2018高考数学异构异模复习第八章立体几何8.3直线平面平行的判定与性质撬题理

合集下载

高考数学一轮复习 第八章 立体几何 8.4 直线、平面平行的判定与性质真题演练集训 理 新人教A版(

高考数学一轮复习 第八章 立体几何 8.4 直线、平面平行的判定与性质真题演练集训 理 新人教A版(

质真题演练集训理新人教A版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高考数学一轮复习第八章立体几何8.4 直线、平面平行的判定与性质真题演练集训理新人教A版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高考数学一轮复习第八章立体几何8.4 直线、平面平行的判定与性质真题演练集训理新人教A版的全部内容。

与性质真题演练集训理新人教A版1.[2016·山东卷节选]在如图所示的圆台中,AC是下底面圆O的直径,EF是上底面圆O′的直径,FB是圆台的一条母线.已知G,H分别为EC,FB的中点,求证:GH∥平面ABC.证明:设FC的中点为I,连接GI,HI,在△CEF中,因为点G是CE的中点,所以GI∥EF.又EF∥OB,所以GI∥OB.在△CFB中,因为H是FB的中点,所以HI∥BC。

又HI∩GI=I,OB∩BC=B,所以平面GHI∥平面ABC。

因为GH⊂平面GHI,所以GH∥平面ABC。

2.[2016·新课标全国卷Ⅲ节选]如图,四棱锥P-ABCD中,PA⊥底面ABCD,AD∥BC,AB =AD=AC=3,PA=BC=4,M为线段AD上一点,AM=2MD,N为PC的中点.证明:MN∥平面PAB。

证明:由已知得AM=错误!AD=2。

取BP的中点T,连接AT,TN。

由N为PC的中点知,TN∥BC,TN=错误!BC=2.又AD∥BC,故TN綊AM,四边形AMNT为平行四边形,于是MN∥AT.因为AT⊂平面PAB,MN⊄平面PAB,所以MN∥平面PAB。

3.[2015·江苏卷节选]如图,在直三棱柱ABC-A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.求证:DE∥平面AA1C1C。

2018高考数学异构异模复习第八章立体几何8.4直线平面垂直的判定与性质课件文

2018高考数学异构异模复习第八章立体几何8.4直线平面垂直的判定与性质课件文
第八章
立体几何
第4讲
直线、平面垂直的判定与性质
考点
垂直的判定与性质
撬点· 基础点 重难点
1
直线与平面垂直的判定定理
两条相交直线
(1)自然语言:一条直线与一个平面内的 (2)图形语言:如图 1 所示.
都垂直,则该直线与此平面垂直.
(3)符号语言:a⊂α,b⊂α,a∩b=P,l⊥a,l⊥b⇒l⊥α.
4
平面与平面垂直的性质
自然语言:两个平面垂直,则一个平面内 垂直于交线 的直线与另一个平面垂直. 图形语言:如下图所示.
符号语言:α⊥β,α∩β=CD,AB⊂α,AB⊥CD⇒AB⊥β. 注意点 斜线在平面上的射影的理解 斜线在平面上的射影是过斜足和垂足的一条直线,而不是线段.
1.思维辨析 (1)直线 l 与平面 α 内的无数条直线都垂直,则 l⊥α.( × ) (2)若直线 a⊥平面 α,直线 b∥α,则直线 a 与 b 垂直.( √ ) (3)直线 a⊥α,b⊥α,则 a∥b.( √ ) (4)若 α⊥β,a⊥β⇒a∥α.( × ) (5)a⊥α,a⊂β⇒α⊥β.( √ )
2
直线与平面垂直的性质定理 自然语言:垂直于 同一个平面 图形语言:如图 2 所示. 符号语言:a⊥α,b⊥α⇒a∥b. 3 平面与平面垂直的判定 (1)两个平面垂直的定义
的两条直线平行.
如果两个相交平面所成的二面角是直二面角,那么就说这两个平面互相垂直.平面 α 与 β 垂直,记作 α⊥β.
(2)两个平面垂直的判定定理 自然语言:一个平面 过另一个平面的垂线 ,则这两个平面垂直. 图形语言:如下图所示. 符号语言:AB⊥β,AB⊂α⇒α⊥β.
(3)垂直问题的转化关系
命题法 2 求线面角、二面角 典例 2 已知△ABC 和△DBC 所在的平面互相垂直,且 AB=BC=BD,∠CBA=∠DBC=120° ,求:

2018版高考数学复习第八章立体几何8.4直线平面平行的判定与性质教师用书文新人教版

2018版高考数学复习第八章立体几何8.4直线平面平行的判定与性质教师用书文新人教版

2018版高考数学大一轮复习第八章立体几何 8.4 直线、平面平行的判定与性质教师用书文新人教版1.线面平行的判定定理和性质定理2.面面平行的判定定理和性质定理【知识拓展】重要结论:(1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β;(2)垂直于同一个平面的两条直线平行,即若a⊥α,b⊥α,则a∥b;(3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面.( ×)(2)若一条直线平行于一个平面,则这条直线平行于这个平面内的任一条直线.( ×)(3)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.( ×)(4)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.( √)(5)若直线a与平面α内无数条直线平行,则a∥α.( ×)(6)若α∥β,直线a∥α,则a∥β.( ×)1.(教材改编)下列命题中正确的是( )A.若a,b是两条直线,且a∥b,那么a平行于经过b的任何平面B.若直线a和平面α满足a∥α,那么a与α内的任何直线平行C.平行于同一条直线的两个平面平行D.若直线a,b和平面α满足a∥b,a∥α,b⊄α,则b∥α答案 D解析A中,a可以在过b的平面内;B中,a与α内的直线可能异面;C中,两平面可相交;D中,由直线与平面平行的判定定理知,b∥α,正确.2.设l,m为直线,α,β为平面,且l⊂α,m⊂β,则“l∩m=∅”是“α∥β”的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 B解析当平面与平面平行时,两个平面内的直线没有交点,故“l∩m=∅”是“α∥β”的必要条件;当两个平面内的直线没有交点时,两个平面可以相交,∴l∩m=∅是α∥β的必要不充分条件.3.(2016·烟台模拟)若平面α∥平面β,直线a∥平面α,点B∈β,则在平面β内且过B点的所有直线中( )A.不一定存在与a平行的直线B.只有两条与a平行的直线C.存在无数条与a平行的直线D.存在唯一与a平行的直线答案 A解析当直线a在平面β内且过B点时,不存在与a平行的直线,故选A.4.(教材改编)如图,正方体ABCD-A1B1C1D1中,E为DD1的中点,则BD1与平面AEC的位置关系为________.答案平行解析连接BD,设BD∩AC=O,连接EO,在△BDD1中,O为BD的中点,所以EO为△BDD1的中位线,则BD1∥EO,而BD1⊄平面ACE,EO⊂平面ACE,所以BD1∥平面ACE.5.过三棱柱ABC-A1B1C1任意两条棱的中点作直线,其中与平面ABB1A1平行的直线共有________条.答案 6解析各中点连线如图,只有面EFGH与面ABB1A1平行,在四边形EFGH中有6条符合题意.题型一直线与平面平行的判定与性质命题点1 直线与平面平行的判定例1 如图,四棱锥P-ABCD中,AD∥BC,AB=BC=12AD,E,F,H分别为线段AD,PC,CD的中点,AC与BE交于O点,G是线段OF上一点.(1)求证:AP ∥平面BEF ; (2)求证:GH ∥平面PAD . 证明 (1)连接EC ,∵AD ∥BC ,BC =12AD ,∴BC 綊AE ,∴四边形ABCE 是平行四边形, ∴O 为AC 的中点.又∵F 是PC 的中点,∴FO ∥AP ,FO ⊂平面BEF ,AP ⊄平面BEF ,∴AP ∥平面BEF . (2)连接FH ,OH ,∵F ,H 分别是PC ,CD 的中点, ∴FH ∥PD ,∴FH ∥平面PAD .又∵O 是BE 的中点,H 是CD 的中点, ∴OH ∥AD ,∴OH ∥平面PAD . 又FH ∩OH =H , ∴平面OHF ∥平面PAD . 又∵GH ⊂平面OHF , ∴GH ∥平面PAD .命题点2 直线与平面平行的性质例2 (2017·长沙调研)如图,四棱锥P -ABCD 的底面是边长为8的正方形,四条侧棱长均为217.点G ,E ,F ,H 分别是棱PB ,AB ,CD ,PC 上共面的四点,平面GEFH ⊥平面ABCD ,BC ∥平面GEFH .(1)证明:GH ∥EF ;(2)若EB =2,求四边形GEFH 的面积. (1)证明 因为BC ∥平面GEFH ,BC ⊂平面PBC , 且平面PBC ∩平面GEFH =GH , 所以GH ∥BC .同理可证EF ∥BC ,因此GH ∥EF .(2)解 如图,连接AC ,BD 交于点O ,BD 交EF 于点K ,连接OP ,GK .因为PA =PC ,O 是AC 的中点,所以PO ⊥AC , 同理可得PO ⊥BD .又BD ∩AC =O ,且AC ,BD 都在底面内, 所以PO ⊥底面ABCD .又因为平面GEFH ⊥平面ABCD , 且PO ⊄平面GEFH ,所以PO ∥平面GEFH . 因为平面PBD ∩平面GEFH =GK , 所以PO ∥GK ,且GK ⊥底面ABCD , 从而GK ⊥EF .所以GK 是梯形GEFH 的高.由AB =8,EB =2得EB ∶AB =KB ∶DB =1∶4, 从而KB =14DB =12OB ,即K 为OB 的中点.再由PO ∥GK 得GK =12PO ,即G 是PB 的中点,且GH =12BC =4.由已知可得OB =42,PO =PB 2-OB 2=68-32=6,所以GK =3.故四边形GEFH 的面积S =GH +EF2·GK=4+82×3=18. 思维升华 判断或证明线面平行的常用方法 (1)利用线面平行的定义(无公共点);(2)利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α); (3)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β); (4)利用面面平行的性质(α∥β,a ⊄α,a ⊄β,a ∥α⇒a ∥β).如图所示,CD ,AB 均与平面EFGH 平行,E ,F ,G ,H 分别在BD ,BC ,AC ,AD 上,且CD ⊥AB .求证:四边形EFGH 是矩形.证明 ∵CD ∥平面EFGH , 而平面EFGH ∩平面BCD =EF , ∴CD ∥EF .同理HG ∥CD ,∴EF ∥HG . 同理HE ∥GF ,∴四边形EFGH 为平行四边形. ∴CD ∥EF ,HE ∥AB ,∴∠HEF 为异面直线CD 和AB 所成的角(或补角). 又∵CD ⊥AB ,∴HE ⊥EF . ∴平行四边形EFGH 为矩形.题型二 平面与平面平行的判定与性质例3 如图所示,在三棱柱ABC -A 1B 1C 1中,E ,F ,G ,H 分别是AB ,AC ,A 1B 1,A 1C 1的中点,求证:(1)B,C,H,G四点共面;(2)平面EFA1∥平面BCHG.证明(1)∵G,H分别是A1B1,A1C1的中点,∴GH是△A1B1C1的中位线,∴GH∥B1C1.又∵B1C1∥BC,∴GH∥BC,∴B,C,H,G四点共面.(2)∵E,F分别是AB,AC的中点,∴EF∥BC.∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.∵A1G綊EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG,∴A1E∥平面BCHG.∵A1E∩EF=E,∴平面EFA1∥平面BCHG.引申探究1.在本例条件下,若D为BC1的中点,求证:HD∥平面A1B1BA.证明如图所示,连接HD,A1B,∵D为BC1的中点,H为A1C1的中点,∴HD∥A1B,又HD⊄平面A1B1BA,A1B⊂平面A1B1BA,∴HD∥平面A1B1BA.2.在本例条件下,若D1,D分别为B1C1,BC的中点,求证:平面A1BD1∥平面AC1D. 证明如图所示,连接A1C交AC1于点M,∵四边形A1ACC1是平行四边形,∴M是A1C的中点,连接MD,∵D为BC的中点,∴A1B∥DM.∵A1B⊂平面A1BD1,DM⊄平面A1BD1,∴DM∥平面A1BD1.又由三棱柱的性质知,D1C1綊BD,∴四边形BDC1D1为平行四边形,∴DC1∥BD1.又DC1⊄平面A1BD1,BD1⊂平面A1BD1,∴DC1∥平面A1BD1,又∵DC1∩DM=D,DC1,DM⊂平面AC1D,∴平面A1BD1∥平面AC1D.思维升华证明面面平行的方法(1)面面平行的定义;(2)面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行;(3)利用垂直于同一条直线的两个平面平行;(4)两个平面同时平行于第三个平面,那么这两个平面平行;(5)利用“线线平行”、“线面平行”、“面面平行”的相互转化.(2016·西安模拟)如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O是底面中心,A1O⊥底面ABCD,AB=AA1= 2.(1)证明:平面A1BD∥平面CD1B1;(2)求三棱柱ABD-A1B1D1的体积.(1)证明 由题设知,BB 1綊DD 1,∴四边形BB 1D 1D 是平行四边形,∴BD ∥B 1D 1. 又BD ⊄平面CD 1B 1,B 1D 1⊂平面CD 1B 1, ∴BD ∥平面CD 1B 1. ∵A 1D 1綊B 1C 1綊BC ,∴四边形A 1BCD 1是平行四边形, ∴A 1B ∥D 1C .又A 1B ⊄平面CD 1B 1,D 1C ⊂平面CD 1B 1, ∴A 1B ∥平面CD 1B 1.又BD ∩A 1B =B ,∴平面A 1BD ∥平面CD 1B 1. (2)解 ∵A 1O ⊥平面ABCD , ∴A 1O 是三棱柱ABD -A 1B 1D 1的高. 又AO =12AC =1,AA 1=2,∴A 1O =AA 21-OA 2=1. 又S △ABD =12×2×2=1,∴111ABD A B D V 三棱柱=S △ABD ·A 1O =1.题型三 平行关系的综合应用例4 如图所示,在三棱柱ABC -A 1B 1C 1中,D 是棱CC 1的中点,问在棱AB 上是否存在一点E ,使DE ∥平面AB 1C 1?若存在,请确定点E 的位置;若不存在,请说明理由. 解 方法一 存在点E ,且E 为AB 的中点时,DE ∥平面AB 1C 1.下面给出证明:如图,取BB 1的中点F ,连接DF , 则DF ∥B 1C 1,∵AB的中点为E,连接EF,ED,则EF∥AB1,B1C1∩AB1=B1,∴平面DEF∥平面AB1C1.而DE⊂平面DEF,∴DE∥平面AB1C1.方法二假设在棱AB上存在点E,使得DE∥平面AB1C1,如图,取BB1的中点F,连接DF,EF,ED,则DF∥B1C1,又DF⊄平面AB1C1,B1C1⊂平面AB1C1,∴DF∥平面AB1C1,又DE∥平面AB1C1,DE∩DF=D,∴平面DEF∥平面AB1C1,∵EF⊂平面DEF,∴EF∥平面AB1C1,又∵EF⊂平面ABB1,平面ABB1∩平面AB1C1=AB1,∴EF∥AB1,∵点F是BB1的中点,∴点E是AB的中点.即当点E是AB的中点时,DE∥平面AB1C1.思维升华利用线面平行的性质,可以实现与线线平行的转化,尤其在截面图的画法中,常用来确定交线的位置,对于最值问题,常用函数思想来解决.如图所示,在四面体ABCD中,截面EFGH平行于对棱AB和CD,试问截面在什么位置时其截面面积最大?解∵AB∥平面EFGH,平面EFGH与平面ABC和平面ABD分别交于FG,EH.∴AB∥FG,AB∥EH,∴FG ∥EH ,同理可证EF ∥GH , ∴截面EFGH 是平行四边形.设AB =a ,CD =b ,∠FGH =α (α即为异面直线AB 和CD 所成的角或其补角). 又设FG =x ,GH =y ,则由平面几何知识可得x a =CGBC, y b =BG BC ,两式相加得x a +y b =1,即y =ba(a -x ), ∴S ▱EFGH =FG ·GH ·sin α =x ·ba ·(a -x )·sin α=b sin αax (a -x ). ∵x >0,a -x >0且x +(a -x )=a 为定值, ∴b sin αa x (a -x )≤ab sin α4,当且仅当x =a -x 时等号成立. 此时x =a2,y =b2. 即当截面EFGH 的顶点E 、F 、G 、H 分别为棱AD 、AC 、BC 、BD 的中点时截面面积最大.5.立体几何中的探索性问题典例 (12分)如图,在四棱锥S -ABCD 中,已知底面ABCD 为直角梯形,其中AD ∥BC ,∠BAD =90°,SA ⊥底面ABCD ,SA =AB =BC =2,tan∠SDA =23.(1)求四棱锥S -ABCD 的体积;(2)在棱SD 上找一点E ,使CE ∥平面SAB ,并证明. 规范解答解 (1)∵SA ⊥底面ABCD ,tan∠SDA =23,SA =2,∴AD =3.[2分]由题意知四棱锥S -ABCD 的底面为直角梯形,且SA =AB =BC =2,V S -ABCD =13·SA ·12·(BC +AD )·AB=13×2×12×(2+3)×2=103.[6分] (2)当点E 位于棱SD 上靠近D 的三等分点处时,可使CE ∥平面SAB .[8分]证明如下:取SD 上靠近D 的三等分点为E ,取SA 上靠近A 的三等分点为F ,连接CE ,EF ,BF , 则EF 綊23AD ,BC 綊23AD ,∴BC 綊EF ,∴CE ∥BF .[10分] 又∵BF ⊂平面SAB ,CE ⊄平面SAB , ∴CE ∥平面SAB .[12分]解决立体几何中的探索性问题的步骤: 第一步:写出探求的最后结论; 第二步:证明探求结论的正确性; 第三步:给出明确答案;第四步:反思回顾,查看关键点、易错点和答题规范.1.(2017·保定月考)有下列命题:①若直线l 平行于平面α内的无数条直线,则直线l ∥α; ②若直线a 在平面α外,则a ∥α; ③若直线a ∥b ,b ∥α,则a ∥α;④若直线a ∥b ,b ∥α,则a 平行于平面α内的无数条直线. 其中真命题的个数是( ) A .1 B .2 C .3 D .4 答案 A解析 命题①:l 可以在平面α内,不正确;命题②:直线a 与平面α可以是相交关系,不正确;命题③:a 可以在平面α内,不正确;命题④正确.故选A.2.(2016·滨州模拟)已知m ,n ,l 1,l 2表示直线,α,β表示平面.若m ⊂α,n ⊂α,l 1⊂β,l 2⊂β,l 1∩l 2=M ,则α∥β的一个充分条件是( ) A .m ∥β且l 1∥α B .m ∥β且n ∥β C .m ∥β且n ∥l 2 D .m ∥l 1且n ∥l 2答案 D解析 由定理“如果一个平面内有两条相交直线分别与另一个平面平行,那么这两个平面平行”可得,由选项D 可推知α∥β.故选D.3.设l 为直线,α,β是两个不同的平面.下列命题中正确的是( ) A .若l ∥α,l ∥β,则α∥β B .若l ⊥α,l ⊥β,则α∥β C .若l ⊥α,l ∥β,则α∥β D .若α⊥β,l ∥α,则l ⊥β 答案 B解析 l ∥α,l ∥β,则α与β可能平行,也可能相交,故A 项错;由“同垂直于一条直线的两个平面平行”可知B 项正确;由l ⊥α,l ∥β可知α⊥β,故C 项错;由α⊥β,l ∥α可知l 与β可能平行,也可能l ⊂β,也可能相交,故D 项错.故选B.4.已知平面α∥平面β,P 是α,β外一点,过点P 的直线m 与α,β分别交于A ,C 两点,过点P 的直线n 与α,β分别交于B ,D 两点,且PA =6,AC =9,PD =8,则BD 的长为( ) A .16 B .24或245C .14D .20答案 B解析 由α∥β得AB ∥CD . 分两种情况:若点P 在α,β的同侧,则PA PC =PB PD, ∴PB =165,∴BD =245;若点P 在α,β之间,则PA PC =PBPD,∴PB =16,∴BD =24.5.(2016·全国甲卷)α,β是两个平面,m ,n 是两条直线,有下列四个命题: ①如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β; ②如果m ⊥α,n ∥α,那么m ⊥n ;③如果α∥β,m⊂α,那么m∥β;④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题有________.(填写所有正确命题的编号)答案②③④解析当m⊥n,m⊥α,n∥β时,两个平面的位置关系不确定,故①错误,经判断知②③④均正确,故正确答案为②③④.6.设α,β,γ是三个不同的平面,m,n是两条不同的直线,在命题“α∩β=m,n⊂γ,且________,则m∥n”中的横线处填入下列三组条件中的一组,使该命题为真命题.①α∥γ,n⊂β;②m∥γ,n∥β;③n∥β,m⊂γ.可以填入的条件有________.答案①或③解析由面面平行的性质定理可知,①正确;当n∥β,m⊂γ时,n和m在同一平面内,且没有公共点,所以平行,③正确.7.如图,在正四棱柱ABCD-A1B1C1D1(底面是正方形的直四棱柱叫正四棱柱)中,E、F、G、H 分别是棱CC1、C1D1、D1D、CD的中点,N是BC的中点,动点M在四边形EFGH上及其内部运动,则M满足条件________时,有MN∥平面B1BDD1.答案M∈线段FH解析因为HN∥BD,HF∥DD1,所以平面NHF∥平面B1BDD1,故线段FH上任意点M与N相连,都有MN∥平面B1BDD1.(答案不唯一)8.将一个真命题中的“平面”换成“直线”、“直线”换成“平面”后仍是真命题,则该命题称为“可换命题”.给出下列四个命题:①垂直于同一平面的两直线平行;②垂直于同一平面的两平面平行;③平行于同一直线的两直线平行;④平行于同一平面的两直线平行.其中是“可换命题”的是________.(填命题的序号)答案①③解析由线面垂直的性质定理可知①是真命题,且垂直于同一直线的两平面平行也是真命题,故①是“可换命题”;因为垂直于同一平面的两平面可能平行或相交,所以②是假命题,不是“可换命题”;由公理4可知③是真命题,且平行于同一平面的两平面平行也是真命题,故③是“可换命题”;因为平行于同一平面的两条直线可能平行、相交或异面,故④是假命题,故④不是“可换命题”.9.在四面体A-BCD中,M,N分别是△ACD,△BCD的重心,则四面体的四个面中与MN平行的是________.答案平面ABD与平面ABC解析如图,取CD的中点E,连接AE,BE.则EM∶MA=1∶2,EN∶BN=1∶2,所以MN∥AB.所以MN∥平面ABD,MN∥平面ABC.*10.在三棱锥S-ABC中,△ABC是边长为6的正三角形,SA=SB=SC=15,平面DEFH分别与AB,BC,SC,SA交于点D,E,F,H.D,E分别是AB,BC的中点,如果直线SB∥平面DEFH,那么四边形DEFH的面积为________.答案45 2解析如图,取AC的中点G,连接SG,BG.易知SG⊥AC,BG⊥AC,SG∩BG=G,故AC⊥平面SGB,所以AC⊥SB.因为SB∥平面DEFH,SB⊂平面SAB,平面SAB∩平面DEFH=HD,则SB∥HD.同理SB∥FE.又D,E分别为AB,BC的中点,则H,F也为AS,SC的中点,从而得HF 綊12AC 綊DE ,所以四边形DEFH 为平行四边形. 又AC ⊥SB ,SB ∥HD ,DE ∥AC , 所以DE ⊥HD ,所以四边形DEFH 为矩形,其面积S =HF ·HD =(12AC )·(12SB )=452.11.如图,E 、F 、G 、H 分别是正方体ABCD -A 1B 1C 1D 1的棱BC 、CC 1、C 1D 1、AA 1的中点.求证:(1)EG ∥平面BB 1D 1D ; (2)平面BDF ∥平面B 1D 1H .证明 (1)取B 1D 1的中点O ,连接GO ,OB , 易证四边形BEGO 为平行四边形,故OB ∥EG , 由线面平行的判定定理即可证EG ∥平面BB 1D 1D .(2)由题意可知BD ∥B 1D 1. 如图,连接HB 、D 1F ,易证四边形HBFD 1是平行四边形,故HD 1∥BF . 又B 1D 1∩HD 1=D 1,BD ∩BF =B ,所以平面BDF ∥平面B 1D 1H .12.(2016·贵州兴义八中月考)在如图所示的多面体ABCDEF 中,四边形ABCD 是边长为a 的菱形,且∠DAB =60°,DF =2BE =2a ,DF ∥BE ,DF ⊥平面ABCD .(1)在AF 上是否存在点G ,使得EG ∥平面ABCD ,请证明你的结论; (2)求该多面体的体积.解 (1)当点G 位于AF 中点时,有EG ∥平面ABCD .证明如下:取AF 的中点G ,AD 的中点H ,连接GH ,GE ,BH . 在△ADF 中,HG 为中位线, 故HG ∥DF 且HG =12DF .因为BE ∥DF 且BE =12DF ,所以BE 綊GH ,即四边形BEGH 为平行四边形, 所以EG ∥BH .因为BH ⊂平面ABCD ,EG ⊄平面ABCD , 所以EG ∥平面ABCD . (2)连接AC ,BD .因为DF ⊥平面ABCD ,底面ABCD 是菱形, 所以AC ⊥平面BDFE .所以该多面体可分割成两个以平面BDFE 为底面的等体积的四棱锥. 即V ABCDEF =V A -BDFE +V C -BDFE =2V A -BDFE=2×13×a +2a 2×a ×32a =32a 3.*13.如图所示,斜三棱柱ABC -A 1B 1C 1中,点D ,D 1分别为AC ,A 1C 1上的点.(1)当A 1D 1D 1C 1等于何值时,BC 1∥平面AB 1D 1? (2)若平面BC 1D ∥平面AB 1D 1,求AD DC的值. 解 (1)如图所示,取D 1为线段A 1C 1的中点,此时A 1D 1D 1C 1=1. 连接A 1B ,交AB 1于点O ,连接OD 1.由棱柱的性质知,四边形A 1ABB 1为平行四边形, ∴点O 为A 1B 的中点.在△A 1BC 1中,点O ,D 1分别为A 1B ,A 1C 1的中点, ∴OD 1∥BC 1.又∵OD 1⊂平面AB 1D 1,BC 1⊄平面AB 1D 1, ∴BC 1∥平面AB 1D 1. ∴当A 1D 1D 1C 1=1时,BC 1∥平面AB 1D 1. (2)由平面BC 1D ∥平面AB 1D 1, 且平面A 1BC 1∩平面BC 1D =BC 1, 平面A 1BC 1∩平面AB 1D 1=D 1O , 得BC 1∥D 1O ,同理AD 1∥DC 1, ∴A 1D 1D 1C 1=A 1O OB ,A 1D 1D 1C 1=DC AD,又∵A 1O OB =1,∴DC AD =1,即ADDC=1.。

