一元二次方程全章学案(学生)讲解
2022年人教版《一元二次方程(导学案)》精品学案
第二十一章一元二次方程——一元二次方程的相关概念一、新课导入1.导入课题:情景:要设计一座高2m的人体雕像,使它的上部(腰以上)与下部(腰以下)的高度比等于下部与全部(全身)的高度比,则雕像的下部应设计多少米高?问题1:列方程解应用题的一般步骤是什么?(导出审题的关键是寻找等量关系)问题2:你能画出示意图表示这个问题吗?(用线段AB表示雕像的高度,雕像上部的高度表示为AC,下部的高度表示为BC,在黑板上画出示意图,把这个问题转化为数学问题)问题3:能反映问题的等量关系的是哪一句话?(根据题意导出关系式BC2=2AC)问题4:设雕像下部高BC=x m,请说出你所列的方程,并化简.这个方程是一元一次方程吗?它有什么特点?这个方程就是本节课我们将要学习的一元二次方程.(板书课题)2.学习目标:(1)会设未知数,列一元二次方程.(2)了解一元二次方程及其根的概念.(3)能熟练地把一元二次方程化成一般形式,并准确地指出各项系数.3.学习重、难点:重点:一元二次方程的一般形式及相关概念.难点:寻找等量关系.二、分层学习1.自学指导:(1)自学内容:教材第1页到第2页的问题1、问题2.(2)自学时间:5分钟.(3)自学方法:先寻找问题中的等量关系,再根据等量关系列出方程.(4)自学参考提纲:①问题1中,要制作一个无盖的方盒,四角都要剪去一个相同的正方形,我们设正方形边长为x cm,则盒底的宽为(50-2x) cm,盒底的长为(100-2x) cm,根据矩形的面积公式及方盒的底面积3600 cm2可列方程为(100-2x)(50-2x)=3600,你能把它整理为课本上的方程②吗?试说明具体经过哪几步变形得到.先去括号5000-100x-200x+4x2=3600移项合并同类项4x2-300x+1400=0系数化为1(两边同除以4) x2-75x+350=0②问题2中,本次排球比赛的总比赛场数为28场.设邀请x支队参赛,则每支队与其余(x-1) 支队都要赛一场.整个比赛中总比赛场数是多少?你是怎样算出来的?本题的等量关系是什么?你列出的方程是x(x-1)=28.你能把它整理为课本上的方程③吗?试说明具体经过哪几步变形得到.去括号x2-12x=28系数化为1(两边同乘以2) x2-x=562.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:观察了解学生是否会寻找等量关系,是否会化简方程.②差异指导:简要说明问题2中单循环比赛与双循环比赛的区别,对不会寻找等量关系的学生给予辅导,说明化简方程的基本要求.(2)生助生:同桌之间、小组内交流、研讨.4.强化:(1)总结寻找等量关系的策略,简要指出哪些公式经常被我们作为寻找等量关系的依据.(2)练习:根据下列问题列方程①一个圆的面积是2πm2,求半径.πr2=2π②一个直角三角形的两条直角边相差3cm,面积为9cm2,求较长的直角边的长.1x(x-3)=92③4个完全相同的正方形面积之和是25,求正方形的边长x. 4x2=25④一个长方形的长比宽多2,面积是100,求长方形的长x. x(x-2)=100⑤把长为1的木条分成两段,使较短一段的长与全长的积等于较长一段的长的平方,求较短一段的长x.x=(1-x)21.自学指导:(1)自学内容:教材第3页的内容.(2)自学时间:5分钟.(3)自学方法:观察方程①②③,从方程所含的未知数的个数及其次数等方面找出它们共同的特点.(4)自学参考提纲:①结合一元一次方程的定义,请对一元二次方程进行定义:等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.②一元二次方程的一般形式是a x2+b x+c=0(a≠0),为什么要规定a≠0?因为a=0时,未知数的最高次数小于2.③同桌之间相互说说方程①②③的二次项,二次项系数,一次项,一次项系数,常数项各是什么.方程①x2+2x-4=0 二次项:x2二次项系数:1 一次项:2x 一次项系数:2常数项:-4方程②x2-75x+350=0 二次项:x2二次项系数:1 一次项:-75x 一次项系数:-75 常数项:350方程③x2-x=56 二次项:x2二次项系数:1 一次项:-x 一次项系数:-1常数项:-56④举例说明什么是一元二次方程的根.⑤自学例题,说说把一元二次方程化为一般形式,要经过哪些变形?去括号,移项,合并同类项.2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:观察学生在回答一元二次方程各项及各项系数时,是否注意了符号.②差异指导:提醒学生一元二次方程的每一项(系数)都应包括它前面的符号.(2)生助生:生生互动交流、订正错误.4.强化:(1)交流总结:确定一元二次方程各项的系数时,若方程不是一般形式,要先经过去括号、移项、合并同类项等步骤把它化成一般形式,通常习惯把二次项系数化为正数,且各项系数均为整数且互质,在指出各项系数时,一定要带上各项前面的符号.(2)练习:①将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数,一次项系数及常数项:5x2-1=4x;4x2=81;解:原式化为5x2-4x-1=0解:原式化为4x2-81=0二次项系数:5一次项系数:-4常数项:-1二次项系数:4一次项系数:0常数项:-81 4x(x+2)=25;(3x-2)(x+1)=8x-3.解:原式化为4x2+8x-25=0解:原式化为3x2-7x+1=0二次项系数:4一次项系数:8常数项:-25二次项系数:3一次项系数:-7常数项:1②若方程(m-1)x2+x=1是关于x的一元二次方程,则m的取值范围是m≥0且m≠1.三、评价1.学生的自我评价(围绕三维目标):这节课你学到了哪些知识?还有什么困惑?2.教师对学生的评价:(1)表现性评价:点评学生参与学习的情况,回答问题,小组互动情况以及存在的问题等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):(1)注重知识的前后联系,在温故而知新的过程中孕育新知,按照由特殊到一般的规律,降低学生理解的难度.(2)教师创设情境,给出实例,学生积极主动探究,教师引导与启发、点拨与设疑相结合,师生互动,体现教师的组织者、引导者与合作者的地位.(3)增设例题难度,让学生产生困惑,避免今后犯类似错误,增加课堂练习,巩固知识.(4)对于一元二次方程的根的概念形成过程,要让学生大胆猜测,经过思考、讨论、分析的过程,让学生在交流中体会成功.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)一元二次方程3x2=5x的二次项系数和一次项系数分别是(C)A. 3,5B. 3,0C. 3,-5D. 5,02.(10分)下列哪些数是方程x2+x-12=0的根?-4,-3,-2,-1,0,1,2,3, 4.解:-4,33.(20分)将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项.(1)3x2+1=6x;(2)4x2=81-5x;解:原式化为3x2-6x+1=0 解:原式化为4x2+5x-81=0二次项系数:3 二次项系数:4一次项系数:-6 一次项系数:5常数项:1 常数项:-81(3)x(x+5)=5x-10; (4)(3x-2)(x+1)=x(2x-1).解:原式化为x2+10=0 解:原式化为x2+2x-2=0二次项系数:1 二次项系数:1一次项系数:0 一次项系数:2常数项:10 常数项:-24.(30分)根据下列问题列方程,并将其化成一元二次方程的一般形式.(1)一个长方形的长比宽多1cm,面积是132cm2,长方形的长和宽各是多少?解:设长方形的长为x cm,则宽为(x-1)cm,根据题意,得x(x-1)=132,整理,得x2-x-132=0.2的平方的长方形?解:设长方形的长为xx)m.根据题意,得xx)=0.06,整理,得50x2-25x+3=0.(3)参加一次聚会的每两人都握了一次手,所有人共握手10次.有多少人参加这次聚会?解:设有x人参加了这次聚会,根据题意,得x(x-1)=10整理,得x2-x-20=0二、综合应用(20分)5.(20分)在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为x cm,则x满足的方程是(B)A. x2+130x-1400=0B. x2+65x-350=0C. x2-130x-1400=0D. x2-65x-350=0三、拓展延伸(10分)6.(10分)如果2是方程x2-c=0的一个根,求常数c及方程的另一个根.解:将2代入原方程中,得22-c=0,得c=4.将c=4代入原方程,得x2x=±2.即方程的另一个根为-2.角的平分线的性质(一)教学目标(一)教学知识点角平分线的画法、角平分线的性质1.(二)能力训练要求1.掌握角平分线的性质1 2.会用尺规作一个已知角的平分线.(三)情感与价值观要求在利用尺规作图的过程中,培养学生动手操作能力与探索精神.教学重点利用尺规作已知角的平分线.角平分线的性质1.教学难点角的平分线的性质1教学方法引导发现、讲练结合法.教具准备多媒体课件教学过程一.提出问题,创设情境问题:图中哪条线段的长可以表示点P 到直线l 的距离 ?导入新课,明确学习目标如果老师手里只有直尺和圆规,你能帮忙设计一个作角的平分线的操作方案吗?二.合作交流 探究新知探究1想一想:下图是一个平分角的仪器,其中AB=AD ,BC=DC .将点A 放在角的顶点,AB 和AD 沿着角的两边放下,沿AC 画一条射线AE ,AE 就是角平分线.你能说明它的道理吗? 教师活动:播放多媒体课件,演示角平分仪器的操作过程,使学生直观了解得到射线AC 的方法.学生活动:观看多媒体课件,讨论操作原理.[生1]要说明AC 是∠DAC 的平分线,其实就是证明∠CAD=∠CAB .[生2]∠CAD 和∠CAB 分别在△CAD 和△CAB 中,那么证明这两个三角形全等就可以了.[生3]我们看看条件够不够.AB AD BC DC AC AC =⎧⎪=⎨⎪=⎩所以△ABC ≌△ADC (SSS ).所以∠CAD=∠CAB .即射线AC 就是∠DAB 的平分线.[生4]原来用三角形全等,就可以解决角相等.线段相等的一些问题.看来温故是可以知新的.试一试:老师再提出问题:通过上述探究,能否总结出尺规作已知角的平分线的一般方法.自己动手做做看.然后与同伴交流操作心得.(分小组完成这项活动,教师可参与到学生活动中,及时发现问题,给予启发和指导,使讲评更具有针对性)讨论结果展示:作已知角的平分线的方法:已知:∠AOB .求作:∠AOB 的平分线.作法:(1)以O 为圆心,适当长为半径作弧,分别交OA 、OB 于M 、N .(2)分别以M、N为圆心,大于12MN的长为半径作弧.两弧在∠AOB内部交于点C.(3)作射线OC,射线OC即为所求.(教师根据学生的叙述,作多媒体课件演示,使学生能更直观地理解画法,提高学习数学的兴趣).点拨:1.在上面作法的第二步中,去掉“大于12MN的长”这个条件行吗?2.第二步中所作的两弧交点一定在∠AOB的内部吗?(设计这两个问题的目的在于加深对角的平分线的作法的理解,培养数学严密性的良好学习习惯)学生讨论结果总结:1.去掉“大于12MN的长”这个条件,所作的两弧可能没有交点,所以就找不到角的平分线.2.若分别以M、N为圆心,大于12MN的长为半径画两弧,两弧的交点可能在∠AOB•的内部,也可能在∠AOB的外部,而我们要找的是∠AOB内部的交点,•否则两弧交点与顶点连线得到的射线就不是∠AOB的平分线了.3.角的平分线是一条射线.它不是线段,也不是直线,•所以第二步中的两个限制缺一不可.4.这种作法的可行性可以通过全等三角形来证明.探究2:做一做1[师]请同学们拿出准备好的折纸与剪刀,自己动手,剪一个角,把剪好的角对折,使角的两边叠合在一起,再把纸片展开,你看到了什么?把对折的纸片再任意折一次,然后把纸片展开,又看到了什么?[生]我发现第一次对折后的折痕是这个角的平分线;再折一次,又会出现两条折痕,而且这两条折痕是等长的.这种方法可以做无数次,所以这种等长的折痕可以折出无数对. [师]你的叙述太精彩了.这说明角的平分线除了有平分角的性质,还有其他性质,今天我们就来研究这个问题.做一做2角平分线的性质即已知角的平分线,能推出什么样的结论.操作:1.折出如图所示的折痕PD、PE.2.你与同伴用三角板检测你们所折的折痕是否符合图示要求.画一画:按照折纸的顺序画出一个角的三条折痕,并度量所画PD、PE是否等长?拿出两名同学的画图,请大家评一评,以达明确概念的目的.[生]同学乙的画法是正确的.同学甲画的是过角平分线上一点画角平分线的垂线,而不是过角平分线上一点画两边的垂线段,所以同学甲的画法不符合要求.[生甲]噢,对,我知道了.[师]同学甲,你再做一遍加深一下印象.教师提出问题:你能叙述所画图形的性质吗?生回答后,教师进一步引导:观察操作得到的结论有时并不可靠,你能否用推理的方法验证你的结论呢?证一证:引导学生证明角平分线的性质 1,分清题设、结论,将文字变成符号并加以证明(一生板演)说一说: 引导学生结合图形从文字和符号的角度分别叙述问题1:你能用文字语言叙述所画图形的性质吗?[生]角平分线上的点到角的两边的距离相等.问题2:(出示)能否用符号语言来翻译“角平分线上的点到角的两边的距离相等”这句话.学生通过讨论作出下列概括:∵ OC平分∠AOB,PD⊥OA,PE⊥OB,∴PD=PE.于是我们得角的平分线的性质:在角的平分线上的点到角的两边的距离相等.三、用一用:1、如图,△ABC的角平分线BM、CN相交于点P.此例放到第二课时讲求证:点P到三边AB、BC、CA的距离相等.[师生共析]点P到AB、BC、CA的垂线段PD、PE、PF的长就是P点到三边的距离,•也就是说要证:PD=PE=PF.而BM、CN分别是∠B、∠C的平分线,•根据角平分线性质和等式的传递性可以解决这个问题.证明:过点P作PD⊥AB,PE⊥BC,PF⊥AC,垂足为D、E、F.因为BM是△ABC的角平分线,点P在BM上.所以PD=PE.同理PE=PF.所以PD=PE=PF.即点P到三边AB、BC、CA的距离相等.巩固所学及时点拨四.丰收乐园学生充分交流、各抒己见教后反思:本节知识的应用主要存在以下问题:1、对距离把握不到位,点到直线的垂线段长才叫距离2、不会直接使用角平分线的性质,而是使用全等将性质再证一3、采用角平分线性质解题强调三个条件。
