度八年级数学上册期末练习题北师大版-2019word版可打印
2019新北师大版八年级上册数学期末测试卷含答案
2019新北师大版八年级上册数学期末测试卷含答案一、选择题(本大题共6小题;每小3分;共18分)1.下列四组数据中;不能..作为直角三角形的三边长是( ) A .6;8;10B .7;24;25C .2;5;7D .9;12;152.在算式((的中填上运算符号;使结果最大的运算符号是( )A .加号B .减号C .乘号D .除号3.下列数据是2013年3月7日6点公布的中国六大城市的空气污染指数情况:则这组数据的中位数和众数分别是( )A .164和163B .163和164C .105和163D .105和164 4.下列各式中计算正确的是( )A .9)9(2-=-B .525±=C .1)1(33-=- D .2)2(2-=-5.右图中点P 的坐标可能是( )A .(-5,3)B .(4,3)C .(5,-3)D .(-5,-3) 6.一次函数1ykx b =+与2y x a =+的图象如图;则下 列结论①0k <;②0a >;③当3x <时;12y y <中; 正确的个数是( ) A .0 B .1 C .2 D .3b第6题二、填空题(本大题共8小题;每小3分;共24分)7. 9的平方根是 .8. 函数y=x -1中;自变量x 的取值范围是 .9.万安县某单位组织34人分别到井冈山和兴国进行革命传统教育;到井冈山的人数是 到兴国的人数的2倍多1人;求到两地的人数各是多少?设到井冈山的人数为x 人;到 兴国的人数为y 人;请列出满足题意的方程组 .10.一个一次函数的图象交y 轴于负半轴;且y 随x 的增大而减小;请写出满足条件的 一个函数表达式: . 11.如图;△ABC 中;∠A=90°;点D 在AC 边上;DE ∥BC ;若∠1=155°;则∠B 的度数为 .12.如图;已知函数y ax b =+和y kx =的图象交于点P ;则二元一次方程组,y ax b y kx=+⎧⎨=⎩的解是 . 13.甲、乙两人分别从A 、B 两地相向而行;y 与x 的函数关系如图所示;其中x 表示 乙行走的时间(时);y 表示两人与A 地的距离(千米);甲的速度比乙每小时 快 千米.14.某学习小组五名同学在期末模拟考试(满分为120)的成绩如下:100、100、x 、x 、 80.已知这组数据的中位数和平均数相等;那么整数x 的值可以是 .y=kxy=ax+bP-4O -2三、(本大题共2小题;每小5分;共10分)15.解方程组:⎩⎨⎧-==-+16)1(2y x y x16.计算:2163)1526(-⨯-四、(本大题共2小题;每小6分;共12分)17.如图;点B 是△ADC 的边AD 的延长线上一点;若︒=∠50C ;︒=∠60BDE ;︒=∠70ADC .求证:DE ∥AC18.如图所示;一段街道的两边缘所在直线分别为AB ;PQ ;并且AB ∥PQ .建筑物的 一端DE 所在的直线MN ⊥AB 于点M ;交PQ 于点N ;步行街宽MN 为13.4米;建筑 物宽DE 为6米;光明巷宽EN 为2.4米.小亮在胜利街的A 处;测得此时AM 为12米; 求此时小明距建筑物拐角D 处有多远?NPQ五、(本大题共2小题;每小8分;共16分)19.我县为加快美丽乡村建设;建设秀美幸福万安;对A 、B 两类村庄进行了全面改建. 根据预算;建设一个A 类美丽村庄和一个B 类美丽村庄共需资金300万元;甲镇建设 了2个A 类村庄和5个B 类村庄共投入资金1140万元.(1)建设一个A 类美丽村庄和一个B 类美丽村庄所需的资金分别是多少万元? (2)乙镇3个A 类美丽村庄和6个B 类村庄改建共需资金多少万元?20.如图;在平面直角坐标系中;过点B (6;0)的直线AB 与直线OA 相交于点 A (4;2);动点M 沿路线O →A →C 运动.(1)求直线AB 的解析式. (2)求△OAC 的面积.(3)当△OMC 的面积是△OAC 的面积的41时; 求出这时点M 的坐标.六、(本大题共2小题;每小9分;共18分)21.如图是规格为8×8的正方形网格,请在所给网格中......按下列要求操作: (1)在网格中建立平面直角坐标系, 使A 点坐标为(-2;4);B 点坐标为(-4;2);(2)在第二象限内的格点上..........画一点C, 使点C 与线段AB 组成一个以AB 为底的等腰三角形, 且腰长是无理数, 则C 点坐标是 ;(3)△ABC 的周长= (结果保留根号);xyCBAO(4)画出△ABC关于关于y轴对称的的△A′B′C′.22.万安县开发区某电子电路板厂到井冈山大学从2014年应届毕业生中招聘公司职员;对应聘者的专业知识、英语水平、参加社会实践与社团活动等三项进行测试或成果认定;三项的得分满分都为100分;三项的分数分别按5∶3∶2的比例记入每人的最后总分;有4位应聘者的得分如下表所示.(1)分别算出4位应聘者的总分;(2)表中四人“专业知识”的平均分为85分;方差为12.5;四人“英语水平”的平均分为87.5分;方差为6.25;请你求出四人“参加社会实践与社团活动等”的平均分及方差;(3)分析(1)和(2)中的有关数据;你对大学生应聘者有何建议?七、(本大题共2小题;第23小题10分;第24小题12分;共22分)23.为了减轻学生课业负担;提高课堂效果;我县教体局积极推进“高效课堂”建设. 某学校的《课堂检测》印刷任务原来由甲复印店承接;其每月收费y(元)与复印页数x(页)的函数关系如图所示:⑴从图象中可看出:每月复印超过500页部分每页收费元;⑵现在乙复印店表示:若学校先按每月付给200元的月承包费;则可按每页0.15元收费.乙复印店每月收费y (元)与复印页数x (页)的函数关系为 ;⑶在给出的坐标系内画出(2)中的函数图象;并结合函数图象回答每月复印在3000页左右应选择哪个复印店?24.平面内的两条直线有相交和平行两种位置关系.(1)如图1;若AB ∥CD ;点P 在AB 、CD 内部;∠B =50;∠D=30°;求∠BPD.(2)如图2;将点P 移到AB 、CD 外部,则∠BPD 、∠B 、∠D 之间有何数量关系?请证明你的结论.(2)如图3;写出∠BPD ﹑∠B ﹑∠D ﹑∠BQD 之间的数量关系?(不需证明). (3)如图4;求出∠A+∠B+∠C+∠D+∠E+∠F 的度数.图2PDCBA 图1PDCBA图3QCAPDB 图4BCDEFA万安县2013-2014学年度上学期期末考试八年级数学参考答案一、选择题(本大题共6小题;每小3分;共18分) 1.C 2.D 3.A 4.C 5.D 6.B二、填空题(本大题共8小题;每小3分;共24分)7.±3 8.x ≤1 9. ⎩⎨⎧+==+1234y x y x 10. k ﹤0、b ﹤0 均可11.65° 12. ⎩⎨⎧-=-=24y x 13. 0.4 14.110,60三、(本大题共2小题;每小5分;共10分)15. 解法一:将②代入①得: 2( y-1+1)-y=6 ……………………2分 y=6 ……………………3分 把y=6代入②得: x=5 ……………………4分∴原方程组的解为⎩⎨⎧==65y x ……………………5分解法二:加减法(略) 16. 原式=2216315236⨯-⨯-⨯ …………………2分 =32-6235- …………………4分 = -65 …………………5分四、(本大题共2小题;每小6分;共12分)17. 求得 ∠A=60°或∠ CDE=50 ° …………………3分 证得 DE ∥AC …………………6分 18. 求得MD=5(米) …………………2分利用勾股定理求出AD=13米 …………………6分五、(本大题共2小题;每小8分;共16分)19.(1)解设:建设一个A 类美丽村庄和一个B 类美丽村庄所需的资金分别是x 、y 万元⎩⎨⎧=+=+114052300y x y x …………………………4分解得⎩⎨⎧==180120y x …………………………6分(2)1440万元 …………………………8分 20.