2014届高考数学知识点总复习教案不等关系与不等式

合集下载

2014届高考数学知识点总复习教案二元一次不等式(组)与简单的线性规划问题

2014届高考数学知识点总复习教案二元一次不等式(组)与简单的线性规划问题

第3讲 二元一次不等式(组)与简单的线性规划问题A 级 基础演练(时间:30分钟 满分:55分)一、选择题(每小题5分,共20分)1.(2012·山东)设变量x ,y 满足约束条件⎩⎨⎧x +2y ≥2,2x +y ≤4,4x -y ≥-1,则目标函数z =3x -y的取值范围是( ). A.⎣⎢⎡⎦⎥⎤-32,6B.⎣⎢⎡⎦⎥⎤-32,-1 C.[]-1,6D.⎣⎢⎡⎦⎥⎤-6,32 解析 作出不等式组表示的可行域,如图阴影部分所示,作直线3x -y =0,并向上、下平移,由图可得,当直线过点A 时,z =3x -y 取最大值;当直线过点B 时,z =3x -y 取最小值.由⎩⎨⎧x +2y -2=0,2x +y -4=0解得A (2,0);由⎩⎨⎧4x -y +1=0,2x +y -4=0解得B ⎝ ⎛⎭⎪⎫12,3.∴z max =3×2-0=6,z min =3×12-3=-32. ∴z =3x -y 的取值范围是⎣⎢⎡⎦⎥⎤-32,6.答案 A2.(2011·广东)已知平面直角坐标系xOy 上的区域D 由不等式组⎩⎨⎧0≤x ≤2,y ≤2,x ≤ 2y给定.若M (x ,y )为D 上的动点,点A 的坐标为(2,1)则z =OM →·OA→的最大值为( ). A .4 2B .3 2C .4D .3解析 如图作出区域D ,目标函数z =2x+y 过点B (2,2)时取最大值,故z 的最大值为2×2+2=4,故选C. 答案 C3.(2013·淮安质检)若不等式组⎩⎨⎧x -y +5≥0,y ≥a ,0≤x ≤2表示的平面区域是一个三角形,则a 的取值范围是( ).A .(-∞,5)B .[7,+∞)C .[5,7)D .(-∞,5)∪[7,+∞)解析 画出可行域,知当直线y =a 在x -y +5=0与y 轴的交点(0,5)和x -y +5=0与x =2的交点(2,7)之间移动时平面区域是三角形.故5≤a <7. 答案 C4.(2013·洛阳一模)某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3吨、B 原料2吨;生产每吨乙产品要用A 原料1吨、B 原料3吨.销售每吨甲产品可获得利润1万元,每吨乙产品可获得利润3万元,该企业在某个生产周期内甲产品至少要生产1吨,乙产品至少要生产2吨,消耗A 原料不超过13吨,消耗B 原料不超过18吨,那么该企业在这个生产周期内获得最大利润时甲产品的产量应是( ).A .1吨B .2吨C .3吨D.113吨解析 设该企业在这个生产周期内生产x 吨甲产品,生产y 吨乙产品,x 、y 满足的条件为⎩⎨⎧3x +y ≤13,2x +3y ≤18,x ≥1,y ≥2.所获得的利润z =x +3y ,作出如图所示的可行域.作直线l 0:x +3y =0,平移直线l 0,显然,当直线经过点A ⎝ ⎛⎭⎪⎫1,163时所获利润最大,此时甲产品的产量为1吨. 答案 A二、填空题(每小题5分,共10分)5.(2012·大纲全国)若x ,y 满足约束条件⎩⎨⎧x -y +1≥0,x +y -3≤0,x +3y -3≥0,则z =3x -y 的最小值为________.解析 画出可行域,如图所示,将直线y =3x -z 移至点A (0,1)处直线在y 轴上截距最大,z min =3×0-1=-1. 答案 -16.(2012·安徽)若x ,y 满足约束条件⎝ ⎛x ≥0,x +2y ≥3,2x +y ≤3,则x -y 的取值范围是________.解析 记z =x -y ,则y =x -z ,所以z 为直线y =x -z 在y轴上的截距的相反数,画出不等式组表示的可行域如图中△ABC 区域所示.结合图形可知,当直线经过点B (1,1)时,x -y 取得最大值0,当直线经过点C (0,3)时,x -y 取得最小值-3. 答案 [-3,0] 三、解答题(共25分)7.(12分)(2013·合肥模拟)画出不等式组⎩⎨⎧x -y +5≥0,x +y ≥0,x ≤3表示的平面区域,并回答下列问题:(1)指出x 、y 的取值范围; (2)平面区域内有多少个整点?解 (1)不等式x -y +5≥0表示直线x -y +5=0上及其右下方的点的集合,x +y ≥0表示直线x +y =0上及其右上方的点的集合,x ≤3表示直线x =3上及其左方的点的集合.所以,不等式组⎩⎨⎧x -y +5≥0,x +y ≥0,x ≤3表示的平面区域如图所示.结合图中可行域得x ∈⎣⎢⎡⎦⎥⎤-52,3,y ∈[-3,8].(2)由图形及不等式组知⎩⎪⎨⎪⎧-x ≤y ≤x +5,-52≤x ≤3,且x ∈Z ,当x =3时,-3≤y ≤8,有12个整点; 当x =2时,-2≤y ≤7,有10个整点; 当x =1时,-1≤y ≤6,有8个整点; 当x =0时,0≤y ≤5,有6个整点; 当x =-1时,1≤y ≤4,有4个整点; 当x =-2时,2≤y ≤3,有2个整点;∴平面区域内的整点共有2+4+6+8+10+12=42(个).8.(13分)制订投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目,根据预测,甲、乙项目可能的最大盈利率分别为100%和50%,可能的最大亏损率分别为30%和10%.若投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元,问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大? 解 设投资人分别用x 万元、y 万元投资甲、乙两个项目,由题意知⎩⎨⎧x +y ≤10,0.3x +0.1y ≤1.8,x ≥0,y ≥0,目标函数z =x +0.5y .上述不等式组表示的平面区域如图所示,阴影部分(含边界)即为可行域.将z =x +0.5y 变形为y =-2x +2z ,这是斜率为-2、随z 变化的一组平行线,当直线y =-2x +2z 经过可行域内的点M 时,直线y =-2x +2z 在y 轴上的截距2z 最大,z 也最大.这里M 点是直线x +y =10和0.3x +0.1y =1.8的交点. 解方程组⎩⎨⎧x +y =10,0.3x +0.1y =1.8,得x =4,y =6,此时z =4+0.5×6=7(万元). ∴当x =4,y =6时,z 取得最大值,所以投资人用4万元投资甲项目、6万元投资乙项目,才能在确保亏损不超过1.8万元的前提下,使可能的盈利最大.B级 能力突破(时间:30分钟 满分:45分)一、选择题(每小题5分,共10分)1.(2013·临沂一模)实数x ,y 满足⎩⎨⎧x ≥1,y ≤a (a >1),x -y ≤0,若目标函数z =x +y取得最大值4,则实数a 的值为 ( ).A .4B .3C .2D.32解析 作出可行域,由题意可知可行域为△ABC 内部及边界,y =-x +z ,则z 的几何意义为直线在y 轴上的截距,将目标函数平移可知当直线经过点A 时,目标函数取得最大值4,此时A 点坐标为(a ,a ),代入得4=a +a =2a ,所以a =2. 答案 C2.(2012·四川)某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克、B 原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是( ).A .1 800元B .2 400元C .2 800元D .3 100元解析 设某公司生产甲产品x 桶,生产乙产品y 桶,获利为z 元,则x ,y 满足的线性约束条件为⎩⎨⎧x +2y ≤12,2x +y ≤12,x ≥0且y ∈Z ,y ≥0且y ∈Z ,目标函数z =300x +400y .作出可行域,如图中四边形OABC 的边界及其内部整点.作直线l 0:3x +4y =0,平移直线l 0经可行域内点B 时,z 取最大值,由⎩⎨⎧2x +y =12,x +2y =12,得B (4,4),满足题意,所以z max =4×300+4×400=2 800. 答案 C二、填空题(每小题5分,共10分)3.(2013·咸阳一模)设实数x 、y 满足⎩⎨⎧x -y -2≤0,x +2y -4≥0,2y -3≤0,则yx 的最大值是________.解析 不等式组确定的平面区域如图阴影部分.设y x =t ,则y =tx ,求yx 的最大值,即求y =tx 的斜率的最大值.显然y =tx 过A 点时,t 最大.由⎩⎨⎧x +2y -4=0,2y -3=0,解得A ⎝ ⎛⎭⎪⎫1,32.代入y =tx ,得t =32.所以y x 的最大值为32. 答案 324.(2011·湖南)设m >1,在约束条件⎩⎨⎧y ≥x ,y ≤mx ,x +y ≤1下,目标函数z =x +my 的最大值小于2,则m 的取值范围为________.解析 目标函数z =x +my 可变为y =-1m x +zm , ∵m >1,∴-1<-1m <0,z 与zm 同时取到相应的最大值,如图,当目标函数经过点P ⎝ ⎛⎭⎪⎫1m +1,m m +1时,取最大值,∴1m +1+m 2m +1<2,又m >1,得1<m <1+ 2.答案 (1,1+2) 三、解答题(共25分)5.(12分)(2013·黄山模拟)若x ,y 满足约束条件⎩⎨⎧x +y ≥1,x -y ≥-1,2x -y ≤2,(1)求目标函数z =12x -y +12的最值.(2)若目标函数z =ax +2y 仅在点(1,0)处取得最小值,求a 的取值范围. 解 (1)作出可行域如图,可求得A (3,4),B (0,1),C (1,0).平移初始直线12x -y =0,过A (3,4)取最小值-2,过C (1,0)取最大值1. ∴z 的最大值为1,最小值为-2.(2)直线ax +2y =z 仅在点(1,0)处取得最小值,由图象可知-1<-a2<2,解得-4<a <2.故所求a 的取值范围是(-4,2).6.(13分)某工厂生产甲、乙两种产品,每种产品都有一部分是一等品,其余是二等品,已知甲产品为一等品的概率比乙产品为一等品的概率多0.25,甲产品为二等品的概率比乙产品为一等品的概率少0.05. (1)分别求甲、乙产品为一等品的概率P 甲,P 乙;(2)已知生产一件产品需要用的工人数和资金数如表所示,且该厂有工人32名,可用资金55万元.设x ,y 分别表示生产甲、乙产品的数量,在(1)的条件下,求x ,y 为何值时,z =xP 甲+yP 乙最大,最大值是多少?解 (1)依题意得⎩⎨⎧P 甲-P 乙=0.25,1-P 甲=P 乙-0.05,解得⎩⎨⎧P 甲=0.65,P 乙=0.4,故甲产品为一等品的概率P 甲=0.65,乙产品为一等品的概率P 乙=0.4. (2)依题意得x 、y 应满足的约束条件为⎩⎨⎧4x +8y ≤32,20x +5y ≤55,x ≥0,y ≥0,且z =0.65x +0.4y .作出不等式组所表示的平面区域,如图阴影部分,即可行域.作直线l 0:0.65x +0.4y =0即13x +8y =0,把直线l 向上方平移到l 1的位置时,直线经过可行域内的点M ,此时z 取得最大值.解方程组⎩⎨⎧x +2y =8,4x +y =11,得x =2,y =3.故M 的坐标为(2,3),所以z 的最大值为z max =0.65×2+0.4×3=2.5.所以,当x =2,y =3时,z 取最大值为2.5.。

高中数学重点《不等关系与不等式》教案

高中数学重点《不等关系与不等式》教案

高中数学重点《不等关系与不等式》教案高中数学重点《不等关系与不等式》教案主要关注学生思维能力的训练.训练学生的思维能力,提升思维的品质,是数学教师直面的重要课题,也是中学数学教育的主线.采用一题多解有助于思维的发散性及灵活性,克服思维的僵化.变式训练教学又可以拓展学生思维视野的广度,解题后的点拨反思有助于学生思维批判性品质的提升。