23.2.4一元二次方程的解法(四) 学案
23.2 .3《一元二次方程的解法》学案(四)学习目标1、使学生熟练地应用求根公式解一元二次方程。
2、使学生经历探索求根公式的过程,培养学生抽象思维能力。
3、在探索和应用求根公式中,使学生进一步认识特殊与一般的关系,渗透辩证唯物广义观点。
重点难点难点:掌握一元二次方程的求根公式,并应用它熟练地解一元二次方程;重点:对文字系数二次三项式进行配方;求根公式的结构比较复杂,不易记忆;系数和常数为负数时,代入求根公式常出符号错误。
研讨过程一、复习旧知,提出问题1、用配方法解下列方程:(1)x x 10152=+ (2)2131203x x -+=2、用配方解一元二次方程的步骤是什么?3、用直接开平方法和配方法解一元二次方程,计算比较麻烦,能否研究出一种更好的方法,迅速求得一元二次方程的实数根呢?二、探索新知试一试:用配方法解方程x 2+px +q =0(p 2-4q ≥0).问题1:能否用配方法把一般形式的一元二次方程20(0)ax bx c a ++=≠转化为2224()4b b ac x a a-+=呢?因为0a ≠,方程两边都除以a ,得 移项,得配方,得 即2224()24b b ac x aa-+=问题2:当240b ac -≥,且0a ≠时,2244b ac a-大于等于零吗?得出结论:当240b ac -≥时,因为0a ≠,所以240a >,从而22404b ac a-≥。
问题3:在研究问题1和问题2中,你能得出什么结论?得出结论,当240b ac -≥时,一般形式的一元二次方程20(0)ax bx c a ++=≠的根为2422b b ac x aa-+=±,即242b b ac x a-±-=。
由以上研究的结果,得到了一元二次方程20(0)ax bx c a ++=≠的求根公式: 242b b ac x a-±-=(240b ac -≥)这个公式说明方程的根是由方程的系数a 、b 、c 所确定的,利用这个公式,我们可以由一元二次方程中系数a 、b 、c 的值,直接求得方程的解,这种解方程的方法叫做公式法。
《一元二次方程》知识讲解
《一元二次方程》全章复习与巩固—知识讲解(提高)【学习目标】1.了解一元二次方程及有关概念;2.掌握通过配方法、公式法、因式分解法降次──解一元二次方程;3.掌握依据实际问题建立一元二次方程的数学模型的方法.【知识网络】【要点梳理】要点一、一元二次方程的有关概念1.一元二次方程的概念: 通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.2.一元二次方程的一般式:3.一元二次方程的解: 使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根. 要点诠释:判断一个方程是否为一元二次方程时,首先观察其是否是整式方程,否则一定不是一元二次方程;其次再将整式方程整理化简使方程的右边为0,看是否具备另两个条件:①一个未知数;②未知数的最高次数为2.对有关一元二次方程定义的题目,要充分考虑定义的三个特点,不要忽视二次项系数不为0.要点二、一元二次方程的解法1.基本思想一元二次方程−−−→降次一元一次方程 2.基本解法直接开平方法、配方法、公式法、因式分解法.要点诠释:解一元二次方程时,根据方程特点,灵活选择解题方法,先考虑能否用直接开平方法和因式分解 法,再考虑用公式法.要点三、一元二次方程根的判别式及根与系数的关系1.一元二次方程根的判别式一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆.(1)当△>0时,一元二次方程有2个不相等的实数根;(2)当△=0时,一元二次方程有2个相等的实数根;(3)当△<0时,一元二次方程没有实数根.2.一元二次方程的根与系数的关系如果一元二次方程)0(02≠=++a c bx ax 的两个实数根是21x x ,, 那么a b x x -=+21,ac x x =21. 注意它的使用条件为a ≠0, Δ≥0.要点诠释:1.一元二次方程 的根的判别式正反都成立.利用其可以解决以下问题: (1)不解方程判定方程根的情况; (2)根据参系数的性质确定根的范围; (3)解与根有关的证明题.2. 一元二次方程根与系数的应用很多: (1)已知方程的一根,不解方程求另一根及参数系数; (2)已知方程,求含有两根对称式的代数式的值及有关未知数系数; (3)已知方程两根,求作以方程两根或其代数式为根的一元二次方程.要点四、列一元二次方程解应用题1.列方程解实际问题的三个重要环节: 一是整体地、系统地审题; 二是把握问题中的等量关系; 三是正确求解方程并检验解的合理性.2.利用方程解决实际问题的关键是寻找等量关系.3.解决应用题的一般步骤: 审 (审题目,分清已知量、未知量、等量关系等); 设 (设未知数,有时会用未知数表示相关的量); 列 (根据题目中的等量关系,列出方程); 解 (解方程,注意分式方程需检验,将所求量表示清晰);验 (检验方程的解能否保证实际问题有意义); 答 (写出答案,切忌答非所问).4.常见应用题型 数字问题、平均变化率问题、利息问题、利润(销售)问题、形积问题等.要点诠释: 列方程解应用题就是先把实际问题抽象为数学问题(列方程),然后由数学问题的解决而获得对实际问题的解决.【典型例题】类型一、一元二次方程的有关概念1.已知(m -1)x |m|+1+3x -2=0是关于x 的一元二次方程,求m 的值.【答案与解析】依题意得|m|+1=2,即|m|=1,解得m =±1,又∵m -1≠0,∴m ≠1,故m =-1.【总结升华】依题意可知m -1≠0与|m|+1=2必须同时成立,因此求出满足上述两个条件的m 的值即可.特别是二次项系数应为非零数这一隐含条件要注意.举一反三:【变式】若方程2(310m m x mx --=是关于x 的一元二次方程,求m 的值.【答案】根据题意得22,0,m m ⎧=⎪⎨-≠⎪⎩ 解得所以当方程2(310m m x mx ---=是关于x的一元二次方程时,m =.类型二、一元二次方程的解法2.解下列一元二次方程.(1)224(3)25(2)0x x ---=; (2)225(3)9x x -=-; (3)2(21)4(21)40x x ++++=.【答案与解析】(1)原方程可化为:22[2(3)][5(2)]0x x ---=,即(2x-6)2-(5x-10)2=0,∴ (2x-6+5x-10)(2x-6-5x+10)=0,即(7x-16)(-3x+4)=0,∴ 7x-16=0或-3x+4=0,∴ 1167x =,243x =. (2)25(3)(3)(3)x x x -=+-,25(3)(3)(3)0x x x --+-=, ∴ (x-3)[5(x-3)-(x+3)]=0,即(x-3)(4x-18)=0,∴ x-3=0或4x-18=0,∴ 13x =,292x =. (3)2(21)4(21)40x x ++++=,∴ 2(212)0x ++=.即2(23)0x +=,∴ 1232x x ==-. 【总结升华】 (1)方程左边可变形为22[2(3)][5(2)]x x ---,因此可用平方差公式分解因式;(2)中方程右边分解后为(x-3)(x+3),与左边中的(x-3)2有公共的因式,可移项后提取公因式(x-3)后解题;(3)的左边具有完全平方公式的特点,可用公式变为(2x+1+2)2=0再求解.举一反三:【变式】解方程: (1)3x+15=-2x 2-10x ; (2)x 2-3x =(2-x)(x-3).【答案】(1)移项,得3x+15+(2x 2+10x)=0,∴ 3(x+5)+2x(x+5)=0,即(x+5)(3+2x)=0,∴ x+5=0或3+2x =0,∴ 15x =-,232x =-. (2)原方程可化为x(x-3)=(2-x)(x-3),移项,x(x-3)-(2-x)(x-3)=0,∴ (x-3)(2x-2)=0,∴ x-3=0或2x-2=0,∴ 13x =,21x =.类型三、一元二次方程根的判别式的应用3.关于x 的方程2(5)410a x x ---=有实数根.则a 满足( )A .a ≥1B .a >1且a ≠5C .a ≥1且a ≠5D .a ≠5【答案】A ;【解析】①当50a -=,即5a =时,有410x --=,14x =-,有实数根; ②当50a -≠时,由△≥0得2(4)4(5)(1)0a --⨯-⨯-≥,解得1a ≥且5a ≠.综上所述,使关于x 的方程2(5)410a x x ---=有实数根的a 的取值范围是1a ≥.答案:A【总结升华】注意“关于x 的方程”与“关于x 的一元二次方程”的区别,前者既可以是一元一次方程,也可以是一元二次方程,所以必须分类讨论,而后者隐含着二次项系数不能为0.4. k 为何值时,关于x 的二次方程2690kx x -+=(1)k 满足 时,方程有两个不等的实数根;(2)k 满足 时,方程有两个相等的实数根;(3)k 满足 时,方程无实数根.【答案】(1)10k k ≠<,且;(2)1k =;(3)1k >.【解析】求判别式,注意二次项系数的取值范围.【总结升华】根据判别式ac b 42-=∆及k ≠0求解.类型四、一元二次方程的根与系数的关系5.(2016•凉山州)已知x 1、x 2是一元二次方程3x 2=6﹣2x 的两根,则x 1﹣x 1x 2+x 2的值是( )A .B .C .D .【思路点拨】由x 1、x 2是一元二次方程3x 2=6﹣2x 的两根,结合根与系数的关系可得出x 1+x 2=﹣,x 1•x 2=﹣2,将其代入x 1﹣x 1x 2+x 2中即可算出结果.【答案】D .【解析】解:∵x 1、x 2是一元二次方程3x 2=6﹣2x 的两根,∴x 1+x 2=﹣=﹣,x 1•x 2==﹣2,∴x 1﹣x 1x 2+x 2=﹣﹣(﹣2)=.故选D .【总结升华】本题考查了根与系数的关系,解题的关键是得出x 1+x 2=﹣,x 1•x 2=﹣2.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系得出两根之和与两根之积是关键.举一反三:【变式】已知关于x 的方程2(1)(23)10k x k x k -+-++=有两个不相等的实数根1x 、2x .(1)求k 的取值范围;(2)是否存在实数k ,使方程的两实数根互为相反数?如果存在,求出k 的值;如果不存在,请说明理由.。
第21章 一元二次方程全章导学案
x 21.1 一元二次方程(1)学习目标:了解一元二次方程的概念;一般式ax 2+bx+c=0(a ≠0)及其派生的概念;应用一元二次方程概念解决一些简单题目.1.通过设置问题,建立数学模型,模仿一元一次方程概念给一元二次方程下定义. 2.一元二次方程的一般形式及其有关概念. 3.解决一些概念性的题目.4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情. 重难点:重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.难点:通过提出问题,建立一元二次方程的数学模型,•再由一元一次方程的概念迁移到一元二次方程的概念.活动1 :并完成以下内容。
问题1 要设计一座2m 高的人体雕像,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,雕像的下部应设计为多高? 分析:设雕像下部高x m ,则上部高________,得方程_____________________________整理得_____________________________ ①问题2 如图,有一块长方形铁皮,长100cm ,宽50cm ,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒。
如果要制作的无盖方盒的底面积为3600c ㎡,那么铁皮各角应切去多大的正方形?分析:设切去的正方形的边长为x cm ,则盒底的长为________________,宽为_____________.得方程_____________________________ 整理得 _____________________________ ②问题3 要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场。
根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?分析:全部比赛的场数为___________设应邀请x 个队参赛,每个队要与其他_________个队各赛1场,所以全部比赛共_________________场。
初中数学学案全集之一元二次方程第2课时学案
17.1一元二次方程(第2课时)-学案六安皋城中学 李刚学习目标1.了解一元二次方程根的概念,会判定一个数是否是一个一元二次方程的根及利用它们解决一些具体问题。
2.提出问题,根据问题列出方程,化为一元二次方程的一般形式,列式求解。
3.由解给出根的概念;再由根的概念判定一个数是否是根.同时应用以上的几个知识点解决一些具体问题。
学习重点判定一个数是否是一元二次方程的根; 学习难点由实际问题列出的一元二次方程解出根后还要考虑这些根是否确定是实际问题的根。
学习过程 一、学前准备 1.什么是一元二次方程?2.什么是方程的解?什么是一元一次方程的解?二、探索思考:1.一长方形的长比宽大1,面积为56,设长为x,则可列方程为 下列哪个值是这个方程的解了?列表:2.同样方程04472=-+x x 即4472=+x x 的解又是哪个值了?列表:三、合作交流1.(1)问题1中一元二次方程的解是多少?问题2•中一元二次方程的解是多少?(2)如果抛开实际问题,问题2中还有其它解吗?2. 叫作一元二次方程的解,也叫做 。
四、归纳总结通过本节课的学习,你学到了哪些知识?与同学交流一下。
