/22<|-53/64|<4.考点三:相反数8.倒数是它本身的数是;相反数是它本身的数是;绝对值是它本身的数是,绝对值最小的数是0.9.-m的相反数是m;-m+1的相反数是-m-1;m+1的相反数是-m-1.10.已知-a=9,那么-a的相反数是-9;已知a=-9,则a的相反数是9.11.两个非零有理数的和是0,则它们的商为(。
)A.0.B.-1.C.+1.D.不能确定。
考点四:绝对值12.已知数轴上的三点A、B、C分别表示有理数a,1,-1,那么|a+1|表示(。
)A.A、B两点的距离B.A、C两点的距离。
C.A、B两点到原点的距离之和。
D.A、C两点到原点的距离之和。
北师大版七年级数学上册第二章《有理数及其运算》练习题含答案解析 (3)
一、选择题1.有理数a,b,c在数轴上的位置如图所示,则式子∣a∣+∣b∣+∣a+b∣−∣b−c∣化简结果为( )A.2a+b−c B.2a+b+c C.b+c D.3b−c2.如图,点A,B在数轴上,点O为原点,OA=OB.按如图所示方法用圆规在数轴上截取BC=AB,若点A表示的数是a,则点C表示的数是( )A.2a B.−3a C.3a D.−2a3.一个点在数轴上距原点3个单位长度开始,先向右移动4个单位长度,再向左移动1个单位长度,这时它表示的数是( )A.6B.0C.−6D.0或64.已知a,b,c为有理数,且a+b+c=0,b≥−c>∣a∣,且a,b,c与0的大小关系是( )A.a<0,b>0,c<0B.a>0,b>0,c<0C.a≥0,b<0,c>0D.a≤0,b>0,c<05.当式子∣x+2∣+∣x−5∣取得最小值时,x的取值范围为( )A.−2≤x<5B.−2<x≤5C.x=2D.−2≤x≤56.在数轴上有两个点,分别表示数x和y,已知∣x∣=1,且x>0,∣y+1∣=4,那么这两个点之间距离为( )A.2或6B.5或3C.2D.37.如果∣a∣a +∣b∣b+∣c∣c=−1,那么ab∣ab∣+bc∣bc∣+ac∣ac∣+abc∣abc∣的值为( )A.−2B.−1C.0D.不确定8.我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例:指数运算21=222=423=8⋯新运算log 22=1log 24=2log 28=3⋯指数运算31=332=933=27⋯新运算log 33=1log 39=2log 327=3⋯根据上表规律,某同学写出了三个式子:①log 216=4,② log 525=5,③ log 212=−1,其中正确的是 ( ) A .①② B .①③ C .②③ D .①②③9. 【例 9−2 】已知 ∠AOB =60∘,∠AOC =13∠AOB ,射线 OD 平分 ∠BOC ,则 ∠COD 的度数为( ) A . 20∘ B . 40∘ C . 20∘ 或 30∘ D . 20∘ 或 40∘10. 下面四个数中,最大的数为 ( ) A . (−1)2021B . −∣−2∣C . (−2)3D . −12二、填空题11. 若 a +b +c >0,且 abc <0 则 a ,b ,c ,中有 个正数.12. 电子跳蚤落在数轴上的某点 k 0,第一步从 k 0 向左跳 1 个单位到 k 1,第二步由 k 1 向右跳 2个单位到 k 2,第三步由 k 2 向左跳 3 个单位到 k 3,第四步由 k 3 向右跳 4 个单位到 k 4,⋯,按以上规律跳了 140 步时,电子跳蚤落在数轴上的点 k 140 所表示的数恰是 2019.则电子跳蚤的初始位置 k 0 点所表示的数是 .13. 现定义某种运算“∗”,对给定的两个有理数 a ,b (a ≠0),有 a ∗b =a −a b ,则 (−3)∗2= .14. 如图所示是计算机程序计算,若开始输入 x =−1,则最后输出的结果是 .15. 已知实数 a ,b ,定义运算:a ⋇b ={a b ,a >b 且 a ≠0b a,a ≤b 且 a ≠0,若 a ⋇(a −3)=1,则 a = .16. 观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,⋯根据你发现的规律写出272019的末位数字是.17.如图所示的运算程序中,若开始输入的x值为16,我们发现第一次输出的结果为8,第二次输出的结果为4,⋯,则第2017输出的结果为.三、解答题18.阅读下面材料:如图,点A,B在数轴上分别表示有理数a,b,则A,B两点之间的距离可以表示为∣a−b∣.根据阅读材料与你的理解回答下列问题:(1) 数轴上表示3与−2的两点之间的距离是.(2) 数轴上有理数x与有理数7所对应两点之间的距离用绝对值符号可以表示为.(3) 代数式∣x+8∣可以表示数轴上有理数x与有理数所对应的两点之间的距离;若∣x+8∣=5,则x=.(4) 求代数式∣x+1008∣+∣x+504∣+∣x−1007∣的最小值.19.计算下列各式的值.(1) −3−(−8)−(+7)+5.(2) 49÷74×(−47)÷(−16).(3) 7−(156−23−34)÷124.(4) −32÷(−3)2+3×(−2)+∣−1∣.20.如图,已知数轴上有A,B,C三点,分别表示有理数−26,−10,10,动点P从点A出发,以每秒1个单位的速度向终点C移动,当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,(1) Q点出发3秒后所到的点表示的数为;此时P,Q两点的距离为.(2) 问当点Q从A点出发几秒钟时,能追上点P?(3) 问当点Q从A点出发几秒钟时,点P和点Q相距2个单位长度?直接写出此时点Q在数轴上表示的有理数.21.已知两点A,B在数轴上,AB=9,点A表示的数是a,且a与(−1)3互为相反数.(1) 写出点B表示的数;(2) 如图1,当点A,B位于原点O的同侧时,动点P,Q分别从点A,B处在数轴上同时相向而行,动点P的速度是动点Q的速度的2倍,3秒后两动点相遇,当动点Q到达点4时,运动停止.在整个运动过程中,当PQ=2时,求点P,Q所表示的数;(3) 如图2,当点A,B位于原点O的异侧时,动点P,Q分别从点A,B处在数轴上向右运动,动点Q比动点P晚出发1秒;当动点Q运动2秒后,动点P到达点C处,此时动点P立即掉头以原速向左运动3秒恰与动点Q相遇;相遇后动点P又立即掉头以原速向右运动5秒,此时动点P到达点M处,动点Q到达点N处,当∣OM−ON∣=2时,求动点P,Q运动的速度.22.【背景知识】数轴上A点,B点表示的数为a,b,则A,B两点之间的距离AB=∣a−b∣,.若a>b,则可简化为AB=a−b,线段AB的中点M表示的数为a+b2【问题情境】已知数轴上有A,B两点,分别表示的数为−10,8,点P,Q分别从A,B同时出发,点P以每秒5个单位长度的速度沿数轴向右匀速运动,点Q以每秒3个单位长度的速度沿数轴向左匀速运动,设运动时间为t秒(t>0).【综合运用】(1) A,B两点的距离为,线段AB的中点C所表示的数;(2) 点P所在的位置的点表示的数为,点Q所在位置的点表示的数为(用含t的代数式表示);(3) P,Q两点经过多少秒会相遇?23.探究规律,完成相关题目.定义“∗”运算:(+2)∗(+4)=+(22+42),(−4)∗(−7)=+[(−4)2+(−7)2],(−2)∗(+4)=−[(−2)2+(+4)2],(+5)∗(−7)=−[(+5)2+(−7)2],0∗(−5)=+(−5)∗0=(−5)2,(+3)∗0=0∗(+3)=(+3)2,0∗0=02+02=0.归纳∗运算的法则(用文字语言叙述):(1) 两数进行∗运算时,.特别地,0和任何数进行∗运算,或任何数和0进行∗运算,.(2) 计算:(−3)∗[0∗(+2)]=.(3) 是否存在有理数m,n,使得(m+1)∗(n−2)=0,若存在,求出m,n的值,若不存在,请说明理由.24.若有理数x,y满足∣x∣=5,∣y∣=2,且∣x+y∣=x+y,求x−y的值.25.数学是一门充满思维乐趣的学科,现有3×3的数阵A,数阵每个位置所对应的数都是1,2或3.定义a∗b为数阵中第a行第b列的数.例如,数阵A第3行第2列所对应的数是3,所以3∗2=3.(1) 对于数阵A,2∗3的值为.若2∗3=2∗x,则x的值为.(2) 若一个3×3的数阵对任意的a,b,c均满足以下条件:条件一:a∗a=a;条件二:(a∗b)∗c=a∗c.则称此数阵是“有趣的”.①请判断数阵A是否是“有趣的”你的结论:(填“是”或“否”).②已知一个“有趣的”数阵满足1∗2=2,试计算2∗1的值.③是否存在“有趣的”数阵,对任意的a,b满足交换律a∗b=b∗a?若存在,请写出一个满足条件的数阵;若不存在,请说明理由.答案一、选择题1. 【答案】D【解析】观察数轴可得:−1<a<0<b<c,∣a∣<∣b∣<∣c∣,∴∣a∣+∣b∣+∣a+b∣−∣b−c∣=−a+b+a+b−(c−b)=3b−c.【知识点】绝对值的化简、利用数轴比较大小2. 【答案】B【解析】∵OA=OB,点A表示的数是a,∴点B表示的数为−a,AB=−2a,∵BC=AB,∴点C表示的数是−3a.【知识点】数轴的概念3. 【答案】D【解析】∵该点距离原点3个单位,∴该点表示的数是3或−3,①若该点表示的数是3,先向右移动4个单位长度,再向左移动1个单位长度,这时它表示的数是:3+4−1=6;②若该点表示的数是−3,先向右移动4个单位长度,再向左移动1个单位长度,这时它表示的数是:3+4−1=0;故选D.【知识点】绝对值的几何意义4. 【答案】D【解析】∵∣a∣≥0,则b≥−c>∣a∣≥0,b>0,−c>0,即c<0,a+b+c=0,即a+b=−c≤b,即a≤0,∴a≤0,b>0,c<0.【知识点】绝对值的几何意义、利用数轴比较大小、有理数的加法法则及计算5. 【答案】D【解析】利用数轴,设A点表示的数为−2,B点表示的数为5,P点表示的数为x,则∣x+2∣+∣x−5∣=PA+PB,∴当P在A,B之间时,PA+PB最小,∴当−2≤x≤5时,∣x+2∣+∣x−5∣取得最小值.【知识点】绝对值的几何意义6. 【答案】A【解析】∵∣x∣=1,且x>0,∴x=1,∵∣y+1∣=4,∴y=−5或3,∴这两个点之间距离为1−(−5)=6或3−1=2.【知识点】绝对值的几何意义7. 【答案】C【解析】∣a∣a +∣b∣b+∣c∣c=−1,所以a,b,c中有一个正数,二个负数,假设a>0,b<0,c<0,则ab∣ab∣+bc∣bc∣+ac∣ac∣+abc∣abc∣=−1+1−1+1=0.【知识点】绝对值的性质与化简8. 【答案】B【知识点】有理数的乘方9. 【答案】D【解析】当OC在∠AOB内时,如图1,则∠BOC=∠AOB−∠AOC=60∘−13×60∘=40∘,∴∠COD=12∠BOC=20∘;当OC在∠AOB外时,如图2,则∠BOC=∠AOB+∠AOC=60∘+13×60∘=80∘,∴∠COD=12∠BOC=40∘.综上,∠COD=20∘或40∘.故选:D.【知识点】角的计算10. 【答案】D【解析】 (−1)2021=−1;−∣−2∣=−2;(−2)3=−8;且 −8<−∣−2∣<(−1)2021<−12, ∴ 最大的数是 −12,故选D .【知识点】有理数的乘方、绝对值的化简二、填空题 11. 【答案】 2【解析】 ∵ 有理数 a ,b ,c 满足 a +b +c >0,且 abc <0, ∴a ,b ,c 中负数有 1 个,正数有 2 个. 【知识点】有理数的加法法则及计算、有理数的乘法12. 【答案】 1949【解析】由题意可知:k 140=k 0−1+2−3+4−⋯−139+140=2019, 即 k 0+(−1+2)+(−3+4)+⋯+(−139+140)=2019, k 0+1+1+⋯+1⏟70 个 1=2019,∴k 0+70=2019,解得:k 0=1949.则电子跳蚤的初始位置 k 0 点所表示的数是 1949. 【知识点】有理数的加法法则及计算13. 【答案】 −12【解析】 ∵a ∗b =a −a b , ∴(−3)∗2=(−3)−(−3)2=(−3)−9=−12.【知识点】有理数的乘方14. 【答案】−22【解析】把x=−1代入计算程序中得:(−1)×6−(−2)=−6+2=−4>−5,把x=−4代入计算程序中得:(−4)×6−(−2)=−24+2=−22<−5,则最后输出的结果是−22.【知识点】有理数的乘法15. 【答案】3或±1【解析】∵a>a−3,a⋇(a−3)=1,根据题中的新定义得:a a−3=1,∴a−3=0或a=1或a=−1,∴a=3或±1.【知识点】有理数的乘方16. 【答案】3【解析】272019=(33)2019=36057,末位的循环为3,9,7,1,6057÷4=1514⋯1,所以末位为3.【知识点】有理数的乘方17. 【答案】1【解析】根据题意,x=16,第一次输出结果为:8,第二次输出结果为:4,第三次输出结果为:2,第四次输出结果为:1,第五次输出结果为:4,第六次输出结果为:2,第7次输出结果为:1,第8次输出结果为:4,由上规律可知:从第二次输出结果开始,每3次输出后重复一次,故(2017−1)÷3=672,故输出结果为:1.【知识点】有理数的加法法则及计算、有理数的乘法三、解答题18. 【答案】(1) 5(2) ∣x−7∣(3) −8;−3或−13(4) 如图,∣x+1008∣+∣x+504∣+∣x−1007∣的最小值即∣1007−(−1008)∣=2015.【解析】(1) ∣3−(−2)∣=5.【知识点】绝对值的几何意义、有理数的减法法则及计算19. 【答案】(1) 原式=−3+8−7+5=5−7+5=−2+5=3.(2) 原式=49×47×47×116=1.(3) 原式=7−(116−23−34)×24=7−(116×24−23×24−34×24) =7−(44−16−18)=7−10=−3.(4) 原式=−9÷9+(−6)+1 =−1−6+1=−6.【知识点】有理数的除法、有理数的加减乘除乘方混合运算、有理数的乘法20. 【答案】(1) −17;10(2) Q点出发时,PQ两点距离为(−10)−(−26)=16,Q点速度比P点速度快(3−1)=2个单位/秒,162=8秒,∴当Q从A出发8秒钟时,能追上点P.(3) 设A点出发t秒,点P和Q相距2个单位长度,当Q点还没追上P点时,Q,P速度差为2,∴2t=−10−(−26)−2=14,解得t=7,Q点在数轴上表示的数为−26+3×7=−5,当Q点超过P点时,Q,P速度差为2,∴2t=−10−(−26)+2=18,解得:t=9,−26+3×9=1.故Q点在数轴上表示的有理数为1.综上所得,当Q从A出发7或9秒时,点P和点Q相距2个单位长度,此时Q表示数轴的有理数为−5或1.【解析】(1) P到B点时,Q从A出发,Q点速度为每秒3个单位长度,3秒运动距离为3×3=9,−26+9=−17,∴Q点出发3秒后所到的点表示为−17,3秒钟P点运动距离为3×1=3,又−10+3=−7,PQ两点距离为−7−(−17)=10,∴Q点出发3秒后所到点表示数为−17,此时P,Q两点的距离为10.【知识点】数轴的概念21. 【答案】(1) ∵a与(−1)3互为相反数,∴a=1,∵AB=9,∴①当点A、点B在原点的同侧时,点B所表示的数为1+9=10,如图1所示;②当点A、点B在原点的异侧时,点B所表示的数为1−9=−8,如图2所示.故点B所表示的数为10或−8.(2) 当点A,B位于原点O的同侧时,点B表示的数是10.设点Q的运动速度为x,则点P的速度为2x.∵3秒后两动点相遇,∴3(x+2x)=9,解得:x=1.∴点Q的运动速度为1,则点P的速度为2.运动t秒后PQ=2有两种情形:①相遇前,由题意有:2t+2+t=9,解得:t=73;∴点P表示的数为:1+2×73=173,点Q表示的数为:10−73=233;②相遇后,再运动y秒,P,Q两点相距2,由题意有:y+2y=2,解得:y=23.∴点P表示的数为:1+3×2+23×2=253,点Q表示的数为:10−3×1−23×1=193.(3) 根据题意得,点P和点Q在点A处相遇,此时点Q运动5秒,运动9个单位长度.∴点Q的运动速度为:9÷5=1.8.设点P的速度为v,∵∣OM−ON∣=2,∴∣9+1−(5v+1)∣=2,解得:v=75或115.∴点P的速度为75或115.【知识点】数轴的概念、相遇问题22. 【答案】(1) 18;−1(2) −10+5t;8−3t(3) 依题意有5t+3t=18,解得t=94.故P,Q两点经过94秒会相遇.【解析】(1) A,B两点的距离为8−(−10)=18,线段AB的中点C所表示的数[8+(−10)]÷2=−1.(2) 点P所在的位置的点表示的数为−10+5t,点Q所在位置的点表示的数为8−3t(用含t的代数式表示).【知识点】绝对值的几何意义23. 【答案】(1) 同号得正、异号得负,并把两数的平方相加;等于这个数得平方(2) −25(3) ∵(m+1)∗(n−2)=0,∴±[(m+1)2+(n−2)2]=0,∴m+1=0,n−2=0,解得m=−1,n=2,即m=−1,n=2即为所求.【解析】(1) 由题意可得:两数进行∗运算时,同号得正,异号得负,并把两数的平方相加0和任何数进行运算,或任何数和0迸行∗运算,等于这个数的平方.(2) (−3)∗[0∗(+2)]=(−3)∗(+2)2=(−3)∗(+4)=−[(−3)2+(+4)2]=−25.【知识点】有理数的乘方24. 【答案】∵∣x∣=5,∴x=±5,又∣y∣=2,∴y=±2,又∵∣x+y∣=x+y,∴x+y≥0,∴x=5,y=±2,当x=5,y=2时,x−y=5−2=3,当x=5,y=−2时,x−y=5−(−2)=7.【知识点】有理数的减法法则及计算25. 【答案】(1) 2;1或2或3(2) ①是.② ∵1∗2=2∴2∗1=(1∗2)∗1,∵(a∗b)∗c=a∗c,∴(1∗2)∗1=1∗1,∵a∗a=a,∴1∗1=1,∴2∗1=1.③方法一:不存在理由如下:若存在满足交换律的"有趣的”数阵,依题意,对任意的a,b,c有:a∗c=(a∗b)∗c=(b∗a)∗c=b∗c,这说明数阵每一列的数均相同.∵1∗1=1,2∗2=2,3∗3=3,∴此数阵第一列数均为1,第二列数均为2,第三列数均为3,∴1∗2=2;2∗1=1,与交换律相矛盾,因此,不存在满足交换律的“有趣的”数阵.【解析】(1) 由题意可知:2∗3表示数阵,第2行第3列所对应的数是2,∴2∗3=2.∵2∗3=2∗x,∴2∗x=2,由题意可知:数阵第1行中3列数均为1,∴x=1,2,3.(2) 方法二:不存在理由如下:由条件二可知,a∗b只能取1,2或3,由此可以考虑a∗b取值的不同情形.例如考虑1∗2:情形一:1∗2=1.若满足交换律,则2∗1=1,再次计算1∗2可知:1∗2=(2∗1)∗2=2∗2=2,矛盾.情形二:1∗2=2,由(2)可知,2∗1=1,1∗2≠2∗1,不满足交换律,矛盾.情形三:1∗2=3,若满足交换律,即2∗1=3,再次计算2∗2可知:2∗2=(2∗1)∗2=3∗2=(1∗2)∗2=1∗2=3,与2∗2=2矛盾.综上,不存在满足交换律的“有趣的”数阵.【知识点】有理数的乘法。