2018高考数学复习:第8章立体几何第4节直线、平面平行的判定与性质(含解析)

2018高考数学复习:第8章立体几何第4节直线、平面平行的判定与性质(含解析)

第四节 直线、平面平行的判定与性质题型95 证明空间中直线、平面的平行关系2013年1.(2013广东文8)设l 为直线,,αβ是两个不同的平面,下列命题中正确的是A .若//l α,//l β,则//αβB .若l α⊥,l β⊥,则//αβC .若l α⊥,//l β,则//αβD .若αβ⊥,//l α,则l β⊥ 2. (2013浙江文4)设,m n 是两条不同的直线,,αβ是两个不同的平面, A.若m α∥,n α∥,则m n ∥ B.若m α∥,m β∥,则αβ∥ C.若m n ∥,m α⊥,则n α⊥ D.若m α∥,αβ⊥,则m β⊥3. (2013山东文19) 如图,四棱锥P -ABCD 中,AB AC ⊥,AB PA ⊥,AB CD ∥,AB CD =2,E F G M N ,,,,分别为PB AB BC PD PC ,,,,的中点.(1)求证:CE ∥平面PAD ;(2)求证:平面EFG ⊥平面EMN .4. (2013江苏16)如图,在三棱锥ABC S -中,平面⊥SAB 平面SBC ,BC AB ⊥,AB AS =,过A 作SB AF ⊥,垂足为F ,点G E ,分别是棱SC SA ,的中点.求证:(1)平面//EFG 平面ABC ; (2)SA BC ⊥.PMD CGEFBANABSGFE1A5.(2013辽宁文18)如图,AB是圆O的直径,PA垂直于圆O所在的平面,C是圆O上的点.(1)求证:BC⊥平面PAC;(2)设Q为PA的中点,G为AOC△的重心,求证:QG∥平面PBC.QACB6. (2013陕西文18)如图,四棱柱1111-ABCD A BC D的底面ABCD是正方形,O为底面中心,1AO⊥平面ABCD,1AB AA==(1)证明:平面1A BD∥平面11CD B;(2)求三棱柱111-ABD A B D的体积.2014年1.(2014山东文18)如图所示,四棱锥P ABCD-中1,//,,,2AP PCD AD BC AB BC AD E F⊥==平面分别为线段,AD PC的中点.(1)求证://AP BEF平面;PFEDCBA(2)求证:BE PAC ⊥平面.2.(2014安徽文19) 如图所示,四棱锥ABCD P -的底面是边长为8的正方形,四条侧棱长均为172.点H F E G ,,,分别是棱PC CD AB PB ,,,上共面的四点,平面⊥GEFH 平面ABCD ,BC ∥平面GEFH . (1)求证:;//EF GH(2)若2=EB ,求四边形GEFH 的面积.2015年1.(2015广东文18)如图所示, PDC △所在的平面与长方形ABCD 所在的平面垂直,4PD PC ==,6AB =,3BC =.(1)求证://BC 平面PDA ; (2)求证:BC PD ⊥;(3)求点C 到平面PDA 的距离.1. 解析 (1)因为四边形ABCD 是长方形,所以//BC AD . 因为BC ⊄平面PDA ,AD ⊂平面PDA ,所以//BC 平面PDA .PD CBAAEBPDCF H G(2)因为四边形ABCD 是长方形,所以BC CD ⊥.因为平面PDC ⊥平面ABCD ,平面PDC I 平面ABCD CD =,BC ⊂平面ABCD , 所以BC ⊥平面PDC .因为PD ⊂平面PDC ,所以BC PD ⊥. (3)解法一:取CD 的中点E ,连接AC 和PE ,如图所示. 因为4PD PC ==,所以PE CD⊥.在Rt PDE△中,PE ===.因为平面PDC ⊥平面ABCD ,平面PDC I 平面ABCD CD =,PE ⊂平面PDC ,所以PE ⊥平面ABCD .由(2)知BC ⊥平面PDC ,由(1)知//BC AD ,所以AD ⊥平面PDC .因为PD ⊂平面PDC ,所以AD PD ⊥.设点C 到平面PDA 的距离为h ,因为C PDA P ACD V V --=三棱锥三棱锥,所以1133PDA ACD S h S PE ⋅=⋅△△,即13621342ACD PDA S PE h S ⨯⨯⋅===⨯⨯△△, 所以点C 到平面PDA的距离是2.解法二:过点C 作CH DP ⊥交DP 的延长线于点H ,取CD 的中点E ,连接PE ,如图所示.由(2)知BC ⊥平面PDC ,由(1)知//BC AD ,所以AD ⊥平面PDC .EABC D PEHBCDP又HC ⊂平面PDC ,所以AD HC ⊥. 因为PD AD D =I ,所以HC ⊥平面PAD . 则CH 的长度即为点C 到平面PDA 的距离. 因为4PD PC ==,所以PE CD ⊥.在PDE △与CDH △中,PDE CDH PED CHD ∠=∠⎧⎨∠=∠⎩,所以PDE CDH △∽△,所以PD PEDC CH =. 在Rt PDE △中,PE ==.则46CH=,得2CH =.故点C 到平面PDA的距离为2.2.(2015江苏16)如图所示,在直三棱柱111ABC A B C -中,已知AC BC ⊥,1BC CC =. 设1AB 的中点为D ,11B C BC E =I .求证:(1)DE ∥平面11AAC C ;(2)11BC AB ⊥.2.解析 (1)因为四边形11BCC B 是矩形,所以E 是1B C 的中点. 又D 是1AB 的中点, 因此DE 是1B CA △的中位线,故DE AC ∥.又DE ⊄平面11AAC C ,AC ⊂平面11AAC C ,所以DE ∥平面11AAC C .(2)因为1CC ⊥平面ABC ,AC ⊂平面ABC ,所以1AC CC ⊥,又AC BC ⊥,1BC CC C =I ,从而AC ⊥平面11BCC B .因为1BC ⊂平面11BCC B ,所以1BC AC ⊥. 因为1BC CC =,E 为1BC 的中点,所以11BC CB ⊥.ED A 1B 1C 1CBA因为1AC CB C =I ,所以1BC ⊥平面1AB C . 又因为1AB ⊂平面1AB C ,所以11BC AB ⊥.2016年1.(2016浙江文2)已知互相垂直的平面α,β交于直线l .若直线m ,n 满足//m α,n β⊥,则( ).A. //m l B . //m nC. n l ⊥D. m n ⊥1.C 解析 对于选项A ,因为l αβ=I ,所以l α⊂.又因为//m α,所以m 与l 平行或异面.故选项A 不正确;对于选项B 和D ,因为αβ⊥,n β⊥,所以n α⊂或//n α.又因为//m α,所以m 与n 的关系平行、相交或异面都有可能.故选项B 和D 不正确;对于选项C ,因为,l αβ=I 所以,l β⊂因为,n β⊥所以n l ⊥,故选项C 正确,故选C.2.(2016上海文16)如图所示,在正方体1111ABCD A B C D -中,,E F 分别为1BC BB ,的中点,则下列直线中与直线EF 相交的是( ). A.直线1AAB.直线11A BC.直线11A DD.直线11B C2.D 解析 易知EF 与1AA 在两个平行平面内,故不可能相交;EF ∥平面11A B C ,11A B ⊂平面11A B C ,故不可能相交;同理与11A D 也不可能相交;EF 与11B C 均在平面11BCC B 内,且EF 与11B C 不平行,故相交,其交点G 如图所示.故选D.1A BBA 13.(2016江苏16)如图所示,在直三棱柱111ABC A B C -中,,D E 分别为,AB BC 的中点,点F 在侧棱1B B 上,且11B D A F ⊥,1111AC A B ⊥.求证:(1)直线//DE 平面11AC F ; (2)平面1B DE ⊥平面11AC F .3.解析 (1)因为,D E 分别为,AB BC 的中点,所以DE 为ABC △的中位线,所以//DE AC ,又因为三棱柱111ABC A B C -为直棱柱,故11//AC AC ,所以11//DE AC ,又因为11A C ⊂平面11AC F ,且11DE AC F ⊄,故//DE 平面11AC F .(2)三棱柱111ABC A B C -为直棱柱,所以1AA ⊥平面111A B C .又11A C ⊂平面111A B C , 故111AA AC ⊥.又1111AC A B ⊥,且1111AA A B A =I ,111,AA A B ⊂平面11AA B B , 所以11A C ⊥平面11AA B B .又因为1B D ⊂平面11AA B B ,所以111AC B D ⊥. 又因为11A F B D ⊥,1111AC A F A =I ,且111,AC A F ⊂平面11AC F ,所以1B D ⊥平面11AC F .又因为1B D ⊂平面1B DE ,所以平面1B DE ⊥平面11AC F .4.(2016天津文17)如图所示,四边形ABCD 是平行四边形,平面AED ⊥平面ABCD ,AB EF ∥,2AB =,1BC EF ==,AE =3DE =,60BAD ∠=o ,G 为BC 的中点.(1)求证:FG ∥平面BED ; (2)求证:平面BED ⊥平面AED ; (3)求直线EF 与平面BED 所成角的正弦值.4.解析 (1)如图所示,取BD 的中点为O ,联结OE ,OG . 在BCD △中,因为G 是BC 的中点,所以DC OG ∥且112OG DC ==. 又因为AB EF ∥,DC AB ∥,所以OG EF ∥且EF OG =,即四边形OGFE 是平行四边形,所以OE FG ∥.又FG ⊄平面BED ,OE ⊂平面BED ,所以FG ∥平面.BEDABC DEFA 1B 1C 1GFEDCBAOABCDEF G(2)在ABD △中,1AD =,2AB =,60BAD ∠=o .由余弦定理可得3=BD ,进而可得90ADB ∠=o ,即AD BD ⊥.又因为平面⊥AED 平面ABCD ,BD ⊂平面ABCD ,平面I AED 平面AD ABCD =,所以⊥BD 平面AED .又因为⊂BD 平面BED ,所以平面⊥BED 平面AED .(3)因为AB EF //,所以直线EF 与平面BED 所成角即为直线AB 与平面BED 所成角. 过点A 作DE AH ⊥于点H ,连接BH ,如图所示.H ABCDEFG又因为平面I BED 平面ED AED =,由(2)知⊥AH 平面BED ,所以直线AB 与平面BED 所成角即为ABH ∠. 在ADE △中,6,3,1===AE DE AD.由余弦定理可得32cos =∠ADE ,所以35sin =∠ADE ,因此35sin =∠⋅=ADE AD AH . 在Rt AHB △中,65sin ==∠AB AH ABH , 所以直线AB 与平面BED 所成角的正弦值为65.5(2016山东文18)在如图所示的几何体中,D 是AC 的中点,EF DB P . (1)已知AB BC =,AE EC =. 求证:AC FB ⊥;(2)已知,G H 分别是EC 和FB 的中点.求证:GH P 平面ABC .5. 解析 (1)因为EF BD P ,所以EF 与BD 确定一个平面BDEF ,连接DE ,如图(1)所示. 因为,AE EC D =为AC 的中点,所以AC DE ⊥;同理可得AC BD ⊥. 又因为D DE BD =I ,所以⊥AC 平面BDEF ,因为⊂FB 平面BDEF ,所以FB AC ⊥.(2)设FC 的中点为I ,连接HI GI ,,如图(2)所示.在CEF △中,G 是CE 的中点,所以GI EF P .又EF DB P ,所以GI DB P ;在CFB △中,H 是FB 的中点,所以HI BC P .又I HI GI =I ,DB BC B =I ,所以平面GHI P 平面ABC .因为⊂GH 平面GHI ,所以GH P 平面ABC .(1) (2)HFEG DCAIACDG EFHAC DGEFH6.(2016全国丙文19)如图所示,四棱锥P ABCD -中,PA ⊥底面ABCD ,//AD BC ,3AB AD AC ===,4PA BC ==,M 为线段AD上一点,2AM MD =,N 为PC 的中点. (1)证明//MN 平面PAB ; (2)求四面体N BCM -的体积.6.解析(1)取PB 中点Q ,连接AQ 、NQ ,因为N 是PC 中点,//NQ BC ,且12NQ BC =,又22313342AM AD BC BC ==⨯=,且//AM BC ,所以//QN AM ,且QN AM =,所以四边形AQNM 是平行四边形.所以//MN AQ . //MN 平又MN ⊄平面PAB ,AQ ⊂平面PAB ,所以面PAB .(2)由(1) //QN 平面ABCD .所以1122N BCM Q BCM P BCM P BCA V V V V ----===.所以11142363N BCMABC V PA S -=⨯⋅=⨯⨯=△. PN MDCBAPQNMDCBA2017年1.(2017全国1文6)如图所示,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 不平行的是( ).1.解析 由选项B ,//AB MQ ,则直线//AB 平面MNQ ;由选项C ,//AB MQ ,则直线//AB 平面MNQ ;由选项D ,//AB NQ ,则直线//AB 平面MNQ .故选项A 不满足.故选A.2.(2017全国2文18)如图所示,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,12AB BC AD ==,o 90BAD ABC ∠=∠=. (1)证明:直线//BC 平面PAD ;(2)若PCD △面积为,求四棱锥P ABCD -的体积.PABCD解析 (1)在平面ABCD 内,因为90BAD ABC ∠=∠=o ,所以//BC AD . 又BC ⊄平面PAD ,AD ⊂平面PAD ,故//BC 平面PAD .B.AM NQBA.M NQ BA C.AM QNBD.BANQM(2)取AD 的中点M ,联结PM ,CM . 由12AB BC AD ==,及//BC AD ,90ABC ∠=o ,得四边形ABCM 为正方形,则CM AD ⊥. 因为侧面PAD 是等边三角形且垂直于底面ABCD ,平面PAD I 平面ABCD AD =,所以PM AD ⊥,因为PM ⊂平面PAD ,所以PM ⊥平面ABCD .因为CM ⊂平面ABCD ,所以PM CM ⊥.设BC x =,则CM x =,2CD x =,3PM x =,2PC PD x ==. 取CD 的中点N ,联结PN ,则PN CD ⊥,所以14PN x =. 因为PCD △的面积为27,所以1142272x x ⨯⨯=,解得2x =-(舍去),2x =,于是2AB BC ==,4AD =,23PM =.所以四棱锥P ABCD -的体积()2241234332V ⨯+=⨯⨯=.3.(2017山东文18)由四棱柱1111ABCD A B C D -截去三棱锥111C B CD -后得到的几何体如图所示,四边形ABCD 为正方形,O 为AC 与BD 的交点,E 为AD 的中点,1A E ⊥平面ABCD .(1)证明:1//A O 平面11B CD ;(2)设M 是OD 的中点,证明:平面1A EM ⊥平面11B CD .解析(1)如图所示,取11B D 中点F ,联结1,CF A F ,由于1111ABCD A B C D -为四棱柱, 所以1//A F CO ,1=A F CO ,因此四边形1A OCF 为平行四边形,所以1//A O FC .又FC ⊂平面11B CD ,1AO ⊄平面11B CD ,所以1//A O 平面11B CD . (2)因为四边形ABCD 是正方形,所以AC BD ⊥,E ,M 分别为AD 和OD 的中点,所以EM BD ⊥.又 1A E ⊥面ABCD ,BD ⊂平面ABCD ,所以1A E BD ⊥. 因为 11//B D BD ,所以11111EM B D A E B D ⊥⊥,.又1,A E EM ⊂平面1A EM ,1A E EM E =I ,所以11B D ⊥平面1A EM ,又11B D ⊂平面11B CD ,所以平面1A EM ⊥平面11B CD .解析(1)如图所示,取11B D 中点F ,联结1,CF A F ,由于1111ABCD A B C D -为四棱柱, 所以1//A F CO ,1=A F CO ,因此四边形1A OCF 为平行四边形,所以1//A O FC .又FC ⊂平面11B CD ,1AO ⊄平面11B CD ,所以1//A O 平面11B CD . (2)因为四边形ABCD 是正方形,所以AC BD ⊥,E ,M 分别为AD 和OD 的中点,所以EMBD ⊥.又 1A E ⊥面ABCD ,BD ⊂平面ABCD ,所以1A E BD ⊥. 因为 11//B D BD ,所以11111EM B D A E B D ⊥⊥,.又1,A E EM ⊂平面1A EM ,1A E EM E =I ,所以11B D ⊥平面1A EM ,又11B D ⊂平面11B CD ,所以平面1A EM ⊥平面11B CD .4.(2017江苏15)如图所示,在三棱锥A BCD -中,AB AD ⊥,BC BD ⊥,平面ABD ⊥平面BCD , 点,E F (E 与,A D 不重合)分别在棱,AD BD 上,且EF AD ⊥.求证:(1)EF ∥平面ABC ; (2)AD AC ⊥.ABDCEF解析 (1)在平面ABD 内,因为AB AD ⊥,EF AD ⊥,且点E 与点A 不重合,所以//EF AB .又因为EF ⊄平面ABC ,AB ⊂平面ABC ,所以//EF 平面ABC . (2)因为平面ABD ⊥平面BCD ,平面ABD I 平面BCD BD =,BC ⊂平面BCD ,BC BD ⊥,所以BC ⊥平面ABD .因为AD ⊂平面ABD ,所以BC AD ⊥.又AB AD ⊥,BC AB B =I ,AB ⊂平面ABC ,BC ⊂平面ABC , 所以AD ⊥平面ABC .又因为AC ⊂平面ABC ,所以AD AC ⊥.题型96 与平行有关的开放性、探究性问题2014年27.(2014四川文18)在如图所示的多面体中,四边形11ABB A 和11ACC A 都为矩形.(1)若AC BC ⊥,求证:直线BC ⊥平面11ACC A ; (2)设D ,E 分别是线段BC ,1CC 的中点,在线段AB 上是否存在一点M ,使直线//DE 平面1A MC ?请证明你的结论.2015年1.(2015陕西文18)如图1所示,在直角梯形ABCD 中,//AD BC ,π2BAD ∠=, 12AB BC AD a ===,E 是AD 的中点,O 是AC 与BE 的交点,将ABE △沿BE 折起 到图2中1A BE △的位置,得到四棱锥1A BCDE ﹣时,四棱锥1A BCDE ﹣的体积为,求a 的值.1.解析 (1)在图1中,因为12AB BC AD a ===,E 是AD 的中点,π2BAD ∠=,且//AD BC 所以四边形ABCE 是正方形,故BE AC ⊥.又在图2中,1BE A O ⊥,BE OC ⊥,从而BE ⊥平面1A OC .O EDCBA A 1A ()BCDEO1A又 //DE BC 且DE BC =,所以//CD BE ,即可证得CD ⊥平面1A OC ; (2)由已知,平面1A BE ⊥平面BCDE ,且平面1A BE I 平面BCDE BE =.又由(1)知,1A O BE ⊥,所以1AO ⊥平面BCDE ,即1A O 是四棱锥1A BCDE ﹣的高,且122AO AO AB a ===.平行四边形BCDE 面积2S BC AB a =⋅=, 从而四棱锥1A BCDE ﹣的体积31136V S A O a =⨯⨯=,3=6a =. 2016年1.(2016四川文17)如图所示,在四棱锥P ABCD -中,PA CD ⊥,BC AD ∥,90ADC PAB ∠=∠=o ,12BC CD AD ==. (1)在平面PAD 内找一点M ,使得直线CM ∥平面PAB ,并说明理由;(2)证明:平面PAB ⊥平面.PBD1.解析(1)取棱AD 的中点M (M ∈平面)PAD ,点M 即为所求的一个点. 证明如下:因为12AD BC BC AD =∥,,所以BC AM ∥,且.BC AM = 所以四边形AMCB 是平行四边形,从而.CM AB ∥ 又AB ⊂平面PAB ,CM ⊄平面PAB , 所以CM ∥平面.PAB以是直线(说明:取棱PD 的中点N ,则所找的点可MN 上任意一点).PABCD MDC BAPMDC BAP(2)由已知, PA AB PA CD ⊥⊥,,因为12BC BC AD AD =∥,,所以直线AB 与CD 相交,所以PA ⊥平面.ABCD 从而.PA BD ⊥因为12BC BC AD AD =∥,,所以MD BC ∥,且.BC MD = 所以四边形BCDM 是平行四边形.所以12BM CD AD ==,所以.BD AB ⊥又AB AP A =I ,所以BD ⊥平面.PAB 又BD ⊂平面PBD ,所以平面PAB ⊥平面.PBD2.(2016北京文18)如图所示,在四棱锥P ABCD -中,PC ⊥平面ABCD ,,AB DC DC AC ⊥P .(1)求证:DC ⊥平面PAC ; (2)求证:平面PAB ⊥平面PAC ;(3)设点E 为AB 的中点,在棱PB 上是否存在点F ,使得PA P 平面CEF ?说明理由. 2.解析 (1)因为PC ⊥平面ABCD ,所以PC DC ⊥. 又因为DC AC ⊥,AC PC C =I .所以DC ⊥平面PAC .(2)由(1)知,DC ⊥平面PAC ,又//AB DC ,所以AB ⊥平面PAC . 又AB ⊂平面PAB ,所以平面PAB ⊥平面PAC(3)棱PB 上存在点F ,使得PA P 平面CEF .证明如下.取PB 中点F ,联结,,EF CE CF .又因为E 为AB 的中点,所以EF PA P . 又因为PA ⊄平面CEF ,所以PA P 平面CEF .FBC DPE。