五、当堂训练1.下面哪些数是方程0121022=++x x 的根? –4,–3,–2,–1,0,1,2,3,4.2.若1=x 是关于x 的一元二次方程)0(02≠=++a c bx ax 的一个根,求代数式)(2007c b a ++的值。
……3.你能用以前所学的知识求出下列方程的根吗?(1)0362=-x (2)0942=-x4.要剪一块面积为150cm 2的长方形铁片,使它的长比宽多5cm ,这块铁片应该怎样剪?设长为x cm ,则宽为)5(-x cm列方程150)5(=-x x ,即015052=--x x 请根据列方程回答以下问题:(1)x 可能小于5吗?可能等于10吗?说说你的理由. (2)完成下表:…(3)你知道铁片的长x 是多少吗?六、学习反思(1)一元二次方程解的定义:(2)如何判断一个数是否是一元二次方程的根?(3)如何运用一元二次方程的解?七、作业布置1.教材P 22 习题17.1 第3题2.练习:关于x 的一元二次方程01)1(22=-++-a x x a 的一个根为0, 则求a 的值。
第22章一元二次方程学案
23.1 一元二次方程学案学习目标:1、会根据具体问题列出一元二次方程,体会方程的模型思想,提高归纳、分析的能力。
2、理解一元二次方程的概念;知道一元二次方程的一般形式;会把一个一元二次方程化为一般形式;会判断一元二次方程的二次项系数、一次项系数和常数项。
课堂研讨:探究新知【例1】小明把一张边长为10cm的正方形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子,如果要求长方体的底面积为81cm2,那么剪去的正方形的边长是多少?设剪去的正方形的边长为xcm,你能列出满足条件的方程吗?你是如何建立方程模型的?合作交流动手实验一下,并与同桌交流你的做法和想法。
列出的方程是 .自主学习【做一做】根据题意列出方程:1、一个正方形的面积的2倍等于50,这个正方形的边长是多少?2、一个数比另一个数大3,且这两个数之积为这个数,求这个数。
3、一块面积是150cm2长方形铁片,它的长比宽多5cm,则铁片的长是多少?观察上述四个方程结构特征,类比一元一次方程的定义,自己试着归纳出一元二次方程的定义。
【我学会了】1、只含有个未知数,并且未知数的最高次数是,这样的方程,叫做一元二次方程。
2、一元二次方程的一般形式: ,其中二次项,是一次项,是常数项,二次项系数,一次项系数。
展示反馈【挑战自我】判断下列方程是否为一元二次方程。
【例2】将下列一元二次方程化为一般形式,并分别指出它们的二次项、一次项和常数项及它们的系数。
(1)81x(2))242=xx=-x(5)1(3+【挑战自我】1、将下列方程化为一元二次方程的一般形式,并分别指出它们的二次项系数、一次项系数和常数项:(1)3x2-x=2;(2)7x-3=2x2;(3)(2x-1)-3x(x-2)=0 (4)2x(x-1)=3(x+5)-4.2、判断下列方程后面所给出的数,那些是方程的解; (1))()(1412+=+x x x ±1 ±2; (2)0822=-+x x ±2, ±43、要使02)1()1(1=+-+++x k xk k 是一元二次方程,则k=_______.4、已知关于x 的一元二次方程043)2(22=-++-m x x m 有一个解是0,求m 的值。
(好)第22章_一元二次方程_全章学案
第二十二章一元二次方程一、教材内容一元二次方程概念;解一元二次方程的方法;一元二次方程应用题.二、课标要求1、以分析实际问题中的等量关系并求解其中的未知数为背景,认识一元二次方程及其有关概念.2、根据化归思想,抓住降次这一策略,掌握配方法,公式法和因式分解法等一元二次方程的基本解法.3、经历分析和解决实际问题的过程,体会一元二次方程的数学模型作用,进一步提高在实际问题中运用这种重要数学工具的基本能力.三、教学目标1.知识与技能了解一元二次方程及有关概念;掌握通过配方法、公式法、因式分解法降次──解一元二次方程;掌握依据实际问题建立一元二次方程的数学模型的方法;应用熟练掌握以上知识解决问题.2.过程与方法(1)通过丰富的实例,让学生合作探讨,老师点评分析,建立数学模型.•根据数学模型恰如其分地给出一元二次方程的概念.(2)结合八册上整式中的有关概念介绍一元二次方程的派生概念,如二次项等.(3)通过掌握缺一次项的一元二次方程的解法──直接开方法,•导入用配方法解一元二次方程,又通过大量的练习巩固配方法解一元二次方程.(4)通过用已学的配方法解ax2+bx+c=0(a≠0)导出解一元二次方程的求根公式,接着讨论求根公式的条件:b2-4ac>0,b2-4ac=0,b2-4ac<0.(5)通过复习八年级上册《整式》的第5节因式分解进行知识迁移,解决用因式分解法解一元二次方程,并用练习巩固它.(6)提出、分析问题,建立一元二次方程数学模型,并用解决实际问题.3.情感、态度与价值观经历由事实问题中抽象出一元二次方程等有关概念的过程,体会到通过一元二次方程也是刻画现实世界中的数量关系的一个有效数学模型;经历用配方法、公式法、分解因式法解一元一次方程的过程,使同学们体会到转化等数学思想;经历设置丰富的问题情景,使学生体会到建立数学模型解决实际问题的过程,从而更好地理解方程的意义和作用,激发学生的学习兴趣.四、教学重点与难点教学重点:1. 一元二次方程及其它有关的概念.2.用配方法、公式法、因式分解法降次──解一元二次方程.3. 利用实际问题建立一元二次方程的数学模型,并解决这个问题.教学难点:1.一元二次方程配方法解题.2.用公式法解一元二次方程时的讨论.3.建立一元二次方程实际问题的数学模型;方程解与实际问题解的区别.五、课时划分本单元教学时间约需13课时,具体分配如下:22.1 一元二次方程2课时22.2 降次──解一元二次方程5课时22.3 实际问题与一元二次方程3课时教学活动、习题课、小结3课时22.1.1 《一元二次方程(1)》学案学习目标:1、进一步体会方程是刻画现实世界中数量关系的一个有效数学模型;2、正确理解一元二次方程的概念,掌握一元二次方程的一般形式,并能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项。
一元二次方程的教案(必备3篇)
一元二次方程的教案(必备3篇)1.一元二次方程的教案第1篇一、教学目标知识与技能(1)理解一元二次方程的意义。
(2)能熟练地把一元二次方程整理成一般形式并能指出它的二次项系数,一次项系数及常数项。
过程与方法在分析、揭示实际问题的数量关系并把实际问题转化成数学模型(一元二次方程)的过程中,使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识。
情感、态度与价值观通过探索建立一元二次方程模型的过程,使学生积极参与数学学习活动,增进对方程的认识,发展分析问题、解决问题的能力。
二、教材分析:教学重点难点重点:经历建立一元二次方程模型的过程,掌握一元二次方程的一般形式。
难点:准确理解一元二次方程的意义。
三、教学方法创设情境——主体探究——合作交流——应用提高四、学案(1)预学检测3x-5=0是什么方程?一元一次方程的定义是怎样的?其一般形式是怎样的?五、教学过程(一)创设情境、导入新(1)自学本P2—P3并完成书本(2)请学生分别回答书本内容再(二)主体探究、合作交流(1)观察下列方程:(35-2x)2=9004x2-9=03y2-5y=7它们有什么共同点?它们分别含有几个未知数?它们的左边分别是未知数的几次几项式?(2)一元二次方程的概念与一般形式?如果一个方程通过移项可以使右边为0,而左边是只含一个未知数的二次多项式,那么这样的方程叫作一元二次方程,它的一般形式是ax2+bx+c=0(a、b、c是已知数a≠0),其中,a、b、c分别称为二次项系数、一次项系数和常数项,如x2-x=56(三)应用迁移、巩固提高例1:根据一元二次方程定义,判断下列方程是否为一元二次方程?为什么?x2-x=13x(x-1)=5(x+2)x2=(x-1)2例2:将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项。
解:去括号得3x2-3x=5x+10移项,合并同类项,得一元二次方程的一般形式3x2-8x-10=0其中二次项系数为3,一次项系数为-8,常数项为-10.学生练习:书本P4练习(四)总结反思拓展升华总结1.一元二次方程的定义是怎样的?2.一元二次方程的一般形式为ax2+bx+c=0(a≠0),一元二次方程的项及系数都是根据一般式定义的,这与多项式中的项、次数及其系数的定义是一致的。
23.2.1一元二次方程的解法(一、二) 学案
23.2.1《一元二次方程的解法》(一)教学目标1、会用直接开平方法解形如b-2)((a≠0,a b≥0)的方程;xa=k2、灵活应用因式分解法解一元二次方程。
3、使学生了解转化的思想在解方程中的应用,渗透换远方法。
重点难点合理选择直接开平方法和因式分解法较熟练地解一元二次方程,理解一元二次方程无实根的解题过程。
研讨过程一、导学1、你能解以下方程吗?1)x2=9 2)3y2-18=02、你是怎样解方程()21256x+=的?二、学习研讨解:1)方程x2=9 意味着x是的平方根,所以x= 即x=2)3y2—18=0 移项得:把系数化为一得:直接开平方得:这种运用方法,叫做直接开平方法。
你是怎样解方程()21256x+=的?解:1.直接开平方,得x+1=所以原方程的解是x1=,x2=你还有其它的解法吗?解法2:原方程可变形为:-=0方程左边分解因式,得(x+1+16)(x+1-16)=0即可(x+17)(x-15)=0所以x+17=0,x-15=0原方程的解为: x1=,x2=这种运用方法,叫做因式分解法。
试一试:解下列方程(1)(x+1)2-4=0;(2)12(2-x)2-9=0.解(1)原方程可以变形为:直接开平方,得:所以原方程的解是x1=,x2=(2)原方程可以变形为________________________,有________________________.所以原方程的解是x1=________,x2=_________.说明:(1)这时,只要把)1(+x 看作一个整体,就可以转化为b x =2(b ≥0)型的方法去解决,这里体现了整体思想。
在对方程4)1(2=+x 两边同时开平方后,原方程就转化为两个一次方程。
这种变形实质上是将原方程“降次”。
“降次”也是一种重要的数学方法。
练习: 解下列方程:(1)(x +2)2-16=0; (2)(x -1)2-18=0;(3)(1-3x)2=1; (4)(2x +3)2-25=0.三、读一读小张和小林一起解方程 x (3x +2)-6(3x +2)=0.小张将方程左边分解因式,得(3x +2)(x -6)=0,所以 3x +2=0,或x -6=0. 方程的两个解为:x 1=32-,x 2=6. 小林的解法是这样的:移项,得x(3x +2)=6(3x +2),方程两边都除以(3x+2),得 x =6.小林说:“我的方法多简便!”可另一个解x 1=32-哪里去了?小林的解法对吗?你能解开这个谜吗?本课小结1、对于形如b k x a =-2)((a ≠0,a b ≥0)的方程,只要把)(k x -看作一个整体,就可转化为n x =2(n ≥0)的形式用直接开平方法解。
《一元二次方程》学案
22.1 « 一元二次方程》(1)学案学习目标:1.通过设置问题,建立数学模型,?模仿一元一次方程概念给一元二次方程下定义.2. 一元二次方程的一般形式及其有关概念.3.解决一些概念性的题目.学习过程:1、温故互查(1)一元一次方程定义 .(2)一元一次方程的一般形式 .2、设问导读合作预习章前页的问题和教材P25-P26问题1和2。
(1 )、问题:上述3个方程是不是一元一次方程?有何共同点?①;②;③。
(2)、一元二次方程的概念:像这样的等号两边都是_____________________ ,只含有个未知数,并且未知数的最高次数是的方程叫做一元二次方程。
(3)任何一个关于x的一元二次方程都可以化为(a,b,c为常数,)的形式,我们把它称为一元二次方程的一般形式。
a为, b为, c为。
(4)、注意点:①一元二次方程必须满足三个条件: a ;b ;c②任何一个一元二次方程都可以化为一般形式: .二次项系数、- 次项系数、常数项都要包含它前面的符号。
③ 二次项系数是一个重要条件,不能漏掉,为什么?3、自我检测(1)、下列列方程中,哪些是关于x的一元二次方程?① 5x2 0 ② V2x2 x V3x ③ J Z 3 0x x④ 3x3x 0 ⑤ x2xy 3 0 (2 )、把下列方程化成一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项:① 3x2 5x 1 ②(x 2)(x 1) 6 ③ 4 7x2 0(3 )、关于x的方程(a-1 )x2+3x=0是一元二次方程,则a的取值范围是 .学生分小组交流解疑,教师点评升华。
4、巩固练习:课本27页练习1、2题5、拓展延伸(1 )、a满足什么条件时,关于x的方程a (x2+x) =V3x- (x+1)是一元二次方程?(2 )、关于x的方程(2m2+m) x m+1+3x=6可能是一元二次方程吗?为什么?评价1、这节课你学到了什么?2、组长对你这节课的表现进行评价:3 2.1 « 一元二次方程》(2)学案学习目标:1、会进行简单的一元二次方程的试解;2、理解方程的解的概念,发展有条理的思考与表达能力;3、会在简单的实际问题中估算方程的解,理解方程解的实际意义。
一元二次方程全章讲义
九年级上册第二章一元二次方程一、知识点梳理:知识点一:一元二次方程的定义 知识点二:开平方法解一元二次方程 知识点三:因式分解法解一元二次方程 知识点四:配方法解一元二次方程 知识点五: 一元二次方程的判别公式 知识点六:韦达定理 知识点七:二元一次方程应用题二、各知识点讲解:知识点一 :一元二次方程的定义 (一)知识点:1、只含有一个未知数x 的整式方程,并且都可以化成ax 2+bx+c=0(a 、b 、c 为常数,a ≠0)的形式,这样的方程叫做一元二次方程.2、判断一个方程是否为一元二次方程的依据(1)是一个整式方程 (2)只含有一个未知数(3)未知数的最高次数是2.这三个条件必须同时满足,缺一不可。