《有理数及其运算》易错题及培优题
1《有理数及其运算》易错题、难题考点一:有理数的分类及应用(☆☆☆) 1.下列说法正确的是( ).A.数0是最小的整数B.若│a │=│b │,则a=bC.互为相反数的两数之和为零D.两个有理数,大的离原点远 2.若两个有理数的和是正数,那么一定有结论( )A.两个加数都是正数B.两个加数有一个是正数C.一个加数正数,另一个加数为零D.两个加数不能同为负数 3、1-2+3-4+5-6+……+2015-2018的结果不可能是 ( ) A.奇数 B.偶数 C.负数 D.整数4.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg ,(25±0.•2)kg ,(25±0.3)kg 的字样,从中任意拿出两袋,它们的质量最多相差( ) A 、0.8kg B 、0.6kg C 、0.5kg D 、0.4kg考点二:数轴(☆☆☆)5.a,b,c 三个数在数轴上的位置如图所示,则下列结论中错误的是 ( )A.a+b<0B.a+c<0C.a -b>0D.b -c<07.考点三:相反数(☆☆)8.倒数是它本身的数是 ;相反数是它本身的数是 ;绝对值是它本身的数是 ,绝对值最小的数是________.9.-m 的相反数是 ,-m+1的相反数是 ,m+1的相反数是 . 10.已知-a=9,那么-a 的相反数是 ;已知a=-9,则a 的相反数是 . 11.两个非零有理数的和是0,则它们的商为 ( ) A.0 B.-1 C.+1 D.不能确定考点四:绝对值(☆☆☆☆☆)12.已知数轴上的三点A 、B 、C 分别表示有理数a ,1,-1,那么|a+1|表示( ) A.A 、B 两点的距离 B.A 、C 两点的距离C.A 、B 两点到原点的距离之和D.A 、C 两点到原点的距离之和 13.已知|m|=-m ,化简|m-1|-|m-2|所得的结果是_______14.若a 是有理数,则|-a|-a 一定是( ) A.零 B.非负数 C.正数 D.负数 ※若|x-2|+x-2=0,那么x 的取值范围是( ) A.x ≤2 B.x ≥2 C.x=2 D.任意实数15.互不相等的有理数a 、b 、c 在数轴上的对应点分别为A 、B 、C ,如果|a-b|+|b-c|=|a-c|,那么点A 、B 、C 在数轴上的位置关系是( ) A.点A 在点B 、C 之间 B.点B 在点A 、C 之间 C.点C 在点A 、B 之间 D.以上三种情况均有可能16、(1)若|x+1|=3,则x=_______. (2)绝对值大于1且不大于5的所有整数的和为_______.17.已知|a|=3,|b|=1,且|a-b|=b-a ,那么a+b=______.19.代数式15-|x+y|的最大值是______,当此代数式取最大值时,x 与y 的关系是______.20.若x <0,3x+2|x|=m ,则m____0.(填“>”、“=”、“<”)21.(1)已知有理数a 、b 、c 在数轴上的对应点如图所示,化简:|b-a|+|a+c|-2|c-b|.22.数轴上两点间的距离等于这两点所对应的数的差的绝对值.例:如图所示,点A 、B 在数轴上分别对应的数为a 、b ,则A 、B 两点间的距离表示为|AB|=|a-b|.根据以上知识解题: (1)若数轴上两点A 、B 表示的数为x 、-1, ①A 、B 之间的距离可用含x 的式子表示为_____; ②若该两点之间的距离为2,那么x 值为______.2(2)|x+1|+|x-2|的最小值为______,此时x 的取值是______;(3)若|x+1|+|x-2|+|x-3|取最小值时,相应的x 的取值是_____,此最小值是_____.考点五:有理数的计算(☆☆☆) 23.计算:(直接写出结果)(1)12+(-223)=_______; (2)-2-22=_____; (3)(-0.25)×(-113)=______; (4)(-1225)÷(-35)=_____;(5) 9-33=_____; (6)-(-12)2+(-2)2=______.24.计算: (1)(12+13+14-45+16)×(-60)(2)(-1.5)2×(113)2-(-0.2)3×202;(3)[30-(79+56-1112)×36]÷(-5)(4)-14-(1-0.5)×13×[1-(-2)2].(5))415()310()10(815-÷-⨯-÷ (6) )8()2()7()15()3(15-++-++--++-考点六:有理数的应用(☆☆☆)25.某工厂某周计划每日生产自行车100辆,由于每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(增加的为正数,减少的为负数),则本周是增加26.一天小明和冬冬利用温差来测量山峰的高度。
第二章《有理数及其运算》专项练习共7个专题(含答案)
第二章《有理数及其运算》专项练习专题一:正数和负数1、下列各数中,大于-21小于21的负数是( ) A.-32B.-31C.31D.02、负数是指( )A.把某个数的前边加上“-”号B.不大于0的数C.除去正数的其他数D.小于0的数 3、关于零的叙述错误的是( )A.零大于所有的负数B.零小于所有的正数C.零是整数D.零既是正数,也是负数 4、非负数是( )A.正数B.零C.正数和零D.自然数5、文具店、书店和玩具店依次座落在一条东西走向的大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在( )A.文具店B.玩具店C.文具店西40米处D.玩具店西60米处 6、大于-5.1的所有负整数为_____.7、珠穆朗玛峰高出海平面8848米,表示为+8848米.吐鲁番盆地低于海平面155米,表示为____. 8、请写出3个大于-1的负分数_____.9、某旅游景点一天门票收入5000元,记作+5000元,则同一天支出水、电、维修等各种费用600元,应记作_____.10、某同学语、数、外三科的成绩,高出平均分部分记作正数,低出部分记作负数,如表所示请回答,该生成绩最好和最差的科目分别是什么?专题二:数轴与相反数1、下面正确的是( )A.数轴是一条规定了原点,正方向和长度单位的射线B.离原点近的点所对应的有理数较小C.数轴可以表示任意有理数D.原点在数轴的正中间 2、关于相反数的叙述错误的是( )A.两数之和为0,则这两个数为相反数B.如果两数所对应的点到原点的距离相等,这两个数互为相反数C.符号相反的两个数,一定互为相反数D.零的相反数为零3、若数轴上A 、B 两点所对应的有理数分别为a 、b ,且B 在A 的右边,则a -b 一定( )A.大于零B.小于零C.等于零D.无法确定 4、在数轴上A 点表示-31,B 点表示21,则离原点较近的点是_____. 5、两个负数较大的数所对应的点离原点较_____.6、在数轴上距离原点为2的点所对应的数为_____,它们互为_____.7、数轴上A 、B 、C 三点所对应的实数为-32,-43,54,则此三点距原点由近及远的顺序为_____. 8、数轴上-1所对应的点为A ,将A 点右移4个单位再向左平移6个单位,则此时A 点距原点的距离为_____. 9、在等式3215⨯-⨯=的两个方格内分别填入一个数,使这两个数是互为相反数且等式成立。
七年级(上)第2章有理数及其运算解答题PDF
七年级(上)+第2章有理数及其运算+解答题1 ?小明早晨跑步,他从自己家出发,向东跑了2km到达小彬家,继续向东跑了 1.5km到达小红家,然后又向西跑了 4.5km 到达学校,最后又向东,跑回到自己家.(1)以小明家为原点,以向东为正方向,用1个单位长度表示1km,在图中的数轴上,分别用点A表示出小彬家,用点 B 表示出小红家,用点C表示出学校的位置;I I I I I 丁-5 -4 -3 -2 -1 0 1 2 3 4 5(2)求小彬家与学校之间的距离;(3)如果小明跑步的速度是250m/min,那么小明跑步一共用了多长时间?3?阅读材料,并回答问题如图,有一根木棒MN放置在数轴上,它的两端M、N分别落在点A、B.将木棒在数轴上水平移动,当点M移动到点B时, 点N 所对应的数为20,当点N移动到点A时,点M所对应的数为5.(单位:cm)由此可得,木棒长为_____ cm.借助上述方法解决问题:一天,美羊羊去问村长爷爷的年龄,村长爷爷说:我若是你现在这么大,你还要40年才出生呢,你若是我现在这么大,我已经是老寿星了,116岁了,哈哈!”美羊羊纳闷,村长爷爷到底是多少岁?请你画出示意图,求出村长爷爷和美羊羊现在的年龄,并说明解题思路.2 ?在一次食品安检中,抽查某企业10袋奶粉,每袋取出100 克,检测每100克奶粉蛋白质含量与规定每100克含量(蛋白质)比较,不足为负,超过为正,记录如下:(注:规定每100g 奶粉蛋白质含量为15g)-3,- 4,- 5,+1,+3,+2,0,- 1.5,+1,+2.5(1)求平均每100克奶粉含蛋白质为多少?(2)每100克奶粉含蛋白质不少于14克为合格,求合格率为多少?4. 足球训练中,为了训练球员快速抢断转身,教练设计了折返跑训练.教练在东西方向的足球场上画了一条直线插上不同的折返旗帜,如果约定向西为正,向东为负,练习一组的行驶记录如下(单位:米):+40,- 30,+50,- 25,+25,- 30, +15,- 28,+16,- 18.(1)球员最后到达的地方在出发点的哪个方向?距出发点多远?(2)球员训练过程中,最远处离出发点多远?(3)球员在一组练习过程中,跑了多少米?5. 某儿童玩具厂计划七天共生产1400套玩具火车,平均每天生产200套,由于个别工人请假,实际每天的生产量与计划生产量有出入,下表是一周七天的实际生产情况(超产为正,减产为负,单位:个):星期-一一二二二四五六日增减+5-2-4+13-10+16-9(1)根据记录可知前三天共生产套;7 ?把下列各点在数轴上表示出来,并将这些点所表示的数从小到大进行排列.A:相反数等于它本身的数;B:向左移动4个单位会与点A重合的数;C:- | - 2| ;D: ( -「)22从小到大进行排列为:_______ .■3 ?2 -1 0 1 2 3 4(2)产量最多的一天比产量最少的一天多生产套;(3)七天共生产多少套玩具火车?(4)该厂实行每日计件工资制,每生产一套玩具火车可得60元,若超额完成任务,则超过部分每套另奖15元,少生产部分每套扣12元,那么这一周该厂支给工人的工资总额是多少元?6?如图,点A、B在数轴上表示的数分别为-12和8,两只蚂蚁M、N分别从A、B两点同时出发,相向而行.M的速度为2个单位长度/秒,N的速度为3个单位长度/秒.(1)运动_____ 秒钟时,两只蚂蚁相遇在点P;点P在数轴上表示的数是;(2)若运动t秒钟时,两只蚂蚁的距离为10,求出t的值(写出解题过程). 8. 已知1cm3的氢气质量约为0.00009g,请用科学记数法表示下列计算结果.(1)求一个容积为8000000cm3的氢气球所充氢气的质量;(2)一块橡皮重45g,这块橡皮的质量是1cm3的氢气质量的多少倍.A0 B9. 如图,在数轴上点A表示的有理数为-4,点B表示的有理数为6,点P从点A出发以每秒2个单位长度的速度在数轴上沿由A到B方向运动,当点P到达点B后立即返回,仍然以每秒2个单位长度的速度运动至点A停止运动.设运动时间为t (单位:秒).(1)求t=2时点P表示的有理数;(2)求点P是AB的中点时t的值;(3)在点P由点A到点B的运动过程中,求点P与点A的距离(用含t的代数式表示);(4)在点P由点B到点A的返回过程中,点P表示的有理数是多少(用含t的代数式表示).A P------- > | I I I £、-4 -3 -2 -1 ~6~1 ~2~3~4~5~6*11. 股民李星星在上周星期五以每股11.2元买了一批股票, 下表为本周星期一到星期五该股票的涨跌情况求:(1)本周星期三收盘时,每股的钱数.(2)李星星本周内哪一天把股票抛出比较合算,为什么?星期-一一二二二-三四五每股涨跌/元+0.4+0.45-0.2+0.25-0.410. 我国约有9.6X 106平方千米的土地,平均1平方千米的土地一年从太阳得到的能相当于燃烧 1.5X 105吨煤所产生的能量(1)一年内我国土地从太阳得到的能量相当于燃烧多少吨煤?(用科学记数法表示)(2)若1吨煤大约可以发出8X 103度电,那么(1)中的煤12. 小虫从某点0出发在一直线上来回爬行,假定向右爬行路程记为正,向左爬行的路程记为负,爬过的路程依次为(单位:厘米):+5,- 3,+10,- 8,- 6,+12,- 10.问:(1)小虫是否回到原点O?(2)小虫离开出发点O最远是多少厘米?(3)在爬行过程中,如果每爬行1厘米奖励一粒芝麻,则小大约发出多少度电?(用科学记数法表示)虫共可得到多少粒芝麻?13. 某巡警骑摩托车在一条南北大道上巡逻,某天他从岗亭出发,晚上停留在A处,规定向北方向为正,当天行驶情况记录如下(单位:千米):+10,- 8, +7,- 15,+6,- 16, +4,-2(1)A处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶1千米耗油0.5升,这一天共耗油多少升? 14,- 9,+8, - 7,13,- 6,+12,- 5.(1)请你帮忙确定B地相对于A地的方位?(2)救灾过程中,冲锋舟离出发点A最远处有多远?(3)若冲锋舟每千米耗油0.5升,油箱容量为28升,求冲锋舟当天救灾过程中至少还需补充多少升油?14.在抗洪抢险中,解放军战士的冲锋舟加满油沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:千米):15. 为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西方向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下(单位:千米):+15,- 4, +13,- 10,- 12, +3,- 13,- 17.(1)出车地记为0,最后一名老师送到目的地时,小王距出车地点的距离是多少?(2)若汽车耗油量为0.1升/千米,这天上午汽车共耗油多少升?16. 某校对七年级男生进行俯卧撑测试,以能做7个为标准,超过的次数用正数表示,不足的次数用负数表示,其中8名男生的成绩如下表:2-103-2-310(1) 这8名男生的达标率是百分之几?(2) 这8名男生共做了多少个俯卧撑?18. 某公司6天内货品进出仓库的吨数如下:(+”表示进库,-”表示出库) +31,- 32,- 16,+35,- 38,- 20.(1) _______________________________ 经过这6 天,仓库里的货品是_______________________________ (填增多了还是减少了).(2)经过这6天,仓库管理员结算发现仓库里还有货品460 吨,那么6天前仓库里有货品多少吨?(3)如果进出的装卸费都是每吨5元,那么这6天要付多少元装卸费?17. 在抗洪抢险中,解放军战士的冲锋舟加满油沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:千米):14,- 9, +8,- 7,13,- 6,+12,- 5.(1)请你帮忙确定B地位于A地的什么方向,距离A地多少千米?(2)若冲锋舟每千米耗油0.5升,油箱容量为28升,求冲锋舟当天救灾过程中至少还需补充多少升油?(3)救灾过程中,冲锋舟离出发点A最远处有多远?19. 蔬菜商店以每筐10元的价格从农场购进8筐白菜,若以每筐白菜净重25kg为标准,超过千克数记为正数,不足千克数记为负数,称量后记录如下:+1.5,- 3,+2,- 2.5,- 3,+1,- 2,- 2(1)这8筐白菜一共重多少千克?(2)若把这些白菜全部以零售的形式卖掉,商店计划共获利20%,那么蔬菜商店在销售过程中白菜的单价应定为每千克多少元?20. 有8筐白菜,以每筐25千克为重,超过的千克数记为正数,不足的千克数记为负数,称后的记录如下: 1.5,- 3, 2, -0.5, 1,- 2,- 2.5问:这8筐白菜一共多少千克? 22. 食品店一周中的盈亏情况如下(盈余为正):132 元,-12.5 元,-10.5 元,127 元,-87 元,136.5 元, 98元.请通过计算说明这一周食品店的盈亏情况.21. 粮库3天内的粮食进出库的吨数如下(+”表示进库,-”表示出库):+26,- 32,- 15,+34,- 38,- 20.(1)经过这3天,库里的粮食是增多了还是减少了?(2)经过这3天,仓库管理员结算发现库里还存有488吨粮食,那么3天前库里有粮多少吨?(3)如果进出的装卸费都是每吨6元,那么这3天要付多少装卸费?23. 某粮仓原有大米132吨,某一周该粮仓大米的进出情况如下表:(当天运进大米8吨,记作+8吨;当天运出大米15吨, 记作-15吨.)