[教育学]细胞生物学-核糖体

合集下载

(细胞生物学基础)第七章核糖体

(细胞生物学基础)第七章核糖体

THANK YOU
感谢聆听
核糖体的结构
核糖体由大、小两个亚基组成,每个亚基都由RNA 和蛋白质构成。
大亚基含有28S、5S和5.8S三种RNA,而小亚基含有 18S RNA。
这些RNA与约60种不同蛋白质结合,形成稳定的复 合物。
核糖体的功能
核糖体是合成蛋白质的场所, 通过mRNA的翻译合成蛋白质 。
它具有起始、延长和终止三个 功能部位,分别对应于mRNA 上的起始密码子、终止密码子 以及多肽链的释放因子。
信号转导调控
核糖体可以感知细胞内的营养 和能量状态,通过信号转导途 径将信息传递给其他细胞器或 细胞核,进而调控细胞代谢和 生长。
核糖体与疾病的关系
核糖体与癌症
研究表明,核糖体的合成和功能异常可以影响肿瘤细胞的 增殖和分化,与癌症的发生和发展密切相关。
核糖体与神经退行性疾病
一些神经退行性疾病如阿尔茨海默病和帕金森病等与核糖 体功能异常有关,这些疾病的发生和发展过程中会出现核 糖体蛋白的聚集和神经元死亡。
核糖体与感染性疾病
病毒和细菌等微生物感染细胞后,会利用细胞内的核糖体 合成自身的蛋白质,因此核糖体也是抗感染免疫的重要靶 点。
05
核糖体的研究方法
核糖体的分离和纯化
分离
利用核糖体与其他细胞成分的密 度差异,通过离心技术将其从细 胞中分离出来。
纯化
通过一系列层析和电泳技术进一 步去除杂质,获得较为纯净的核 糖体样品。
核糖体的电镜观察
负染色
将核糖体样品置于负染色液中,使其 附着在载网上,然后进行电镜观察。
冷冻电镜
采用冷冻固定技术,将核糖体样品快 速冷冻并置于电镜下观察,以获得高 分辨率的图像。
核糖体的生物信息学分析

细胞生物学 第十章核糖体

细胞生物学 第十章核糖体
其一级结构是非常保守 的,某些序列是完全一 致的; ②不同种生物的16S 或18S rRNA其二级结构具有更 高的保守性,即由多个 茎环所组成。
§1 核糖体的类型与结构
三、rRNA和r蛋白质的功能 • 核糖体上有许多与蛋白质
合成有关的结合位点与催 化位点:
功能 1、与mRNA结合的位点:与mRNA结合; 2、A位点:与新渗入的氨酰-tRNA结合; 3、P位点:与延伸中的肽酰-tRNA结合; 4、E位点:肽酰转移后与即将释放的
第十章 核糖体
§1 核糖体的类型与结构 (§2 多核糖体与蛋白质的合成)
§1 核糖体的类型与结构
• 核糖体(ribosome)是细 胞内合成蛋白质的细胞 器,它几乎存在于一切 细胞之中。
s 原核细胞; s 真核细胞的细胞质中; s 真核细胞的线粒体与叶
绿体中。 • 核糖体在细胞内的数量
与蛋白质合成程度相关。 • 核糖体的实质是核酶。
s 核糖体蛋白质(r蛋白质): 约占1/3,主要位于核糖体表 面;
s 核糖体RNA(rRNA):约占 2/3,主要位于核糖体内部。
• 两者靠非共价键结合在一起。
一、核糖体的基本类型与化学组成
• 原核细胞和真核细胞核糖体 的详细化学组成:
s 原核细胞的核糖体:70S
大亚基(50S) rRNA:23S,5S r蛋白质:34种
tRNA结合; 5、与转位酶结合的位点:转位酶将肽酰
tRNA从A位点转移到P位点; 6、肽酰转移酶的催化位点:肽酰转移酶
催化形成肽键; 7、其他位点:起始因子:IF1,IF2,IF3
结合 延伸因子:EF-Tu,EF-Ts 释放因子:RF1,RF2
三、rRNA和r蛋白质的功能
• 这些活性位点既涉及 rRNA的不同区域,又涉 及不同的r蛋白质。

