C实现进程调度算法有先来先服务优先级调度短作业优先响应比高优先
先来先服务和优先数调度算法c语言
先来先服务和优先数调度算法c语言先来先服务和优先数调度算法c语言一、前言操作系统中的进程调度是指在多道程序环境下,按照一定的规则从就绪队列中选择一个进程,将CPU分配给它运行。
常用的进程调度算法有先来先服务(FCFS)、最短作业优先(SJF)、时间片轮转(RR)等。
本文将介绍两种常见的进程调度算法:先来先服务和优先数调度算法,并给出相应的C语言实现。
二、先来先服务算法1. 算法原理FCFS即First Come First Served,也称为FIFO(First In First Out),是一种非抢占式的进程调度算法。
按照任务到达时间的顺序进行处理,即谁先到达谁就被处理。
2. 算法流程(1)按照任务到达时间排序;(2)依次执行每个任务,直至所有任务都完成。
3. C语言实现下面是一个简单的FCFS程序:```c#include <stdio.h>struct process {int pid; // 进程IDint arrival_time; // 到达时间int burst_time; // 执行时间int waiting_time; // 等待时间};int main() {struct process p[10];int n, i, j;float avg_waiting_time = 0;printf("请输入进程数:");scanf("%d", &n);for (i = 0; i < n; i++) {printf("请输入第%d个进程的信息:\n", i + 1); printf("进程ID:");scanf("%d", &p[i].pid);printf("到达时间:");scanf("%d", &p[i].arrival_time);printf("执行时间:");scanf("%d", &p[i].burst_time);}for (i = 0; i < n; i++) {for (j = 0; j < i; j++) {if (p[j].arrival_time > p[j + 1].arrival_time) { struct process temp = p[j];p[j] = p[j + 1];p[j + 1] = temp;}}}int current_time = p[0].arrival_time;for (i = 0; i < n; i++) {if (current_time < p[i].arrival_time) {current_time = p[i].arrival_time;}p[i].waiting_time = current_time - p[i].arrival_time;current_time += p[i].burst_time;}printf("进程ID\t到达时间\t执行时间\t等待时间\n");for (i = 0; i < n; i++) {printf("%d\t%d\t%d\t%d\n", p[i].pid, p[i].arrival_time, p[i].burst_time, p[i].waiting_time);avg_waiting_time += (float)p[i].waiting_time / n;}printf("平均等待时间:%f\n", avg_waiting_time);return 0;}```三、优先数调度算法1. 算法原理优先数调度算法是一种非抢占式的进程调度算法。
常用的调度算法
常用的调度算法调度算法是指操作系统中用于决定进程何时执行、何时暂停等的一种算法。
常用的调度算法包括先来先服务(FCFS)、短作业优先(SJF)、优先级调度、时间片轮转等。
下面将对这些常用的调度算法进行详细介绍。
一、先来先服务(FCFS)先来先服务是最简单的调度算法之一,它按照进程到达的顺序进行调度,即谁先到谁先执行。
这种算法容易实现,但是存在“饥饿”现象,即如果某个进程长时间等待,则其他进程可能会一直占用CPU资源,导致该进程无法得到执行。
因此,在实际应用中,FCFS很少被使用。
二、短作业优先(SJF)短作业优先是一种以作业运行时间为依据的调度算法。
它通过预测每个进程需要运行的时间,并将其按照运行时间从小到大排序,然后依次执行。
这种算法可以最大限度地减少平均等待时间和平均周转时间,并且不会出现“饥饿”现象。
但是,在实际应用中,由于很难准确预测每个进程需要运行的时间,因此SJF也存在缺陷。
如果预测不准确,那么就会出现长作业等待短作业的情况,导致长作业的等待时间变长。
三、优先级调度优先级调度是一种按照进程优先级进行调度的算法。
每个进程都有一个优先级,系统会根据进程的优先级来决定下一个要执行的进程。
通常情况下,优先级越高的进程越有可能得到CPU资源。
但是,如果某个进程的优先级一直比其他进程高,那么其他进程就会一直等待,导致“饥饿”现象。
此外,在实际应用中,由于不同进程之间的优先级差别较大,因此可能会导致低优先级的进程长时间等待。
四、时间片轮转时间片轮转是一种按照时间片进行调度的算法。
它将CPU资源划分成若干个时间片,并将每个时间片分配给一个正在运行或等待运行的进程。
当一个进程用完了它所分配到的时间片后,系统会将其挂起,并将CPU资源分配给下一个等待运行的进程。
这种算法可以避免“饥饿”现象,并且能够保证所有正在运行或等待运行的进程都能够得到CPU资源。
但是,如果时间片太小,会导致进程频繁切换,影响系统性能;如果时间片太大,会导致长作业等待时间变长。
调度算法C语言实现
调度算法C语言实现调度算法是操作系统中的重要内容之一,它决定了进程在系统中的运行方式和顺序。
本文将介绍两种常见的调度算法,先来先服务(FCFS)和最短作业优先(SJF),并用C语言实现它们。
一、先来先服务(FCFS)调度算法先来先服务(FCFS)调度算法是最简单的调度算法之一、它按照进程到达的先后顺序进行调度,即谁先到达就先执行。
实现这个算法的关键是记录进程到达的顺序和每个进程的执行时间。
下面是一个用C语言实现先来先服务调度算法的示例程序:```c#include <stdio.h>//进程控制块结构体typedef structint pid; // 进程IDint arrivalTime; // 到达时间int burstTime; // 执行时间} Process;int maiint n; // 进程数量printf("请输入进程数量:");scanf("%d", &n);//输入每个进程的到达时间和执行时间Process process[n];for (int i = 0; i < n; i++)printf("请输入进程 %d 的到达时间和执行时间:", i);scanf("%d%d", &process[i].arrivalTime,&process[i].burstTime);process[i].pid = i;}//根据到达时间排序进程for (int i = 0; i < n - 1; i++)for (int j = i + 1; j < n; j++)if (process[i].arrivalTime > process[j].arrivalTime) Process temp = process[i];process[i] = process[j];process[j] = temp;}}}//计算平均等待时间和平均周转时间float totalWaitingTime = 0; // 总等待时间float totalTurnaroundTime = 0; // 总周转时间int currentTime = 0; // 当前时间for (int i = 0; i < n; i++)if (currentTime < process[i].arrivalTime)currentTime = process[i].arrivalTime;}totalWaitingTime += currentTime - process[i].arrivalTime;totalTurnaroundTime += (currentTime + process[i].burstTime) - process[i].arrivalTime;currentTime += process[i].burstTime;}//输出结果float avgWaitingTime = totalWaitingTime / n;float avgTurnaroundTime = totalTurnaroundTime / n;printf("平均等待时间:%f\n", avgWaitingTime);printf("平均周转时间:%f\n", avgTurnaroundTime);return 0;```以上程序实现了先来先服务(FCFS)调度算法,首先根据进程的到达时间排序,然后依次执行每个进程,并计算总等待时间和总周转时间。
c语言实现进程调度算法
c语言实现进程调度算法进程调度算法是操作系统中的一个重要组成部分,用于决定在多道程序环境下,选择哪个进程来占用CPU并执行。
C语言是一种通用的编程语言,可以用于实现各种进程调度算法。
这里我将分别介绍三种常见的进程调度算法:先来先服务调度算法(FCFS)、最短作业优先调度算法(SJF)和轮转法调度算法(RR),并给出用C语言实现的示例代码。
首先,我们来看先来先服务调度算法(FCFS)。
此算法根据到达时间的先后顺序,按照先来后到的顺序进行处理。
下面是基于C语言的先来先服务调度算法实现示例代码:```c#include<stdio.h>struct Process};void FCFS(struct Process proc[], int n)for (int i = 1; i < n; i++)}printf("进程号到达时间服务时间完成时间等待时间周转时间\n");for (int i = 0; i < n; i++)}for (int i = 0; i < n; i++)}int maiint n;printf("请输入进程数:");scanf("%d", &n);struct Process proc[n];for (int i = 0; i < n; i++)printf("请输入进程%d的到达时间和服务时间(用空格分隔):", i + 1);}FCFS(proc, n);return 0;```其次,我们来看最短作业优先调度算法(SJF),该算法选择执行时间最短的进程先执行。