某粮仓大米一周进出情况表(单位:吨)星期星期星期星期四星期五星期六星期日-32+26-23-16m+42-21(1)若经过这一周,该粮仓存有大米88吨,求m的值,并说明星期五该粮仓是运进还是运出大米,运进或运出大米多少吨?24 ?某自行车厂计划平均每天生产200辆,但是由于种种原因, 实际每天生产量与计划量相比有出入?表是某周的生产情况(超产记为正,减产记为负):(2)若大米进出库的装卸费用为每吨15元,求这一周该粮仓需要支付的装卸总费用.星期-一一二二二三四五六日增减+6—3—8+14—10+15—4(1)根据记录的数据可知该厂星期三生产自行车多少辆?(2)产量最多的一天比产量最少的一天多生产自行车多少辆?(3)根据记录的数据可知该厂本周实际共生产自行车多少辆?26.某天一个巡警骑摩托车在一条南北大道上巡逻,他从岗亭出发,巡逻了一段时间停留在A处,规定以岗亭为原点,向北方向为正,这段时间行驶记录如下(单位:千米):+10,—9,+7,—15,+6,- 14,+4,— 2(1)A在岗亭哪个方向?距岗亭多远?(2)若摩托车行驶1千米耗油0.12升,且最后返回岗亭,摩托车共耗油多少升?25?某检修小组从A地出发,在东西方向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶记录如下(单位:km):第一次第二次第三次第四次第五次第六次第七次—3+8—9+10+4—6—2(1)求收工时检修小组距A地多远;(2)在第 ____ 次记录时时检修小组距A地最远;(3)若每千米耗油0.1L,每升汽油需 6.0元,问检修小组工作一天需汽油费多少元?27?某乡白梨的包装质量为每箱10千克,现抽取8箱样品进行检测,结果称重如下(单位:千克):10.2, 9.9, 9.8, 10.1, 9.6,10.1, 9.7, 10.2,为了求得8箱样品的总质量,我们可以选取的一个恰当的基准数进行简化运算.原质量(kg)10.29.99.89.610.19.710.2与基准数的差距(千克)(1)你认为选取的一个恰当的基准数为 _____ 千克;(2)根据你选取的基准数,用正、负数填写上表;(3)这8箱水果的总质量是多少?28. 粮库3天内进出库的记录如下(进库的吨数记为正数,出库的吨数记为负数):+26,- 32,- 25, +34,- 38, +10.(1)经过这3天,库里的粮食是增多了还是减少了?(2)经过这3天,仓库管理员结算发现库存粮食480吨,那么3天前库存是多少?30.小明到市行政中心大楼办事,假定乘电梯向上一楼记作+1, 向下一楼记作-1,小明从1楼出发,电梯上下楼层依次记录如下(单位:层):+5,- 3, +11 , - 8, +12,- 6, a;然后小明又回到了1楼.(1)求a的值;(2)该中心大楼每层高3m,电梯毎向上或向下1m需要耗电0.1度,请你算算,他办事时电梯需要耗电多少度?29. 检修小组乘维修车从A地出发,在东西走向的路上检修线路,如果规定向东为正,向西为负,一天中每次行驶记录如下(单位:千米);-4, +7,- 9, +8, +6,- 4,- 3.(1)收工时在A地的哪个方向?距A地多远?(2)哪一次行驶后距A地最远?(3)若每千米耗油0.3升,从出发到收工时共耗油多少升?七年级(上)+第二章有理数及其运算+解答题1. (2017?长安区一模)小明早晨跑步,他从自己家出发,向东跑了2km到达小彬家,继续向东跑了 1.5km到达小红家,然后又向西跑了 4.5km到达学校,最后又向东,跑回到自己家.(1)以小明家为原点,以向东为正方向,用1个单位长度表示1km,在图中的数轴上,分别用点A表示出小彬家,用点 B 表示出小红家,用点C表示出学校的位置;I I I I I 丁-5 -4 -3 -2 -1 0 1 2 3 4 5(2)求小彬家与学校之间的距离;(3)如果小明跑步的速度是250m/min,那么小明跑步一共用了多长时间?【解答】解:(1)如图所示:C A B-5-4 -3 -2 -1 0 1 25^(2)小彬家与学校的距离是:2-( - 1) =3 (km).故小彬家与学校之间的距离是3km;(3)小明一共跑了( 2+1.5+1)x 2=9 (km),小明跑步一共用的时间是:9000-250=36 (分钟).答:小明跑步一共用了36分钟长时间.2.(2017春?东营期末)在一次食品安检中,抽查某企业10 袋奶粉,每袋取出100克,检测每100克奶粉蛋白质含量与规定每100克含量(蛋白质)比较,不足为负,超过为正,记录如下:(注:规定每100g奶粉蛋白质含量为15g)-3,- 4,- 5,+1,+3,+2,0, - 1.5,+1,+2.5(1)求平均每100克奶粉含蛋白质为多少?(2)每100克奶粉含蛋白质不少于14克为合格,求合格率为多少?【解答】解:(1)「二「+15=14.6 (g);(2)其中-3,- 4,- 5,- 1.5为不合格,那么合格的有 6 个,合格率为=60%.103. (2017春?东营期末)阅读材料,并回答问题如图,有一根木棒MN放置在数轴上,它的两端M、N分别落在点A、B.将木棒在数轴上水平移动,当点M移动到点B时,点N 所对应的数为20,当点N移动到点A时,点M所对应的数为5.(单位:cm)由此可得,木棒长为 5 cm. 借助上述方法解决问题:一天,美羊羊去问村长爷爷的年龄,村长爷爷说:我若是你现在这么大,你还要40年才出生呢,你若是我现在这么大,我已经是老寿星了,116岁了,哈哈!”美羊羊纳闷,村长爷爷到底是多少岁?请你画出示意图,求出村长爷爷和美羊羊现在的年龄,并说明解题思路.【解答】解:(1)由数轴观察知三根木棒长是20 - 5=15,则此木棒长为:15-3=5,故答案为:5.(2)如图,M N------- 「一------- I --------- >-40 A B116点A表示美羊羊现在的年龄,点B表示村长爷爷现在的年龄,木棒MN的两端分别落在点A、B.由题意可知,当点N移动到点A时,点M所对应的数为-40,当点M移动到点B时,点N所对应的数为116.可求MN=52.所以点A所对应的数为12,点B所对应的数为64.即美羊羊今年12岁,村长爷爷今年64岁.4. (2017春?鸡西期中)足球训练中,为了训练球员快速抢断转身,教练设计了折返跑训练.教练在东西方向的足球场上画了一条直线插上不同的折返旗帜,如果约定向西为正,向东为负,练习一组的行驶记录如下(单位:米):+40, - 30,+50,-25,+25,- 30,+15,- 28,+16,- 18 .(1)球员最后到达的地方在出发点的哪个方向?距出发点多远?(2)球员训练过程中,最远处离出发点多远?(3)球员在一组练习过程中,跑了多少米?【解答】解:(1) (+40) + (- 30) + (+50) + (- 25) + (+25) + (- 30) + (+15) + (- 28) + (+16) + (- 18) =+15 (米); 答:球员最后到达的地方在出发点的正西方向,距出发点15m;(2)第一段,40m,第二段,40- 30=10m,第三段,10+50=60m,第四段,60 - 25=35m,第五段,35+25=60m,第六段,60 - 30=30m,第七段,30+15=45m,第八段,45- 28=17m,第九段,17+16=33m,第十段,33 - 18=15m,在最远处离出发点60m;(3)v |+40|+| - 30|+|+ 50|+| - 25|+|+ 25|+| - 30|+|+ 15|+|-28|+|+ 16|+| - 18| =277 (米),答:球员在一组练习过程中,跑了277米.5. (2017春?鸡西期中)某儿童玩具厂计划七天共生产1400套玩具火车,平均每天生产200套,由于个别工人请假,实际每天的生产量与计划生产量有出入,下表是一周七天的实际生产情况(超产为正,减产为负,单位:个):星期-一一二二二-三四五六日增减+5-2-4+13-10+16-9(1)根据记录可知前三天共生产599套;(2)产量最多的一天比产量最少的一天多生产26套;(3)七天共生产多少套玩具火车?(4)该厂实行每日计件工资制,每生产一套玩具火车可得60元,若超额完成任务,则超过部分每套另奖15元,少生产部分每套扣12元,那么这一周该厂支给工人的工资总额是多少元?【解答】解:(1)200X 3+ (5 - 2 -4)=600 - 1=599 (套).答:前三天共生产599套;(2)16-( - 10)=26 (套).答:产量最多的一天比产量最少的一天多生产了26套;(3)1400+ (+5 - 2 - 4+13 - 10+16 -9)=1400+9=1409 (套).答:七天共生产1409套玩具火车;(4)1409X 60+9X 15=84675 (元).答:这一周该厂支给工人的工资总额是84675元.6 . (2017春?浦东新区期中)如图,点A、B在数轴上表示的数分别为-12和8,两只蚂蚁M、N分别从A、B两点同时出发,相向而行.M的速度为2个单位长度/秒,N的速度为 3 个单位长度/秒.(1)运动4秒钟时,两只蚂蚁相遇在点P;点P在数轴上表示的数是―4 ;(2)若运动t秒钟时,两只蚂蚁的距离为10,求出t的值(写出解题过程).【解答】解:(1)设运动x秒时,两只蚂蚁相遇在点P,根据题意可得:2x+3x=8-( - 12),解得:x=4,-12+2X 4=- 4.答:运动4秒钟时,两只蚂蚁相遇在点P;点P在数轴上表示的数为:-4;(2)运动t秒钟,蚂蚁M向右移动了2t,蚂蚁N向左移动了3t,若在相遇之前距离为10,则有2t+3t+10=20,解得:t=2.若在相遇之后距离为10,则有2t+3t - 10=20,解得:t=6.综上所述:t的值为2或6.故答案为:4;- 4.7(2017春?闵行区校级期中)把下列各点在数轴上表示出来,并将这些点所表示的数从小到大进行排列.A:相反数等于它本身的数;B:向左移动4个单位会与点A重合的数;C:- | - 2| ;D: ( -「)22从小到大进行排列为:C v A v D v B .............. 亍-3 -2 -1 0 1 2 3 4【解答】解:相反数等于它本身的数是0,向左移动4个单位会与点A重合的数是4,- | - 2| =-2,(-二)2=,2 4把各点在数轴上表示如图所示,从小到大进行排列为:C v A v D v B,故答案为:C v A v D v B.C AD B丨工I—2―I_-3^-10 1 2 3 i8. (2017春?盐都区期中)已知1cm3的氢气质量约为0.00009g, 请用科学记数法表示下列计算结果.(1)求一个容积为8000000cm3的氢气球所充氢气的质量;(2)一块橡皮重45g,这块橡皮的质量是1cm3的氢气质量的多少倍.【解答】解:(1)0.00009X 8000000=720g720g=7.2X 102g;(2)45- 0.00009=500000=5X105.故这块橡皮的质量是1cm3的氢气质量的5X 105倍.9. (2017春?丛台区校级月考)如图,在数轴上点A表示的有理数为-4,点B表示的有理数为6,点P从点A出发以每秒2个单位长度的速度在数轴上沿由A到B方向运动,当点P到达点B 后立即返回,仍然以每秒2个单位长度的速度运动至点A停止运动.设运动时间为t (单位:秒).(1)求t=2时点P表示的有理数;(2)求点P是AB的中点时t的值;(3)在点P由点A到点B的运动过程中,求点P与点A的距离(用含t的代数式表示);(4)在点P由点B到点A的返回过程中,点P表示的有理数是多少(用含t的代数式表示).A P -------> | I I I 仔、-4 -3 -2 -1 ~6~1 ~2~3~4~5~6*【解答】解:(1)点P表示的有理数为-4+2X2=0;(2)6—(—4) =10,10-2=5,5-2=2.5,(10+5)十2=7.5.故点P是AB的中点时t=2.5或7.5;(3)在点P由点A到点B的运动过程中,点P与点A的距离为2t;(4)在点P由点B到点A的返回过程中,点P表示的有理数是 6 — 2 (t —5) =16—2t.10. (2017春?高港区校级月考)我国约有9.6X 106平方千米的土地,平均1平方千米的土地一年从太阳得到的能相当于燃烧1.5X 105吨煤所产生的能量(1)一年内我国土地从太阳得到的能量相当于燃烧多少吨煤?(用科学记数法表示)(2)若1吨煤大约可以发出8X 103度电,那么(1)中的煤大约发出多少度电?(用科学记数法表示)【解答】解:(1) (9.6X 106)X( 1.5X 105) =(9.6X 1.5)X( 106X 105)=1.44X 1012(吨).答: 一年内我国土地从太阳得到的能量相当于燃烧 1.44X 1012吨煤.(2) (1.44X 1012)X( 8X 103)12 3=(1.44 X 8)X( 1012X 103)=1.152X 1016(度).答:(1)中的煤大约发出 1.152X 1016度电.11. (2016?南海区校级模拟)股民李星星在上周星期五以每股11.2元买了一批股票,下表为本周星期一到星期五该股票的涨跌情况求:(1)本周星期三收盘时,每股的钱数.(2)李星星本周内哪一天把股票抛出比较合算,为什么?星期-一一二二二-三四五.85每股涨跌/元【解答】解:(+0.41)根据丿+0.45题意得:—0.211.2+0.4+0.25+0.45+(——0.40.2)=11(元),则本周星期三收盘时,该只股票每股为11.85元;(2)根据题意得:11.2+0.4+0.45+ ( —0.2) +0.25=12.1 (元),则本周该只股票最高价12.1元出现在周四,李星星本周四把股票抛出比较好.12. (2016秋?琼中县校级期末)小虫从某点O出发在一直线上来回爬行,假定向右爬行路程记为正,向左爬行的路程记为负,爬过的路程依次为(单位:厘米):+5,—3, +10,—8, —6,+12,—10 .问:(1)小虫是否回到原点O?(2)小虫离开出发点O最远是多少厘米?(3)在爬行过程中,如果每爬行1厘米奖励一粒芝麻,则小虫共可得到多少粒芝麻?【解答】解:(1) (+5) + ( —3) + (+10) + (—8) + ( —6) +(+12) + (—10)=27+ ( —27)=0,所以,小虫最后能回到出发点O;(2)根据记录,小虫离开出发点O的距离分别为5cm、2cm、12cm、4cm、2cm、10cm、0cm,所以,小虫离开出发点的O最远为12cm;(3)根据记录,小虫共爬行的距离为:5+3+10+8+6+12+10=54 (cm),所以,小虫共可得到54粒芝麻.13. (2016秋?李沧区期末)某巡警骑摩托车在一条南北大道上巡逻,某天他从岗亭出发,晚上停留在A处,规定向北方向为正,当天行驶情况记录如下(单位:千米):+10,—8, +7,—15, +6,—16, +4,—2(1)A处在岗亭何方?距离岗亭多远?(2)若摩托车每行驶1千米耗油0.5升,这一天共耗油多少升? 【解答】解:(1)根据题意:10+ ( —8) + (+7) + (—15) + (+6) + (—16) + ( +4) + (—2) =—14,答:A处在岗亭南方,距离岗亭14千米;(2 )由已知,把记录的数据的绝对值相加,即10+8+7+15+16+4+2=68,已知摩托车每行驶1千米耗油0.5升,所以这一天共耗油,68X 0.5 升.答:这一天共耗油34 升.14. (2016秋?泉州期末)在抗洪抢险中,解放军战士的冲锋舟加满油沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B 地,约定向东为正方向,当天的航行路程记录如下(单位:千米):14. —9, +8,—7, 13,—6, +12,— 5.(1)请你帮忙确定B地相对于A地的方位?(2)救灾过程中,冲锋舟离出发点A最远处有多远?(3)若冲锋舟每千米耗油0.5升,油箱容量为28升,求冲锋舟当天救灾过程中至少还需补充多少升油?【解答】解:(1)v 14—9+8 —7+13 —6+12 —5=20,B地在A地的东边20千米;(2)v路程记录中各点离出发点的距离分别为:14千米;14—9=5千米;14 —9+8=13 千米;14 —9+8 —7=6 千米;14 —9+8 —7+13=19 千米;14 —9+8 —7+13 —6=13 千米;14 —9+8 —7+13 —6+12=25 千米;14 —9+8 —7+13 —6+12—5=20 千米.最远处离出发点25千米;(3)这一天走的总路程为:14+| —9|+8+| —7|+13+| —6|+12|+| —5|=74 千米,应耗油74X 0.5=37 (升),故还需补充的油量为:37 —28=9 (升)15. (2016秋?新宾县期末)为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西方向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下(单位:千米):+15,—4, +13,—10,—12, +3,—13,—17.(1)出车地记为0,最后一名老师送到目的地时,小王距出车地点的距离是多少?(2)若汽车耗油量为0.1升/千米,这天上午汽车共耗油多少升?【解答】解:(1)0+15 —4+13 —10—12+3 —13—17= —25.答:最后一名老师送到目的地时,小王在出车地点的西面25千米处.(2)|+15|+| —4|+|+ 13|+| —10|+| —12|+|+ 3|+| —13|+| —17| =87 (千米),87 X 0.1=8.7 (升).答:这天上午汽车共耗油8.7 升.16. (2016秋?潮南区期末)某校对七年级男生进行俯卧撑测试,以能做7个为标准,超过的次数用正数表示,不足的次数用负数表示,其中8名男生的成绩如下表:2—103—2—310(1)这8名男生的达标率是百分之几?(2)这8名男生共做了多少个俯卧撑?【解答】解:(1)这8名男生的达标的百分数是X8 100%=62.5%(2)这8名男生做俯卧撑的总个数是:(2— 1 +0+3 — 2 —3+1+0)+8 X 7=56 个.17. (2016秋?