(1)y=-x+6 …………………………2分 (2)12 …………………………4分 (3)M 1(1;0.5)或M 2(1;5) …………………………8分六、(本大题共2小题;每小9分;共18分)21. (1)建立平面直角坐标系 ……2分 (2)(-1;1) ……4分 (3)22+210 ……7分 (4)画出三角形 ……9分22. 解:(1)应聘者甲总分为86分;应聘者乙总分为82分;应聘者丙总分为81分;应聘者丁总分为82分. …2分(2) 4人参加社会实践与社团活动等的平均分数:70=x…4分方差:2S …7分(3)对于应聘者的专业知识、英语水平的差距不大;但参加社会实践与社团活动等方面的差距较大;影响学生的最后成绩;将影响学生就业.学生不仅注重自己的文化知识的学习;更应注重社会实践与社团活动的开展;从而促进学生综合素质的提升. ……9分七、(本大题共2小题;第23小题10分;第24小题12分;共22分)23.解:⑴0.2 ……3分 ⑵()020015.0≥+=x x y ……5分 ⑶画图象 ……8分由图像可知;当每月复印3000页左右;选择乙店更合算 ……10分24.解: (1)80° …………2分 (2)∠BPD=∠B-∠D …………4分 证明方法多样;方法正确即可给分 …………6分 (3)结论:∠BPD=∠BQD+∠B+∠D. …………8分 (4)360° 连结AD 利用三角形内角和或四边形的内角和计算(直接给出答案没有计算过程得2分) …………12分(页)。
新北师大版八年级数学上册期末测试卷(可打印)
新北师大版八年级数学上册期末测试卷(可打印) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A .24y x =-B .24y x =+C .22y x =+D .22y x =-2.在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( )A .(3,4)-B .(4,3)-C .(4,3)-D .()3,4-3.如果线段AB =3cm ,BC =1cm ,那么A 、C 两点的距离d 的长度为( )A .4cmB .2cmC .4cm 或2cmD .小于或等于4cm ,且大于或等于2cm4.实数a ,b ,c ,d 在数轴上的位置如图所示,下列关系式不正确的是( )A .|a|>|b|B .|ac|=acC .b <dD .c+d >05.已知一个多边形的内角和为1080°,则这个多边形是( )A .九边形B .八边形C .七边形D .六边形6.如图,∠AOB=60°,点P 是∠AOB 内的定点且OP=3,若点M 、N 分别是射线OA 、OB 上异于点O 的动点,则△PMN 周长的最小值是( )A 36B 33C .6D .37.如图,直线y=kx+b (k ≠0)经过点A (﹣2,4),则不等式kx+b >4的解集为()A.x>﹣2 B.x<﹣2 C.x>4 D.x<48.如图是一张直角三角形的纸片,两直角边AC=6 cm、BC=8 cm,现将△ABC 折叠,使点B与点A重合,折痕为DE,则BE的长为()A.4 cm B.5 cm C.6 cm D.10 cm9.如图,∠B的同位角可以是()A.∠1 B.∠2 C.∠3 D.∠410.尺规作图作AOB的平分线方法如下:以O为圆心,任意长为半径画弧交OA、OB于C、D,再分别以点C、D为圆心,以大于12CD长为半径画弧,两弧交于点P,作射线OP,由作法得OCP ODP≌的根据是()A.SAS B.ASA C.AAS D.SSS二、填空题(本大题共6小题,每小题3分,共18分)1.已知a,b,c是△ABC的三边长,a,b满足|a﹣7|+(b﹣1)2=0,c为奇数,则c=________.2.已知菱形ABCD的面积是12cm2,对角线AC=4cm,则菱形的边长是______cm.3.分解因式:2x3﹣6x2+4x=__________.4.如图,将三个同样的正方形的一个顶点重合放置,那么1∠的度数为__________.5.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=________度.6.如图,在平行四边形ABCD中,连接BD,且BD=CD,过点A作AM⊥BD于点M,过点D作DN⊥AB于点N,且DN=32,在DB的延长线上取一点P,满足∠ABD=∠MAP+∠PAB,则AP=________.三、解答题(本大题共6小题,共72分)1.用适当的方法解方程组(1)3322x yx y=-⎧⎨+=⎩(2)353123x yx y-=⎧⎪⎨-=⎪⎩2.先化简,再求值[(x2+y2)-(x-y)2+2y(x-y)]÷2y,其中x=-2,y=-12.3.已知方程组137x y a x y a-=+⎧⎨+=--⎩中x 为非正数,y 为负数. (1)求a 的取值范围;(2)在a 的取值范围中,当a 为何整数时,不等式221ax x a ++>的解集为1x <?4.如图,过点A (2,0)的两条直线1l ,2l 分别交y 轴于B ,C ,其中点B 在原点上方,点C 在原点下方,已知AB=13.(1)求点B 的坐标;(2)若△ABC 的面积为4,求2l 的解析式.5.如图,已知在四边形ABCD 中,点E 在AD 上,∠BCE =∠ACD =90°,∠BAC =∠D ,BC =CE .(1)求证:AC =CD ;(2)若AC =AE ,求∠DEC 的度数.6.为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、D4、B5、B6、D7、A8、B9、D10、D二、填空题(本大题共6小题,每小题3分,共18分)1、723、2x(x﹣1)(x﹣2).4、20°.5、:略6、6三、解答题(本大题共6小题,共72分)1、(1)47xy=-⎧⎨=⎩;(2)831xy⎧=⎪⎨⎪=⎩2、2x-y;-31 2.3、(1)a的取值范围是﹣2<a≤3;(2)当a为﹣1时,不等式2ax+x>2a+1的解集为x<1.4、(1)(0,3);(2)112y x=-.5、(1)略;(2)112.5°.6、(1)A种纪念品需要100元,购进一件B种纪念品需要50元(2)共有4种进货方案(3)当购进A种纪念品50件,B种纪念品50件时,可获最大利润,最大利润是2500元。
最新北师大版八年级数学上册期末考试(带答案)
最新北师大版八年级数学上册期末考试(带答案)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.-2019的相反数是( )A .2019B .-2019C .12019D .12019- 2.已知多项式2x 2+bx +c 分解因式为2(x -3)(x +1),则b ,c 的值为( ).A .b =3,c =-1B .b =-6,c =2C .b =-6,c =-4D .b =-4,c =-63.若关于x 的一元二次方程(k ﹣1)x 2+2x ﹣2=0有两个不相等的实数根,则k 的取值范围是( )A .k >12B .k ≥12C .k >12且k ≠1D .k ≥12且k ≠1 4.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是( )A .4B .5C .6D .75.若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( )A .0k ≥B .0k ≥且2k ≠C .32k ≥D .32k ≥且2k ≠ 6.已知2,1=⎧⎨=⎩x y 是二元一次方程组7,{1ax by ax by +=-=的解,则a b -的值为( ) A .