核糖体名词解释

核糖体名词解释

核糖体名词解释核糖体(ribosome)是细胞内的一种细胞器,由蛋白质和RNA组成,主要功能是参与蛋白质的合成。

其大小约为20-30纳米,是细胞内最大且形态最为复杂的非膜结构。

核糖体由两个亚单位组成,一个大亚单位(large subunit)和一个小亚单位(small subunit),它们在合成蛋白质的过程中密切合作。

大亚单位由多个蛋白质和长链RNA组成,小亚单位则由较少的蛋白质和短链RNA组成。

核糖体的主要功能是通过翻译过程将mRNA上的信息转化为蛋白质。

当细胞需要合成蛋白质时,mRNA与核糖体结合,核糖体通过扫描mRNA上的密码子(codon)与tRNA上的氨基酸反应,将氨基酸逐个连接起来,形成多肽链。

这个过程被称为翻译(translation),是细胞内的一个重要过程。

核糖体中的RNA起到了关键的作用。

其中包括两种类型的RNA,即核糖体RNA(rRNA)和转运RNA(tRNA)。

rRNA是核糖体中最主要的成分,它能够识别mRNA上的密码子,并将tRNA上的氨基酸与之配对。

tRNA则将氨基酸从细胞质中转运到核糖体上,供核糖体进行蛋白质的合成。

核糖体的结构非常复杂。

大亚单位和小亚单位之间存在多个交互作用,这些作用保持着核糖体的结构的稳定性。

核糖体还有多个结合位点,可以与mRNA、tRNA和其他辅助因子结合。

这些结合位点的存在可以使核糖体与其他蛋白质和RNA相互作用,进一步调控蛋白质合成的过程。

核糖体在细胞内广泛存在,位于细胞质内的核糖体与在内质网上的核糖体具有一定的区别。

在真核细胞中,核糖体通常存在于细胞质中的缝隙区域,被称为核糖体基质(ribosome matrix)。

总的来说,核糖体是细胞中非常重要的细胞器之一,它通过参与蛋白质合成的过程,维持细胞的正常功能。

核糖体的结构复杂,功能多样,它的研究对于解析细胞生命活动的机制具有重要的意义。

细胞生物学核糖体

细胞生物学核糖体

细胞生物学核糖体在生物学中,细胞是最基本的生命单位。

细胞内有许多复杂的机制和器官,其中一个很重要的是核糖体。

核糖体是一种生物大分子,它存在于细胞质内,是蛋白质合成的重要器官。

细胞生物学核糖体的研究已经进行了很多年,至今仍在不断深化和发展。

核糖体是由RNA和蛋白质组成的,它们相互协作,完成了蛋白质的合成。

目前已知两种主要类型的核糖体:大核糖体和小核糖体。

大核糖体主要在真核生物细胞中存在,而小核糖体则是在细菌和原核生物细胞中发现。

核糖体有几个部分组成。

其中,大核糖体由四个RNA分子和80多个蛋白质分子组成,而小核糖体则由一个RNA分子和20多个蛋白质分子组成。

这些RNA分子被称为核糖体RNA(rRNA),它们是由核糖体DNA(rDNA)转录和后转录修饰所得。

蛋白质合成是细胞中一个非常重要的过程。

在核糖体中,rRNA起到主要的结构和催化作用,而蛋白质分子则能够辅助rRNA将氨基酸序列转化为蛋白质序列。

核糖体可以识别mRNA上的指定区域,并将其翻译为真正的蛋白质序列。

当然,这个过程还需要一些辅助的分子来协助完成。

如,tRNA(转运RNA)可将正确的氨基酸带进核糖体中,而调节因子(translation factors)则能够加速或阻止蛋白质合成。

在真核细胞中,核糖体很大并且复杂。

它们通常会形成一些明显的结构化体系,如核糖体核小体和核糖体生长点。

这些结构化部分非常重要,在研究核糖体结构和功能方面发挥了重要作用。

这些结构化部分也有助于我们研究如何抑制核糖体,从而控制疾病。

在细菌细胞中,核糖体通常用于合成细菌所需的蛋白质。

因此,抗生素就是通过抑制细菌核糖体的功能,从而导致细菌死亡。

这也是为什么抗生素是如此有效但又非常危险的原因。

总之,细胞生物学核糖体是细胞中生命的重要机制之一,具有不可忽视的重要意义,它们参与和推动了蛋白质合成的各个环节。

同时,它们的研究也有助于我们更好地理解生命的起源和发展,以及探索如何应对一些疾病。

细胞生物学(第五版)-第10章-核糖体精选全文完整版

细胞生物学(第五版)-第10章-核糖体精选全文完整版
多核糖体模式图
二、蛋白质的合成
又称蛋白质的翻译,是细胞中最复杂、最精确的生 命活动之一。蛋白质合成需要各种携带氨基酸的 tRNA、核糖体、mRNA、多种蛋白质因子、阳离子 及GTP等的参与
蛋白质合成分为三步:
起始(Initiation)包括核糖体与mRNA 结合,形 成起始复合物,其中含有第一个氨酰-tRNA。
仅发现在哺乳动物成熟的红细胞 等极个别高度分化的细胞内没有 核糖体,线粒体和叶绿体中也含 有核糖体。 核糖体是细胞最基本的不可缺少 的结构。
核糖体是一种不规则颗粒状的结构,其主 要成分是RNA和蛋白质,直径约25 nm 核糖体蛋白分子主要分布在核糖体表面, 核糖体RNA(rRNA)位于内部,二者靠共价 键结合在一起。
甲基转移酶催化形成的。
30S小亚基与mRNA的结合需要 起始因子(initiation factor,IF)的 帮助。 这些起始因子仅位于30 S亚基上。 一旦30 S亚基与50 S亚基结合形 成70S核糖体后便释放。 起始因子的主要作用:帮助形成 起始复合物。 原核细胞有3种起始因子: IF1、IF2和IF3。
主要包括4个步骤: 1、氨酰-tRNA进入核糖体A位点的选择 2、肽键的形成 3、转位(translocation) 4、脱氨酰-tRNA的释放。
1.氨酰-tRNA在核糖体A位点的入位
起始的tRNAiMet占据P位点, 核糖体接受第2个氨酰-tRNA进 入A位点,这就是肽链延伸的 第一步。 为了有效地结合A位点,第二 个氨酰-tRNA必须与有GTP的 延伸因子(elongation factor, EF)EF-Tu结合形成复合物氨酰 -tRNA·EF-Tu·GTP。
三、核糖体蛋白质与rRNA的功能
核糖体上具有一系列与蛋白质合成有关的结合位 点与催化位点

医学细胞生物学-第六章核糖体

医学细胞生物学-第六章核糖体
医学细胞生物学-第六章 核糖体
核糖体是细胞内负责蛋白质合成的重要器官,由RNA和蛋白质组成。了解核 糖体的结构和功能对于理解细胞活动和生命过程至关重要。
核糖体的定义和功能
1 定义
核糖体是细胞内的蛋白质合成机器,位于细 胞质中,由核糖体RNA(rRNA)和蛋白质组 成。
2 功能
核糖体负责将蛋白质合成所需的mRNA模板 与适当的氨基酸相结合,以构建多肽链。
影响生理过程
核糖体在细胞分化、增殖和死亡等生理 过程中发挥重要作用。
核糖体与生物医学应用的潜力
了解核糖体的结构和功能有助于开发药物和治疗,例如靶向核糖体的抗生素 和抗癌药物的研发。
核糖体的结构和组成成分
结构
核糖体由大亚基和小亚基组成,两者之间有大量 rRNA和蛋白质部分组成的结构。
组成成分
核糖体的主要组成成分包括核糖体RNA(rRNA)和 蛋白质,它们相互作用形成核糖体的结构。
核糖体的合成过程
1
转录
核糖体RNA在细胞核中由DNA转录而来。
2
修饰
核糖体RNA经过修饰,形成成熟的核糖体RNA。
3
组装
成熟的核糖体RNA与蛋白质组装在一起,形成可功能的核糖体。
核糖体的生物学功能和作用
1 生物学功能
核糖体是蛋白质合成的关键,参与生物学过程和调控细胞功能。
2 作用
核糖体通过读取mRNA的编码信息,将其翻译成蛋白质,实现基因表达。
核糖体与蛋白质合成的关系
密切相关
核糖体是细胞中蛋白质合成的主要场所,直接参与蛋白质的合成过程。
协同作用
核糖体与tRNA、mRNA等分子相互作用,共同实现蛋白质的合成。
速度决定
核糖体的活性和数量直接影响蛋白质合成的速度和效率。

细胞生物学综述——核糖体

细胞生物学综述——核糖体

核糖体功能结构探究及展望摘要:核糖体是一个核酶,用体外筛选技术发现的核酶像核糖体一样也能催化肽键形成。

RNA在生命起源中也有着不可替代的作用。

随着RNA多功能的发现,RNA被更多的人认为是生命体的生物大分子,在科学研究如新药研发中也受到了更多的关注与应用。

关键字:RNA 核酶蛋白质合成是细胞代谢最复杂也是最核心的过程, 其中涉及到200多种生物大分子参与作用。

蛋白质加工厂---核糖体(Ribosome)是一个由核糖体RNA(rRNA)和核糖体蛋白组成的复合体. 蛋白质含量约占三分之一, 而rRNA的含量占三分之二。

在蛋白质生物合中,rRNA 与蛋白质两者究竟谁起主导作用, 一直是人们感兴趣的问题, 并提出不少假说。

关于rRNA功能的假说主要有三种: 1.rRNA主要作为核糖体蛋白质装配的结构骨架, 在蛋白质合成中, 核糖体蛋白质起催化作用;2. rRNA是一种决定蛋白质序列的物质;3.rRNA具有催化活性, 它直接催化蛋白质的合成.1982年Cech通过研究原生动物四膜虫证明RNA 具有催化功能, 并称之为核酶( ribozyme)。