3、一元二次方程的二次项、二次项系数、一次项、一次项系数、常数项.一般地,任何一个关于x 的一元二次方程,•经过整理,•都能化成如下ax 2+bx+c=0(a 、b 、c 为常数,a ≠0)的形式.这种形式叫做一元二次方程的一般形式.其中ax 2是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项.注意:二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号.(二)、经典例题及相关练习例题1:判断下列方程是否为一元二次方程?(1)3x+2=5y-3 (2) x 2=4 (3) 3x 2-5x=0 (4) x 2-4=(x+2) 2 (5) ax 2+bx+c=0练习1、在下列方程中,一元二次方程的个数是( ).①3x 2+7=0 ②ax 2+bx+c=0 ③(x-2)(x+5)=x 2-1 ④3x 2-5x=0 2、下列方程是一元二次方程的有__________。
(1)x 2+x1-5=0 (2)x 2-3xy+7=0(3)x+12 x =4(4)m3-2m+3=0 (5)22x2-5=0 (6)ax2-bx=43、下列方程中,是关于x的一元二次方程的有___________.①x2+2x+y=1 ②-5x2=0 ③2x2-1=3x④(m2+1)x+m2=6 ⑤3x3-x=0 ⑥x2+1x-1=0例2:一元二次方程一般形式、各项系数及常数项(1)一元二次方程(x+1)2-x==3(x2-2)化成一般形式是 .(2)把方程(1-3x)(x+3)=2x2+1化为一元二次方程的一般形式,并写出二次项,二次项系数,一次项,一次项系数及常数项.练习:1、把一元二次方程(x+2)(x-3)=4化成一般形式,得().A、x2+x-10=0B、x2-x-6=4C、x2-x-10=0D、x2-x-6=02、将方程3x2=2x-1化成一元二次方程的一般形式后,二次项系数、一次项系数和常数项系数可以是( )A. 3,2,-1B. 3,-2,-1C. 3,-2,1D. -3,-2,13、一元二次方程3x2-3x-2=0的一次项系数是________,常数项是_________.4、方程4x2=3x-2+1的二次项是 ,一次项是 ,常数项是5、把方程x(x+1)=4(x-1)+2化为一般形式,并写出它的二次项系数、一次项系数、常数项.例3:利用一元二次方程的定义解题(1)关于x的方程(a-1)x2+3x=0是一元二次方程,则a的取值范围是________.练习1、已知(m+3)x2-3mx-1=0是一元二方程,则m的取值范围是。
《一元二次方程》全章复习与巩固—知识讲解(基础)--初中数学【名校学案+详细解答】
《一元二次方程》全章复习与巩固—知识讲解(基础)【学习目标】1.了解一元二次方程及有关概念;2.掌握通过配方法、公式法、因式分解法降次──解一元二次方程;3.掌握依据实际问题建立一元二次方程的数学模型的方法.【知识网络】【要点梳理】要点一、一元二次方程的有关概念1.一元二次方程的概念:通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.2.一元二次方程的一般式:3.一元二次方程的解:使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根. 要点诠释:判断一个方程是否为一元二次方程时,首先观察其是否是整式方程,否则一定不是一元二次方程;其次再将整式方程整理化简使方程的右边为0,看是否具备另两个条件:①一个未知数;②未知数的最高次数为2.对有关一元二次方程定义的题目,要充分考虑定义的三个特点,不要忽视二次项系数不为0.要点二、一元二次方程的解法1.基本思想一元二次方程−−−→降次一元一次方程 2.基本解法直接开平方法、配方法、公式法、因式分解法.要点诠释:解一元二次方程时,根据方程特点,灵活选择解题方法,先考虑能否用直接开平方法和因式分解 法,再考虑用公式法.要点三、一元二次方程根的判别式及根与系数的关系1.一元二次方程根的判别式一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆(1)当△>0时,一元二次方程有2个不相等的实数根;(2)当△=0时,一元二次方程有2个相等的实数根;(3)当△<0时,一元二次方程没有实数根.2.一元二次方程的根与系数的关系如果一元二次方程)0(02≠=++a c bx ax 的两个实数根是21x x ,, 那么a b x x -=+21,ac x x =21. 注意它的使用条件为a ≠0, Δ≥0.要点诠释:1.一元二次方程 的根的判别式正反都成立.利用其可以解决以下问题:(1)不解方程判定方程根的情况;(2)根据参系数的性质确定根的范围;(3)解与根有关的证明题.2. 一元二次方程根与系数的应用很多:(1)已知方程的一根,不解方程求另一根及参数系数;(2)已知方程,求含有两根对称式的代数式的值及有关未知数系数;(3)已知方程两根,求作以方程两根或其代数式为根的一元二次方程.要点四、列一元二次方程解应用题1.列方程解实际问题的三个重要环节:一是整体地、系统地审题;二是把握问题中的等量关系;三是正确求解方程并检验解的合理性.2.利用方程解决实际问题的关键是寻找等量关系.3.解决应用题的一般步骤:审 (审题目,分清已知量、未知量、等量关系等);设 (设未知数,有时会用未知数表示相关的量);列 (根据题目中的等量关系,列出方程);解 (解方程,注意分式方程需检验,将所求量表示清晰);验 (检验方程的解能否保证实际问题有意义);答 (写出答案,切忌答非所问).4.常见应用题型数字问题、平均变化率问题、利息问题、利润(销售)问题、形积问题等.要点诠释:列方程解应用题就是先把实际问题抽象为数学问题(列方程),然后由数学问题的解决而获得对实际问题的解决.【典型例题】 类型一、一元二次方程的有关概念1.下列方程中是关于x 的一元二次方程的是( )A .2210x x +=B .20ax bx c ++=C .(1)(2)1x x -+=D .223250x xy y --= 【答案】C ;【解析】A :不是整式方程,故本选项错误;B :当a =0时,即ax 2+bx +c =0的二次项系数是0时,该方程就不是一元二次方程;故本选项错误;C :由原方程,得x 2+x-3=0,符号一元二次方程的要求;故本选项正确;D :方程3x 2-2xy -5y 2=0中含有两个未知数;故本选项错误.故选C .【总结升华】一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.举一反三:【变式】关于x 的方程22(28)(2)10a a x a x --++-=,当a 时为一元一次方程;当a 时为一元二次方程.【答案】a =4;a ≠4且a ≠-2.类型二、一元二次方程的解法2.用适当的方法解一元二次方程(1) 0.5x2-=0; (2) (x+a)2=;(3) 2x2-4x-1=0; (4) (1-)x2=(1+)x.【答案与解析】(1)原方程可化为0.5x2=∴x2=用直接开平方法,得方程的根为∴x1=,x2=-.(2)原方程可化为x2+2ax+a2=4x2+2ax+∴x2=a2用直接开平方法,得原方程的根为∴x1=a,x2=-a.(3) a=2,b=-4,c=-1b2-4ac=(-4)2-4×2×(-1)=24>0x=∴x1=,x2=.(4)将方程整理,得(1-)x2-(1+)x=0用因式分解法,得x[(1-)x-(1+)]=0∴ x1=0,x2=-3-2.【总结升华】在以上归纳的几种解法中,因式分解法是最简便、最迅捷的方法,但只有一部分方程可以运用这种方法,所以要善于及时观察标准的二次三项式在有理数范围内是否能直接因式分解,凡能直接因式分解的,应首先采取这种方法.公式法是可以解任何类型的一元二次方程,但是计算过程较繁琐,所以只有选择其他解法不顺利时,才考虑用这种解法.虽然先配方,再开平方的方法也适用于任何类型的一元二次方程,但是对系数复杂的一元二次方程,配方的过程比运用公式更繁琐,所以,配方法适用于系数简单的一元二次方程的求解.举一反三:【变式】解方程. (1)(3x-2)2+(2-3x)=0; (2)2(t-1)2+t =1.【答案】(1)原方程可化为:(3x-2)2-(3x-2)=0,∴ (3x-2)(3x-2-1)=0.∴ 3x-2=0或3x-3=0,∴ 123x =,21x =. (2)原方程可化为:2(t-1)2+(t-1)=0.∴ (t-1)[2(t-1)+1]=0.∴ (t-1)(2t-1)=0,∴ t-1=0或2t-1=0.∴ 11t =,212t =. 类型三、一元二次方程根的判别式的应用3.若关于x 的一元二次方程x 2﹣4x+5﹣a=0有实数根,则a 的取值范围是( )A .a ≥1B . a >1C . a ≤1D .a <1【答案】A ;【解析】∵关于x 的一元二次方程x 2﹣4x+5﹣a=0有实数根,∴△=(﹣4)2﹣4(5﹣a )≥0,∴a ≥1.故选A .【总结升华】本题考查的是一元二次方程根的判别式,根据方程有两个实数根,得到判别式大于等于零,求出a 的取值范围.类型四、一元二次方程的根与系数的关系4.已知x 1、x 2是关于x 的方程2220x x t -++=的两个不相等的实数根,(1)求t 的取值范围; (2)设2212s x x =+,求s 关于t 的函数关系式. 【答案与解析】(1)因为一元二次方程有两个不相等的实数根.所以△=(-2)2-4(t+2)>0,即t <-1.(2)由一元二次方程根与系数的关系知:122x x +=,122x x t =+g ,从而2212s x x =+21212()2x x x x =+-222(2)2t t =-+=-,即2(1)s t t =-<-.【总结升华】利用根与系数关系求函数解析式综合题.举一反三:【变式】已知关于x 的一元二次方程222(1)x m x m =--的两实数根为1x ,2x .(1)求m 的取值范围;(2)设12y x x =+,当y 取得最小值时,求相应m 的值,并求出最小值.【答案】(1)将原方程整理为222(1)0x m x m +-+=.∵ 原方程有两个实数根.∴ 22[2(1)]4840m m m =--=-+≥△,∴ 12m ≤. (2) 1222y x x m =+=-+,且12m ≤. 因为y 随m 的增大而减小,故当12m =时,取得最小值1.类型五、一元二次方程的应用5.如图所示,在长为10cm ,宽为8cm 的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去的小正方形的边长.【答案与解析】设小正方形的边长为xcm ,由题意得4x 2=10×8×(1-80%).解得x 1=2,x 2=-2.经检验,x 1=2符合题意,x 2=-2不符合题意舍去.∴ x =2.答:截去的小正方形的边长为2cm .【总结升华】设小正方形的边长为x cm ,因为图中阴影部分面积是原矩形面积的80%,所以4个小正方形面积是原矩形面积的20%.举一反三:【变式】(2015春•启东市月考)如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD (围墙MN 最长可利用25m ),现在欲砌50m 长的墙,砌成一个面积300m 2的矩形花园,则BC 的长为多少 m?【答案】解:设AB=x 米,则BC=(50﹣2x )米.根据题意可得,x (50﹣2x )=300,解得:x 1=10,x 2=15,当x=10,BC=50﹣10﹣10=30>25,故x 1=10(不合题意舍去),50﹣2x=50﹣30=20.答:BC 的长为20m .6.某旅行社有100张床位,每床每晚收费10元,空床可全部租出;若每床每晚提高2元,则减少10张床位租出;若每床每晚收费再提高2元,则再减少10张床位租出.以每次提高2元的这种方法变化下去,为了每晚获得1120元的利润,每床每晚应提高多少元?【答案与解析】设每床每晚提高x个2元,则每床每晚收费为(10+2x)元,每晚出租出去的床位为(100-10x)张,根据题意,得(10+2x)(100-10x)=1120.整理,得x2-5x+6=0.解得,x1=2,x2=3.∴当x=2时,2x=4;当x=3时,2x=6.答:每床每晚提高4元或6元均可.【总结升华】这是商品经营问题,总利润=每张床费×床数.可设每床每晚提高x个2元,则床费为(10+2x)元,由于每晚每床提高2元,出租出去的床位减少10张,则出租出去的总床位为(100-10x)张,据此可列方程.。
第二十二章 一元二次方程 复习学案
第二十二章一元二次方程复习学案一、学习目标;1、理解一元二次方程的意义。
2、能熟练掌握一元二次方程的四种解法,会选择适当的方法解方程,进一步体会相互之间的关系及其“转化”的思想。
3、能熟练分析数量之间的关系,列出一元二次方程来解应用题。
二、中考热点:本章的应用性较强,本章内容一直是命题的热点,填空题、选择题有,解答题也有,单独出现或和其它内容结合出现.三、本章知识框架图:四、知识点与方法:(一)定义:方程两边都是,只含有个未知数,且未知数的最高次是,这样的方程叫做一元二次方程。
一般形式:。
温馨提示:对有关一元二次方程定义的题目,要充分考虑定义的四个条件,千万不要忽视二次项系数不为0。
【练习】1、若方程(a-1)x12 a+5x-3=0是关于x的一元二次方程,则a= 。
2、已知方程2(m+1)x2 +4mx+3m-2 = 0 是关于x的一元二次方程,那么m的取值范围是3、下列方程中,是关于x的一元二次方程的是()A.()()12132+=+x xB.02112=-+x xC.02=++c bx axD. 1222-=+x x x4、把方程21+x =33-x 2化为一般形式 。
5、把方程(1-3x )(x +3)= 2x 2 + 1化成一般形式是 ,它的二次项是 ,一次项是 , 常数项是 。