下面就和课件网一起来看看有关高中数学重点《不等关系与不等式》教案。

高中数学必修5《不等关系与不等式》教案1教学准备教学目标熟练掌握不等式的证明问题教学重难点熟练掌握不等式的证明问题教学过程不等式的證明二1.若,,則下列不等始終正確的是()2.設a,b為實數,且,則的最小值是()4.求證:對任何式數x,y,z,下述三個不等式不可能同時成立高中数学必修5《不等关系与不等式》教案2整体设计教学分析本节课的研究是对初中不等式学习的延续和拓展,也是实数理论的进一步发展.在本节课的学习过程中,将让学生回忆实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.通过本节课的学习,让学生从一系列的具体问题情境中,感受到在现实世界和日常生活中存在着大量的不等关系,并充分认识不等关系的存在与应用.对不等关系的相关素材,用数学观点进行观察、归纳、抽象,完成量与量的比较过程.即能用不等式或不等式组把这些不等关系表示出来.在本节课的学习过程中还安排了一些简单的、学生易于处理的问题,其用意在于让学生注意对数学知识和方法的应用,同时也能激发学生的学习兴趣,并由衷地产生用数学工具研究不等关系的愿望.根据本节课的教学内容,应用再现、回忆得出实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.在本节教学中,教师可让学生阅读书中实例,充分利用数轴这一简单的数形结合工具,直接用实数与数轴上点的一一对应关系,从数与形两方面建立实数的顺序关系.要在温故知新的基础上提高学生对不等式的认识.三维目标1.在学生了解不等式产生的实际背景下,利用数轴回忆实数的基本理论,理解实数的大小关系,理解实数大小与数轴上对应点位置间的关系.2.会用作差法判断实数与代数式的大小,会用配方法判断二次式的大小和范围.3.通过温故知新,提高学生对不等式的认识,激发学生的学习兴趣,体会数学的奥秘与数学的结构美.重点难点教学重点:比较实数与代数式的大小关系,判断二次式的大小和范围.教学难点:准确比较两个代数式的大小.课时安排1课时教学过程导入新课思路1.(章头图导入)通过多媒体展示卫星、飞船和一幅山峦重叠起伏的壮观画面,它将学生带入“横看成岭侧成峰,远近高低各不同”的大自然和浩瀚的宇宙中,使学生在具体情境中感受到不等关系在现实世界和日常生活中是大量存在的,由此产生用数学研究不等关系的强烈愿望,自然地引入新课.思路2.(情境导入)列举出学生身体的高矮、身体的轻重、距离学校路程的远近、百米赛跑的时间、数学成绩的多少等现实生活中学生身边熟悉的事例,描述出某种客观事物在数量上存在的不等关系.这些不等关系怎样在数学上表示出来呢让学生自由地展开联想,教师组织不等关系的相关素材,让学生用数学的观点进行观察、归纳,使学生在具体情境中感受到不等关系与相等关系一样,在现实世界和日常生活中大量存在着.这样学生会由衷地产生用数学工具研究不等关系的愿望,从而进入进一步的探究学习,由此引入新课.推进新课新知探究提出问题(1)回忆初中学过的不等式,让学生说出“不等关系”与“不等式”的异同.怎样利用不等式研究及表示不等关系(2)在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系.你能举出一些实际例子吗(3)数轴上的任意两点与对应的两实数具有怎样的关系(4)任意两个实数具有怎样的关系用逻辑用语怎样表达这个关系活动:教师引导学生回忆初中学过的不等式概念,使学生明确“不等关系”与“不等式”的异同.不等关系强调的是关系,可用符号“>”“<”“ ne;”“ ge;”“ le;”表示,而不等式则是表示两者的不等关系,可用“a>b”“a教师与学生一起举出我们日常生活中不等关系的例子,可让学生充分合作讨论,使学生感受到现实世界中存在着大量的不等关系.在学生了解了一些不等式产生的实际背景的前提下,进一步学习不等式的有关内容.实例1:某天的天气预报报道,最高气温32 ℃,最低气温26 ℃.实例2:对于数轴上任意不同的两点A、B,若点A在点B 的左边,则xA实例3:若一个数是非负数,则这个数大于或等于零.实例4:两点之间线段最短.实例5:三角形两边之和大于第三边,两边之差小于第三边.实例6:限速40 km/h的路标指示司机在前方路段行驶时,应使汽车的速度v不超过40 km/h.实例7:某品牌酸奶的质量检查规定,酸奶中脂肪的含量f应不少于2.5%,蛋白质的含量p应不少于2.3%.教师进一步点拨:能够发现身边的数学当然很好,这说明同学们已经走进了数学这门学科,但作为我们研究数学的人来说,能用数学的眼光、数学的观点进行观察、归纳、抽象,完成这些量与量的比较过程,这是我们每个研究数学的人必须要做的,那么,我们可以用我们所研究过的什么知识来表示这些不等关系呢学生很容易想到,用不等式或不等式组来表示这些不等关系.那么不等式就是用不等号将两个代数式连结起来所成的式子.如-7<-5,3+4>1+4,2x le;6,a+2 ge;0,3 ne;4,0 le;5等.教师引导学生将上述的7个实例用不等式表示出来.实例1,若用t表示某天的气温,则26 ℃ le;t le;32 ℃.实例3,若用x表示一个非负数,则x ge;0.实例5,|AC|+|BC|>|AB|,如下图.|AB|+|BC|>|AC|、|AC|+|BC|>|AB|、|AB|+|AC|>|BC|.|AB|-|BC|<|AC|、|AC|-|BC|<|AB|、|AB|-|AC|<|BC|.交换被减数与减数的位置也可以.实例6,若用v表示速度,则v le;40 km/h.实例7,f ge;2.5%,p ge;2.3%.对于实例7,教师应点拨学生注意酸奶中的脂肪含量与蛋白质含量需同时满足,避免写成f ge;2.5%或p ge;2.3%,这是不对的.但可表示为f ge;2.5%且pge;2.3%.对以上问题,教师让学生轮流回答,再用投影仪给出课本上的两个结论.讨论结果:(1)(2)略;(3)数轴上任意两点中,右边点对应的实数比左边点对应的实数大.(4)对于任意两个实数a和b,在a=b,a>b,a0a>b;a-b=0a=b;a-b<0 a应用示例例1(教材本节例1和例2)活动:通过两例让学生熟悉两个代数式的大小比较的基本方法:作差,配方法.点评:本节两例的求解,是借助因式分解和应用配方法完成的,这两种方法是代数式变形时经常使用的方法,应让学生熟练掌握.变式训练1.若f(x)=3x2-x+1,g(x)=2x2+x-1,则f(x)与g (x)的大小关系是()A.f(x)>g(x)B.f(x)=g(x)C.f(x)答案:A解析:f(x)-g(x)=x2-2x+2=(x-1)2+1 ge;1>0,there4;f(x)>g(x).2.已知x ne;0,比较(x2+1)2与x4+x2+1的大小.解:由(x2+1)2-(x4+x2+1)=x4+2x2+1-x4-x2-1=x2.∵x ne;0,得x2>0.从而(x2+1)2>x4+x2+1.例2比较下列各组数的大小(a ne;b).(1)a+b2与21a+1b(a>0,b>0);(2)a4-b4与4a3(a-b).活动:比较两个实数的大小,常根据实数的运算性质与大小顺序的关系,归结为判断它们的差的符号来确定.本例可由学生独立完成,但要点拨学生在最后的符号判断说理中,要理由充分,不可忽略这点.解:(1)a+b2-21a+1b=a+b2-2aba+b=(a+b)2-4ab2(a+b)=(a-b)22(a+b).∵a>0,b>0且a ne;b, there4;a+b>0,(a-b)2>0. there4;(a-b)22(a+b)>0,即a+b2>21a+1b.(2)a4-b4-4a3(a-b)=(a-b)(a+b)(a2+b2)-4a3(a-b)=(a-b)(a3+a2b+ab2+b3-4a3)=(a-b)[(a2b-a3)+(ab2-a3)+(b3-a3)]=-(a-b)2(3a2+2ab+b2)=-(a-b)2[2a2+(a+b)2].∵2a2+(a+b)2 ge;0(当且仅当a=b=0时取等号),又a ne;b, there4;(a-b)2>0,2a2+(a+b)2>0. there4;-(a-b)2[2a2+(a+b)2]<0.there4;a4-b4<4a3(a-b).点评:比较大小常用作差法,一般步骤是作差——变形——判断符号.变形常用的手段是分解因式和配方,前者将“差”变为“积”,后者将“差”化为一个或几个完全平方式的“和”,也可两者并用.变式训练已知x>y,且y ne;0,比较xy与1的大小.活动:要比较任意两个数或式的大小关系,只需确定它们的差与0的大小关系.解:xy-1=x-yy.∵x>y, there4;x-y>0.当y<0时,x-yy<0,即xy-1<0. there4;xy<1;当y>0时,x-yy>0,即xy-1>0. there4;xy>1.点评:当字母y取不同范围的值时,差xy-1的正负情况不同,所以需对y分类讨论.例3建筑设计规定,民用住宅的窗户面积必须小于地板面积.但按采光标准,窗户面积与地板面积的比值应不小于10%,且这个比值越大,住宅的采光条件越好.试问:同时增加相等的窗户面积和地板面积,住宅的采光条件是变好了,还是变坏了请说明理由.活动:解题关键首先是把文字语言转换成数学语言,然后比较前后比值的大小,采用作差法.解:设住宅窗户面积和地板面积分别为a、b,同时增加的面积为m,根据问题的要求a由于a+mb+m-ab=m(b-a)b(b+m)>0,于是a+mb+m>ab.又ab ge;10%,因此a+mb+m>ab ge;10%.所以同时增加相等的窗户面积和地板面积后,住宅的采光条件变好了.点评:一般地,设a、b为正实数,且a0,则a+mb+m>ab.变式训练已知a1,a2,…为各项都大于零的等比数列,公比q ne;1,则()A.a1+a8>a4+a5B.a1+a8C.a1+a8=a4+a5D.a1+a8与a4+a5大小不确定答案:A解析:(a1+a8)-(a4+a5)=a1+a1q7-a1q3-a1q4=a1[(1-q3)-q4(1-q3)]=a1(1-q)2(1+q+q2)(1+q)(1+q2).∵{an}各项都大于零, there4;q>0,即1+q>0.又∵q ne;1, there4;(a1+a8)-(a4+a5)>0,即a1+a8>a4+a5.知能训练1.下列不等式:①a2+3>2a;②a2+b2>2(a-b-1);③x2+y2>2xy.其中恒成立的不等式的个数为()A.3B.2C.1D.02.比较2x2+5x+9与x2+5x+6的大小.答案:1.C 解析:∵②a2+b2-2(a-b-1)=(a-1)2+(b+1)2 ge;0,③x2+y2-2xy=(x-y)2 ge;0.there4;只有①恒成立.2.解:因为2x2+5x+9-(x2+5x+6)=x2+3>0,所以2x2+5x+9>x2+5x+6.课堂小结1.教师与学生共同完成本节课的小结,从实数的基本性质的回顾,到两个实数大小的比较方法;从例题的活动探究点评,到紧跟着的变式训练,让学生去繁就简,联系旧知,将本节课所学纳入已有的知识体系中.2.教师画龙点睛,点拨利用实数的基本性质对两个实数大小比较时易错的地方.鼓励学有余力的学生对节末的思考与讨论在课后作进一步的探究.作业习题3—1A组3;习题3—1B组2.设计感想1.本节设计关注了教学方法的优化.经验告诉我们:课堂上应根据具体情况,选择、设计最能体现教学规律的教学过程,不宜长期使用一种固定的教学方法,或原封不动地照搬一种实验模式.各种教学方法中,没有一种能很好地适应一切教学活动.也就是说,世上没有万能的教学方法.针对个性,灵活变化,因材施教才是成功的施教灵药.2.本节设计注重了难度控制.不等式内容应用面广,可以说与其他所有内容都有交汇,历来是高考的重点与热点.作为本章开始,可以适当开阔一些,算作抛砖引玉,让学生有个自由探究联想的平台,但不宜过多向外拓展,以免对学生产生负面影响.备课资料备用习题1.比较(x-3)2与(x-2)(x-4)的大小.2.试判断下列各对整式的大小:(1)m2-2m+5和-2m+5;(2)a2-4a+3和-4a+1.3.已知x>0,求证:1+x2>1+x .4.若x5.设a>0,b>0,且a ne;b,试比较aabb与abba的大小.参考答案:1.解:∵(x-3)2-(x-2)(x-4)=(x2-6x+9)-(x2-6x+8)=1>0,there4;(x-3)2>(x-2)(x-4).2.解:(1)(m2-2m+5)-(-2m+5)=m2-2m+5+2m-5=m2.∵m2 ge;0, there4;(m2-2m+5)-(-2m+5) ge;0. there4;m2-2m+5 ge;-2m+5.(2)(a2-4a+3)-(-4a+1)=a2-4a+3+4a-1=a2+2.∵a2 ge;0, there4;a2+2 ge;2>0.there4;a2-4a+3>-4a+1.3.证明:∵(1+x2)2-(1+x)2=1+x+x24-(x+1)=x24,又∵x>0, there4;x24>0.there4;(1+x2)2>(1+x)2.由x>0,得1+x2>1+x.4.解:(x2+y2)(x-y)-(x2-y2)(x+y)=(x-y)[(x2+y2)-(x+y)2]=-2xy(x-y).∵x0,x-y<0.there4;-2xy(x-y)>0.there4;(x2+y2)(x-y)>(x2-y2)(x+y).5.解:∵aabbabba=aa-bbb-a=(ab)a-b,且a ne;b,当a>b>0时,ab>1,a-b>0,则(ab)a-b>1,于是aabb>abba.当b>a>0时,0则(ab)a-b>1.于是aabb>abb a.综上所述,对于不相等的正数a、b,都有aabb>abba.。

2014届高考数学知识点总复习教案基本不等式

2014届高考数学知识点总复习教案基本不等式

第4讲基本不等式A级基础演练(时间:30分钟满分:55分)一、选择题(每小题5分,共20分)1.(2013·宁波模拟)若a>0,b>0,且a+2b-2=0,则ab的最大值为().A.12B.1 C.2 D.4解析∵a>0,b>0,a+2b=2,∴a+2b=2≥22ab,即ab≤12.当且仅当a=1,b=12时等号成立.答案 A2.函数y=x2+2x-1(x>1)的最小值是().A.23+2 B.23-2 C.2 3 D.2解析∵x>1,∴x-1>0,∴y=x2+2x-1=x2-2x+1+2(x-1)+3x-1=(x-1)2+2(x-1)+3x-1=(x-1)+3x-1+2≥23+2.当且仅当x-1=3x-1,即x=3+1时取等号.答案 A3.(2012·陕西)小王从甲地到乙地的时速分别为a和b(a<b),其全程的平均时速为v,则().A.a<v<ab B.v=abC.ab<v<a+b2D.v=a+b2解析设甲、乙两地之间的距离为s.∵a <b ,∴v =2ssa +s b=2ab a +b <2ab2ab=ab . 又v -a =2aba +b -a =ab -a 2a +b >a 2-a 2a +b =0,∴v >a .答案 A4.(2013·杭州模拟)设a >b >c >0,则2a 2+1ab +1a (a -b )-10ac +25c 2的最小值是().A .2B .4C .2 5D .5解析 2a 2+1ab +1a (a -b )-10ac +25c 2=2a 2+a -b +bab (a -b )-10ac +25c 2=2a 2+1b (a -b )-10ac +25c 2≥2a 2+1⎝ ⎛⎭⎪⎫b +a -b 22-10ac +25c 2(b =a -b 时取“=”)=2a 2+4a 2-10ac +25c 2=⎝ ⎛⎭⎪⎫a 2+4a 2+(a -5c )2≥4⎝ ⎛⎭⎪⎫当且仅当a =2,b =22,c =25时取“=”,故选B.答案 B二、填空题(每小题5分,共10分)5.(2011·浙江)设x ,y 为实数.若4x 2+y 2+xy =1,则2x +y 的最大值是________.解析 依题意有(2x +y )2=1+3xy =1+32×2x ×y ≤1+32·⎝ ⎛⎭⎪⎫2x +y 22,得58(2x +y )2≤1,即|2x +y |≤2105.当且仅当2x =y =105时,2x +y 取最大值2105.答案21056.(2013·北京朝阳期末)某公司购买一批机器投入生产,据市场分析,每台机器生产的产品可获得的总利润y (单位:万元)与机器运转时间x (单位:年)的关系为y =-x 2+18x -25(x ∈N *),则当每台机器运转________年时,年平均利润最大,最大值是________万元.解析 每台机器运转x 年的年平均利润为y x =18-⎝ ⎛⎭⎪⎫x +25x ,而x >0,故y x ≤18-225=8,当且仅当x =5时等号成立,此时年平均利润最大,最大值为8万元. 答案 5 8 三、解答题(共25分)7.(12分)已知x >0,y >0,且2x +8y -xy =0,求:(1)xy 的最小值; (2)x +y 的最小值. 解 ∵x >0,y >0,2x +8y -xy =0,(1)xy =2x +8y ≥216xy ,∴xy ≥8,∴xy ≥64. 故xy 的最小值为64.(2)由2x +8y =xy ,得:2y +8x =1, ∴x +y =(x +y )·1=(x +y )⎝ ⎛⎭⎪⎫2y +8x=10+2x y +8yx ≥10+8=18. 故x +y 的最小值为18.8.(13分)已知x >0,y >0,且2x +5y =20.(1)求u =lg x +lg y 的最大值; (2)求1x +1y 的最小值. 解 (1)∵x >0,y >0,∴由基本不等式,得2x +5y ≥210xy .∵2x +5y =20,∴210xy ≤20,xy ≤10,当且仅当2x =5y 时,等号成立.因此有⎩⎨⎧ 2x +5y =20,2x =5y ,解得⎩⎨⎧x =5,y =2, 此时xy 有最大值10.∴u =lg x +lg y =lg(xy )≤lg 10=1.∴当x =5,y =2时,u =lg x +lg y 有最大值1. (2)∵x >0,y >0,∴1x +1y =⎝ ⎛⎭⎪⎫1x +1y ·2x +5y20=120⎝ ⎛⎭⎪⎫7+5y x +2x y ≥120⎝ ⎛⎭⎪⎫7+2 5y x ·2x y =7+21020,当且仅当5y x =2x y 时,等号成立.由⎩⎪⎨⎪⎧2x +5y =20,5y x =2xy,解得⎩⎪⎨⎪⎧x =1010-203,y =20-4103.∴1x +1y 的最小值为7+21020.B 级 能力突破(时间:30分钟 满分:45分)一、选择题(每小题5分,共10分)1.已知x >0,y >0,且2x +1y =1,若x +2y >m 2+2m 恒成立,则实数m 的取值范围是( ).A .(-∞,-2]∪[4,+∞)B .(-∞,-4]∪[2,+∞)C .(-2,4)D .(-4,2)解析 ∵x >0,y >0且2x +1y =1, ∴x +2y =(x +2y )⎝ ⎛⎭⎪⎫2x +1y =4+4y x +x y≥4+24y x ·x y =8,当且仅当4y x =x y ,即x =4,y =2时取等号,∴(x +2y )min =8,要使x +2y >m 2+2m 恒成立, 只需(x +2y )min >m 2+2m 恒成立, 即8>m 2+2m ,解得-4<m <2. 答案 D2.(2012·湖南)已知两条直线l 1:y =m 和l 2:y =82m +1(m >0),l 1与函数y =|log 2x |的图象从左至右相交于点A ,B ,l 2与函数y =|log 2x |的图象从左至右相交于点C ,D .记线段AC 和BD 在x 轴上的投影长度分别为a ,b .当m 变化时,ba 的最小值为( ).A .16 2B .8 2C .834D .434解析 如图,作出y =|log 2x |的图象,由图可知A ,C 点的横坐标在区间(0,1)内,B ,D 点的横坐标在区间(1,+∞)内,而且x C -x A 与x B -x D 同号,所以b a =x B -x Dx C -x A,根据已知|log 2x A |=m ,即-log 2x A =m ,所以x A =2-m.同理可得x C =2-82m +1,x B =2m,x D =282m +1,所以b a =2m-282m +12-82m +1-2-m=2m -282m +11282m +1-12m =2m-282m +12m -282m +12m ·282m +1=282m +1+m ,由于82m +1+m =82m +1+2m +12-12≥4-12=72,当且仅当82m +1=2m +12,即2m +1=4,即m =32时等号成立,故b a 的最小值为272=8 2.答案 B二、填空题(每小题5分,共10分)3.若正数a ,b 满足ab =a +b +3,则ab 的取值范围是________.解析 由a ,b ∈R +,由基本不等式得a +b ≥2ab , 则ab =a +b +3≥2ab +3,即ab -2ab -3≥0⇔(ab -3)(ab +1)≥0⇒ab ≥3, ∴ab ≥9. 答案 [9,+∞)4.已知两正数x ,y 满足x +y =1,则z =⎝ ⎛⎭⎪⎫x +1x ⎝ ⎛⎭⎪⎫y +1y 的最小值为________。

高考不等式知识点总结

高考不等式知识点总结

高考不等式知识点总结高考数学中不等式是一个非常重要的知识点,占据着较大的比重。

下面是对高考数学中不等式知识点的完整总结:一、基本概念和性质1.不等关系:对于实数a和b,如果a=b,则称a等于b;如果a≠b,则称a不等于b。

当a不等于b时,可以断定a大于b(记作a>b),或者a小于b(记作a<b)。

2.不等式:不等式是由不等关系得到的等式,包括大于等于不等式(a≥b)和小于等于不等式(a≤b)。

3.基本性质:(1)若a>b且b>c,则a>c;(2) 若a>b且c>0,则ac>bc;(3) 若a>b且c<0,则ac<bc;(4)若a>b且c≥0,则a+c>b+c;(5)若a>b且c≤0,则a+c>b+c。

4.解不等式:与解方程类似,解不等式是指寻找满足不等式的解的过程。

5.不等式的性质:对于不等式两边同时加减一个相同的数,不等号方向不变;对于不等式两边同时乘除一个同号的数,不等号方向不变;对于不等式两边同时乘除一个异号的数,不等号方向改变。