自此以后, 自然界中的RNA 催化功能不断被发现, T. Cech和S. A ltman也因为核酶的发现而荣获1989年诺贝尔化学奖。

核酶的发现具有重要的意义, 它使人们认识到, RNA的生物功能远非/传递遗传信息0那么简单, 人们开始重新审视RNA的生物学功能。

直到最近, 通过X射线衍射分析核糖体大、小亚基的结晶, 才证实了肽键的形成是由r RNA催化, 核糖体就是一种核酶, 已经可以得出结论, 在核糖体内蛋白质主要起维持rRNA 的构象, 起辅助作用; 在蛋白质合成过程中rRNA起到非常重要的作用。

肽酰转移酶中心核糖体大亚基的精细结构表明, 核糖体大亚基空腔的底部, 是P位点上肽酰tRNA 与A位点上氨酰tRNA 相互作用形成肽键的部位, 称为肽酰转移酶中心。

在肽键形成处2nm的范围中,完全没有蛋白质的电子云存在,肽酰转移酶中心完全由23SrRNA的结构域组成,而蛋白质主要起维持rRNA的构象,起辅助作用。

细胞生物学——核糖体ppt课件

细胞生物学——核糖体ppt课件
具有肽酰转移酶的活性; 为tRNA提供结合位点(A位点、P位点和E位点); 为多种蛋白质合成因子提供结合位点; 在蛋白质合成起始时参与同mRNA选择性地结合以及在肽链
的延伸中与mRNA结合; 核糖体大小亚单位的结合、校正阅读(proofreading)、无
意义链或框架漂移的校正、以及抗菌素的作用等都与rRNA 有关。
一、核糖体的基本类型与成分
核糖核蛋白体,简称核糖体(ribosome) 基本类型 附着核糖体 游离核糖体 70S的核糖体 80S的核糖体 主要成分 r蛋白质:40%,核糖体表面 rRNA:60%,,核糖体内部
二、核糖体的结构
结构与功能的分析方法
蛋白质合成过程中很多重要步骤 与50S核糖体大亚单位相关
一、多聚核糖体 (polyribosome或polysome)
概念 核糖体在细胞内并不是单个独立地执行功能,而是由多个甚至几
十个核糖体串连在一条mRNA分子上高效地进行肽链的合成,这种具 有特殊功能与形态结构的核糖义 细胞内各种多肽的合成,不论其分子量的大小或是mRNA的长短如 何,单位时间内所合成的多肽分子数目都大体相等。 以多聚核糖体的形式进行多肽合成,对mRNA的利用及对其浓度的 调控更为经济和有效。
定位。 对rRNA,特别是对16S rRNA结构的研究 70S核糖体的小亚单位中rRNA与全部的r蛋白关系的空间模型
同一生物中不同种类的r蛋白的一级结构均不 相同,在免疫学上几乎没有同源性。
不同生物同一种类r蛋白之间具有很高的同源 性, 并在进化上非常保守。
蛋白质合成过程中很多重 要步骤与50S核糖体大亚单位相关
从而为揭开核糖体这一具有30多亿年历史的古老的高度复杂的分子 机器的运转奥秘迈出了极重要的一步。

细胞生物学考研复习资料 核糖体

细胞生物学考研复习资料 核糖体

十二、核糖体1、概述是一种核糖核蛋白颗粒,是细胞内合成蛋白质的细胞器,其功能是按照mRNA 的信息将氨基酸高效精确地合成多肽链。

核糖体几乎存在一切细胞内,除了在哺乳动物成熟的红细胞等极个别高度分化的细胞内。

核糖体是一种不规则的颗粒状结构,没有生物膜包裹,直径为25~30nm,主要成分是RNA(rRNA)【2/3,在内部】和蛋白质(r蛋白)【1/3,表面】,二者靠非共价键结合。