2018版高考数学大一轮复习第八章立体几何8.4直线、平面平行的判定与性质课件文新人教A版

2018版高考数学大一轮复习第八章立体几何8.4直线、平面平行的判定与性质课件文新人教A版

-29-
审题答题指导——如何作答平行关系证明题
典例(12分)
如图,几何体E-ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD. (1)求证:BE=DE; (2)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.
1 中,AD=DC= AB=1, 2
∴AC=√2,BC=√2,AB=2,∴BC⊥AC.
又 PA⊥平面 ABCD,BC⊂平面 ABCD, ∴BC⊥PA. 又 PA∩AC=A, ∴BC⊥平面 PAC,∴BC⊥PC. 在 Rt△PAB 中,M 为 PB 的中点, 则 AM= PB. 在 Rt△PBC 中,M 为 PB 的中点, 则 CM=2PB,∴AM=CM.
-18考点1 考点2 考点3
对点训练2如图,已知四棱锥P-ABCD的底面为直角梯 形,AB∥CD,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC= AB=1, M是PB的中点.
1 2
(1)求证:AM=CM; (2)若N是PC的中点,求证:DN∥平面AMC.
-19考点1 考点2 考点3
证明 (1)∵在直角梯形 ABCD
-21考点1 考点2 考点3
考点 3
平面与平面平行的判定与性质
例3一个正方体的平面展开图及该正方体的直观图的示意图如图所示.
(1)请将字母F,G,H标记在正方体相应的顶点处(不需说明理由); (2)判断平面BEG与平面ACH的位置关系,并证明你的结论. 思考证明面面平行的常用方法有哪些?
-22考点1 考点2 考点3
(1)求证:VB∥平面MOC; (2)求证:平面MOC⊥平面VAB; (3)求三棱锥V-ABC的体积.
-25考点1 考点2 考点3
(1)证明 因为O,M分别为AB,VA的中点,所以OM∥VB. 又因为VB⊄平面MOC,所以VB∥平面MOC. (2)证明 因为AC=BC,O为AB的中点, 所以OC⊥AB. 又因为平面VAB⊥平面ABC,平面VAB∩平面ABC=AB,且OC⊂平面ABC, 所以OC⊥平面VAB, 所以平面MOC⊥平面VAB.

【K12教育学习资料】2018版高考数学大一轮复习第八章立体几何8.4直线平面平行的判定与性质教师用

【K12教育学习资料】2018版高考数学大一轮复习第八章立体几何8.4直线平面平行的判定与性质教师用

2018版高考数学大一轮复习第八章立体几何 8.4 直线、平面平行的判定与性质教师用书文新人教版1.线面平行的判定定理和性质定理2.面面平行的判定定理和性质定理【知识拓展】重要结论:(1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β;(2)垂直于同一个平面的两条直线平行,即若a⊥α,b⊥α,则a∥b;(3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面.( ×)(2)若一条直线平行于一个平面,则这条直线平行于这个平面内的任一条直线.( ×)(3)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.( ×)(4)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.( √)(5)若直线a与平面α内无数条直线平行,则a∥α.( ×)(6)若α∥β,直线a∥α,则a∥β.( ×)1.(教材改编)下列命题中正确的是( )A.若a,b是两条直线,且a∥b,那么a平行于经过b的任何平面B.若直线a和平面α满足a∥α,那么a与α内的任何直线平行C.平行于同一条直线的两个平面平行D.若直线a,b和平面α满足a∥b,a∥α,b⊄α,则b∥α答案 D解析A中,a可以在过b的平面内;B中,a与α内的直线可能异面;C中,两平面可相交;D中,由直线与平面平行的判定定理知,b∥α,正确.2.设l,m为直线,α,β为平面,且l⊂α,m⊂β,则“l∩m=∅”是“α∥β”的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 B解析当平面与平面平行时,两个平面内的直线没有交点,故“l∩m=∅”是“α∥β”的必要条件;当两个平面内的直线没有交点时,两个平面可以相交,∴l∩m=∅是α∥β的必要不充分条件.3.(2016·烟台模拟)若平面α∥平面β,直线a∥平面α,点B∈β,则在平面β内且过B点的所有直线中( )A.不一定存在与a平行的直线B.只有两条与a平行的直线C.存在无数条与a平行的直线D.存在唯一与a平行的直线答案 A解析当直线a在平面β内且过B点时,不存在与a平行的直线,故选A.4.(教材改编)如图,正方体ABCD-A1B1C1D1中,E为DD1的中点,则BD1与平面AEC的位置关系为________.答案平行解析连接BD,设BD∩AC=O,连接EO,在△BDD1中,O为BD的中点,所以EO为△BDD1的中位线,则BD1∥EO,而BD1⊄平面ACE,EO⊂平面ACE,所以BD1∥平面ACE.5.过三棱柱ABC-A1B1C1任意两条棱的中点作直线,其中与平面ABB1A1平行的直线共有________条.答案 6解析各中点连线如图,只有面EFGH与面ABB1A1平行,在四边形EFGH中有6条符合题意.题型一直线与平面平行的判定与性质命题点1 直线与平面平行的判定例1 如图,四棱锥P-ABCD中,AD∥BC,AB=BC=12AD,E,F,H分别为线段AD,PC,CD的中点,AC与BE交于O点,G是线段OF上一点.(1)求证:AP ∥平面BEF ; (2)求证:GH ∥平面PAD . 证明 (1)连接EC ,∵AD ∥BC ,BC =12AD ,∴BC 綊AE ,∴四边形ABCE 是平行四边形, ∴O 为AC 的中点.又∵F 是PC 的中点,∴FO ∥AP ,FO ⊂平面BEF ,AP ⊄平面BEF ,∴AP ∥平面BEF . (2)连接FH ,OH ,∵F ,H 分别是PC ,CD 的中点, ∴FH ∥PD ,∴FH ∥平面PAD .又∵O 是BE 的中点,H 是CD 的中点, ∴OH ∥AD ,∴OH ∥平面PAD . 又FH ∩OH =H , ∴平面OHF ∥平面PAD . 又∵GH ⊂平面OHF , ∴GH ∥平面PAD .命题点2 直线与平面平行的性质例2 (2017·长沙调研)如图,四棱锥P -ABCD 的底面是边长为8的正方形,四条侧棱长均为217.点G ,E ,F ,H 分别是棱PB ,AB ,CD ,PC 上共面的四点,平面GEFH ⊥平面ABCD ,BC ∥平面GEFH .(1)证明:GH ∥EF ;(2)若EB =2,求四边形GEFH 的面积. (1)证明 因为BC ∥平面GEFH ,BC ⊂平面PBC , 且平面PBC ∩平面GEFH =GH , 所以GH ∥BC .同理可证EF ∥BC ,因此GH ∥EF .(2)解 如图,连接AC ,BD 交于点O ,BD 交EF 于点K ,连接OP ,GK .因为PA =PC ,O 是AC 的中点,所以PO ⊥AC , 同理可得PO ⊥BD .又BD ∩AC =O ,且AC ,BD 都在底面内, 所以PO ⊥底面ABCD .又因为平面GEFH ⊥平面ABCD , 且PO ⊄平面GEFH ,所以PO ∥平面GEFH . 因为平面PBD ∩平面GEFH =GK , 所以PO ∥GK ,且GK ⊥底面ABCD , 从而GK ⊥EF .所以GK 是梯形GEFH 的高.由AB =8,EB =2得EB ∶AB =KB ∶DB =1∶4, 从而KB =14DB =12OB ,即K 为OB 的中点.再由PO ∥GK 得GK =12PO ,即G 是PB 的中点,且GH =12BC =4.由已知可得OB =42,PO =PB 2-OB 2=68-32=6,所以GK =3.故四边形GEFH 的面积S =GH +EF2·GK=4+82×3=18. 思维升华 判断或证明线面平行的常用方法 (1)利用线面平行的定义(无公共点);(2)利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α); (3)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β); (4)利用面面平行的性质(α∥β,a ⊄α,a ⊄β,a ∥α⇒a ∥β).如图所示,CD ,AB 均与平面EFGH 平行,E ,F ,G ,H 分别在BD ,BC ,AC ,AD 上,且CD ⊥AB .求证:四边形EFGH 是矩形.证明 ∵CD ∥平面EFGH , 而平面EFGH ∩平面BCD =EF , ∴CD ∥EF .同理HG ∥CD ,∴EF ∥HG . 同理HE ∥GF ,∴四边形EFGH 为平行四边形. ∴CD ∥EF ,HE ∥AB ,∴∠HEF 为异面直线CD 和AB 所成的角(或补角). 又∵CD ⊥AB ,∴HE ⊥EF . ∴平行四边形EFGH 为矩形.题型二 平面与平面平行的判定与性质例3 如图所示,在三棱柱ABC -A 1B 1C 1中,E ,F ,G ,H 分别是AB ,AC ,A 1B 1,A 1C 1的中点,求证:(1)B,C,H,G四点共面;(2)平面EFA1∥平面BCHG.证明(1)∵G,H分别是A1B1,A1C1的中点,∴GH是△A1B1C1的中位线,∴GH∥B1C1.又∵B1C1∥BC,∴GH∥BC,∴B,C,H,G四点共面.(2)∵E,F分别是AB,AC的中点,∴EF∥BC.∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.∵A1G綊EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG,∴A1E∥平面BCHG.∵A1E∩EF=E,∴平面EFA1∥平面BCHG.引申探究1.在本例条件下,若D为BC1的中点,求证:HD∥平面A1B1BA.证明如图所示,连接HD,A1B,∵D为BC1的中点,H为A1C1的中点,∴HD∥A1B,又HD⊄平面A1B1BA,A1B⊂平面A1B1BA,∴HD∥平面A1B1BA.2.在本例条件下,若D1,D分别为B1C1,BC的中点,求证:平面A1BD1∥平面AC1D. 证明如图所示,连接A1C交AC1于点M,∵四边形A1ACC1是平行四边形,∴M是A1C的中点,连接MD,∵D为BC的中点,∴A1B∥DM.∵A1B⊂平面A1BD1,DM⊄平面A1BD1,∴DM∥平面A1BD1.又由三棱柱的性质知,D1C1綊BD,∴四边形BDC1D1为平行四边形,∴DC1∥BD1.又DC1⊄平面A1BD1,BD1⊂平面A1BD1,∴DC1∥平面A1BD1,又∵DC1∩DM=D,DC1,DM⊂平面AC1D,∴平面A1BD1∥平面AC1D.思维升华证明面面平行的方法(1)面面平行的定义;(2)面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行;(3)利用垂直于同一条直线的两个平面平行;(4)两个平面同时平行于第三个平面,那么这两个平面平行;(5)利用“线线平行”、“线面平行”、“面面平行”的相互转化.(2016·西安模拟)如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O是底面中心,A1O⊥底面ABCD,AB=AA1= 2.(1)证明:平面A1BD∥平面CD1B1;(2)求三棱柱ABD-A1B1D1的体积.(1)证明 由题设知,BB 1綊DD 1,∴四边形BB 1D 1D 是平行四边形,∴BD ∥B 1D 1. 又BD ⊄平面CD 1B 1,B 1D 1⊂平面CD 1B 1, ∴BD ∥平面CD 1B 1. ∵A 1D 1綊B 1C 1綊BC ,∴四边形A 1BCD 1是平行四边形, ∴A 1B ∥D 1C .又A 1B ⊄平面CD 1B 1,D 1C ⊂平面CD 1B 1, ∴A 1B ∥平面CD 1B 1.又BD ∩A 1B =B ,∴平面A 1BD ∥平面CD 1B 1. (2)解 ∵A 1O ⊥平面ABCD , ∴A 1O 是三棱柱ABD -A 1B 1D 1的高. 又AO =12AC =1,AA 1=2,∴A 1O =AA 21-OA 2=1. 又S △ABD =12×2×2=1,∴111ABD A B D V 三棱柱=S △ABD ·A 1O =1.题型三 平行关系的综合应用例4 如图所示,在三棱柱ABC -A 1B 1C 1中,D 是棱CC 1的中点,问在棱AB 上是否存在一点E ,使DE ∥平面AB 1C 1?若存在,请确定点E 的位置;若不存在,请说明理由. 解 方法一 存在点E ,且E 为AB 的中点时,DE ∥平面AB 1C 1.下面给出证明:如图,取BB 1的中点F ,连接DF , 则DF ∥B 1C 1,∵AB的中点为E,连接EF,ED,则EF∥AB1,B1C1∩AB1=B1,∴平面DEF∥平面AB1C1.而DE⊂平面DEF,∴DE∥平面AB1C1.方法二假设在棱AB上存在点E,使得DE∥平面AB1C1,如图,取BB1的中点F,连接DF,EF,ED,则DF∥B1C1,又DF⊄平面AB1C1,B1C1⊂平面AB1C1,∴DF∥平面AB1C1,又DE∥平面AB1C1,DE∩DF=D,∴平面DEF∥平面AB1C1,∵EF⊂平面DEF,∴EF∥平面AB1C1,又∵EF⊂平面ABB1,平面ABB1∩平面AB1C1=AB1,∴EF∥AB1,∵点F是BB1的中点,∴点E是AB的中点.即当点E是AB的中点时,DE∥平面AB1C1.思维升华利用线面平行的性质,可以实现与线线平行的转化,尤其在截面图的画法中,常用来确定交线的位置,对于最值问题,常用函数思想来解决.如图所示,在四面体ABCD中,截面EFGH平行于对棱AB和CD,试问截面在什么位置时其截面面积最大?解∵AB∥平面EFGH,平面EFGH与平面ABC和平面ABD分别交于FG,EH.∴AB∥FG,AB∥EH,∴FG ∥EH ,同理可证EF ∥GH , ∴截面EFGH 是平行四边形.设AB =a ,CD =b ,∠FGH =α (α即为异面直线AB 和CD 所成的角或其补角). 又设FG =x ,GH =y ,则由平面几何知识可得x a =CGBC, y b =BG BC ,两式相加得x a +y b =1,即y =ba(a -x ), ∴S ▱EFGH =FG ·GH ·sin α =x ·ba ·(a -x )·sin α=b sin αax (a -x ). ∵x >0,a -x >0且x +(a -x )=a 为定值, ∴b sin αa x (a -x )≤ab sin α4,当且仅当x =a -x 时等号成立. 此时x =a2,y =b2. 即当截面EFGH 的顶点E 、F 、G 、H 分别为棱AD 、AC 、BC 、BD 的中点时截面面积最大.5.立体几何中的探索性问题典例 (12分)如图,在四棱锥S -ABCD 中,已知底面ABCD 为直角梯形,其中AD ∥BC ,∠BAD =90°,SA ⊥底面ABCD ,SA =AB =BC =2,tan∠SDA =23.(1)求四棱锥S -ABCD 的体积;(2)在棱SD 上找一点E ,使CE ∥平面SAB ,并证明. 规范解答解 (1)∵SA ⊥底面ABCD ,tan∠SDA =23,SA =2,∴AD =3.[2分]由题意知四棱锥S -ABCD 的底面为直角梯形,且SA =AB =BC =2,V S -ABCD =13·SA ·12·(BC +AD )·AB=13×2×12×(2+3)×2=103.[6分] (2)当点E 位于棱SD 上靠近D 的三等分点处时,可使CE ∥平面SAB .[8分]证明如下:取SD 上靠近D 的三等分点为E ,取SA 上靠近A 的三等分点为F ,连接CE ,EF ,BF , 则EF 綊23AD ,BC 綊23AD ,∴BC 綊EF ,∴CE ∥BF .[10分] 又∵BF ⊂平面SAB ,CE ⊄平面SAB , ∴CE ∥平面SAB .[12分]解决立体几何中的探索性问题的步骤: 第一步:写出探求的最后结论; 第二步:证明探求结论的正确性; 第三步:给出明确答案;第四步:反思回顾,查看关键点、易错点和答题规范.1.(2017·保定月考)有下列命题:①若直线l 平行于平面α内的无数条直线,则直线l ∥α; ②若直线a 在平面α外,则a ∥α; ③若直线a ∥b ,b ∥α,则a ∥α;④若直线a ∥b ,b ∥α,则a 平行于平面α内的无数条直线. 其中真命题的个数是( ) A .1 B .2 C .3 D .4 答案 A解析 命题①:l 可以在平面α内,不正确;命题②:直线a 与平面α可以是相交关系,不正确;命题③:a 可以在平面α内,不正确;命题④正确.故选A.2.(2016·滨州模拟)已知m ,n ,l 1,l 2表示直线,α,β表示平面.若m ⊂α,n ⊂α,l 1⊂β,l 2⊂β,l 1∩l 2=M ,则α∥β的一个充分条件是( ) A .m ∥β且l 1∥α B .m ∥β且n ∥β C .m ∥β且n ∥l 2 D .m ∥l 1且n ∥l 2答案 D解析 由定理“如果一个平面内有两条相交直线分别与另一个平面平行,那么这两个平面平行”可得,由选项D 可推知α∥β.故选D.3.设l 为直线,α,β是两个不同的平面.下列命题中正确的是( ) A .若l ∥α,l ∥β,则α∥β B .若l ⊥α,l ⊥β,则α∥β C .若l ⊥α,l ∥β,则α∥β D .若α⊥β,l ∥α,则l ⊥β 答案 B解析 l ∥α,l ∥β,则α与β可能平行,也可能相交,故A 项错;由“同垂直于一条直线的两个平面平行”可知B 项正确;由l ⊥α,l ∥β可知α⊥β,故C 项错;由α⊥β,l ∥α可知l 与β可能平行,也可能l ⊂β,也可能相交,故D 项错.故选B.4.已知平面α∥平面β,P 是α,β外一点,过点P 的直线m 与α,β分别交于A ,C 两点,过点P 的直线n 与α,β分别交于B ,D 两点,且PA =6,AC =9,PD =8,则BD 的长为( ) A .16 B .24或245C .14D .20答案 B解析 由α∥β得AB ∥CD . 分两种情况:若点P 在α,β的同侧,则PA PC =PB PD, ∴PB =165,∴BD =245;若点P 在α,β之间,则PA PC =PBPD,∴PB =16,∴BD =24.5.(2016·全国甲卷)α,β是两个平面,m ,n 是两条直线,有下列四个命题: ①如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β; ②如果m ⊥α,n ∥α,那么m ⊥n ;③如果α∥β,m⊂α,那么m∥β;④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.其中正确的命题有________.(填写所有正确命题的编号)答案②③④解析当m⊥n,m⊥α,n∥β时,两个平面的位置关系不确定,故①错误,经判断知②③④均正确,故正确答案为②③④.6.设α,β,γ是三个不同的平面,m,n是两条不同的直线,在命题“α∩β=m,n⊂γ,且________,则m∥n”中的横线处填入下列三组条件中的一组,使该命题为真命题.①α∥γ,n⊂β;②m∥γ,n∥β;③n∥β,m⊂γ.可以填入的条件有________.答案①或③解析由面面平行的性质定理可知,①正确;当n∥β,m⊂γ时,n和m在同一平面内,且没有公共点,所以平行,③正确.7.如图,在正四棱柱ABCD-A1B1C1D1(底面是正方形的直四棱柱叫正四棱柱)中,E、F、G、H 分别是棱CC1、C1D1、D1D、CD的中点,N是BC的中点,动点M在四边形EFGH上及其内部运动,则M满足条件________时,有MN∥平面B1BDD1.答案M∈线段FH解析因为HN∥BD,HF∥DD1,所以平面NHF∥平面B1BDD1,故线段FH上任意点M与N相连,都有MN∥平面B1BDD1.(答案不唯一)8.将一个真命题中的“平面”换成“直线”、“直线”换成“平面”后仍是真命题,则该命题称为“可换命题”.给出下列四个命题:①垂直于同一平面的两直线平行;②垂直于同一平面的两平面平行;③平行于同一直线的两直线平行;④平行于同一平面的两直线平行.其中是“可换命题”的是________.(填命题的序号)答案①③解析由线面垂直的性质定理可知①是真命题,且垂直于同一直线的两平面平行也是真命题,故①是“可换命题”;因为垂直于同一平面的两平面可能平行或相交,所以②是假命题,不是“可换命题”;由公理4可知③是真命题,且平行于同一平面的两平面平行也是真命题,故③是“可换命题”;因为平行于同一平面的两条直线可能平行、相交或异面,故④是假命题,故④不是“可换命题”.9.在四面体A-BCD中,M,N分别是△ACD,△BCD的重心,则四面体的四个面中与MN平行的是________.答案平面ABD与平面ABC解析如图,取CD的中点E,连接AE,BE.则EM∶MA=1∶2,EN∶BN=1∶2,所以MN∥AB.所以MN∥平面ABD,MN∥平面ABC.*10.在三棱锥S-ABC中,△ABC是边长为6的正三角形,SA=SB=SC=15,平面DEFH分别与AB,BC,SC,SA交于点D,E,F,H.D,E分别是AB,BC的中点,如果直线SB∥平面DEFH,那么四边形DEFH的面积为________.答案45 2解析如图,取AC的中点G,连接SG,BG.易知SG⊥AC,BG⊥AC,SG∩BG=G,故AC⊥平面SGB,所以AC⊥SB.因为SB∥平面DEFH,SB⊂平面SAB,平面SAB∩平面DEFH=HD,则SB∥HD.同理SB∥FE.又D,E分别为AB,BC的中点,则H,F也为AS,SC的中点,从而得HF 綊12AC 綊DE ,所以四边形DEFH 为平行四边形. 又AC ⊥SB ,SB ∥HD ,DE ∥AC , 所以DE ⊥HD ,所以四边形DEFH 为矩形,其面积S =HF ·HD =(12AC )·(12SB )=452.11.如图,E 、F 、G 、H 分别是正方体ABCD -A 1B 1C 1D 1的棱BC 、CC 1、C 1D 1、AA 1的中点.求证:(1)EG ∥平面BB 1D 1D ; (2)平面BDF ∥平面B 1D 1H .证明 (1)取B 1D 1的中点O ,连接GO ,OB , 易证四边形BEGO 为平行四边形,故OB ∥EG , 由线面平行的判定定理即可证EG ∥平面BB 1D 1D .(2)由题意可知BD ∥B 1D 1. 如图,连接HB 、D 1F ,易证四边形HBFD 1是平行四边形,故HD 1∥BF . 又B 1D 1∩HD 1=D 1,BD ∩BF =B ,所以平面BDF ∥平面B 1D 1H .12.(2016·贵州兴义八中月考)在如图所示的多面体ABCDEF 中,四边形ABCD 是边长为a 的菱形,且∠DAB =60°,DF =2BE =2a ,DF ∥BE ,DF ⊥平面ABCD .(1)在AF 上是否存在点G ,使得EG ∥平面ABCD ,请证明你的结论; (2)求该多面体的体积.解 (1)当点G 位于AF 中点时,有EG ∥平面ABCD .证明如下:取AF 的中点G ,AD 的中点H ,连接GH ,GE ,BH . 在△ADF 中,HG 为中位线, 故HG ∥DF 且HG =12DF .因为BE ∥DF 且BE =12DF ,所以BE 綊GH ,即四边形BEGH 为平行四边形, 所以EG ∥BH .因为BH ⊂平面ABCD ,EG ⊄平面ABCD , 所以EG ∥平面ABCD . (2)连接AC ,BD .因为DF ⊥平面ABCD ,底面ABCD 是菱形, 所以AC ⊥平面BDFE .所以该多面体可分割成两个以平面BDFE 为底面的等体积的四棱锥. 即V ABCDEF =V A -BDFE +V C -BDFE =2V A -BDFE=2×13×a +2a 2×a ×32a =32a 3.*13.如图所示,斜三棱柱ABC -A 1B 1C 1中,点D ,D 1分别为AC ,A 1C 1上的点.(1)当A 1D 1D 1C 1等于何值时,BC 1∥平面AB 1D 1? (2)若平面BC 1D ∥平面AB 1D 1,求AD DC的值. 解 (1)如图所示,取D 1为线段A 1C 1的中点,此时A 1D 1D 1C 1=1. 连接A 1B ,交AB 1于点O ,连接OD 1.由棱柱的性质知,四边形A 1ABB 1为平行四边形, ∴点O 为A 1B 的中点.在△A 1BC 1中,点O ,D 1分别为A 1B ,A 1C 1的中点, ∴OD 1∥BC 1.又∵OD 1⊂平面AB 1D 1,BC 1⊄平面AB 1D 1, ∴BC 1∥平面AB 1D 1. ∴当A 1D 1D 1C 1=1时,BC 1∥平面AB 1D 1. (2)由平面BC 1D ∥平面AB 1D 1, 且平面A 1BC 1∩平面BC 1D =BC 1, 平面A 1BC 1∩平面AB 1D 1=D 1O , 得BC 1∥D 1O ,同理AD 1∥DC 1, ∴A 1D 1D 1C 1=A 1O OB ,A 1D 1D 1C 1=DC AD,又∵A 1O OB =1,∴DC AD =1,即ADDC=1.。