(二)一元二次方程的判别式:(1)当 时,方程有两个..不相等...的实数根; (2)当 时,方程有两个..相等..的实数根; (3)当 时,方程没.有.实数..根.。
温馨提示:一元二次方程0c bx ax 2=++(a ≠0)的根的判别式正反都成立.其作用有:(1)不解方程判定方程根的情况;(2)根据参系数的性质确定根的范围;(3)解与根有关的证明题.【练习】 6、方程022=-+-k kx x 的根的情况是( )(A )方程有两个不相等的实数根 (B )方程有两个相等的实数根(C )方程没有实数根 (D )无法确定7、若一元二次方程 2x (kx -4)-x 2+6=0 无实数根,则k 的最小整数值是( ) A 、-1 B 、2 C 、3 D 、48、下列方程中,有两个不相等实数根的是 ( )A.240x += B.24410x x -+= C.230x x ++= D.2210x x +-=9、关于x 的一元二次方程()220x mx m -+-=的根的情况是 ( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法确定10、a 、b 、c 分别是三角形的三边,则方程()022=++++b a cx x b a 的根的情况是A .没有实数根B .可能有且只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根11、(2012·德州)若关于x 的方程()0222=+++a a ax 有实数解,求实数a 的取值范围。
《一元二次方程》优秀教案(精选5篇)
《一元二次方程》优秀教案(精选5篇)《一元二次方程》优秀教案1教学目标:1、经历抽象一元二次方程概念的过程,进一步体会是刻画现实世界的有效数学模型2、理解什么是一元二次方程及一元二次方程的一般形式。
3、能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项。
教学重点1、一元二次方程及其它有关的概念。
2、利用实际问题建立一元二次方程的数学模型。
教学难点1、建立一元二次方程实际问题的数学模型.2、把一元二次方程化为一般形式教学方法:指导自学,自主探究课时:第一课时教学过程:(学生通过导学提纲,了解本节课自己应该掌握的内容)一、自主探索:(学生通过自学,经历思考、讨论、分析的过程,最终形成一元二次方程及其有关概念)1、请认真完成课本P39—40议一议以上的内容;化简上述三个方程.。
2、你发现上述三个方程有什么共同特点?你能把这些特点用一个方程概括出来吗?3、请同学看课本40页,理解记忆一元二次方程的概念及有关概念你觉得理解这个概念要掌握哪几个要点?你还掌握了什么?二、学以致用:(通过练习,加深学生对一元二次方程及其有关概念的理解与把握)1、下列哪些是一元二次方程?哪些不是?①②③④x2+2x-3=1+x2 ⑤ax2+bx+c=02、判断下列方程是不是关于x的一元二次方程,如果是,写出它的二次项系数、一次项系数和常数项。
(1)3-6x2=0(2)3x(x+2)=4(x-1)+7(3)(2x+3)2=(x+1)(4x-1)3、若关于x的方程(k-3)x2+2x-1=0是一元二次方程,则k的值是多少?4、关于x的方程(k2-1)x2+2(k+1)x+2k+2=0,在什么条件下它是一元二次方程?在什么条件下它是一元一次方程?5、以-2、3、0三个数作为一个一元二次方程的系数和常数项,请你写出满足条件的不同的一元二次方程?三、反思:(学生,进一步加深本节课所学内容)这节课你学到了什么?四、自查自省:(通过当堂小测,及时发现问题,及时应对)1、下列方程中是一元二次方程的有()A、1个B、2个 C、3个D、4个(1)(2)(3)(4)(5)(6)2、将方程-5x2+1=6x化为一般形式为____________________.其二次项是_________,系数为_______,一次项系数为______,常数项为______。
新人教版初中数学一元二次方程全章复习知识点及讲义
新人教版初中数学一元二次方程全章复习知识点及讲义新人教版初中数学一元二次方程全章复知识点及讲义内容简介:1.了解一元二次方程的定义及一元二次方程的一般形式:ax+bx+c=0(a≠0).2.掌握一元二次方程的四种解法,并能灵活运用。
3.掌握一元二次方程根的判别式,并能运用它解相应问题。
4.掌握一元二次方程根与系数的关系,会用它们解决有关问题。
5.会解一元二次方程应用题。
知识点一:一元二次方程的定义及一般形式知识要点】一元二次方程的一般形式:ax+bx+c=0(a≠0)例1、下列方程中是关于x的一元二次方程的是()A。
(x+1)^3=2(x+1)B。
2x^2+11x-2=0C。
ax+bx+c=2D。
x+2x=x+1变式:当k时,关于x的方程kx+2x=x+3是一元二次方程。
例2、方程(m+2)x针对练:1、方程8x=7的一次项系数是8,常数项是7.2、若方程(m-1)x+(m+3)m x+1=0是关于x的一元二次方程,则m的值为-2或1.知识点二:一元二次方程的解知识要点】1、当已知一元二次方程的一个根时,要熟练地将这个根代入原方程,并灵活运用得到的等式。
2、在ax+bx+c=0(a≠0)中,x取特殊值时,a、b、c之间满足的关系式。
例1、已知2y+y-3的值为2,则4y+2y+1的值为11.例2、关于x的一元二次方程(a-2)x^2+x+a-4=0的一个根为2,则a的值为5.例3、一元二次方程ax+bx+c=0(a≠0)的系数满足a+c=b,则此方程必有一根为-1.例4、已知a,b是方程x^2-4x+m=0的两个根,b,c是方程x^2-8x+5m=0的两个根,则m的值为10.针对练:1、已知方程x+kx-10=0的一根是2,则k为-5,另一根是-2.2、已知m是方程x^2-x-1=0的一个根,则代数式m^2-m-1=0.3、已知a是x^2-3x+1=0的根,则2a-6=0,a=3.4、方程(a-b)x+(b-c)x+c-a=0的一个根为()A。
一元二次方程教案(教案)一元二次方程的解法
一元二次方程教案(教案)一元二次方程的解法第1篇第2篇第3篇第4篇第5篇更多顶部第一篇:配方法解一元二次方程的教案第二篇:一元二次方程复习教案(正式)第三篇:4.2.3一元二次方程的解法(教案)第四篇:教案一元二次方程的应用第五篇:一元二次方程根的分布教案更多相关范文第一篇:配方法解一元二次方程的教案配方法解一元二次方程的教案教学内容:本节内容是:人教版义务教育课程标准实验教科书数学九年级上册第22章第2节第1课时。
一、教学目标(一)知识目标1、理解求解一元二次方程的实质。
2、掌握解一元二次方程的配方法。
(二)能力目标1、体会数学的转化思想。
2、能根据配方法解一元二次方程的一般步骤解一元二次方程。
(三)情感态度及价值观通过用配方法将一元二次方程变形的过程,让学生进一步体会转化的思想方法,并增强他们学习数学的兴趣。
二、教学重点配方法解一元二次方程的一般步骤三、教学难点具体用配方法的一般步骤解一元二次方程。
四、知识考点运用配方法解一元二次方程。
五、教学过程(一)复习引入1、复习:解一元一次方程的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1。
2、引入:二次根式的意义:若x2=a(a为非负数),则x叫做a的平方根,即x=±√a。
实际上,x2 =a(a为非负数)就是关于x的一元二次方程,求x的平方根就是解一元二次方程。
(二)新课探究通过实际问题的解答,引出我们所要学习的知识点。
通过问题吸引学生的注意力,引发学生思考。
问题1:一桶某种油漆可刷的面积为1500dm2李林用这桶油漆刚好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?问题1重在引出用直接开平方法解一元二次方程。
这一问题学生可通过“平方根的意义”的讲解过程具体的解答出来,具体解题步骤:2解:设正方体的棱长为x dm,则一个正方体的表面积为6xdm2列出方程:60x2=1500x2=25x=±5因为x为棱长不能为负值,所以x=5即:正方体的棱长为5dm。
1.九年级数学一元二次方程(全章学案)
第二章 一元二次方程一元二次方程的概念教学目标:1、知道一元二次方程的定义,能熟练地把一元二次方程整理成一般形式02=++c bx ax (a ≠0) 2、能把实际问题转化为数学模型(一元二次方程)。
3、会用试验的方法估计一元二次方程的解。
重点难点:1.一元二次方程的意义及一般形式,会正确识别一般式中的“项”及“系数”。
2. 理解用试验的方法估计一元二次方程的解的合理性。
教学过程: 一、做一做:问题1 绿苑小区住宅设计,准备在每两幢楼房之间,开辟面积为900平方米的一块长方形绿地,并且长比宽多10米,那么绿地的长和宽各为多少?问题2学校图书馆去年年底有图书5万册,预计到明年年底增加到7.2万册.求这两年的年平均增长率.思考、讨论这样,问题1和问题2分别归结为解方程(1)和(2).显然,这两个方程都不是一元一次方程.那么这两个方程与一元一次方程的区别在哪里?它们有什么共同特点呢?二、一元二次方程的概念上述两个整式方程中都只含有一个未知数,并且未知数的最高次数是2,这样的方程叫做一元二次方程 通常可写成如下的一般形式:ax 2+bx +c =0(a 、b 、c 是已知数,a ≠0)。
其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b叫做一次项系数,c 叫做常数项。
. 三、 例题讲解与练习巩固例1、下列方程中哪些是一元二次方程?试说明理由。
(1)3523-=+x x (2)42=x (3)2112x x x =-+- (4)22)2(4+=-x x例2、将下列方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项:(1)y y =26 (2)(x-2)(x+3)=8 (3)2)2()43)(3(+=-+x x x说明:一元二次方程的一般形式02=++c bx ax (a ≠0)具有两个特征:一是方程的右边为0; 二是左边的二次项系数不能为0。
例3、方程(2a —4)x 2—2bx+a=0, 在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一次方程?例4 、已知关于x 的一元二次方程(m-1)x 2+3x-5m+4=0有一根为2,求m 。
一元二次方程全章导学案(不分版本,通用)
1 反思:【学习目标】1、体会方程是刻画现实世界中数量关系的一个有效数学模型;2、理解一元二次方程的概念,掌握一元二次方程的一般形式,并能将一元二次方程转化为一般形式,正确识别二次项系数、一次项系数及常数项. 【学习重点】由实际问题列出一元二次方程和一元二次方程的概念. 【学习过程】【活动一】知识链接(5分钟)(1) 多项式2321x y x --是 次 项式,其中最高次项是 ,二次项系数为 ,一次项系数为 ,常数项为 .(2) 叫方程,我们学过的方程类型有 . 【活动二】自主交流 探究新知(25分钟)1.自学教材P17——19,回答以下问题.(1)一元二次方程的定义:只含有 个求知数(一元),并且求知数的最高次数是 (二次)的 方程,叫做一元二次方程. (2)一元二次方程的一般形式:一般地,任何一个关于x 的一元二次方程,经过整理,都能化成如下形式: (a ≠0),这种形式叫做一元二次方程的一般形式.其中 是二次项, 是二次项系数, 是一次项, 是一次项系数, 是常数项.【注意】①方程20ax bx c ++=只有当a ≠0时才叫一元二次方程,如果a=0,b ≠0时就是 方程了.所以在一般形式中,必须包含a ≠0这个条件.②二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号.2. 一元二次方程的解:一元二次方程的解也叫做一元二次方程的_____,即使一元二次方程等号左右两边值相等的_______________的值. 【活动三】课内小结 (学生归纳总结) (3分钟)【活动四】快乐达标(学生先独立完成5分钟,后组内互查2分钟.)1.下列方程是一元二次方程的是有 :(1)3239x x +=,(2)(1)(1)0x x +-=,(3)220y =,(4)01122=-+xx ,(5)232m =, (6)05322=-+y x .2.把方程()()11212=+-y y 化为一般形式为: ;其二次项系数是 ;一次项系数是 ;常数项是 .3.若033)3(2=++--nx x m n 是关于x 的一元二次方程,则m= ,n= .4.下面哪些数是方程260x x --=的根? -4, -3, -2, -1, 0, 1, 2, 3, 4.5. 已知m 是方程260x x --=的一个根,则代数式2m m -=________.6.已知:关于x 的方程()()021122=-++-x k x k . (1)当k 取何值时,此方程为一元一次方程. (2)当k 取何值时,此方程为一元二次方程.【活动五】拓展延伸(独立完成3分钟,班级展示2分钟)1.当a______时,关于x 的方程22()(1)a x x x +=-+是一元二次方程.2.若关于x 的方程27(3)(5)50m m x m x -++-+=是一元二次方程,试求m 的值,•并指出这个方程的各项系数.3.关于x 的方程21()36m m m x x +-+=可能是一元二次方程吗?为什么?2 反思:§22.2.1《一元二次方程的解法——直接开平方法》导学案【学习目标】1、理解一元二次方程“降次”──转化的数学思想,并能应用它解决一些具体问题.2、提出问题,列出缺一次项的一元二次方程ax 2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a (ex+f )2+c=0型的一元二次方程. 【学习重点】运用开平方法解形如(x+m )2=n (n ≥0)的方程;领会降次──转化的数学思想. 【学习过程】【活动一】知识链接(5分钟) 1.我们知道x 2=25,根据平方根的意义,直接开平方得x= ,如果x 换元为2x-1,即2(21)5x -=,也用直接开平方的方法可以这样求解. 2.