鄂城区期末)在抗洪抢险中,解放军战士的冲锋舟加满油沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:千米):14,—9, +8,—7, 13,—6, +12,— 5. (1)请你帮忙确定B地位于A地的什么方向,距离A地多少千米?(2)若冲锋舟每千米耗油0.5升,油箱容量为28升,求冲锋舟当天救灾过程中至少还需补充多少升油?(3)救灾过程中,冲锋舟离出发点A最远处有多远?【解答】解:(1)v 14—9+8 —7+13 —6+12 —5=20,答:B地在A地的东边20千米;(2 )这一天走的总路程为:14+| —9|+8+| —7|+13+| —6|+12|+| —5|=74 千米,应耗油74X 0.5=37 (升),故还需补充的油量为:37 —28=9 (升),答:冲锋舟当天救灾过程中至少还需补充9升油;(3)1?路程记录中各点离出发点的距离分别为:14 千米;14 —9=5 (千米);14—9+8=13 (千米);14—9+8 —7=6 (千米);14—9+8 —7+13=19 (千米);14—9+8 —7+13 —6=13 (千米);14 —9+8 —7+13 —6+12=25 (千米);14 —9+8 —7+13 —6+12 —5=20 (千米),25>20> 19> 14> 13>> 6>5,最远处离出发点25千米;(每小题2分)18. (2016秋?宁江区期末)某公司6天内货品进出仓库的吨数如下:(+”表示进库,’—”表示出库)+31,—32,—16, +35,—38,—20.(1)经过这6天,仓库里的货品是减少(填增多了还是减少了).(2)经过这6天,仓库管理员结算发现仓库里还有货品460 吨,那么6天前仓库里有货品多少吨?(3)如果进出的装卸费都是每吨5元,那么这6天要付多少元装卸费?【解答】解:(1)) +31 - 32- 16+35 - 38- 20=-40 (吨),-40V 0,仓库里的货品是减少了.故答案为:减少了.(2)+31 - 32 - 16+35 - 38 - 20=- 40,即经过这6天仓库里的货品减少了40吨,所以6天前仓库里有货品460+40=500吨.(3)31+32+16+35+38+20=172 (吨),172X 5=860 (元).答:这6天要付860元装卸费.19. (2016秋?莘县期末)蔬菜商店以每筐10元的价格从农场购进8筐白菜,若以每筐白菜净重25kg为标准,超过千克数记为正数,不足千克数记为负数,称量后记录如下:+1.5,- 3,+2,- 2.5,- 3,+1,- 2,- 2(1)这8筐白菜一共重多少千克?(2)若把这些白菜全部以零售的形式卖掉,商店计划共获利20%,那么蔬菜商店在销售过程中白菜的单价应定为每千克多少元?【解答】解:(1)根据题意得:25 X 8+ (+1.5 - 3+2 - 2.5 - 3+1 -2 - 2) =200- 8=192 (千克),则这8筐白菜一共重192千克;(2)设蔬菜商店在销售过程中白菜的单价应定为每千克x元, 根据题意得:192x- 10X 8=10X 8X20%,解得:x=0.5,则蔬菜商店在销售过程中白菜的单价应定为每千克0.5元.20. (2016秋?同心县校级期末)有8筐白菜,以每筐25千克为重,超过的千克数记为正数,不足的千克数记为负数,称后的记录如下:1.5,- 3,2,- 0.5,1,- 2,- 2.5问:这8筐白菜一共多少千克?【解答】解: ( 1.5- 3+2 - 0.5+1 - 2 -2.5) +25X 8=-3.5+200=196.5 (千克).答:这8筐白菜一共196.5千克.21. (2016秋?庐江县期末)粮库3天内的粮食进出库的吨数如下(+”表示进库,-”表示出库):+26,- 32,- 15,+34,。
七年级数学上册第2章《有理数及其运算》错题解析(北师大版)
有理数的意义错题解析例 1 小学学过的数的前面添上“-”号,得到的数都是负数.这句话对吗?若不对,怎样改正?错解这句话是对的.诊断这句话是不对的.因为小学学过的数除自然数、正分数(小数可以化成分数)外,还有0.在0的前面添上“-”号仍是0,而0既不是正数,也不是负数.正确解答这句话不对.改为:小学学过的数(0除外)的前面添上“-”号,得到的数都是负数.例2 有理数包括哪些数?错解有理数包括正数、零和负数.诊断零当然是有理数,但正数和负数中,还有不是有理数的数,只不过我们现在还没有学罢了.正确解答有理数包括整数和分数.例3 把有理数6.4、-9、25,-100按正整数,负整数,正分数,负分数分成四个集合.错解正整数:{+10,1,25,…}负整数:{-9,-100,…}诊断题目是要求把给出的10个数分成四个集合,显然每个集合中的有理数是有限个.上述解答把每个集合中的有限个数全部写出来之后,又写上了省略号,把有限个变成了无限个,这显然是错的.说明省略号是表示还有许多没有写出来的数,或者表示无穷个数.例4 最小的正整数是几?最大的负整数是几?错解最小的正整数是零,最大的负整数不存在.诊断零是整数,但它既不是正数也不是负数,因而最小的正整数应该是1.解题者由于受“不存在最大正整数”负迁移作用的影响,导致出不存在最大的负整数的错误结论.事实上,根据两个负数,绝对值小的反而大,可以得到最大的负整数是-1.例5 -a一定是负数吗?错解-a一定是负数.诊断之所以出现上面的错误,其原因是解题者对字母表示数的认识肤浅,加上解题者又从形式上看问题.事实上,如果a表示-5,那么-a表示-(-5)=5;如a表示0,那么-a也表示0.正确解答-a不一定是负数,可以是正数,也可以是0.说明 0经常出现在各种数学问题中,在思考问题时,要注意考虑0这一特殊情况.例6 数轴的三要素是什么?错解数轴的三要素是指原点、正方向、长度单位.诊断上面的回答错在混淆了“单位长度”和“长度单位”这两个概念.看起来只有词序不同,但实际意义不一样.“长度单位”是一个确定的量,如厘米、分米等.而“单位长度”不是确定的,它的大小可根据实际需要适当选取.当然还可用一个或若干个长度单位来作为一个“单位长度”.正确解答数轴的三要素是原点、正方向和单位长度.例7 在数轴上记出下列各数:+5.5,-6,4,-3.5,1.5.错解如图2-1.诊断只有标明了原点、正方向和单位长度的直线,才是数轴.上面画的数轴错在没有标出原点和单位长度.正确解答如图2-2.例8 任何一个有理数与它的相反数不相等.这话对吗?错解这话是对的.如7的相反数是-7,7与-7不相等.诊断这句话不对.其原因是把零排除在有理数之外了.因为任何一个有理数包括正有理数、负有理数和零,而零的相反数是零,即零和它的相反数相等.正确解答这话不对.应改为:任何一个不等于零的有理数与它的相反数不相等.例9 写出绝对值不大于5的整数.错解绝对值不大于5的整数是:-4,-3,-2,-1,1,2,3,4.诊断上面解答错误有两处:其一,把符合条件的零排除在整数集合之外;其二,对“不大于”的含义认识模糊.事实上,“不大于”包括“小于”或“等于”两层意思,不能把“等于”排除在外.正确解答绝对值不大于5的整数有:-5,-4,-3,-2,-1,0,1,2,3,4,5.例10 什么数的绝对值是它的相反数?错解负数的绝对值是它的相反数.诊断上面解答错在漏掉了零.因为零的绝对值和零的相反数都是零.进入有理数后,零这个角色越来越重要了,我们对它要加倍注意.正确解答零和负数的绝对值是它的相反数.例11 比较下列每对数的大小:(1)-|-3|和-(-2);(2)-(+3.25)和-|-3.245|.(1)因为-|-3|的绝对值是3,-(-2)的绝对值是2,根据“两个负数,绝对值大的反而小”的法则,所以-|-3|<-(-2).(2)因为-(+3.25)=-3.25,-|-3.245|=-3.245,而-3.25>-3.245,所以-(+3.25)>-|-3.245|.为绝对值大的负数反而小.(1)的解答最后的结论是根据“两个负数绝对值大的反而小”得到的.但-|-3|和-(-2)不都是负数,因而以“两个负数,绝对值大的反而小”为根据,就错了.事实上,-|-3|=-3,-(-2)=2,因为正数大于一切负数,所以-|-3|<-(-2).(2)的解答中的错误在于-3.25不大于-3.45,其原因是由于解题者还停留在正数比较大小上.事实上,-(+3.25)和-|-3.245|都是负数,应该用两个负数比较大小的法则.即-3.25的绝对值是3.25,-3.245的绝对值是3.245,而3.25>3.245,所以-3.25<-3.245,即-(+3.25)<-|-3.245|.例12 比较a与(-a)的大小.错解因为a是正数,-a是负数.所以a>-a.诊断这里不加分析就断定a是正数,-a是负数,这是毫无根据的.我们知道,字母a可以表示正数,也可以表示负数,还可以表示0.因此a与-a的大小要依a 的取值范围而定.正确解法 (1)当a>0时,a是正数,-a是负数,所以a>-a;(2)当a<0时,a是负数,-a是正数,所以a<-a;(3)当a=0时,a与-a均为零;所以a=-a.例13 如果a<0,b<0,且|a|>|b|,试比较a与b的大小.错解 a>b.诊断上面解答出现错误的原因是:解题者对两个负数大小比较法则的语言叙述与数学符号表达式之间不能互相翻译、转换.事实上,由a<0,b<0知a,b两数都是负数,又由|a|>|b|知负数a的绝对值比负数b的绝对值大.再根据两个负数大小比较的法则就不难得出a<b.例14 已知a>0,b<0,a<|b|,试把-a,-b,a,b用<连结起来.错解-a<b<-b<a.诊断解题者对这类较抽象的数的大小比较,常常不知道从何处下手,往往凭主观猜想乱写结论.上面解答之所以出错,主要是解题思想方法不对所造成的.即未把-a和-b所对应的点在数轴上标出来.事实上,a和-a是互为相反数,它们分别在原点的两侧,且到原点的距离相等,b和-b也是如此.因此在数轴上标出有理数a,-a,b,-b,那么这四个数的大小关系就一目了然.正确解法画数轴.由a>0,b<0知表示a,b的点分别在数轴上原点的右边和左边,且由a<|b|和a>0知|a|<|b|,所以表示a的点离原点较近.因-a,-b与a,b 互为相反数和a<|b|,再找出-a,-b两点(如图).显然,b<-a<a<-b.例15 |x|=±x吗?错解 |x|≠±x.如|2|=2≠±2.诊断出现上述错误的原因是:解题者对绝对值的定义没有理解透彻.我们知道,要去掉绝对值符号,应从绝对值的定义出发,根据x的不同取值情况加以讨论.正确解法当x>0时,|x|=x;当x=0时,|x|=x;当x<0时,|x|=-x.例16 x为何值时,|x+1|=-(x+1).错解当x+1<0,即x<-1时,上式成立.诊断根据绝对值定义,|a|=-a成立的条件是a≤0.上面解答忽视了x+1=0的可能性,使解题失去完整性.正确解法当x≤-1时,|x+1|=-(x+1).例17 某同学归纳出求一个数的绝对值的方法如下:“因为-3的这个数前面的符号去掉,就得到它的绝对值”.这样的方法对吗?错答对.诊断这样求绝对值的方法不对.用这样的方法求绝对值容易出错.如求-a的绝对值,如果用上面的方法,那么就有|-a|=a.事实上,|-a|不一定等于a.因为|-a|是一个非负数,即是正数或0.当a是负数时,|-a|却是一个正数,显然正数不等于负数.因此,求-a的绝对值,应分a>0,a<0,a=0这三种情况讨论,并根据绝对值的定义写出结果.一般地,求一个有理数的绝对值的正确方法是:首先判断这个数是正数,还是负数还是零,然后再根据绝对值的定义去写出结果.如求-3的绝对值时,应这样思考,因为-3是负数,根据“负数的绝对值等于它的相反数”可知,|-3|=-(-3)=3.例18 下列说法中错误的是[ ]A.|x|+1一定大于零.B.|a|一定是非负数.C.若|b-1|取最小值,则b=1.D.|a|+|b|一定是正数.错解选(C).诊断这里的解答之所以选错,原因有两点:一是对绝对值的本质属性——非负性认识模糊;二是对若干个非负数的和的性质理解不清.事实上,任何有理数的绝对值是非负数.所谓“非负数”,即“不是负数”,亦即是“正数或零”.因此,若干个非负数的和仍是非负数,由此可知|a|+|b|是正数或零,这就说明选(D)才是对的.至于选(C)为什么不对?因为|b-1|是正数或零,当|b-1|取最小值时,则b-1=0,故b=1是正确的.例19 已知|a|=8,|b|=2,且|a-b|=b-a,求a和b的值.错解因为|a|=8,所以a=±8,因为|b|=2,所以b=±2.则有a=8,b=2或a=8,b=-2或a=-8,b=2或a=-8,b=-2.诊断我们将a=8,b=2代入等式|a-b|=b-a的两边,显然两边就不相等了.这是因为在解答此题的过程中没有运用|a-b|=b-a这个条件.事实上,由|a-b|=b-a及|a-b|≥0,知b-a≥0,即b≥a.因此,上面得到的a=8,b=2或a=8,b=-2是不符合条件的.所以,只有a=-8,b=2或a=-8,b=-2才为所求.说明学习有理数这一节应注意的几个问题:一、要正确理解“+”“-”号的意义.1.理解为性质符号,如+5,-3,分别读作“正5”、“负3”.2.理解为运算符号,如(+2)+(-3)中(+2)与(-3)之间的“+”就表示加,在(-8)-(-3)中(-8)与(-3)之间的“-”就表示减.3.既可理解为性质符号又可以理解为运算符号.如4-7+6,其中的“+”“-”若理解为性质符号,就读作为“4,负7,正6的和”,若理解为运算符号,则读作为“4减7加6”.但-2-3中-2前面的“-”一定要理解为性质符号,不能读成“减2减3”或“减2负3”,应读成“负2,负3的和”或“负2减3”.二、要正确理解绝对值概念1.为什么要引入绝对值概念?引入正、负数的目的是为了区别具有相反意义的量,但有时又不需要考虑量是否意义相反,而只注意其数量的大小,因此,需要引出一个与正负数相关而又能反映其数量大小的概念——绝对值.此外,引入了正负数后,如何进行它们的加减乘除等运算?为了把带有“+”“-”性质符号的数的运算转化为小学里所学过的数的运算.于是,也需要引出一个新的概念——绝对值.2.绝对值的性质.①每个有理数都有唯一确定的绝对值,它是一个非负数.②在有理数范围内,绝对值最小的数是0.③绝对值等于已知正数a的数有两个,分别是+a和-a,它们互为相反数.④绝对值等于它本身的数是正数或0.3.绝对值的几何意义.一个数的绝对值等于数轴上表示这个数的点到原点的距离,离原点较远的点表示的数的绝对值较大.三、要明确相反数的如下结论1.0的相反数是0.2.互为相反数的两数的和是0.3.互为相反数的两数绝对值相等.4.相反数等于它本身的数是0.四、要注意利用数轴解题有了数轴.任何一个有理数都可以用数轴上的点表示,因此,解决数的问题时,要注意借助数轴思考,前面例14就是借助数轴来解答的.。
人教版七年级数学上册 第二章 有理数的运算易错训练(单元复习 6类易错)
第二章有理数的运算易错训练01易错总结目录易错题型一有理数加减法中的拆项法计算 (1)易错题型二有理数乘除法中的倒数法计算 (2)易错题型三有理数中乘除混合运算易错 (4)易错题型四含乘方的有理数混合运算 (5)易错题型五有理数的混合运算中的新定义型问题................................................................................................5易错题型六有理数运算中的错题复原问题............................................................................................................602易错题型易错题型一有理数加减法中的拆项法计算例题:(23-24七年级上·河南郑州·期中)阅读下面文字:对于3131312210252⎛⎫⎛⎫-+-++ ⎪ ⎪⎝⎭⎝⎭可以如下计算:原式3131312210252⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-++++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦()()3122⎡⎤=-+-+++⎣⎦______0=+______=______.上面这种方法叫拆项法.(1)请补全以上计算过程;(2)类比上面的方法计算:235120242023202220213467⎛⎫⎛⎫-++-+ ⎪ ⎪⎝⎭⎝⎭.巩固训练1.(24-25七年级上·全国·假期作业)折项法计算:3221554410014334⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.2.(24-25七年级上·全国·假期作业)拆项法.计算:75120222021140442486⎛⎫⎛⎫⎛⎫-+-+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.3.(23-24七年级上·四川成都·阶段练习)阅读计算5231591736342⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭的方法,再用这种方法计算2个小题.【解析】原式5231(5)(9)17(3)6342⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+++-+- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦5231[(5)(9)17(3)]6342⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-+-+-++- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦1101144⎛⎫=+-=- ⎪⎝⎭,上面这种解题方法叫做拆项法.