[精品]2019高考数学异构异模复习第八章8.3直线平面平行的判定与性质撬题理5

[精品]2019高考数学异构异模复习第八章8.3直线平面平行的判定与性质撬题理5

2018高考数学异构异模复习考案 第八章 立体几何 8.3 直线、平面平行的判定与性质撬题 理1.已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是( ) A .若α,β垂直于同一平面,则α与β平行 B .若m ,n 平行于同一平面,则m 与n 平行C .若α,β不平行,则在α内不存在与β平行的直线D .若m ,n 不平行,则m 与n 不可能垂直于同一平面 答案 D解析 A 中,垂直于同一个平面的两个平面可能相交也可能平行,故A 错误;B 中,平行于同一个平面的两条直线可能平行、相交或异面,故B 错误;C 中,若两个平面相交,则一个平面内与交线平行的直线一定和另一个平面平行,故C 错误;D 中,若两条直线垂直于同一个平面,则这两条直线平行,所以若两条直线不平行,则它们不可能垂直于同一个平面,故D 正确.2.如图所示,在多面体A 1B 1D 1DCBA 中,四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,E 为B 1D 1的中点,过A 1,D ,E 的平面交CD 1于F.(1)证明:EF ∥B 1C ;(2)求二面角E -A 1D -B 1的余弦值.解 (1)证明:由正方形的性质可知A 1B 1∥AB ∥DC ,且A 1B 1=AB =DC ,所以四边形A 1B 1CD 为平行四边形,从而B 1C ∥A 1D ,又A 1D ⊂面A 1DE ,B 1C ⊄面A 1DE ,于是B 1C ∥面A 1DE .又B 1C ⊂面B 1CD 1,面A 1DE ∩面B 1CD 1=EF ,所以EF ∥B 1C .(2)因为四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,所以AA 1⊥AB ,AA 1⊥AD ,AB ⊥AD 且AA 1=AB =AD ,以A 为原点,分别以AB →,AD →,AA 1→为x 轴,y 轴和z 轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标A (0,0,0),B (1,0,0),D (0,1,0),A 1(0,0,1),B 1(1,0,1),D 1(0,1,1),而E 点为B 1D 1的中点,所以E 点的坐标为(0.5,0.5,1).设面A 1DE 的法向量n 1=(r 1,s 1,t 1),而该面上向量A 1E →=(0.5,0.5,0),A 1D →=(0,1,-1),由n 1⊥A 1E →,n 1⊥A 1D→得⎩⎪⎨⎪⎧0.5r 1+0.5s 1=0,s 1-t 1=0,(-1,1,1)为其一组解,所以可取n 1=(-1,1,1).设面A 1B 1CD 的法向量n 2=(r 2,s 2,t 2),而该面上向量A 1B 1→=(1,0,0),A 1D →=(0,1,-1),由此同理可得n 2=(0,1,1). 所以结合图形知二面角E -A 1D -B 1的余弦值为|n 1·n 2||n 1|·|n 2|=23×2=63.3.如图,在几何体ABCDE 中,四边形ABCD 是矩形,AB ⊥平面BEC ,BE ⊥EC ,AB =BE =EC =2,G ,F 分别是线段BE ,DC 的中点.(1)求证:GF ∥平面ADE ;(2)求平面AEF 与平面BEC 所成锐二面角的余弦值. 解法一 (1)证明:如图,取AE 的中点H ,连接HG ,HD ,又G 是BE 的中点, 所以GH ∥AB ,且GH =12AB .又F 是CD 的中点, 所以DF =12CD .由四边形ABCD 是矩形得,AB ∥CD ,AB =CD ,所以GH ∥DF ,且GH =DF ,从而四边形HGFD 是平行四边形,所以GF ∥DH . 又DH ⊂平面ADE ,GF ⊄平面ADE , 所以GF ∥平面ADE .(2)如图,在平面BEC 内,过B 点作BQ ∥EC .因为BE ⊥CE ,所以BQ ⊥BE.又因为AB ⊥平面BEC ,所以AB ⊥BE ,AB ⊥BQ .以B 为原点,分别以BE →,BQ →,BA →的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,则A (0,0,2),B (0,0,0),E (2,0,0),F (2,2,1).因为AB ⊥平面BEC ,所以BA →=(0,0,2)为平面BEC 的法向量. 设n =(x ,y ,z )为平面AEF 的法向量. 又AE →=(2,0,-2),AF →=(2,2,-1), 由⎩⎪⎨⎪⎧n ·AE →=0,n ·AF →=0,得⎩⎪⎨⎪⎧2x -2z =0,2x +2y -z =0,取z =2,得n =(2,-1,2).从而cos 〈n ,BA →〉=n ·BA→|n |·|BA →|=43×2=23, 所以平面AEF 与平面BEC 所成锐二面角的余弦值为23.解法二 (1)证明:如下图,取AB 中点M ,连接MG ,MF .又G是BE的中点,可知GM∥AE.又AE⊂平面ADE,GM⊄平面ADE,所以GM∥平面ADE.在矩形ABCD中,由M,F分别是AB,CD的中点得MF∥AD.又AD⊂平面ADE,MF⊄平面ADE,所以MF∥平面ADE.又因为GM∩MF=M,GM⊂平面GMF,MF⊂平面GMF,所以平面GMF∥平面ADE.因为GF⊂平面GMF,所以GF∥平面ADE.(2)同解法一.4.一个正方体的平面展开图及该正方体的直观图的示意图如图所示.在正方体中,设BC的中点为M,GH的中点为N.(1)请将字母F,G,H标记在正方体相应的顶点处(不需说明理由);(2)证明:直线MN∥平面BDH;(3)求二面角A-EG-M的余弦值.解(1)点F,G,H的位置如下图所示.(2)证明:连接BD ,设O 为BD 的中点,连接OM ,OH . 因为M ,N 分别是BC ,GH 的中点, 所以OM ∥CD ,且OM =12CD ,HN ∥CD ,且HN =12CD .所以OM ∥HN ,OM =HN .所以MNHO 是平行四边形,从而MN ∥OH . 又MN ⊄平面BDH ,OH ⊂平面BDH , 所以MN ∥平面BDH .(3)解法一:连接AC ,过M 作MP ⊥AC 于P . 在正方体ABCD -EFGH 中,AC ∥EG ,所以MP ⊥EG . 过P 作PK ⊥EG 于K ,连接KM . 所以EG ⊥平面PKM ,从而KM ⊥EG . 所以∠PKM 是二面角A -EG -M 的平面角. 设AD =2,则CM =1,PK =2. 在Rt △CMP 中,PM =CM sin45°=22. 在Rt △PKM 中,KM =PK 2+PM 2=322.所以cos ∠PKM =PK KM =223.即二面角A -EG -M 的余弦值为223.解法二:如下图,以D 为坐标原点,分别以DA →,DC →,DH →的方向为x ,y ,z 轴的正方向,建立空间直角坐标系D-xyz .设AD =2,则M (1,2,0),G (0,2,2),E (2,0,2),O (1,1,0),所以GE →=(2,-2,0),MG →=(-1,0,2). 设平面EGM 的一个法向量为n 1=(x ,y ,z ), 由⎩⎪⎨⎪⎧n 1·GE →=0,n 1·MG →=0,得⎩⎪⎨⎪⎧2x -2y =0,-x +2z =0,取x =2,得n 1=(2,2,1).在正方体ABCD -EFGH 中,DO ⊥平面AEGC ,则可取平面AEG 的一个法向量为n 2=DO →=(1,1,0).所以cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=2+2+04+4+1×1+1+0=223,故二面角A -EG -M 的余弦值为223.5.如图,在三棱台DEF -ABC 中,AB =2DE ,G ,H 分别为AC ,BC 的中点.(1)求证:BD ∥平面FGH ;(2)若CF ⊥平面ABC ,AB ⊥BC ,CF =DE ,∠BAC =45°,求平面FGH 与平面ACFD 所成的角(锐角)的大小. 解 (1)证法一:连接DG ,CD ,设CD ∩GF =O ,连接OH . 在三棱台DEF -ABC 中,AB =2DE ,G 为AC 的中点,可得DF ∥GC ,DF =GC ,所以四边形DFCG 为平行四边形. 则O 为CD 的中点, 又H 为BC 的中点, 所以OH ∥BD .又OH ⊂平面FGH ,BD ⊄平面FGH , 所以BD ∥平面FGH .证法二:在三棱台DEF -ABC 中, 由BC =2EF ,H 为BC 的中点, 可得BH ∥EF ,BH =EF ,所以四边形BHFE 为平行四边形, 可得BE ∥HF .在△ABC 中,G 为AC 的中点,H 为BC 的中点, 所以GH ∥AB .又GH ∩HF =H ,所以平面FGH ∥平面ABED . 因为BD ⊂平面ABED , 所以BD ∥平面FGH .(2)解法一:设AB =2,则CF =1. 在三棱台DEF -ABC 中,G 为AC 的中点,由DF =12AC =GC ,可得四边形DGCF 为平行四边形, 因此DG ∥FC .又FC ⊥平面ABC ,所以DG ⊥平面ABC .连接GB ,在△ABC 中,由AB ⊥BC ,∠BAC =45°,G 是AC 中点, 所以AB =BC ,GB ⊥GC , 因此GB ,GC ,GD 两两垂直.以G 为坐标原点,建立如图所示的空间直角坐标系G -xyz . 所以G (0,0,0),B (2,0,0),C (0,2,0),D (0,0,1).可得H ⎝ ⎛⎭⎪⎫22,22,0,F (0,2,1). 故GH →=⎝⎛⎭⎪⎫22,22,0,GF →=(0,2,1)设n =(x ,y ,z )是平面FGH 的法向量,则 由⎩⎪⎨⎪⎧n ·GH →=0,n ·GF →=0,可得⎩⎨⎧x +y =0,2y +z =0.可得平面FGH 的一个法向量n =(1,-1,2).因为GB →是平面ACFD 的一个法向量,GB →=(2,0,0),所以cos 〈GB →,n 〉=GB →·n|GB →|·|n |=222=12.所以平面FGH 与平面ACFD 所成角(锐角)的大小为60°. 解法二:作HM ⊥AC 于点M ,作MN ⊥GF 于点N ,连接NH ,BG .由FC ⊥平面ABC ,得HM ⊥FC . 又FC ∩AC =C , 所以HM ⊥平面ACFD , 因此GF ⊥NH ,所以∠MNH 即为所求的角.设AB =2,在△BGC 中,MH ∥BG ,MH =12BG =22,由△GNM ∽△GCF , 可得MN FC =GM GF, 从而MN =66. 由HM ⊥平面ACFD ,MN ⊂平面ACFD , 得HM ⊥MN ,因此tan ∠MNH =HM MN=3, 所以∠MNH =60°.所以平面FGH 与平面ACFD 所成角(锐角)的大小为60°.6.如图,四棱锥P -ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(1)证明:PB ∥平面AEC ;(2)设二面角D -AE -C 为60°,AP =1,AD =3,求三棱锥E -ACD 的体积. 解 (1)证明:连接BD 交AC 于点O ,连接EO . 因为ABCD 为矩形,所以O 为BD 的中点. 又E 为PD 的中点,所以EO ∥PB .EO ⊂平面AEC ,PB ⊄平面AEC ,所以PB ∥平面AEC .(2)因为PA ⊥平面ABCD ,ABCD 为矩形,所以AB ,AD ,AP 两两垂直.如图,以A 为坐标原点,AB →的方向为x 轴的正方向,|AP →|为单位长,建立空间直角坐标系A -xyz .则D (0,3,0),P (0,0,1),E ⎝ ⎛⎭⎪⎫0,32,12,AE →=⎝⎛⎭⎪⎫0,32,12.设B (m,0,0)(m >0),则C (m ,3,0),AC →=(m ,3,0), 设n 1=(x ,y ,z )为平面ACE 的法向量, 则⎩⎪⎨⎪⎧n 1·AC →=0,n 1·AE →=0,即⎩⎪⎨⎪⎧mx +3y =0,32y +12z =0,可取n 1=⎝⎛⎭⎪⎫3m ,-1,3. 又n 2=(1,0,0)为平面DAE 的法向量, 由题设|cos 〈n 1,n 2〉|=12,即33+4m 2=12, 解得m =32.因为E 为PD 的中点,所以三棱锥E -ACD 的高为12.三棱锥E -ACD 的体积V =13×12×3×32×12=38.7.如图,在四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 是等腰梯形,∠DAB =60°,AB =2CD =2,M 是线段AB 的中点.(1)求证:C 1M ∥平面A 1ADD 1;(2)若CD 1垂直于平面ABCD 且CD 1=3,求平面C 1D 1M 和平面ABCD 所成的角(锐角)的余弦值.解 (1)证明:因为四边形ABCD 是等腰梯形,且AB =2CD ,所以AB ∥DC .又由M 是AB 的中点,因此CD ∥MA 且CD =MA .连接AD 1,在四棱柱ABCD -A 1B 1C 1D 1中, 因为CD ∥C 1D 1,CD =C 1D 1, 可得C 1D 1∥MA ,C 1D 1=MA , 所以四边形AMC 1D 1为平行四边形.因此C 1M ∥D 1A ,又C 1M ⊄平面A 1ADD 1,D 1A ⊂平面A 1ADD 1, 所以C 1M ∥平面A 1ADD 1.(2)解法一:连接AC ,MC ,由(1)知,CD ∥AM 且CD =AM , 所以四边形AMCD 为平行四边形.可得BC =AD =MC ,由题意∠ABC =∠DAB =60°,所以△MBC 为正三角形,因此AB =2BC =2,CA =3,因此CA ⊥CB.以C 为坐标原点,建立如图所示空间直角坐标系C -xyz .所以A (3,0,0),B (0,1,0),D 1(0,0,3). 因此M ⎝⎛⎭⎪⎫32,12,0, 所以MD 1→=⎝ ⎛⎭⎪⎫-32,-12,3,D 1C 1→=MB →=(-32,12,0 ).设平面C 1D 1M 的一个法向量n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·D 1C 1→=0,n ·MD 1→=0,得⎩⎨⎧3x -y =0,3x +y -23z =0,又CD 1→=(0,0,3)为平面ABCD 的一个法向量.因此cos 〈CD 1→,n 〉=CD 1→·n|CD 1→||n |=55. 所以平面C 1D 1M 和平面ABCD 所成的角(锐角)的余弦值为55. 解法二:由(1)知平面D 1C 1M ∩平面ABCD =AB ,过C 向AB 引垂线交AB 于N ,连接D 1N . 由CD 1⊥平面ABCD ,可得D 1N ⊥AB , 因此∠D 1NC 为二面角C 1-AB -C 的平面角. 在Rt △BNC 中,BC =1,∠NBC =60°, 可得CN =32. 所以ND 1=CD 21+CN 2=152. 在Rt △D 1CN 中,cos ∠D 1NC =CN D 1N =32152=55. 所以平面C 1D 1M 和平面ABCD 所成的角(锐角)的余弦值为55. 8.如图,在三棱锥P -ABC 中,D ,E ,F 分别为棱PC ,AC ,AB 的中点.已知PA ⊥AC ,PA =6,BC =8,DF =5.求证:(1)直线PA ∥平面DEF ; (2)平面BDE ⊥平面ABC .证明 (1)因为D ,E 分别为棱PC ,AC 的中点,所以DE ∥PA . 又因为PA ⊄平面DEF ,DE ⊂平面DEF ,所以直线PA ∥平面DEF . (2)因为D ,E ,F 分别为棱PC ,AC ,AB 的中点,PA =6,BC =8, 所以DE ∥PA ,DE =12PA =3,EF =12BC =4.又因为DF =5,故DF 2=DE 2+EF 2,所以∠DEF =90°,即DE ⊥EF . 又PA ⊥AC ,DE ∥PA ,所以DE ⊥AC .因为AC ∩EF =E ,AC ⊂平面ABC ,EF ⊂平面ABC , 所以DE ⊥平面ABC .又DE ⊂平面BDE ,所以平面BDE ⊥平面ABC .。