(1) 解:由方程 2(21)5x -=,得21x -=_______即 21x -=____,21x -=_____∴ 1x =_______, 2x =_____(2) 解:由方程 2692x x ++=,得(_________)2=2∴ ______________=_______ 即 ____________, ____________ ∴ 1x =_______, 2x =_____ 【活动二】自主交流 探究新知(15分钟) 仿照知识链接中的方法解下列方程:(1) 28x = (2) 22(1)4x -=(3) 2694x x++=(4)2490m -= (5)291241x x ++=【活动三】课内小结 (学生归纳总结) (3分钟)1、形如2x p =(0)p ≥或2()mx n p +=(0)p ≥的一元二次方程可利用平方根的定义用开平方的方法直接求解,这种解方程的方法叫做直接开平方法.2、如果方程能化成2x p =或2()mx n p +=(0)p ≥的形式,那么可得x =mx n +=【活动四】快乐达标(学生先独立完成5分钟,后组内互查2分钟.) 1.若224()x x p x q-+=+,那么p 、q 的值分别是( ).A .p=4,q=2B .p=4,q=-2C .p=-4,q=2D .p=-4,q=-2 2.方程2390x +=的根为( ).A .3 B .-3 C .±3 D .无实数根 3.解方程:(1)28160x -=(2)22(3)72x -=【活动五】拓展延伸(独立完成8分钟,班级展示2分钟) 1.如果a 、b 21236b b -+=0,求ab 的值.2.用直接开平方法解方程:22(1)180x --=3.解关于x 的方程2()(0)x m n n +=≥.4. 已知关于x 的一元二次方程043)2(22=-++-m x x m 有一个解是0,求m 的值.3 反思:§22.2.2《一元二次方程的解法——因式分解法》导学案【学习目标】1.正确理解因式分解法的实质.2.熟练掌握运用因式分解法解一元二次方程. 【学习重点】用因式分解法解一元二次方程. 【学习过程】【活动一】知识链接(5分钟)1.分解因式:(1)2832x - (2)244x x -+ (3)228x x --2.填空:填上适当的数,使下列等式成立:(1) 25____(____x x x ++=+2) (2) 21____(____2x x x ++=+2) (3) 2____(____x x +=-2) (4) 2____(____bx x x a++=+2) 【活动二】自主交流 探究新知(20分钟)仿照知识链接中的方法解下列方程:(1)2410x -= (2)22150x x --=【活动三】课内小结 (学生归纳总结) (3分钟)总结因式分解的步骤: ①通过___________把一元二次方程右边化为0; ②将方程左边分解为两个一次因式的______;③令每个因式分别为______,得到两个一元一次方程; ④解 ,它们的解就是原方程的解。
一元二次方程(全章共21课教案)人教版
第十二章一元二次方程第 1 课一元二次方程一、教学目的1.使学生理解并能够掌握整式方程的定义.2.使学生理解并能够掌握一元二次方程的定义.3.使学生理解并能够掌握一元二次方程的一般表达式以及各种特殊形式.二、教学重点、难点重点:一元二次方程的定义.难点:一元二次方程的一般形式及其二次项系数、一次项系数和常数项的识别.三、教学过程复习提问1.什么叫做方程?什么叫做一元一次方程?2.指出下面哪些方程是已学过的方程?分别叫做什么方程?(l)3x+4=l ;(2)6x-5y=7;3.结合上述有关方程讲解什么叫做“元”,什么叫做“次”.引入新课1.方程的分类:通过上面的复习,引导学生答出:学过的几类方程是没学过的方程是x2-70x+825=0 , x(x+5)=150.这类“两边都是关于未知数的整式的方程,叫做整式方程.”而在整式方程中,“只含有一个未知数,并且未知数的最高次数是2,这样的整式方程叫做一元二次方程.”据此得出复习中学生未学过的方程是(4)一元二次方程: x2-70x+825=0 , x(x+5)=150 .同时指导学生把学过的方程分为两大类:2.一元二次方程的一般形式注意引导学生考虑方程x2-70x+825=02和方程 x(x+5)=150 ,即 x +5x=150,2可化为: x +5x-150=0 .从而引导学生认识到:任何一个一元二次方程,经过整理都可以化为ax2+bx+c=0(a ≠ 0)的形式.并称之为一元二次方程的一般形式.强调,其中ax 2,bx,c 分别称为二次项、一次项、常数项;a, b 分别称为二次项系数、一次项系数.要特别注意:二次项系数 a 是不等于 0 的实数 (a=0 时,方程化为bx+c=0 ,不再是二次方程了) ; b, c 可为任意实数.例把方程 5x(x+3)=3(x-1)+8化成一般形式.并写出它的二次项系数、一次项系数及常数项.讲解例题课堂练习P5-6 1、2课堂小结1.方程分为两大类:判别整式方程与分式方程的关键是看分母中是否含有未知数;判别一元一次方程,一元二次方程的关键是看方程化为一般形式后,未知数的最高次数是一次还是二次.2.一元二次方程的定义:一个整式方程,经化简形成只含有一个未知数且未知数的最高次数是2,则这样的整式方程称一元二次方程.其一般形式是ax2+bx+c=0(a ≠ 0) ,其中 b,c 均可为任意实数,而 a 不能等于零.作业:教材中相关习题.第 2 课一元二次方程的解法 ( 一)一、教学目的1.使学生掌握用直接开平方法解一元二次方程.2.引导学生通过特殊情况下的解方程,小结、归纳出解一元二次方程ax 2+c=0(a > 0,c <0) 的方法.二、教学重点、难点重点:准确地求出方程的根.难点:正确地表示方程的两个根.三、教学过程复习过程回忆数的开方一章中的知识,请学生回答下列问题,并说明解决问题的依据.求下列各式中的x:1. x2=225; 2 . x2 -169=0 ; 3. 36x 2=49; 4 . 4x2-25=0 .回答解题过程中的依据.解题的依据是:一个正数有两个平方根,这两个平方根互为相反数.即一般地,如果一个数的平方等于a(a ≥ 0) ,那么这样的数有两个,它们是互为相反数.引入新课我们已经学过了一些方程知识,那么上述方程属于什么方程呢?新课例 1 解方程 x 2-4=0 .解:先移项,得 x2=4.即 x1=2,x2=-2 .这种解一元二次方程的方法叫做直接开平方法.例 2 解方程 (x+3) 2=2.讲解例 2练习: P7 1 、2小结1.本节主要学习了简单的一元二次方程的解法——直接法.22.直接法适用于ax +c=0(a > 0, c<0) 型的一元二次方程.作业:习题12.1A 组 1 、2第 3 课一元二次方程的解法 ( 二)一、教学目的1.使学生掌握用配方法解一元二次方程的方法.2.使学生能够运用适当变形的方法,转化方程为易于用配方法求解的形式,来解某些一元二次方程.并由此体会转化的思想.二、教学重点、难点重点:掌握配方的法则.难点:凑配的方法与技巧.三、教学过程复习过程用开平方法解下列方程:(1)x2=441;(2)196x2-49=0;引入新课22我们知道,形如x -A=0 的方程,可变形为x =A(A≥ 0) ,再根据平方根的意义,用直接开平方法求解.那么,我们能否将形如ax2+bx+c=0(a > 0) 的一类方程,化为上述形式求解呢?这正是我们这节课要解决的问题.新课222222将方程视为:x +2· x· 3=-7 ,即x +2· x· 3+3 =3 -7,∴ (x+3)=2,这种解一元二次方程的方法叫做配方法.这种方法的特点是:先把方程的常数项移到方程的右边,再把左边配成一个完全平方式,如果右边是非负数,就可以进一步通过直接开平方法来求出它的解.例 1 解方程 x2-4x-3=0 .配方法解之.在解的过程中,介绍配方的法则.例 2 解方程 2x2+3=7x.练习: P10 1 、2小结:应用配方法解一元二次方程ax2+bx+c=0(a ≠ 0) 的要点是:(1)化二次项系数为 1;(2)移项,使方程左边为二次项和一次项,右边为常数;(3)方程两边各加上一次项系数一半的平方;作业:习题 12.1 3第 4 课一元二次方程的解法 ( 三)一、教学目的1.使学生掌握一般一元二次方程的求根公式的推导过程,并由此培养学生的分析、综合和计算能力.2.使学生掌握公式法解一元二次方程的方法.二、教学重点、难点重点:要求学生正确运用公式解方程.难点:求根公式的推导过程.三、教学过程复习提问2提问:当 x =c 时, c≥ 0 时方程才有解,为什么?(1)x 2-8x=20 ; (2)2x2-6x-1=0 .引入新课我们思考用配方法解一般形式的一元二次方程,应如何配方来进行求解?新课2( 引导学生讨论) 用配方法解一元二次方程ax +bx+c=0(a ≠ 0) 的步骤.把常数项移到方程右边,并两边各加上一次项系数的一半的平方,得(a ≠ 0) 的求根公式.用此公式解一元二次方程的方法叫做公式法.应用求根公式解一元二次方程的关键在于:(1) 将方程化为一般形式ax2+bx+c=0(a ≠ 0) ;(2)将各项的系数 a, b, c 代入求根公式.例 1 解方程 x2-3x+2=0 .讲解例 1例 2 解方程 2x2+7x=4.讲解例 2练习 P14 1小结1.本节课我们推导出了一元二次方程ax2+bx+c=0(a ≠ 0) 的求根公式,即2要重点让学生注意到应用公式的大前提,即 b -4ac ≥ 0.作业:习题12.1A 组 4第 5 课一元二次方程的解法 ( 四)一、教学目的使学生进一步熟练掌握利用求根公式解一元二次方程的方法.二、教学重点、难点重点:用求根公式求一元二次方程的根的方法.难点:含有字母参数的一元二次方程的公式解法.三、教学过程复习提问1.一元二次方程ax 2+bx+c=0(a ≠ 0) 的求根公式是什么?2.求根公式成立的前提是什么?引入新课在用求根公式解一元二次方程时,是否会遇到一些特殊现象?可看下述几例.新课讲解例 3例 4 解方程 x2+x-1=0 . ( 精确到 0.001)讲解例 4例 5 解关于 x 的方程 x 2 -m(3x-2m+n)-n 2=0.讲解例 5练习: P14 2小结:b2-4ac ≥ 0 后,2.在解含有字母系数的一元二次方程时,应注意化方程为一般形式,确定再用求根公式解之.作业习题12.1 A组 5 6第 6 课一元二次方程的解法(五)一、教学目的使学生掌握应用因式分解法解某些系数较为特殊的一元二次方程的方法.二、教学重点、难点重点:用因式分解法解一元二次方程.难点:将方程化为一般形式后,对左侧二次三项式的因式分解.三、教学过程复习提问1.在初一时,我们学过将多项式分解因式的哪些方法?2.方程 x2=4 的解是多少?引入新课2方程 x =4 还有其他解法吗?众所周知,方程x2=4 还可用公式法解.此法要比开平方法繁冗.本课,我们将介绍一种较为简捷的解一元二次方程的方法——因式分解法.我们仍以方程x2=4 为例.2移项,得 x -4=0 ,2对 x -4 分解因式,得(x+2)(x-2)=0.我们知道:∴ x+2=0 , x-2=0 .即 x 1=-2 , x2=2.由上述过程我们知道:当方程的一边能够分解成两个一次因式而另一边等于0 时,即可解之.这种方法叫做因式分解法.例 1 解下列方程:(1)x 2-3x-10=0 ;(2)(x+3)(x-1)=5.在讲例 1(1) 时,要注意讲应用十字相乘法分解因式;讲例 1(2) 时,应突出讲将方程整理成一般形式,然后再分解因式解之.例 2 解下列方程:(1)3x(x+2)=5(x+2);(2)(3x+1)2-5=0.在讲本例 (1) 时,要突出讲移项后提取公因式,形成(x+2)(3x-5)=0后求解;再利用平方差公式因式分解后求解.注意:在讲完例1、例 2 后,可通过比较来讲述因式分解的方法应“因题而宜”.例 3 解下列方程:(1)3x 2-16x+5=0 ;(2)3(2x2-1)=7x.依照教材中的解法介绍,此类题需用十字相乘法解之.练习: P20 1、2小结对上述三例的解法可做如下总结:因式分解法解一元二次方程的步骤是1.将方程化为一般形式;2.把方程左边的二次三项式分解成两个一次式的积;( 用初一学过的分解方法)3.使每个一次因式等于0,得到两个一元一次方程;4.解所得的两个一元一次方程,得到原方程的两个根.作业:习题12.2 A组1第 7 课一元二次方程的解法(六)一、教学目的使学生进一步巩固掌握一元二次方程的开平方法、配方法、公式法和因式分解法.二、教学重点、难点重点:一元二次方程的四种常见解法的复习.难点:选择适当的方法解一元二次方程.三、教学过程例 1 解下列方程:讲解例1例 2 解下列方程:(1)5x(5x-2)=-1;(2)(x-2)2+10(x-2)+16=0.讲解例2例3用适当的方法解下列方程:讲解例 3小结在解一元二次方程时,要注意根据方程的特征,选择适当的方法灵活的解决问题.作业习题 12.2A组2第 8 课一元二次方程的根的判别式 ( 一)一、教学目的1.使学生理解并掌握一元二次方程的根的判别式.2.使学生掌握不解方程,运用判别式判断一元二次方程根的情况.二、教学重点、难点重点:一元二次方程根的判别式的应用.难点:一元二次方程根的判别式的推导.三、教学过程复习提问1.一元二次方程的一般形式及其根的判别式是什么?2.用公式法求出下列方程的解:222(1)3x+x-10=0;(2)x-8x+16=0;(3)2x-6x+5=0.通过上述一组题,让学生回答出:一元二次方程的根的情况有三种,即有两个不相等的实数根;两个相等的实数根;没有实数根.接下来向学生提出问题:是什么条件决定着一元二次方程的根的情况?这条件与方程的根之间又有什么关系呢?能否不解方程就可以明确方程的根的情况?这正是我们本课要探讨的课题. ( 板书本课标题 )新课2先讨论上述三个小题中 b -4ac 的情况与其根的联系.再做如下推导:2对任意一元二次方程ax +bx+c=0(a ≠0) ,可将其变形为∵a≠ 0,∴ 4a2> 0.由此可知 b2- 4ac 的值的“三岐性”,即正、零、负直接影响着方程的根的情况.(1)当 b2- 4ac > 0 时,方程右边是一个正数.