二、一元一次不等式1.解一元一次不等式:求解一元一次不等式的关键是确定x的取值范围。

在解过程中,可以通过加减法、乘除法保持不等式不变。

2.不等式组:由多个不等式组成的方程组,称为不等式组。

求解不等式组的关键是确定每个不等式的集合和并集。

三、一元二次不等式1.解一元二次不等式:求解一元二次不等式的关键是确定不等式的根及开口方向。

可以根据系数的正负、零点的位置和变号法等来确定解的范围。

2.二次函数与一元二次不等式:通过对一元二次不等式的解法,可以进一步理解和应用二次函数的性质。

四、绝对值不等式1.绝对值不等式的性质:对于绝对值不等式,可以利用绝对值的性质将其拆分为多个实数的不等式。

2.解绝对值不等式的关键是分情况讨论。

将绝对值不等式中的绝对值拆分出来,分别讨论绝对值内外的情况,从而得到解的范围。

高三数学必修五《不等关系与不等式》教案

高三数学必修五《不等关系与不等式》教案

高三数学必修五《不等关系与不等式》教案【导语】高考竞争异常激烈,千军万马争过独木桥,秋天到了,而你正以凌厉的步伐迈进这段特别的岁月中。

这是一段青涩而又平淡的日子,每个人都隐身于高考,而平淡之中的张力却只有真正的勇士才可以破译。

为了助你一臂之力,无忧考网高中频道为你精心准备了《高三数学必修五《不等关系与不等式》教案》助你金榜题名!教案【一】整体设计教学分析本节课的研究是对初中不等式学习的延续和拓展,也是实数理论的进一步发展.在本节课的学习过程中,将让学生回忆实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.通过本节课的学习,让学生从一系列的具体问题情境中,感受到在现实世界和日常生活中存在着大量的不等关系,并充分认识不等关系的存在与应用.对不等关系的相关素材,用数学观点进行观察、归纳、抽象,完成量与量的比较过程.即能用不等式或不等式组把这些不等关系表示出来.在本节课的学习过程中还安排了一些简单的、学生易于处理的问题,其用意在于让学生注意对数学知识和方法的应用,同时也能激发学生的学习兴趣,并由衷地产生用数学工具研究不等关系的愿望.根据本节课的教学内容,应用再现、回忆得出实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.在本节教学中,教师可让学生阅读书中实例,充分利用数轴这一简单的数形结合工具,直接用实数与数轴上点的一一对应关系,从数与形两方面建立实数的顺序关系.要在温故知新的基础上提高学生对不等式的认识.三维目标1.在学生了解不等式产生的实际背景下,利用数轴回忆实数的基本理论,理解实数的大小关系,理解实数大小与数轴上对应点位置间的关系.2.会用作差法判断实数与代数式的大小,会用配方法判断二次式的大小和范围.3.通过温故知新,提高学生对不等式的认识,激发学生的学习兴趣,体会数学的奥秘与数学的结构美.重点难点教学重点:比较实数与代数式的大小关系,判断二次式的大小和范围.教学难点:准确比较两个代数式的大小.课时安排1课时教学过程导入新课思路1.(章头图导入)通过多媒体展示卫星、飞船和一幅山峦重叠起伏的壮观画面,它将学生带入“横看成岭侧成峰,远近高低各不同”的大自然和浩瀚的宇宙中,使学生在具体情境中感受到不等关系在现实世界和日常生活中是大量存在的,由此产生用数学研究不等关系的强烈愿望,自然地引入新课.思路2.(情境导入)列举出学生身体的高矮、身体的轻重、距离学校路程的远近、百米赛跑的时间、数学成绩的多少等现实生活中学生身边熟悉的事例,描述出某种客观事物在数量上存在的不等关系.这些不等关系怎样在数学上表示出来呢?让学生自由地展开联想,教师组织不等关系的相关素材,让学生用数学的观点进行观察、归纳,使学生在具体情境中感受到不等关系与相等关系一样,在现实世界和日常生活中大量存在着.这样学生会由衷地产生用数学工具研究不等关系的愿望,从而进入进一步的探究学习,由此引入新课.推进新课新知探究提出问题1回忆初中学过的不等式,让学生说出“不等关系”与“不等式”的异同.怎样利用不等式研究及表示不等关系?2在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系.你能举出一些实际例子吗?3数轴上的任意两点与对应的两实数具有怎样的关系?4任意两个实数具有怎样的关系?用逻辑用语怎样表达这个关系?活动:教师引导学生回忆初中学过的不等式概念,使学生明确“不等关系”与“不等式”的异同.不等关系强调的是关系,可用符号“>”“<”“≠”“≥”“≤”表示,而不等式则是表示两者的不等关系,可用“a>b”“a教师与学生一起举出我们日常生活中不等关系的例子,可让学生充分合作讨论,使学生感受到现实世界中存在着大量的不等关系.在学生了解了一些不等式产生的实际背景的前提下,进一步学习不等式的有关内容.实例1:某天的天气预报报道,气温32℃,最低气温26℃.实例2:对于数轴上任意不同的两点A、B,若点A在点B的左边,则xA实例3:若一个数是非负数,则这个数大于或等于零.实例4:两点之间线段最短.实例5:三角形两边之和大于第三边,两边之差小于第三边.实例6:限速40km/h的路标指示司机在前方路段行驶时,应使汽车的速度v不超过40km/h.实例7:某品牌酸奶的质量检查规定,酸奶中脂肪的含量f应不少于2.5%,蛋白质的含量p应不少于2.3%.教师进一步点拨:能够发现身边的数学当然很好,这说明同学们已经走进了数学这门学科,但作为我们研究数学的人来说,能用数学的眼光、数学的观点进行观察、归纳、抽象,完成这些量与量的比较过程,这是我们每个研究数学的人必须要做的,那么,我们可以用我们所研究过的什么知识来表示这些不等关系呢?学生很容易想到,用不等式或不等式组来表示这些不等关系.那么不等式就是用不等号将两个代数式连结起来所成的式子.如-7<-5,3+4>1+4,2x≤6,a+2≥0,3≠4,0≤5等.教师引导学生将上述的7个实例用不等式表示出来.实例1,若用t表示某天的气温,则26℃≤t≤32℃.实例3,若用x表示一个非负数,则x≥0.实例5,|AC|+|BC|>|AB|,如下图.|AB|+|BC|>|AC|、|AC|+|BC|>|AB|、|AB|+|AC|>|BC|.|AB|-|BC|<|AC|、|AC|-|BC|<|AB|、|AB|-|AC|<|BC|.交换被减数与减数的位置也可以.实例6,若用v表示速度,则v≤40km/h.实例7,f≥2.5%,p≥2.3%.对于实例7,教师应点拨学生注意酸奶中的脂肪含量与蛋白质含量需同时满足,避免写成f≥2.5%或p≥2.3%,这是不对的.但可表示为f≥2.5%且p≥2.3%.对以上问题,教师让学生轮流回答,再用投影仪给出课本上的两个结论.讨论结果:(1)(2)略;(3)数轴上任意两点中,右边点对应的实数比左边点对应的实数大.(4)对于任意两个实数a和b,在a=b,a>b,a0��a>b;a-b=0��a=b;a-b<0��a应用示例例1(教材本节例1和例2)活动:通过两例让学生熟悉两个代数式的大小比较的基本方法:作差,配方法.点评:本节两例的求解,是借助因式分解和应用配方法完成的,这两种方法是代数式变形时经常使用的方法,应让学生熟练掌握.变式训练1.若f(x)=3x2-x+1,g(x)=2x2+x-1,则f(x)与g(x)的大小关系是()A.f(x)>g(x)B.f(x)=g(x)C.f(x)答案:A解析:f(x)-g(x)=x2-2x+2=(x-1)2+1≥1>0,∴f(x)>g(x).2.已知x≠0,比较(x2+1)2与x4+x2+1的大小.解:由(x2+1)2-(x4+x2+1)=x4+2x2+1-x4-x2-1=x2.∵x≠0,得x2>0.从而(x2+1)2>x4+x2+1.例2比较下列各组数的大小(a≠b).(1)a+b2与21a+1b(a>0,b>0);(2)a4-b4与4a3(a-b).活动:比较两个实数的大小,常根据实数的运算性质与大小顺序的关系,归结为判断它们的差的符号来确定.本例可由学生独立完成,但要点拨学生在最后的符号判断说理中,要理由充分,不可忽略这点.解:(1)a+b2-21a+1b=a+b2-2aba+b=a+b2-4ab2a+b=a-b22a+b.∵a>0,b>0且a≠b,∴a+b>0,(a-b)2>0.∴a-b22a+b>0,即a+b2>21a+1b.(2)a4-b4-4a3(a-b)=(a-b)(a+b)(a2+b2)-4a3(a-b)=(a-b)(a3+a2b+ab2+b3-4a3)=(a-b)[(a2b-a3)+(ab2-a3)+(b3-a3)]=-(a-b)2(3a2+2ab+b2)=-(a-b)2[2a2+(a+b)2].∵2a2+(a+b)2≥0(当且仅当a=b=0时取等号),又a≠b,∴(a-b)2>0,2a2+(a+b)2>0.∴-(a-b)2[2a2+(a+b)2]<0.∴a4-b4<4a3(a-b).点评:比较大小常用作差法,一般步骤是作差――变形――判断符号.变形常用的手段是分解因式和配方,前者将“差”变为“积”,后者将“差”化为一个或几个完全平方式的“和”,也可两者并用.变式训练已知x>y,且y≠0,比较xy与1的大小.活动:要比较任意两个数或式的大小关系,只需确定它们的差与0的大小关系.解:xy-1=x-yy.∵x>y,∴x-y>0.当y<0时,x-yy<0,即xy-1<0.∴xy<1;当y>0时,x-yy>0,即xy-1>0.∴xy>1.点评:当字母y取不同范围的值时,差xy-1的正负情况不同,所以需对y分类讨论.例3建筑设计规定,民用住宅的窗户面积必须小于地板面积.但按采光标准,窗户面积与地板面积的比值应不小于10%,且这个比值越大,住宅的采光条件越好.试问:同时增加相等的窗户面积和地板面积,住宅的采光条件是变好了,还是变坏了?请说明理由.活动:解题关键首先是把文字语言转换成数学语言,然后比较前后比值的大小,采用作差法.解:设住宅窗户面积和地板面积分别为a、b,同时增加的面积为m,根据问题的要求a由于a+mb+m-ab=m b-a b b+m>0,于是a+mb+m>ab.又ab≥10%,因此a+mb+m>ab≥10%.所以同时增加相等的窗户面积和地板面积后,住宅的采光条件变好了.点评:一般地,设a、b为正实数,且a0,则a+mb+m>ab.变式训练已知a1,a2,…为各项都大于零的等比数列,公比q≠1,则()A.a1+a8>a4+a5B.a1+a8C.a1+a8=a4+a5D.a1+a8与a4+a5大小不确定答案:A解析:(a1+a8)-(a4+a5)=a1+a1q7-a1q3-a1q4=a1[(1-q3)-q4(1-q3)]=a1(1-q)2(1+q+q2)(1+q)(1+q2).∵{an}各项都大于零,∴q>0,即1+q>0.又∵q≠1,∴(a1+a8)-(a4+a5)>0,即a1+a8>a4+a5.知能训练1.下列不等式:①a2+3>2a;②a2+b2>2(a-b-1);③x2+y2>2xy.其中恒成立的不等式的个数为()A.3B.2C.1D.02.比较2x2+5x+9与x2+5x+6的大小.答案:1.C解析:∵②a2+b2-2(a-b-1)=(a-1)2+(b+1)2≥0,③x2+y2-2xy=(x-y)2≥0.∴只有①恒成立.2.解:因为2x2+5x+9-(x2+5x+6)=x2+3>0,所以2x2+5x+9>x2+5x+6.课堂小结1.教师与学生共同完成本节课的小结,从实数的基本性质的回顾,到两个实数大小的比较方法;从例题的活动探究点评,到紧跟着的变式训练,让学生去繁就简,联系旧知,将本节课所学纳入已有的知识体系中.2.教师画龙点睛,点拨利用实数的基本性质对两个实数大小比较时易错的地方.鼓励学有余力的学生对节末的思考与讨论在课后作进一步的探究.作业习题3―1A组3;习题3―1B组2.设计感想1.本节设计关注了教学方法的优化.经验告诉我们:课堂上应根据具体情况,选择、设计最能体现教学规律的教学过程,不宜长期使用一种固定的教学方法,或原封不动地照搬一种实验模式.各种教学方法中,没有一种能很好地适应一切教学活动.也就是说,世上没有万能的教学方法.针对个性,灵活变化,因材施教才是成功的施教灵药.2.本节设计注重了难度控制.不等式内容应用面广,可以说与其他所有内容都有交汇,历来是高考的重点与热点.作为本章开始,可以适当开阔一些,算作抛砖引玉,让学生有个自由探究联想的平台,但不宜过多向外拓展,以免对学生产生负面影响.3.本节设计关注了学生思维能力的训练.训练学生的思维能力,提升思维的品质,是数学教师直面的重要课题,也是中学数学教育的主线.采用一题多解有助于思维的发散性及灵活性,克服思维的僵化.变式训练教学又可以拓展学生思维视野的广度,解题后的点拨反思有助于学生思维批判性品质的提升.备课资料备用习题1.比较(x-3)2与(x-2)(x-4)的大小.2.试判断下列各对整式的大小:(1)m2-2m+5和-2m+5;(2)a2-4a+3和-4a+1.3.已知x>0,求证:1+x2>1+x.4.若x5.设a>0,b>0,且a≠b,试比较aabb与abba的大小.参考答案:1.解:∵(x-3)2-(x-2)(x-4)=(x2-6x+9)-(x2-6x+8)=1>0,∴(x-3)2>(x-2)(x-4).2.解:(1)(m2-2m+5)-(-2m+5)=m2-2m+5+2m-5=m2.∵m2≥0,∴(m2-2m+5)-(-2m+5)≥0.∴m2-2m+5≥-2m+5.(2)(a2-4a+3)-(-4a+1)=a2-4a+3+4a-1=a2+2.∵a2≥0,∴a2+2≥2>0.∴a2-4a+3>-4a+1.3.证明:∵(1+x2)2-(1+x)2=1+x+x24-(x+1)=x24,又∵x>0,∴x24>0.∴(1+x2)2>(1+x)2.由x>0,得1+x2>1+x.4.解:(x2+y2)(x-y)-(x2-y2)(x+y)=(x-y)[(x2+y2)-(x+y)2]=-2xy(x-y).∵x0,x-y<0.∴-2xy(x-y)>0.∴(x2+y2)(x-y)>(x2-y2)(x+y).5.解:∵aabbabba=aa-bbb-a=(ab)a-b,且a≠b,当a>b>0时,ab>1,a-b>0,则(ab)a-b>1,于是aabb>abba.当b>a>0时,0则(ab)a-b>1.于是aabb>abba.综上所述,对于不相等的正数a、b,都有aabb>abba. 教案【二】教学准备教学目标熟练掌握不等式的证明问题教学重难点熟练掌握不等式的证明问题教学过程不等式的�C明二【基�A��】1.若,,�t下列不等始�K正�_的是()2.�Oa,b����担�且,�t的最小值是()4.求�C:�θ魏问��x,y,z,下述三��不等式不可能同�r成立。

2014届高考数学知识点总复习教案一元二次不等式及其解法

2014届高考数学知识点总复习教案一元二次不等式及其解法

第2讲 一元二次不等式及其解法A 级 基础演练(时间:30分钟 满分:55分)一、选择题(每小题5分,共20分)1.(2012·南通二模)已知f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,-x 2+3x ,x <0,则不等式f (x )<f (4)的解集为( ).A .{x |x ≥4}B .{x |x <4}C .{x |-3<x <0}D .{x |x <-3}解析 f (4)=42=2,不等式即为f (x )<2. 当x ≥0时,由x2<2,得0≤x <4;当x <0时,由-x 2+3x <2,得x <1或x >2,因此x <0. 综上,x <4.故f (x )<f (4)的解集为{x |x <4}. 答案 B2.不等式x 2+ax +4<0的解集不是空集,则实数a 的取值范围是 ( ).A .[-4,4]B .(-4,4)C .(-∞,-4]∪[4,+∞)D .(-∞,-4)∪(4,+∞)解析 不等式x 2+ax +4<0的解集不是空集,只需Δ=a 2-16>0,∴a <-4或a >4,故选D. 答案 D3.设a >0,不等式-c <ax +b <c 的解集是{x |-2<x <1},则a ∶b ∶c = ( ).A .1∶2∶3B .2∶1∶3C .3∶1∶2D .3∶2∶1解析 ∵-c <ax +b <c ,又a >0,∴-b +c a <x <c -ba . ∵不等式的解集为{x |-2<x <1}, ∴⎩⎪⎨⎪⎧ -b +c a =-2,c -b a =1,∴⎩⎪⎨⎪⎧b =a2,c =32a ,∴a ∶b ∶c =a ∶a 2∶3a2=2∶1∶3. 答案 B4.(2013·莆田二模)不等式(x 2-2)log 2x >0的解集是( ).A .(0,1)∪(2,+∞)B .(-2,1)∪(2,+∞)C .(2,+∞)D .(-2,2)解析 原不等式等价于⎩⎨⎧ x 2-2>0,log 2x >0或⎩⎨⎧x 2-2<0,log 2x <0.∴x >2或0<x <1,即不等式的解集为(0,1)∪(2,+∞). 答案 A二、填空题(每小题5分,共10分)5.(2013·烟台模拟)已知关于x 的不等式ax 2+2x +c >0的解集为⎝ ⎛⎭⎪⎫-13,12,则不等式-cx 2+2x -a >0的解集为________.解析 由ax 2+2x +c >0的解集为⎝ ⎛⎭⎪⎫-13,12知a <0,且-13,12为方程ax 2+2x+c =0的两个根,由根与系数的关系得-13+12=-2a ,-13×12=ca ,解得a =-12,c =2,∴-cx 2+2x -a >0,即2x 2-2x -12<0,其解集为(-2,3). 答案 (-2,3)6.在实数集上定义运算⊗:x ⊗y =x (1-y ),若不等式(x -a )⊗(x +a )<1对任意实数x 恒成立,则实数a 的取值范围是________.解析 由题意知(x -a )⊗(x +a )=(x -a )(1-x -a )=-x 2+x +a 2-a .故-x 2+x +a 2-a <1对任意x ∈R 都成立.即-x 2+x <-a 2+a +1对任意x ∈R 都成立.而-x 2+x =-⎝ ⎛⎭⎪⎫x -122+14≤14,只需-a 2+a +1>14即可,即4a 2-4a -3<0,解得-12<a <32. 答案 ⎝ ⎛⎭⎪⎫-12,32三、解答题(共25分)7.(12分)已知不等式ax 2-3x +6>4的解集为{x |x <1或x >b },(1)求a ,b ;(2)解不等式ax 2-(ac +b )x +bc <0.解 (1)因为不等式ax 2-3x +6>4的解集为{x |x <1或x >b },所以x 1=1与x 2=b 是方程ax 2-3x +2=0的两个实数根,且b >1. 由根与系数的关系,得⎩⎪⎨⎪⎧1+b =3a ,1×b =2a .解得⎩⎨⎧a =1,b =2.(2)由(1)知不等式ax 2-(ac +b )x +bc <0为x 2-(2+c )x +2c <0,即(x -2)(x -c )<0.①当c >2时,不等式(x -2)(x -c )<0的解集为{x |2<x <c };②当c <2时,不等式(x -2)(x -c )<0的解集为{x |c <x <2};③当c =2时,不等式(x -2)(x -c )<0的解集为∅.综上所述:当c >2时,不等式的解集为{x |2<x <c }; 当c <2时,不等式的解集为{x |c <x <2}; 当c =2时,不等式的解集为∅.8.(13分)(2013·淮南质检)已知抛物线y =(m -1)x 2+(m -2)x -1(x ∈R ).(1)当m 为何值时,抛物线与x 轴有两个交点?(2)若关于x 的方程(m -1)x 2+(m -2)x -1=0的两个不等实根的倒数平方和不大于2,求m 的取值范围. 解 (1)根据题意,m ≠1且Δ>0,即Δ=(m -2)2-4(m -1)(-1)>0,得m 2>0, 所以m ≠1且m ≠0.(2)在m ≠0且m ≠1的条件下,⎩⎪⎨⎪⎧x 1+x 2=m -21-m ,x 1·x 2=11-m ,因为1x 1+1x 2=x 1+x 2x 1x 2=m -2,所以1x 21+1x 22=⎝ ⎛⎭⎪⎫1x 1+1x 22-2x 1x 2=(m -2)2+2(m -1)≤2. 得m 2-2m ≤0,所以0≤m ≤2.所以m 的取值范围是{m |0<m <1或1<m ≤2}.B 级 能力突破(时间:30分钟 满分:45分)一、选择题(每小题5分,共10分)1.(2013·长沙模拟)已知二次函数f (x )=ax 2-(a +2)x +1(a ∈Z ),且函数f (x )在(-2,-1)上恰有一个零点,则不等式f (x )>1的解集为( ).A .(-∞,-1)∪(0,+∞)B .(-∞,0)∪(1,+∞)C .(-1,0)D .(0,1)解析 ∵f (x )=ax 2-(a +2)x +1,Δ=(a +2)2-4a =a 2+4>0, ∴函数f (x )=ax 2-(a +2)x +1必有两个不同的零点, 又f (x )在(-2,-1)上有一个零点,则f (-2)f (-1)<0, ∴(6a +5)(2a +3)<0,∴-32<a <-56,又a ∈Z , ∴a =-1,不等式f (x )>1即为-x 2-x >0, 解得-1<x <0. 答案 C2.(2012·南通期末)若不等式x 2-2ax +a >0对x ∈R 恒成立,则关于t 的不等式a 2t +1<at 2+2t -3<1的解集为( ).A .(1,2)B .(-2,1)C .(-2,2)D .(-3,2)解析 若不等式x 2-2ax +a >0对x ∈R 恒成立, 则Δ=4a 2-4a <0,所以0<a <1.又a 2t +1<at 2+2t -3<1,则2t +1>t 2+2t -3>0,即⎩⎨⎧2t +1>t 2+2t -3,t 2+2t -3>0,所以1<t <2. 答案 A二、填空题(每小题5分,共10分)3.(2013·大同一模)已知函数f (x )=-x 2+2x +b 2-b +1(b ∈R ),若当x ∈[-1,1]时,f (x )>0恒成立,则b 的取值范围是________. 解析 依题意,f (x )的对称轴为x =1,且开口向下, ∴当x ∈[-1,1]时,f (x )是增函数.若f (x )>0恒成立,则f (x )min =f (-1)=-1-2+b 2-b +1>0,即b 2-b -2>0,∴(b -2)(b +1)>0,∴b >2或b <-1. 答案 (-∞,-1)∪(2,+∞)4.(2012·浙江)设a ∈R ,若x >0时均有[(a -1)x -1](x 2-ax -1)≥0,则a =________.解析 显然a =1不能使原不等式对x >0恒成立,故a ≠1且当x 1=1a -1,a ≠1时原不等式成立.对于x 2-ax -1=0,设其两根为x 2,x 3,且x 2<x 3,易知x 2<0,x 3>0.当x >0时,原不等式恒成立,故x 1=1a -1满足方程x 2-ax -1=0,代入解得a =32或a =0(舍去). 答案 32 三、解答题(共25分)5.(12分)设函数f (x )=a 2ln x -x 2+ax ,a >0.(1)求f (x )的单调区间;(2)求所有的实数a ,使e -1≤f (x )≤e 2对x ∈[1,e]恒成立. 注 e 为自然对数的底数.解 (1)因为f (x )=a 2ln x -x 2+ax ,其中x >0,所以f ′(x )=a 2x -2x +a =-(x -a )(2x +a )x.由于a >0,所以f (x )的增区间为(0,a ),减区间为(a ,+∞). (2)由题意得,f (1)=a -1≥e -1,即a ≥e. 由(1)知f (x )在[1,e]内单调递增,要使e -1≤f (x )≤e 2,对x ∈[1,e]恒成立, 只要⎩⎨⎧f (1)=a -1≥e -1,f (e )=a 2-e 2+a e ≤e 2,解得a =e. 6.(13分)(2013·金华模拟)设二次函数f (x )=ax 2+bx +c ,函数F (x )=f (x )-x 的两个零点为m ,n (m <n ).(1)若m =-1,n =2,求不等式F (x )>0的解集; (2)若a >0,且0<x <m <n <1a ,比较f (x )与m 的大小. 解 (1)由题意知,F (x )=f (x )-x =a (x -m )(x -n ), 当m =-1,n =2时,不等式F (x )>0,即a (x +1)(x -2)>0.当a >0时,不等式F (x )>0的解集为{x |x <-1或x >2};当a <0时,不等式F (x )>0的解集为{x |-1<x <2}.(2)f (x )-m =F (x )+x -m =a (x -m )(x -n )+x -m =(x -m )(ax -an +1), ∵a >0,且0<x <m <n <1a ,∴x -m <0,1-an +ax >0. ∴f (x )-m <0,即f (x )<m .。