下面是基于C语言的最短作业优先调度算法实现示例代码:```c#include<stdio.h>struct Process};void SJF(struct Process proc[], int n)for (int i = 0; i < n; i++)for (int j = 0; j < i; j++)}shortest_job = i;for (int j = i + 1; j < n; j++)shortest_job = j;}}}for (int i = 1; i < n; i++)}printf("进程号到达时间服务时间完成时间等待时间周转时间\n");for (int i = 0; i < n; i++)}for (int i = 0; i < n; i++)}int maiint n;printf("请输入进程数:");scanf("%d", &n);struct Process proc[n];for (int i = 0; i < n; i++)printf("请输入进程%d的到达时间和服务时间(用空格分隔):", i + 1);}SJF(proc, n);return 0;```最后,我们来看轮转法调度算法(RR),该算法分配一个时间片给每个进程,当时间片用完后,将CPU分配给下一个进程。
几种操作系统调度算法
几种操作系统调度算法操作系统调度算法是操作系统中用于确定进程执行的顺序和优先级的一种方法。
不同的调度算法有不同的优缺点,适用于不同的场景和需求。
下面将介绍几种常见的操作系统调度算法:1.先来先服务(FCFS)调度算法:先来先服务调度算法是最简单的调度算法之一、按照进程到达的顺序进行调度,首先到达的进程先执行,在CPU空闲时执行下一个进程。
这种算法实现简单,并且公平。
但是,由于没有考虑进程的执行时间,可能会导致长作业时间的进程占用CPU资源较长时间,从而影响其他进程的响应时间。
2.短作业优先(SJF)调度算法:短作业优先调度算法是根据进程的执行时间进行排序,并按照执行时间最短的进程优先执行。
这种算法可以减少平均等待时间,提高系统的吞吐量。
然而,对于长作业时间的进程来说,等待时间会相对较长。
3.优先级调度算法:优先级调度算法是根据每个进程的优先级来决定执行顺序的。
优先级可以由用户设置或者是根据进程的重要性、紧迫程度等因素自动确定。
具有较高优先级的进程将具有更高的执行优先级。
这种算法可以根据不同情况进行灵活调度,但是如果不恰当地设置优先级,可能会导致低优先级的进程长时间等待。
4.时间片轮转(RR)调度算法:时间片轮转调度算法将一个固定的时间片分配给每个进程,当一个进程的时间片用完时,将该进程挂起,调度下一个进程运行。
这种算法可以确保每个进程获得一定的CPU时间,提高系统的公平性和响应速度。
但是,对于长时间运行的进程来说,可能会引起频繁的上下文切换,导致额外的开销。
5.多级反馈队列(MFQ)调度算法:多级反馈队列调度算法将进程队列划分为多个优先级队列,每个队列有不同的时间片大小和优先级。
新到达的进程被插入到最高优先级队列,如果进程在时间片内没有完成,则被移到下一个较低优先级队列。
这种算法可以根据进程的执行表现自动调整优先级和时间片,更好地适应动态变化的环境。
以上是几种常见的操作系统调度算法,每种算法都有其优缺点和适用场景。
先来先服务和短作业优先调度算法
先来先服务调度算法和短作业优先调度算法
作业
提交 时间
运行 时间
开始 时间
1 8.00 2.00 8.00
1 8.00 2.00 8.00
2 8.50 0.50 10.00
2 8.50 0.50 10.30
3 9.00 0.10 10.50
3 9.00 0.10 10.00
4 9.50 0.20 10.60
可有效降低作业/进程的平均等待时间。 4
SJ(P)F缺点:
(1) 该算法对长作业不利,如作业C的周转时间由10增 至16,其带权周转时间由2增至3.1。更严重的是,如果有 一长作业(进程)进入系统的后备队列(就绪队列),由于调度 程序总是优先调度那些(即使是后进来的)短作业(进程),将 导致长作业(进程)长期不被调度。(不利长作业)
(2) 该算法完全未考虑作业的紧迫程度,因而不能保证 紧迫性作业(进程)会被及时处理。(不及时)
(3) 由于作业(进程)的长短只是根据用户所提供的估计 执行时间而定的,而用户又可能会有意或无意地缩短其作 业的估计运行时间,致使该算法不一定能真正做到短作业 优先调度。(不完全可靠)
5
调度算法练习题
6
4 9.50 0.20 10.10
先来先服务调度算法
平均周转时间
t = 1.725
平均带权周转时间 w = 6.875
完成 周转 带权周转 执行 时间 时间 时间 顺序
10.00 2.00
1
1
10.00 2.00
1
1
10.50 2.00
4
2
10.80 2.30 4.6
4
10.60 1.60 16
3
10.10 1.10 11
作业调度算法(先来先服务算法,短作业算法)
《操作系统》实验报告题目:作业调度算法班级:网络工程姓名:朱锦涛学号:E31314037一、实验目的用代码实现页面调度算法,即先来先服务(FCFS)调度算法、短作业优先算法、高响应比优先调度算法。
通过代码的具体实现,加深对算法的核心的理解。
二、实验原理1.先来先服务(FCFS)调度算法FCFS是最简单的调度算法,该算法既可用于作业调度,也可用于进程调度。
当在作业调度中采用该算法时,系统将按照作业到达的先后次序来进行调度,或者说它是优先考虑在系统中等待时间最长的作业,而不管该作业所需执行的时间的长短,从后备作业队列中选择几个最先进入该队列的作业,将它们调入内存,为它们分配资源和创建进程。
然后把它放入就绪队列。
2.短作业优先算法SJF算法是以作业的长短来计算优先级,作业越短,其优先级越高。
作业的长短是以作业所要求的运行时间来衡量的。
SJF算法可以分别用于作业和进程调度。
在把短作业优先调度算法用于作业调度时,它将从外存的作业后备队列中选择若干个估计运行时间最短的作业,优先将它们调入内存。
3、高响应比优先调度算法高响应比优先调度算法则是既考虑了作业的等待时间,又考虑了作业的运行时间的算法,因此既照顾了短作业,又不致使长作业等待的时间过长,从而改善了处理机调度的性能。
如果我们引入一个动态优先级,即优先级是可以改变的令它随等待的时间的延长而增加,这将使长作业的优先级在等待期间不断地增加,等到足够的时间后,必然有机会获得处理机。
该优先级的变化规律可以描述为:优先权 = (等待时间 + 要求服务时间)/要求服务时间三、实验内容源程序:#include<stdio.h>#include<stdlib.h>#include<time.h>struct work{i nt id;i nt arrive_time;i nt work_time;i nt wait;f loat priority;};typedef struct sjf_work{s truct work s_work; //数据域s truct sjf_work * pNext; //指针域}NODE,*PNODE;void FCFS();void SJF();void showmenu();bool Is_empty(PNODE pHead);int cnt_work(PNODE pHead);PNODE do_work(PNODE pHead,int *w_finish_time,int i);void show(int *w_finish_time,int i,PNODE q,int*w_rel_time);void HRRN();PNODE priorit(PNODE pHead);void do_work_1(PNODE pHead,int *w_finish_time,int i);int main(){i nt choice; //设置选择数s howmenu(); //显示菜单s canf("%d",&choice);w hile(choice != 0) //选择算法{switch(choice){case 1 :printf("您选择的是先来先服务算法:\n");FCFS();break;case 2 :printf("您选择的是短作业优先算法:\n");SJF();break;case 3 :printf("您选择的是高响应比优先调度算法\n");HRRN();break;default:printf("请重新选择!");break;}printf("\n");printf("下面是菜单,请继续,或者按‘0’退出"); showmenu();scanf("%d",&choice);}p rintf("感谢您使用本系统,再见!");r eturn 0;}void FCFS(){i nt j,k;i nt w_rel_time[5];i nt w_finish_time[5];f loat rel_time = 0;struct work temp;i nt i;s truct work w[5];s rand(time(0));f or(i=0;i<5;i++){w[i].id = rand()%10;w[i].arrive_time = rand()%10;w[i].work_time = rand()%10+1;}f or(j=0;j<5;j++){printf("第%d个作业的编号是:%d\t",j+1,w[j].id);printf("第%d个作业到达时间:%d\t",j+1,w[j].arrive_time);printf("第%d个作业服务时间:%d\t",j+1,w[j].work_time);printf("\n");}for(j=1;j<5;j++)for(k=0;k<5-j;k++){if(w[k].arrive_time > w[k+1].arrive_time){temp = w[k];w[k] = w[k+1];w[k+1] = temp;}}printf("\n");w_finish_time[0] = w[0].arrive_time + w[0].work_time;for(j=0;j<5;j++){if(w_finish_time[j] < w[j+1].arrive_time){w_finish_time[j+1] = w[j+1].arrive_time + w[j+1].work_time;}elsew_finish_time[j+1] = w_finish_time[j] +w[j+1].work_time;}for(j=0;j<5;j++)w_rel_time[j] = w_finish_time[j] -w[j].arrive_time;for(j=0;j<5;j++){rel_time += w_rel_time[j];}for(j=0;j<5;j++){printf("第%d个系统执行的作业到达时间:%d ",j+1,w[j].arrive_time);printf("编号是:%d ",w[j].id);printf("服务时间是:%d ",w[j].work_time);printf("完成时间是:%d ",w_finish_time[j]);printf("周转时间是:%d ",w_rel_time[j]);printf("\n");}printf("平均周转时间:%f\n",rel_time/5);}void SJF(){i nt w_rel_time[10];i nt w_finish_time[10];f loat rel_time = 0;s rand(time(0));i nt i;i nt j = 0;P NODE pHead = (PNODE)malloc(sizeof(NODE));i f (NULL == pHead){printf("分配失败, 程序终止!