附着在糙面内质网表面或原核细胞质膜内侧的称附着核糖体;不附着在膜上的称游离核糖体。

两者结构与化学组成完全相同,所合成的蛋白质种类不同。

核糖体的实质是核酶。

2、类别和化学组成两种基本类型:原核细胞核糖体,真核细胞核糖体。

rRNA中的某些核苷酸残基被甲基化修饰,发生在序列保守的区域。

大小亚基常游离于细胞质基质中,只有当小亚基与mRNA结合后大亚基才与小亚基结合形成完整的核糖体。

3、形态结构X射线衍射分析-获得高质量的核糖体晶体-2009年诺贝尔化学奖-核糖体的三维结构和功能rRNA折叠成高度压缩的三维结构,构成核糖体的核心。

r蛋白有一个球形的结构域和伸展的尾部,球形结构域分布于核糖体表面,伸展尾部伸入核糖体内折叠的rRNA分子中。

活性部位只包括rRNA,核糖体大小亚基结合面无r蛋白分布,说明r蛋白本身不参与将遗传信息变成蛋白质的反应,起稳定rRNA 作用。

每个核糖体有4个RNA分子结合位点,其中1个mRNA结合,3个供tRNA 结合,A位点、P位点、E位点。

16S rRNA在一级结构上进化保守,某些序列完全一致,二级结构具有更高的保守性(多个茎环组成的结构)。

4、核糖体的功能部位及其作用①与mRNA结合的位点:原核中,mRNA的结合位点位于16S rRNA的3’端,mRNA的SD序列能与16S rRNA的3’端互补结合;真核中,小亚基识别主要依赖于mRNA 5’端的甲基化帽子结构。

②A位点:与新掺入的氨酰-tRNA结合的位点【氨酰基位点】③P位点:与延伸中的氨酰-tRNA结合的位点【肽酰基位点】④E位点:脱氨酰tRNA的离开A位点到完全释放的一个位点⑤延伸因子EF-G(与肽酰tRNA从A位点转移到P位点有关的转移酶)的结合位点⑥肽酰转移酶的催化位点——最主要的活性部位r蛋白作用推测:对rRNA折叠成有功能的三维结构十分重要;r蛋白对核糖体的空间构象起微调的作用。

细胞生物学 第七章 核糖体

细胞生物学 第七章 核糖体

L11-rRNA复合物的三维结构 复合物的三维结构 (引自Porse et.al.,1999)
三、 细菌核糖体的分离和重组
1.分离 细菌的70s核糖体,含有二个亚单位,它们的漂浮 单位分别为50s和30s,都含有RNA和蛋白质。这些 RNA和蛋白质都可分离,其步骤如下: (1)在离心的溶液中Mg2+的浓度降低到1mmol/L以 下就可把70s核糖体(单体)分裂成50s和30s大小 两个亚单位; (2)将收集的亚单位在氯化铯溶液中离心,就可分 裂为分裂蛋白质和核心(由RNA和蛋白质组成), 核心的漂浮单位分别为40s和23s。这些核心没有合 成蛋白质的能力,但还可进一步分离;
第七章 核糖核蛋白体 (ribosome) )
核糖体颗粒存在于所有类型的活细胞中,游离在 细胞质中或附着在粗糙型内质网上,特别在快速增殖 的细胞中含量更多。也存在于细胞核、线粒体和叶绿 体内。 在真核细胞中很多核糖体附着在内质网的膜上, 称为附着核糖体,它与内质网形成复合细胞器,即粗 面内质网。在原核细胞质膜内侧也常有核糖体着附。 还有一些核糖体不附着在膜上,呈游离状态,分 布在细胞质基质内,称游离核糖体。附着在内质网膜 上的核糖体与游离核糖体所合成的蛋白质种类不同, 但核糖体的结构与化学组成是完全相同的。
在正常生长的细胞中,大多数的核糖体 担负着蛋白质的合成任务,它们经常丛集或 串联在一起,由一条宽度为1nm的mRNA 细 线贯通着。这些聚集的核糖体叫做多核糖体。 一个多核糖体由5-6个核糖体串联而成,也 可多至50个以上。
二、
核糖体的结构与组成
核糖体是无膜的细胞器,主要成分是蛋白 质与RNA。核糖体的RNA称为rRNA,约占 60%,蛋白质约占40%,蛋白质分子主要分布 在核糖体的表面,而rRNA则位于内部,二者靠 非共价键结合在一起。

细胞生物学(11 核糖体)

细胞生物学(11 核糖体)
核糖体沿着mRNA移动,如果进入A位的是终止密码子,由于没 有与之匹配的反密码子,而终止蛋白质的合成。一共有三种终 止密码子:UAA、UAG、UGA,其中任何一种进入A位都会终止 蛋白质的合成,并导致多肽链从核糖体释放出来
3 多聚核糖体(polyribosomes)
在蛋白质合成过程中,同一条mRNA分子能够同多个核糖 体结合,同时合成若干条蛋白质多肽链,结合在同一 条mRNA上的核糖体就称为多聚核糖体(polysome 或 polyribosomes
起始复合物形成,蛋白 质的合成随即开始,此 过程称为蛋白质合成的 延伸。延伸涉及四个重 复的步骤∶①氨酰tRNA 进入核糖体的A位点; ②肽键形成;③转位;④ 脱氨酰tRNA释放。上述 四步的循环,使肽链不 断延长。在整个过程中, 需要GTP和一些延长因 子的参与
■ 终止(termination)
■ 原核生物rRNA基因及转录
2 核糖体的装配
人细胞中核糖体装配的主要过程
第三节、核糖体的功能-蛋白质的合成
1、 核糖体的功能位点
A、新掺入的氨酰tRNA (aminoacyl-tRNA )结合的位点 P、肽酰tRNA位点(peptidyl-tRNA site) E、脱氨酰tRNA(deaminoacyl-tRNA) 离开P位点到完全从核糖体释放 出来的一个中间停靠点
NORs in human chromosomes: 13\14\15\21\22
Code for (in eukaryotes): 18s, 28s, 5.8s rRNA
■ 真核生物18S、5.8S、28S rRNA和5SrRNA基因
真核生物有四种rRNA基因, 其中18S、5.8S和28S rRNA 基因是串联在一起的,每个基因被间隔区隔开, 5S rRNA 基因则位于不同染色体上。