高中数学高考总复习----不等式与不等关系知识梳理及考点梳理

高中数学高考总复习----不等式与不等关系知识梳理及考点梳理

高中数学高考总复习----不等式与不等关系知识梳理及考点梳理【考纲要求】1.了解不等关系、不等式(组)的实际背景;2.理解并掌握不等式的性质,理解不等关系;3.能用不等式的基本性质解决某些数学问题.【知识网络】、【考点梳理】要点一、符号法则与比较大小1.实数的符号任意,则(为正数)、或(为负数)三种情况有且只有一种成立。

2.两实数的加、乘运算结果的符号具有以下符号性质:①两个同号实数相加,和的符号不变符号语言:;②两个同号实数相乘,积是正数符号语言:;③两个异号实数相乘,积是负数符号语言:④任何实数的平方为非负数,0的平方为0符号语言:,.3、比较两个实数大小的法则:对任意两个实数、①;②;③。

对于任意实数、,,,三种关系有且只有一种成立。

不等式与不等关系不等式的性质基本性质的应用实际背景要点诠释:这三个式子实质是运用实数运算来比较两个实数的大小关系。

它是本章的基础,也是证明不等式与解不等式的主要依据。

要点二、不等式的基本性质1.不等式的基本性质(1)(2)(3)(4)2.不等式的运算性质(1)加法法则:(2)减法法则:(3)乘法法则:(4)除法法则:(5)乘方法则:(6)开方法则:要点诠释:不等式的概念和性质是进行不等式的变换,证明不等式和解不等式的依据,应正确理解和运用不等式的性质,弄清每条性质的条件与结论,注意条件与结论之间的关系。

基本不等式可以在解题时直接应用。

要点三、比较大小的方法1、作差法:任意两个代数式、,可以作差后比较与0的关系,进一步比较与的大小。

2、作商法:任意两个值为正的代数式、,可以作商后比较与1的关系,进一步比较与的大小。

3、中间量法:若且,则(实质是不等式的传递性).一般选择0或1为中间量.4、利用函数的单调性比较大小:若两个式子具有相同的函数结构,可以利用相应的基本函数的单调性比较大小.【典型例题】类型一:比较代数式(值)的大小例1.已知:,比较和的大小.【解析】∵,,∴∴.【总结升华】作差比较法基本步骤:作差,变形,判断差的符号,结论,其中判断差的符号为目的,变形是关键,常用变形技巧有因式分解,配方,拆、拼项等方法.举一反三:【高清课堂:不等式与不等关系394833典型例题一】【变式1】若,则下列不等式中,不能成立的是()A. B. C. D.【解析】取特殊值,代入验证即可【答案】B【变式2】已知,试比较和的大小.【解析】∵,又∵即∴当时,;当时,.【变式3】且,比较与的大小.【解析】作差:(1)当,即时,,此时.(2)当,即(3)当,,此时,其中时取等号.(4)当即时,,此时例2.已知:、,且,比较的大小.【解析】∵、,∴,作商:(*)(1)若a>b>0,则,a-b>0,,此时成立;(2)若b>a>0,则,a-b<0,,此时成立。

2014届高考数学一轮复习教学案(基础知识+高频考点+解题训练)不等关系与不等式(含解析)

2014届高考数学一轮复习教学案(基础知识+高频考点+解题训练)不等关系与不等式(含解析)

第一节不等关系与不等式[知识能否忆起]1.实数大小顺序与运算性质之间的关系a -b >0⇔a >b ;a -b =0⇔a =b ;a -b <0⇔a <b . 2.不等式的基本性质[小题能否全取]1.(教材习题改编)下列命题正确的是( ) A .若ac >bc ⇒a >b B .若a 2>b 2⇒a >b C .若1a >1b ⇒a <bD .若a <b ⇒a <b答案:D2.若x +y >0,a <0,ay >0,则x -y 的值( ) A .大于0B .等于0C .小于0D .不确定解析:选A 由a <0,ay >0知y <0,又x +y >0,所以x >0.故x -y >0. 3.已知a ,b ,c ,d 均为实数,且c >d ,则“a >b ”是“a -c >b -d ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件解析:选B 若a -c >b -d ,c >d , 则a >b .但c >d ,a >b ⇒/ a -c >b -d .如a =2,b =1,c =-1,d =-3时,a -c <b -d . 4.12-1________3+1(填“>”或“<”). 解析:12-1=2+1<3+1. 答案:<5.已知a ,b ,c ∈R ,有以下命题:①若a >b ,则ac 2>bc 2;②若ac 2>bc 2,则a >b ; ③若a >b ,则a ·2c >b ·2c .其中正确的是____________(请把正确命题的序号都填上). 解析:①若c =0则命题不成立.②正确.③中由2c >0知成立. 答案:②③1.使用不等式性质时应注意的问题:在使用不等式时,一定要搞清它们成立的前提条件.不可强化或弱化成立的条件.如“同向不等式”才可相加,“同向且两边同正的不等式”才可相乘;可乘性中“c 的符号”等也需要注意.2.作差法是比较两数(式)大小的常用方法,也是证明不等式的基本方法.要注意强化化归意识,同时注意函数性质在比较大小中的作用.典题导入[例1] 已知等比数列{a n }中,a 1>0,q >0,前n 项和为S n ,试比较S 3a 3与S 5a 5的大小.[自主解答] 当q =1时,S 3a 3=3,S 5a 5=5,所以S 3a 3<S 5a 5;当q >0且q ≠1时,S 3a 3-S 5a 5=a 1(1-q 3)a 1q 2(1-q )-a 1(1-q 5)a 1q 4(1-q )=q 2(1-q 3)-(1-q 5)q 4(1-q )=-q -1q 4<0,所以S 3a 3<S 5a 5. 综上可知S 3a 3<S 5a 5.若本例中“q >0”改为“q <0”,试比较它们的大小. 解:由例题解法知当 q ≠1时,S 3a 3-S 5a 5=-q -1q 4.当-1<q <0时,S 3a 3-S 5a 5<0,即S 3a 3<S 5a 5;当q =-1时,S 3a 3-S 5a 5=0, 即S 3a 3=S 5a 5;当q <-1时,S 3a 3-S 5a 5>0,即S 3a 3>S 5a 5.由题悟法比较大小的常用方法 (1)作差法:一般步骤是:①作差;②变形;③定号;④结论.其中关键是变形,常采用配方、因式分解、有理化等方法把差式变成积式或者完全平方式.当两个式子都为正数时,有时也可以先平方再作差.(2)作商法:一般步骤是:①作商;②变形;③判断商与1的大小;④结论. (3)特值法:若是选择题、填空题可以用特值法比较大小;若是解答题,可先用特值探究思路,再用作差或作商法判断.[注意] 用作商法时要注意商式中分母的正负,否则极易得出相反的结论.以题试法1.(2012·吉林联考)已知实数a 、b 、c 满足b +c =6-4a +3a 2,c -b =4-4a +a 2,则a 、b 、c 的大小关系是( )A .c ≥b >aB .a >c ≥bC .c >b >aD .a >c >b解析:选A c -b =4-4a +a 2=(2-a )2≥0, ∴c ≥b .将题中两式作差得2b =2+2a 2,即b =1+a 2. ∵1+a 2-a =⎝⎛⎭⎫a -122+34>0,∴1+a 2>a . ∴b =1+a 2>a .∴c ≥b >a .典题导入[例2] (1)(2011·大纲全国卷)下面四个条件中,使a >b 成立的充分而不必要的条件是( )A .a >b +1B .a >b -1C .a 2>b 2D .a 3>b 3(2)(2012·包头模拟)若a >0>b >-a ,c <d <0,则下列结论:①ad >bc ;②a d +bc <0;③a -c >b -d ;④a ·(d -c )>b (d -c )中成立的个数是( )A .1B .2C .3D .4[自主解答] (1)由a >b +1得a >b +1>b ,即a >b ;且由a >b 不能得出a >b +1.因此,使a >b 成立的充分不必要条件是a >b +1.(2)∵a >0>b ,c <d <0,∴ad <0,bc >0, ∴ad <bc ,故①错误.∵a >0>b >-a ,∴a >-b >0, ∵c <d <0,∴-c >-d >0, ∴a (-c )>(-b )(-d ),∴ac +bd <0,∴a d +b c =ac +bdcd <0,故②正确.∵c <d ,∴-c >-d ,∵a >b ,∴a +(-c )>b +(-d ), a -c >b -d ,故③正确.∵a >b ,d -c >0,∴a (d -c )>b (d -c ), 故④正确,故选C. [答案] (1)A (2)C由题悟法1.判断一个关于不等式的命题的真假时,先把要判断的命题与不等式性质联系起来考虑,找到与命题相近的性质,并应用性质判断命题的真假,当然判断的同时可能还要用到其他知识,比如对数函数、指数函数的性质.2.特殊值法是判断命题真假时常用到的一个方法,在命题真假未定时,先用特殊值试试,可以得到一些对命题的感性认识,如正好找到一组特殊值使命题不成立,则该命题为假命题.以题试法2.若a 、b 、c 为实数,则下列命题正确的是( ) A .若a >b ,c >d ,则ac >bd B .若a <b <0,则a 2>ab >b 2 C .若a <b <0,则1a <1bD .若a <b <0,则b a >ab解析:选B A 中,只有a >b >0,c >d >0时,才成立;B 中,由a <b <0,得a 2>ab >b 2成立;C ,D 通过取a =-2,b =-1验证均不正确.典题导入[例3] 已知函数f (x )=ax 2+bx ,且1≤f (-1)≤2,2≤f (1)≤4.求f (-2)的取值范围. [自主解答] f (-1)=a -b ,f (1)=a +b . f (-2)=4a -2b .设m (a +b )+n (a -b )=4a -2b .则⎩⎪⎨⎪⎧ m +n =4,m -n =-2,解得⎩⎪⎨⎪⎧m =1,n =3. ∴f (-2)=(a +b )+3(a -b )=f (1)+3f (-1). ∵1≤f (-1)≤2,2≤f (1)≤4,∴5≤f (-2)≤10.即f (-2)的取值范围为[5,10].由题悟法利用不等式性质可以求某些代数式的取值范围,但应注意两点:一是必须严格运用不等式的性质;二是在多次运用不等式的性质时有可能扩大了变量的取值范围.解决的途径是先建立所求范围的整体与已知范围的整体的等量关系,最后通过“一次性”不等关系的运算求解范围.以题试法3.若α,β满足⎩⎪⎨⎪⎧-1≤α+β ≤1,1≤α+2β ≤3,试求α+3β的取值范围.解:设α+3β=x (α+β)+y (α+2β)=(x +y )α+(x +2y )β.则⎩⎪⎨⎪⎧ x +y =1,x +2y =3,解得⎩⎪⎨⎪⎧x =-1,y =2. ∵-1≤-(α+β)≤1,2≤2(α+2β)≤6, 两式相加,得1≤α+3β≤7. ∴α+3β的取值范围为[1,7].1.已知a 1,a 2∈(0,1),记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( ) A .M <N B .M >N C .M =ND .不确定解析:选B 由题意得M -N =a 1a 2-a 1-a 2+1=(a 1-1)·(a 2-1)>0,故M >N . 2.若m <0,n >0且m +n <0,则下列不等式中成立的是( ) A .-n <m <n <-m B .-n <m <-m <n C .m <-n <-m <nD .m <-n <n <-m解析:选D 法一:(取特殊值法)令m =-3,n =2分别代入各选项检验即可. 法二:m +n <0⇒m <-n ⇒n <-m ,又由于m <0<n ,故m <-n <n <-m 成立. 3.“1≤x ≤4”是“1≤x 2≤16”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A 由1≤x ≤4可得1≤x 2≤16,但由1≤x 2≤16可得1≤x ≤4或-4≤x ≤-1,所以“1≤x ≤4”是“1≤x 2≤16”的充分不必要条件.4.已知0<a <1b ,且M =11+a +11+b ,N =a 1+a +b 1+b ,则M 、N 的大小关系是( )A .M >NB .M <NC .M =ND .不能确定解析:选A ∵0<a <1b ,∴1+a >0,1+b >0,1-ab >0,∴M -N =1-a 1+a +1-b 1+b =2-2ab(1+a )(1+b )>0.5.若1a <1b <0,则下列结论不.正确的是( ) A .a 2<b 2 B .ab <b 2 C .a +b <0D .|a |+|b |>|a +b |解析:选D ∵1a <1b <0,∴0>a >b .∴a 2<b 2,ab <b 2,a +b <0,|a |+|b |=|a +b |.6.设a ,b 是非零实数,若a <b ,则下列不等式成立的是( ) A .a 2<b 2 B .ab 2<a 2b C.1ab 2<1a 2bD.b a <a b解析:选C 当a <0时,a 2<b 2不一定成立,故A 错. 因为ab 2-a 2b =ab (b -a ),b -a >0,ab 符号不确定, 所以ab 2与a 2b 的大小不能确定,故B 错. 因为1ab 2-1a 2b =a -b a 2b 2<0,所以1ab 2<1a 2b ,故C 正确.D 项中b a 与ab的大小不能确定.7.若1<α<3,-4<β <2,则α-|β|的取值范围是________. 解析:∵-4<β <2,∴0≤|β|<4. ∴-4<-|β|≤0.∴-3<α-|β|<3. 答案:(-3,3)8.(2012·深圳模拟)定义a *b =⎩⎪⎨⎪⎧a ,a <b ,b ,a ≥b . 已知a =30.3,b =0.33,c =log 30.3,则(a *b )*c=________.(结果用a ,b ,c 表示)解析:∵log 30.3<0<0.33<1<30.3,∴c <b <a , ∴(a *b )*c =b *c =c . 答案:c9.已知a +b >0,则a b 2+b a 2与1a +1b 的大小关系是________.解析:a b 2+ba 2-⎝⎛⎭⎫1a +1b =a -b b 2+b -a a 2 =(a -b )⎝⎛⎭⎫1b 2-1a 2 =(a +b )(a -b )2a 2b 2.∵a +b >0,(a -b )2≥0, ∴(a +b )(a -b )2a 2b 2≥0.∴a b 2+b a 2≥1a +1b . 答案:a b 2+b a 2≥1a +1b10.若a >b >0,c <d <0,e <0.求证:e (a -c )2>e(b -d )2. 证明:∵c <d <0,∴-c >-d >0. 又∵a >b >0,∴a -c >b -d >0. ∴(a -c )2>(b -d )2>0. ∴0<1(a -c )2<1(b -d )2. 又∵e <0,∴e (a -c )2>e (b -d )2. 11.已知b >a >0,x >y >0,求证:x x +a >y y +b .证明:x x +a -yy +b =x (y +b )-y (x +a )(x +a )(y +b )=bx -ay(x +a )(y +b ).∵b >a >0,x >y >0, ∴bx >ay ,x +a >0,y +b >0, ∴bx -ay(x +a )(y +b )>0,∴x x +a >y y +b. 12.已知函数f (x )=ax 2+bx +c 满足f (1)=0,且a >b >c ,求ca 的取值范围.解:∵f (1)=0,∴a +b +c =0, ∴b =-(a +c ).又a >b >c , ∴a >-(a +c )>c ,且a >0,c <0, ∴1>-a +c a >c a ,即1>-1-c a >ca.∴⎩⎨⎧2ca<-1,ca >-2,解得-2<c a <-12.1.已知a 、b 为实数,则“a >b >1”是“1a -1<1b -1”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选A 由a >b >1⇒a -1>b -1>0⇒1a -1<1b -1,当a =0,b =2时,1a -1<1b -1,∴1a -1<1b -1⇒/ a >b >1,故选A. 2.(2012·洛阳模拟)若-1<a <b <1,-2<c <3则(a -b )·c 的取值范围是________. 解析:∵-1<a <b <1,∴-2<a -b <0,∴2>-(a -b )>0. 当-2<c <0时,2>-c >0, ∴4>(-c )[-(a -b )]>0, 即4>c ·(a -b )>0; 当c =0时,(a -b )·c =0;当0<c <3时,0<c ·[-(a -b )]<6, ∴-6<(a -b )·c <0.综上得,当-2<c <3时,-6<(a -b )·c <4. 答案:(-6,4)3.某企业去年年底给全部的800名员工共发放2 000万元年终奖,该企业计划从今年起,10年内每年发放的年终奖都比上一年增加60万元,企业员工每年净增a 人.(1)若a =10,在计划时间内,该企业的人均年终奖是否会超过3万元? (2)为使人均年终奖年年有增长,该企业每年员工的净增量不能超过多少人? 解:(1)设从今年起的第x 年(今年为第1年)该企业人均发放年终奖为y 万元. 则y =2 000+60x 800+ax (a ∈N *,1≤x ≤10).假设会超过3万元,则2 000+60x800+10x >3,解得x >403>10.所以,10年内该企业的人均年终奖不会超过3万元. (2)设1≤x 1<x 2≤10, 则f (x 2)-f (x 1)=2 000+60x 2800+ax 2-2 000+60x 1800+ax 1=(60×800-2 000a )(x 2-x 1)(800+ax 2)(800+ax 1)>0,所以60×800-2 000a >0,得a <24.所以,为使人均年终奖年年有增长,该企业每年员工的净增量不能超过23人.1.已知0<a <b ,且a +b =1,下列不等式成立的是( ) A .log 2a >0 B .2a -b >1C .2ab >2D .log 2(ab )<-2解析:选D 由已知,0<a <1,0<b <1,a -b <0,0<ab <14,log 2(ab )<-2.2.若a >b >0,则下列不等式中一定成立的是( ) A .a +1b >b +1aB.b a >b +1a +1 C .a -1b >b -1aD.2a +b a +2b >a b解析:选A 取a =2,b =1,排除B 与D ;另外,函数f (x )=x -1x 是(0,+∞)上的增函数,但函数g (x )=x +1x 在(0,1]上递减,在[1,+∞)上递增,所以,当a >b >0时,f (a )>f (b )必定成立,但g (a )>g (b )未必成立,可得,a -1a >b -1b ⇒a +1b >b +1a.3.甲、乙两人同时从寝室到教室,甲一半路程步行,一半路程跑步,乙一半时间步行,一半时间跑步,如果两人步行速度、跑步速度均相同,则 ( )A .甲先到教室B .乙先到教室C .两人同时到教室D .谁先到教室不确定解析:选B 设甲用时间为T ,乙用时间为2t ,步行速度为a ,跑步速度为b ,距离为s ,则T =s 2a +s2b =s 2a +s 2b =s (a +b )2ab ,ta +tb =s ⇒2t =2s a +b,T -2t =s (a +b )2ab -2s a +b =s ×(a +b )2-4ab 2ab (a +b )=s (a -b )22ab (a +b )>0,即乙先到教室.4.若x >y, a >b ,则在①a -x >b -y ,②a +x >b +y ,③ax >by ,④x -b >y -a ,⑤ay >bx这五个式子中,恒成立的所有不等式的序号是________. 解析:令x =-2,y =-3,a =3,b =2,符合题设条件x >y ,a >b ,∵a -x =3-(-2)=5,b -y =2-(-3)=5, ∴a -x =b -y ,因此 ①不成立.又∵ax =-6,by =-6,∴ax =by ,因此③也不正确.又∵a y =3-3=-1,b x =2-2=-1, ∴a y =b x,因此⑤不正确. 由不等式的性质可推出 ②④成立.答案:②④。