\n");exit(-1);}P NODE pTail = pHead;p Tail->pNext = NULL; //定义该链表有头结点,且第一个节点初始化为空f or(i=0;i<10;i++){PNODE pNew = (PNODE)malloc(sizeof(NODE));if (NULL == pNew){printf("分配失败, 程序终止!\n");exit(-1);}pNew->s_work.id = rand()%100;pNew->s_work.arrive_time = rand()%10;pNew->s_work.work_time = rand()%10+1;pTail->pNext = pNew;pNew->pNext = NULL;pTail = pNew;}P NODE p = pHead->pNext; //p指向第一个节点w hile (NULL != p){printf("第%d个作业的编号是:%d\t",j+1,p->s_work.id);printf("第%d个作业到达时间:%d\t",j+1,p->s_work.arrive_time);printf("第%d个作业服务时间:%d\t",j+1,p->s_work.work_time);printf("\n");p = p->pNext;printf("\n");j++;}p = pHead->pNext;P NODE q = p; //p,q都指向第一个节点p = p->pNext;w hile(p != NULL){if(p->s_work.arrive_time < q->s_work.arrive_time)q = p;p = p->pNext;}P NODE r = pHead->pNext; //r也指向第一个节点i nt cnt = 0; //记录所有节点数据域中到达时间最短且相等的个数w hile(r!= NULL){if( r->s_work.arrive_time == q->s_work.arrive_time ) cnt++;r = r->pNext;}p = pHead->pNext;w hile(p != NULL) //在相等到达时间的作业中找服务时间最短的作业{if(cnt > 1){if( p->s_work.arrive_time ==q->s_work.arrive_time )if( p->s_work.work_time < q->s_work.work_time )q = p;p = p->pNext;}elsep =NULL;} //确定q所指作业最先到达且服务时间最短w_finish_time[0] = q->s_work.arrive_time +q->s_work.work_time;w_rel_time[0] = w_finish_time[0] -q->s_work.arrive_time;p rintf("第1个系统执行的作业到达时间:%d",q->s_work.arrive_time);p rintf("编号是:%d ",q->s_work.id);p rintf("服务时间是:%d \n",q->s_work.work_time); p rintf("完成时间是:%d ",w_finish_time[0]);p rintf("周转时间是:%d \n",w_rel_time[0]);p = pHead; //寻找q的前一个节点,方便删掉q节点w hile( p->pNext != q ){p = p->pNext;}p->pNext = q->pNext;f ree(q);q = NULL;f or(i=0;i<9&&!Is_empty(pHead);i++){printf("现在系统还剩%d个作业!\n",cnt_work(pHead));q = do_work(pHead,w_finish_time,i);show(w_finish_time,i,q,w_rel_time);p = pHead; //寻找q的前一个节点,方便删掉q节点while( p->pNext != q ){p = p->pNext;}p->pNext = q->pNext;free(q);q = NULL;}f or(j=0;j<10;j++)rel_time += w_rel_time[j];}printf("平均周转时间:%f\n",rel_time/10);}bool Is_empty(PNODE pHead) //判断作业是否做完{P NODE p;p = pHead->pNext;i nt len = 0;w hile(p != NULL){len++;p = p->pNext;}i f(len == 0)return true; //当没有作业时,返回为真e lsereturn false;}int cnt_work(PNODE pHead) //计算当前还剩多少作业{P NODE p;p = pHead->pNext;i nt len = 0;w hile(p != NULL){len++;p = p->pNext;}r eturn len;}PNODE do_work(PNODE pHead,int *w_finish_time,int i) {P NODE p,q;i nt cnt = 0; //计数器清0,计算当前作业完成时,系统中有多少个作业已经到达p = pHead->pNext;q = p;w hile(p != NULL){if( p->s_work.arrive_time <= w_finish_time[i] ){cnt ++;q = p;p = p->pNext;}else{p = p->pNext;}} //q指向当前到达时间小于刚刚完成的作业,但不一定是服务时间最短的(如果有的话)p rintf("系统中有%d个作业在当前作业完成时已经到达!\n",cnt);p = pHead->pNext;w hile(p != NULL){if(cnt>1) //执行此次判断后,q现在指向所有条件都满足的作业(如果有的话){if( p->s_work.arrive_time <= w_finish_time[i] ){if( p->s_work.work_time < q->s_work.work_time ){q = p;p = p->pNext;}elsep = p->pNext;}elsep = p->pNext;}else //当前作业完成时,没有作业到达的情况{p = p->pNext; //用q来接收最先到达的,用p来遍历while( p != NULL ){if( p->s_work.arrive_time<q->s_work.arrive_time )q = p;p = p->pNext;}w_finish_time[i+1] = q->s_work.arrive_time + q->s_work.work_time;}}w_finish_time[i+1] = w_finish_time[i] +q->s_work.work_time;r eturn q;}void show(int *w_finish_time,int i,PNODE q,int*w_rel_time){w_finish_time[i+1] = w_finish_time[i] +q->s_work.work_time;w_rel_time[i+1] = w_finish_time[i+1] -q->s_work.arrive_time;p rintf("第%d个系统执行的作业到达时间:%d",i+2,q->s_work.arrive_time);p rintf("编号是:%d ",q->s_work.id);p rintf("服务时间是:%d\n",q->s_work.work_time);p rintf("完成时间是:%d ",w_finish_time[i+1]);p rintf("周转时间是:%d \n",w_rel_time[i+1]);}void showmenu(){printf("**********************************\n"); p rintf("请选择你要执行的命令~: \n");p rintf("1:先来先服务算法\n");p rintf("2:短作业优先算法\n");p rintf("3: 高响应比优先算法\n");p rintf("0: 退出菜单\n");p rintf("**********************************\n"); }void HRRN(){i nt w_rel_time[10];i nt w_finish_time[10];f loat rel_time = 0;f loat priority; //计算优先权s rand(time(0));i nt i;i nt j = 0;P NODE pHead = (PNODE)malloc(sizeof(NODE));i f (NULL == pHead){printf("分配失败, 程序终止!\n");exit(-1);}P NODE pTail = pHead;p Tail->pNext = NULL; //定义该链表有头结点,且第一个节点初始化为空f or(i=0;i<10;i++) //定义了十个进程{PNODE pNew = (PNODE)malloc(sizeof(NODE));if (NULL == pNew){printf("分配失败, 程序终止!\n");exit(-1);}pNew->s_work.id = rand()%100;pNew->s_work.arrive_time = rand()%10;pNew->s_work.work_time = rand()%10+1;pTail->pNext = pNew;pNew->pNext = NULL;pTail = pNew;}P NODE p = pHead->pNext; //p指向第一个节点w hile (NULL != p){printf("第%d个作业的编号是:%d\t",j+1,p->s_work.id);printf("第%d个作业到达时间:%d\t",j+1,p->s_work.arrive_time);printf("第%d个作业服务时间:%d\t",j+1,p->s_work.work_time);printf("\n");p = p->pNext;printf("\n");j++;}p = pHead->pNext;P NODE q = p; //p,q都指向第一个节点p = p->pNext;w hile(p != NULL){if(p->s_work.arrive_time < q->s_work.arrive_time) q = p;p = p->pNext;}P NODE r = pHead->pNext; //r也指向第一个节点i nt cnt = 0; //记录所有节点数据域中到达时间最短且相等的个数w hile(r!