(1)计算:231117161523432⎛⎫⎛⎫-++-- ⎪ ⎪⎝⎭⎝⎭;(2)计算522120001999400016332⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.易错题型二有理数乘除法中的倒数法计算例题:(24-25七年级上·全国·随堂练习)阅读材料,回答问题.计算:1155311⎛⎫⎛⎫-÷ ⎪ ⎪⎭-⎝⎝⎭.解:方法一:原式13521151515211515⎛⎫⎛⎫⎛⎫⎛⎫=÷-=-÷-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎭-⎝.方法二:原式的倒数为:()()()111111151515352311553535⎛⎫⎛⎫⎛⎫-÷=-⨯-=⨯--⨯-=-+= ⎪⎝- ⎪ ⎪⎝⎭⎝⎭⎭故原式12=.用适当的方法计算:121123031065⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭.巩固训练1.(23-24七年级上·安徽阜阳·阶段练习)阅读材料:计算:121123031065⎛⎫÷-+- ⎪⎝⎭.分析:利用通分计算211231065-+-的结果很麻烦,可以采用以下方法进行计算.解:原式的倒数211213106530⎛⎫=-+-÷ ⎪⎝⎭21123031065⎛⎫=-+-⨯ ⎪⎝⎭21123030303031065=⨯-⨯+⨯-⨯10=.故原式110=.请你根据对材料的理解,选择合适的方法计算:11572241216243⎛⎫÷-+- ⎪⎝⎭.2.(23-24六年级上·山东威海·期中)【阅读材料】计算:123120542⎛⎫÷-+ ⎪⎝⎭.分析:利用倒数的意义,可以先求原式的倒数,再得出计算的结果.解:由于231123120354220542⎛⎫⎛⎫-+÷-+⨯= ⎪ ⎪⎭⎝⎭=⎝,所以12311205423⎛⎫÷-+= ⎪⎝⎭.【问题解决】根据上述方法,计算:123112346⎛⎫⎛⎫-÷+- ⎪ ⎪⎝⎭⎝⎭.3.(23-24七年级上·河南南阳·阶段练习)阅读下列材料:计算111503412⎛⎫÷-+ ⎪⎝⎭.解法一:原式11150505050350450125503412=÷-÷+÷=⨯-⨯+⨯=.解法二:原式4312505050630012121212⎛⎫=÷-+=÷=⨯= ⎪⎝⎭.解法三:原式的倒数为111503412⎛⎫-+÷ ⎪⎝⎭111111111113412503504501250300⎛⎫=-+⨯=⨯-⨯+⨯= ⎪⎝⎭.故原式300=.(1)上述得出的结果不同,肯定有错误的解法,你认为哪个解法是错误的.(2)请你选择两种合适的解法解答下列问题:计算:113224261437⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭易错题型三有理数中乘除混合运算易错例题:(2024·辽宁鞍山·一模)计算:()()1255-÷-⨯=.巩固训练1.(23-24七年级上·江苏连云港·阶段练习)计算:113333⎛⎫⎛⎫-⨯÷⨯-= ⎪ ⎪⎝⎭⎝⎭.2.(23-24六年级下·上海·期中)计算:111321342⎛⎫⎛⎫⎛⎫-⨯-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.3.(23-24六年级下·上海黄浦·期中)计算:17424122535⎛⎫⎛⎫⎛⎫-÷⨯-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.易错题型四含乘方的有理数混合运算例题:(23-24七年级上·广东湛江·期中)计算:()3202351241⨯-++--.巩固训练1.(23-24六年级下·上海长宁·期中)计算:229125111683⎛⎫⎛⎫-÷-⨯- ⎪ ⎪⎝⎭⎝⎭;2.(23-24六年级下·全国·假期作业)计算:(1)34(2)5(0.64)4+-⨯--÷.(2)21(2)31(0.2)4-+-⨯-÷---.3.(23-24六年级下·全国·假期作业)计算下列各题:(1)22222(3)(6)(2)-+⨯-+-⨯-(2)42112(3)6⎡⎤--⨯--⎣⎦(3)25221(1)31(2)33⎡⎤⎛⎫---⨯--÷-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦(4)22319345121543⎡⎤⎛⎫-⨯-+⨯--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦易错题型五有理数的混合运算中的新定义型问题例题:(23-24七年级上·陕西西安·期中)用“△”定义新运算,对于任意有理数a ,b ,都有2a b a ab =- .例如:27477421=⨯=- .(1)求()35- 的值;(2)若继续用“*”定义另一种新运算2*3a b ab b =-,例如:21*231222=⨯-=⨯.求()()4*23- .巩固训练1.(23-24七年级上·湖北随州·期中)用“☆”定义一种新运算:对于任意有理数a 和b ,规定22a b b ab =+☆,如:214421424.=+⨯⨯=☆(1)计算:54☆的值;(2)计算:()326-⎡⎤⎣⎦☆☆的值.2.(22-23七年级上·江苏镇江·期中)我们定义一种新运算:2*a b a b ab =-+,例如:21*31313=-+⨯.(1)求()()3*2--;(2)求()()()2*2*3---⎡⎤⎣⎦.3.(23-24七年级上·福建龙岩·期中)若定义一种新的运算“*”,规定:22*a b a b =-,如225*35316=-=.(1)求()3*4-的值;(2)通过计算说明()()5*4*2⎡⎤--⎣⎦与()()5*4*2⎡⎤--⎣⎦的值是否相等?易错题型六有理数运算中的错题复原问题例题:(2023秋·山东东营·六年级统考期末)课代表发下作业本之后,小刚同学发现有一个题做错了,检查巩固训练第二章有理数的运算易错训练01易错总结目录易错题型一有理数加减法中的拆项法计算 (1)易错题型二有理数乘除法中的倒数法计算 (2)易错题型三有理数中乘除混合运算易错 (4)易错题型四含乘方的有理数混合运算 (5)易错题型五有理数的混合运算中的新定义型问题................................................................................................5易错题型六有理数运算中的错题复原问题............................................................................................................602易错题型易错题型一有理数加减法中的拆项法计算例题:(23-24七年级上·河南郑州·期中)阅读下面文字:对于3131312210252⎛⎫⎛⎫-+-++ ⎪ ⎪⎝⎭⎝⎭可以如下计算:原式3131312210252⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-++++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦()()3122⎡⎤=-+-+++⎣⎦______0=+______=______.上面这种方法叫拆项法.(1)请补全以上计算过程;(2)类比上面的方法计算:235120242023202220213467⎛⎫⎛⎫-++-+ ⎪ ⎪.1.(24-25七年级上·全国·假期作业)折项法计算:3221 554410014334⎛⎫⎛⎫⎛⎫-+-++-⎪ ⎪ ⎪.()01=+-1=-.2.(24-25七年级上·全国·假期作业)拆项法.计算:75120222021140442486⎛⎫⎛⎫⎛⎫-+-+-+ ⎪ ⎪ ⎪.3.(23-24七年级上·四川成都·阶段练习)阅读计算591736342⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭的方法,再用这种方法计算2个小题.【解析】原式5231(5)(9)17(3)6342⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+++-+- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦5231[(5)(9)17(3)]6342⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-+-+-++- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦1101144⎛⎫=+-=- ⎪⎝⎭,上面这种解题方法叫做拆项法.(1)计算:231117161523432⎛⎫⎛⎫-++-- ⎪ ⎪⎝⎭⎝⎭;(2)计算522120001999400016332⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪.易错题型二有理数乘除法中的倒数法计算例题:(24-25七年级上·全国·随堂练习)阅读材料,回答问题.计算:1155311⎛⎫⎛⎫-÷ ⎪ ⎪⎭-⎝⎝⎭.解:方法一:原式13521151515211515⎛⎫⎛⎫⎛⎫⎛⎫=÷-=-÷-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎭-⎝.方法二:原式的倒数为:()()()111111151515352311553535⎛⎫⎛⎫⎛⎫-÷=-⨯-=⨯--⨯-=-+= ⎪⎝- ⎪ ⎪⎝⎭⎝⎭⎭故原式12=.用适当的方法计算:121123031065⎛⎫⎛⎫-÷-+- ⎪ ⎪.1.(23-24七年级上·安徽阜阳·阶段练习)阅读材料:计算:121123031065⎛⎫÷-+- ⎪⎝⎭.分析:利用通分计算211231065-+-的结果很麻烦,可以采用以下方法进行计算.解:原式的倒数211213106530⎛⎫=-+-÷ ⎪⎝⎭21123031065⎛⎫=-+-⨯ ⎪⎝⎭21123030303031065=⨯-⨯+⨯-⨯10=.故原式110=.请你根据对材料的理解,选择合适的方法计算:11572241216243⎛⎫÷-+- ⎪.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.2.(23-24六年级上·山东威海·期中)【阅读材料】计算:123120542⎛⎫÷-+ ⎪⎝⎭.分析:利用倒数的意义,可以先求原式的倒数,再得出计算的结果.解:由于231123120354220542⎛⎫⎛⎫-+÷-+⨯= ⎪ ⎪⎭⎝⎭=⎝,所以12311205423⎛⎫÷-+= ⎪⎝⎭.【问题解决】根据上述方法,计算:123112346⎛⎫⎛⎫-÷+- ⎪ ⎪.3.(23-24七年级上·河南南阳·阶段练习)阅读下列材料:计算503412⎛⎫÷-+ ⎪⎝⎭.解法一:原式11150505050350450125503412=÷-÷+÷=⨯-⨯+⨯=.解法二:原式4312505050630012121212⎛⎫=÷-+=÷=⨯= ⎪⎝⎭.解法三:原式的倒数为111503412⎛⎫-+÷ ⎪⎝⎭111111111113412503504501250300⎛⎫=-+⨯=⨯-⨯+⨯= ⎪⎝⎭.故原式300=.(1)上述得出的结果不同,肯定有错误的解法,你认为哪个解法是错误的.(2)请你选择两种合适的解法解答下列问题:计算:113224261437⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭易错题型三有理数中乘除混合运算易错例题:(2024·辽宁鞍山·一模)计算:()()1255-÷-⨯=.巩固训练1.(23-24七年级上·江苏连云港·阶段练习)计算:113333⎛⎫⎛⎫-⨯÷⨯-= ⎪ ⎪.2.(23-24六年级下·上海·期中)计算:321342⎛⎫⎛⎫⎛⎫-⨯-÷- ⎪ ⎪ ⎪.3.(23-24六年级下·上海黄浦·期中)计算:4122535⎛⎫⎛⎫⎛⎫-÷⨯-⨯- ⎪ ⎪ ⎪.易错题型四含乘方的有理数混合运算例题:(23-24七年级上·广东湛江·期中)计算:()3202351241⨯-++--.【答案】6【分析】本题考查了有理数的混合运算,先计算乘除,再加减即可,熟知计算法则是解题的关键。
第二章 有理数及其运算专题训练3 有理数中的六种易错类型(含答案)
专训2 有理数中的六种易错类型对有理数有关概念理解不清造成错误1.下列说法正确的是( )A .最小的正整数是0B .-a 是负数C .符号不同的两个数互为相反数D .-a 的相反数是a2.已知|a |=7,则a =________.误认为|a |=a ,忽略对字母a 分情况讨论3.如果一个数的绝对值等于它本身,那么这个数一定是( )A .负数B .负数或零C .正数或零D .正数4.已知a =8,|a |=|b |,则b 的值等于 ( )A .8B .-8C .0D .±8对括号使用不当导致错误5.计算:-7-5. 6.计算:2-⎝⎛⎭⎫-15+14-12.忽略或不清楚运算顺序7.计算:-81÷94×49÷(-16). 8.计算:-5-(-5)×110÷110×(-5).乘法运算中确定符号与加法运算中的符号规律相混淆9.计算:⎝⎛⎭⎫-214×⎝⎛⎭⎫-345. 10.计算:-36×⎝⎛⎭⎫712-56-1.除法没有分配律11.计算:24÷⎝⎛⎭⎫13-18-16.参考答案1.D 2.±7 3.C4.D 点拨:因为|a |=|b |=8,所以b =±8.5.解:原式=-7+(-5)=-12.6.解:原式=2+15-14+12=2920. 7.解:原式=-81×49×49×(-116)=1. 点拨:本题易出现“原式=-81÷1÷(-16)=8116”的错误. 8.解:原式=-5-(-5)×110×10×(-5)=-30. 9.解:原式=(-94)×(-195)=17120. 点拨:解本题时常常会出现乘法运算中积的符号的确定与加法运算中和的符号的确定相混淆的错误.如:(-214)×(-345)=-(94×195)=-17120. 10.解:原式=-36×712-(-36)×56-(-36)×1 =-21+30+36=45.11.解:原式=24÷⎝⎛⎭⎫824-324-424 =24÷124=576.点拨:解本题时往往会出现将乘法分配律运用到除法运算中的错误,从而出现“原式=24÷13-24÷18-24÷16=72-192-144=-264”这样的错误.。
第二章--《有理数及其运算》易错题及难题.docx
第二章《有理数及其运算》易 、考点一:有理数的分 及 用 (☆☆☆ ) 1. 下列 法正确的是( ).A. 数 0 是最小的整数B.若│ a │ =│b │, a=b C.互 相反数的两数之和 零 D. 两个有理数,大的离原点2. 若两个有理数的和是正数,那么一定有 ()A. 两个加数都是正数B.两个加数有一个是正数 C.一个加数正数 , 另一个加数 零D. 两个加数不能同 数3、 1-2+3-4+5-6+ ⋯⋯ +2015-2018 的 果不可能是()A. 奇数B.偶数C.数D.整数4. 某粮店出售的三种品牌的面粉袋上分 有 量( 25± 0.1 )kg ,( 25± 0.?2 )kg ,( 25±0.3 ) kg 的字 ,从中任意拿出两袋,它 的 量最多相差( )A 、 0.8kg B、 0.6kgC、 0.5kg D、0.4kg考点二:数 ( ☆☆☆ )5.a,b,c三个数在数 上的位置如 所示, 下列 中 的是 ( )A.a+b<0B.a+c<0C.a -b>0D.b - c<06. 在数 上表示下列各数:5,-|-3.5|, 21,|-1| ,+4,0,并用“<”号把 些数22接起来.7.-5____-3( 填“>”、“=”、“<”)64考点三:相反数 ( ☆☆ )8. 倒数是它本身的数是;相反数是它本身的数是; 是它本身的数是,最小的数是________.9.-m 的相反数是, -m+1 的相反数是10. 已知 -a=9 ,那么 -a 的相反数是 ;已知, m+1的相反数是a=-9 , a 的相反数是 ..11. 两个非零有理数的和是 0, 它 的商 ( ) A.0B.-1C.+1D.不能确定考点四:( ☆☆☆☆☆ )12. 已知数 上的三点 A 、 B 、C 分 表示有理数 a , 1, -1 ,那么 |a+1| 表示 ( )A.A 、 B 两点的距离B.A、C 两点的距离C.A 、 B 两点到原点的距离之和D.A 、C 两点到原点的距离之和13. 已知 |m|=-m ,化 |m-1|-|m-2| 所得的 果是 _______14. 若 a 是有理数, |-a|-a 一定是()A.零 B. 非 数 C. 正数D. 数 ※若 |x-2|+x-2=0 ,那么 x 的取 范 是 ( ) A.x ≤ 2 B.x ≥ 2 C.x=2D.任意 数15. 互不相等的有理数 a 、b 、c 在数 上的 点分A 、B 、C ,如果 |a-b|+|b-c|=|a-c|,那么点 A 、B 、 C 在数 上的位置关系是( )A.点 A 在点 B 、C 之B. 点 B 在点 A 、C 之C.点 C 在点 A 、B 之D.以上三种情况均有可能16、(1) 若 |x+1|=3 , x=_______. (2) 大于1 且不大于 5 的所有整数的和 _______.17. 已知 |a|=3 , |b|=1,且 |a-b|=b-a ,那么 a+b=______.18. 若 |2-a|+|b+1.5|+|c+4|=0, a-b+c × (b-c)=_____.19.代数式 15-|x+y| 的最大值是 ______, 当此代数式取最大值时,x 与 y 的关系是 ______.20.若 x< 0, 3x+2|x|=m ,则 m____0.( 填“>”、“ =”、“<” )21.(1) 已知有理数 a、 b、 c 在数轴上的对应点如图所示,化简:|b-a|+|a+c|-2|c-b|.