2014届高考数学总复习 第2讲 证明不等式的基本方法课件 理 新人教A版选修4-5

2014届高考数学总复习 第2讲 证明不等式的基本方法课件 理 新人教A版选修4-5
第2讲 证明不等式的基本方法
不同寻常的一本书,不可不读哟!
1.了解证明不等式的基本方法:比较法、综合法、分析 法、反证法、放缩法.
2. 会用柯西不等式证明一些简单的不等式以及求一些特定
函数的极值.
1种必会方法 综合法往往是分析法的相反过程,其表述简单、条理清 楚.当问题比较复杂时,通常把分析法和综合法结合起来使 用,以分析法寻找证明的思路,而用综合法叙述、表达整个证 明过程.
则3a2≥2b2,则3a2-2b2≥0.
又a-b≥0,∴(a-b)(3a2-2b2)≥0, 即3a3-2ab2-3a2b+2b3≥0, 则3a3+2b3≥3a2b+2ab2. 故原不等式成立.
证法二 (分析法) 要证3a3+2b3≥3a2b+2ab2, 只需证3a3+2b3-3a2b-2ab2≥0,
例2 已知a,b,c均为正数,证明:a2+b2+c2+
1 1 1 + + 2≥6 a b c
3,并确定a,b,c为何值时,等号成立.
[审题视点] 因为a,b,c均为正数,且a+b+c≥ 3 abc,故可利用三个正数的算术——几何平均不等式证明. 3
[证明]
2
因为a,b,c均为正数,
核心要点研究
例1 [2013· 广州模拟]已知a>0,b>0,求证:( b3≥ab+ ab2.
[审题视点]
a
)3+
本题主要考比较法证明.
[证明]
( a)3+b3-(ab+ ab2)
=[( a)3-ab]+[b3- ab2] =a( a-b)-b2( a-b) =( a-b)(a-b2) =( a-b)[( a)2-b2] =( a-b)2( a+b). 因为a>0,b>0,所以 a+b>0,又( a-b)2≥0, 所以( a -b)2( a +b)≥0,从而( a )3+b3-(ab+ a

(全国通用)2014届高考数学总复习(考点引领+技巧点拨)第六章 不 等 式第2课时 二元一次不等式(组)与简单

(全国通用)2014届高考数学总复习(考点引领+技巧点拨)第六章 不 等 式第2课时 二元一次不等式(组)与简单

《最高考系列 高考总复习》2014届高考数学总复习(考点引领+技巧点拨)第六章 不 等 式第2课时 二元一次不等式(组)与简单页)1. (必修5P 74练习题1改编)若点P(a ,3)在2x +y<3表示的区域内,则实数a 的取值范围是________.答案:a<0解析:点P(a ,3)在2x +y<3表示的区域内,则2a +3<3,解得a<0.2. (必修5P 77练习题2改编)不等式组⎩⎪⎨⎪⎧x -y +4≥0,x +y≥0,x ≤3所表示的平面区域的面积是________.答案:25解析:直线x -y +4=0与直线x +y =0的交点为A(-2,2),直线x -y +4=0与直线x =3的交点为B(3,7),直线x +y =0与直线x =3的交点为C(3,-3),则不等式组表示的平面区域是一个以点A(-2,2)、B(3,7)、C(3,-3)为顶点的三角形,所以其面积为S△ABC=12×5×10=25. 3. (必修5P 84习题4改编) 已知实数x 、y 满足⎩⎪⎨⎪⎧x +y≥2,x -y≤2,0≤y ≤3,则z =2x +y 的最小值是________.答案:1解析:如图所示作出可行域,可知当z =2x +y 过点A(-1,3)时z 最小,此时z =1.4. (必修5P 80练习题2改编)设变量x 、y 满足约束条件:⎩⎪⎨⎪⎧y≥x,x +2y≤2,x ≥-2,则z =x -3y 的最小值为________.答案:-8解析:画出可行域与目标函数线,如图可知,目标函数在点(-2,2)处取最小值-8.5. 若不等式组⎩⎪⎨⎪⎧x≥0,x +3y≥4,3x +y≤4所表示的平面区域被直线y =kx +43分为面积相等的两部分,则k =________.答案:73解析:不等式组表示的平面区域如图所示.由于直线y =kx +43过定点⎝ ⎛⎭⎪⎫0,43.因此只有直线过AB 中点时,直线y =kx +43能平分平面区域.因为A(1,1),B(0,4),所以AB 中点M ⎝ ⎛⎭⎪⎫12,52.当y =kx +43过点⎝ ⎛⎭⎪⎫12,52时,52=k 2+43,所以k =73.1. 二元一次不等式(组)表示的平面区域(1) 二元一次不等式表示的平面区域一般地,直线y=kx+b把平面分成两个区域,y>kx+b表示直线y=kx+b上方的平面区域,y<kx+b表示直线y=kx+b下方的平面区域.(2) 选点法确定二元一次不等式表示的平面区域①任选一个不在直线上的点;②检验它的坐标是否满足所给的不等式;③若适合,则该点所在的一侧区域即为不等式所表示的平面区域,否则,直线的另一侧区域为不等式所表示的平面区域.(3) 二元一次不等式组表示的平面区域不等式组中各个不等式表示平面区域的公共区域.2. 线性规划中的基本概念[备课札记]题型1 二元一次不等式表示的平面区域例1 画出不等式组⎩⎪⎨⎪⎧x -y +5≥0,x +y≥0,x ≤3表示的平面区域.解:不等式x -y +5≥0表示直线x -y +5=0上及右下方的点的集合,x +y≥0表示直线x +y =0上及右上方的点的集合,x ≤3表示直线x =3上及左方的点的集合,所以不等式组⎩⎪⎨⎪⎧x -y +5≥0,x +y≥0,x ≤3表示的平面区域如下图所示.备选变式(教师专享)在平面直角坐标系中,不等式组⎩⎪⎨⎪⎧x +y>0,x -y +4≥0,x ≤a (a 为常数),表示的平面区域的面积为9,那么实数a 的值为________.答案:1解析:不等式组⎩⎪⎨⎪⎧x +y>0,x -y +4≥0,x ≤a 表示的平面区域如图阴影部分.S =12|BC|×(a +2)=12(2a +4)×(a+2)=9. 又a>-2,∴ a =1.题型2 线性规划问题例2 设z =2x +y ,式中变量满足下列条件: ⎩⎪⎨⎪⎧x -4y≤-3,3x +5y≤25,x ≥1,求z 的最大值和最小值. 解:变量x 、y 所满足的每个不等式都表示一个平面区域,不等式组则表示这些平面区域的公共区域.(如图)作一组与l 0:2x +y =0平行的直线l :2x +y =t.t ∈R 可知:当l 在l 0的右上方时,直线l 上的点(x ,y)满足2x +y >0,即t >0,而且直线l 往右平移时,t 随之增大,在经过不等式组所表示的公共区域内的点且平行于l 的直线中,以经过点A(5,2)的直线l 2所对应的t 最大,以经过点B(1,1)的直线l 1所对应的t 最小.所以z max =2×5+2=12,z min =2×1+1=3.变式训练已知实数x ,y 满足⎩⎪⎨⎪⎧x -y +6≥0,x +y≥0,x ≤3,若z =ax +y 的最大值为3a +9,最小值为3a -3,则实数a 的取值范围为__________.答案:[-1,1]解析:作出可行域如图中阴影部分所示,则z 在点A 处取得最大值,在点C 处取得最小值.又k BC =-1,k AB =1,∴ -1≤-a≤1,即-1≤a≤1.题型3 线性规划的实际应用例3 某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A 原料1 kg 、B 原料2 kg ;生产乙产品1桶需耗A 原料2 kg ,B 原料1 kg.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12 kg.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是多少?解:设公司每天生产甲种产品x 桶,乙种产品y 桶,公司共可获得利润为z 元/天,则由已知,得z =300x +400y ,且⎩⎪⎨⎪⎧x +2y≤12,2x +y≤12,x ≥0,y ≥0,画可行域如图所示,目标函数z =300x +400y 可变形为y =-34x +z 400,这是随z 变化的一簇平行直线,解方程组⎩⎪⎨⎪⎧2x +y =12,x +2y =12,∴ ⎩⎪⎨⎪⎧x =4,y =4,即A(4,4),∴ z max =1 200+1 600=2 800(元).故公司每天生产甲产品4桶、生产乙产品4桶时,可获得最大利润为2 800元. 备选变式(教师专享)某公司计划2013年在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元,甲、乙电视台的广告收费标准分别为500元/分钟和200元/分钟,规定甲、乙两个电视台为该公司所做的每分钟广告能给公司带来的收益分别为0.3万元和0.2万元.问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大,最大收益是多少万元?解:设公司在甲电视台和乙电视台做广告的时间分别为x 分钟和y 分钟,总收益为z 元.由题意,得⎩⎪⎨⎪⎧x +y≤300,500x +200y≤90000,x ≥0,y ≥0.目标函数为z =3000x +2000y.二元一次不等式组等价于⎩⎪⎨⎪⎧x +y≤300,5x +2y≤900,x ≥0,y ≥0.作出二元一次不等式组所表示的平面区域,即可行域.作直线l :3000x +2000y =0,即3x +2y =0.联立⎩⎪⎨⎪⎧x +y =300,5x +2y =900,解得x =100,y =200.记点M 的坐标为(100,200).平移直线l ,易知,当直线l 过M 点时,目标函数取得最大值. ∴z max =3000x +2000y =700000(元). 答:该公司在甲电视台做100分钟广告,在乙电视台做200分钟广告,公司的收益最大,最大收益是70万元.1. (2013·南通模拟)已知0<a <1,log a (2x -y +1)>log a (3y -x +2),且λ<x +y ,则λ的最大值为________.答案:-2解析:2x -y +1<3y -x +2,即⎩⎪⎨⎪⎧3x -4y -1<0,2x -y +1>0,作出可行域,则z =x +y 经过点(-1,-1)时最小,故x +y>-2,所以λ的最大值为-2.2. 若直线y =2x 上存在点(x ,y)满足约束条件⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0,x ≥m ,则实数m 的最大值为________.答案:1解析:可行域如下:所以,若直线y =2x 上存在点(x ,y)满足约束条件⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0,x ≥m ,则3-m≥2m,即m≤1.3. 设变量x 、y 满足⎩⎪⎨⎪⎧x -y≤10,0≤x +y≤20,0≤y ≤15,则2x +3y 的最大值是________.答案:55解析:由⎩⎪⎨⎪⎧x +y =20,y =15得A(5,15),且A 为最大解,∴ z max =2×5+3×15=55.4. 某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假. 答案:30亩、20亩解析:设黄瓜、韭菜的种植面积分别为x 、y ,则总利润z =(4×0.55-1.2)x +(6×0.3-0.9)y =x +0.9y ,此时x 、y 满足条件⎩⎪⎨⎪⎧x +y≤50,1.2x +0.9y≤54,x ≥0,y ≥0,画出可行域知,最优解为(30,20).5. 直线2x +y -10=0与不等式组⎩⎪⎨⎪⎧x≥0,y ≥0,x -y≥-2,4x +3y≤20表示的平面区域的公共点有________个.答案:1解析:画出不等式组⎩⎪⎨⎪⎧x≥0,y ≥0,x -y≥-2,4x +3y≤20表示的可行域,如图阴影部分所示(含边界).因为直线2x +y -10=0过点A(5,0),且其斜率为-2,小于直线4x +3y =20的斜率-43,故只有一个公共点(5,0).1. 设不等式组⎩⎪⎨⎪⎧x +y -11≥0,3x -y +3≥0,5x -3y +9≤0 表示的平面区域为D ,若指数函数y =a x的图象存在区域D 上的点,则a 的取值范围是________.答案:1<a≤3解析:先画出如图所示的可行域,当函数a x 的图象过点A(2,9)时,有a 2=9,∴a =3.又a >1,∴1<a≤3.2. 设z =2y -2x +4,其中x 、y 满足条件⎩⎪⎨⎪⎧0≤x≤1,0≤y ≤2,2y -x≥1,求z 的最大值和最小值.解:作出满足不等式组⎩⎪⎨⎪⎧0≤x≤1,0≤y ≤2,2y -x≥1的可行域,如图所示作直线l :2y -2x =t.当l 过点A(0,2)时,z max =2×2-2×0+4=8,当l 过点B(1,1)时,z min =2×1-2×1+4=4.3. 已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -4y≤-33x +5y≤25x≥1,试求解下列问题.(1) z =x 2+y 2的最大值和最小值;(2) z =yx +2的最大值和最小值;(3) z =|3x +4y +3|的最大值和最小值.解:(1) z =x 2+y 2表示的几何意义是区域中的点(x ,y)到原点(0,0)的距离,则z max=5,z min =12.(2) z =y x +2表示区域中的点(x ,y)与点(-2,0)连线的斜率,则z max =1,z min =14.(3) z =|3x +4y +3|=5·|3x +4y +3|5,而|3x +4y +3|5表示区域中的点(x ,y)到直线3x +4y +3=0的距离,则z max =14,z min =5.4. 某营养师要为某个儿童预订午餐和晚餐.已知一个单位的午餐含12个单位的碳水化合物、6个单位的蛋白质和6个单位的维生素C ;一个单位的晚餐含8个单位的碳水化合物、6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营养中至少含64个单位的碳水化合物、42个单位的蛋白质和54个单位的维生素C.如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?解: 设需要预订满足要求的午餐和晚餐分别为x 个单位和y 个单位,所花的费用为z元,则依题意得z =2.5x +4y ,且x 、y 满足⎩⎪⎨⎪⎧x≥0,x ∈N ,y ≥0,y ∈N ,12x +8y≥64,6x +6y≥42,6x +10y≥54,即⎩⎪⎨⎪⎧x≥0,x ∈N ,y ≥0,y ∈N ,3x +2y≥16,x +y≥7,3x +5y≥27.作出线性约束条件所表示的可行域,如图中阴影部分的整数点.让目标函数表示的直线2.5x +4y =z 在可行域上平移,由此可知z =2.5x +4y 在B(4,3)处取得最小值.因此,应当为该儿童预订4个单位的午餐和3个单位的晚餐,就可满足要求.1. 确定不等式Ax +By +C>0(<0,≥0,≤0)表示直线Ax +By +C =0的哪一侧区域,常用两种方法:一是在直线的某一侧取一特殊点;二是将不等式化为y>kx +b(<,≥,≤).2. 在线性约束条件下,当b>0时,求目标函数z =ax +by +c 的最值的求解步骤① 作出可行域;② 作出直线l 0:ax +by =0;③ 平移直线l 0:ax +by =0,依可行域判断取得最值的最优解的点;④ 解相关方程组,求出最优解,从而得出目标函数的最值.3. 常见的非线性目标函数的几何意义:① x 2+y 2表示点(x ,y)与原点(0,0)的距离;② (x -a )2+(y -b )2表示点(x ,y)与点(a ,b)的距离; ③ yx 表示点(x ,y)与原点(0,0)连线的斜率值;④ y -b x -a表示点(x ,y)与点(a ,b)连线的斜率值. 请使用课时训练(B )第2课时(见活页).。