-1B .1C .2D .3 7是一个很奇妙的数,大量应用于艺术、建筑和统计决策等1的值( )A .在1.1和1.2之间B .在1.2和1.3之间C .在1.3和1.4之间D .在1.4和1.5之间8.如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( )A .B .C .D .9.如图,两个不同的一次函数y=ax+b 与y=bx+a 的图象在同一平面直角坐标系的位置可能是( )A .B .C .D .10.下列图形中,由AB ∥CD ,能得到∠1=∠2的是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.已知a 、b 满足(a ﹣1)2+2b +=0,则a+b=________.2.已知关于x 的分式方程233x k x x -=--有一个正数解,则k 的取值范围为________.3.若a 、b 、c 为三角形的三边,且a 、b 满足229(2)0a b -+-=,则第三边c 的取值范围是_____________.4.如图,▱ABCD 中,AC 、BD 相交于点O ,若AD=6,AC+BD=16,则△BOC 的周长为________.5.如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是 ____________.6.如图,已知正方形ABCD 的边长为5,点E 、F 分别在AD 、DC 上,AE=DF=2,BE 与AF 相交于点G ,点H 为BF 的中点,连接GH ,则GH 的长为_______.三、解答题(本大题共6小题,共72分)1.解下列不等式组:(1)2132(1);x x x x >+⎧⎨<+⎩, (2)231213(1)8;x x x x -⎧+≥+⎪⎨⎪--<-⎩,2.先化简,再求值:2211(1)m m m m+--÷,其中3.3.已知,a 、b 互为倒数,c 、d 互为相反数,求31ab c d +的值.4.如图,在矩形ABCD 中,AB =8cm ,BC =16cm ,点P 从点D 出发向点A 运动,运动到点A 停止,同时,点Q 从点B 出发向点C 运动,运动到点C 即停止,点P 、Q 的速度都是1cm/s .连接PQ 、AQ 、CP .设点P 、Q 运动的时间为ts .(1)当t 为何值时,四边形ABQP 是矩形;(2)当t 为何值时,四边形AQCP 是菱形;(3)分别求出(2)中菱形AQCP 的周长和面积.5.在△ABC 中,AB=AC ,点D 是直线BC 上一点(不与B 、C 重合),以AD 为一边在AD 的右侧..作△ADE ,使AD=AE ,∠DAE =∠BAC ,连接CE . (1)如图1,当点D 在线段BC 上,如果∠BAC=90°,则∠BCE=________度;(2)设BAC α∠=,BCE β∠=.①如图2,当点在线段BC 上移动,则α,β之间有怎样的数量关系?请说明理由;②当点在直线BC 上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.6.为了抓住梵净山文化艺术节的商机,某商店决定购进A 、B 两种艺术节纪念品.若购进A 种纪念品8件,B 种纪念品3件,需要950元;若购进A 种纪念品5件,B 种纪念品6件,需要800元.(1)求购进A 、B 两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、C4、C5、D6、A7、B8、A9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、﹣12、k<6且k ≠33、1<c <5.4、145、46、2三、解答题(本大题共6小题,共72分)1、(1)1<x <2 (2)-2<x 2≤2、33、0.4、(1)8;(2)6;(3),40cm,80cm 2.5、(1)90;(2)①180αβ+=︒,理由略;②当点D 在射线BC.上时,a+β=180°,当点D 在射线BC 的反向延长线上时,a=β.6、(1)A 种纪念品需要100元,购进一件B 种纪念品需要50元(2)共有4种进货方案(3)当购进A 种纪念品50件,B 种纪念品50件时,可获最大利润,最大利润是2500元。
最新北师大版八年级数学上册期末考试及答案【A4打印版】
最新北师大版八年级数学上册期末考试及答案【A4打印版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.-2的倒数是()A.-2 B.12-C.12D.22.估计7+1的值()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间3.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为()A.12 B.15 C.12或15 D.184.把38a化为最简二次根式,得()A.22a a B.342a C.322a D.24a a5.中国华为麒麟985处理器是采用7纳米制程工艺的手机芯片,在指甲盖大小的尺寸上塞进了120亿个晶体管,是世界上最先进的具有人工智能的手机处理器,将120亿个用科学记数法表示为()A.91.210⨯个B.91210⨯个C.101.210⨯个D.111.210⨯个6.菱形不具备的性质是()A.四条边都相等B.对角线一定相等C.是轴对称图形D.是中心对称图形7.在平面直角坐标中,点M(-2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限8.已知直线a∥b,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为()A .80°B .70°C .85°D .75°9.如图,下列条件:13241804523623∠=∠∠+∠=∠=∠∠=∠∠=∠+∠①,②,③,④,⑤中能判断直线12l l 的有( )A .5个B .4个C .3个D .2个10.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )A .16B .17C .18D .19二、填空题(本大题共6小题,每小题3分,共18分)1.若a-b=1,则222a b b --的值为____________.2.已知AB//y 轴,A 点的坐标为(3,2),并且AB=5,则B 的坐标为________.3.如果22(1)4x m x +-+是一个完全平方式,则m =__________.4.如图,四边形ACDF 是正方形,CEA ∠和ABF ∠都是直角,且点,,E A B 三点共线,4AB =,则阴影部分的面积是__________.5.如图,四边形ABCD 的对角线相交于点O ,AO=CO ,请添加一个条件________(只添一个即可),使四边形ABCD 是平行四边形.6.如图△ABC 中,分别延长边AB 、BC 、CA ,使得BD=AB ,CE=2BC ,AF=3CA ,若△ABC 的面积为1,则△DEF 的面积为________.三、解答题(本大题共6小题,共72分)1.解下列方程组:(1)75331x y x y +=⎧⎨+=⎩; (2)()346126x y y x y y ⎧+-=⎪⎨+-=⎪⎩.2.先化简,再求值:2111x y x y xy y⎛⎫+÷ ⎪+-+⎝⎭,其中x 52,y 5 2.3.若关于x 、y 的二元一次方程组2133x y m x y -=+⎧⎨+=⎩的解满足x +y >0,求m 的取值范围.4.如图,在四边形ABCD 中,AB DC ,AB AD =,对角线AC ,BD 交于点O ,AC 平分BAD ∠,过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE .(1)求证:四边形ABCD 是菱形;(2)若5AB =2BD =,求OE 的长.5.我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH 的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)6.某商场计划销售A,B两种型号的商品,经调查,用1500元采购A型商品的件数是用600元采购B型商品的件数的2倍,一件A型商品的进价比一件B 型商品的进价多30元.(1)求一件A,B型商品的进价分别为多少元?(2)若该商场购进A,B型商品共100件进行试销,其中A型商品的件数不大于B型的件数,已知A型商品的售价为200元/件,B型商品的售价为180元/件,且全部能售出,求该商品能获得的利润最小是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、A5、C6、B7、B8、A9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、12、(3,7)或(3,-3)3、-1或34、85、BO=DO.6、18三、解答题(本大题共6小题,共72分)1、(1)52xy=⎧⎨=⎩;(2)2xy=⎧⎨=⎩2、2xyx y-,123、m>﹣24、(1)略;(2)2.5、(1)略;(2)四边形EFGH是菱形,略;(3)四边形EFGH是正方形.6、(1) B型商品的进价为120元, A型商品的进价为150元;(2) 5500元.。
新北师大版八年级数学上册期末测试卷(可打印)
新北师大版八年级数学上册期末测试卷(可打印) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣2的绝对值是( )A .2B .12C .12-D .2-2.一次函数24y x =+的图像与y 轴交点的坐标是( )A .(0,-4)B .(0,4)C .(2,0)D .(-2,0)3.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于( )A .108°B .90°C .72°D .60°4.如果a+b <0,并且ab >0,那么( )A .a <0,b <0B .a >0,b >0C .a <0,b >0D .a >0,b <05.如图,直线a ,b 被直线c 所截,那么∠1的同位角是( )A .∠2B .∠3C .∠4D .∠56.如图,矩形ABCD 中,AB=8,BC=4.点E 在边AB 上,点F 在边CD 上,点G 、H 在对角线AC 上.若四边形EGFH 是菱形,则AE 的长是( )A .5B .5C .5D .67.如图,将含30°角的直角三角板ABC 的直角顶点C 放在直尺的一边上,已知∠A =30°,∠1=40°,则∠2的度数为( )A .55°B .60°C .65°D .70°8.下列图形中,不是轴对称图形的是( )A .B .C .D .9.如图,点P 是∠AOB 内任意一点,且∠AOB =40°,点M 和点N 分别是射线OA 和射线OB 上的动点,当△PMN 周长取最小值时,则∠MPN 的度数为( )A .140°B .100°C .50°D .40°10.如图,△ABC 中,AD 是BC 边上的高,AE 、BF 分别是∠BAC 、∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )A .75°B .80°C .85°D .90°二、填空题(本大题共6小题,每小题3分,共18分)1.已知2320x y --=,则23(10)(10)x y ÷=_______.2.如果一个直角三角形的两条直角边的长分别为5、12,则斜边上的高的长度为__________.3.如果不等式组841x x x m+<-⎧⎨>⎩ 的解集是3x >,那么m 的取值范围是________. 4.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为_____________.5.如图,平行四边形ABCD 中,60BAD ∠=︒,2AD =,点E 是对角线AC 上一动点,点F 是边CD 上一动点,连接BE 、EF ,则BE EF +的最小值是____________.6.如图,ABCD 的周长为36,对角线AC ,BD 相交于点O .点E 是CD 的中点,BD=12,则△DOE 的周长为________.三、解答题(本大题共6小题,共72分)1.解方程:(1)12111x x x -=-- (2)31523162x x -=--2.先化简,再求值:3x 4x 2x x 1x 1--⎛⎫-÷ ⎪--⎝⎭,其中1x 2=.3.已知方程组137x y a x y a-=+⎧⎨+=--⎩中x 为非正数,y 为负数. (1)求a 的取值范围;(2)在a 的取值范围中,当a 为何整数时,不等式221ax x a ++>的解集为1x <?4.如图,在四边形ABCD中,AB DC,AB AD=,对角线AC,BD交于点O,AC平分BAD⊥交AB的延长线于点E,连接OE.∠,过点C作CE AB(1)求证:四边形ABCD是菱形;(2)若5BD=,求OE的长.AB=,25.如图,四边形ABCD是平行四边形,E、F是对角线AC上的两点,∠1=∠2.(1)求证:AE=CF;(2)求证:四边形EBFD是平行四边形.6.某商场计划销售A,B两种型号的商品,经调查,用1500元采购A型商品的件数是用600元采购B型商品的件数的2倍,一件A型商品的进价比一件B 型商品的进价多30元.(1)求一件A,B型商品的进价分别为多少元?(2)若该商场购进A,B型商品共100件进行试销,其中A型商品的件数不大于B型的件数,已知A型商品的售价为200元/件,B型商品的售价为180元/件,且全部能售出,求该商品能获得的利润最小是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、C4、A5、C6、C7、D8、A9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、1002、60133、3m ≤.4、10.56、15.三、解答题(本大题共6小题,共72分)1、(1)2x 3=;(2)10x 9=. 2、x 2-,32-. 3、(1)a 的取值范围是﹣2<a ≤3;(2)当a 为﹣1时,不等式2ax+x >2a+1的解集为x <1.4、(1)略;(2)2.5、(1)见详解;(2)见详解6、(1) B 型商品的进价为120元, A 型商品的进价为150元;(2) 5500元.。
最新北师大版八年级数学上册期末考试(A4打印版)