2018高考数学异构异模复习 第八章 立体几何 8.3 直线、平面平行的判定与性质撬题 文

2018高考数学异构异模复习 第八章 立体几何 8.3 直线、平面平行的判定与性质撬题 文

2018高考数学异构异模复习考案 第八章 立体几何 8.3 直线、平面平行的判定与性质撬题 文1.已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是( ) A .若α,β垂直于同一平面,则α与β平行 B .若m ,n 平行于同一平面,则m 与n 平行C .若α,β不平行,则在α内不存在与β平行的直线D .若m ,n 不平行,则m 与n 不可能垂直于同一平面 答案 D解析 A 中,垂直于同一个平面的两个平面可能相交也可能平行,故A 错误;B 中,平行于同一个平面的两条直线可能平行、相交或异面,故B 错误;C 中,若两个平面相交,则一个平面内与交线平行的直线一定和另一个平面平行,故C 错误;D 中,若两条直线垂直于同一个平面,则这两条直线平行,所以若两条直线不平行,则它们不可能垂直于同一个平面,故D 正确.2.如图,三棱锥P -ABC 中,平面PAC ⊥平面ABC ,∠ABC =π2,点D ,E 在线段AC 上,且AD =DE =EC =2,PD =PC =4,点F 在线段AB 上,且EF ∥BC .(1)证明:AB ⊥平面PFE ;(2)若四棱锥P -DFBC 的体积为7,求线段BC 的长.解 (1)证明:如图,由DE =EC ,PD =PC 知,E 为等腰△PDC 中DC 边的中点,故PE ⊥AC .又平面PAC ⊥平面ABC ,平面PAC ∩平面ABC =AC ,PE ⊂平面PAC ,所以PE ⊥平面ABC ,从而PE ⊥AB .因∠ABC =π2,EF ∥BC ,故AB ⊥EF .从而AB 与平面PFE 内两条相交直线PE ,EF 都垂直,所以AB ⊥平面PFE . (2)设BC =x ,则在Rt △ABC 中,AB =AC 2-BC 2=36-x 2,从而S △ABC =12AB ·BC =12x 36-x 2.由EF ∥BC 知,AF AB =AE AC =23,得△AFE ∽△ABC ,故S △AFE S △ABC =⎝ ⎛⎭⎪⎫232=49, 即S △AFE =49S △ABC .由AD =12AE ,得S △AFD =12S △AFE =12·49S △ABC =29S △ABC =19x 36-x 2,从而四边形DFBC 的面积为S DFBC =S △ABC -S △AFD =12x 36-x 2-19x 36-x 2=718x 36-x 2.由(1)知,PE ⊥平面ABC , 所以PE 为四棱锥P -DFBC 的高.在Rt △PEC 中,PE =PC 2-EC 2=42-22=2 3. 体积V P -DFBC =13·S DFBC ·PE =13·718x 36-x 2·23=7,故得x 4-36x 2+243=0,解得x 2=9或x 2=27,由于x >0,可得x =3或x =3 3. 所以,BC =3或BC =3 3.3.如图,在直三棱柱ABC -A 1B 1C 1中,已知AC ⊥BC ,BC =CC 1.设AB 1的中点为D ,B 1C ∩BC 1=E .求证:(1)DE ∥平面AA 1C 1C ; (2)BC 1⊥AB 1.证明 (1)由题意知,E 为B 1C 的中点,又D为AB1的中点,因此DE∥AC.又因为DE⊄平面AA1C1C,AC⊂平面AA1C1C,所以DE∥平面AA1C1C.(2)因为棱柱ABC-A1B1C1是直三棱柱,所以CC1⊥平面ABC.因为AC⊂平面ABC,所以AC⊥CC1.又因为AC⊥BC,CC1⊂平面BCC1B1,BC⊂平面BCC1B1,BC∩CC1=C,所以AC⊥平面BCC1B1.又因为BC1⊂平面BCC1B1,所以BC1⊥AC.因为BC=CC1,所以矩形BCC1B1是正方形,因此BC1⊥B1C.因为AC,B1C⊂平面B1AC,AC∩B1C=C,所以BC1⊥平面B1AC.又因为AB1⊂平面B1AC,所以BC1⊥AB1.4.一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(1)请将字母F,G,H标记在正方体相应的顶点处(不需说明理由);(2)判断平面BEG与平面ACH的位置关系,并证明你的结论;(3)证明:直线DF⊥平面BEG.解(1)点F,G,H的位置如图所示.(2)平面BEG∥平面ACH,证明如下:因为ABCD-EFGH为正方体,所以BC∥FG,BC=FG,又FG∥EH,FG=EH,所以BC∥EH,BC=EH,于是四边形BCHE为平行四边形,所以BE∥CH.又CH⊂平面ACH,BE⊄平面ACH,所以BE∥平面ACH.同理BG∥平面ACH.又BE∩BG=B,所以平面BEG∥平面ACH.(3)证明:连接FH.因为ABCD-EFGH为正方体,所以DH⊥平面EFGH.因为EG⊂平面EFGH,所以DH⊥EG.又EG⊥FH,DH∩FH=H,所以EG⊥平面BFHD.又DF⊂平面BFHD,所以DF⊥EG.同理DF⊥BG.又EG∩BG=G,所以DF⊥平面BEG.5.如图,三棱台DEF-ABC中,AB=2DE,G,H分别为AC,BC的中点.(1)求证:BD∥平面FGH;(2)若CF⊥BC,AB⊥BC,求证:平面BCD⊥平面EGH.证明(1)证法一:连接DG,CD,设CD∩GF=M,连接MH.在三棱台DEF-ABC中,AB=2DE,G为AC的中点,可得DF∥GC,DF=GC,所以四边形DFCG为平行四边形,则M为CD的中点,又H为BC的中点,所以HM∥BD.又HM⊂平面FGH,BD⊄平面FGH,所以BD∥平面FGH.证法二:在三棱台DEF-ABC中,由BC=2EF,H为BC的中点,可得BH∥EF,BH=EF,所以四边形HBEF为平行四边形,可得BE∥HF.在△ABC中,G为AC的中点,H为BC的中点,所以GH∥AB.又GH∩HF=H,所以平面FGH∥平面ABED.因为BD⊂平面ABED,所以BD∥平面FGH.(2)连接HE,GE.因为G,H分别为AC,BC的中点,所以GH∥AB,由AB⊥BC,得GH⊥BC.又H为BC的中点,所以EF∥HC,EF=HC,因此四边形EFCH是平行四边形,所以CF∥HE.又CF⊥BC,所以HE⊥BC.又HE,GH⊂平面EGH,HE∩GH=H,所以BC⊥平面EGH.又BC⊂平面BCD,所以平面BCD⊥平面EGH.6. 如图,三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B 1C ⊥AB ;(2)若AC ⊥AB 1,∠CBB 1=60°,BC =1,求三棱柱ABC -A 1B 1C 1的高.解(1)证明:连接BC 1,则O 为B 1C 与BC 1的交点.因为侧面BB 1C 1C 为菱形,所以B 1C ⊥BC 1. 又AO ⊥平面BB 1C 1C ,所以B 1C ⊥AO ,AO ∩BC 1=0,故B 1C ⊥平面ABO . 由于AB ⊂平面ABO ,故B 1C ⊥AB .(2)作OD ⊥BC ,垂足为D ,连接AD .作OH ⊥AD ,垂足为H . 由于BC ⊥AO ,BC ⊥OD ,故BC ⊥平面AOD ,所以OH ⊥BC . 又OH ⊥AD ,所以OH ⊥平面ABC .因为∠CBB 1=60°,所以△CBB 1为等边三角形,又BC =1,可得OD =34. 由于AC ⊥AB 1,所以OA =12B 1C =12.由OH ·AD =OD ·OA ,且AD =OD 2+OA 2=74,得OH =2114. 又O 为B 1C 的中点, 所以点B 1到平面ABC 的距离为217, 故三棱柱ABC -A 1B 1C 1的高为217. 7.如图,四棱锥P -ABCD 中,AP ⊥平面PCD ,AD ∥BC ,AB =BC =12AD ,E ,F 分别为线段AD ,PC 的中点.(1)求证:AP ∥平面BEF ; (2)求证:BE ⊥平面PAC .证明 (1)设AC ∩BE =O ,连接OF ,EC .由于E 为AD 的中点,AB =BC =12AD ,AD ∥BC ,所以AE ∥BC ,AE =AB =BC , 因此四边形ABCE 为菱形, 所以O 为AC 的中点. 又F 为PC 的中点,因此在△PAC 中,可得AP ∥OF . 又OF ⊂平面BEF ,AP ⊄平面BEF , 所以AP ∥平面BEF .(2)由题意知ED ∥BC ,ED =BC ,所以四边形BCDE 为平行四边形,因此BE ∥CD . 又AP ⊥平面PCD , 所以AP ⊥CD ,因此AP ⊥BE .因为四边形ABCE 为菱形,所以BE ⊥AC . 又AP ∩AC =A ,AP ,AC ⊂平面PAC , 所以BE ⊥平面PAC .8.如图,在三棱锥P -ABC 中,D ,E ,F 分别为棱PC ,AC ,AB 的中点.已知PA ⊥AC ,PA =6,BC =8,DF =5.求证:(1)直线PA ∥平面DEF ;(2)平面BDE ⊥平面ABC .证明 (1)因为D ,E 分别为棱PC ,AC 的中点,所以DE ∥PA . 又因为PA ⊄平面DEF ,DE ⊂平面DEF ,所以直线PA ∥平面DEF . (2)因为D ,E ,F 分别为棱PC ,AC ,AB 的中点,PA =6,BC =8, 所以DE ∥PA ,DE =12PA =3,EF =12BC =4.又因为DF =5,故DF 2=DE 2+EF 2,所以∠DEF =90°,即DE ⊥EF . 又PA ⊥AC ,DE ∥PA ,所以DE ⊥AC .因为AC ∩EF =E ,AC ⊂平面ABC ,EF ⊂平面ABC , 所以DE ⊥平面ABC .又DE ⊂平面BDE ,所以平面BDE ⊥平面ABC .。

2018课标版理数一轮(8)第八章-立体几何(含答案)3 第三节 直线、平面平行的判定与性质

2018课标版理数一轮(8)第八章-立体几何(含答案)3 第三节 直线、平面平行的判定与性质

要而不充分条件.故选B.
栏目索引
4.已知平面α∥β,直线a⊂α,有下列命题: ①a与β内的所有直线平行; ②a与β内无数条直线平行; ③a与β内的任意一条直线都不垂直. 其中真命题的序号是 答案 解析 ② 设过a且与β相交的平面与β的交线为b,由面面平行的性质定理 .
知,b∥a,故β内的直线b及与b平行的直线才与a平行,故①错误,②正确.平
同理可证AC1⊥平面PMN,
∴平面PMN∥平面A1BD.
栏目索引
考点三
平行关系的综合问题
典例3 (2015四川,18改编)一个正方体的平面展开图及该正方体的直 观图的示意图如图所示. (1)请将字母F,G,H标记在正方体相应的顶点处(不需说明理由); (2)判断平面BEG与平面ACH的位置关系,并证明你的结论.
栏目索引
理数
课标版
第三节 直线、平面平行的判定与性质
栏目索引
教材研读
1.直线与平面平行的判定定理和性质定理
类别 文字语言 判定 平面外一条直线与① 此平面内 的一条 定理 直线平行,则该直线与此平面平行(简记为“ 图形语言 符号语言 ∵② l∥a ,③ a⊂α , ④ l⊄α ,∴l∥α
线线平行⇒线面平行”)
1 1 此时 =1,
AD D1C1
连接A1B交AB1于点O,连接OD1,
由棱柱的性质知四边形A1ABB1为平行四边形,
∴O为A1B的中点, 在△A1BC1中,点O,D1分别为A1B,A1C1的中点, ∴OD1∥BC1,又OD1⊂平面AB1D1,BC1⊄平面AB1D1,
1 1 ∴BC1∥平面AB1D1,∴当 =1时,BC1∥平面AB1D1.
AD D1C1
栏目索引
考点二
平面与平面平行的判定与性质

(江苏专用)2018版高考数学大一轮复习 第八章 立体几何 8.3 直线_平面平行的判定与性质教师用书 文 苏教版

(江苏专用)2018版高考数学大一轮复习 第八章 立体几何 8.3 直线_平面平行的判定与性质教师用书 文 苏教版

8.3 直线、平面平行的判定与性质1.线面平行的判定定理和性质定理2.面面平行的判定定理和性质定理【知识拓展】重要结论(1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β;(2)垂直于同一个平面的两条直线平行,即若a⊥α,b⊥α,则a∥b;(3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面.( ×)(2)若一条直线平行于一个平面,则这条直线平行于这个平面内的任一条直线.( ×)(3)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.( ×)(4)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.( √)(5)若直线a与平面α内无数条直线平行,则a∥α.( ×)(6)若α∥β,直线a∥α,则a∥β.( ×)1.(教材改编)下列命题中不正确的有________.①若a,b是两条直线,且a∥b,那么a平行于经过b的任何平面;②若直线a和平面α满足a∥α,那么a与α内的任何直线平行;③平行于同一条直线的两个平面平行;④若直线a,b和平面α满足a∥b,a∥α,b⊄α,则b∥α.答案①②③解析①中,a可以在过b的平面内;②中,a与α内的直线可能异面;③中,两平面可相交;④中,由直线与平面平行的判定定理知,b∥α,正确.2.设l,m为直线,α,β为平面,且l⊂α,m⊂β,则“l∩m=∅”是“α∥β”的______条件.答案必要不充分解析当平面与平面平行时,两个平面内的直线没有交点,故“l∩m=∅”是“α∥β”的必要条件;当两个平面内的直线没有交点时,两个平面可以相交,∴l∩m=∅是α∥β的必要不充分条件.3.如图,在正方体ABCD -A 1B 1C 1D 1中,AB =2,点E 为AD 的中点,点F 在CD 上.若EF ∥平面AB 1C ,则线段EF 的长度为________.答案2解析 因为直线EF ∥平面AB 1C ,EF ⊂平面ABCD , 且平面AB 1C ∩平面ABCD =AC ,所以EF ∥AC , 又E 是DA 的中点,所以F 是DC 的中点, 由中位线定理可得EF =12AC ,又在正方体ABCD -A 1B 1C 1D 1中,AB =2, 所以AC =22,所以EF = 2.4.(教材改编)如图,在正方体ABCD -A 1B 1C 1D 1中,E 为DD 1的中点,则BD 1与平面ACE 的位置关系为________.答案 平行解析 连结BD ,设BD ∩AC =O ,连结EO ,在△BDD 1中,O 为BD 的中点,所以EO 为△BDD 1的中位线, 则BD 1∥EO ,而BD 1⊄平面ACE ,EO ⊂平面ACE , 所以BD 1∥平面ACE .5.过三棱柱ABC -A 1B 1C 1任意两条棱的中点作直线,其中与平面ABB 1A 1平行的直线共有________条.答案 6解析 各中点连线如图,只有面EFGH 与面ABB 1A 1平行,在四边形EFGH 中有6条符合题意.题型一 直线与平面平行的判定与性质 命题点1 直线与平面平行的判定例1 如图,四棱锥P -ABCD 中,AD ∥BC ,AB =BC =12AD ,E ,F ,H 分别为线段AD ,PC ,CD的中点,AC 与BE 交于O 点,G 是线段OF 上一点.(1)求证:AP ∥平面BEF ; (2)求证:GH ∥平面PAD . 证明 (1)连结EC ,∵AD ∥BC ,BC =12AD ,∴BC 綊AE ,∴四边形ABCE 是平行四边形, ∴O 为AC 的中点.又∵F 是PC 的中点,∴FO ∥AP ,FO ⊂平面BEF ,AP ⊄平面BEF ,∴AP ∥平面BEF . (2)连结FH ,OH ,∵F,H分别是PC,CD的中点,∴FH∥PD,∴FH∥平面PAD.又∵O是BE的中点,H是CD的中点,∴OH∥AD,∴OH∥平面PAD.又FH∩OH=H,∴平面OHF∥平面PAD.又∵GH⊂平面OHF,∴GH∥平面PAD.命题点2 直线与平面平行的性质例2 (2017·镇江月考)如图,四棱锥P-ABCD的底面是边长为8的正方形,四条侧棱长均为217.点G,E,F,H分别是棱PB,AB,CD,PC上共面的四点,平面GEFH⊥平面ABCD,BC∥平面GEFH.(1)证明:GH∥EF;(2)若EB=2,求四边形GEFH的面积.(1)证明因为BC∥平面GEFH,BC⊂平面PBC,且平面PBC∩平面GEFH=GH,所以GH∥BC.同理可证EF∥BC,因此GH∥EF.(2)解如图,连结AC,BD交于点O,BD交EF于点K,连结OP,GK.因为PA=PC,O是AC的中点,所以PO⊥AC,同理可得PO⊥BD.又BD∩AC=O,且AC,BD都在底面内,所以PO ⊥底面ABCD .又因为平面GEFH ⊥平面ABCD , 且PO ⊄平面GEFH ,所以PO ∥平面GEFH . 因为平面PBD ∩平面GEFH =GK , 所以PO ∥GK ,且GK ⊥底面ABCD , 从而GK ⊥EF .所以GK 是梯形GEFH 的高.由AB =8,EB =2得EB ∶AB =KB ∶DB =1∶4, 从而KB =14DB =12OB ,即K 为OB 的中点.再由PO ∥GK 得GK =12PO ,即G 是PB 的中点,且GH =12BC =4.由已知可得OB =42,PO =PB 2-OB 2=68-32=6,所以GK =3.故四边形GEFH 的面积S =GH +EF2·GK=4+82×3=18. 思维升华 判断或证明线面平行的常用方法 (1)利用线面平行的定义(无公共点);(2)利用线面平行的判定定理(a ⊄α,b ⊂α,a ∥b ⇒a ∥α); (3)利用面面平行的性质定理(α∥β,a ⊂α⇒a ∥β); (4)利用面面平行的性质(α∥β,a ⊄α,a ⊄β,a ∥α⇒a ∥β).如图所示,CD ,AB 均与平面EFGH 平行,E ,F ,G ,H 分别在BD ,BC ,AC ,AD 上,且CD ⊥AB .求证:四边形EFGH 是矩形.证明 ∵CD ∥平面EFGH ,而平面EFGH∩平面BCD=EF,∴CD∥EF.同理HG∥CD,∴EF∥HG.同理HE∥GF,∴四边形EFGH为平行四边形.∴CD∥EF,HE∥AB,∴∠HEF为异面直线CD和AB所成的角.又∵CD⊥AB,∴HE⊥EF.∴平行四边形EFGH为矩形.题型二平面与平面平行的判定与性质例3 (2016·镇江模拟)如图所示,在三棱柱ABC-A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EFA1∥平面BCHG.证明(1)∵G,H分别是A1B1,A1C1的中点,∴GH是△A1B1C1的中位线,∴GH∥B1C1.又∵B1C1∥BC,∴GH∥BC,∴B,C,H,G四点共面.(2)∵E,F分别是AB,AC的中点,∴EF∥BC.∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.∵A1G綊EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG,∴A1E∥平面BCHG.∵A1E∩EF=E,∴平面EFA1∥平面BCHG.引申探究1.在本例条件下,若D为BC1的中点,求证:HD∥平面A1B1BA.证明如图所示,连结HD,A1B,∵D为BC1的中点,H为A1C1的中点,∴HD∥A1B,又HD⊄平面A1B1BA,A1B⊂平面A1B1BA,∴HD∥平面A1B1BA.2.在本例条件下,若D1,D分别为B1C1,BC的中点,求证:平面A1BD1∥平面AC1D. 证明如图所示,连结A1C交AC1于点M,∵四边形A1ACC1是平行四边形,∴M是A1C的中点,连结MD,∵D为BC的中点,∴A1B∥DM.∵A1B⊂平面A1BD1,DM⊄平面A1BD1,∴DM∥平面A1BD1.又由三棱柱的性质知,D1C1綊BD,∴四边形BDC1D1为平行四边形,∴DC1∥BD1.又DC1⊄平面A1BD1,BD1⊂平面A1BD1,∴DC1∥平面A1BD1,又∵DC1∩DM=D,DC1,DM⊂平面AC1D,∴平面A1BD1∥平面AC1D.思维升华证明面面平行的方法(1)面面平行的定义;(2)面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行;(3)利用垂直于同一条直线的两个平面平行;(4)两个平面同时平行于第三个平面,那么这两个平面平行;(5)利用“线线平行”、“线面平行”、“面面平行”的相互转化.(2016·盐城模拟)如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O是底面中心,A1O⊥底面ABCD,AB=AA1= 2.(1)证明:平面A1BD∥平面CD1B1;(2)求三棱柱ABD-A1B1D1的体积.(1)证明由题设知,BB1綊DD1,∴四边形BB1D1D是平行四边形,∴BD∥B1D1.又BD⊄平面CD1B1,B1D1⊂平面CD1B1,∴BD∥平面CD1B1.∵A1D1綊B1C1綊BC,∴四边形A1BCD1是平行四边形,∴A1B∥D1C.又A1B⊄平面CD1B1,D1C⊂平面CD1B1,∴A1B∥平面CD1B1.又BD ∩A 1B =B ,∴平面A 1BD ∥平面CD 1B 1. (2)解 ∵A 1O ⊥平面ABCD , ∴A 1O 是三棱柱ABD -A 1B 1D 1的高. 又AO =12AC =1,AA 1=2,∴A 1O =AA 21-OA 2=1.又S △ABD =12×2×2=1,1111· 1.ABD A B D ABD V S AO 三棱柱-==△ 题型三 平行关系的综合应用例4 (2016·盐城模拟)如图所示,在三棱柱ABC -A 1B 1C 1中,D 是棱CC 1的中点,问在棱AB 上是否存在一点E ,使DE ∥平面AB 1C 1?若存在,请确定点E 的位置;若不存在,请说明理由.解 方法一 存在点E ,且E 为AB 的中点时,DE ∥平面AB 1C 1. 下面给出证明:如图,取BB 1的中点F ,连结DF , 则DF ∥B 1C 1,∵AB 的中点为E ,连结EF ,ED , 则EF ∥AB 1,B 1C 1∩AB 1=B 1, ∴平面DEF ∥平面AB 1C 1. 而DE ⊂平面DEF , ∴DE ∥平面AB 1C 1.方法二 假设在棱AB 上存在点E , 使得DE ∥平面AB 1C 1,如图,取BB1的中点F,连结DF,EF,ED,则DF∥B1C1,又DF⊄平面AB1C1,B1C1⊂平面AB1C1,∴DF∥平面AB1C1,又DE∥平面AB1C1,DE∩DF=D,∴平面DEF∥平面AB1C1,∵EF⊂平面DEF,∴EF∥平面AB1C1,又∵EF⊂平面ABB1,平面ABB1∩平面AB1C1=AB1,∴EF∥AB1,∵点F是BB1的中点,∴点E是AB的中点.即当点E是AB的中点时,DE∥平面AB1C1.思维升华利用线面平行的性质,可以实现与线线平行的转化,尤其在截面图的画法中,常用来确定交线的位置,对于最值问题,常用函数思想来解决.(2016·南京模拟)如图所示,在四面体ABCD中,截面EFGH平行于对棱AB和CD,试问截面在什么位置时其截面面积最大?解∵AB∥平面EFGH,平面EFGH与平面ABC和平面ABD分别交于FG,EH.∴AB∥FG,AB∥EH,∴FG∥EH,同理可证EF∥GH,∴截面EFGH是平行四边形.设AB=a,CD=b,∠FGH=α (α即为异面直线AB和CD所成的角或其补角).又设FG =x ,GH =y ,则由平面几何知识可得x a =CGBC, y b =BG BC ,两式相加得x a +y b =1,即y =ba(a -x ), ∴S ▱EFGH =FG ·GH ·sin α =x ·ba ·(a -x )·sin α=b sin αax (a -x ). ∵x >0,a -x >0且x +(a -x )=a 为定值, ∴b sin αa x (a -x )≤ab sin α4,当且仅当x =a -x 时等号成立. 此时x =a2,y =b2. 即当截面EFGH 的顶点E 、F 、G 、H 分别为棱AD 、AC 、BC 、BD 的中点时截面面积最大.5.立体几何中的探索性问题典例 (14分)如图,在四棱锥S -ABCD 中,已知底面ABCD 为直角梯形,其中AD ∥BC ,∠BAD =90°,SA ⊥底面ABCD ,SA =AB =BC =2,tan∠SDA =23.(1)求四棱锥S -ABCD 的体积;(2)在棱SD 上找一点E ,使CE ∥平面SAB ,并证明. 规范解答解 (1)∵SA ⊥底面ABCD ,tan∠SDA =23,SA =2,∴AD =3.[2分]由题意知四棱锥S -ABCD 的底面为直角梯形, 且SA =AB =BC =2,V S -ABCD =13·SA ·12·(BC +AD )·AB=13×2×12×(2+3)×2=103. [6分](2)当点E 位于棱SD 上靠近D 的三等分点处时, 可使CE ∥平面SAB .[8分]证明如下:取SD 上靠近D 的三等分点为E ,取SA 上靠近A 的三等分点为F ,连结CE ,EF ,BF , 则EF 綊23AD ,BC 綊23AD ,∴BC 綊EF ,∴CE ∥BF .[12分]又∵BF ⊂平面SAB ,CE ⊄平面SAB , ∴CE ∥平面SAB .[14分]解决立体几何中的探索性问题的步骤 第一步:写出探求的最后结论; 第二步:证明探求结论的正确性; 第三步:给出明确答案;第四步:反思回顾,查看关键点、易错点和答题规范.1.(2016·南通模拟)有下列命题:①若直线l 平行于平面α内的无数条直线,则直线l ∥α; ②若直线a 在平面α外,则a ∥α; ③若直线a ∥b ,b ∥α,则a ∥α;④若直线a ∥b ,b ∥α,则a 平行于平面α内的无数条直线. 其中真命题的个数是________.答案 1解析 命题①,l 可以在平面α内,不正确;命题②,直线a 与平面α可以是相交关系,不正确;命题③,a 可以在平面α内,不正确;命题④正确.2.(2016·苏北四校联考)如图是一个几何体的平面展开图,其中四边形ABCD 是正方形,E ,F 分别为PA ,PD 的中点.在此几何体中,给出下列四个结论:①直线BE 与直线CF 是异面直线; ②直线BE 与直线AF 是异面直线; ③直线EF ∥平面PBC ; ④平面BCE ⊥平面PAD .其中正确结论的序号为________. 答案 ②③解析 因为EF 綊12AD ,AD 綊BC ,所以EF 綊12BC ,所以E ,B ,C ,F 四点共面,所以BE 与CF共面,所以①错误;因为AF ⊂平面PAD ,E ∈平面PAD ,E ∉直线AF ,B ∉平面PAD ,所以BE 与AF 是异面直线,所以②正确;因为EF ∥BC ,EF ⊄平面PBC ,BC ⊂平面PBC ,所以EF ∥平面PBC ,所以③正确;由于不能推出线面垂直,故平面BCE ⊥平面PAD 不成立,所以④错误. 3.设l 为直线,α,β是两个不同的平面.下列命题中正确的是________. ①若l ∥α,l ∥β,则α∥β; ②若l ⊥α,l ⊥β,则α∥β; ③若l ⊥α,l ∥β,则α∥β; ④若α⊥β,l ∥α,则l ⊥β. 答案 ②解析 l ∥α,l ∥β,则α与β可能平行,也可能相交,故①错;由“同垂直于一条直线的两个平面平行”可知②正确;由l ⊥α,l ∥β可知α⊥β,故③错;由α⊥β,l ∥α可知l 与β可能平行,也可能l ⊂β,也可能相交,故④错.4.(2016·苏锡常联考)下列关于互不相同的直线m ,l ,n 和平面α,β的四个命题:①若m ⊂α,l ∩α=A ,点A ∉m ,则l 与m 不共面;②若m ,l 是异面直线,l ∥α,m ∥α,且n ⊥l ,n ⊥m ,则n ⊥α; ③若l ∥α,m ∥β,α∥β,则l ∥m ;④若l ⊂α,m ⊂α,l ∩m =A ,l ∥β,m ∥β,则α∥β. 其中假命题是________.(填序号) 答案 ③5.已知平面α∥平面β,P 是α,β外一点,过点P 的直线m 与α,β分别交于A ,C 两点,过点P 的直线n 与α,β分别交于B ,D 两点,且PA =6,AC =9,PD =8,则BD 的长为______. 答案 24或245解析 由α∥β得AB ∥CD . 分两种情况:若点P 在α,β的同侧,则PA PC =PBPD, ∴PB =165,∴BD =245;若点P 在α,β之间,则PA PC =PBPD,∴PB =16,∴BD =24.6.(2016·全国甲卷)α,β是两个平面,m ,n 是两条直线,有下列四个命题: ①如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β; ②如果m ⊥α,n ∥α,那么m ⊥n ; ③如果α∥β,m ⊂α,那么m ∥β;④如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有________. 答案 ②③④解析 当m ⊥n ,m ⊥α,n ∥β时,两个平面的位置关系不确定,故①错误,经判断知②③④均正确,故正确答案为②③④.7.设α,β,γ是三个不同的平面,m ,n 是两条不同的直线,在命题“α∩β=m ,n ⊂γ,且________,则m ∥n ”中的横线处填入下列三组条件中的一组,使该命题为真命题. ①α∥γ,n ⊂β;②m ∥γ,n ∥β;③n ∥β,m ⊂γ.可以填入的条件有________.答案①或③解析由面面平行的性质定理可知,①正确;当n∥β,m⊂γ时,n和m在同一平面内,且没有公共点,所以平行,③正确.8.如图,在正四棱柱ABCD-A1B1C1D1(底面是正方形的直四棱柱叫正四棱柱)中,E、F、G、H 分别是棱CC1、C1D1、D1D、CD的中点,N是BC的中点,动点M在四边形EFGH上及其内部运动,则M满足条件________时,有MN∥平面B1BDD1.答案M∈线段FH解析因为HN∥BD,HF∥DD1,所以平面NHF∥平面B1BDD1,故线段FH上任意点M与N相连,都有MN∥平面B1BDD1.(答案不唯一)9.将一个真命题中的“平面”换成“直线”、“直线”换成“平面”后仍是真命题,则该命题称为“可换命题”.给出下列四个命题:①垂直于同一平面的两直线平行;②垂直于同一平面的两平面平行;③平行于同一直线的两直线平行;④平行于同一平面的两直线平行.其中是“可换命题”的是______.(填命题的序号)答案①③解析由线面垂直的性质定理可知①是真命题,且垂直于同一直线的两平面平行也是真命题,故①是“可换命题”;因为垂直于同一平面的两平面可能平行或相交,所以②是假命题,不是“可换命题”;由公理4可知③是真命题,且平行于同一平面的两平面平行也是真命题,故③是“可换命题”;因为平行于同一平面的两条直线可能平行、相交或异面,故④是假命题,故④不是“可换命题”.10.在四面体A-BCD中,M,N分别是△ACD,△BCD的重心,则四面体的四个面中与MN平行的是________.答案平面ABD与平面ABC解析如图,取CD的中点E,连结AE,BE.则EM ∶MA =1∶2,EN ∶BN =1∶2, 所以MN ∥AB .所以MN ∥平面ABD ,MN ∥平面ABC .11.在三棱锥S -ABC 中,△ABC 是边长为6的正三角形,SA =SB =SC =15,平面DEFH 分别与AB ,BC ,SC ,SA 交于点D ,E ,F ,H .D ,E 分别是AB ,BC 的中点,如果直线SB ∥平面DEFH ,那么四边形DEFH 的面积为________. 答案452解析 如图,取AC 的中点G ,连结SG ,BG .易知SG ⊥AC ,BG ⊥AC ,SG ∩BG =G , 故AC ⊥平面SGB , 所以AC ⊥SB .因为SB ∥平面DEFH ,SB ⊂平面SAB ,平面SAB ∩平面DEFH =HD , 则SB ∥HD . 同理SB ∥FE .又D ,E 分别为AB ,BC 的中点, 则H ,F 也为AS ,SC 的中点, 从而得HF 綊12AC 綊DE ,所以四边形DEFH 为平行四边形. 又AC ⊥SB ,SB ∥HD ,DE ∥AC , 所以DE ⊥HD ,所以四边形DEFH 为矩形,其面积S =HF ·HD =(12AC )·(12SB )=452.12.如图,E 、F 、G 、H 分别是正方体ABCD -A 1B 1C 1D 1的棱BC 、CC 1、C 1D 1、AA 1的中点.求证:(1)EG ∥平面BB 1D 1D ; (2)平面BDF ∥平面B 1D 1H .证明 (1)取B 1D 1的中点O ,连结GO ,OB , ∵OG 綊12B 1C 1,BE 綊12BC ,∴OG 綊BE ,∴四边形BEGO 为平行四边形,故OB ∥EG , 又EG ⊄平面BB 1D 1D ,OB ⊂平面BB 1D 1D , ∴EG ∥平面BB 1D 1D . (2)由题意可知BD ∥B 1D 1.如图,连结HB 、D 1F ,易证四边形HBFD 1是平行四边形,故HD 1∥BF . 又B 1D 1∩HD 1=D 1,BD ∩BF =B ,所以平面BDF ∥平面B 1D 1H .13.(2016·贵州兴义八中月考)在如图所示的多面体ABCDEF 中,四边形ABCD 是边长为a 的菱形,且∠DAB =60°,DF =2BE =2a ,DF ∥BE ,DF ⊥平面ABCD .(1)在AF 上是否存在点G ,使得EG ∥平面ABCD ,请证明你的结论; (2)求该多面体的体积.解 (1)当点G 位于AF 中点时,有EG ∥平面ABCD .证明如下:取AF 的中点G ,AD 的中点H ,连结GH ,GE ,BH . 在△ADF 中,HG 为中位线, 故HG ∥DF 且HG =12DF .因为BE ∥DF 且BE =12DF ,所以BE 綊GH ,即四边形BEGH 为平行四边形, 所以EG ∥BH .因为BH ⊂平面ABCD ,EG ⊄平面ABCD , 所以EG ∥平面ABCD . (2)连结AC ,BD .因为DF ⊥平面ABCD ,底面ABCD 是菱形, 所以AC ⊥平面BDFE .所以该多面体可分割成两个以平面BDFE 为底面的等体积的四棱锥. 即V ABCDEF =V A -BDFE +V C -BDFE =2V A -BDFE =2×13×a +2a 2×a ×32a =32a 3.14.(2016·南通模拟)如图所示,斜三棱柱ABC -A1B 1C 1中,点D ,D 1分别为AC ,A 1C 1上的点.(1)当A 1D 1D 1C 1等于何值时,BC 1∥平面AB 1D 1? (2)若平面BC 1D ∥平面AB 1D 1,求AD DC的值. 解 (1)如图所示,取D 1为线段A 1C 1的中点,此时A 1D 1D 1C 1=1.连结A 1B ,交AB 1于点O ,连结OD 1.由棱柱的性质知,四边形A 1ABB 1为平行四边形, ∴点O 为A 1B 的中点.在△A 1BC 1中,点O ,D 1分别为A 1B ,A 1C 1的中点, ∴OD 1∥BC 1.又∵OD 1⊂平面AB 1D 1,BC 1⊄平面AB 1D 1, ∴BC 1∥平面AB 1D 1. ∴当A 1D 1D 1C 1=1时,BC 1∥平面AB 1D 1. (2)由平面BC 1D ∥平面AB 1D 1, 且平面A 1BC 1∩平面BC 1D =BC 1, 平面A 1BC 1∩平面AB 1D 1=D 1O , 得BC 1∥D 1O ,同理AD 1∥DC 1,∴A 1D 1D 1C 1=A 1O OB ,A 1D 1D 1C 1=DC AD, 又∵A 1O OB =1,∴DC AD =1,即AD DC =1.。