(全国通用)2014届高考数学总复习(考点引领+技巧点拨)第六章 不 等 式第1课时 一元二次不等式及其解法

(全国通用)2014届高考数学总复习(考点引领+技巧点拨)第六章 不 等 式第1课时 一元二次不等式及其解法

《最高考系列 高考总复习》2014届高考数学总复习(考点引领+技巧点拨)第六章 不 等 式第1课时 一元二次不等式及其解法1. (必修5P 69习题2(2)改编)不等式3x 2-x -4≤0的解集是__________. 答案:⎣⎢⎡⎦⎥⎤-1,43 解析:由3x 2-x -4≤0,得(3x -4)(x +1)≤0,解得-1≤x ≤43.2. (必修5P 71习题1(3)改编)不等式x 2+x -6≤0的解集为________. 答案:[-3,2]解析:由x 2+x -6≤0,得-3≤x ≤2.3. (必修5P 71习题7(4)改编)不等式1-2xx +1>0的解集是________.答案:⎝⎛⎭⎪⎫-1,12 解析:不等式1-2x x +1>0等价于(1-2x)(x +1)>0,也就是⎝ ⎛⎭⎪⎫x -12(x +1)<0,所以-1<x<12. 4. (必修5P 71习题5(2)改编)已知不等式x 2-2x +k 2-3>0对一切实数x 恒成立,则实数k 的取值范围是________.答案:k>2或k<-2解析:由Δ=4-4(k 2-3)<0,知k>2或k<-2.5. (必修5P 71习题6改编)不等式ax 2+bx +2>0的解集是⎝ ⎛⎭⎪⎫-12,13,则a -b =________.答案:-10解析:由题意可知,-12和13是方程ax 2+bx +2=0的两个实根,则⎩⎪⎨⎪⎧-12+13=-b a ,⎝ ⎛⎭⎪⎫-12·13=2a, 解得⎩⎪⎨⎪⎧a =-12b =-2,所以a -b =-10.1. 一元二次不等式的解法在二次函数y =ax 2+bx +c(a≠0)中,令y =0,得到一元二次方程ax 2+bx +c =0(a≠0).若将等号“=”改为不等号“>”或“<”,便得到一元二次不等式ax 2+bx +c>0(或<0).因此,可以通过y =ax 2+bx +c(a≠0)图象与x 轴的交点求得一元二次不等式的解,具体如下表:2. 用一个流程图来描述一元二次不等式ax2+bx+c>0(a>0)的求解的算法过程:[备课札记]题型1 一元二次不等式的解法例1 已知a >0,解关于x 的不等式x 2-⎝ ⎛⎭⎪⎫a +1a x +1<0.解:原不等式可化为(x -a)⎝ ⎛⎭⎪⎫x -1a <0.由a -1a =(a +1)(a -1)a ,得①当0<a <1时,a <1a ,解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪a<x<1a ;②当a >1时,a >1a ,解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪1a <x<a ;③当a =1时,a =1a ,(x -1)2<0的解集为 .变式训练已知关于x 的不等式:(a +1)x -3x -1<1.(1) 当a =1时,解该不等式; (2) 当a>0时,解该不等式.解:(1) 当a =1时,不等式化为2x -3x -1<1,化为x -2x -1<0,∴ 1<x<2,解集为{x|1<x<2}.(2) a>0时,由(a +1)x -3x -1 <1得ax -2x -1<0,(ax -2)(x -1)<0,方程(ax -2)(x -1)=0的两根x 1=2a ,x 2=1.①当2a=1即a =2时,解集为 ;②当2a >1即0<a<2时,解集为⎩⎨⎧⎭⎬⎫x|1<x<2a ;③当2a <1即a>2时,解集为⎩⎨⎧⎭⎬⎫x|2a <x<1. 题型2 由二次不等式的解求参数的值或范围例2 已知不等式(2+x)(3-x)≥0的解集为A ,函数f(x)=kx 2+4x +k +3(k<0)的定义域为B.(1) 求集合A ;(2) 若集合B 中仅有一个元素,试求实数k 的值; (3) 若B A ,试求实数k 的取值范围.解:(1) 由(2+x)(3-x)≥0,得(2+x)(x -3)≤0, 解得-2≤x≤3,故A =[-2,3].(2) 记g(x)=kx 2+4x +k +3,则g(x)≥0在R 上有且仅有一解,而k<0,所以Δ=0. 由k<0与16-4k(k +3)=0,解得k =-4.(3) 记g(x)=kx 2+4x +k +3,首先g(x)≥0在R 上有解,而k<0,所以Δ=16-4k(k +3)≥0, 解之得-4≤k<0.①设g(x)=0的两个根为x 1,x 2(x 1<x 2),则B =[x 1,x 2].由B A ,得⎩⎪⎨⎪⎧g (-2)≤0,g (3)≤0,-2<-2k <3,即⎩⎪⎨⎪⎧5k -5≤0,10k +15≤0,-2<-2k <3, ②由①与②,解得-4≤k≤-32.备选变式(教师专享)已知f(x)=-3x 2+a(6-a)x +b. (1) 解关于a 的不等式f(1)>0;(2) 当不等式f(x)>0的解集为(-1,3)时,求实数a 、b 的值.解:(1) f(1)= -3+a(6-a)+b = -a 2+6a +b -3,∵ f(1)>0,∴ a 2-6a +3-b<0. ∵Δ=24+4b ,当b≤-6时,Δ≤0,∴此时f(1)>0的解集为 ;当b>-6时,3-b +6<a<3+b +6.∴ f(1)>0的解集为{a|3-b -6<a<3+b +6. (2) ∵不等式-3x 2+a(6-a)x +b>0的解集为(-1,3), ∴f(x)>0与不等式(x +1)(x -3)<0同解.∵3x 2-a(6-a)x -b<0解集为(-1,3),∴⎩⎪⎨⎪⎧2=a (6-a )3,3=b 3, 解得⎩⎨⎧a =3±3,b =9.题型3 三个二次之间的关系例3 已知不等式x 2-2x -3<0的解集为A ,不等式x 2+x -6<0的解集是B ,不等式x 2+ax +b<0的解集是A∩B,那么a +b =________.答案:-3解析:由题意:A ={x|-1<x<3},B ={x|-3<x<2},A ∩B ={x|-1<x<2},由根与系数的关系可知:a =-1,b =-2,∴ a +b =-3.备选变式(教师专享)关于x 的不等式x 2-ax -20a 2<0任意两个解的差不超过9,则a 的最大值与最小值的和是________.答案:0解析:方程x 2-ax -20a 2=0的两根是x 1=-4a ,x 2=5a ,则由关于x 的不等式x 2-ax -20a 2<0任意两个解的差不超过9,得|x 1-x 2|=|9a|≤9,即-1≤a≤1,且a≠0,故填0.题型4 一元二次不等式的应用例4 要在墙上开一个上半部为半圆形、下部为矩形的窗户(如图所示),在窗框为定长的条件下,要使窗户能够透过最多的光线,窗户应设计成怎样的尺寸?解: 设半圆直径为2R, 矩形的高为a , 则2a +2R +πR =L(定值),S =2Ra +12πR 2=-⎝ ⎛⎭⎪⎫12π+2R 2+LR ,当R =L π+4时S 最大,此时Ra=1, 即半圆直径与矩形的高的比为2∶1时,窗户能够透过最多的光线. 备选变式(教师专享)某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x(百台),总成本为G(x)(万元),其中固定成本为2万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本);销售收入R(x)(万元)满足:R(x)=⎩⎪⎨⎪⎧-0.4x 2+4.2x -0.8,0≤x ≤5,10.2,x>5,假定该产品产销平衡,那么根据上述统计规律求下列问题.(1) 要使工厂有赢利,产量x 应控制在什么范围内? (2) 工厂生产多少台产品时,可使赢利最多?解:依题意,G(x)=x +2,设利润函数为f(x),则f(x)=⎩⎪⎨⎪⎧-0.4x 2+3.2x -2.8,0≤x ≤5,8.2-x ,x>5.(1) 要使工厂有赢利,即解不等式f(x)>0,当0≤x≤5时,解不等式-0.4x 2+3.2x -2.8>0,即x 2-8x +7<0,得1<x<7, ∴1<x ≤5.当x>5时,解不等式8.2-x>0,得 x<8.2, ∴5<x<8.2.综上所述,要使工厂赢利,x 应满足1<x<8.2,即产品产量应控制在大于100台,小于820台的范围内.(2)0≤x≤5时,f(x)=-0.4(x -4)2+3.6, 故当x =4时,f(x)有最大值3.6; 而当x>5时,f(x)<8.2-5=3.2.所以,当工厂生产400台产品时,赢利最多.1. (2013·安徽)已知一元二次不等式f(x)<0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x<-1或x>12,则f(10x)>0的解集为______.答案:{x|x<-lg2}解析:由条件得-1<10x <12,即x<-lg2.2. (2013·四川)已知f(x)是定义域为R 的偶函数,当x≥0时,f(x)=x 2-4x ,那么不等式f(x +2)<5的解集是________.答案:(-7,3)解析:解f(x)=x 2-4x<5(x≥0),得0≤x<5.由f(x)是定义域为R 的偶函数得不等式f(x)<5的解集是(-5,5),所以不等式f(x +2)<5转化为-5<x +2<5,故所求的解集是(-7,3).3. (2013·重庆)关于x 的不等式x 2-2ax -8a 2<0(a>0)的解集为(x 1,x 2),且x 2-x 1=15,则a =________.答案:52解析:x 2-x 1=4a -(-2a)=6a =15.4. (2013·上海)甲厂以x 千克/小时的速度运输生产某种产品(生产条件要求1≤x≤10),每小时可获得利润是100(5x +1-3x)元.(1) 要使生产该产品2小时获得的利润不低于3 000元,求x 的取值范围; (2) 要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求最大利润.解:(1) 根据题意,200⎝ ⎛⎭⎪⎫5x +1-3x ≥3 000 5x -14-3x ≥0.又1≤x≤10,可解得3≤x≤10.(2) 设利润为y 元,则y =900x ·100⎝ ⎛⎭⎪⎫5x +1-3x =9×104⎣⎢⎡⎦⎥⎤-3⎝ ⎛1x -162+6112,故x =6时,y max =457 500元.1. 解关于x 的不等式(1-ax)2<1.解:由(1-ax)2<1得a 2x 2-2ax +1<1,即ax(ax -2)<0. ① 当a =0时,不等式转化为0<0,故x 无解.② 当a<0时,不等式转化为x(ax -2)>0,即x ⎝ ⎛⎭⎪⎫x -2a <0.∵ 2a <0,∴ 不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2a <x<0. ③ 当a>0时,原不等式转化为x(ax -2)<0,又2a >0,即原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪0<x<2a .综上所述,当a =0时,原不等式解集为 ;当a<0时,原不等式解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2a <x<0; 当a>0时,原不等式解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪0<x<2a .2. 函数f(x)=x 2+ax +3.(1) 当x∈R 时,f (x)≥a 恒成立,求a 的取值范围;(2) 当x∈[-2,2]时,f (x)≥a 恒成立,求a 的取值范围.解:(1) ∵ x∈R ,f (x)≥a 恒成立,∴ x 2+ax +3-a≥0恒成立,则Δ=a 2-4(3-a)≤0,得-6≤a≤2.∴ 当x∈R 时,f (x)≥a 恒成立,则a 的取值范围为[-6,2]. (2) f(x)=⎝ ⎛⎭⎪⎫x +a 22+3-a 24. 讨论对称轴与[-2,2]的位置关系,得到a 的取值满足下列条件: ⎩⎪⎨⎪⎧-a 2≤-2,f (-2)≥a 或⎩⎪⎨⎪⎧-2<-a2<2,3-a 24≥a 或⎩⎪⎨⎪⎧-a 2≥2,f (2)≥a, 即⎩⎪⎨⎪⎧a≥4,7-2a≥a 或⎩⎪⎨⎪⎧-4<a <4,a 2+4a -12≤0或⎩⎪⎨⎪⎧a≤-4,7+2a≥a. 解得-7≤a≤2.∴ 当x∈[-2,2]时,f (x)≥a 恒成立,则a 的取值范围为[-7,2]. 3. 某商场若将进货单价为8元的商品按每件10元出售,每天可销售100件,现准备采用提高售价,减少进货量的办法来增加利润,已知这种商品每件销售价提高1元,销售量就要减少10件,问该商场将销售价每件定为多少元时,才能使得每天所赚的利润最多?销售价每件定为多少元时,才能保证每天所赚的利润在300元以上?解:设每件提高x 元(0≤x≤10),即每件获利润(2+x)元,每天可销售(100-10x)件,设每天获得总利润为y 元,由题意有y =(2+x)(100-10x)=-10x 2+80x +200=-10(x -4)2+360.所以当x =4时,y max =360元,即当定价为每件14元时,每天所赚利润最多.要使每天利润在300元以上,则有-10x 2+80x +200>300,即x 2-8x +10<0,解得4-6<x <4+ 6.故每件定价在(14-6)元到(14+6)元之间时,能确保每天赚300元以上.4. 设关于x 的不等式mx 2-2x -m +1<0对于满足|m|≤2的一切m 都成立,则x 的取值范围是________.答案:7-12<x<3+12解析:以m 为主体变元构造函数f(m)=(x 2-1)m -(2x -1),问题转化为求x 的范围,使f(x)在[-2,2]上恒为负值.故有⎩⎪⎨⎪⎧f (-2)<0,f (2)<0,即⎩⎪⎨⎪⎧-2x 2-2x +3<0,2x 2-2x -1<0,解得7-12<x <3+12.1. 一元二次不等式ax 2+bx +c>0,ax 2+bx +c<0的解就是使二次函数y =ax 2+bx +c 的函数值大于0或小于0时x 的范围,应充分和二次函数图象结合去理解一元二次不等式的解集表.2. 解带参数的不等式(x -a)(x -b)>0,应讨论a 与b 的大小再确定不等式的解,解一元二次不等式的一般过程是:一看(看二次项系数的符号),二算(计算判别式,判断方程的根的情况),三写(写出不等式的解集)3. 应注意讨论ax2+bx+c>0的二次项系数a是否为0.4. 要注意体会数形结合与分类讨论的数学思想.分类讨论要做到“不重”、“不漏”、“最简”的三原则.请使用课时训练(A)第1课时(见活页).。