(2)当 b2- 4ac = 0 时,方程右边是 0.通过以上讨论,总结出:一元二次方程 ax2+ bx+c= 0 的根的情况可由 b2- 4ac 来判定.故称 b2- 4ac 是一元二次方程 ax2+ bx+ c= 0 的根的判别式,通常用“△”来表示.综上所述,一元二次方程ax2+bx+ c=0(a ≠ 0)当△> 0 时,有两个不相等的实数根;当△= 0 时,有两个相等的实数根;当△< 0 时,没有实数根.反过来也成立.注:“△”读作“delta ”.例不解方程,判别下列方程根的情况:(1)2x 2+3x- 4= 0;(2)16y 2+ 9= 24y;(3)5(x2+1)-7x=0.分析:要想确定上述方程的根的情况,只需算出“△”,确定它的符号情况即可.练习:P26123小结应用判别式解题应注意以下几点:1.应先把已知方程化为一元二次方程的一般形式,为应用判别式创造条件.2.不必解方程,只须先求出△,确定其符号即可,具体数值不一定要计算出来.3.其逆命题也是成立的.作业:习题12.3 A组1--4第 9 课一元二次方程的根的判别式( 二)一、教学目的通过对含有字母系数方程的根的讨论,培养学生运用一元二次方程根的判别式的论证能力和逻辑思维能力.培养学生思考问题的灵活性和严密性.二、教学重点、难点重点:巩固掌握根的判别式的应用能力.难点:利用根的判别式进行有关证明.三、教学过程复习提问1.写出一元二次方程ax2+bx + c= 0 的根的判别式.2.方程 ax2+ bx+c= 0(a ≠0) 的根有哪几种情况?如何判断?引入新课教材中“想一想”提出了如下问题:已知关于 x 的方程2x2-(4k+1)x+2k2-1=0,其中△ =[-(4k+1)]2-4 × 2×(2k 2-1)=16k2+8k+1-16k 2+8=8k+9.想一想,当k 取什么值时,(1) 方程有两个不相等的实数根;(2) 方程有两个相等的实数根;(3) 方程没有实数根.新课上述问题,实际上是这样一道题目.例 1 当 k 取什么值时,关于 x 的方程 2x2-(4k+1)x+2k 2-1=0(1)有两个不相等的实数根; (2) 有两个相等实数根; (3) 方程没有实数根.讲解例 1例 2 求证关于 x 的方程 (k 2 +1)x 2-2kx+(k 2+4)=0 没有实数根.分析:要证明上述方程没有实数根,只须证明其根的判别式△<0 即可.例 3 证明关于 x 的方程 (x-1)(x-2)=m 2有两个不相等的实数根.讲解例 3例 4 已知 a, b, c 是△ ABC的三边的长,求证方程a2x2-(a 2+b2-c 2)x+b 2=0 没有实数根.讲解例 4练习:1.若 m≠ n,求证关于x 的方程 2x2+2(m+n)x+m2+n2=0 无实数根.2.求证:关于x 的方程 x2 +(2m+1)x-m 2+m=0有两个不相等的实数根.小结2解决判定一元二次方程ax +bx+c=0 的方程根的情况应依照下列步骤进行:2.用配方法将△恒等变形( 或变成易于观察其符号的情况) ;3.判断△的符号,得出结论.作业:习题12.3 B 组第 10 课一元二次方程的根与系数的关系( 一)一、教学目的1.使学生掌握一元二次方程根与系数的关系( 即韦达定理 ) ,并学会初步运用.2.培养学生分析、观察以及利用求根公式进行推理论证的能力.二、教学重点、难点重点:韦达定理的推导和初步运用.难点:定理的应用.三、教学过程复习提问1.一元二次方程ax 2+ bx+c= 0 的求根公式应如何表述?2.上述方程两根之和等于什么?两根之积呢?新课一元二次方程ax2+bx + c=0(a ≠ 0) 的两根为由此得出,一元二次方程的根与系数之间存在如下关系:( 又称“韦达定理”)如果 ax2+ bx+ c=0(a ≠ 0) 的两个根是x1, x2,那么我们再来看二次项系数为 1 的一元二次方程x2+ px+ q=0 的根与系数的关系.得出:如果方程 x2+ px+q= 0 的两根是x1,x2,那么 x1+ x2=- p,x1 x2= q.由 x 1+ x2=- p, x1x2=q 可知 p=- (x 1+ x2) ,q= x1· x2,∴方程 x2+ px+ q= 0,即 x 2- (x 1+ x2)x + x1·x2=0.这就是说,以两个数 x1, x2为根的一元二次方程 ( 二次项系数为 1) 是x2-(x 1+ x2)x + x1· x2= 0.例 1 已知方程 5x2+k x- 6=0 的一个根是 2,求它的另一根及k的值.讲解例 1练习 P32 12小结1.本节课主要学习了一元二次方程根与系数关系定理,应在应用过程中熟记定理.2.要掌握定理的两个应用:一是不解方程直接求方程的两根之和与两根之积;二是已知方程一根求另一根及系数中字母的值.作业:习题12.4 A 组 1第 11 课一元二次方程的根与系数的关系( 二 )一、教学目的1.复习巩固一元二次方程根与系数关系的定理.2.学习定理的又一应用,即“已知方程,求方程两根的代数式的值”.3.通过应用定理,培养学生分析问题和综合运用所学知识解决问题的能力.二、教学重点、难点重点:已知方程求关于根的代数式的值.难点:用两根之和与两根之积表示含有两根的各种代数式.三、教学过程复习提问1.一元二次方程根与系数关系的定理是什么?2.下列各方程两根之和与两根之积各是什么?(1)x 2- 3x- 18= 0; (2)x 2+5x + 4= 5;(3)3x 2+7x+ 2= 0; (4)2x 2+3x= 0.引入新课考虑下列两个问题;1.方程 5x2+ kx -6= 0 两根互为相反数,k 为何值?2.方程2x2+ 7x+k= 0 的两根中有一个根为0, k为何值?我们可以从这两题中看出,根与系数之间的运算是十分巧妙的.本课我们将深入探讨这一问题.新课2例 2 利用根与系数的关系,求一元二次方程2x +3x- 1=0 两根的 (1) 平方和; (2) 倒数和.在讲本题时,要突出讲使用韦达定理,寻求x2+ px+ q=0 中的 p,q 的值.例 4 已知两个数的和等于 8,积等于 9,求这两个数.这是一道“根与系数的关系定理”的应用题,要注意讲此类题的解题步骤:(1)运用定理构造方程;(2) 解方程求两根;(3) 得出所欲求的两个数.练习:P32 3 、4、5小结本课学习了利用根与系数关系解决三类问题的方法:(1) 已知方程求两根的各种代数式的值; (2) 已知两根的代数式的值,构造新方程;(3)已知两根的和与积,构造方程,解方程,求出与根对应的数.作业:习题12.4 A 组 2 、 3、 4一、教学目的1.使学生理解二次三项式的意义及解方程和因式分解的关系.2.使学生掌握用求根法在实数范围内将二次三项式分解国式.二、教学重点、难点重点:用求根法分解二次三项式.难点:方程的同解变形与多项式的恒等变形的区别.三、教学过程复习提问解方程: 1. x2-x-6= 0; 2 . 3x2-11x+10 = 0; 3 . 4x2+8x-1 = 0.引入新课在解上述方程时,第1,2 题均可用十字相乘法分解因式,迅速求解.而第 3 题则只有采用其他方法.此题给我们启示,用十字相乘法分解二次三项式,有时是无法做到的.是否存在新的方法能分解二次三项式呢?第 3 个方程的求解给我们以启发.新课二次三项式 ax2+bx+c(a ≠ 0) ,我们已经可以用十字相乘法分解一些简单形式.下面我们介绍利用一元二次方程的求根公式将之分解的方法.易知,解一元二次方程2= 0 时,可将左边分解因式,即2(x-1)(x-2)= 0,2x -6x+4求得其两根 x1= 1, x2= 2.反之,我们也可利用一元二次方程的两个根来分解二次三项式.即,令二次三项式为 0,解此一元二次方程,求出其根,从而分解二次三项式.具体方法如下:如果一元二次方程ax2+bx+c= 0(a ≠0) 的两个根是= a[x 2-(x 1+x2)x+x 1x2]= a(x-x1)(x-x 2).从而得出如下结论.在分解二次三项式 ax2+bx+c 的因式时,可先用公式求出方程ax2+bx+c=0 的两根 x1,x2,然后写成 ax2+bx+c = a(x-x1)(x-x 2).例如,方程 2x2-6x+4= 0 的两根是 x = 1, x = 2.12则可将二次三项式分解因式,得2= 2(x-1)(x-2) .2x -6x+4例 1 把 4x2-5 分解因式.讲解例 1练习: P37 1小结:用公式法解决二次三项式的因式分解问题时,其步骤为:22.解方程 ( 用求根公式等方法) ,得方程两根x1, x2;3.代入 a(x-x 1)(x-x2).作业:习题12.5 A 组 1一、教学目的使学生进一步巩固和熟练掌握公式法将二次三项式因式分解的方法.二、教学重点、难点重点:用求根公式法分解二次三项式.难点:二元二次三项式的因式分解.三、教学过程复习提问求根法分解二次三项式的因式的步骤有哪些?引入新课2上节课我们证明了:ax +bx+c= a(x-x 1)(x-x2),其中x1, x2分别等于什么?新课例 2 把 4x2+8x-1 分解因式.此题注意将二次项系数 4 分解乘入两因式的必要性,即化简结论.2 2例 3 把 2x -8xy+5y 分解因式.注意视之为关于x 的方程,视y 为常数的重要性.练习 P37 2小结2二次三项式ax +bx+c(a ≠ 0) 分解因式的方法有三种,即2.十字相乘法:2即 x +(a+b)x+ab =(x+a)(x+b) ;acx 2+(ad+bc)x+bd = (ax+b)(cx+d).3.求根法:ax2+bx+c= a(x-x 1)(x-x2),(1)当 b2-4ac ≥ 0 时,可在实数范围内分解;(2)当 b2-4ac < 0 时,在实数范围内不能分解.作业:习题12.5 A 组 2第 14 课一元二次方程的应用( 一)一、教学目的1.使学生会列出一元二次方程解应用题.2.使学生通过列方程解应用题,进一步提高逻辑思维能力和分析问题、解决问题的能力.二、教学重点、难点重点:由应用问题的条件列方程的方法.难点:设“元”的灵活性和解的讨论. 三、教学过程 复习提问1.一元二次方程有哪些解法? ( 要求学生答出: 开方法、配方法、公式法、因式分解法.)2.回忆一元二次方程解的情况. ( 要求学生按△> 0,△= 0,△< 0 三种情况回答问题. )3.我们已经学过的列方程解应用题时,有哪些基本步骤? ( 要求学生回答:①审题; ②( 组 ) ;④解方程 ( 组 ) ;⑤检验并写出答案.我们已经涉及了一个与一元二次方程有联系的应用.此类问题还有吗?回答是肯定的: 还有很多!本课我们将深入研究有关一元二次方程的应用题.新课本章开始时,教材 P 3 中我们提出了如下问题:用一块长80cm ,宽 60cm 的薄钢片,在四2如何求出截去的小正方形的边长?解:设小正方形边长为xcm ,则盒子底面的长、宽分别为(80-2x)cm 及(60-2x)cm ,依题意,可得 (80-2x)(60-2x) =1500 ,即 x 2-70x+825 =0.当时,我们不会解此方程.现在,可用求根公式解此方程了.∴ x 1= 55, x 2= 15.当 x = 55 时, 80-2x = -30 , 60-2x =-50 ;当 x = 15 时, 80-2x = 50,60-2X = 30.由于长、宽不能取负值,故只能取 x = 15,即小正方形的边长为 15cm .我们再回忆本章第 1 节中的一个应用题:剪一块面积是 150cm 2 的长方形铁片,使它的长比宽多5cm ,这块铁片应怎样剪? 分析:要解决此问题,需求出铁片的长和宽,由于长比宽多5cm ,可设宽为未知数来列方程.解:设这块铁片宽xcm ,则长是 (x+5)cm .依题意,得2x(x+5) = 150,即 x +5x-150 = 0.∴ x 1= 10, x 2= -15( 舍去 ) . ∴ x =10, x+5= 15. 答:应将之剪成长 15cm ,宽 10cm 的形状.练习P4112 小结利用一元二次方程解应用题的主要步骤仍是: ①审题;②设未知数;③列方程;④解方程;⑤依题意检验所得的根;⑥得出结论并作答.作业:习题 12.6 A 组 1 、 2、 3设未知数;③根据等量关系列方程引入新课一、教学目的使学生掌握有关面积和体积方面以及“药液问题” 的一元二次方程应用题的解法.提高学生化实际问题为数学问题的能力.二、教学重点、难点重点:用图示法分析题意列方程.难点:方程的布列.三、教学过程复习提问本小节第一课我们介绍了什么问题?引入新课今天我们进一步研究有关面积和体积方面以及“药液问题” 的一元二次方程的应用题及其解法.新课例 1 如图 1,有一块长25cm,宽 15cm的长方形铁皮.如果在铁皮的四个角上截去四个相同的小正方形,然后把四边折起来,做成一个底面积为231cm2的无盖长方体盒子,求截去的小正方形的边长应是多少?分析:如图1,考虑设截去的小正方形边长为xcm,则底面的长为(25-2x)cm,宽为(15-2x)cm ,由此,知由长×宽=矩形面积,可列出方程.解:设小正方形的边长为xcm,依题意,得 (25-2x)(15-2x)=231,即 x2-20x+36 = 0,解得 x1= 2, x2= 18( 舍去 ) .答:截去的小正方形的边长为2cm.例 2 一个容器盛满药液 20 升,第一次倒出若干升,用水加满;第二次倒出同样的升数,这时容器里剩下药液 5 升,问每次倒出药液多少升?∴x=10.答:第一、二次倒出药液分别为10 升,5升.练习 P41 3、 4小结1.注意充分利用图示列方程解有关面积和体积的应用题.2.要注意关于“药液问题”应用题,列方程要以“剩下药液”为依据列式.作业:习题12.6 4、5、6、7一、教学目的使学生掌握列一元二次方程解关于增长率的应用题的方法.并进一步培养学生分析问题和解决问题的能力.二、教学重点、难点重点:弄清有关增长率的数量关系.难点:利用数量关系列方程的方法.三、教学过程复习提问1.问题: (1) 某厂生产某种产品,产品总数为1600 个,合格品数为1563 个,合格率是多少?(2)某种田农户用 800 千克稻谷碾出 600 千克大米,问出米率是多少?(3) 某商店二月份的营业额为 3.5 万元,三月份的营业额为 5 万元,三月份与二月份相比,营业额的增长率是多少?