最新北师大版八年级数学上册期末考试(A4打印版) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.估计7+1的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间2.不等式3(x ﹣1)≤5﹣x 的非负整数解有( )A .1个B .2个C .3个D .4个3.对于函数y =2x ﹣1,下列说法正确的是( )A .它的图象过点(1,0)B .y 值随着x 值增大而减小C .它的图象经过第二象限D .当x >1时,y >04.下列各数:-2,0,13,0.020020002…,π,9,其中无理数的个数是( )A .4B .3C .2D .1 5.若1a ab+有意义,那么直角坐标系中点A(a,b)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限6.如果2a a 2a 1+-+=1,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.如图,将▱ABCD 沿对角线AC 折叠,使点B 落在B ′处,若∠1=∠2=44°,则∠B 为( )A .66°B .104°C .114°D .124°8.如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( )A .B .C .D .9.如图,由四个全等的直角三角形拼成的图形,设CE a =,HG b =,则斜边BD 的长是( )A .+a bB .⋅a bC .222a b + D .222a b - 10.若关于x 的一元二次方程2210x x kb -++=有两个不相等的实数根,则一次函数y kx b =+的图象可能是:( )A .B . B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1x 2-x 的取值范围是________.2.方程22310x x +-=的两个根为1x 、2x ,则1211+x x 的值等于__________. 3.若关于x 的分式方程333x a x x+--=2a 无解,则a 的值为________. 4.如图,矩形ABCD 中,AB=3,BC=4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B'处,当CEB'△为直角三角形时,BE 的长为______。
新北师大版八年级数学上册期末试卷及答案【可打印】
新北师大版八年级数学上册期末试卷及答案【可打印】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±12.在平面直角坐标系中,点()3,5P --关于原点对称的点的坐标是( )A .()3,5-B .()3,5-C .()3,5D .()3,5-- 3.等式33=11x x x x --++成立的x 的取值范围在数轴上可表示为( ) A .B .C .D . 4.若m n >,下列不等式不一定成立的是( )A .33m n ++>B .33m n ﹣<﹣C .33m n >D .22m n >5.如图,a ,b ,c 在数轴上的位置如图所示,化简22()a a c c b -++-的结果是( )A .2c ﹣bB .﹣bC .bD .﹣2a ﹣b6.已知关于x 的不等式组0320x a x ->⎧⎨->⎩的整数解共有5个,则a 的取值范围是( )A .﹣4<a <﹣3B .﹣4≤a <﹣3C .a <﹣3D .﹣4<a <327.汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”.如图是由弦图变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD 、正方形EFGH 、正方形MNKT 的面积分别为S 1、S 2、S 3.若S 1+S 2+S 3=10,则S 2的值为( )A .113B .103C .3D .838.下列图形中,不是轴对称图形的是( )A .B .C .D .9.如图将直尺与含30°角的三角尺摆放在一起,若120∠=︒,则2∠的度数是( )A .30B .40︒C .50︒D .60︒10.如图,点P 是边长为1的菱形ABCD 对角线AC 上的一个动点,点M ,N 分别是AB ,BC 边上的中点,则MP+PN 的最小值是( )A .12B .1C 2D .2二、填空题(本大题共6小题,每小题3分,共18分)1.已知a ,b ,c 是△ABC 的三边长,a ,b 满足|a ﹣7|+(b ﹣1)2=0,c 为奇数,则c=________.2.因式分解:22ab ab a -+=__________.3.使x 2-有意义的x 的取值范围是________.4.如图所示,一次函数y=ax+b 的图象与x 轴相交于点(2,0),与y 轴相交于点(0,4),结合图象可知,关于x 的方程ax+b=0的解是________.5.如图,在△ABC 和△DBC 中,∠A=40°,AB=AC=2,∠BDC=140°,BD=CD ,以点D 为顶点作∠MDN=70°,两边分别交AB ,AC 于点M ,N ,连接MN ,则△AMN 的周长为___________.6.已知:在▱ABCD 中,对角线AC 、BD 相交于点O ,过点O 的直线EF 分别交AD 于E 、BC 于F ,S △AOE =3,S △BOF =5,则▱ABCD 的面积是_____.三、解答题(本大题共6小题,共72分)1.解方程组:4311213x y x y -=⎧⎨+=⎩2.先化简,再求值:2221111x x x x x ++⎛⎫-÷ ⎪--⎝⎭,其中2x =.3.已知:12x =12y =2222x y xy x y +--+的值.=+的图象经过A (-2,-1), B (1,3)4.如图,已知一次函数y kx b两点,并且交x轴于点C,交y轴于点D.(1)求该一次函数的解析式(2)△AOB的面积5.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF,(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.6.某公司计划购买A,B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30kg材料,且A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同.(1)求A,B两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A,B两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg,则至少购进A型机器人多少台?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、D5、A6、B7、B8、A9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、72、()21 a b-3、x2≥4、x=25、46、32三、解答题(本大题共6小题,共72分)1、53xy=⎧⎨=⎩.2、11x+,13.3、4、(1)4533y x=+;(2)525、(1)略(2)略6、(1)A型机器人每小时搬运150千克材料,B型机器人每小时搬运120千克材料;(2)至少购进A型机器人14台.。
最新北师大版八年级数学上册期末考试及答案【A4打印版】
最新北师大版八年级数学上册期末考试及答案【A4打印版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a,b,c是三角形的三边,那么代数式a2-2ab+b2-c2的值()A.大于零B.等于零C.小于零D.不能确定2.矩形具有而平行四边形不一定具有的性质是()A.对边相等B.对角相等C.对角线相等D.对角线互相平分3.设42-的整数部分为a,小数部分为b,则1ab-的值为()A.2-B.2C.212+D.212-4.已知a b3132==,,则a b3+的值为()A.1 B.2 C.3 D.275.下面四个图形中,∠1=∠2一定成立的是( )A.B.C.D.6.如图,矩形ABCD中,AB=8,BC=4.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是()A.5B.5C.5 D.67.若a72b27a和b互为()A.倒数B.相反数C.负倒数D.有理化因式8.如图,△ABC中,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,则下列结论不正确的是( )A .BF =DFB .