= NULL){if( r->s_work.arrive_time == q->s_work.arrive_time ) cnt++;r = r->pNext;}p = pHead->pNext;w hile(p != NULL) //在相等到达时间的作业中找服务时间最短的作业{if(cnt > 1){if( p->s_work.arrive_time ==q->s_work.arrive_time )if( p->s_work.work_time < q->s_work.work_time )q = p;p = p->pNext;}elsep =NULL;} //确定q所指作业最先到达且服务时间最短w_finish_time[0] = q->s_work.arrive_time +q->s_work.work_time;w_rel_time[0] = w_finish_time[0] -q->s_work.arrive_time;p rintf("第1个系统执行的作业到达时间:%d",q->s_work.arrive_time);p rintf("编号是:%d ",q->s_work.id);p rintf("服务时间是:%d \n",q->s_work.work_time); p rintf("完成时间是:%d ",w_finish_time[0]);p rintf("周转时间是:%d \n",w_rel_time[0]);p = pHead; //寻找q的前一个节点,方便删掉q节点w hile( p->pNext != q ){p = p->pNext;}p->pNext = q->pNext;f ree(q);q = NULL; //已经找到并执行第一个进程,执行完之后又将其删除了f or(i=0;i<9&&!Is_empty(pHead);i++){printf("现在系统还剩%d个作业!\n",cnt_work(pHead));do_work_1(pHead,w_finish_time,i);q = priorit(pHead);show(w_finish_time,i,q,w_rel_time);p = pHead; //寻找q的前一个节点,方便删掉q节点while( p->pNext != q ){p = p->pNext;}p->pNext = q->pNext;free(q);q = NULL;}f or(j=0;j<10;j++){rel_time += w_rel_time[j];}printf("平均周转时间:%f\n",rel_time/10);}void do_work_1(PNODE pHead,int *w_finish_time,int i) {P NODE p,q;i nt cnt = 0; //计数器清0,计算当前作业完成时,系统中有多少个作业已经到达p = pHead->pNext;q = p;w hile(p != NULL){if( p->s_work.arrive_time <= w_finish_time[i] ){cnt ++;q = p;p = p->pNext;}else{p = p->pNext;}} //q指向当前到达时间小于刚刚完成的作业,但有可能有另外几个进程也已经到达了,所以要进行下面的判断p rintf("系统中有%d个作业在当前作业完成时已经到达!\n",cnt);p = pHead->pNext;w hile(p != NULL){if(cnt>1) //说明此时有好几个都已经到达了{if(p->s_work.arrive_time <= w_finish_time[i]){p->s_work.wait = w_finish_time[i] -p->s_work.arrive_time;p = p->pNext;}else{p->s_work.wait = 0;p = p->pNext;}}else //当前作业完成时,没有作业到达的情况{p = p->pNext; //此时p指向第一个节点,q指向第二个节点,还是找最先到达的while( p != NULL ){if( p->s_work.arrive_time <q->s_work.arrive_time )q = p;p = p->pNext;}w_finish_time[i+1] = q->s_work.arrive_time +q->s_work.work_time;return;}}w_finish_time[i+1] = w_finish_time[i] +q->s_work.work_time;}PNODE priorit(PNODE pHead){P NODE p = pHead->pNext;w hile(p != NULL){if(p->s_work.wait > 0){p->s_work.priority = (p->s_work.wait +p->s_work.work_time) / p->s_work.work_time; //计算每一个已经等待的进程的优先等级p = p->pNext;}elsep = p->pNext;}p = pHead->pNext;P NODE q;q = p;p = p->pNext; //p已经指向第二个节点w hile(p != NULL){if(p->s_work.wait > 0){if(p->s_work.priority > q->s_work.priority){q = p;p = p->pNext;}elsep = p->pNext;}elsep = p->pNext;}p rintf("该进程优先级最高,为:%f\n",q->s_work.priority);return q;}实验结果:系统自动为每个算法模拟分配五个作业,同时随机生成作业的编号,作业的到达时间,作业估计运行的时间。
【操作系统】先来先服务和短作业优先算法(C语言实现)
【操作系统】先来先服务和短作业优先算法(C语⾔实现)【操作系统】先来先服务算法和短作业优先算法实现介绍:1.先来先服务 (FCFS: first come first service)如果早就绪的进程排在就绪队列的前⾯,迟就绪的进程排在就绪队列的后⾯,那么先来先服务(FCFS: first come first service)总是把当前处于就绪队列之⾸的那个进程调度到运⾏状态。
也就说,它只考虑进程进⼊就绪队列的先后,⽽不考虑它的下⼀个CPU周期的长短及其他因素。
FCFS算法简单易⾏,是⼀种⾮抢占式策略,但性能却不⼤好。
简单来说,先来先服务就是那个进程到达时间最早,那么CPU就先处理哪个进程。
2.短作业优先(SJF, Shortest Job First)对预计执⾏时间短的作业(进程)优先分派处理机。
通常后来的短作业不抢先正在执⾏的作业。
也就是说,不但要考虑进程的到达时间,还要考虑进程需要运⾏的时间。
当⼀个进程正在运⾏时,假如有其他的进程到达,那么这些到达的进程就需要按照其需要运⾏的时间长短排序,运⾏时间短的在前,运⾏时间长的在后。
3.例⼦:4.运⾏截图1.先来先服务2.短作业优先5.话不多说,直接上代码。
第⼀次写,有很多不⾜的地⽅。
希望⼤家看到可以帮忙纠正⼀下,谢谢⼤家。
#include <stdio.h>#include <stdlib.h>#define MAX 10typedef struct PCB {int id,arrive_time,service_time,start_time,finish_time; //进程id、到达时间、服务时间、开始时间、完成时间float zhouzhuan_time,daiquanzhouzhuan_time; //周转时间、带权周转时间。
只能说我的拼英。
emm,。
尴尬。
int status;}PCB;typedef enum {OK,ERROR}Status;typedef enum {FALSE,TRUE}Bool;typedef PCB datatype;typedef struct LinkQueue {int front;int rear;int length;datatype* base;}quene;int arrive[MAX]; // 记录每个作业的到达时间int service[MAX]; //记录每个作业的服务时间int num; //输⼊的进程个数quene init(){quene q_pcb;q_pcb.base = (datatype *)malloc(sizeof(datatype)*MAX);q_pcb.front = q_pcb.rear = 0;q_pcb.length = 0;return q_pcb;}Bool isFull(quene *q) {if ((q->rear + 1) % MAX == q->front) {return TRUE;}return FALSE;}Bool isEmpty(quene *q) {if (q->rear == q->front) {return TRUE;}return FALSE;}Status rudui(quene *q,datatype p){ //⼊队。
常用的进程调度算法
常用的进程调度算法
常用的进程调度算法有:
1. 先来先服务(FCFS):按照进程到达的顺序进行调度,先
到达的进程先执行。
2. 短作业优先(SJF):按照进程执行时间的长短进行调度,
先执行执行时间短的进程。
3. 优先级调度:每个进程都有一个优先级,按照优先级进行调度,优先级高的先执行。
4. 轮转调度(RR):按照进程到达的顺序进行调度,每个进
程执行一个时间片(时间片大小可以设定),然后进行切换。
5. 多级反馈队列调度:将进程分为多个队列,每个队列具有不同的优先级,每个队列都按照先来先服务的原则进行调度,当一个进程运行时间超过一个时间片时,将其放入下一个优先级更低的队列中。
6. 最短剩余时间优先(SRTF):在短作业优先算法的基础上,每次发生进程切换时,都会比较剩余运行时间,优先执行剩余时间最短的进程。
7. 最高响应比优先(HRRN):按照响应比(等待时间+执行
时间/执行时间)进行调度,响应比越高,优先级越高。
8. 最早截止时间优先(EDF):按照进程的截止时间进行调度,优先执行截止时间最早的进程。
这些算法适用于不同的场景和需求,可以根据具体的情况选择合适的调度算法来提高系统性能。
先来先服务和短作业优先调度算法
先来先服务和短作业优先调度算法在先来先服务调度算法中,操作系统先根据作业的提交顺序将作业按顺序放入就绪队列中,然后按队列的顺序依次执行作业。
当一个作业执行完成后,下一个作业才会开始执行。
优点:1.简单易实现:先来先服务调度算法的实现非常简单,只需按照作业到达的顺序进行调度即可。
2.公平性:先来先服务调度算法保证了作业的公平性,因为作业的执行顺序完全按照作业到达的顺序进行。
3.低开销:先来先服务调度算法没有额外的开销,只需进行简单的作业切换即可。
缺点:1.平均等待时间长:如果一个长作业先到达,那么后面的短作业就不得不等待较长的时间,导致平均等待时间较长。
2.未能充分利用资源:由于先来先服务调度算法没有对作业的执行时间进行优化,可能导致资源利用率较低,造成浪费。