2014届高考数学知识点总复习教案不等关系与不等式

2014届高考数学知识点总复习教案不等关系与不等式

第七篇不等关系与不等式A 级 基础演练(时间:30分钟 满分:55分)一、选择题(每小题5分,共20分)1.(2011·浙江)若a ,b 为实数,则“0<ab <1”是“a <1b 或b >1a ”的( ).A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析 当0<ab <1时,若b >0,则有a <1b ;若b <0,则a <0,从而有b >1a .故“0<ab <1”是“a <1b 或b >1a ”的充分条件.反之,取b =1,a =-2,则有a <1b 或b >1a ,但ab <0.故选A. 答案 A2.(2013·保定模拟)已知a >b ,则下列不等式成立的是( ).A .a 2-b 2≥0B .ac >bcC .|a |>|b |D .2a >2b解析 A 中,若a =-1,b =-2,则a 2-b 2≥0不成立;当c =0时,B 不成立;当0>a >b 时,C 不成立;由a >b 知2a >2b 成立,故选D. 答案 D3.(2012·晋城模拟)已知下列四个条件:①b >0>a ,②0>a >b ,③a >0>b ,④a >b >0,能推出1a <1b 成立的有 ( ).A .1个B .2个C .3个D .4个解析 运用倒数性质,由a >b ,ab >0可得1a <1b ,②、④正确.又正数大于负数,①正确,③错误,故选C. 答案 C4.如果a ,b ,c 满足c <b <a ,且ac <0,那么下列选项中不一定成立的是 ( ).A .ab >acB .c (b -a )>0C .cb 2<ab 2D .ac (a -c )<0解析 由题意知c <0,a >0,则A 一定正确;B 一定正确;D 一定正确;当b =0时C 不正确. 答案 C二、填空题(每小题5分,共10分)5.若-π2<α<β<π2,则α-β的取值范围是________.解析 由-π2<α<π2,-π2<-β<π2,α<β得-π<α-β<0. 答案 (-π,0)6.(2013·南昌一模)现给出三个不等式:①a 2+1>2a ;②a 2+b 2>2⎝ ⎛⎭⎪⎫a -b -32;③7+10>3+14.其中恒成立的不等式共有________个.解析 因为a 2-2a +1=(a -1)2≥0,所以①不恒成立;对于②,a 2+b 2-2a +2b +3=(a -1)2+(b +1)2+1>0,所以②恒成立;对于③,因为(7+10)2-(3+14)2=270-242>0,且7+10>0,3+14>0,所以7+10>3+14,即③恒成立. 答案 2 三、解答题(共25分)7.(12分)设0<x <1,a >0且a ≠1,比较|log a (1-x )|与|log a (1+x )|的大小.解 法一 当a >1时,由0<x <1知, log a (1-x )<0,log a (1+x )>0, ∴|log a (1-x )|-|log a (1+x )|=-log a (1-x )-log a (1+x )=-log a (1-x 2),∵0<1-x 2<1,∴log a (1-x 2)<0,从而-log a (1-x 2)>0,故|log a (1-x )|>|log a (1+x )|.当0<a <1时,同样可得|log a (1-x )|>|log a (1+x )|. 法二 平方作差 |log a (1-x )|2-|log a (1+x )|2=[log a (1-x )]2-[log a (1+x )]2=log a (1-x 2)·log a 1-x1+x=log a (1-x 2)·log a ⎝ ⎛⎭⎪⎫1-2x 1+x >0.∴|log a (1-x )|2>|log a (1+x )|2, 故|log a (1-x )|>|log a (1+x )|. 法三 作商比较 ∵|log a (1-x )||log a (1+x )|=⎪⎪⎪⎪⎪⎪log a (1-x )log a (1+x )=|log (1+x )(1-x )|, ∵0<x <1,∴log (1+x )(1-x )<0, 故|log a (1-x )||log a (1+x )|=-log (1+x )(1-x )=log (1+x )11-x=1+log (1+x )⎝ ⎛⎭⎪⎫11-x ·11+x =1+log (1+x )11-x 2.由0<x <1知,1+x >1及11-x 2>1, ∴log (1+x )11-x 2>0,故|log a (1-x )||log a (1+x )|>1, ∴|log a (1-x )|>|log a (1+x )|.8.(13分)已知f (x )=ax 2-c 且-4≤f (1)≤-1,-1≤f (2)≤5,求f (3)的取值范围.解 由题意,得⎩⎨⎧a -c =f (1),4a -c =f (2),解得⎩⎪⎨⎪⎧a =13[f (2)-f (1)],c =-43f (1)+13f (2).所以f (3)=9a -c =-53f (1)+83f (2). 因为-4≤f (1)≤-1,所以53≤-53f (1)≤203, 因为-1≤f (2)≤5,所以-83≤83f (2)≤403.两式相加,得-1≤f (3)≤20,故f (3)的取值范围是[-1,20].B 级 能力突破(时间:30分钟 满分:45分)一、选择题(每小题5分,共10分)1.(2011·上海)若a 、b ∈R ,且ab >0,则下列不等式中,恒成立的是 ( ).A .a 2+b 2>2abB .a +b ≥2 ab C.1a +1b >2abD.b a +ab≥2 解析 对A :当a =b =1时满足ab >0,但a 2+b 2=2ab ,所以A 错;对B 、C :当a =b =-1时满足ab >0,但a +b <0,1a +1b <0,而2ab >0,2ab >0,显然B 、C 不对;对D :当ab >0时,由均值定理b a +ab =2 b a ·ab =2.答案 D2.(2013·汉中一模)若a 、b 均为不等于零的实数,给出下列两个条件.条件甲:对于区间[-1,0]上的一切x 值,ax +b >0恒成立;条件乙:2b -a >0,则甲是乙的( ). A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析 当x ∈[-1,0]时,恒有ax +b >0成立, ∴当a >0时,ax +b ≥b -a >0,当a <0时,ax +b ≥b >0,∴b -a >0,b >0,∴2b -a >0, ∴甲⇒乙,乙推不出甲,例如:a =32b ,b >0时, 则2b -a =12b >0,但是,当x =-1时,a ·(-1)+b =-32b +b =-12b <0, ∴甲是乙的充分不必要条件. 答案 A二、填空题(每小题5分,共10分)3.(2012·泉州一模)已知奇函数f(x)在区间(-∞,+∞)上是单调减函数,α,β,γ∈R,且α+β>0,β+γ>0,γ+α>0,则f(α)+f(β)+f(γ)与0的关系是________.解析∵f(x)在R上是奇函数,∴f(-x)=-f(x),∵α+β>0,β+γ>0,γ+α>0,∴α>-β,β>-γ,γ>-α,而f(x)在R上是单调减函数,∴f(α)<f(-β)=-f(β),f(β)<f(-γ)=-f(γ),f(γ)<f(-α)=-f(α),以上三式相加得:2[f(α)+f(β)+f(γ)]<0,即f(α)+f(β)+f(γ)<0.答案f(α)+f(β)+f(γ)<04.(2013·南京一模)给出下列四个命题:①若a>b>0,则1a>1 b;②若a>b>0,则a-1a>b-1b;③若a>b>0,则2a+ba+2b>ab;④设a,b是互不相等的正数,则|a-b|+1a-b≥2.其中正确命题的序号是________(把你认为正确命题的序号都填上).解析①作差可得1a-1b=b-aab,而a>b>0,则b-aab<0,此式错误.②a>b>0,则1a<1b,进而可得-1a>-1b,所以可得a-1a>b-1b正确.③2a+ba+2b-ab=b(2a+b)-a(a+2b)(a+2b)b =b2-a2(a+2b)b=(b-a)(b+a)(a+2b)b<0,错误.④当a-b<0时此式不成立,错误.答案②三、解答题(共25分)5.(12分)(2011·安徽)(1)设x≥1,y≥1,证明x+y+1xy≤1x+1y+xy;(2)设1<a ≤b ≤c ,证明log a b +log b c +log c a ≤log b a +log c b +log a c . 证明 (1)由于x ≥1,y ≥1,所以x +y +1xy ≤1x +1y +xy ⇔xy (x +y )+1≤y +x +(xy )2. 将上式中的右式减左式,得[y +x +(xy )2]-[xy (x +y )+1]=[(xy )2-1]-[xy (x +y )-(x +y )]=(xy +1)(xy -1)-(x +y )(xy -1)=(xy -1)(xy -x -y +1)=(xy -1)(x -1)(y -1). 既然x ≥1,y ≥1,所以(xy -1)(x -1)(y -1)≥0, 从而所要证明的不等式成立.(2)设log a b =x ,log b c =y ,由对数的换底公式得 log c a =1xy ,log b a =1x ,log c b =1y ,log a c =xy . 于是,所要证明的不等式即为 x +y +1xy ≤1x +1y +xy其中x =log a b ≥1,y =log b c ≥1.故由(1)可知所要证明的不等式成立. 6.(13分)已知f (x )是定义在(-∞,4]上的减函数,是否存在实数m ,使得f (m -sin x )≤f ⎝ ⎛⎭⎪⎫1+2m -74+cos 2x 对定义域内的一切实数x 均成立?若存在,求出实数m 的取值范围;若不存在,请说明理由.思维启迪:不等式和函数的结合,往往要利用函数的单调性和函数的值域. 解 假设实数m 存在,依题意, 可得⎩⎪⎨⎪⎧m -sin x ≤4,m -sin x ≥1+2m -74+cos 2x ,即⎩⎪⎨⎪⎧m -4≤sin x ,m -1+2m +12≥-⎝ ⎛⎭⎪⎫sin x -122.因为sin x 的最小值为-1,且-(sin x -12)2的最大值为0,要满足题意,必须有⎩⎪⎨⎪⎧m -4≤-1,m -1+2m +12≥0,解得m =-12或32≤m ≤3.所以实数m 的取值范围是⎣⎢⎡⎦⎥⎤32,3∪⎩⎨⎧⎭⎬⎫-12.探究提高 不等式恒成立问题一般要利用函数的值域,m ≤f (x )恒成立,只需m ≤f (x )min .。

【创新设计】(浙江专用)高考数学总复习 第七篇 不等式 第4讲 基本不等式课件 理

【创新设计】(浙江专用)高考数学总复习 第七篇 不等式 第4讲 基本不等式课件 理

t+12

≤27.5-6=21.5.
当且仅当t+9 12
=t+
1 2
时,等号成立,即t=2.5时,y有最大值
21.5.所以2013年的年促销费用投入2.5万元时,该厂家利润
最大,最大利润为21.5万元.
热点突破13 高考中巧用基本不等式求最值问题 【命题研究】 通过近三年的高考试题分析,对利用基本不等
[审题视点] 先局部运用基本不等式,再利用不等式的性质相 加得到. 证明 ∵a>0,b>0,c>0, ∴bac+cba≥2 bac·cba=2c; bac+acb≥2 bac·acb=2b; cba+acb≥2 cba·acb=2a. 以上三式相加得:2bac+cba+acb≥2(a+b+c), 即bac+cba+acb≥a+b+c,当且仅当a=b=c时,取等号.
(2)1+1a1+1b=1+a+a b1+a+b b =2+ba2+ab=5+2ba+ab ≥5+4=9. 当且仅当a=b=12时,取等号. 答案 (1)C (2)9
考向二 利用基本不等式证明不等式 【例2】►(2012·温州测试)已知a>0,b>0,c>0,求证: bac +cba+acb≥a+b+c.

(1)令y=0,得kx-
1 20
(1+k2)x2=0,由实际意义和题设
条件知x>0,k>0,
故x=12+0kk2=k+201k≤220=10,当且仅当k=1时取等号.
所以炮的最大射程为10千米.
(2)因为a>0,所以炮弹可击中目标⇔存在k>0,使3.2=ka-
1 20
(1+k2)a2成立⇔关于k的方程a2k2-20ak+a2+64=0有正
3 2
,y=2时取等号,故xy的最

关于不等式的基本性质的高考数学知识点总结

关于不等式的基本性质的高考数学知识点总结

关于不等式的基本性质的高考数学知识点总结不等式是数学中非常重要的概念之一,它在数学的各个领域和实际问题中有着广泛的应用。

在高考数学中,不等式也是一个考查频率较高的知识点。

下面是对不等式的基本性质的总结:1.不等关系性质不等关系具有自反性、对称性、传递性。

即对任意实数a,b,有:自反性:a≥a,a≤a对称性:如果a≥b,则b≤a;如果a≤b,则b≥a传递性:如果a≥b,b≥c,则a≥c;如果a≤b,b≤c,则a≤c2.加减性质对于不等式a<b和任意实数c,有:a+c<b+ca-c<b-c3.乘除性质(1)正数乘除:对于不等式a<b,如果c是正数,则有:正数乘性:ac < bc正数除性:如果c是正数且c≠0,则有:a/c<b/c(2)负数乘除:对于不等式a<b,如果c是负数,则有:负数乘性:ac > bc负数除性:如果c是负数且c≠0,则有:a/c>b/c(3)双边不等式乘除:对于不等式a<b和任意非零实数c,有:a/c<b/c(当c>0时)a/c>b/c(当c<0时)4.基本不等式基本不等式是指在特定条件下,可以将不等式简化为更为简单形式的不等式。

(1)三角形不等式:对于三角形的三边长a,b,c,有:a+b>ca+c>bb+c>a(2) 平均值不等式:对于任意n个非负实数a1,a2,...,an,有:平均值不等式:(a1+a2+...+an)/n ≥ √(a1a2...an)5.同向不等式同向不等式的性质和解法与等式类似。

对于同向不等式,如果对不等号两边同时乘除以同一个正数,或者对不等号两边同时乘除以同一个负数,则不等号方向不变。

例如,对于不等式2x+1<3x-2,可以同时减去2x,得到1<-2x-2,再同时减去1,得到0<-2x-3,再同时乘以(-1/2),得到0>(2x+3)/2,最后反转不等号得到(2x+3)/2<0。

高考数学总复习 不等式的概念与性质

高考数学总复习 不等式的概念与性质

高考数学总复习 不等式的概念与性质一.不等式的概念:1、 不等式的意义:a>b ⇔a-b>0;a=b ⇔a-b=0;a<b ⇔a-b<0.2、 同向不等式:如果两个不等式中,每一个的左边都大于(或小于)右边,则这两个不等式称为同向不等式。

3、 异向不等式:如果两个不等式中,一个是左边大于右边,一个是左边小于右边,则这两个不等式称为异向不等式。

二、不等式的性质:(1)反对称性:若a>b,则b<a ;若b<a,则a>b.(2) 传递性:若a>b,b>c,则a>c.(3)同加原理:若a>b,则a+c>b+c.(4)同向相加原理:若a>b,c>d,则a+c>b+d.(5)同乘原理:若a>b,c>0,则ac>bc ;若a>b,c<0,则ac<bc.(6)同向相乘原理:若a>b>0,c>d>0,则ac>bd.(7)乘方原理:若a>b>0,则a n >b n .(8)开方原理:若a>b>0,则n n b a >.(9)倒数原理:若a>b>0,则b a 11<;若b<a<0,则ba 11<. 注意:(1)不等式的性质是解(证)不等式的基础,对任意两实数a,b,有:a>b ⇔a-b>0;a=b ⇔a-b=0;a<b ⇔a-b<0.这既是比较大小的理论依据,也是学习不等式的基础。