(2)设 a、b、c 为非零的有理数,且 |a|+a=0 ,|ab|=ab ,|c|-c=0 ,化简:|b|-|a+b|-|c-b|+|a-c|(3)当 x=- π时,求3|x+1|-|x+2|+|x+3|-|x+4|+|x+5|-|x+6|+|x+7|-|x+8|+|x+9|-|x+10|+|x+11|-|x+12|+|x+13| .(4) 如图表示数轴上四个点的位置关系,且它们表示的数分别为p,q, r , s,若 |p-r|=10,|p-s|=12,|q-s|=9,则|q-r|=( ) A.7 B.9 C.11 D.1322.设 x 是有理数, y=|x-1|+|x+1|,下列结论正确的是( )A.y 没有最小值B.只有一个 x, 使 y 取得最小值C.只有有限多个x, 使 y 取得最小值D.有无穷多个 x, 使 y 取得最小值23.若 |x+2|+|x-4|≥ a 恒成立,则 a 的取值范围为 ______.24.设 a、 b 同时满足:① (a-2b)2+|b-1|=b-1 ;② |a-4|=0.那么 ab=_____.25.若 2x+|4-5x|+|1-3x|+4的值恒为常数,则此常数的值为______.26.(1) 若abc≠0,则+++的可能取值有种(2)有理数 a、b、c 均不为零,且a+b+c=0,设|a |+| b |+| c |的最大值是 x,最小值是y,试求代数式x2-99xy+2018 的值 .b c a c a b27. 数轴上两点间的距离等于这两点所对应的数的差的绝对值.例:如图所示,点A、B在数轴上分别对应的数为a、 b,则 A、 B 两点间的距离表示为|AB|=|a-b|.根据以上知识解题:(1)若数轴上两点 A、 B 表示的数为 x、 -1 ,①A、 B 之间的距离可用含x 的式子表示为 _____;②若该两点之间的距离为2,那么 x 值为 ______.(2)|x+1|+|x-2|的最小值为______,此时x的取值是______;(3) 若 |x+1|+|x-2|+|x-3|取最小值时,相应的 x 的取值是 _____, 此最小值是 _____.(4)如图,在一条数轴上有依次排列的5 台机床 A、 B、 C、 D、 E 在工作,现要设置一个零件供应站 P,使这 5 台机床到供应站P 的距离总和最小,供应站P 建在哪?最小值为多少?(5) 已知 (|x+1|+|x-2|)(|y-3|+|y+2|)=15,求x-2y的最大值和最小值.(6) 已知 |x+2|+|1-x|=9-|y-5|-|1+y| ,求 x+y 的最大值和最小值 .(7) 已知 a 、b 、c 、 d 是有理数, |a-b| ≤9 ,且 |c-d| ≤ 16,且 |a-b-c+d|=25 ,求 |b-a|-|d-c|的值 .28. 化简: 2|x-2|-|x+4| 求|x-1|-4|x+1| 的最大值 .29.(1) 满足 |a-b|+ab=1的非负整数 (a ,b) 的个数是 ( ) A.1 B.2 C.3 D.4(2) 若 a 、 b 、 c 为整数,且 |a-b| 19+|c-a|99=1,试计算 |c-a|+|a-b|+|b-c| 的值 .30. 已知有理数 x,m 满足 |x+4|+|x-9|=13-(m-2) 2,求 |x-2|+|x-8| 的最大值31. 已知 |x| ≤ 1, |y| ≤ 2,且 k=|x+y|+|y+2|+|2y-x-6| ,求 k 的最大值和最小值.考点五:有理数的计算 (☆☆☆ )32. 计算:(直接写出结果) (1) 1 +(- 2 2) =_______; (2)- 2- 22=_____;23(3) (- 0.25 )×(- 1 1 )=______; (4) (-12)÷(- 3)=_____;3-(-1255(5) 9 - 33=_____; (6) ) 2+(- 2) 2=______.233. 计算:(1) ( 1 + 1 + 1 - 4 + 1)×(- 60); (2) (- 1.5 ) 2×( 1 1)2-(- 0.2 ) 3×( +20) 2;2 3 45 63(3)[30 -(7 +5- 11 )× 36] ÷(- 5); (4) - 14-( 1- 0.5 )× 1×[1 -(- 2)2] .9 6 12 3(5)15(10) ( 10 ) (15) (6)15 (3) (15) (7) (2) (8)834考点六:有理数的应用 (☆☆☆ )34. 某工厂某周计划每日生产自行车 100 辆,由于每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(增加的为正数,减少的为负数),则本周是增加还是减少?_______, 生 量_______.星期 一增加/-1二+3三- 2四+4五+7六- 5 日- 1035. 一天小明和冬冬利用温差来 量山峰的高度。
北师大版七年级数学上册第二章《有理数及其运算》复习题含答案解析 (1)
一、选择题1. 对于任意非零实数 a ,b ,定义运算“⊕”,使下列式子成立;1⊕2=−32,2⊕1=32,(−2)⊕5=2110,5⊕(−2)=−2110,⋯,则 (−3)⊕(−4)= ( ) A .712B . −712C .2512D . −25122. 如图所示,数轴上标出若干个点,每相邻两点相距一个单位长度,点 A ,B ,C ,D 对应的数分别是数 a ,b ,c ,d ,且 d −2a =11,那么数轴上原点的位置应在 ( )A .点 AB .点 BC .点 CD .点 D3. 若 √x −1+(y +2)2=0,则 (x +y )2020 等于 ( ) A . −1 B . 1C . 32020D . −320204. 下列各正方形中的四个数之间都有相同的规律,根据此规律,x 的值为 ( ) 1429 26320 38435⋯⋯⋯a18b xA . 135B . 153C . 170D . 1895. 如图,数轴上 A ,B ,C 三点所表示的数分别为 a ,b ,c ,且 AB =BC .如果有 a +b <0,b +c >0,a +c <0,那么该数轴原点 O 的位置应该在 ( )A .点 A 的左边B .点 A 与 B 之间C .点 B 与 C 之间D .点 C 的右边6. 定义一种新运算:a ⋇b ={a −b,a ≥b3b,a <b ,则 2⋇3−4⋇3 的值 ( )A . 5B . 8C . 7D . 67. 已知 4−∣5−b∣−∣a +2∣=∣4+a∣+∣b −3∣,则 ab 的最大值是 ( ) A . −12 B . 20 C . −20 D . −68. 如图所示,数轴上点 A ,B 对应的有理数分别为 a ,b ,下列说法正确的是 ( )A . ab >0B . a +b >0C . ∣a∣−∣b∣<0D . a −b <09. 王老师有一个实际容量为 1.8 GB (1 GB =220 KB ) 的 U 盘,内有三个文件夹.已知课件文件夹占用了 0.8 GB 的内存,照片文件夹内有 32 张大小都是 211 KB 的旅行照片,音乐文件夹内有若干首大小都是 215 KB 的音乐.若该 U 盘内存恰好用完,则此时文件夹内有音乐 ( ) 首. A . 28 B . 30 C . 32 D . 3410. 一串数字的排列规律是:第一个数是 2,从第二个数起每一个数与前一个数的倒数之和为 1,则第 2020 个数是 ( ) A . 2B . −2C . −1D . 12二、填空题11. 对于正整数 n ,定义 F (n )={n 2,n <10f (n ),n ≥10,其中 f (n ) 表示 n 的首位数字、末位数字的平方和.例如:F (6)=62=36,F (123)=12+32=10.规定 F 1(n )=F (n ),F k+1(n )=F(F (n ))(k 为正整数),例如,F 1(123)=F (123)=10,F 2(123)=F(F 1(123))=F (10)=1.按此定义,则由 F 1(4)= ,F 2019(4)= .12. 有理数 a ,b ,c 在数轴上的位置如图所示,化简:−∣c −a ∣−∣b −a ∣+∣c ∣= .13. 我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的,绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到野果 个.14. 定义新运算:对任意有理数 a ,b ,c ,都有 a ∗b ∗c =∣a−b−c∣+a+b+c2.例如:(−1)∗2∗3=∣−1−2−3∣+(−1)+2+32=5.将 −716,−616,−516,−416,−316,−216,−116,816,916,1016,1116,1216,1316,1416,1516 这 15 个数分成 5 组,每组 3 个数,进行 a ∗b ∗c 运算,得到 5 个不同的结果,那么 5 个结果之和的最大值是.15.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为个.×1×22,16.已知:13=1=14×22×32,13+23=9=14×32×42,13+23+33=36=14×42×52,13+23+33+43=100=14⋯根据上述规律计算:13+23+33+⋯+193+203=.17.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为个.三、解答题18.计算:÷(−3)2];(1) −3−[−5+15×35(2) −12022+(−2)×(−3)2−(−2)3÷4.19.已知抛物线G:y=x2−2tx+3( t为常数)的顶点为P.(1) 求点P的坐标;(用含t的式子表示)(2) 在同一平面直角坐标系中,存在函数图象H,点A(m,n1)在图象H上,点B(m,n2)在抛物线G上,对于任意的实数m,都有点A,B关于点(m,m)对称.①当t=1时,求图象H对应函数的解析式;②当1≤m≤t+1时,都有n1>n2成立,结合图象,求t的取值范围.20.阅读下面材料:数轴是数形结合思想的产物.有了数轴以后,可以用数轴上的点直观地表示有理数,这样就建立起了“数”与“形”之间的联系,在数轴上,若点A,B分别表示数a,b,则A,B 两点之间的距离为AB=∣a−b∣,反之,可以理解式子∣x−3∣的几何意义是数轴上表示有理数x与有理数3的两点之间的距离.根据上述材料,利用数轴解决下列问题:(1) 若∣x−3∣=2,则x的值为;若∣x−5∣=∣x+1∣,则x的值为‘(2) 当x在什么范围时,∣x−2∣+∣x−5∣有最小值?并求出它的最小值.(3) 若a<2<b,在数轴上是否存在数x,使得∣x−a∣+2∣x−2∣+∣x−b∣的值最小?若存在,请求出最小值及x的值;若不存在,请说明理由.21.一个四位数,记千位上和百位上的数字之和为x,十位上和个位上的数字之和为y,如果x=y,那么称这个四位数为“和平数”.(1) 直接写出:最小的“和平数”是;最大的“和平数”是.(2) 一个“和平数”,十位数字为方程5x−13=3的解,千位数字与个位数字的比为2:3,百位数字比千位数字小1,求这个“和平数”.(3) 将一个“和平数”的个位上与十位上的数字交换位置,同时,将百位上与千位上的数字交换位置,称交换前后的这两个“和平数”为一组“相关和平数”.例如:1423与4132为一组“相关和平数”.请直接写出:和是3333的所有“相关和平数”.22.某校初2021届1到4班计划每班购买数量相同的图书布置班级读书角,但是由于种种原因,实际购书量与计划有出入,下表是实际购书情况:班级1班2班3班4班实际购数量(本)3321实际购数量与计划购数量的差值(本)+12−8−9(1) 完成表格;(2) 根据记录的数据可知4个班实际一共购书本?(3) 书店给出两种优惠方案,方案甲:一次购买不少于15本,其中2本书免费;乙方案:如果一次性购书不少于20本,总价9折优惠,假设每本书售价为30元,请你计算初2021届1班实际购书最少花费多少元?23.观察下列两个等式:2−13=2×13+1,5−23=5×23+1,给出定义如下:我们称使等式a−b=ab+1成立的一对有理数对“a,b”为“共生有理数对”,记为(a,b).”是不是“共生有理数对”;(1) 通过计算判断数对“−4,2”,“7,34(2) 若(3,x)是“共生有理数对”,求x的值;(3) 若(m,n)是“共生有理数对”,则“−n,−m” 共生有理数对”(填“是”或“不是”),并说明理由.24.计算:已知∣m∣=1,∣n∣=4.(1) 当mn<0时,求m+n的值;(2) 求m−n的最大值.25.如图,圆的半径为2个单位长度.数轴上每个数字之间的距离为1个单位长度,在圆的4等分π点处分别标上点A,B,C,D.先让圆周上的点A与数轴上表示−1的点重合.(1) 圆的周长为多少?(2) 若该圆在数轴上向右滚动2周后,则与点A重合的点表示的数为多少?(3) 若将数轴按照顺时针方向绕在该圆上(如数轴上表示−2的点与点B重合,数轴上表示−3的点与点C重合⋯),那么数轴上表示−2018的点与圆周上哪个点重合?答案一、选择题1. 【答案】B【解析】1⊕2=−32=12−221×2,2⊕1=32=22−121×2,(−2)⊕5=2110=(−2)2−52(−2)×5,5⊕(−2)=−2110=52−(−2)25×(−2),⋯,a⊕b=a2−b2ab,∴(−3)⊕(−4)=(−3)2−(−4)2(−3)×(−4)=−712.【知识点】有理数的加减乘除乘方混合运算2. 【答案】C【解析】若原点是A,则a=0,d=7,此时d−2a=7,和已知不符,排除;若原点是点B,则a=−3,d=4,此时d−2a=10,已知不符,排除,若原点是点C,则a=−4,d=3,此时d−2a=11,和已知相符,正确.故数轴的原点应是C点.【知识点】绝对值的几何意义3. 【答案】B【解析】∵√x−1+(y+2)2=0,∴x−1=0,y+2=0,∴x=1,y=−2,∴(x+y)2020=(1−2)2020=1.【知识点】有理数的乘方、算术平方根的性质4. 【答案】C【知识点】有理数的乘法5. 【答案】C【解析】因为AB=BC,a+b<0,b+c>0,a+c<0,所以a<0,b<0,c>0,所以数轴原点O的位置应该在点B与点C之间.故选:C.【知识点】有理数的加法法则及计算、数轴的概念6. 【答案】B【解析】2⋇3−4⋇3 =3×3−(4−3) =9−1=8.【知识点】有理数的乘法7. 【答案】D【解析】4−∣5−b∣−∣a+2∣=∣4+a∣+∣b−3∣即为4=∣5−b∣+∣a+2∣+∣4+a∣+∣b−3∣,由绝对值不等式的性质可得:∣a+2∣+∣a+4∣≥2,∣5−b∣+∣b−3∣≥2,∴−4≤a≤−2,3≤b≤5,∴ab的最大值为−6.【知识点】绝对值的几何意义8. 【答案】D【解析】根据图示,可得a<0<b,而且∣a∣>∣b∣,∵a<0<b,∴ab<0,∴选项A不正确;∵a<0<b,而且∣a∣>∣b∣,∴a+b<0,∴选项B不正确,选项D正确;∵∣a∣>∣b∣,∴∣a∣−∣b∣>0,∴选项C不正确.【知识点】绝对值的几何意义、利用数轴比较大小9. 【答案】B【知识点】有理数的乘方10. 【答案】A【解析】第一个数是2,倒数是12,第二个数是12,倒数是2,第三个数是−1,倒数是−1.第四个数是2.由规律可知,这串数由2,12,−1循环出现2020÷3=673⋯1,∴ 第 2020 个数是 2. 【知识点】倒数二、填空题11. 【答案】 16 ; 58【解析】 F 1(4)=16,F 2(4)=F (16)=12+62=37,F 3(4)=F (37)=32+72=58,F 4(4)=F (58)=52+82=89, F 5(4)=F (89)=82+92=145,F 6(4)=F (145)=12+52=26, F 7(4)=F (26)=22+62=40,F 8(4)=F (40)=42+0=16,⋯ 通过计算发现,F 1(4)=F 8(4), ∵2019÷7=288⋯3, ∴F 2019(4)=F 3(4)=58. 【知识点】有理数的乘方12. 【答案】 −b【解析】由数轴可知 c <0<a <b , ∴c −a <0,b −a >0, ∴−∣c −a ∣−∣b −a ∣+∣c ∣=c −a −(b −a )+(−c )=c −a −b +a −c =−b.【知识点】绝对值的几何意义13. 【答案】 1838【解析】由题意可知,题图中从右到左依次排列的绳子分别代表绳结数乘 1,6 的 1 次幂,6 的 2 次幂,6 的 3 次幂,6 的 4 次幂,则她一共采集到野果 2×1+3×62+2×63+1×64=1838(个).【知识点】有理数的乘方14. 【答案】158【解析】令 b ,c 取最大的正数 1416,1516,a 取最小的负数 −716, ∴a ∗b ∗c =∣∣−716−1416−1516∣∣−716+1416+15162=158.【知识点】有理数的加减乘除乘方混合运算15. 【答案】 1838【解析】 2+0×6+3×6×6+2×6×6×6+1×6×6×6×6=1838. 【知识点】有理数的乘方16. 【答案】44100【解析】∵13=14×12×22,13+23=14×22×32,13+23+33=14×32×42,∴13+23+33+⋯+193+203=14×202×212=44100.【知识点】有理数的乘方17. 【答案】1838【解析】2+0×6+3×6×6+2×6×6×6+1×6×6×6×6=1838.【知识点】有理数的乘法三、解答题18. 【答案】(1)−3−[−5+15×35÷(−3)2]=−3−(−5+15×35÷9)=−3−(−5+9÷9)=−3−(−5+1)=−3−(−4)=−3+4= 1.(2)−12022+(−2)×(−3)2−(−2)3÷4 =−1+(−2)×9−(−8)÷4=−1+(−18)+2=−17.【知识点】有理数的加减乘除乘方混合运算19. 【答案】(1) y=x2−2tx+3=x2−2tx+t2−t2+3=(x−t)2−t2+3.