短作业优先调度算法(Shortest Job First SJF)短作业优先调度算法是根据作业的执行时间来进行调度的。
它的原理是选择执行时间最短的作业优先执行,以此来减少作业的等待时间和周转时间。
在短作业优先调度算法中,操作系统会根据作业的执行时间将作业按照升序排序,然后按照顺序执行作业。
如果有多个作业的执行时间相同,那么可以按照先来先服务的原则进行调度。
优点:1.最小化平均等待时间:短作业优先调度算法根据作业的执行时间来进行调度,能够尽量减少作业的等待时间和周转时间,从而最小化平均等待时间。
2.高资源利用率:由于选择执行时间最短的作业优先执行,能够更加有效地利用系统资源。
缺点:1.难以预测执行时间:在实际情况下,很难准确地预测作业的执行时间,可能导致短作业优先调度算法的准确性下降。
2.可能导致长作业饥饿:如果有长作业在短作业优先调度算法中不断到达,那么短作业可能会一直被优先执行,从而造成长作业饥饿的问题。
总结:先来先服务调度算法和短作业优先调度算法都是常见的调度算法之一,各有其优缺点。
先来先服务调度算法简单易实现,但可能导致平均等待时间长;短作业优先调度算法能够最小化平均等待时间和提高资源利用率,但难以准确预测执行时间可能导致长作业饥饿的问题。
计算机操作系统的进程调度算法
计算机操作系统的进程调度算法计算机操作系统是指控制和管理计算机硬件与软件资源的系统软件。
在操作系统中,进程调度算法起着至关重要的作用,它决定了系统中各个进程的执行顺序,合理的调度算法可以提高系统的性能和效率。
本文将对常见的进程调度算法进行介绍和分析。
一、先来先服务调度算法(First-Come, First-Served,FCFS)先来先服务调度算法是最简单的调度算法之一。
按照进程到达的先后顺序依次执行,即抢占后只有等待其他进程执行完毕才能执行。
该算法的优点是简单易实现,但缺点是平均等待时间较长,无法满足实时性要求,容易产生“饥饿”现象。
二、短作业优先调度算法(Shortest Job First,SJF)短作业优先调度算法是通过预测进程执行时间的长短来进行调度的。
当有多个进程同时到达时,选择执行时间最短的进程先执行。
该算法的优点是能够最大限度地减少平均等待时间,但缺点是无法应对长作业的到来,可能导致长作业的等待时间过长。
三、优先级调度算法(Priority Scheduling)优先级调度算法根据进程的优先级来进行调度,优先级高的进程先执行。
该算法可以根据实际需要为不同的进程设置不同的优先级。
该算法的优点是能够满足实时性要求,但缺点是可能导致优先级低的进程长时间等待,产生“饥饿”现象。
四、轮转调度算法(Round Robin,RR)轮转调度算法是一种按照时间片轮流分配CPU的调度算法。
每个进程被分配一个固定的时间片,当时间片用完时,进程被剥夺CPU,并放入就绪队列的末尾等待下一次调度。
该算法的优点是能够公平地分配CPU时间,避免长作业的等待时间过长,缺点是可能导致平均等待时间较长,无法满足实时性要求。
五、多级反馈队列调度算法(Multilevel Feedback Queue,MLFQ)多级反馈队列调度算法是一种综合利用多个调度算法的调度策略。
它将进程划分为多个队列,每个队列采用不同的调度算法。
操作系统中的进程调度算法
操作系统中的进程调度算法随着现代计算机技术的不断发展,操作系统成为管理计算机系统的核心组件。
操作系统不仅可以控制计算机硬件和软件资源的分配,还可以提高计算机的效率和管理性能。
而进程调度就是操作系统中最重要的功能之一,其目的是实现多个进程之间的均衡,响应用户请求,最大程度的利用计算机资源。
进程调度算法是指操作系统中用来决定哪个进程可以被执行和运行多长时间的算法。
不同的操作系统有不同的进程调度算法,通常根据不同策略来选择进程。
下面将介绍几种经典的进程调度算法。
1. 先来先服务(FCFS)算法FCFS算法是最简单的进程调度算法之一。
它的核心思想是按照进程到达的顺序排队,当一个进程结束执行后,下一个进程将会自动成为就绪队列中的第一个进程。
这种算法的优点在于简单易实现,但是很容易出现长作业长等待的问题,也就是说长时间在等待队列中的进程可能会影响到系统效率。
2. 最短作业优先(SJF)算法SJF算法通过对进程执行时间的估计来决定下一个要执行的进程。
也就是说,当一个新进程加入系统时,选择预计需要最短执行时间的进程进行调度。
这种算法在情况比较稳定时,可以保证平均等待时间最少。
但是当有大量的短作业成批到达时,长作业就可能会一直等待。
3. 优先级算法优先级算法是按照每个进程的优先级确定执行顺序的算法。
通常情况下,优先级由进程的重要性、紧急程度等因素来决定。
优先级越高的进程会先得到执行机会。
这种算法可以保证重要的进程得到优先执行,但是它也存在一个问题:优先级调度可能会导致低优先级的进程一直等待执行,这就是由于饥饿现象的出现。
4. 时间片轮转算法时间片轮转算法是一种按照时间分配资源的算法。
每个进程都被分配一个时间片,在该时间片结束时,操作系统会强制暂停进程的执行,将CPU时间分配给下一个进程执行。
这种算法可以保证每个进程都有机会得到尽可能的执行时间,而且能够避免长时间的等待。
5. 高响应比优先(HRRN)算法HRRN算法是一种综合了SJF和优先级算法的综合调度算法。
处理器调度算法c语言
处理器调度算法c语言一、概述处理器调度算法是操作系统中一个非常重要的问题。
在多任务操作系统中,有多个进程同时运行,而处理器只有一个,因此需要对进程进行调度,使得每个进程都能够得到适当的执行时间。
二、常见的处理器调度算法1. 先来先服务(FCFS)FCFS算法是最简单的调度算法之一。
它按照进程到达时间的先后顺序进行调度,即先到达的进程先执行。
这种算法容易实现,但可能会导致长作业等待时间过长。
2. 最短作业优先(SJF)SJF算法是根据每个进程所需的CPU时间来进行排序,并按照顺序进行调度。
这种算法可以减少平均等待时间和平均周转时间,并且可以最大限度地利用CPU资源。
3. 优先级调度优先级调度是根据每个进程的优先级来进行排序,并按照顺序进行调度。
这种算法可以确保高优先级进程得到更多的CPU时间,但可能会出现低优先级进程饥饿问题。
4. 时间片轮转(RR)RR算法将CPU分配给每个任务一定量的时间片,在该时间片内运行任务。
如果任务在该时间片内未完成,则将其放回队列尾部,并分配给下一个任务时间片。
这种算法可以确保公平性,并且可以避免长作业等待时间过长。
三、C语言中的处理器调度算法实现1. FCFS算法实现#include <stdio.h>int main(){int n, i, j;float avg_waiting_time = 0, avg_turnaround_time = 0;printf("Enter the number of processes: ");scanf("%d", &n);int burst_time[n], waiting_time[n], turnaround_time[n];printf("Enter the burst time for each process:\n");for(i=0; i<n; i++)scanf("%d", &burst_time[i]);waiting_time[0] = 0;turnaround_time[0] = burst_time[0];for(i=1; i<n; i++){waiting_time[i] = waiting_time[i-1] + burst_time[i-1];turnaround_time[i] = waiting_time[i] + burst_time[i];avg_waiting_time += waiting_time[i];avg_turnaround_time += turnaround_time[i];}avg_waiting_time /= n;avg_turnaround_time /= n;printf("\nProcess\tBurst Time\tWaiting Time\tTurnaround Time\n");for(i=0; i<n; i++)printf("P%d\t%d\t\t%d\t\t%d\n", i+1, burst_time[i], waiting_time[i], turnaround_time[i]);printf("\nAverage Waiting Time: %.2f\n", avg_waiting_ time);printf("Average Turnaround Time: %.2f\n", avg_turnaround_ time);return 0;}2. SJF算法实现#include <stdio.h>int main(){int n, i, j, temp;float avg_waiting_time = 0, avg_turnaround_time = 0; printf("Enter the number of processes: ");scanf("%d", &n);int burst_time[n], waiting_time[n], turnaround_time[n]; printf("Enter the burst time for each process:\n");for(i=0; i<n; i++)scanf("%d", &burst_time[i]);for(i=0; i<n-1; i++)for(j=i+1; j<n; j++)if(burst_time[i] > burst_time[j]){temp = burst_time[i];burst_time[i] = burst_time[j]; burst_time[j] = temp;}waiting_time[0] = 0;turnaround_time[0] = burst_time[0];for(i=1; i<n; i++){waiting_time[i] = waiting_time[i-1] + burst_time[i-1];turnaround_time[i] = waiting_time[i] + burst_time[i];avg_waiting_time += waiting_time[i];avg_turnaround_time += turnaround_time[i];}avg_waiting_time /= n;avg_turnaround_time /= n;printf("\nProcess\tBurst Time\tWaiting Time\tTurnaround Time\n");for(i=0; i<n; i++)printf("P%d\t%d\t\t%d\t\t%d\n", i+1, burst_time[i], waiting_time[i], turnaround_time[i]);printf("\nAverage Waiting Time: %.2f\n", avg_waiting_ time);printf("Average Turnaround Time: %.2f\n", avg_turnaround_ time);return 0;}3. 