细胞生物学-第七章 核糖体精品文档

细胞生物学-第七章 核糖体精品文档

结构蛋白:由游离核糖体合成,多分布细胞基质中。某些
结构蛋白(膜镶嵌蛋白、溶酶体酶蛋白、等)
核糖体合成的蛋白质
是由附着核糖体合成的
外输蛋白(分泌蛋白):由附着核糖体合成,大多从细胞 分泌出去
(三)rRNA在核糖体功能执行中的主导地位
rRNA参与催化肽链形成的证据,证明核 酶能水解和形成磷酸二酯键,也能水解酰胺键。 因此称为核酶(ribozyme)。有学者强调 rRNA在核糖体功能执行中的主导地位。
亚 基
UA AAAUUU
C GGG
GGCCGC
CCGGCGCCGGCG23
A UUU
CCGCGTUUAUP
GGG
GGG
AAA
AAAUCCCGGGGC
3
RF

P 位
A
RRFF 位
UGA
3 AA CC UU UU AA GG , ,
释放因子

50S
30I氨FS移I-2Fm酰-肽位33R基-0键(mSN由--R的AtmARN-形R5位NA0NA成S-转肽3A-0f移-进M链SfIMF三至e入合32te-元PtAt成-R位t位复RN的)N合A终Af物f止与释放
位位
EF-G 易位酶G因子
GTP GDP+Pi
CGG
5,
AUGGCC U CU GGA ACG
3 A C U U A G ,
肽链的延长


CGG UAC CGG
5,
fMet
ffMMeett 丙 A G A EF-G 易位酶G因子
fMet 丙丙
P PP 位 位位
A位P肽丝基EA位FA位转-T移G酶A位TP
40S
单体 80S

细胞生物学核糖体的结构及功能

细胞生物学核糖体的结构及功能

文档收集于互联网,已重新整理排版.word版本可编辑,有帮助欢迎下载支持.第十一章核糖体一、核糖体的结构及功能核糖体是体积较小的无膜包围的细胞器,在光镜下看不到。

1958年才把这种含有大量RNA的能合成蛋白质的关键装置定名为核糖核蛋白体ribosome,简称为核糖体。

(一)核糖体的一般性质1、存在与分布核糖体存在一切生物的细胞中,包括真核细胞和原核细胞。

这是有别于其它细胞器的特点。

在真核细胞中,有些核糖体是游离分布在细胞质基质中,也有许多是附着在rER膜及核膜外表。

此外,还有核糖体是分布在线粒体和叶绿体的基质中。

在原核细胞内,大量核糖体游离在细胞质中,也有的附着在质膜内侧面。

细菌的核糖体占总重量的25—30%2、形态和大小一般直径为25—30nm,由大、小两亚单位构成,通常是以大亚单位附在内质网膜或核膜外表。

当进行蛋白质合成时,小亚单位先接触mRNA才与大亚单位结合,而合成完毕后又自行解离分开。

另外,多个核糖体还可由mRNA串联成多聚核糖体polyribosome(=polysome),每个多聚核糖体往往由5-6个核糖体串成,但也有多至50个以上的(例如肌细胞中合成肌球蛋白的多聚核糖体是由60—80个串联而成)。

3.数量和分类细胞中的核糖体数量多少不一。

一般来说,增殖速度快的细胞中偏多,分泌蛋白质的分泌细胞中也较多。

例如分泌胆汁的肝细胞中为6X 106个,大肠杆菌中为1500—15000个。

在不同类型生物细胞之中,核糖体大小及组分都有一定差1文档来源为:从网络收集整理.word版本可编辑.文档收集于互联网,已重新整理排版.word版本可编辑,有帮助欢迎下载支持.异。