∠1=∠EFDC .BF >EFD .FD ∥BC9.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米.要围成的菜园是如图所示的矩形ABCD .设BC 边的长为x 米,AB 边的长为y 米,则y 与x 之间的函数关系式是( )A .y=-2x+24(0<x<12)B .y=-x +12(0<x<24)C .y=2x -24(0<x<12)D .y=x -12(0<x<24)10.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a ,较短直角边长为b .若ab=8,大正方形的面积为25,则小正方形的边长为( )A .9B .6C .4D .3二、填空题(本大题共6小题,每小题3分,共18分)1.已知2320x y --=,则23(10)(10)x y ÷=_______.2.如果一个直角三角形的两条直角边的长分别为5、12,则斜边上的高的长度为__________.3.若a 、b 、c 为三角形的三边,且a 、b 229(2)0a b --=,则第三边c 的取值范围是_____________.4.如图,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =4,△ABC 的面积是________.5.一副三角板如图放置,将三角板ADE 绕点A 逆时针旋转(090)αα<<,使得三角板ADE 的一边所在的直线与BC 垂直,则α的度数为______.6.如图所示,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则ABC ∠的度数为________.三、解答题(本大题共6小题,共72分)1.解下列方程组 ()32219612x y y x y ⎧-+=⎪⎨++=-⎪⎩2.先化简,再求值:213(2)211a a a a a +-÷+-+-,其中a =2.3.已知222111x x x A x x ++=---. (1)化简A ;(2)当x 满足不等式组1030x x -≥⎧⎨-<⎩,且x 为整数时,求A 的值.4.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.5.如图,四边形ABCD是平行四边形,E、F是对角线AC上的两点,∠1=∠2.(1)求证:AE=CF;(2)求证:四边形EBFD是平行四边形.6.某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜3个、乙种书柜2个,共需资金1020元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元.(1)甲、乙两种书柜每个的价格分别是多少元?(2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请设计几种购买方案供这个学校选择.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、D4、B5、B6、C7、D8、B9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、1002、60 133、1<c<5.4、425、15°或60°.6、45°三、解答题(本大题共6小题,共72分)1、12 xy=⎧⎨=-⎩2、11a-,1.3、(1)11x-;(2)14、(1)见解析(2)成立(3)△DEF为等边三角形5、(1)见详解;(2)见详解6、(1)设甲种书柜单价为180元,乙种书柜的单价为240元.(2)学校的购买方案有以下三种:方案一:甲种书柜8个,乙种书柜12个方案二:甲种书柜9个,乙种书柜11个,方案三:甲种书柜10个,乙种书柜10个.。
最新北师大版八年级数学上册期末考试及答案【可打印】
最新北师大版八年级数学上册期末考试及答案【可打印】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.估计101+的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间2.某市6月份某周气温(单位:℃)为23、25、28、25、28、31、28,则这组数据的众数和中位数分别是( )A .25、25B .28、28C .25、28D .28、313.化简二次根式 22a a a +-的结果是( ) A .2a -- B .-2a -- C .2a - D .-2a -4.已知x 是整数,当30x -取最小值时,x 的值是( )A .5B .6C .7D .85.已知一次函数y =kx +b 随着x 的增大而减小,且kb <0,则在直角坐标系内它的大致图象是( )A .B .C .D .6.比较2,5,37的大小,正确的是( )A .3257<<B .3275<<C .3725<<D .3752<<7.实数a 、b 在数轴上的位置如图所示,且|a|>|b|,则化简2a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b8.如图所示,点A 、B 分别是∠NOP 、∠MOP 平分线上的点,AB ⊥OP 于点E ,BC ⊥MN 于点C ,AD ⊥MN 于点D ,下列结论错误的是( )A .AD +BC =ABB .与∠CBO 互余的角有两个C .∠AOB =90°D .点O 是CD 的中点9.如图,五边形ABCDE 中有一正三角形ACD ,若AB=DE ,BC=AE ,∠E=115°,则∠BAE 的度数为何?( )A .115B .120C .125D .13010.若b >0,则一次函数y =﹣x +b 的图象大致是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.若式子x 2-在实数范围内有意义,则x 的取值范围是________.2.已知x=2是关于x 的一元二次方程kx 2+(k 2﹣2)x+2k+4=0的一个根,则k 的值为__________.3.设m ,n 是一元二次方程x 2+2x -7=0的两个根,则m 2+3m +n =_______.4.如图,已知∠1=75°,将直线m 平行移动到直线n 的位置,则∠2﹣∠3=________°.5.一副三角板如图放置,将三角板ADE 绕点A 逆时针旋转(090)αα<<,使得三角板ADE 的一边所在的直线与BC 垂直,则α的度数为______.6.如图,在等边三角形ABC 中,BD=CE,AD,BE 交于点F,则AFE ∠=____________;三、解答题(本大题共6小题,共72分)1.解下列方程组:(1)430210x y x y -=⎧⎨-=-⎩ (2)134342x y x y ⎧-=⎪⎨⎪-=⎩2.先化简()222a 2a 1a 1a 1a 2a 1+-÷++--+,然后a 在﹣1、1、2三个数中任选一个合适的数代入求值.3.解不等式组:12025112x x x ⎧+≥⎪⎪⎨+⎪-<--⎪⎩并将解集在数轴上表示.4.如图,过点A (2,0)的两条直线1l ,2l 分别交y 轴于B ,C ,其中点B 在原点上方,点C在原点下方,已知AB=13.(1)求点B的坐标;(2)若△ABC的面积为4,求2l的解析式.5.已知平行四边形ABCD,对角线AC、BD交于点O,线段EF过点O交AD于点E,交BC于点F.求证:OE=OF.6.去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、B4、A5、A6、C7、C8、B9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、x2≥2、﹣33、54、1055、15°或60°.6、60°三、解答题(本大题共6小题,共72分)1、(1)1010xy=⎧⎨=⎩(2)64xy=⎧⎨=⎩2、53、﹣4≤x<1,数轴表示见解析.4、(1)(0,3);(2)112y x=-.5、略.6、(1)饮用水和蔬菜分别为200件和120件(2)设计方案分别为:①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;③甲车4辆,乙车4辆(3)运输部门应选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960元。