优先级调度算法实现#include <stdio.h>int main(){int n, i, j, temp;float avg_waiting_time = 0, avg_turnaround_time = 0;printf("Enter the number of processes: ");scanf("%d", &n);int burst_time[n], waiting_time[n], turnaround_time[n], priority[n];printf("Enter the burst time and priority for each process:\n"); for(i=0; i<n; i++)scanf("%d %d", &burst_time[i], &priority[i]);for(i=0; i<n-1; i++)for(j=i+1; j<n; j++)if(priority[i] > priority[j]){temp = priority[i];priority[i] = priority[j];priority[j] = temp;temp = burst_time[i];burst_time[i] = burst_time[j]; burst_time[j] = temp;}waiting_time[0] = 0;turnaround_time[0] = burst_time[0];for(i=1; i<n; i++){waiting_time[i] = waiting_time[i-1] + burst_time[i-1];turnaround_time[i] = waiting_time[i] + burst_time[i];avg_waiting_ time += waiting_ time[i];avg_turnaround_ time += turnaround_ time[i];}avg_waiting_ time /= n;avg_turnaround_ time /= n;printf("\nProcess\tBurst Time\tPriority\tWaiting Time\tTurnaround Time\n");for(i=0; i<n; i++)printf("P%d\t%d\t\t%d\t\t%d\t\t%d\n", i+1, burst_ time[i], priority[i], waiting_time[i], turnaround_time[i]);printf("\nAverage Waiting Time: %.2f\n", avg_waiting_ time);printf("Average Turnaround Time: %.2f\n", avg_turnaround _ time);return 0;}4. RR算法实现#include <stdio.h>int main(){int n, i, j, time_quantum;float avg_waiting_time = 0, avg_turnaround_time = 0;printf("Enter the number of processes: ");scanf("%d", &n);int burst_time[n], remaining_time[n], waiting_time[n], turnaround_time[n];printf("Enter the burst time for each process:\n");for(i=0; i<n; i++)scanf("%d", &burst_time[i]);printf("Enter the time quantum: ");scanf("%d", &time_quantum);for(i=0; i<n; i++)remaining_time[i] = burst_time[i];int t=0;while(1){int done = 1;for(i=0; i<n; i++){if(remaining_time[i] > 0){done = 0;if(remaining_ time[i] > time_ quantum){t += time_ quantum;remaining_ time[i] -= time_ quantum;}else{t += remaining _ time[i];waiting_time[i] = t - burst_time[i];remaining_ time[i] = 0;turnaround_ time[i] = waiting_time[i] + burst_time[i];avg_waiting_ time += waiting_ time[i];avg_turnaround _ time += turnaround_ time[i];}}}if(done == 1)break;}avg_waiting_ time /= n;avg_turnaround_ time /= n;printf("\nProcess\tBurst Time\tWaiting Time\tTurnaround Time\n");for(i=0; i<n; i++)printf("P%d\t%d\t\t%d\t\t%d\n", i+1, burst_time[i], waiting_time[i], turnaround_time[i]);printf("\nAverage Waiting Time: %.2f\n", avg_waiting_ time);printf("Average Turnaround Time: %.2f\n", avg_turnaround _ time);return 0;}四、总结以上是常见的处理器调度算法的C语言实现方式。
c语言编写的进程调度算法
c语言编写的进程调度算法C语言编写的进程调度算法进程调度是操作系统的核心功能之一,它负责按照一定的策略和算法,合理地分配CPU资源给正在运行或即将运行的进程,从而提高操作系统的性能和资源利用率。
在操作系统中,存在多种不同的进程调度算法,本文将以C语言编写进程调度算法为主题,一步一步回答。
第一步:定义进程结构体首先,我们需要定义一个进程的数据结构体,以便在调度算法中使用。
进程结构体包括进程ID、进程优先级、进程状态等信息。
以下是一个简单的进程结构体示例:ctypedef struct {int pid; 进程IDint priority; 进程优先级int state; 进程状态} Process;第二步:初始化进程队列进程队列是存储所有待调度进程的数据结构,可以使用链表或数组来实现。
在初始化进程队列之前,需要先创建一个空的进程队列。
以下是一个简单的初始化进程队列函数:c#define MAX_PROCESSES 100 最大进程数Process processQueue[MAX_PROCESSES]; 进程队列int processCount = 0; 当前进程数void initProcessQueue() {processCount = 0;}第三步:添加进程到队列在调度算法中,需要将新创建或运行的进程添加到进程队列中,这样才能对其进行调度。
以下是一个简单的添加进程到队列的函数:void addProcess(int pid, int priority, int state) {if (processCount >= MAX_PROCESSES) {printf("进程队列已满,无法添加进程!\n");return;}Process newProcess;newProcess.pid = pid;newProcess.priority = priority;newProcess.state = state;processQueue[processCount] = newProcess;processCount++;}第四步:实现进程调度算法进程调度算法决定了操作系统如何决定哪个进程应该被调度并获得CPU 资源。
高优先权优先调度算法c语言
高优先权优先调度算法c语言高优先权优先调度算法是一种常见的任务调度算法,其基本思想是按照任务的优先级从高到低进行排序,优先级高的任务优先执行。
下面是一个简单的用C语言实现高优先权优先调度算法的示例代码:```cinclude <>include <>struct task {int id; // 任务IDint priority; // 优先级int burst_time; // 执行时间};void swap(struct task a, struct task b) {struct task temp = a;a = b;b = temp;}void print_task(struct task task, int n) {printf("Task ID\tPriority\tBurst Time\n");for (int i = 0; i < n; i++) {printf("%d\t\t%d\t\t%d\n", task[i].id, task[i].priority, task[i].burst_time);}}void sort_task(struct task task, int n) {for (int i = 0; i < n-1; i++) {for (int j = i+1; j < n; j++) {if (task[i].priority < task[j].priority) {swap(&task[i], &task[j]);}}}}int main() {struct task task[5] = {{1, 3, 8},{2, 1, 4},{3, 2, 6},{4, 2, 5},{5, 4, 7}};int n = sizeof(task) / sizeof(struct task);printf("Original Task List:\n");print_task(task, n);sort_task(task, n);printf("Sorted Task List:\n");print_task(task, n);return 0;}```在这个示例代码中,我们定义了一个结构体`task`,用于表示每个任务的相关信息,包括任务ID、优先级和执行时间。
常见的进程调度算法
常见的进程调度算法在OS中调度的是实质是⼀种资源分配。
调度算法是指:根据系统资源分配策略所规定的资源分配算法。
对于不同的系统或系统⽬标,通常采⽤不同的调度算法。
1.先来先服务和短作业(进程)优先调度算法 1)先来先服务调度算法 先来先服务(FCFS)调度算法是⼀种最简单的调度算法,该算法既可⽤于作业调度,也可⽤于进程调度。
当在作业调度中采⽤该算法时,每次调度都是从后备作业队列中选择⼀个或多个最先进⼊该队列的作业,将它们调⼊内存,为它们分配资源、创建进程,然后放⼊就绪队列。
在进程调度中采⽤FCFS算法时,则每次调度是从就绪队列中选择⼀个最先进⼊该队列的进程,为之分配处理机,使之投⼊运⾏。