∴顶点P的坐标为(t,−t2+3).(2) ①当t=1时,得G的解析式为:y=x2−2x+3,点B(m,n2)在G上,∴n2=m2−2m+3,∵点A(m,n1)与点B关于点(m,m)对称,则点A,B到点(m,m)的距离相等,此三点横坐标相同,有n2−m=m−n1.∴(m2−2m+3)−m=m−n1,整理,得n1=−m2+4m−3,由于m为任意实数,令m为自变量x,n1为y.即可得H的解析式为:y=−x2+4x−3;②关于抛物线G的性质:点B(m,n2)在G上,∴n2=m2−2tm+3,由G:y=x2−2tx+3,知抛物线G开口向上,对称轴为x=t,顶点P(t,−t2+3),且图象恒过点(0,3).∴当t≤x≤t+1时,图象G的y随着x的增大而增大.当x=t+1时,y取最大值−t2+4;当x=t时,y取最小值−t2+3;最大值比最小值大1.关于图象H的性质:∵点A(m,n1)与点B关于点(m,m)对称,有n2−m=m−n1,(m2−2tm+3)−m=m−n1,整理,得n1=−m2+2tm+2m−3.∴图象H的解析式为:y H=−x2+2tx+2x−3.配方,得y H=−[x−(t+1)]2+(t2+2t−2)∴图象H为一抛物线,开口向下,对称轴为x=t+1,顶点P(t+1,t2+2t−2),且图象恒过点(0,−3).∴当t≤x≤t+1时,图象H的y随着x的增大而增大.当x=t+1时,y取最大值t2+2t−2;当x=t时,y取最小值y=t2+2t−3,即过Q(t,t2+2t−3);最大值比最小值大1.情况1:当P,Q两点重合,即两个函数恰好都经过(t,t),(t+1,t+1)时,把(t,t)代入y=x2−2tx+3得t=t2−2t⋅t+3,解得,t=−1+√132或t=−1−√132.分别对应图3,图4两种情形,由图可知,当m=t,或m=t+1时,A与B重合,即有n1=n2,不合题意,舍去;情况2:当点P在点Q下方,即t>−1+√132时,大致图象如图1,当t<−1−√132时,大致图象如图2,都有点A在点B的上方,即n1>n2成立,符合题意;情况3:当点P在点Q上方,即−1−√132<t<−1+√132时,大致图象如图5,图6,当t≤m≤t+1时,存在A在B的下方,即存在n1<n2,不符合题意,舍去;综上所述,所求t的取值范围为:t>−1+√132或t<−1−√132.【知识点】二次函数的顶点、二次函数的最值、二次函数与不等式、y=ax^2+bx+c的图象20. 【答案】(1) 5或1;2(2) 当2≤x≤5时,∣x−2∣+∣x−5∣有最小值,最小值是3,当x>5时,x−2+x−5=2x−7>3,当2≤x≤5时,x−2+5−x=3,当x<2时,2−x+5−x=7−2x>3,故当2≤x≤5时,∣x−2∣+∣x−5∣有最小值,最小值是3.(3) ∵∣x−a∣+2∣x−2∣+∣x−b∣表示数x分别与a,2,b的距离之和,∴x=2时,∣x−a∣+2∣x−2∣+∣x−b∣的值最小,∵a<2<b,∴∣x−a∣+2∣x−2∣+∣x−b∣的最小值是2−a+b−2=b−a.故x=2时,∣x−a∣+2∣x−2∣+∣x−b∣的值最小,最小值是b−a.【解析】(1) ∵∣x−3∣=2,∴x−3=±2,∴x=5或1,∵∣x−5∣=∣x+1∣,∴x=2,故为5或1;2.【知识点】绝对值的几何意义21. 【答案】(1) 1001;9999.(2) x=2;6529.(3) 1212与2121;1221与2112;1203与2130;1230与2103.【知识点】一元一次方程的解、有理数的加法法则及计算22. 【答案】(1) 由于4班实际购入21本书,实际购入数量与计划购入数量的差值=−9,可得计划购入数量=30(本),所以一班实际购入30+12=42本,二班实际购入数量与计划购入数量的差值=33−30=3本,3班实际购入数量=30−8=22本.故答案依次为42,+3,22.(2) 118(3) 如果按甲方案购书,花费=30×38=1140(元)(购买两次),如果按乙方案购书,则共花费=30×42×90%=1134(元).故按乙方案购入书花费最少为1134元.【解析】(2) 4个班一共购入数量=42+33+22+21=118本,另解:4个班一共购入数量=30×4+12+3−8−9=118.故答案为118.【知识点】有理数减法的应用、有理数乘法的应用、有理数加法的应用23. 【答案】(1) −4−2=−6,−4×2+1=−7,∴−4−2≠−4×2+1,∴“−4,2”不是“共生有理数对”;∵7−34=614,7×34+1=614,∴7−34=7×34+1,∴(7,34)是共生有理数对.(2) 由题意得:3−x=3x+1,解得x=12.(3) 是理由:−n−(−m)=−n+m,−n⋅(−m)+1=mn+1,∵(m,n)是“共生有理数对”,∴m−n=mn+1,∴−n+m=mn+1,∴(−n,−m)是“共生有理数对”.【知识点】有理数的乘法、有理数的减法法则及计算、解常规一元一次方程24. 【答案】(1) 因为∣m∣=1,∣n∣=4,所以m=±1,n=±4,因为mn<0,所以m=1,n=−4或m=−1,n=4,所以m+n=±3.(2) m=1,n=4时,m−n=−3;m=−1,n=−4时,m−n=3;m=1,n=−4时,m−n=5;m=−1,n=4时,m−n=−5;所以m−n的最大值是5.【知识点】有理数的减法法则及计算、有理数的加法法则及计算25. 【答案】(1) 圆的周长=2π⋅2π=4个单位长度.(2) 若该圆在数轴上向右滚动2周后,点A需要滚动8个单位长度,此时与点A重合的点表示的数为:8−1=7.(3) 由图可知,每4个数为一个循环组依次循环,∵2018÷4=504⋯2,∴表示−2018的点是第505个循环组的第2个数B重合.【知识点】数轴的概念、圆的周长。
第二章有理数及其运算答案
第二章有理数及其运算专题一:有理数1.下列各数中,大于-21小于21的负数是( B ) A.-32B.-31C.31D.02.大于-5.1的所有负整数为___-1,-2,-3,-4,-5;__.3.珠穆朗玛峰高出海平面8848米,表示为+8848米.吐鲁番盆地低于海平面155米,表示为__-155米__.专题二:数轴与相反数1.关于相反数的叙述错误的是( C )A.两数之和为0,则这两个数为相反数B.如果两数所对应的点到原点的距离相等,这两个数互为相反数C.符号相反的两个数,一定互为相反数D.零的相反数为零2.若数轴上A 、B 两点所对应的有理数分别为a 、b ,且B 在A 的右边,则a -b 一定( B )A.大于零B.小于零C.等于零D.无法确定3.在数轴上距离原点为2的点所对应的数为__±2___,它们互为__相反数___. 4.数轴上A 、B 、C 三点所对应的实数为-32,-43,54,则此三点距原点由近及远的顺序为__ ABC __. 5.写出大于-4.1小于2.5的所有整数,并把它们在数轴上表示出来..-4,-3,-2,-1,0,1,26.下图是一个长方体纸盒的展开图,请把-5,3,5,-1,-3,1分别填入六个长方形,使得按虚线折成长方体后,相对面上的两数互为相反数.专题三:绝对值1.若a >0,b <0,且|a |<|b |,则a +b 一定是( B )A.正数B.负数C.非负数D.非正数2.下列说法正确的是( C )A.一个有理数的绝对值一定大于它本身B.只有正数的绝对值等于它本身C.负数的绝对值是它的相反数D.一个数的绝对值是它的相反数,则这个数一定是负数 3.下列结论正确的是( B )A.若|x |=|y |,则x =-yB.若x =-y ,则|x |=|y |C.若|a |<|b |,则a <bD.若a <b ,则|a |<|b |4.绝对值大于2.5小于7.2的所有负整数为__-7,-6,-5,-4,-3___.5.甲、乙两同学进行数字猜谜游戏:甲说一个数a 的相反数就是它本身,乙说一个数b 的倒数也等于本身,请你猜一猜|a-b|= 1专题四:有理数的加减法1.有理数a ,b 在数轴上对应位置如图所示,则a +b 的值为( B )A.大于0B.小于0C.等于0D.大于a 2.下列结论不正确的是( D )A.若a >0,b >0,则a +b >0B.若a <0,b <0,则a +b <0C.若a >0,b <0,则|a |>|b |,则a +b >0D.若a <0,b >0,且|a |>|b |,则a +b >03.-21与32的相反数的绝对值之和是___61___. 4.已知a 、b 互为相反数,c 是绝对值最小的数,d 是负整数中最大的数,则a +b +c -d =___1__. 5.若|2x -3|+|3y +2|=0,则x -y =___613__. 6.计算: (1)-31+41-65+73 (2)-341-(-265)+352-8441601797.已知a =2,b =-3,c =-1,计算|a -b |+|b -c -a |+|3b -4c |.148.10名学生体检测体重,以50千克为基准,超过的数记为正,不足的数记为负,称得结果如下(单位:千克):2,3,-7.5,-3,5,-8,3.5,4.5,8,-1.5这10名学生的总体重为多少?10名学生的平均体重为多少?解:2+3+(-7.5)+(-3)+5+(-8)+3.5+4.5+8+(-1.5)=2+3-7.5-3+5-8+3.5+4.5+8-1.5=2+5+3.5+4.5+3-3-8+8-7.5-1.5=6,因此,10名学生的总体重为:50×10+6=506(千克),10名学生的平均体重为:506÷10=50.6(千克)专题五:有理数的乘除法1.若mn >0,则m ,n ( C )A.都为正B.都为负C.同号D.异号2.如果两数之和等于零,且这两个数之积为负数,那么这两个数只能是( C )A.两个互为相反数的数B.符号不同的两个数C.不为零的两个互为相反数的数D.不是正数的两个数3.如果一个数的绝对值与这个数的商等于-1,则这个数是( B )A.正数B.负数C.非正D.非负4.下列运算错误的是( A )A.31÷(-3)=3×(-3) B.-5÷(-21)=-5×(-2) C.8-(-2)=8+2D.0÷3=05.计算:(1)121×75-(-75)×221+(-21)×75 (2)492524×(-5) 52-24954.(3)[432×(-145)+(-0.4)÷(-254)]×1511专题六:有理数的乘方1.如果a 2=a ,那么a 的值为( C )A.1B.0C.1或0D.-1 2.一个数的平方等于16,则这个数是( C )A.+4B.-4C.±4D.±8 3.a 为有理数,则下列说法正确的是( C )A.a 2>0B.a 2-1>0C.a 2+1>0D.a 3+1>0 4.下列式子中,正确的是( C )A.-102=(-10)×(-10)B.32=3×2C.(-21)3=-21×21×21D.23=325.(-2)3的底数是____-2___,结果是___-8____;-32的底数是___3____,结果是___-9____.6.n 为正整数,则(-1)2n =___1____,(-1) 2n +1=___-1____.7.一个数的平方等于这个数本身,则这个数为___0或1____;一个数的立方与这个数的差为0,则这个数是____±1或0__.专题七:有理数的混合运算1.下列各数中与(-2-3)5相等的是( B )A.55B.-55C.(-2)5+(-3)5D.(-2)5-35 2.某数的平方是41,则这个数的立方是( C )A.81 B.-81 C.81或-81 D.+8或-83.下列语句中,错误的是( C )A.a 的相反数是-aB.a 的绝对值是|a |C.(-1)99=-99D.-(-22)=44.计算:(-3)2÷51×0-45=___-45____. 5.计算题(1)-7×6×(-2) (2)(-20)×(-1)7-0÷(-4)84 20(3)(-2)2×(-1)3-3×[-1-(-2)] (4)23-32-(-4)×(-9)×0-7 -16.当x =-1,y =-2,z =1时,求(x +y )2-(y +z )2-(z +x )2的值.87.计算:(1)-33×(-5)+16÷(-2)3-|-4×5|+(85-0.625)2 113(2)(-1)-(-521)×114+(-8)÷[(-3)+5] (4)25×43-(-25)×21+25×41 -3 2758(单位:元)23×500+[(+1.5)×1000+(-3)×1000]-[(-2)×500]= =请你计算一下,投资者到底赔了还是赚了,赔或赚了多少元?=8×500+[-1.5×1000]-(-1000)=4000-1500+1000=3500(元) 赚了 , 赚了3500元.。
七年级数学上册第二章有理数2.6有理数的乘法与除法有理数乘除错解例析素材苏科版
有理数乘除错解例析在进行有理数乘除运算中,如果计算不细心,对于运算法则,运算顺序不熟练,就容易出现一些解题中的错误,现总结如下:一、混淆符号法则出错例1 计算:(211-)×(322-)×(—1) 错解:原式=(23-)×(38-)×(-1)=4 剖析:对乘法法则中“两数相乘,同号得正,异号得负”理解不透,三个有理数相乘,应根据负因数的个数确定符号,而不能只看是同号还是异号.正解:原式=(23-)×(38-)×(-1)=4- 二、违背运算顺序出错例2 计算:(311-)÷(3-)×(31-) 错解:原式=(311-)÷1=311- 剖析:没有按照“同级运算,从左到右”的顺序进行,掉进了出题人设计的“陷阱”,有理数运算,不能违背运算顺序.正解:原式=(34-)×(31-)×(31-)=274- 三、对负带分数理解不清出错例3 计算:251542⨯- 错解:原式=(2-+154)25⨯=252⨯-25154⨯+=32050+-=3143- 剖析:将负带分数1542-错误地理解为1542+-,负带分数的整数部分和分数部分都是负数,即 1542-=1542--. 正解:原式=(2--154)25⨯=252⨯-25154⨯-=32050--=3256- 四、违背去括号法则出错例4 计算:+---5[3(532.01⨯-)÷(2-)] 错解:原式=++-53(532.01⨯-)÷(2-)=2+⨯2522(21-)=2-2511=25141 剖析:错解的原因是去掉“—”和中括号时,没有将(532.01⨯-)改变符号。
正解:原式=-+-53(532.01⨯-)÷(2-) =2-⨯2522(21-)=2+2511=25112 五、应用乘法分配律时弄错符号出错例5 计算:⨯-24(165127--) 错解:原式=12724⨯-6524⨯-124⨯-=—14-20—24=—58 剖析;在用—24乘以括号内每一个数时,混淆了运算符号和性质符号,正解:原式=12724⨯-⨯-24(65-)()124-⨯-=-14+20+24=30 六、乱用运算律出错例6 计算:(631-)÷(327291+-) 错解:原式=(631-)÷91-(631-)÷72+(631-)÷32 =42118171-+-=1263718-+-=91- 剖析;由于受乘法分配律a (b+c )=ab+ac 的影响,错误地认为a ÷(b+c )=a ÷b+a ÷c ,这是不正确的,事实上不存在除法分配律。
北师版七年级数学上册 第二章 有理数及其运算(易错题归纳)
第二章有理数及其运算(易错题归纳)易错点一认为带“+”的数是正数,带“_”的数是负数正数前面的“+”可有可无,但负数前面一定带“_”1.下列各数中:5,−57,−3,0,−25.8,+2,负数有()A.1个B.2个C.3个D.4个2.在15,−0.23,0,5,−0.65,2,−35,316%这几个数中,非负数的个数是()A.4个B.5个C.6个D.7个易错点二画数轴时,容易缺少某个要素数轴必须具备三个要素:原点、正方向和单位长度。
在画数轴时易出现的错误有:(1)缺少正方向;(2)缺少原点;(3)单位长度不统一3.下列图形中是数轴的是()A.B.C.D.4.如图是一些同学在作业中所画的数轴,其中,画图正确的是()A.B.C.D.5.下列四个选项中,所画数轴正确的是()A.B.C.D.6.如果两数和为正数、下列说法中正确的是()A.两个加数都是正数B.一个加数是正数,另一个加数是负数C.两个加数的差是正数D.绝对值数较大的加数必是正数7.如果两个数的和是正数,那么()A.这两个加数都是正数B.一个加数为正数,另一个加数为0C.一个加数为正数,另一个加数为负数,且正数的绝对值大于负数的绝对值D.以上皆有可能易错点三对绝对值意义理解不透,认为只有正数的绝对值是它本身正数和0的绝对值是它本身,负数的绝对值是它的相反数8.当=−时,则x一定是()A.负数B.正数C.负数或0D.09.已知=−5,|U=|U,则=()A.+5B.−5C.0D.+5或−5易错点四已知一个数的绝对值求这个数的时,容易漏掉其中一个互为相反数的两个数的绝对值相等,是同一个数10.如果=7,=5,、异号.试求−的值为()A.2或−2B.−12或−2C.2或12D.12或−1211.一个数的绝对值等于34,则这个数是()A.34B.−34C.±34D.±43易错点五在进行有理数加法运算时,容易忽略符号在进行有理数加法运算时,可分为两步:1.确定符号;2.进行运算12.将5−+6−−7+−8写成省略正号和括号的形式,正确的是()A.5−6+7−8B.5−6−7−8C.5−6+7+8D.5−6−7+813.计算:(1)+7+−6+−7;(2)13+−12+17+−18;(3)+−+52+−(4)−20+379+20+−(5)−3.75+2+−1(6)5.6+−0.9+4.4+−8.1.14.用适当的方法计算:(1)0.34+−7.6+−0.8+−0.4+0.46;(2)−18.35++6.15+−3.65+−18.15.易错点六认为两数之和一定大于每一个加数两正数相加时,两数之和一定大于每一个加数;但是,两有理数相加数之和不一定大于每一个加数。
七年级数学上册第二章有理数及其运算易错课堂二有理数及其运算课件新版北师大版
4.(-34 +16 -38 )×(-24)=___2_3___.