一般可分为两大类:80S型和705型。

大亚单位60S真核生物核糖体80S v小亚单位40S大亚单位50S原核生物核糖体70S一小亚单位30S(“S”是沉降系数的衡量单位。

大、小亚单位组成核糖体, 并非由其两者的S值直接相加,这是因为S值变化其实是与颗粒的体积及形状相关的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

h
23
一、多聚核糖体(polyribosome或polysome)
概念 核糖体在细胞内并不是单个独立地执行功能,而是由多个甚至几十个核 糖体串连在一条 mRNA 分子上高效地进行肽链的合成,这种具有特殊 功能与形态结构的核糖体与 mRNA 的聚合体称为多聚核糖体。
多聚核糖体的生物学意义 细胞内各种多肽的合成,不论其分子量的大小或是 mRNA 的长短如 何,单位时间内所合成的多肽分子数目都大体相等。越长的 mRNA 可以结合更多的核糖体,提高了蛋白质合成的速度。 以多聚核糖体的形式进行多肽合成,对 mRNA 的利用及对其浓度的 调控更为经济和有效。
起,肽链合成终止后,大小亚单位又解离。 原核和真核细胞的 rRNA 都具有甲基化现象,甲基化与 RNA 转录后加
工过程的酶识别有关,另外原核5S rRNA和真核5.8S rRNA结构高度保 守,常用于研究生物进化。
h
6
原核生物与真核生物核糖体成分的比较
核糖体的组成
游离核糖体和附着游离核糖体
d=25nm
※ 双向电泳(Two-dimensional(2D) gel electrophoresis)是一项基于蛋白的两种不同特性:电荷和质量来 分离蛋白的技术。首先基于蛋白固有电荷,通过等电聚焦(isoelectric focusing IEF)进行第一向蛋白分 离,然后根据蛋白的质量,在第二向中通过SDS-PAGE电泳进行蛋白分离。
E.coli (a)核糖体小亚单位中的部分r蛋白与rRNA的结合位点) (b)核糖体小亚单位中的部分r蛋白在小亚单位上的部位
(引自Albert et al.,1989,图a; Lewin,1997,图b)
(二)蛋白质合成过程中很多重要步 骤与50S核糖体大亚单位相关
涉及的多数因子为G蛋白(具有GTPase活性),核糖体上与之相关位点 称为GTPase相关位点。
三、核糖体蛋白质与rRNA的功能分析
(一) 核糖体上具有一系列与蛋白质合 成有关的结合位点与催化位点
与mRNA的结合位点 与新掺入的氨酰-tRNA的结合位点——氨酰基位点,又称A位点。 与延伸中的肽酰-tRNA的结合位点——肽酰基位点,又称P位点。 肽酰转移后与即将释放的tRNA的结合位点——E位点(exit site)。 与肽酰tRNA从A位点转移到P位点有关的转移酶(即延伸因子EF-G)的结合位点 肽酰转移酶的催化位点 与蛋白质合成有关的其它起始因子、延伸因子和终止因子的结合位点
核酶(ribozyme):具有催化作用的RNA。 由RNA催化产生了蛋白质
h
29
核酶
2、DNA代替了RNA的遗传信息功能
DNA双链比RNA单链稳定; DNA链中胸腺嘧啶代替了RNA链中的尿嘧啶,使之易于
修复。
3、蛋白质取代了绝大部分RNA酶的功能
蛋白质化学结构的多样性与构象的多变性; 与RNA相比,蛋白质能更为有效地催化多种生化反应,
h
18
(二)在蛋白质合成中肽酰转移酶的活性研究
1、核糖体蛋白具有催化蛋白质合成的活性 ?
很难确定哪一种蛋白具有催化功能: 在 E.coli 中核糖体蛋白突变甚至缺失并不完全抑制蛋白质合成。
多数抗蛋白质合成抑制剂的突变株,并非由于 r 蛋白的基因突变而往往 是 rRNA 基因突变。
在整个进化过程中 rRNA 的结构比核糖体蛋白的结构具有更高的保守 性。 rRNA 可能具有更重要的作用。
h
12
E.coli核糖体小亚单位中rRNA与r蛋白的相互关系示意图 线条表示相互作用及作用力的强(粗线)与弱(细线)
(引自Alberts et al,1989)
(stem-loop structure)
核糖体小亚单位rRNA的二级结构 (a) E.coli 16S rRNA;(红色为高度保守区) (b) 酵母菌18S rRNA,它们都具有类似的40个臂环结构(图中1~40), 其长度和位置往往非常保守;P、E分别代表仅在原核或真核细胞中 存在的rRNA的二级结构。(Darnell et al.,1990)