该进程⼀直运⾏到完成或发⽣某事件⽽阻塞后才放弃处理机。
先来先服务算法⽐较与利于长作业(进程),⽽不利于短作业(进程)。
2)短作业(进程)优先调度算法 短作业(进程)优先调度算法SJ(P)F,是指对短作业或短进程优先调度的算法。
它们可以分别⽤于作业调度和进程调度。
短作业优先(SJF)的调度算法是从后备队列中选择⼀个或若⼲个估计运⾏时间最短的作业,将它们调⼊内存运⾏。
⽽短进程优先(SPF)调度算法则是从就绪队列中选出⼀个估计运⾏时间最短的进程,将处理机分配给它,使它⽴即执⾏并⼀直执⾏到完成,或发⽣某事件⽽被阻塞放弃处理机时再重新调度。
2.⾼优先权优先调度算法 优先权调度算法的类型 为了照顾紧迫型作业,使之在进⼊系统后便获得优先处理,引⼊了最⾼优先权优先(FPF)调度算法。
此算法常被⽤于批处理系统中,作为作业调度算法,也作为多种操作系统中的进程调度算法,还可⽤于实时系统中。
当把该算法⽤于作业调度时,系统将从后备队列中选择若⼲个优先权最⾼的作业装⼊内存。
当⽤于进程调度时,该算法是把处理机分配给就绪队列中优先权最⾼的进程,这时,⼜可进⼀步把该算法分成如下两种。
1) ⾮抢占式优先权算法 在这种⽅式下,系统⼀旦把处理机分配给就绪队列中优先权最⾼的进程后,该进程便⼀直执⾏下去,直⾄完成;或因发⽣某事件使该进程放弃处理机时,系统⽅可再将处理机重新分配给另⼀优先权最⾼的进程。
C语言实现短作业优先调度算法
#include "stdio.h"struct sjf{char name[10];float arrivetime;float servicetime;float starttime;float finishtime;float zztime;float dqzztime;float cckj;float yxtime;};sjf a[100];void input(sjf *p,int N){int i;printf("输入作业名& 到达时间&服务时间&存储空间:\n 例如: a 0 100 33\n");for(i=0;i<=N-1;i++){printf("输入第%d作业信息:\n",i+1);scanf("%s%f%f%f",&p[i].name,&p[i].arrivetime,&p[i].serviceti me,&p[i].cckj);}}void Print(sjf *p,float arrivetime,float servicetime,float starttime,float finishtime,float zztime,float dqzztime,float cckj,int N) {int k;printf("作业执行顺序:");printf("%s",p[0].name);for(k=1;k<N;k++){printf("-->%s",p[k].name);}printf("\n作业信息:\n");printf("\nname\t arrive\t service\t start\t finish\t zz\t dqzz\t cckj\t ddsj\t yxtime\n");for(k=0;k<=N-1;k++){printf("%s\t %-.2f\t %-.2f\t %-.2f\t %-.2f\t %-.2f\t %-.2f\t %-.2f\t %-.2f\t %-.2f\n",p[k].name,p[k].arrivetime,p[k].servicetime,p[k].sta rttime,p[k].finishtime,p[k].zztime,p[k].dqzztime,p[k].cckj,p[k].finish time-p[k].servicetime,p[k].servicetime);}}//pai xuvoid sort(sjf *p,int N){for(int i=0;i<=N-1;i++)for(int j=0;j<=i;j++)if(p[i].arrivetime<p[j].arrivetime){sjf temp;temp=p[i];p[i]=p[j];p[j]=temp;}}//yun xing jieduanvoid deal(sjf *p, float arrivetime,float servicetime,float starttime,float finishtime,float &zztime,float &dqzztime,float cckj,int N){int k;for(k=0;k<=N-1;k++){if(k==0){p[k].starttime=p[k].arrivetime;p[k].finishtime=p[k].arrivetime+p[k].servicetime;} else{p[k].starttime=p[k-1].finishtime;p[k].finishtime=p[k-1].finishtime+p[k].servicetime;} }for(k=0;k<=N-1;k++){p[k].zztime=p[k].finishtime-p[k].arrivetime;p[k].dqzztime=p[k].zztime/p[k].servicetime;}}void sjff(sjf *p,int N){floatarrivetime=0,servicetime=0,starttime=0,finishtime=0,zztime=0,dqzzt ime=0,cckj=0;sort(p,N);for(int m=0;m<N-1;m++){if(m==0)p[m].finishtime=p[m].arrivetime+p[m].servicetime;elsep[m].finishtime=p[m-1].finishtime+p[m].servicetime;int i=0;for(int n=m+1;n<=N-1;n++){if(p[n].arrivetime<=p[m].finishtime)i++;}float min=p[m+1].servicetime;int next=m+1;//m+1=nfor(int k=m+1;k<m+i;k++){if(p[k+1].servicetime<min){min=p[k+1].servicetime;next=k+1;}}sjf temp;temp=p[m+1];p[m+1]=p[next];p[next]=temp;}deal(p,arrivetime,servicetime,starttime,finishtime,zztime,dqzztim e,cckj,N);Print(p,arrivetime,servicetime,starttime,finishtime,zztime,dqzzti me,cckj,N);}void main(){int N;printf("********************************************** ******\n");printf(" 短作业优先调度算法\n");printf("********************************************** ******\n");printf("程序功能:输出作业序号--运行时间--存储空间--等待时间\n");printf("\n");printf("输入作业个数:\n");scanf("%d",&N);input(a,N);sjf *b=a;sjff(b,N);}。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程设计报告书实践课题:操作系统课程设计姓名:学号:完成时间:2010.6.28指导老师:(老师)一、设计摘要利用C++,实现进程调度算法,有先来先服务、优先级调度、短作业优先、响应比高优先,进一步理解了进程调度各种算法的概念及含义。
二、设计背景在OS中,调度的实质是一种资源分配,调度算法即指:根据系统的资源分配策略所规定的资源分配算法。
对于不同的系统和系统目标,通常采用不同的调度算法,如在批处理系统中,为照顾为数众多的短作业,采用短作业有限调度算法;在分时系统中,为保证系统具有合理的响应时间,采用轮转法进行调度。
采用算法时,则要考虑多方面因素,以便达到最佳效果。
三、主要技术/算法简介#include<iostream>using namespace std;#define MAX 10struct task_struct{char name[10]; /*进程名称*/int number; /*进程编号*/float come_time; /*到达时间*/float run_begin_time; /*开始运行时间*/float run_time; /*运行时间*/float run_end_time; /*运行结束时间*/int priority; /*优先级*/int order; /*运行次序*/int run_flag; / *调度标志*/}tasks[MAX];int counter; /*实际进程个数*/int fcfs(); /*先来先服务*/int ps(); /*优先级调度*/int sjf(); /*短作业优先*/int hrrn(); /*响应比高优先*/int pinput(); /*进程参数输入*/int poutput(); / *调度结果输出*/void main(){ int option;pinput();printf("请选择调度算法(0~4):\n");printf("1.先来先服务\n");printf("2.优先级调度\n");printf("3.短作业优先\n");printf("4.响应比高优先\n");printf("0.退出\n");scanf("%d",&option);switch (option){case 0:printf("运行结束。
\n");break;case 1:printf("对进程按先来先服务调度。
\n\n");fcfs();poutput();break;case 2:printf("对进程按优先级调度。
\n\n");ps();poutput();break;case 3:printf("对进程按短作业优先调度。
\n\n");sjf();poutput();break;case 4:printf("对进程按响应比高优先调度。