新课例 1 某钢铁厂去年一月份某种钢的产量为 5000 吨,三月份上升到 7200 吨,这两个月平均每月增产的百分率是多少?分析:用译式法讨论列式一月份产量为5000 吨,若月增长率为x,则二月份比一月份增产5000x 吨.二月份产量为(5000+5000x) = 5000(1+x) 吨;三月份比二月份增产5000(1+x)x吨,三月份产量为5000(1+x)+5000(1+x)x=5000(1+x)2吨.再根据题意,即可列出方程.解:设平均每月增长的百分率为x,根据题意,得 5000(1+x) 2= 7200,即 (1+x) 2= 1.44 ,∴1+x=± 1.2 , x1= 0.2 ,x2= -2.2( 不合题意,舍去 ) .答:平均每月增长率为 20%.例 2某印刷厂一月份印刷了科技书籍50 万册,第一季度共印182 万册,问二、三月份平均每月的增长率是多少?解:设每月增长率为x,依题意得2答:二、三月份平均月增长率为20%.练习: P41 5小结依题意,依增长情况列方程是此类题目解题的关键.作业:习题12.6 A组8第 17 课可化为一元二次方程的分式方程教学目的1.使学生掌握可化为一元二次方程的分式方程的解法,会用去分母或换元法求方程的解.2.使学生了解解分式方程产生增根的原因,掌握验根的方法.3.结合教学对学生进行化归转化思想的培养.教学重点将分式方程转化为一元二次方程.教学难点分式方程验根的必要性的认识.教学过程一、复习1.我们学过分式方程,同学们还记得怎样解分式方程吗?2.请同学们解下列方程:3.请同学们结合上面两个题,回答下列问题:(1)什么是分式方程?解分式方程的一般方法与步骤是什么?(2)在解分式方程过程中,容易犯的错误是什么?应当怎样避免?(3)解分式方程为什么必须验根,应当怎样验根?指出:分母里含有未知数的方程叫做分式方程.解分式方程的一般思路是化分式方程为整式方程,解分式方程的一般步骤是:(1)把方程中各分式的分母因式分解,确定各分式的最简公分母.(2)用最简公分母去乘方程两边,约去分母,使分式方程化为整式方程.(3)解这个整式方程,得到此整式方程的根.(4)检验.解分式方程容易犯的错误有:(1) 去分母时,原方程的整式部分漏乘.(2) 约去分母后,分子是多项式时,要注意添括号.根据方程同解原理:方程两边都乘以不等于零的同一个数,所得方程与原方程同解.而我们在解分式方程时,方程两边同时乘以最简公分母,它是一个整式,当此整式为零时,就破坏了方程的同解原理,因此最后整式方程的根就不一定是原方程的根,所以解分式方程必须验根.验根的一般方法是:把最后整式方程的根代入最简公分母,看结果是否为零,使最简公分母为零的根为原方程的增根,必须舍去,否则是原方程的根.二、新课讲解例 1讲解例 2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程1. 一元二次方程的概念一元二次方程必须同时满足三个条件:①是整式方程, 即等号两边都是整式, 方程中如果有分母,那么分母中无未知数;②只含一个未知数;③未知数的最高次数是 2.2. 一元二次方程的一般形式一般地,任何一个关于 x 的一元二次方程, • 经过整理, • 都能化成如下形式 ax2+bx+c=0(a≠0.这种形式叫做一元二次方程的一般形式 .其中 ax 2是 ____________, _____是二次项系数; bx 是 __________,_____是一次项系数; _____是常数项。
注意:二次项系数、一次项系数、常数项都要包含它前面的符号。
二次项系数0a ≠是一个重要条件,不能漏掉。
3. 典型例题分析题型 1 一元二次方程的识别例 1. 下列方程是一元二次方程的是 (只填序号例 2. 已知关于 x 的方程(21m x-+(m-3x-1=0是一元二次方程,则 m 的值为题型 2. 将一元二次方程化为一般形式例 3. 将方程(8-2x (5-2x =18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.例 4. 一元二次方程 a(x+12+b(x+1-c=0化成一般形式为 4x 2+3x+1=0,试求(2a+b 3c 的值 .试一试1. 将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数、及常数项: ⑴ 5x2-1=4x ⑵ 4x2=81 ⑶ 4x(x+2=25 ⑷ (3x-2(x+1=8x-322222(110(323x 10x x (5(3 (3 x x -==+=-22x (22(x-1=3y12 x---=0(69x=5-4x题型 3. 建立一元二次方程模型例 5. 根据下列问题,列出关于 x 的方程,并将其化成一元二次方程的一般形式:⑴ 4个完全相同的正方形的面积之和是 25,求正方形的边长 x;⑵一个长方形的长比宽多 2,面积是 100,求长方形的长 x ;⑶把长为 1的木条分成两段, 使较短一段的长与全长的积等于较长一段的长的平方, 求较短一段的长 x 。
直接开平方法解一元二次方程利用平方根的定义直接开平方求一元二次方程的解的方程叫做直接开平方法 . 一般地,对于形如 x 2=n(n 0的方程,根据平方根的定义,可解得 x 12注意:(1用直接开平方法解一元二次方程必须把方程化成等号左边是一个含未知数的一次式的平方,右边是一个非负数的形式才能解;(2用直接开平方法解一元二次方程就是将二次方程通过开平方转化为一次方程 .(3用直接开平方法解一元二次方程,一定要正确运用平方根的性质,即正数的平方根有两个,它们互为相反数;零的平方根是零;负数没有平方根 .典型例题分析例 1. 用直接开平方法解下列方程:(1 x 2=8 (2 (2x-12=5 (3 x 2+6x+9=2【课堂练习】:1、用直接开平方法解下列方程:(1 3(x-12-6=0 (2 x 2-4x+4=5 (3 9x 2+6x+1=4 (4 36x 2-1=0 (5 4x 2=81 (6 (x+52=25一、选择题1.若 x 2-4x+p=(x+q 2,那么 p 、 q 的值分别是(.A . p=4, q=2B . p=4, q=-2C . p=-4, q=2D . p=-4, q=-2 2.方程 3x 2+9=0的根为(.A . 3B . -3C . ±3D .无实数根二、填空题1.若 8x 2-16=0,则 x 的值是 _________.2.如果方程 2(x-3 2=72,那么,这个一元二次方程的两根是 ________.3.如果 a 、 b 2-12b+36=0,那么 ab 的值是 _______.4.用直接开平方法解下列方程:(1(2-x 2=4 (2(2-x 2-81=05、某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长25m , • 另三边用木栏围成, 木栏长 40m .(1鸡场的面积能达到 180m 2吗?能达到 200m 吗?(2鸡场的面积能达到 210m 2吗?7.在一次手工制作中,某同学准备了一根长 4米的铁丝,由于需要,现在要制成一个矩形方框,并且要使面积尽可能大,你能帮助这名同学制成方框, • 并说明你制作的理由吗?配方法解一元二次方程对于一般形式的一元二次方程,若二次项系数为 1, 在方程的左边加上一次项系数的一半的平方, 再减去这个数,使得含未知数的项在一个完全平方式里,这种做法叫做配方,配方、整理后,可以直接根据平方根的意义来解,这种解一元二次方程的方法叫作配方法。
例 1. 用配方法解下列关于 x 的方程(1 x 2-4x+2=0 (2 2x 2-4x-8=0例 2. 填空:(1 x 2+6x+______=(x+______ 2;(2 x 2-x+_____=(x-_____ 2(3 4x 2+4x+_____=(2x+______ 2.(4 x 2-x+_____=(x-_____ 2练习:(1 x 2+10x+9=0 (3 3x 2+6x-4=0(3 4x 2-6x-3=0 (4 x(x+4=8x+12【课后巩固】一、选择题1.将二次三项式 x 2-4x+1配方后得(.A .(x-2 2+3B .(x-2 2-3C .(x+2 2+3D .(x+2 2-32.已知 x 2-8x+15=0,左边化成含有 x 的完全平方形式,其中正确的是(.A . x 2-8x+(-4 2=31B . x 2-8x+(-4 2=1C . x 2+8x+42=1D . x 2-4x+4=-113.如果 mx 2+2(3-2m x+3m-2=0(m≠0的左边是一个关于 x 的完全平方式,则 m 等于 (.A . 1B . -1C . 1或 9D . -1或 9二、填空题1.(1 x 2-8x+______=(x-______ 2;(2 9x 2+12x+_____=(3x+_____ 2(3 x 2+px+_____=(x+______ 2.2、方程 x 2+4x-5=0的解是 ________.三、解方程:(1 x 2+10x+16=0 (2 3x 2+6x-5=0 (3 4x 2-x-9=0四、综合提高题1.已知三角形两边长分别为 2和 4,第三边是方程 x 2-4x+3=0的解,求这个三角形的周长.2.如果 x 2-4x+y2,求(xy z 的值.用公式法解一元二次方程一元二次方程ax 2+bx+c=0(a≠0的根由方程的系数 a 、 b 、 c 而定,因此:(1 解一元二次方程时, 可以先将方程化为一般形式 ax 2+bx+c=0, 当 b 2-4ac≥0时, 将 a 、 b 、c 代入式子b 2-4ac <0,方程没有实数根。
(2ax 2+bx+c=0(a≠0的求根公式.(3利用求根公式解一元二次方程的方法叫公式法.(4 由求根公式可知, 一元二次方程最多有实数根, 也可能有实根或者实根。
(5一般地,式子 b 2-4ac 叫做方程ax 2+bx+c=0(a≠0的根的判别式,通常用希腊字Δ表示它,即Δ= b2-4ac运用一元二次方程的求根公式直接求每一个一元二次方程的解的方法,叫作公式法例 1、用公式法解下列方程.(1 x 2-4x-7=0 (2 2x 2-22x+1=0 (3 5x 2-3x=x+1 (4 x 2+17=8x课堂练习:1、在什么情况下,一元二次方程ax 2+bx+c=0(a≠0有两个不相等的实数根?有两个相等的实数根?2、写出一元二次方程ax 2+bx+c=0(a≠0, b 2-4ac≥0的求根公式。
3、利用判别式判定下列方程的根的情况:(1 2x 2-3x-23=0 (2 16x 2-24x+9=0 (3 x 2-24x+9=0 (4 3x 2+10x=2x2+8x4、用公式法解下列方程.(1 2x 2-4x-1=0 (2 5x+2=3x2(3 x 2-3x-41=0 (4 4x 2-6=0【课后巩固】一、选择题1.用公式法解方程 4x 2-12x=3,得到( .A .B .C .D .22的根是( .A.x 1x 2B.x 1=6, x 2C.x 1x 2D.x 1=x23.(m 2-n 2(m 2-n 2-2 -8=0,则 m 2-n 2的值是( .A . 4B . -2C . 4或 -2D . -4或 2二、填空题1.一元二次方程ax 2+bx+c=0(a≠0的求根公式是 ________,条件是 ________.2.当 x=______时,代数式 x 2-8x+12的值是 -4.3.若关于 x 的一元二次方程(m-1 x 2+x+m2+2m-3=0有一根为 0,则 m 的值是_____.三、综合提高题1.用公式法解关于 x 的方程:x 2-2ax-b 2+a2=0.因式分解法1. 当一元二次方程的一边为 0,而另一边易于时,我们就可将原方程降次为两个一元一次方程 , 从而求出方程的根, 这种方法叫作一元二次方程的因式分解法。
2. 用因式分解法解方程的步骤:(1将方程右边化为 0;(2将方程左边分解为两个一次因式的乘积(3令每个因式都等于 0,得到两个一元二次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解。
3. 一元二次方程的解法有、、、 ,其中法和公式法适合任意一元二次方程, 公式法是最常用的方法4. 典型例题分析例 1、用因式分解法解下列方程(1(3 (2x-12=(3-x2 (4 2(5 315x x +=+随堂训练1、用因式分解法解下列方程(1 x 2+x=0 (2 (x-42=(5-2x2(4 4x 2-121=0 (5 3x(2x+1=4x+22、把小圆形场地的半径增加 5m 得到大圆形场地,场地面积增加了一倍,求小圆形场地的半径。
2540x x -=(2 20x x x -+-=【课后巩固】1.方程 (3 0x x +=的根是2.方程 22(1 1x x +=+的根是 ________________3.方程 2x (x-2 =3(x-2的解是 _________4.方程(x-1(x-2 =0的两根为 x 1、 x 2,且 x 1>x2,则 x 1-2x 2的值等于 _ __5.若(2x+3y 2+4(2x+3y +4=0,则 2x+3y的值为 _________.6.已知 y=x2-6x+9,当 x=______时, y 的值为 0;当 x=_____时, y 的值等于 9.7.方程 x (x+1(x-2 =0的根是(A . -1, 2B . 1, -2C . 0, -1, 2D . 0, 1, 28.若关于 x 的一元二次方程的根分别为 -5, 7,则该方程可以为(A .(x+5(x-7 =0B .(x-5(x+7 =0C .(x+5(x+7 =0D .(x-5(x-7 =09.方程(x+4(x-5 =1的根为(A . x=-4B . x=5C . x 1=-4, x 2=5D .以上结论都不对10、用因式分解法解下列方程:(1 (41(57 0x x -+=(2 2x =(3 3(1 2(1 x x x -=- (4 2216(2 9(3 x x -=+选择合适的方法解一元二次方程一、梳理知识1、解一元二次方程的基本思路是:将二次方程化为一次方程,即降次,其本质是把ax 2+bx+c=0(a≠0 的左端的二次多项式分解成两个一次多项式的乘积 , 即 ax 2+bx+c=a(x-x1(x-x2, 其中 x 1和 x 2是方程 ax 2+bx+c=0的两个根。