课标专用高考数学一轮复习第八章立体几何8.3直线平面平行的判定与性质文

课标专用高考数学一轮复习第八章立体几何8.3直线平面平行的判定与性质文
思路分析 (1)连接B1C,ME.证明四边形MNDE是平行四边形,得出MN∥DE,然后利用线面平行 的判定定理证出结论.(2)注意到DE⊥平面BCC1B1,只需过点C作C1E的垂线便可求解.
B组 自主命题·省(区、市)卷题组
1.(2019江苏,16,14分)如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC. 求证:(1)A1B1∥平面DEC1; (2)BE⊥C1E.
求d),由sin θ= d 得结论.
AB
最好是画出图形,否则容易出错.
3.(2016四川,17,12分)如图,在四棱锥P-ABCD中,PA⊥CD,AD∥BC,∠ADC=∠PAB=90°,BC=CD
= 1 AD.
2
(1)在平面PAD内找一点M,使得直线CM∥平面PAB,并说明理由; (2)证明:平面PAB⊥平面PBD.
证明 (1)证法一: 连接DG,CD,设CD∩GF=M,连接MH.
在三棱台DEF-ABC中, AB=2DE,G为AC的中点, 可得DF∥GC,DF=GC, 所以四边形DFCG为平行四边形. 则M为CD的中点,又H为BC的中点, 所以HM∥BD,
又HM⊂平面FGH,BD⊄平面FGH, 所以BD∥平面FGH. 证法二: 在三棱台DEF-ABC中, 由BC=2EF,H为BC的中点, 可得BH∥EF,BH=EF, 所以四边形HBEF为平行四边形, 可得BE∥HF. 在△ABC中,G为AC的中点,H为BC的中点, 所以GH∥AB. 又GH∩HF=H,AB∩BE=B, 所以平面FGH∥平面ABED. 因为BD⊂平面ABED, 所以BD∥平面FGH.
(2)证明:连接BM,由已知,PA⊥AB,PA⊥CD,
因为AD∥BC,BC= 1 AD,所以直线AB与CD相交,

2018版高考数学大一轮复习第八章立体几何8.4直线平面平行的判定与性质课件文新人教版

2018版高考数学大一轮复习第八章立体几何8.4直线平面平行的判定与性质课件文新人教版
(1)求证:AP∥平面BEF; 证明
(2)求证:GH∥平面PAD. 证明
连接FH,OH, ∵F,H分别是PC,CD的中点, ∴FH∥PD,∴FH∥平面PAD. 又∵O是BE的中点,H是CD的中点, ∴OH∥AD,∴OH∥平面PAD. 又FH∩OH=H,∴平面OHF∥平面PAD. 又∵GH⊂平面OHF,∴GH∥平面PAD.
连接BD,设BD∩AC=O,连接EO, 在△BDD1中,O为BD的中点, 所以EO为△BDD1的中位线, 则BD1∥EO,而BD1⊄平面ACE,EO⊂平面ACE, 所以BD1∥平面ACE.
5.过三棱柱ABC-A1B1C1任意两条棱的中点作直线,其中与平面ABB1A1 平行的直线共有__6__条. 答案 解析
2.设l,m为直线,α,β为平面,且l⊂α,m⊂β,则“l∩m=∅”是“α∥β”
的 答案 解析
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
当平面与平面平行时,两个平面内的直线没有交点, 故“l∩m=∅”是“α∥β”的必要条件; 当两个平面内的直线没有交点时,两个平面可以相交, ∴l∩m=∅是α∥β的必要不充分条件.
那么它们的 平行
α∥β α∩γ=a
∵β∩γ=b ,


∴a∥b
知识拓展
重要结论: (1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β; (2)垂直于同一个平面的两条直线平行,即若a⊥α,b⊥α,则a∥b; (3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.
思考辨析
各中点连线如图,只有面EFGH与面ABB1A1 平行,在四边形EFGH中有6条符合题意.
题型分类 深度剖析
题型一 直线与平面平行的判定与性质

2018版高考数学一轮复习 第八章 立体几何 第4讲 直线、平面平行的判定及其性质 理

2018版高考数学一轮复习 第八章 立体几何 第4讲 直线、平面平行的判定及其性质 理

第4讲直线、平面平行的判定及其性质一、选择题1.若直线m⊂平面α,则条件甲:“直线l∥α”是条件乙:“l∥m”的( ).A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件答案 D2.若直线a∥直线b,且a∥平面α,则b与α的位置关系是( )A.一定平行 B.不平行C.平行或相交 D.平行或在平面内解析直线在平面内的情况不能遗漏,所以正确选项为D.答案 D3.一条直线l上有相异三个点A、B、C到平面α的距离相等,那么直线l与平面α的位置关系是 ( ).A.l∥αB.l⊥αC.l与α相交但不垂直D.l∥α或l⊂α解析l∥α时,直线l上任意点到α的距离都相等;l⊂α时,直线l上所有的点到α的距离都是0;l⊥α时,直线l上有两个点到α距离相等;l与α斜交时,也只能有两个点到α距离相等.答案 D4.设m,n是平面α内的两条不同直线;l1,l2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是 ( ).A.m∥β且l1∥αB.m∥l1且n∥l2C.m∥β且n∥βD.m∥β且n∥l2解析对于选项A,不合题意;对于选项B,由于l1与l2是相交直线,而且由l1∥m可得l1∥α,同理可得l2∥α故可得α∥β,充分性成立,而由α∥β不一定能得到l1∥m,它们也可以异面,故必要性不成立,故选B;对于选项C,由于m,n不一定相交,故是必要非充分条件;对于选项D,由n∥l2可转化为n∥β,同选项C,故不符合题意,综上选B.答案 B5.已知α1,α2,α3是三个相互平行的平面,平面α1,α2之间的距离为d1,平面α2,α3之间的距离为d2.直线l与α1,α2,α3分别相交于P1,P2,P3.那么“P1P2=P2P3”是d2”的( ).“dA.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析如图所示,由于α2∥α3,同时被第三个平面P1P3N所截,故有P2M∥P3N.再根据平行线截线段成比例易知选C.答案 C6.下列四个正方体图形中,A、B为正方体的两个顶点,M、N、P分别为其所在棱的中点,能得出AB∥平面MNP的图形的序号是( ).A.①③B.②③C.①④D.②④解析对于图形①:平面MNP与AB所在的对角面平行,即可得到AB∥平面MNP,对于图形④:AB∥PN,即可得到AB∥平面MNP,图形②、③都不可以,故选C.答案 C二、填空题7.过三棱柱ABC-A1B1C1的任意两条棱的中点作直线,其中与平面ABB1A1平行的直线共有________条.解析过三棱柱ABC-A1B1C1的任意两条棱的中点作直线,记AC,BC,A1C1,B1C1的中点分别为E,F,E1,F1,则直线EF,E1F1,EE1,FF1,E1F,EF1均与平面ABB1A1平行,故符合题意的直线共6条.答案 68.α、β、γ是三个平面,a、b是两条直线,有下列三个条件:①a∥γ,b⊂β;②a∥γ,b∥β;③b∥β,a⊂γ.如果命题“α∩β=a,b⊂γ,且________,则a∥b”为真命题,则可以在横线处填入的条件是________(把所有正确的题号填上).解析①中,a∥γ,a⊂β,b⊂β,β∩γ=b⇒a∥b(线面平行的性质).③中,b∥β,b⊂γ,a⊂γ,β∩γ=a⇒a∥b(线面平行的性质).答案①③9.若m、n为两条不重合的直线,α、β为两个不重合的平面,则下列命题中真命题的序号是________.①若m 、n 都平行于平面α,则m 、n 一定不是相交直线;②若m 、n 都垂直于平面α,则m 、n 一定是平行直线;③已知α、β互相平行,m 、n 互相平行,若m ∥α,则n ∥β;④若m 、n 在平面α内的射影互相平行,则m 、n 互相平行.解析 ①为假命题,②为真命题,在③中,n 可以平行于β,也可以在β内,故是假命题,在④中,m 、n 也可能异面,故为假命题.答案 ②10.对于平面α与平面β,有下列条件:①α、β都垂直于平面γ;②α、β都平行于平面γ;③α内不共线的三点到β的距离相等;④l ,m 为两条平行直线,且l ∥α,m ∥β;⑤l ,m 是异面直线,且l ∥α,m ∥α;l ∥β,m ∥β,则可判定平面α与平面β平行的条件是________(填正确结论的序号).解析 由面面平行的判定定理及性质定理知,只有②⑤能判定α∥β.答案 ②⑤三、解答题11. 如图,在四面体A -BCD 中,F 、E 、H 分别是棱AB 、BD 、AC 的中点,G 为DE 的中点.证明:直线HG ∥平面CEF .证明 法一 如图,连接BH ,BH 与CF 交于K ,连接EK .∵F 、H 分别是AB 、AC 的中点,∴K 是△ABC 的重心,∴BK BH =23. 又据题设条件知,BE BG =23, ∴BK BH =BE BG,∴EK ∥GH .∵EK ⊂平面CEF ,GH ⊄平面CEF ,∴直线HG ∥平面CEF .法二 如图,取CD 的中点N ,连接GN 、HN .∵G 为DE 的中点,∴GN ∥CE .∵CE ⊂平面CEF ,GN ⊄平面CEF ,∴GN ∥平面CEF .连接FH ,EN∵F 、E 、H 分别是棱AB 、BD 、AC 的中点,∴FH 綉12BC ,EN 綉12BC ,∴FH 綉EN ,∴四边形FHNE 为平行四边形,∴HN ∥EF .∵EF ⊂平面CEF ,HN ⊄平面CEF ,∴HN ∥平面CEF .HN ∩GN =N ,∴平面GHN ∥平面CEF .∵GH ⊂平面GHN ,∴直线HG ∥平面CEF .12. 如图,已知ABCD -A 1B 1C 1D 1是棱长为3的正方体,点E在AA 1上,点F 在CC 1上,G 在BB 1上,且AE =FC 1=B 1G =1,H 是B 1C 1的中点.(1)求证:E ,B ,F ,D 1四点共面;(2)求证:平面A 1GH ∥平面BED 1F .证明 (1)∵AE =B 1G =1,∴BG =A 1E =2,∴BG 綉A 1E ,∴A 1G 綉BE .又同理,C 1F 綉B 1G ,∴四边形C 1FGB 1是平行四边形,∴FG 綉C 1B 1綉D 1A 1,∴四边形A 1GFD 1是平行四边形.∴A 1G 綉D 1F ,∴D 1F 綉EB ,故E 、B 、F 、D 1四点共面.(2)∵H 是B 1C 1的中点,∴B 1H =32.又B 1G =1,∴B 1G B 1H =23.又FC BC =23,且∠FCB =∠GB 1H =90°,∴△B 1HG ∽△CBF ,∴∠B 1GH =∠CFB =∠FBG ,∴HG ∥FB .又由(1)知A 1G ∥BE ,且HG ∩A 1G =G ,FB ∩BE =B ,∴平面A 1GH ∥平面BED 1F .13.一个多面体的直观图及三视图如图所示:(其中M 、N 分别是AF 、BC 的中点).(1)求证:MN ∥平面CDEF ;(2)求多面体A -CDEF 的体积.解 由三视图可知:AB =BC =BF =2,DE =CF =22,∠CBF =π2.(1)证明:取BF 的中点G ,连接MG 、NG ,由M 、N 分别为AF 、BC 的中点可得,NG ∥CF ,MG ∥EF ,∴平面MNG ∥平面CDEF ,又MN ⊂平面MNG ,∴MN ∥平面CDEF .(2)取DE 的中点H .∵AD =AE ,∴AH ⊥DE ,在直三棱柱ADE -BCF 中,平面ADE ⊥平面CDEF ,平面ADE ∩平面CDEF =DE .∴AH ⊥平面CDEF .∴多面体A -CDEF 是以AH 为高,以矩形CDEF 为底面的棱锥,在△ADE 中,AH = 2.S 矩形CDEF =DE ·EF =42,∴棱锥A -CDEF 的体积为V =13·S 矩形CDEF ·AH =13×42×2=83. 14.如图所示,四边形ABCD 为矩形,AD ⊥平面ABE ,AE =EB=BC ,F 为CE 上的点,且BF ⊥平面ACE .(1)求证:AE ⊥BE ;(2)设M 在线段AB 上,且满足AM =2MB ,试在线段CE 上确定一点N ,使得MN ∥平面DAE .(1)证明 ∵AD ⊥平面ABE ,AD ∥BC ,∴BC ⊥平面ABE ,又AE ⊂平面ABE ,则AE ⊥BC .又∵BF ⊥平面ACE ,AE ⊂平面ABE ,∴AE ⊥BF ,又BC ∩BF =B ,∴AE ⊥平面BCE ,又BE ⊂平面BCE ,∴AE ⊥BE .(2)解 在△ABE 中过M 点作MG ∥AE 交BE 于G 点,在△BEC 中过G 点作GN ∥BC 交EC 于N 点,连接MN ,则由比例关系易得CN =13CE .∵MG ∥AE ,MG ⊄平面ADE ,AE ⊂平面ADE ,∴MG ∥平面ADE .同理,GN ∥平面ADE .又∵GN ∩MG =G ,∴平面MGN ∥平面ADE .又MN ⊂平面MGN ,∴MN ∥平面ADE .∴N 点为线段CE 上靠近C 点的一个三等分点.。