\n\n");hrrn();poutput();break;}}int fcfs() /*先来先服务*/float time_temp=0;int i;int number_schedul;time_temp=tasks[0].come_time;for(i=0;i<counter;i++){tasks[i].run_begin_time=time_temp;tasks[i].run_end_time=tasks[i].run_begin_time+tasks[i].run_time;tasks[i].run_flag=1;time_temp=tasks[i].run_end_time;number_schedul=i;tasks[number_schedul].order=i+1;}return 0;}int ps() /*优先级调度*/{float temp_time=0;int i=0,j;int number_schedul,temp_counter;int max_priority;max_priority=tasks[i].priority;j=1;while ((j<counter)&&(tasks[i].come_time==tasks[j].come_time)){if (tasks[j].priority>tasks[i].priority){max_priority=tasks[j].priority;i=j;}j++;} /*查找第一个被调度的进程*//*对第一个被调度的进程求相应的参数*/number_schedul=i;tasks[number_schedul].run_begin_time=tasks[number_schedul].come_time;tasks[number_schedul].run_end_time=tasks[number_schedul].run_begin_time+tasks[number_sch edul].run_time;tasks[number_schedul].run_flag=1;temp_time=tasks[number_schedul].run_end_time;tasks[number_schedul].order=1;temp_counter=1;while (temp_counter<counter)max_priority=0;for(j=0;j<counter;j++){if((tasks[j].come_time<=temp_time)&&(!tasks[j].run_flag))if (tasks[j].priority>max_priority){max_priority=tasks[j].priority;number_schedul=j;}}/*查找下一个被调度的进程*//*对找到的下一个被调度的进程求相应的参数*/tasks[number_schedul].run_begin_time=temp_time;tasks[number_schedul].run_end_time=tasks[number_schedul].run_begin_time+tasks[number_sch edul].run_time;tasks[number_schedul].run_flag=1;temp_time=tasks[number_schedul].run_end_time;temp_counter++;tasks[number_schedul].order=temp_counter;}return 0;}int sjf() /*短作业优先*/{float temp_time=0;int i=0,j;int number_schedul,temp_counter;float run_time;run_time=tasks[i].run_time;j=1;while ((j<counter)&&(tasks[i].come_time==tasks[j].come_time)){if (tasks[j].run_time<tasks[i].run_time){run_time=tasks[j].run_time;i=j;}j++;} /*查找第一个被调度的进程*//*对第一个被调度的进程求相应的参数*/number_schedul=i;tasks[number_schedul].run_begin_time=tasks[number_schedul].come_time;tasks[number_schedul].run_end_time=tasks[number_schedul].run_begin_time+tasks[number_sch edul].run_time;tasks[number_schedul].run_flag=1;temp_time=tasks[number_schedul].run_end_time;tasks[number_schedul].order=1;temp_counter=1;while (temp_counter<counter){for(j=0;j<counter;j++){if((tasks[j].come_time<=temp_time)&&(!tasks[j].run_flag)){run_time=tasks[j].run_time;number_schedul=j;break;}}for(j=0;j<counter;j++){if((tasks[j].come_time<=temp_time)&&(!tasks[j].run_flag))if(tasks[j].run_time<run_time){run_time=tasks[j].run_time;number_schedul=j;}}/*查找下一个被调度的进程*//*对找到的下一个被调度的进程求相应的参数*/tasks[number_schedul].run_begin_time=temp_time;tasks[number_schedul].run_end_time=tasks[number_schedul].run_begin_time+tasks[number_sch edul].run_time;tasks[number_schedul].run_flag=1;temp_time=tasks[number_schedul].run_end_time;temp_counter++;tasks[number_schedul].order=temp_counter;}return 0;}int hrrn() /*响应比高优先*/{int j,number_schedul,temp_counter;float temp_time,respond_rate,max_respond_rate;/*第一个进程被调度*/tasks[0].run_begin_time=tasks[0].come_time;tasks[0].run_end_time=tasks[0].run_begin_time+tasks[0].run_time;temp_time=tasks[0].run_end_time;tasks[0].run_flag=1;tasks[0].order=1;temp_counter=1;/*调度其他进程*/while(temp_counter<counter){max_respond_rate=0;for(j=1;j<counter;j++){if((tasks[j].come_time<=temp_time)&&(!tasks[j].run_flag)){respond_rate=(temp_time-tasks[j].come_time)/tasks[j].run_time;if (respond_rate>max_respond_rate){max_respond_rate=respond_rate;number_schedul=j;}}}/*找响应比高的进程*/tasks[number_schedul].run_begin_time=temp_time;tasks[number_schedul].run_end_time=tasks[number_schedul].run_begin_time+tasks[number_sch edul].run_time;temp_time=tasks[number_schedul].run_end_time;tasks[number_schedul].run_flag=1;temp_counter+=1;tasks[number_schedul].order=temp_counter;}return 0;}int pinput() /*进程参数输入*/{int i;printf("please input the process counter:\n");scanf("%d",&counter);for(i=0;i<counter;i++){ printf("******************************************\n");printf("please input the process of %d th :\n",i+1);printf("please input the name:\n");scanf("%s",tasks[i].name);printf("please input the number:\n");scanf("%d",&tasks[i].number);printf("please input the come_time:\n");scanf("%f",&tasks[i].come_time);printf("please input the run_time:\n");scanf("%f",&tasks[i].run_time);printf("please input the priority:\n");scanf("%d",&tasks[i].priority);tasks[i].run_begin_time=0;tasks[i].run_end_time=0;tasks[i].order=0;tasks[i].run_flag=0;}return 0;}int poutput() /*调度结果输出*/{int i;float turn_round_time=0,f1,w=0;printf("name number come_time run_time run_begin_time run_end_time priority order turn_round_time\n");for(i=0;i<counter;i++){f1=tasks[i].run_end_time-tasks[i].come_time;turn_round_time+=f1;w+=(f1/tasks[i].run_time);printf(" %s, %d, %5.3f, %5.3f, %5.3f, %5.3f, %d, %d, %5.3f\n",tasks[i].name,tasks[i].number,tas ks[i].come_time,tasks[i].run_time,tasks[i].run_begin_time,tasks[i].run_end_time,tasks[i].priority,t asks[i].order,f1);}printf("average_turn_round_timer=%5.2f\n",turn_round_time/counter);printf("weight_average_turn_round_timer=%5.2f\n",w/counter);return 0;}三、设计运行情况截图设有如下3个进程:A 4 5 3B 6 10 1C 5 8 2 注:"优先级"一栏,数字大的表示优先级越高。