最新北师大版八年级数学上册期末考试卷及答案【可打印】
最新北师大版八年级数学上册期末考试卷及答案【可打印】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.下列式子中,属于最简二次根式的是( )A .9B .7C .20D .132.若点1(),6A x -,2(),2B x -,32(),C x 在反比例函数12y x=的图像上,则1x ,2x ,3x 的大小关系是( ) A .123x x x << B .213x x x << C .231x x x << D .321x x x <<3.已知:20n 是整数,则满足条件的最小正整数n ( )A .2B .3C .4D .54.已知三角形三边长为a 、b 、c ,且满足247a b -=, 246b c -=-, 2618c a -=-,则此三角形的形状是( )A .等腰三角形B .等边三角形C .直角三角形D .无法确定 5.代数式131x x -+-中x 的取值范围在数轴上表示为( ) A .B .C .D . 6.计算()22b a a -⨯的结果为( ) A .b B .b - C . ab D .b a7.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是( )A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+18.如图,在△ABC 中,∠C=90°,AC=BC=2,将△ABC 绕点A 顺时针方向旋转60°到△AB ′C ′的位置,连接C ′B ,则C ′B 的长为( ).A .1B .31-C .2D .222-9.如图,由四个全等的直角三角形拼成的图形,设CE a =,HG b =,则斜边BD 的长是( )A .+a bB .⋅a bC .222a b + D .222a b - 10.若b >0,则一次函数y =﹣x +b 的图象大致是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)13的整数部分是a ,小数部分是b 3a b -=______.2.已知x=2是关于x 的一元二次方程kx 2+(k 2﹣2)x+2k+4=0的一个根,则k 的值为__________.3.设m ,n 是一元二次方程x 2+2x -7=0的两个根,则m 2+3m +n =_______.4.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=_________5.如图,依据尺规作图的痕迹,计算∠α=_______°.6.如图,在平行四边形ABCD 中,DE 平分∠ADC ,AD=6,BE=2,则平行四边形ABCD 的周长是________.三、解答题(本大题共6小题,共72分)1.解下列不等式组:(1)2132(1);x x x x >+⎧⎨<+⎩, (2)231213(1)8;x x x x -⎧+≥+⎪⎨⎪--<-⎩,2.先化简,再求值:3x 4x 2x x 1x 1--⎛⎫-÷ ⎪--⎝⎭,其中1x 2=.3.(1)若x y >,比较32x -+与32y -+的大小,并说明理由;(2)若x y <,且(3)(3)a x a y ->-,求a 的取值范围.4.已知OP 平分∠AOB ,∠DCE 的顶点C 在射线OP 上,射线CD 交射线OA 于点F,射线CE交射线OB于点G.(1)如图1,若CD⊥OA,CE⊥OB,请直接写出线段CF与CG的数量关系;(2)如图2,若∠AOB=120º,∠DCE=∠AOC,试判断线段CF与CG的数量关系,并说明理由.5.如图,▱ABCD的对角线AC,BD相交于点O,点E、F在AC上,且AF=CE.求证:BE=DF.6.某经销商从市场得知如下信息:A品牌手表B品牌手表进价(元/块)700 100售价(元/块)900 160他计划用4万元资金一次性购进这两种品牌手表共100块,设该经销商购进A 品牌手表x块,这两种品牌手表全部销售完后获得利润为y元.(1)试写出y与x之间的函数关系式;(2)若要求全部销售完后获得的利润不少于1.26万元,该经销商有哪几种进货方案;(3)选择哪种进货方案,该经销商可获利最大;最大利润是多少元.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、D4、A5、A6、A7、B8、B9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、1.2、﹣33、54、135°5、56.6、20三、解答题(本大题共6小题,共72分)1、(1)1<x <2 (2)-2<x 2≤2、x 2-,32-. 3、(1)-3x +2<-3y +2,理由见解析;(2)a <34、(1)CF=CG ;(2)CF=CG ,略5、略.6、(1)y=140x+6000;(2)三种,答案见解析;(3)选择方案③进货时,经销商可获利最大,最大利润是13000元.。
八年级数学上学期期末质量检测题八北师大版-2019word版可打印
17.(每小题4分,共8分)化简:
(1) (2)
18、解方程组:(每小题5分,共10分)
(1) ( 2)
19、(本题6分)某中学为调查本校学生周末平均每天做作业所用时间的情况,随机调查了50名同学,下图是根据调查所得数据绘制的统计图的一部分.
请根据以上信息,解答下列问题:
在这次调查的数据中,做作业所用时间的众数是 ,中位数是 ,平均数是 ;(3分)
(2)求△OAC的面积.(3分)
(3)当△OMC的面积是△OAC的面积的时,求出这时点M的坐标.(3分)
——教学资料参考参考范本——
八年级数学上学期期末质量检测题八北师大版-2019word版可打印
__ห้องสมุดไป่ตู้___年______月______日
____________________部门
一、选择题(每小题3分,共36分)
1、81的算术平方根是( )
A. B. C. D.
2、在平面直角坐标系xOy中,点P(-3,5)关于y轴的对称点在第( )象限
若设甲绳长米,乙绳长米,则下列方程组正确的是( )
A. B. C.D.
12、已知点(-4,y1),(2,y2)都在直线y=- x+2上,则y1 y2大小关系是( )
(A)y1 >y2 (B)y1 =y2 (C)y1 <y2 (D)不能比较
填空题(每小题3分,共12分)
如图,有一圆柱体,它的高为20cm,底面半径为7cm.在圆柱的下底面点处有一个蜘蛛,它想吃到上底面上与点相对的点处的苍蝇,需要爬行的最短路
(1)从图像知,通话2分钟需付的电话费是 元;(2分)
(2)当t≥3时求出该图像的解析式(写出求解过程);(3分)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)在图②中:设A(x1.y1),B(x2,y2),试用x1,x2,y1,y2表示:AC= ,BC= ,AB= ;
(3)已知A(2,1),B(4,3),试用(2)中得出的结论求线段AB的长;
(4)已知A(2,1),B(4,3),若点C为y轴上的点且使得△ABC是以AB为底边的等腰三角形,试求出点C的坐标.