有理数的乘方运算,易出错
例 4:计算:(1)-34;(2)(213 )3;(3)342 . 易错分析:对乘方的意义理解有误,不能认清底数和指数.
第二章 有理数及其运算
易错课堂(二) 有理数及其运算
对绝对值的理解易出错
例1:已知a=-3,|a|=|b|,则b= . 易错分析:对绝对值的三种情况分析不全面. 解:±3
1.已知|a|=-a,则a的值是( C ) A.正数 B.负数 C.非正数 D.非负数 2.下列各结论成立的是( D ) A.若|m|=|n|,则m=n B.若m>n,则|m|>|n| C.若|m|>|n|,则m>n D.若m<n<0,则|m|>|n|
பைடு நூலகம்
混合运算中易弄错运算顺序
例 5:计算:(-5)-(-5)×110 ÷110 ×(-10). 易错分析:对同一级运算应按从左到右的顺序依次进行,本题易贪图运 算简便而改变运算顺序.
解:原式=(-5)-(-5)×110 ×10×(-10)=-5 -50=-55
带分数拆分时易出错 例 2:计算:(-556 )+(-923 )+1734 +(-312 ). 易错分析:带分数相加,分离整数与分数部分时,易将符号换 错. 解:-114
3.计算:-114 +(-213 )+756 +(-412 )=-__14____.
利用乘法对加法的分配律计算时,常常漏乘或弄错符号
解:(1)-34=-3×3×3×3=-81
(2)(213 )3=(73 )3=73 ×73 ×73 =32473
北师大版2020-2021学年度七年级数学上册第二章有理数及其运算易混易错题专项突破练习题(含答案)
北师大版2020-2021学年度七年级数学上册期末复习第二章有理数及其运算易混易错题专项突破练习题(含答案)1.下列不是具有相反意义的量的是()A.前进5米和后退5米B.进球4个和失球2个C.身高增加2cm和体重减少2kg D.节余50元和超支80元2.在﹣4,,0,3.14159,﹣5.2,2中正有理数的个数有()A.1个B.2个C.3个D.4个3.数轴上表示﹣5和3的点分别是A和B,则线段AB的长为()A.﹣8B.﹣2C.2D.84.﹣的相反数为()A.﹣4B.C.4D.5.已知|2x﹣1|=7,则x的值为()A.x=4或x=﹣3B.x=4C.x=3或﹣4D.x=﹣36.已知2020|a+1|与2021|b+3|互为相反数,则a﹣b的值为()A.﹣1B.﹣2C.4D.27.的倒数是()A.﹣B.﹣C.D.8.在1,0,﹣1,﹣四个数中,最小的数是()A.2B.0C.﹣1D.﹣9.比﹣3大2的数是()A.1B.﹣1C.5D.﹣510.今年2月份某市一天的最高气温为10℃,最低气温为﹣7℃,那么这一天的最高气温比最低气温高()A.﹣17℃B.17℃C.5℃D.11℃11.如果盈利350元记作+350元,那么亏损80元记作元.12.一个三位数,百位上是最小的合数,十位上是正整数中最小的偶数,个位上的数既不是素数也不是合数,这个数是.13.点A在数轴上的位置如图所示,则点A表示的数的相反数是.14.π的相反数是.15.已知a与b的和为2,b与c互为相反数,若|c|=1,则a=.16.某粮库3天内粮食进、出库的吨数如下(“+”表示进库,“﹣”表示出库):+27,﹣32,﹣18,+34,﹣38,+20.(1)经过这3天,仓库里的粮食是增加了还是减少了?变化了多少吨?(2)如果进出的装卸费都是每吨30元,那么这3天要付装卸费多少元?17.在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答问题.【提出问题】三个有理数a,b,c满足abc>0,求的值.【解决问题】解:由题意,得a,b,c三个有理数都为正数或其中一个为正数,另两个为负数.①a,b,c都是正数,即a>0,b>0,c>0时,则;②当a,b,c中有一个为正数,另两个为负数时,不妨设a>0,b<0,c<0,则.综上所述,值为3或﹣1.【探究】请根据上面的解题思路解答下面的问题:(1)三个有理数a,b,c满足abc<0,求的值;(2)若a,b,c为三个不为0的有理数,且,求的值.18.在单位长度为1的数轴上,点A表示的数为﹣2.5,点B表示的数为4.(1)求AB的长度;(2)若把数轴的单位长度扩大30倍,点A、点B所表示的数也相应的发生变化,已知点M是线段AB的三等分点,求点M所表示的数.19.已知两个方程3x+2=﹣4与3y﹣3=2m﹣1的解x、y互为相反数,求m的值.20.已知:|a|=5,|b﹣1|=8,且a﹣b<0,求a+b的值.参考答案:1.解:A、前进5米和后退5米,是具有相反意义的量,故本选项不符合题意;B、进球4个和失球2个,是具有相反意义的量,故本选项不符合题意;C、身高增加2cm和体重减少2kg,不是具有相反意义的量,故本选项符合题意;D、节余50元和超支80元,是具有相反意义的量,故本选项不符合题意.故选:C.2.解:在﹣4,,0,3.14159,﹣5.2,2中,正有理数是:,3.14159,2,即在﹣4,,0,3.14159,﹣5.2,2中,正有理数有3个,故选:C.3.解:线段AB的长为:3﹣(﹣5)=8.故选:D.4.解:﹣的相反数是.故选:B.5.解:∵|2x﹣1|=7,∴2x﹣1=±7,∴x=4或x=﹣3.故选:A.6.解:因为2020|a+1|与2021|b+3|互为相反数,所以2020|a+1|+2021|b+3|=0,所以a+1=0,b+3=0,解得,a=﹣1,b=﹣3,则a﹣b=﹣1﹣(﹣3)=2,故选:D.7.解:的倒数是.故选:C.8.解:因为﹣1<﹣<0<2,所以最小的数是﹣1,故选:C.9.解:﹣3+2=﹣(3﹣2)=﹣1.故选:B.10.解:10﹣(﹣7)=10+7=17(℃).故选:B.11.解:∵盈利350元记作+350元,∴亏损80元记作﹣80元.故答案为:﹣80.12.解:有一个三位数,百位上是最小的合数,即是4,十位上是正整数中最小的偶数,即是2,个位上的数既不是素数也不是合数,即是1,这个三位数是421.故答案为:421.13.解:∵点A在数轴上表示的数是3,∴点A表示的数的相反数是﹣3.故答案为:﹣3.14.解:π的相反数是:﹣π.故答案为:﹣π.15.解:∵|c|=1,∴c=±1,∵b与c互为相反数,∴b+c=0,∴b=﹣1或1,∵a与b的和为2,∴a+b=2,∴a=3或1.故答案为:3或1.16.解:(1)+27+(﹣32)+(﹣18)+34+(﹣38)+20=﹣7(吨),答:库里的粮食是减少了,减少了7吨;(2)(|+27|+|﹣32|+|﹣18|+|+34|+|﹣38|+|+20|)×30=169×30=5070(元),答:这3天要付装卸费5070元.17.解:(1)∵abc<0,∴a,b,c都是负数或其中一个为负数,另两个为正数,①当a,b,c都是负数,即a<0,b<0,c<0时,则:=++=﹣1﹣1﹣1=﹣3;②a,b,c有一个为负数,另两个为正数时,设a<0,b>0,c>0,则=++=﹣1+1+1=1.(2)∵a,b,c为三个不为0的有理数,且,∴a,b,c中负数有2个,正数有1个,∴abc>0,∴==1.18.解:(1)AB=4﹣(﹣2.5)=6.5(2)若把数轴的单位长度扩大30倍⇒点A所表示的数为30×(﹣2.5)=﹣75,点B所表示的数为30×4=120⇒线段AB上靠近A的三等分点所表示的数为+(﹣75)=﹣10,线段AB上靠近B的三等分点所表示的数为120﹣=55∴点M所表示的数为﹣10或55答:(1)AB的长度为6.5(2)点M所表示的数为﹣10或5519.解:方程3x+2=﹣4,解得:x=﹣2,因为x、y互为相反数,所以y=2,把y=2代入第二个方程得:6﹣3=2m﹣1,解得:m=2.20.解:∵|a|=5,|b﹣1|=8,∴a=±5,b﹣1=±8,∴a=±5,b=9或﹣7,∵a﹣b<0,∴当a=5,b=9时,a+b=5+9=14;当a=﹣5,b=9时,a+b=﹣5+9=4.故a+b的值为4或14。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章《有理数及其运算》易错题、难题考点一:有理数的分类及应用(☆☆☆) 1.下列说法正确的是( ).A.数0是最小的整数B.若│a │=│b │,则a=bC.互为相反数的两数之和为零D.两个有理数,大的离原点远 2.若两个有理数的和是正数,那么一定有结论( )A.两个加数都是正数B.两个加数有一个是正数C.一个加数正数,另一个加数为零D.两个加数不能同为负数 3、1-2+3-4+5-6+……+2015-2018的结果不可能是 ( ) A.奇数 B.偶数 C.负数 D.整数4.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg ,(25±0.•2)kg ,(25±0.3)kg 的字样,从中任意拿出两袋,它们的质量最多相差( ) A 、0.8kg B 、0.6kg C 、0.5kg D 、0.4kg 考点二:数轴(☆☆☆)5.a,b,c 三个数在数轴上的位置如图所示,则下列结论中错误的是 ( )A.a+b<0B.a+c<0C.a -b>0D.b -c<0 6.在数轴上表示下列各数:﹣5,-|-3.5|,221,|-21|,+4,0,并用“<”号把这些数连接起来. 7.-65____-43(填“>”、“=”、“<”) 考点三:相反数(☆☆)8.倒数是它本身的数是 ;相反数是它本身的数是 ;绝对值是它本身的数是 ,绝对值最小的数是________.9.-m 的相反数是 ,-m+1的相反数是 ,m+1的相反数是 . 10.已知-a=9,那么-a 的相反数是 ;已知a=-9,则a 的相反数是 . 11.两个非零有理数的和是0,则它们的商为 ( ) A.0 B.-1 C.+1 D.不能确定 考点四:绝对值(☆☆☆☆☆)12.已知数轴上的三点A 、B 、C 分别表示有理数a ,1,-1,那么|a+1|表示( ) A.A 、B 两点的距离 B.A 、C 两点的距离C.A 、B 两点到原点的距离之和D.A 、C 两点到原点的距离之和 13.已知|m|=-m ,化简|m-1|-|m-2|所得的结果是_______14.若a 是有理数,则|-a|-a 一定是( ) A.零 B.非负数 C.正数 D.负数※若|x-2|+x-2=0,那么x 的取值范围是( ) A.x ≤2 B.x ≥2 C.x=2 D.任意实数 15.互不相等的有理数a 、b 、c 在数轴上的对应点分别为A 、B 、C ,如果|a-b|+|b-c|=|a-c|,那么点A 、B 、C 在数轴上的位置关系是( )A.点A 在点B 、C 之间B.点B 在点A 、C 之间C.点C 在点A 、B 之间D.以上三种情况均有可能 16、(1)若|x+1|=3,则x=_______. (2)绝对值大于1且不大于5的所有整数的和为_______. 17.已知|a|=3,|b|=1,且|a-b|=b-a ,那么a+b=______. 18.若|2-a|+|b+1.5|+|c+4|=0,则a-b+c ×(b-c)=_____.19.代数式15-|x+y|的最大值是______,当此代数式取最大值时,x 与y 的关系是______. 20.若x <0,3x+2|x|=m ,则m____0.(填“>”、“=”、“<”)21.(1)已知有理数a 、b 、c 在数轴上的对应点如图所示,化简:|b-a|+|a+c|-2|c-b|.(2)设a 、b 、c 为非零的有理数,且|a|+a=0,|ab|=ab ,|c|-c=0,化简:|b|-|a+b|-|c-b|+|a-c| (3)当x=-3π时,求 |x+1|-|x+2|+|x+3|-|x+4|+|x+5|-|x+6|+|x+7|-|x+8|+|x+9|-|x+10|+|x+11|-|x+12|+|x+13|.(4)如图表示数轴上四个点的位置关系,且它们表示的数分别为p ,q ,r ,s ,若|p-r|=10,|p-s|=12,|q-s|=9,则|q-r|=( ) A.7 B.9 C.11 D.1322.设x 是有理数,y=|x-1|+|x+1|,下列结论正确的是( )A.y 没有最小值B.只有一个x,使y 取得最小值C.只有有限多个x,使y 取得最小值D.有无穷多个x,使y 取得最小值 23.若|x+2|+|x-4|≥a 恒成立,则a 的取值范围为______.24.设a 、b 同时满足:①(a-2b)²+|b-1|=b-1;②|a-4|=0.那么ab=_____. 25.若2x+|4-5x|+|1-3x|+4的值恒为常数,则此常数的值为______. 26.(1)若abc ≠0,则+++的可能取值有 种(2)有理数a 、b 、c 均不为零,且a+b+c=0,设c b |a |++c a |b |++ba |c |+的最大值是x ,最小值是y ,试求代数式x ²-99xy+2018的值.27.数轴上两点间的距离等于这两点所对应的数的差的绝对值.例:如图所示,点A 、B 在数轴上分别对应的数为a 、b ,则A 、B 两点间的距离表示为|AB|=|a-b|.根据以上知识解题:(1)若数轴上两点A 、B 表示的数为x 、-1,①A 、B 之间的距离可用含x 的式子表示为_____; ②若该两点之间的距离为2,那么x 值为______.(2)|x+1|+|x-2|的最小值为______,此时x 的取值是______;(3)若|x+1|+|x-2|+|x-3|取最小值时,相应的x 的取值是_____,此最小值是_____.(4)如图,在一条数轴上有依次排列的5台机床A 、B 、C 、D 、E 在工作,现要设置一个零件供应站P ,使这5台机床到供应站P 的距离总和最小,供应站P 建在哪?最小值为多少?(5)已知(|x+1|+|x-2|)(|y-3|+|y+2|)=15,求x-2y 的最大值和最小值.(6)已知|x+2|+|1-x|=9-|y-5|-|1+y|,求x+y 的最大值和最小值.(7)已知a 、b 、c 、d 是有理数,|a-b|≤9,且|c-d|≤16,且|a-b-c+d|=25,求|b-a|-|d-c|的值.28.化简:2|x-2|-|x+4| 求|x-1|-4|x+1|的最大值.29.(1)满足|a-b|+ab=1的非负整数(a ,b)的个数是( ) A.1 B.2 C.3 D.4 (2)若a 、b 、c 为整数,且|a-b|19+|c-a|99=1,试计算|c-a|+|a-b|+|b-c|的值.30.已知有理数x,m 满足|x+4|+|x-9|=13-(m-2)²,求|x-2|+|x-8|的最大值31.已知|x|≤1,|y|≤2,且k=|x+y|+|y+2|+|2y-x-6|,求k 的最大值和最小值.考点五:有理数的计算(☆☆☆) 32.计算:(直接写出结果)(1)12+(-223)=_______; (2)-2-22=_____; (3)(-0.25)×(-113)=______; (4)(-1225)÷(-35)=_____;(5) 9-33=_____; (6)-(-12)2+(-2)2=______.33.计算: (1)(12+13+14-45+16)×(-60);(2)(-1.5)2×(113)2-(-0.2)3×(+20)2;(3)[30-(79+56-1112)×36]÷(-5);(4)-14-(1-0.5)×13×[1-(-2)2].(5))415()310()10(815-÷-⨯-÷ (6) )8()2()7()15()3(15-++-++--++-考点六:有理数的应用(☆☆☆)34.某工厂某周计划每日生产自行车100辆,由于每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(增加的为正数,减少的为负数),则本周是增加还是减少?_______,实际生产总量为_______.35.一天小明和冬冬利用温差来测量山峰的高度。
冬冬在山脚测得的温度是4℃,小明此时在山顶测得的温度是2℃,已知该地区高度每升高100米,气温下降0.8℃,问这个山峰有多高?36.小虫从点O 出发沿着一条直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程为负数,爬行的路程依次为(单位:厘米):+5,-3,+10,-8,-6,+12,-10. (1)小虫最后是否能回到出发点O ? (2)小虫离开出发点O 最远时是多少厘米? (3)在爬行过程中,如果每爬1厘米奖励两粒芝麻,则小虫共可得多少粒芝麻?37.“十一”黄金周期间,我市植物园在7天长假中,•每天接待游客人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数)(单位:万人)(2)请判断7天内游客人数最多的是哪一天,共有多少万人? (3)若9月30日的游客人数为3万人,门票每人6元.问黄金周期间云龙山门票收入是多少元?(用科学记数法表示)考点七 找规律(☆☆)38.观察下面一列数,根据规律写出横线上的数, -11;21;-31;41; ; ;……;第2013个数是 。
第n 个数是 。
39.观察:1+3+5+7+…+(2n-1)= _____ .(结果用含n 的式子表示,其中n =1,2,3,……)。
40.观察下列算式:1×5+4=32,2×6+4=42,3×7+4=52,4×8+4=62,请你在观察算式之后并用你得到的规律填空:_______×_______+________=502.41.如图,把面积为1的矩形等分成两个面积为12的矩形,•把面积为12的矩形等发成两个面积为14的矩形,再把面积为14的矩形等分成两个面积为18的矩形,如此进行下去,试利用图形揭示的规律计算.12+14+18+116+11113264128256+++=__________.42.已知①f(1)=0,f(2)=1,f(3)=2,f(4)=3,… ②f(21)=2,f(31)=3,f(41)=4,…利用以上规律计算:f(20181)-f(2018)=________. 43.431321⨯+⨯+541⨯+…+)2n )(1n (1++=________.。