18高考数学异构异模复习第八章立体几何8.4直线、平面垂直的判定与性质撬题理

18高考数学异构异模复习第八章立体几何8.4直线、平面垂直的判定与性质撬题理

2018高考数学异构异模复习考案 第八章 立体几何 8.4 直线、平面垂直的判定与性质撬题 理1.若空间中四条两两不同的直线l 1,l 2,l 3,l 4,满足l 1⊥l 2,l 2⊥l 3,l 3⊥l 4,则下列结论一定正确的是( )A .l 1⊥l 4B .l 1∥l 4C .l 1与l 4既不垂直也不平行D .l 1与l 4的位置关系不确定 答案 D解析 由l 1⊥l 2,l 2⊥l 3可知l 1与l 3的位置不确定, 若l 1∥l 3,则结合l 3⊥l 4,得l 1⊥l 4,所以排除选项B 、C ,若l 1⊥l 3,则结合l 3⊥l 4,知l 1与l 4可能不垂直,所以排除选项A.故选D.2.如下图,三棱锥P -ABC 中,PC ⊥平面ABC ,PC =3,∠ACB =π2.D ,E 分别为线段AB ,BC 上的点,且CD =DE =2,CE =2EB =2.(1)证明:DE ⊥平面PCD ; (2)求二面角A -PD -C 的余弦值.解 (1)证明:由PC ⊥平面ABC ,DE ⊂平面ABC , 故PC ⊥DE .由CE =2,CD =DE =2,得△CDE 为等腰直角三角形,故CD ⊥DE . 由PC ∩CD =C ,DE 垂直于平面PCD 内两条相交直线,故DE ⊥平面PCD .(2)由(1)知,△CDE 为等腰直角三角形,∠DCE =π4.如下图,过D 作DF 垂直CE 于F ,易知DF =FC =FE =1,又已知EB =1,故FB =2.由∠ACB =π2得DF ∥AC ,DF AC =FB BC =23,故AC =32DF =32.以C 为坐标原点,分别以CA →,CB →,CP →的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,则C (0,0,0),P (0,0,3),A ⎝ ⎛⎭⎪⎫32,0,0,E (0,2,0),D (1,1,0),ED →=(1,-1,0),DP →=(-1,-1,3),DA →=⎝ ⎛⎭⎪⎫12,-1,0.设平面PAD 的法向量为n 1=(x 1,y 1,z 1),由n 1·DP →=0,n 1·DA →=0, 得⎩⎪⎨⎪⎧-x 1-y 1+3z 1=0,12x 1-y 1=0,故可取n 1=(2,1,1).由(1)可知DE ⊥平面PCD ,故平面PCD 的法向量n 2可取为ED →,即n 2=(1,-1,0),从而法向量n 1,n 2的夹角的余弦值为cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=36,故所求二面角A -PD -C 的余弦值为36. 3.如图,在四棱锥A -EFCB 中,△AEF 为等边三角形,平面AEF ⊥平面EFCB ,EF ∥BC ,BC =4,EF =2a ,∠EBC =∠FCB =60°,O 为EF 的中点.(1)求证:AO ⊥BE ;(2)求二面角F -AE -B 的余弦值; (3)若BE ⊥平面AOC ,求a 的值.解 (1)证明:因为△AEF 是等边三角形,O 为EF 的中点,所以AO ⊥EF . 又因为平面AEF ⊥平面EFCB ,AO ⊂平面AEF , 所以AO ⊥平面EFCB .所以AO ⊥BE .(2)取BC 中点G ,连接OG . 由题设知EFCB 是等腰梯形, 所以OG ⊥EF .由(1)知AO ⊥平面EFCB , 又OG ⊂平面EFCB , 所以OA ⊥OG .如右图建立空间直角坐标系O -xyz ,则E (a,0,0),A (0,0,3a ),B (2,3(2-a ),0),EA →=(-a,0,3a ),BE →=(a -2,3(a -2),0).设平面AEB 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·EA →=0,n ·BE →=0,即⎩⎨⎧-ax +3az =0, a -2 x +3 a -2 y =0.令z =1,则x =3,y =-1.于是n =(3,-1,1). 平面AEF 的法向量为p =(0,1,0).所以cos 〈n ,p 〉=n ·p |n ||p |=-55.由题知二面角F -AE -B 为钝角,所以它的余弦值为-55. (3)因为BE ⊥平面AOC ,所以BE ⊥OC ,即BE →·OC →=0.因为BE →=(a -2,3(a -2),0),OC →=(-2,3(2-a ),0), 所以BE →·OC →=-2(a -2)-3(a -2)2. 由BE →·OC →=0及0<a <2,解得a =43.4.如图1,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =1,AD =2,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到△A1BE 的位置,如图2.(1)证明:CD ⊥平面A 1OC ;(2)若平面A 1BE ⊥平面BCDE ,求平面A 1BC 与平面A 1CD 夹角的余弦值. 解 (1)证明:在图1中,因为AB =BC =1,AD =2,E 是AD 的中点,∠BAD =π2,所以BE ⊥AC .即在图2中,BE ⊥OA 1,BE ⊥OC ,从而BE ⊥平面A 1OC , 又CD ∥BE , 所以CD ⊥平面A 1OC .(2)由已知,平面A 1BE ⊥平面BCDE , 又由(1)知,BE ⊥OA 1,BE ⊥OC ,所以∠A 1OC 为二面角A 1-BE -C 的平面角, 所以∠A 1OC =π2.如下图,以O 为原点,建立空间直角坐标系,因为A 1B =A 1E =BC =ED =1,BC ∥ED , 所以B ⎝⎛⎭⎪⎫22,0,0,E ⎝ ⎛⎭⎪⎫-22,0,0,A 1⎝ ⎛⎭⎪⎫0,0,22,C ⎝ ⎛⎭⎪⎫0,22,0,得BC →=⎝ ⎛⎭⎪⎫-22,22,0,A 1C →=⎝⎛⎭⎪⎫0,22,-22,CD →=BE →=(-2,0,0).设平面A 1BC 的法向量n 1=(x 1,y 1,z 1),平面A 1CD 的法向量n 2=(x 2,y 2,z 2),平面A 1BC 与平面A 1CD 夹角为θ,则⎩⎪⎨⎪⎧ n 1·BC →=0,n 1·A 1C →=0,得⎩⎪⎨⎪⎧-x 1+y 1=0,y 1-z 1=0,取n 1=(1,1,1);⎩⎪⎨⎪⎧n 2·CD →=0,n 2·A 1C →=0,得⎩⎪⎨⎪⎧x 2=0,y 2-z 2=0,取n 2=(0,1,1),从而cos θ=|cos 〈n 1,n 2〉|=23×2=63, 即平面A 1BC 与平面A 1CD 夹角的余弦值为63.5.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马P -ABCD 中,侧棱PD ⊥底面ABCD ,且PD =CD ,过棱PC 的中点E ,作EF ⊥PB 交PB 于点F ,连接DE ,DF ,BD ,BE .(1)证明:PB ⊥平面DEF .试判断四面体DBEF 是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;(2)若面DEF 与面ABCD 所成二面角的大小为π3,求DCBC 的值.解 (1)证明:因为PD ⊥底面ABCD ,所以PD ⊥BC , 由底面ABCD 为长方形,有BC ⊥CD ,而PD ∩CD =D , 所以BC ⊥平面PCD .而DE ⊂平面PCD ,所以BC ⊥DE . 又因为PD =CD ,点E 是PC 的中点,所以DE ⊥PC .而PC ∩BC =C ,所以DE ⊥平面PBC .而PB ⊂平面PBC ,所以PB ⊥DE . 又PB ⊥EF ,DE ∩EF =E ,所以PB ⊥平面DEF .由DE ⊥平面PBC ,PB ⊥平面DEF ,可知四面体BDEF 的四个面都是直角三角形, 即四面体BDEF 是一个鳖臑,其四个面的直角分别为∠DEB ,∠DEF ,∠EFB ,∠DFB . (2)如图,在面PBC 内,延长BC 与FE 交于点G ,则DG 是平面DEF 与平面ABCD 的交线.由(1)知,PB ⊥平面DEF ,所以PB ⊥DG .又因为PD ⊥底面ABCD ,所以PD ⊥DG . 而PD ∩PB =P ,所以DG ⊥平面PBD .故∠BDF 是面DEF 与面ABCD 所成二面角的平面角,设PD =DC =1,BC =λ,有BD =1+λ2, 在Rt △PDB 中,由DF ⊥PB ,得∠DPF =∠FDB =π3,则tan π3=tan ∠DPF =BD PD=1+λ2=3,解得λ= 2.所以DC BC =1λ=22.故当面DEF 与面ABCD 所成二面角的大小为π3时,DC BC =22.6.如图,四棱锥P -ABCD 中,底面ABCD 为平行四边形,∠DAB =60°,AB =2,AD =1,PD ⊥底面ABCD .(1)证明:PA ⊥BD ;(2)若PD =AD ,求二面角A -PB -C 的余弦值.解 (1)证明:因为∠DAB =60°,AB =2AD =2,由余弦定理得BD = 3. 从而BD 2+AD 2=AB 2, ∴BD ⊥AD .∵PD ⊥平面ABCD ,BD ⊂平面ABCD , ∴PD ⊥BD . 又AD ∩PD =D , 所以BD ⊥平面PAD , 所以PA ⊥BD .(2)如图,以D 为坐标原点,DA ,DB ,DP 分别为x ,y ,z 的正半轴建立空间直角坐标系D -xyz .则A (1,0,0),B (0,3,0),C (-1,3,0),P (0,0,1),AB →=(-1,3,0),PB →=(0,3,-1),BC →=(-1,0,0),设平面PAB 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n · AB →=0,n ·PB →=0,即⎩⎨⎧-x +3y =0,3y -z =0,因此,令y =1,则n =(3,1,3). 设平面PBC 的法向量为m =(x 0,y 0,z 0), 则⎩⎪⎨⎪⎧m ·PB →=0,m ·BC →=0,即⎩⎨⎧3y 0-z 0=0,-x 0=0,可取m =(0,1,3), 则cos 〈m ,n 〉=m ·n |m ||n |=427=277, 由图知二面角A -PB -C 为钝角,故二面角A -PB -C 的余弦值为-277.7.如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,∠DPC =30°,AF ⊥PC 于点F ,FE ∥CD ,交PD 于点E .(1)证明:CF ⊥平面ADF ; (2)求二面角D -AF -E 的余弦值. 解 (1)证明:∵PD ⊥平面ABCD , ∴PD ⊥AD ,又CD ⊥AD ,PD ∩CD =D , ∴AD ⊥平面PCD ,∴AD ⊥PC , 又AF ⊥PC ,AF ∩AD =A ,∴PC ⊥平面ADF ,即CF ⊥平面ADF . (2)设AB =1,则Rt △PDC 中,CD =1, ∵∠DPC =30°,∴PC =2,PD =3,由(1)知CF ⊥DF , ∴DF =32,∴CF =12,又FE ∥CD ,∴DE PD =CF PC =14,∴DE =34,同理,EF =34,如图所示,以D 为原点,建立空间直角坐标系,则A (0,0,1),E ⎝⎛⎭⎪⎫34,0,0,F ⎝ ⎛⎭⎪⎫34,34,0,P (3,0,0),C (0,1,0). 设m =(x ,y ,z )是平面AEF 的法向量,则⎩⎪⎨⎪⎧m ⊥AE →,m ⊥EF →,又⎩⎨⎧AE →=⎝ ⎛⎭⎪⎫34,0,-1,EF →=⎝ ⎛⎭⎪⎫0,34,0,∴⎩⎨⎧m ·AE →=34x -z =0,m ·EF →=34y =0,令x =4,得z =3,故m =(4,0,3),由(1)知平面ADF 的一个法向量为PC →=(-3,1,0),设二面角D -AF -E 的平面角为θ,可知θ为锐角,cos θ=|cos 〈m ,PC →〉|=|m ·PC →||m |·|PC →|=4319×2=25719,故二面角D -AF -E 的余弦值为257.198.如图,在三棱柱ABC-A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=BC=2,AC⊥BC,点S是AA1延长线上一点,EF是平面SBC与平面A1B1C1的交线.(1)求证:EF⊥AC1;(2)求直线A1C与平面A1ABB1所成角的正弦值.解(1)证明:在三棱柱ABC-A1B1C1中,平面ABC∥平面A1B1C1,又平面ABC∩平面SBC=BC,平面A1B1C1∩平面SBC=EF,∴EF∥BC.∵平面AA1C1C⊥平面ABC,且AC⊥BC,∴BC⊥平面ACC1A1.又AC1⊂平面ACC1A1,∴BC⊥AC1,∴EF⊥AC1.(2)取A1C1的中点D1,连CD1,∵AA1=A1C=AC=2,∴CC1=A1C=A1C1=2,∴CD1⊥A1C1.由(1)知BC⊥平面ACC1A1.以点C为原点,CA,CB、CD1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系,则B(0,2,0),C(0,0,0),A1(1,0,3),A(2,0,0).11 ∴A 1C →=(-1,0,-3).设平面A 1ABB 1的法向量为n ,则n ·AA 1→=n ·AB →=0,而AA 1→=(-1,0,3),AB →=(-2,2,0), 可求得平面A 1ABB 1的一个法向量为n =(3,3,3),∴|cos 〈A 1C →,n 〉|=|n ·A 1C →||n |·|A 1C →|=6221=217.故直线A 1C 与平面A 1ABB 1所成角的正弦值为217.。

2018高考数学异构异模复习 第八章 立体几何 8.4 直线、平面垂直的判定与性质撬题 文

2018高考数学异构异模复习 第八章 立体几何 8.4 直线、平面垂直的判定与性质撬题 文

2018高考数学异构异模复习考案 第八章 立体几何 8.4 直线、平面垂直的判定与性质撬题 文1.若空间中四条两两不同的直线l 1,l 2,l 3,l 4,满足l 1⊥l 2,l 2⊥l 3,l 3⊥l 4,则下列结论一定正确的是( )A .l 1⊥l 4B .l 1∥l 4C .l 1与l 4既不垂直也不平行D .l 1与l 4的位置关系不确定 答案 D解析 由l 1⊥l 2,l 2⊥l 3可知l 1与l 3的位置不确定, 若l 1∥l 3,则结合l 3⊥l 4,得l 1⊥l 4,所以排除选项B 、C ,若l 1⊥l 3,则结合l 3⊥l 4,知l 1与l 4可能不垂直,所以排除选项A.故选D.2.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.在如图所示的阳马P -ABCD 中,侧棱PD ⊥底面ABCD ,且PD =CD ,点E 是PC 的中点,连接DE ,BD ,BE .(1)证明:DE ⊥平面PBC .试判断四面体EBCD 是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,请说明理由;(2)记阳马P -ABCD 的体积为V 1,四面体EBCD 的体积为V 2,求V 1V 2的值. 解 (1)证明:因为PD ⊥底面ABCD ,所以PD ⊥BC . 由底面ABCD 为长方形,有BC ⊥CD ,而PD ∩CD =D , 所以BC ⊥平面PCD .DE ⊂平面PCD ,所以BC ⊥DE . 又因为PD =CD ,点E 是PC 的中点,所以DE ⊥PC . 而PC ∩BC =C ,所以DE ⊥平面PBC .由BC ⊥平面PCD ,DE ⊥平面PBC ,可知四面体EBCD 的四个面都是直角三角形, 即四面体EBCD 是一个鳖臑,其四个面的直角分别是∠BCD ,∠BCE ,∠DEC ,∠DEB . (2)由已知,PD 是阳马P -ABCD 的高, 所以V 1=13S ABCD ·PD =13BC ·CD ·PD ;由(1)知,DE 是鳖臑D -BCE 的高,BC ⊥CE , 所以V 2=13S △BCE ·DE =16BC ·CE ·DE .在Rt △PDC 中,因为PD =CD ,点E 是PC 的中点, 所以DE =CE =22CD , 于是V 1V 2=13BC ·CD ·PD 16BC ·CE ·DE =2CD ·PD CE ·DE=4.3.如图,在三棱锥V -ABC 中,平面VAB ⊥平面ABC ,△VAB 为等边三角形,AC ⊥BC 且AC =BC =2,O ,M 分别为AB,VA 的中点.(1)求证:VB ∥平面MOC ; (2)求证:平面MOC ⊥平面VAB ; (3)求三棱锥V-ABC 的体积.解 (1)证明:如图,因为O ,M 分别为AB ,VA 的中点,所以OM ∥VB . 又因为VB ⊄平面MOC , 所以VB ∥平面MOC .(2)证明:因为AC =BC ,O 为AB 的中点,所以OC ⊥AB .又因为平面VAB ⊥平面ABC ,且OC ⊂平面ABC ,所以OC ⊥平面VAB . 所以平面MOC ⊥平面VAB .(3)在等腰直角三角形ACB 中,AC =BC =2,所以AB =2,OC =1,所以S △VAB =3,又因为OC ⊥平面VAB ,所以V C -VAB =13OC ·S △VAB =33.又因为三棱锥V -ABC 的体积与三棱锥C -VAB 的体积相等,所以三棱锥V -ABC 的体积为33. 4.如图1,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =12AD =a ,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到图2中△A 1BE 的位置,得到四棱锥A 1-BCDE .(1)证明:CD ⊥平面A 1OC ;(2)当平面A 1BE ⊥平面BCDE 时,四棱锥A 1-BCDE 的体积为362,求a 的值. 解 (1)证明:在题图1中,因为AB =BC =12AD =a ,E 是AD 的中点,∠BAD =π2,所以BE ⊥AC .即在题图2中,BE ⊥A 1O ,BE ⊥OC , 从而BE ⊥平面A 1OC ,又CD ∥BE ,所以CD ⊥平面A 1OC . (2)由已知,平面A 1BE ⊥平面BCDE , 且平面A 1BE ∩平面BCDE =BE ,又由(1),A 1O ⊥BE ,所以A 1O ⊥平面BCDE , 即A 1O 是四棱锥A 1-BCDE 的高. 由题图1知,A 1O =22AB =22a ,平行四边形BCDE 的面积S =BC ·AB =a 2. 从而四棱锥A 1-BCDE 的体积为V =13×S ×A 1O =13×a 2×22a =26a 3,由26a 3=362,得a =6.5.如图,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面ABCD .(1)证明:平面AEC ⊥平面BED ;(2)若∠ABC =120°,AE ⊥EC ,三棱锥E -ACD 的体积为63,求该三棱锥的侧面积. 解 (1)证明:因为四边形ABCD 为菱形,所以AC ⊥BD . 因为BE ⊥平面ABCD ,所以AC ⊥BE .故AC ⊥平面BED . 又AC ⊂平面AEC ,所以平面AEC ⊥平面BED .(2)设AB =x ,在菱形ABCD 中,由∠ABC =120°,可得AG =GC =32x ,GB =GD =x 2. 因为AE ⊥EC ,所以在Rt △AEC 中,可得EG =32x . 由BE ⊥平面ABCD ,知△EBG 为直角三角形,可得BE =22x . 由已知得,三棱锥E -ACD 的体积V E -ACD =13×12AC ·GD ·BE =624x 3=63,故x =2.从而可得AE =EC =ED = 6.所以△EAC 的面积为3,△EAD 的面积与△ECD 的面积均为 5. 故三棱锥E -ACD 的侧面积为3+2 5.6.如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,底面ABCD 是菱形,点O 是对角线AC 与BD 的交点,M 是PD 的中点,且AB =2,∠BAD =60°.(1)求证:OM ∥平面PAB ; (2)求证:平面PBD ⊥平面PAC ;(3)当三棱锥M -BCD 的体积等于34时,求PB 的长. 解 (1)证明:因为在△PBD 中,O ,M 分别是BD ,PD 的中点,所以OM 是△PBD 的中位线,所以OM ∥PB ,又OM ⊄平面PAB ,PB ⊂平面PAB , 所以OM ∥平面PAB .(2)证明:因为PA ⊥平面ABCD ,BD ⊂平面ABCD ,所以PA ⊥BD . 因为底面ABCD 是菱形,所以BD ⊥AC , 又AC ⊂平面PAC ,PA ⊂平面PAC ,AC ∩PA =A , 所以BD ⊥平面PAC .因为BD ⊂平面PBD ,所以平面PBD ⊥平面PAC . (3)因为底面ABCD 是菱形,M 是PD 的中点, 所以VM -BCD =12V M -ABCD =14V P -ABCD ,故V P -ABCD = 3.又AB =2,∠BAD =60°,所以S 四边形ABCD =2 3. 因为四棱锥P -ABCD 的高为PA , 所以13×23×PA =3,得PA =32,因为PA ⊥平面ABCD ,AB ⊂平面ABCD ,所以PA ⊥AB . 在Rt △PAB 中,PB =PA 2+AB 2=⎝ ⎛⎭⎪⎫322+22=52.7.如图,四棱锥P -ABCD 中,底面是以O 为中心的菱形,PO ⊥底面ABCD ,AB =2,∠BAD =π3,M 为BC 上一点,且BM =12.(1)证明:BC ⊥平面POM ;(2)若MP ⊥AP ,求四棱锥P -ABMO 的体积.解(1)证明:如图,连接OB ,因为ABCD 为菱形,O 为菱形的中心,所以AO ⊥OB .因为∠BAD =π3,所以OB =AB ·sin∠OAB =2sin π6=1,又因为BM =12,且∠OBM =π3,所以在△OBM 中,OM 2=OB 2+BM 2-2OB ·BM ·cos∠OBM =12+⎝ ⎛⎭⎪⎫122-2×1×12×cos π3=34.所以OB 2=OM 2+BM 2,故OM ⊥BM ,即OM ⊥BC . 又PO ⊥底面ABCD ,所以PO ⊥BC .从而BC 与平面POM 内两条相交直线OM ,PO 都垂直,所以BC ⊥平面POM . (2)由(1)可得,OA =AB ·cos∠OAB =2·cos π6= 3.设PO =a ,由PO ⊥底面ABCD 知,△POA 为直角三角形, 故PA 2=PO 2+OA 2=a 2+3.又△POM 也是直角三角形,故PM 2=PO 2+OM 2=a 2+34.连接AM ,在△ABM 中,AM 2=AB 2+BM 2-2AB ·BM ·cos∠ABM =22+⎝ ⎛⎭⎪⎫122-2×2×12×cos2π3=214. 由于MP ⊥AP ,故△APM 为直角三角形,则PA 2+PM 2=AM 2,即a 2+3+a 2+34=214,得a =32或a =-32(舍去),即PO =32. 此时S 四边形ABMO =S △AOB +S △OMB =12·AO ·OB +12·BM ·OM =12×3×1+12×12×32=538.所以V P -ABMO =13·S 四边形ABMO ·PO =13×538×32=516.8.如图,△ABC 和△BCD 所在平面互相垂直,且AB =BC =BD =2,∠ABC =∠DBC =120°,E ,F ,G 分别为AC ,DC ,AD 的中点.(1)求证:EF ⊥平面BCG ;(2)求三棱锥D -BCG 的体积.附:锥体的体积公式V =13Sh ,其中S 为底面面积,h 为高.解(1)证明:由已知得△ABC ≌△DBC . 因此AC =DC .又G 为AD 的中点, 所以CG ⊥AD . 同理BG ⊥AD , 因此AD ⊥平面BGC . 又EF ∥AD , 所以EF ⊥平面BCG .(2)在平面ABC 内,作AO ⊥CB, 交CB 延长线于O . 由平面ABC ⊥平面BCD ,知AO ⊥平面BDC .又G 为AD 中点,因此G 到平面BDC 的距离h 是AO 长度的一半. 在△AOB 中,AO =AB ·sin60°=3,所以V D -BCG =V G -BCD =13·S △DBC ·h =13·12·BD ·BC ·sin120°·32=12.。