第一章 第二章 第三章 第四章 第五章 第六章 第七章 第八章 第九章 第十章 第十一章 第十二章 第十三章
绪论 细胞基本知识概要 细胞生物学研究方法 细胞质膜与细胞表面 物质跨膜运输与信号传递 细胞质基质与内膜系统 细胞的能量转换 细胞核与染色体 核糖体 细胞骨架 细胞增殖及其调控 细胞分化与基因表达调控 细胞衰老与凋亡
h
24
二、蛋白质的合成
30S 甲酰甲硫氨酸
50S
EF-G(移位酶)
EF-Tu
Protein Synthesis
三、RNA在生命起源中的地位及其演化过程
1、生命是自我复制的体系
三种生物大分子,只有RNA既具有信息载体功能又具 有酶的催化功能。因此,推测RNA可能是生命起源中 最早的生物大分子。
h
2
第九章 核糖体(ribosome)
h
3
➢ Robinson&Brown(1953)发现于植物细胞。 ➢ Palacle(1955)发现于动物细胞。 ➢ Roberts(1958)建议命名为核糖核蛋白(ribosome),
简称核糖体。 ➢ 核糖体是细胞内合成蛋白质的工厂,在一个旺盛生长的
细菌中,大约有20000个核糖体,其蛋白占细胞总蛋白的 10%,RNA占细胞总RNA的80%。
70S
d=m
80S
二、核糖体的结构
(一)结构与功能的分析方法
1、离子交换树脂可分离纯化各种r蛋白; 2、纯化的r蛋白与纯化的 rRNA 进行核糖体的重组装,显示核糖体中r蛋白与 rRNA
的结构关系:
蛋白质结合到 rRNA 上具有先后层次性。 核糖体的重组装是自我装配过程 3、双功能的交联剂和双向电泳分离可用于研究 r 蛋白在结构上的相互关系
h
20
2、在核糖体中 rRNA 是起主要作用的结构成分
具有肽酰转移酶的活性; 为 tRNA 提供结合位点(A位点、P位点和E位点); 为多种蛋白质合成因子提供结合位点; 在蛋白质合成起始时参与同 mRNA 选择性地结合以及在肽链的延伸中与
mRNA 结合; 核糖体大小亚单位的结合、校正阅读(proofreading)、无意义链或框架
漂移的校正、以及抗菌素的作用等都与 rRNA 有关。
h
21
3、r 蛋白质的主要功能
对 rRNA 折叠成有功能的三维结构是十分重要的; 在蛋白质合成中,某些 r 蛋白可能对核糖体的构象起“微
调”作用; 在核糖体的结合位点上甚至可能在催化作用中, 核糖体
蛋白与 rRNA 共同行使功能。
h
22
第二节 多聚核糖体与蛋白质的合成
h
5
第一节 核糖体的类型与结构
一、核糖体的基本类型与成分
根据沉降系数的不同分为70S和80S两种类型。 70S核糖体存在于细菌, 线粒体和叶绿体中,80S 核糖体存在于真核生物的细胞质中。
40% 的蛋白质、60% 的RNA。 由大小两个亚基构成,只在以 mRNA 为模板合成蛋白质时才结合在一
h
4
❖ 核糖体(ribosome) :是核糖核蛋白体的简称,是一种颗 粒状的结构,没有被膜包裹,其直径为25nm,主要成分 是蛋白质与RNA。其是合成蛋白质的细胞器,其唯一的 功能是按照mRNA的指令由氨基酸高效且精确地合成多 肽链。 附着在内质网等膜表面的称附着核糖体;不在膜 表面附着,而呈游离状态,分布在细胞基质内的成游离 核糖体。
并提供更为复杂的细胞结构成分,逐渐演化成今天的细 胞。
h
32
(完)
最近人们成功地制备L11-rRNA复合物的晶体,获得了其空间结构高 分辨率的三维图象。
这一结果证实了前人用各种实验技术所获得的种种结论 提出直观、可靠且比人们的预料更为精巧复杂和可能的作用机制,从
而为揭开核糖体这一具有30多亿年历史的古老的高度复杂的分子机器 的运转奥秘迈出了极重要的一步。
h
16
L11-rRNA复合物的三维结构 (引自Porse et.al.,1999)
同一生物中不同种类的 r 蛋白的一级结构均不相同,在免疫学上几乎没有同源性。 不同生物同一种类 r 蛋白之间具有很高的同源性, 并在进化上非常保守。
h
11
4、电镜负染色与免疫标记技术结合,研究r蛋白在核糖体的亚单位上的定位。 5、对rRNA,特别是对16S rRNA结构的研究
16SrRNA的一级结构是非常保守的 16SrRNA的二级结构具有更高的保守性: 臂环结构(stem-loop structure) rRNA臂环结构的三级结构模型 6、70S核糖体的小亚单位中rRNA与全部的r蛋白关系的空间模型
相关文档
最新文档