A., B.
C., D.
6.已知三角形三边长分别为15、17、8,则此三角形的最长边上的高为( )
A.17 , B., C., D.15
7.在-,-1.414,,3.14,π,0.701701701…,-5.303中,无理数有( )
A.1个 , B.2个 , C.3个 , D.4个8.已知来自那么x+y的值是( )
4.已知一次函数y=kx+b(k≠0)图象过点(0,2),且与两坐标轴围成的三角形面积为2,则一次函数的解析式为( )
A.y="x+2" , B.y=-x+2
C.y=x+2或y="-x+2" , D.y=-x+2或y=x-2
5.早餐店里,李明妈妈买了5个馒头,3个包子,老板少要1元,只要10元;王红爸爸买了8个馒头,6个包子,老板九折优惠,只要18元.若馒头每个x元,包子每个y元,则所列二元一次方程组正确的是( )
25.甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,如图,是它们离甲地距离y(千米)与时间x(小时)之间的函数关系图象,请根据图象解答下列问题:
(1)线段CD表示轿车在途中停留了 小时;
(2)直线OA和直线DE的交点坐标可以看做方程组 的解.
(1)求s2与t之间的函数关系式;
(2)小明从家出发,经过多长时间在返回途中追上爸爸?这时他们距离家还有多远?
19.已知:一次函数y=kx+b的图象经过M(0,2),N(1,3)两点.
求:
(1)图象与x轴的交点坐标;
(2)图象与两坐标轴围成的三角形面积.
20.如图,直线l1的解析表达式为:y=-3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.
24.如图,等腰直角三角形ABC中,∠BAC=90°,D、E分别为AB、AC边上的点,AD=AE,AF⊥BE交BC于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M.
(1)求证:△ADC≌△AEB;
(2)判断△EGM是什么三角形,并证明你的结论;
(3)判断线段BG、AF与FG的数量关系并证明你的结论.
A.0 , B.5 , C.-1 , D.1
9.已知函数是正比例函数,且图象在第二、四象限内,则m的值是( )
A.2 , B.-2 , C.±2 , D.
第II卷(非选择题)
, 二、填空题
10.已知函数y=ax+b和y=kx的图象交于点P(-4,-2),则二元一次方程组的解是 .
11.点P1(x1,y1)、点P2(x2,y2)是一次函数y=-4x+3图象上的两点,且x1<x2,则y1与y2的大小关系是 .
12.若a、b为实数,且|a+1|+=0,则(ab)20xx的值是 .
13.已知点P(-3,2),点A与点P关于y轴对称,则点A的坐标是 .
14.已知直线x+2y=5与直线x+y=3的交点坐标是(1,2),则方程组的解是 .
15.将1、 、 、 按右侧方式排列.若规定(m,n)表示第m排从左向右第n个数,则(5,4)与(15,7)表示的两数之积是.
——教学资料参考参考范本——
度八年级数学上册期末练习题北师大版-2019word版可打印
______年______月______日
____________________部门
第I卷(选择题)
, 一、选择题
1.在如图所示的直角坐标系中,M,N的坐标分别为( )
A.M(2,-1),N(2,1), B.M(-1,2),N(2,1)
(1)求这两种货车各用多少辆?
(2)如果安排10辆货车前往A地,其中调往A地的大车有a辆,其余货车前往B地,若设总运费为W,求W与a的关系式(用含有a的代数式表示W).
(3)在(2)的条件下,如果运往A地的矿石不少于115吨,请你设计出使用总运费最少的货车调配方案,并求出最少总运费?
22.某高校学生会向全校2900名学生发起了“爱心一日捐”捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列问题:
, 三、计算题
16.计算:.
, 四、解答题
17.解方程组:.
18.小明从家骑自行车出发,沿一条直路到相距2400m的邮局办事,小明出发的同时,他的爸爸以96m/min速度从邮局同一条道路步行回家,小明在邮局停留2min后沿原路以原速返回,设他们出发后经过t min时,小明与家之间的距离为s1 m,小明爸爸与家之间的距离为s2 m,图中折线OABD、线段EF分别表示s1、s2与t之间的函数关系的图象.
C.M(-1,2),N(1,2), D.M(2,-1),N(1,2)
2.下列各式中,正确的是( )
A.="±4" , B.±=4
C.="-3" , D.=-4
3.对于一次函数y=x+6,下列结论错误的是( )
A.函数值随自变量增大而增大
B.函数图象与x轴正方向成45°角
C.函数图象不经过第四象限
D.函数图象与x轴交点坐标是(0,6)
(1)本次接受随机抽样调查的学生人数为 ,图①中m的值是 ;
(2)求本次你调查获取的样本数据的平均数、众数和中位数;
(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.
23.阅读所给的材料,然后解答问题:如图①,在“格点”直角坐标系上我们可以发现:求线段DE的长度,可以转化为求Rt△DEF的斜边长,例如:在坐标系中我们发现:D(-7,5),E(4,-3),所以DF=|5-(-3)|=8,EF=|4-(-7)|=11,所以据勾股定理可得:DE=.
(1)求点D的坐标;
(2)求直线l2的解析表达式;
(3)求△ADC的面积;
(4)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,请直接写出点P的坐标.
21.某公司要把240吨矿石运往A、B两地,现用大、小两种货车共20辆,恰好能一次性装完这批矿石.已知这两种货车的载重量分别为15吨/辆和10吨/辆,运往A地的运费为:大车630元/辆,小车420元/辆;运往B地的运费为:大车750元/辆,小车550元/辆.