【中小学资料】2018版高考数学一轮复习 第八章 立体几何 第4讲 直线、平面平行的判定及其性质 理

【中小学资料】2018版高考数学一轮复习 第八章 立体几何 第4讲 直线、平面平行的判定及其性质 理

第4讲直线、平面平行的判定及其性质一、选择题1.若直线m⊂平面α,则条件甲:“直线l∥α”是条件乙:“l∥m”的( ).A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件答案 D2.若直线a∥直线b,且a∥平面α,则b与α的位置关系是( )A.一定平行 B.不平行C.平行或相交 D.平行或在平面内解析直线在平面内的情况不能遗漏,所以正确选项为D.答案 D3.一条直线l上有相异三个点A、B、C到平面α的距离相等,那么直线l与平面α的位置关系是 ( ).A.l∥αB.l⊥αC.l与α相交但不垂直D.l∥α或l⊂α解析l∥α时,直线l上任意点到α的距离都相等;l⊂α时,直线l上所有的点到α的距离都是0;l⊥α时,直线l上有两个点到α距离相等;l与α斜交时,也只能有两个点到α距离相等.答案 D4.设m,n是平面α内的两条不同直线;l1,l2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是 ( ).A.m∥β且l1∥αB.m∥l1且n∥l2C.m∥β且n∥βD.m∥β且n∥l2解析对于选项A,不合题意;对于选项B,由于l1与l2是相交直线,而且由l1∥m可得l1∥α,同理可得l2∥α故可得α∥β,充分性成立,而由α∥β不一定能得到l1∥m,它们也可以异面,故必要性不成立,故选B;对于选项C,由于m,n不一定相交,故是必要非充分条件;对于选项D,由n∥l2可转化为n∥β,同选项C,故不符合题意,综上选B.答案 B5.已知α1,α2,α3是三个相互平行的平面,平面α1,α2之间的距离为d1,平面α2,α3之间的距离为d2.直线l与α1,α2,α3分别相交于P1,P2,P3.那么“P1P2=P2P3”是d2”的( ).“dA.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析如图所示,由于α2∥α3,同时被第三个平面P1P3N所截,故有P2M∥P3N.再根据平行线截线段成比例易知选C.答案 C6.下列四个正方体图形中,A、B为正方体的两个顶点,M、N、P分别为其所在棱的中点,能得出AB∥平面MNP的图形的序号是( ).A.①③B.②③C.①④D.②④解析对于图形①:平面MNP与AB所在的对角面平行,即可得到AB∥平面MNP,对于图形④:AB∥PN,即可得到AB∥平面MNP,图形②、③都不可以,故选C.答案 C二、填空题7.过三棱柱ABC-A1B1C1的任意两条棱的中点作直线,其中与平面ABB1A1平行的直线共有________条.解析过三棱柱ABC-A1B1C1的任意两条棱的中点作直线,记AC,BC,A1C1,B1C1的中点分别为E,F,E1,F1,则直线EF,E1F1,EE1,FF1,E1F,EF1均与平面ABB1A1平行,故符合题意的直线共6条.答案 68.α、β、γ是三个平面,a、b是两条直线,有下列三个条件:①a∥γ,b⊂β;②a∥γ,b∥β;③b∥β,a⊂γ.如果命题“α∩β=a,b⊂γ,且________,则a∥b”为真命题,则可以在横线处填入的条件是________(把所有正确的题号填上).解析①中,a∥γ,a⊂β,b⊂β,β∩γ=b⇒a∥b(线面平行的性质).③中,b∥β,b⊂γ,a⊂γ,β∩γ=a⇒a∥b(线面平行的性质).答案①③9.若m、n为两条不重合的直线,α、β为两个不重合的平面,则下列命题中真命题的序号是________.①若m 、n 都平行于平面α,则m 、n 一定不是相交直线;②若m 、n 都垂直于平面α,则m 、n 一定是平行直线;③已知α、β互相平行,m 、n 互相平行,若m ∥α,则n ∥β;④若m 、n 在平面α内的射影互相平行,则m 、n 互相平行.解析 ①为假命题,②为真命题,在③中,n 可以平行于β,也可以在β内,故是假命题,在④中,m 、n 也可能异面,故为假命题.答案 ②10.对于平面α与平面β,有下列条件:①α、β都垂直于平面γ;②α、β都平行于平面γ;③α内不共线的三点到β的距离相等;④l ,m 为两条平行直线,且l ∥α,m ∥β;⑤l ,m 是异面直线,且l ∥α,m ∥α;l ∥β,m ∥β,则可判定平面α与平面β平行的条件是________(填正确结论的序号).解析 由面面平行的判定定理及性质定理知,只有②⑤能判定α∥β.答案 ②⑤三、解答题11. 如图,在四面体A -BCD 中,F 、E 、H 分别是棱AB 、BD 、AC 的中点,G 为DE 的中点.证明:直线HG ∥平面CEF .证明 法一 如图,连接BH ,BH 与CF 交于K ,连接EK .∵F 、H 分别是AB 、AC 的中点,∴K 是△ABC 的重心,∴BK BH =23. 又据题设条件知,BE BG =23, ∴BK BH =BE BG,∴EK ∥GH .∵EK ⊂平面CEF ,GH ⊄平面CEF ,∴直线HG ∥平面CEF .法二 如图,取CD 的中点N ,连接GN 、HN .∵G 为DE 的中点,∴GN ∥CE .∵CE ⊂平面CEF ,GN ⊄平面CEF ,∴GN ∥平面CEF .连接FH ,EN∵F 、E 、H 分别是棱AB 、BD 、AC 的中点,∴FH 綉12BC ,EN 綉12BC ,∴FH 綉EN ,∴四边形FHNE 为平行四边形,∴HN ∥EF .∵EF ⊂平面CEF ,HN ⊄平面CEF ,∴HN ∥平面CEF .HN ∩GN =N ,∴平面GHN ∥平面CEF .∵GH ⊂平面GHN ,∴直线HG ∥平面CEF .12. 如图,已知ABCD -A 1B 1C 1D 1是棱长为3的正方体,点E在AA 1上,点F 在CC 1上,G 在BB 1上,且AE =FC 1=B 1G =1,H 是B 1C 1的中点.(1)求证:E ,B ,F ,D 1四点共面;(2)求证:平面A 1GH ∥平面BED 1F .证明 (1)∵AE =B 1G =1,∴BG =A 1E =2,∴BG 綉A 1E ,∴A 1G 綉BE .又同理,C 1F 綉B 1G ,∴四边形C 1FGB 1是平行四边形,∴FG 綉C 1B 1綉D 1A 1,∴四边形A 1GFD 1是平行四边形.∴A 1G 綉D 1F ,∴D 1F 綉EB ,故E 、B 、F 、D 1四点共面.(2)∵H 是B 1C 1的中点,∴B 1H =32.又B 1G =1,∴B1G B 1H =23.又FC BC =23,且∠FCB =∠GB 1H =90°,∴△B 1HG ∽△CBF ,∴∠B 1GH =∠CFB =∠FBG ,∴HG ∥FB .又由(1)知A 1G ∥BE ,且HG ∩A 1G =G ,FB ∩BE =B ,∴平面A 1GH ∥平面BED 1F .13.一个多面体的直观图及三视图如图所示:(其中M 、N 分别是AF 、BC 的中点).(1)求证:MN ∥平面CDEF ;(2)求多面体A -CDEF 的体积.解 由三视图可知:AB =BC =BF =2,DE =CF =22,∠CBF =π2.(1)证明:取BF 的中点G ,连接MG 、NG ,由M 、N 分别为AF 、BC 的中点可得,NG ∥CF ,MG ∥EF ,∴平面MNG ∥平面CDEF ,又MN ⊂平面MNG ,∴MN ∥平面CDEF .(2)取DE 的中点H .∵AD =AE ,∴AH ⊥DE ,在直三棱柱ADE -BCF 中,平面ADE ⊥平面CDEF ,平面ADE ∩平面CDEF =DE .∴AH ⊥平面CDEF .∴多面体A -CDEF 是以AH 为高,以矩形CDEF 为底面的棱锥,在△ADE 中,AH = 2.S 矩形CDEF =DE ·EF =42,∴棱锥A -CDEF 的体积为V =13·S 矩形CDEF ·AH =13×42×2=83. 14.如图所示,四边形ABCD 为矩形,AD ⊥平面ABE ,AE =EB=BC ,F 为CE 上的点,且BF ⊥平面ACE .(1)求证:AE ⊥BE ;(2)设M 在线段AB 上,且满足AM =2MB ,试在线段CE 上确定一点N ,使得MN ∥平面DAE .(1)证明 ∵AD ⊥平面ABE ,AD ∥BC ,∴BC ⊥平面ABE ,又AE ⊂平面ABE ,则AE ⊥BC .又∵BF ⊥平面ACE ,AE ⊂平面ABE ,∴AE ⊥BF ,又BC ∩BF =B ,∴AE ⊥平面BCE ,又BE ⊂平面BCE ,∴AE ⊥BE .(2)解 在△ABE 中过M 点作MG ∥AE 交BE 于G 点,在△BEC 中过G 点作GN ∥BC 交EC 于N 点,连接MN ,则由比例关系易得CN =13CE .∵MG ∥AE ,MG ⊄平面ADE ,AE ⊂平面ADE ,∴MG ∥平面ADE .同理,GN ∥平面ADE .又∵GN ∩MG =G ,∴平面MGN ∥平面ADE .又MN ⊂平面MGN ,∴MN ∥平面ADE .∴N 点为线段CE 上靠近C 点的一个三等分点.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018高考数学异构异模复习考案 第八章 立体几何 8.3 直线、平面平行的判定与性质撬题 理1.已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是( ) A .若α,β垂直于同一平面,则α与β平行 B .若m ,n 平行于同一平面,则m 与n 平行C .若α,β不平行,则在α内不存在与β平行的直线D .若m ,n 不平行,则m 与n 不可能垂直于同一平面 答案 D解析 A 中,垂直于同一个平面的两个平面可能相交也可能平行,故A 错误;B 中,平行于同一个平面的两条直线可能平行、相交或异面,故B 错误;C 中,若两个平面相交,则一个平面内与交线平行的直线一定和另一个平面平行,故C 错误;D 中,若两条直线垂直于同一个平面,则这两条直线平行,所以若两条直线不平行,则它们不可能垂直于同一个平面,故D 正确.2.如图所示,在多面体A 1B 1D 1DCBA 中,四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,E 为B 1D 1的中点,过A 1,D ,E 的平面交CD 1于F.(1)证明:EF ∥B 1C ;(2)求二面角E -A 1D -B 1的余弦值.解 (1)证明:由正方形的性质可知A 1B 1∥AB ∥DC ,且A 1B 1=AB =DC ,所以四边形A 1B 1CD 为平行四边形,从而B 1C ∥A 1D ,又A 1D ⊂面A 1DE ,B 1C ⊄面A 1DE ,于是B 1C ∥面A 1DE .又B 1C ⊂面B 1CD 1,面A 1DE ∩面B 1CD 1=EF ,所以EF ∥B 1C .(2)因为四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,所以AA 1⊥AB ,AA 1⊥AD ,AB ⊥AD 且AA 1=AB =AD ,以A 为原点,分别以AB →,AD →,AA 1→为x 轴,y 轴和z 轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标A (0,0,0),B (1,0,0),D (0,1,0),A 1(0,0,1),B 1(1,0,1),D 1(0,1,1),而E 点为B 1D 1的中点,所以E 点的坐标为(0.5,0.5,1).设面A 1DE 的法向量n 1=(r 1,s 1,t 1),而该面上向量A 1E →=(0.5,0.5,0),A 1D →=(0,1,-1),由n 1⊥A 1E →,n 1⊥A 1D →得⎩⎪⎨⎪⎧0.5r 1+0.5s 1=0,s 1-t 1=0,(-1,1,1)为其一组解,所以可取n 1=(-1,1,1).设面A 1B 1CD 的法向量n 2=(r 2,s 2,t 2),而该面上向量A 1B 1→=(1,0,0),A 1D →=(0,1,-1),由此同理可得n 2=(0,1,1).所以结合图形知二面角E -A 1D -B 1的余弦值为|n 1·n 2||n 1|·|n 2|=23×2=63.3.如图,在几何体ABCDE 中,四边形ABCD 是矩形,AB ⊥平面BEC ,BE ⊥EC ,AB =BE =EC =2,G ,F 分别是线段BE ,DC 的中点.(1)求证:GF ∥平面ADE ;(2)求平面AEF 与平面BEC 所成锐二面角的余弦值. 解法一 (1)证明:如图,取AE 的中点H ,连接HG ,HD ,又G 是BE 的中点, 所以GH ∥AB ,且GH =12AB .又F 是CD 的中点, 所以DF =12CD .由四边形ABCD 是矩形得,AB ∥CD ,AB =CD ,所以GH ∥DF ,且GH =DF ,从而四边形HGFD 是平行四边形,所以GF ∥DH . 又DH ⊂平面ADE ,GF ⊄平面ADE , 所以GF ∥平面ADE .(2)如图,在平面BEC 内,过B 点作BQ ∥EC .因为BE ⊥CE ,所以BQ ⊥BE .又因为AB ⊥平面BEC ,所以AB ⊥BE ,AB ⊥BQ .以B 为原点,分别以BE →,BQ →,BA →的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,则A (0,0,2),B (0,0,0),E (2,0,0),F (2,2,1).因为AB ⊥平面BEC ,所以BA →=(0,0,2)为平面BEC 的法向量. 设n =(x ,y ,z )为平面AEF 的法向量. 又AE →=(2,0,-2),AF →=(2,2,-1), 由⎩⎪⎨⎪⎧n ·AE →=0,n ·AF →=0,得⎩⎪⎨⎪⎧2x -2z =0,2x +2y -z =0,取z =2,得n =(2,-1,2).从而cos 〈n ,BA →〉=n ·BA→|n |·|BA →|=43×2=23, 所以平面AEF 与平面BEC 所成锐二面角的余弦值为23.解法二 (1)证明:如下图,取AB 中点M ,连接MG ,MF.又G 是BE 的中点,可知GM ∥AE . 又AE ⊂平面ADE ,GM ⊄平面ADE , 所以GM ∥平面ADE .在矩形ABCD 中,由M ,F 分别是AB ,CD 的中点得MF ∥AD . 又AD ⊂平面ADE ,MF ⊄平面ADE , 所以MF ∥平面ADE .又因为GM ∩MF =M ,GM ⊂平面GMF ,MF ⊂平面GMF , 所以平面GMF ∥平面ADE .因为GF ⊂平面GMF ,所以GF ∥平面ADE . (2)同解法一.4.一个正方体的平面展开图及该正方体的直观图的示意图如图所示.在正方体中,设BC 的中点为M ,GH 的中点为N .(1)请将字母F ,G ,H 标记在正方体相应的顶点处(不需说明理由); (2)证明:直线MN ∥平面BDH ; (3)求二面角A -EG -M 的余弦值. 解 (1)点F ,G ,H 的位置如下图所示.(2)证明:连接BD ,设O 为BD 的中点,连接OM ,OH . 因为M ,N 分别是BC ,GH 的中点, 所以OM ∥CD ,且OM =12CD ,HN ∥CD ,且HN =12CD .所以OM ∥HN ,OM =HN .所以MNHO 是平行四边形,从而MN ∥OH . 又MN ⊄平面BDH ,OH ⊂平面BDH , 所以MN ∥平面BDH .(3)解法一:连接AC ,过M 作MP ⊥AC 于P . 在正方体ABCD -EFGH 中,AC ∥EG ,所以MP ⊥EG . 过P 作PK ⊥EG 于K ,连接KM . 所以EG ⊥平面PKM ,从而KM ⊥EG . 所以∠PKM 是二面角A -EG -M 的平面角.设AD =2,则CM =1,PK =2. 在Rt △CMP 中,PM =CM sin45°=22. 在Rt △PKM 中,KM =PK 2+PM 2=322.所以cos ∠PKM =PK KM =223.即二面角A -EG -M 的余弦值为223.解法二:如下图,以D 为坐标原点,分别以DA →,DC →,DH →的方向为x ,y ,z轴的正方向,建立空间直角坐标系D -xyz .设AD =2,则M (1,2,0),G (0,2,2),E (2,0,2),O (1,1,0),所以GE →=(2,-2,0),MG →=(-1,0,2). 设平面EGM 的一个法向量为n 1=(x ,y ,z ), 由⎩⎪⎨⎪⎧n 1·GE →=0,n 1·MG →=0,得⎩⎪⎨⎪⎧2x -2y =0,-x +2z =0,取x =2,得n 1=(2,2,1).在正方体ABCD -EFGH 中,DO ⊥平面AEGC ,则可取平面AEG 的一个法向量为n 2=DO →=(1,1,0).所以cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=2+2+04+4+1×1+1+0=223,故二面角A -EG -M 的余弦值为223.5.如图,在三棱台DEF -ABC 中,AB =2DE ,G ,H 分别为AC ,BC 的中点.(1)求证:BD∥平面FGH;(2)若CF⊥平面ABC,AB⊥BC,CF=DE,∠BAC=45°,求平面FGH与平面ACFD所成的角(锐角)的大小.解(1)证法一:连接DG,CD,设CD∩GF=O,连接OH.在三棱台DEF-ABC中,AB=2DE,G为AC的中点,可得DF∥GC,DF=GC,所以四边形DFCG为平行四边形.则O为CD的中点,又H为BC的中点,所以OH∥BD.又OH⊂平面FGH,BD⊄平面FGH,所以BD∥平面FGH.证法二:在三棱台DEF-ABC中,由BC=2EF,H为BC的中点,可得BH∥EF,BH=EF,所以四边形BHFE为平行四边形,可得BE∥HF.在△ABC中,G为AC的中点,H为BC的中点,所以GH∥AB.又GH∩HF=H,所以平面FGH∥平面ABED.因为BD⊂平面ABED,所以BD∥平面FGH.(2)解法一:设AB =2,则CF =1. 在三棱台DEF -ABC 中,G 为AC 的中点,由DF =12AC =GC ,可得四边形DGCF 为平行四边形, 因此DG ∥FC .又FC ⊥平面ABC ,所以DG ⊥平面ABC .连接GB ,在△ABC 中,由AB ⊥BC ,∠BAC =45°,G 是AC 中点, 所以AB =BC ,GB ⊥GC , 因此GB ,GC ,GD 两两垂直.以G 为坐标原点,建立如图所示的空间直角坐标系G -xyz . 所以G (0,0,0),B (2,0,0),C (0,2,0),D (0,0,1).可得H ⎝ ⎛⎭⎪⎫22,22,0,F (0,2,1). 故GH →=⎝ ⎛⎭⎪⎫22,22,0,GF →=(0,2,1)设n =(x ,y ,z )是平面FGH 的法向量,则由⎩⎪⎨⎪⎧n ·GH →=0,n ·GF →=0,可得⎩⎨⎧x +y =0,2y +z =0.可得平面FGH 的一个法向量n =(1,-1,2).因为GB →是平面ACFD 的一个法向量,GB →=(2,0,0),所以cos 〈GB →,n 〉=GB →·n|GB →|·|n |=222=12.所以平面FGH 与平面ACFD 所成角(锐角)的大小为60°. 解法二:作HM ⊥AC 于点M ,作MN ⊥GF于点N ,连接NH ,BG .由FC ⊥平面ABC ,得HM ⊥FC . 又FC ∩AC =C , 所以HM ⊥平面ACFD , 因此GF ⊥NH ,所以∠MNH 即为所求的角.设AB =2,在△BGC 中,MH ∥BG ,MH =12BG =22,由△GNM ∽△GCF , 可得MN FC =GMGF,从而MN =66. 由HM ⊥平面ACFD ,MN ⊂平面ACFD , 得HM ⊥MN ,因此tan ∠MNH =HM MN=3, 所以∠MNH =60°.所以平面FGH 与平面ACFD 所成角(锐角)的大小为60°.6.如图,四棱锥P -ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(1)证明:PB ∥平面AEC ;(2)设二面角D -AE -C 为60°,AP =1,AD =3,求三棱锥E -ACD 的体积. 解 (1)证明:连接BD 交AC 于点O ,连接EO . 因为ABCD 为矩形,所以O 为BD 的中点. 又E 为PD 的中点,所以EO ∥PB .EO ⊂平面AEC ,PB ⊄平面AEC ,所以PB ∥平面AEC .(2)因为PA ⊥平面ABCD ,ABCD 为矩形,所以AB ,AD ,AP 两两垂直.如图,以A 为坐标原点,AB →的方向为x 轴的正方向,|AP →|为单位长,建立空间直角坐标系A -xyz .则D (0,3,0),P (0,0,1),E ⎝ ⎛⎭⎪⎫0,32,12,AE →=⎝⎛⎭⎪⎫0,32,12.设B (m,0,0)(m >0),则C (m ,3,0),AC →=(m ,3,0), 设n 1=(x ,y ,z )为平面ACE 的法向量,则⎩⎪⎨⎪⎧n 1·AC →=0,n 1·AE →=0,即⎩⎪⎨⎪⎧mx +3y =0,32y +12z =0,可取n 1=⎝⎛⎭⎪⎫3m ,-1,3. 又n 2=(1,0,0)为平面DAE 的法向量, 由题设|cos 〈n 1,n 2〉|=12,即33+4m 2=12, 解得m =32.因为E 为PD 的中点,所以三棱锥E -ACD 的高为12.三棱锥E -ACD 的体积V =13×12×3×32×12=38. 7.如图,在四棱柱ABCD -A 1B 1C1D 1中,底面ABCD 是等腰梯形,∠DAB =60°,AB =2CD =2,M 是线段AB 的中点.(1)求证:C 1M ∥平面A 1ADD 1;(2)若CD 1垂直于平面ABCD 且CD 1=3,求平面C 1D 1M 和平面ABCD 所成的角(锐角)的余弦值.解 (1)证明:因为四边形ABCD 是等腰梯形,且AB =2CD ,所以AB ∥DC .又由M 是AB 的中点,因此CD ∥MA 且CD =MA .连接AD 1,在四棱柱ABCD -A 1B 1C 1D 1中,因为CD ∥C 1D 1,CD =C 1D 1,可得C 1D 1∥MA ,C 1D 1=MA , 所以四边形AMC 1D 1为平行四边形.因此C 1M ∥D 1A ,又C 1M ⊄平面A 1ADD 1,D 1A ⊂平面A 1ADD 1, 所以C 1M ∥平面A 1ADD 1.(2)解法一:连接AC ,MC ,由(1)知,CD ∥AM 且CD =AM , 所以四边形AMCD 为平行四边形.可得BC =AD =MC ,由题意∠ABC =∠DAB =60°,所以△MBC 为正三角形,因此AB =2BC =2,CA =3,因此CA ⊥CB.以C 为坐标原点,建立如图所示空间直角坐标系C -xyz .所以A (3,0,0),B (0,1,0),D 1(0,0,3).因此M ⎝⎛⎭⎪⎫32,12,0, 所以MD 1→=⎝ ⎛⎭⎪⎫-32,-12,3,D 1C 1→=MB →=(-32,12,0 ).设平面C 1D 1M 的一个法向量n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·D 1C 1→=0,n ·MD 1→=0,得⎩⎨⎧3x -y =0,3x +y -23z =0,可得平面C 1D 1M 的一个法向量n =(1,3,1). 又CD 1→=(0,0,3)为平面ABCD 的一个法向量.因此cos 〈CD 1→,n 〉=CD 1→·n|CD 1→||n |=55. 所以平面C 1D 1M 和平面ABCD 所成的角(锐角)的余弦值为55. 解法二:由(1)知平面D 1C 1M ∩平面ABCD =AB ,过C 向AB 引垂线交AB 于N ,连接D 1N . 由CD 1⊥平面ABCD ,可得D 1N ⊥AB , 因此∠D 1NC 为二面角C 1-AB -C 的平面角. 在Rt △BNC 中,BC =1,∠NBC =60°, 可得CN =32. 所以ND 1=CD 21+CN 2=152. 在Rt △D 1CN 中,cos ∠D 1NC =CN D 1N =32152=55. 所以平面C 1D 1M 和平面ABCD 所成的角(锐角)的余弦值为55. 8.如图,在三棱锥P -ABC 中,D ,E ,F 分别为棱PC ,AC ,AB 的中点.已知PA ⊥AC ,PA =6,BC =8,DF =5.求证:(1)直线PA ∥平面DEF ; (2)平面BDE ⊥平面ABC .证明 (1)因为D ,E 分别为棱PC ,AC 的中点,所以DE ∥PA . 又因为PA ⊄平面DEF ,DE ⊂平面DEF ,所以直线PA ∥平面DEF . (2)因为D ,E ,F 分别为棱PC ,AC ,AB 的中点,PA =6,BC =8,所以DE ∥PA ,DE =12PA =3,EF =12BC =4.又因为DF =5,故DF 2=DE 2+EF 2,所以∠DEF =90°,即DE ⊥EF . 又PA ⊥AC ,DE ∥PA ,所以DE ⊥AC .因为AC ∩EF =E ,AC ⊂平面ABC ,EF ⊂平面ABC , 所以DE ⊥平面ABC .又DE ⊂平面BDE ,所以平面BDE ⊥平面ABC .。

相关文档
最新文档