(2)对于不等式的性质,关键是正确理解和运用,要弄清每一个性质的条件和结论,注意条件的加强和减弱、条件与结论之间的相互联系。

(3)不等式的性质应用于证明不等式,往往是从条件推出结论的变换关系,而解不等式则要求等价变形。

2014届高考数学一轮复习教学案基本不等式(含解析) ——谢丹军

2014届高考数学一轮复习教学案基本不等式(含解析) ——谢丹军

第四节基本不等式[知识能否忆起]一、基本不等式ab ≤a +b21.基本不等式成立的条件:a >0,b >0.2.等号成立的条件:当且仅当a =b 时取等号. 二、几个重要的不等式a 2+b 2≥2ab (a ,b ∈R );b a +ab ≥2(a ,b 同号).ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R );⎝⎛⎭⎫a +b 22≤a 2+b 22(a ,b ∈R ). 三、算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.四、利用基本不等式求最值问题 已知x >0,y >0,则:(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小)(2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定积最大)[小题能否全取]1.(教材习题改编)函数y =x +1x (x >0)的值域为( )A .(-∞,-2]∪[2,+∞)B .(0,+∞)C .[2,+∞)D .(2,+∞)解析:选C ∵x >0,∴y =x +1x ≥2,当且仅当x =1时取等号.2.已知m >0,n >0,且mn =81,则m +n 的最小值为( ) A .18 B .36 C .81D .243解析:选A ∵m >0,n >0,∴m +n ≥2mn =18.当且仅当m =n =9时,等号成立.3.(教材习题改编)已知0<x <1,则x (3-3x )取得最大值时x 的值为( ) A.13 B.12 C.34D.23解析:选B 由x (3-3x )=13×3x (3-3x )≤13×94=34,当且仅当3x =3-3x ,即x =12时等号成立.4.若x >1,则x +4x -1的最小值为________.解析:x +4x -1=x -1+4x -1+1≥4+1=5.当且仅当x -1=4x -1,即x =3时等号成立.答案:55.已知x >0,y >0,lg x +lg y =1,则z =2x +5y 的最小值为________.解析:由已知条件lg x +lg y =1,可得xy =10. 则2x +5y≥2 10xy=2,故⎝⎛⎭⎫2x +5y min =2,当且仅当2y =5x 时取等号.又xy =10,即x =2,y =5时等号成立.答案:21.在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.2.对于公式a +b ≥2ab ,ab ≤⎝⎛⎭⎫a +b 22,要弄清它们的作用和使用条件及内在联系,两个公式也体现了ab 和a +b 的转化关系.3.运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如a 2+b 2≥2ab 逆用就是ab ≤a 2+b 22;a +b 2≥ab (a ,b >0)逆用就是ab ≤⎝⎛⎭⎫a +b 22(a ,b >0)等.还要注意“添、拆项”技巧和公式等号成立的条件等.典题导入[例1] (1)已知x <0,则f (x )=2+4x+x 的最大值为________.(2)(2012·浙江高考)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是( ) A.245 B.285 C .5D .6[自主解答] (1)∵x <0,∴-x >0, ∴f (x )=2+4x +x =2-⎣⎡⎦⎤4-x +(-x ).∵-4x +(-x )≥24=4,当且仅当-x =4-x ,即x =-2时等号成立.∴f (x )=2-⎣⎡⎦⎤4-x +(-x )≤2-4=-2,∴f (x )的最大值为-2.(2)∵x >0,y >0,由x +3y =5xy 得15⎝⎛⎭⎫1y +3x =1. ∴3x +4y =15·(3x +4y )·⎝⎛⎭⎫1y +3x =15⎝⎛⎭⎫3x y +4+9+12y x =135+15⎝⎛⎭⎫3x y +12y x ≥135+15×23x y ·12yx=5(当且仅当x =2y 时取等号),∴3x +4y 的最小值为5. [答案] (1)-2 (2)C本例(2)条件不变,求xy 的最小值.解:∵x >0,y >0,则5xy =x +3y ≥2x ·3y , ∴xy ≥1225,当且仅当x =3y 时取等号.∴xy 的最小值为1225.由题悟法用基本不等式求函数的最值,关键在于将函数变形为两项和或积的形式,然后用基本不等式求出最值.在求条件最值时,一种方法是消元,转化为函数最值;另一种方法是将要求最值的表达式变形,然后用基本不等式将要求最值的表达式放缩为一个定值,但无论哪种方法在用基本不等式解题时都必须验证等号成立的条件.以题试法1.(1)当x >0时,则f (x )=2xx 2+1的最大值为________.(2)(2011·天津高考)已知log 2a +log 2b ≥1,则3a +9b 的最小值为________.(3)已知x >0,y >0,xy =x +2y ,若xy ≥m -2恒成立,则实数m 的最大值是________. 解析:(1)∵x >0,∴f (x )=2x x 2+1=2x +1x ≤22=1,当且仅当x =1x ,即x =1时取等号.(2)由log 2a +log 2b ≥1得log 2(ab )≥1,即ab ≥2,∴3a +9b =3a +32b ≥2×3a +2b2(当且仅当3a =32b ,即a =2b 时取等号).又∵a +2b ≥22ab ≥4(当且仅当a =2b 时取等号), ∴3a +9b ≥2×32=18.即当a =2b 时,3a +9b 有最小值18.(3)由x >0,y >0,xy =x +2y ≥22xy ,得xy ≥8,于是由m -2≤xy 恒成立,得m -2≤8,即m ≤10.故m 的最大值为10.答案:(1)1 (2)18 (3)10典题导入[例2] (2012·江苏高考)如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米,某炮位于坐标原点.已知炮弹发射后的轨迹在方程y =kx -120(1+k 2)x 2(k >0)表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标.(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.[自主解答] (1)令y =0,得kx -120(1+k 2)x 2=0,由实际意义和题设条件知x >0,k >0,故x =20k 1+k2=20k +1k ≤202=10,当且仅当k =1时取等号. 所以炮的最大射程为10千米.(2)因为a >0,所以炮弹可击中目标⇔存在k >0,使3.2=ka -120(1+k 2)a 2成立⇔关于k 的方程a 2k 2-20ak +a 2+64=0有正根⇔判别式Δ=(-20a )2-4a 2(a 2+64)≥0 ⇔a ≤6.所以当a 不超过6千米时,可击中目标.由题悟法利用基本不等式求解实际应用题的方法(1)问题的背景是人们关心的社会热点问题,如“物价、销售、税收、原材料”等,题目往往较长,解题时需认真阅读,从中提炼出有用信息,建立数学模型,转化为数学问题求解.(2)当运用基本不等式求最值时,若等号成立的自变量不在定义域内时,就不能使用基本不等式求解,此时可根据变量的范围用对应函数的单调性求解.以题试法 2.(2012·福州质检)某种商品原来每件售价为25元,年销售8万件.(1)据市场调查,若价格每提高1元,销售量将相应减少2 000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?(2)为了扩大该商品的影响力,提高年销售量.公司决定明年对该商品进行全面技术革新和营销策略改革,并提高定价到x 元.公司拟投入16(x 2-600)万元作为技改费用,投入50万元作为固定宣传费用,投入15x 万元作为浮动宣传费用.试问:当该商品明年的销售量a至少应达到多少万件时,才可能使明年的销售收入不低于原收入与总投入之和?并求出此时每件商品的定价.解:(1)设每件定价为t 元,依题意,有⎝⎛⎭⎫8-t -251×0.2t ≥25×8,整理得t 2-65t +1 000≤0,解得25≤t ≤40.因此要使销售的总收入不低于原收入,每件定价最多为40元. (2)依题意,x >25时,不等式ax ≥25×8+50+16(x 2-600)+15x 有解,等价于x >25时,a ≥150x +16x +15有解.∵150x +16x ≥2 150x ·16x =10(当且仅当x =30时,等号成立),∴a ≥10.2. 因此当该商品明年的销售量a 至少应达到10.2万件时,才可能使明年的销售收入不低于原收入与总投入之和,此时该商品的每件定价为30元.1.已知f (x )=x +1x -2(x <0),则f (x )有 ( )A .最大值为0B .最小值为0C .最大值为-4D .最小值为-4解析:选C ∵x <0,∴f (x )=- ⎣⎡⎦⎤(-x )+1(-x )-2≤-2-2=-4,当且仅当-x =1-x ,即x =-1时取等号.2.(2013·太原模拟)设a 、b ∈R ,已知命题p :a 2+b 2≤2ab ;命题q :⎝⎛⎭⎫a +b 22≤a 2+b22,则p 是q 成立的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件解析:选B 命题p :(a -b )2≤0⇔a =b ;命题q :(a -b )2≥0.显然,由p 可得q 成立,但由q 不能推出p 成立,故p 是q 的充分不必要条件.3.函数y =x 2+2x -1(x >1)的最小值是( )A .23+2B .23-2C .2 3D .2解析:选A ∵x >1,∴x -1>0.∴y =x 2+2x -1=x 2-2x +2x +2x -1=x 2-2x +1+2(x -1)+3x -1=(x -1)2+2(x -1)+3x -1=x -1+3x -1+2≥2(x -1)3x -1+2=23+2.当且仅当x -1=3x -1,即x =1+3时,取等号.4.(2012·陕西高考)小王从甲地到乙地往返的时速分别为a 和b (a <b ),其全程的平均时速为v ,则( )A .a <v <abB .v =ab C.ab <v <a +b2D .v =a +b2解析:选A 设甲、乙两地的距离为s ,则从甲地到乙地所需时间为sa,从乙地到甲地所需时间为s b ,又因为a <b ,所以全程的平均速度为v =2s s a +s b=2ab a +b <2ab2ab=ab ,2ab a +b >2ab2b=a ,即a <v <ab . 5.已知正项等比数列{a n }满足:a 7=a 6+2a 5,若存在两项a m ,a n 使得a m a n =4a 1,则1m +4n的最小值为( ) A.32B.53C.256D .不存在解析:选A 设正项等比数列{a n }的公比为q ,由a 7=a 6+2a 5,得q 2-q -2=0,解得q =2.由a m a n =4a 1,即2m +n -22=4,得2m +n -2=24,即m +n =6.故1m +4n =16(m +n )⎝⎛⎭⎫1m +4n =56+16⎝⎛⎭⎫4m n +n m ≥56+46=32,当且仅当4m n =n m 时等号成立. 6.设a >0,b >0,且不等式1a +1b +ka +b ≥0恒成立,则实数k 的最小值等于( )A .0B .4C .-4D .-2解析:选C 由1a +1b +ka +b ≥0得k ≥-(a +b )2ab ,而(a +b )2ab =b a +a b +2≥4(a =b 时取等号),所以-(a +b )2ab ≤-4,因此要使k ≥-(a +b )2ab 恒成立,应有k ≥-4,即实数k 的最小值等于-4.7.已知x ,y 为正实数,且满足4x +3y =12,则xy 的最大值为________.解析:∵12=4x +3y ≥24x ×3y ,∴xy ≤3.当且仅当⎩⎪⎨⎪⎧4x =3y ,4x +3y =12,即⎩⎪⎨⎪⎧x =32,y =2时xy取得最大值3.答案:38.已知函数f (x )=x +px -1(p 为常数,且p >0)若f (x )在(1,+∞)上的最小值为4,则实数p 的值为________.解析:由题意得x -1>0,f (x )=x -1+px -1+1≥2p +1,当且仅当x =p +1时取等号,因为f (x )在(1,+∞)上的最小值为4,所以2p +1=4,解得p =94.答案:949.(2012·朝阳区统考)某公司购买一批机器投入生产,据市场分析每台机器生产的产品可获得的总利润y (单位:万元)与机器运转时间x (单位:年)的关系为y =-x 2+18x -25(x ∈N *).则当每台机器运转________年时,年平均利润最大,最大值是________万元.解析:每台机器运转x 年的年平均利润为y x =18-⎝⎛⎭⎫x +25x ,而x >0,故yx ≤18-225=8,当且仅当x =5时,年平均利润最大,最大值为8万元.答案:5 810.已知x >0,a 为大于2x 的常数, (1)求函数y =x (a -2x )的最大值; (2)求y =1a -2x-x 的最小值. 解:(1)∵x >0,a >2x , ∴y =x (a -2x )=12×2x (a -2x )≤12×⎣⎡⎦⎤2x +(a -2x )22=a 28,当且仅当x =a 4时取等号,故函数的最大值为a 28. (2)y =1a -2x+a -2x 2-a 2≥212-a 2=2-a2. 当且仅当x =a -22时取等号.故y =1a -2x -x 的最小值为2-a2.11.正数x ,y 满足1x +9y =1.(1)求xy 的最小值; (2)求x +2y 的最小值. 解:(1)由1=1x +9y ≥21x ·9y 得xy ≥36,当且仅当1x =9y,即y =9x =18时取等号,故xy 的最小值为36.(2)由题意可得x +2y =(x +2y )⎝⎛⎭⎫1x +9y =19+2y x +9xy ≥19+2 2y x ·9xy=19+62,当且仅当2y x =9xy,即9x 2=2y 2时取等号,故x +2y 的最小值为19+6 2. 12.为了响应国家号召,某地决定分批建设保障性住房供给社会.首批计划用100万元购得一块土地,该土地可以建造每层1 000平方米的楼房,楼房的每平方米建筑费用与建筑高度有关,楼房每升高一层,整层楼每平方米建筑费用提高20元.已知建筑第5层楼房时,每平方米建筑费用为800元.(1)若建筑第x 层楼时,该楼房综合费用为y 万元(综合费用是建筑费用与购地费用之和),写出y =f (x )的表达式;(2)为了使该楼房每平方米的平均综合费用最低,应把楼层建成几层?此时平均综合费用为每平方米多少元?解:(1)由题意知建筑第1层楼房每平方米建筑费用为720元, 建筑第1层楼房建筑费用为720×1 000=720 000(元)=72 (万元), 楼房每升高一层,整层楼建筑费用提高20×1 000=20 000(元)=2(万元), 建筑第x 层楼房的建筑费用为72+(x -1)×2=2x +70(万元), 建筑第x 层楼时,该楼房综合费用为y =f (x )=72x +x (x -1)2×2+100=x 2+71x +100,综上可知y =f (x )=x 2+71x +100(x ≥1,x ∈Z ).(2)设该楼房每平方米的平均综合费用为g (x ),则g (x )=f (x )×10 0001 000x =10f (x )x=10(x 2+71x +100)x =10x +1 000x+710≥210x ·1 000x+710=910.当且仅当10x =1 000x,即x =10时等号成立.综上可知应把楼层建成10层,此时平均综合费用最低,为每平方米910元.1.(2012·浙江联考)已知正数x ,y 满足x +22xy ≤λ(x +y )恒成立,则实数λ的最小值为( )A .1B .2C .3D .4解析:选B 依题意得x +22xy ≤x +(x +2y )=2(x +y ),即x +22xy x +y ≤2(当且仅当x =2y 时取等号),即x +22xy x +y 的最大值是2;又λ≥x +22xyx +y ,因此有λ≥2,即λ的最小值是2.2.设x ,y ,z 为正实数,满足x -2y +3z =0,则y 2xz 的最小值是________.解析:由已知条件可得y =x +3z2,所以y 2xz =x 2+9z 2+6xz 4xz=14⎝⎛⎭⎫x z +9z x +6 ≥14⎝⎛⎭⎫2 x z ×9z x +6=3, 当且仅当x =y =3z 时,y 2xz 取得最小值3.答案:33.某食品厂定期购买面粉,已知该厂每天需用面粉6吨,每吨面粉的价格为1 800元,面粉的保管等其他费用为平均每吨每天3元,购买面粉每次需支付运费900元.(1)求该厂多少天购买一次面粉,才能使平均每天所支付的总费用最少?(2)某提供面粉的公司规定:当一次购买面粉不少于210吨时,其价格可享受9折优惠,问该厂是否考虑利用此优惠条件?请说明理由.解:(1)设该厂应每隔x 天购买一次面粉,其购买量为6x 吨,由题意可知,面粉的保管等其他费用为3[6x +6(x -1)+6(x -2)+…+6×1]=9x (x +1),设平均每天所支付的总费用为y 1元, 则y 1=[9x (x +1)+900]x +1 800×6=900x+9x +10 809 ≥2900x·9x +10 809=10 989, 当且仅当9x =900x,即x =10时取等号.即该厂应每隔10天购买一次面粉,才能使平均每天所支付的总费用最少. (2)因为不少于210吨,每天用面粉6吨,所以至少每隔35天购买一次面粉. 设该厂利用此优惠条件后,每隔x (x ≥35)天购买一次面粉,平均每天支付的总费用为y 2元,则y 2=1x [9x (x +1)+900]+6×1 800×0.90=900x+9x +9 729(x ≥35). 令f (x )=x +100x(x ≥35),x 2>x 1≥35,则f (x 1)-f (x 2)=⎝⎛⎭⎫x 1+100x 1-⎝⎛⎭⎫x 2+100x 2=(x 2-x 1)(100-x 1x 2)x 1x 2.∵x 2>x 1≥35, ∴x 2-x 1>0,x 1x 2>0,100-x 1x 2<0, 故f (x 1)-f (x 2)<0,f (x 1)<f (x 2), 即f (x )=x +100x,当x ≥35时为增函数.则当x =35时,f (x )有最小值,此时y 2<10 989.因此该厂应接受此优惠条件.1.函数y =a 1-x (a >0,且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny -1=0(mn >0)上,则1m +1n的最小值为________. 解析:因y =a x 恒过点(0,1),则A (1,1),又A 在直线上,所以m +n =1(mn >0). 故1m +1n =m +n mn =1mn ≥1⎝⎛⎭⎫m +n 22=4, 当且仅当m =n =12时取等号. 答案:42.已知直线x +2y =2分别与x 轴、y 轴相交于A 、B 两点,若动点P (a ,b )在线段AB 上,则ab 的最大值是________.解析:∵A (2,0),B (0,1),∴0≤b ≤1,由a +2b =2,得a =2-2b ,ab =(2-2b )b =2(1-b )·b ≤2·⎣⎡⎦⎤(1-b )+b 22=12. 当且仅当1-b =b ,即b =12时等号成立,此时a =1, 因此当b =12,a =1时,(ab )max =12. 答案:123.若x ,y ∈(0,+∞),x +2y +xy =30.(1)求xy 的取值范围;(2)求x +y 的取值范围.解:由x +2y +xy =30,(2+x )y =30-x ,则2+x ≠0,y =30-x 2+x>0,0<x <30. (1)xy =-x 2+30x x +2=-x 2-2x +32x +64-64x +2=-x -64x +2+32=-⎣⎡⎦⎤(x +2)+64x +2+34≤18,当且仅当x =6时取等号, 因此xy 的取值范围是(0,18].(2)x +y =x +30-x 2+x =x +32x +2-1 =x +2+32x +2-3≥82-3,当且仅当⎩⎨⎧ x =42-2,y =42-1时等号成立,又x +y =x +2+32x +2-3<30,因此x +y 的取值范围是[82-3,30).。

高考数学讲义:不等关系与不等式(解析版)

高考数学讲义:不等关系与不等式(解析版)

第12讲:不等关系与不等式【学习目标】1.能用不等式(组)表示实际问题中的不等关系.2.初步学会作差法、作商法比较两实数的大小.【基础知识】基本事实两个实数a,b,其大小关系有三种可能,即a>b,a=b,a<b.依据a>b⇔a-b>0. a=b⇔a-b=0. a<b⇔a-b<0结论要比较两个实数的大小,可以转化为比较它们的差与0的大小【考点剖析】考点一:不等式组表示不等关系例1.为了全面贯彻党的教育方针,落实“立德树人”的根本任务,切实改变边远地区孩子上学难的问题,某市政府准备投资1800万元兴办一所中学.经调查,班级数量以20至30个为宜,每个初、高中班硬件配置分别需要28万元与58万元,该学校的规模(初、高中班级数量)所满足的条件是___________.【答案】2030, 28581800,0,0,,x yx yx y x y N【详解】设该校有初中班x个,高中班y个,则有:2030, 28581800,0,0,,x yx yx y x y N故答案为:2030, 28581800,0,0,,x yx yx y x y N变式训练1:《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银一枚各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计),问黄金、白银每枚各重多少两?设每枚黄金重x 两,每枚白银重y 两,根据题意可列方程组为________.【答案】 91110813x y y x x y【详解】设每枚黄金重x 两,每枚白银重y 两,由题意得: 91110813x y y x x y 故答案为: 91110813x y y x x y 变式训练2:A 杯中有浓度为%a 的盐水x 克,B 杯中有浓度为%b 的盐水y 克,其中A 杯中的盐水更咸一些.若将A 、B 两杯盐水混合在一起,其咸淡的程度可用不等式表示为___________.【答案】ax by b a x y【详解】由题意,将A 、B 两杯盐水混合再一起后浓度为ax by x y, b a y ax by a x y x y ∵, a b x ax by b x y x y,∵A 杯中的盐水更咸一些,a b ,ax by b a x y,故答案为:ax by b a x y.变式训练3:已知b 克盐水中含有 0a b a 克盐,若给盐水加热,蒸发了 0m m b a 克水后盐水更咸了,请将这一事实表示为一个不等式:______.【答案】a ab m b 【详解】原来盐占盐水的比例为a b ,给盐水加热,蒸发了 0m m b a 克水后,盐占盐水的比例为a b m ,则a a b m b考点二:作差法比较大小(一)例2.比较231x x 与221x x 两个代数式的大小:;【答案】(1)223121x x x x ;【详解】(1) 2222312122110x x x x x x x ∵,因此,223121x x x x ;变式训练1:已知2253M x x ,242N x x ,则M ________N (用>,<,=填)【答案】>【详解】2253M x x ,242N x x ,222225342131024M N x x x x x x x ,故M N .故答案为: .变式训练2:试比较 15x x 与 23x 的大小.【答案】2(1)(5)(3)x x x 【详解】因为222153656940x x x x x x x ,2(1)(5)(3)x x x 变式训练3:比较3x 与21x x 的大小;【答案】详解见解析;【详解】作差得:323222(1)()(1)(1)(1)(1)(1)x x x x x x x x x x x (i)当1x 时,32(1)0x x x ,故321x x x ;(ii)当1x 时,32(1)0x x x ,故321x x x ;(iii)当1x 时,32(1)0x x x ,故321x x x .考点三:作差法比较大小(二)例3.证明不等式:(1)设0,0a b ,求证:3322a b ab a b ;(2)设,x y R ,求证:2252(2)x y x y .【答案】(1)证明见解析;(2)证明见解析.【详解】证明:(1)因为3322a b ab a b 3322a b ab a b 3232a ab b a b 2222a a b b b a 222a b a b a b a b ,因为00a b ,,所以 20a b a b ,所以33220a b ab a b ,所以3322a b ab a b ;(2)因为 22522x y x y 22542x y x y 22425x x y y22210x y ,所以 22522x y x y .变式训练1:若221a x ,22b x x ,3c x ,比较a ,b ,c 的大小.【答案】a b c .详解:∵221a x ,22b x x ,3c x ,∴22212a b x x x 222110x x x ,即a b , 223b c x x x 223333024x x x ,即b c ,综上可得:a b c .变式训练2:已知a,b R ,比较22a b 与245a b 的大小.【答案】22245a b a b .【详解】a ∵,b R ,22245a b a b 222144a ab b 22(1)(2)0a b ,22245a b a b ,当且仅当1a ,2b 时,等号成立,两式相等.变式训练3:已知0a b ,比较22a b b a 与11a b 的大小.【答案】2211a b b a a b【详解】解:222211a b a b b a b a a b b a2211()a b b a222()()a b a b a b.∵0a b ,2()0a b ,∴222()()0a b a b a b ,当且仅当a b 时,取等号,∴2211a b b a a b.考点四:作商法比较大小例4.设 121p a a ,21q a a ,则()A.p qB.p q C.p qD.p q 【答案】D【详解】 1222110132411p a a a a a,22131024q a a a ,则222121111a a a a a a a q a p 222222111a a a a .故p q ,当且仅当0a 时,取等号,故选:D变式训练1:2211,,()1P a a Q a R a a ,则,P Q 的大小关系为_______.【答案】≥【详解】因为22131024P a a a ,22131024a a a 则0Q 由 222224211111P a a a a a a a a Q所以P Q故答案为:变式训练2:已知0a ,0b,试比较a b 时取等号)【详解】a b2211,当且仅当ab 时等号成立,a b 时取等号).变式训练3:设0a b ,比较2222a b a b与a b a b 的大小【答案】2222a b a b a b a b【详解】220,0,a b a b a b ∵,22220,0a b a b a b a b,.两数作商 222222a b a b a b a b a b a b a b a b a b22222211a b ab a b a b,2222a b a b a b a b.【过关检测】1、已知,a b R ,则2252a b _______42ab a .(用“>”或“<”填空)【答案】>【详解】因为225242a b ab a 22(2)(1)1a b a ,又2(2)0a b ≥,2(1)0a ,所以2252420a b ab a ,所以225242a b ab a ,故答案为:>.2、已知0x ,则 221x 与421x x 的大小关系为_______.【答案】 221x 421x x 【详解】因为 221x 421x x 42422211x x x x x ,又0x ,所以20x .所以221x 421x x .故答案为: 221x 421x x .3、设222m a a , 21n a ,则m ,n 的大小关系是______.【答案】m n .【详解】因为 2222110m n a a a ,所以m n .故答案为:m n .4、已知241Ma a ,122N a ,则M ________N .(填“>”或“<”)【答案】 【详解】22312(1)022M N a a a,∴M N .故答案为: .5、已知231M a a ,122N a,则M________N.(填“>”或“<”)【答案】 【详解】22111()0224M N a a a,∴M N .故答案为: .6、设x R ,231Mx x ,21N x x ,则M 与N 的大小关系为________.【答案】M N【详解】22311M N x x x x ∵222132222(1)2[(]024x x x x x ,M N故答案为:M N .7、已知a ,b 为实数,则221214a b______2ab a .(填“>”、“<”、“≥”或“≤”)【答案】≥【详解】2222112121042a b ab a a b a ,当且仅当1a ,2b 取等号.故答案为:≥8、设2,1M x N x ,则M 与N 的大小关系是________.【答案】M N【详解】由作差比较法,可得22213(1)1(024M N x x x x x,所以M N .故答案为:M N .9、若 23x a a , 34y a a ,则x 与y 的大小关系是__________.【答案】x y【详解】22233461260x y a a a a a a a a ,因此,x y .故答案为:x y .10、已知1x ,比较36x x 与26x 的大小.【答案】3266x x x .【详解】解: 32226616161x x x xx x x x ∵1x ,∴ 2610x x ∴3266x x x .11、若0x ,试比较251x 和2331x x 的大小;【答案】答案见解析;【详解】作差得: 22251331232212x x x x x x x ;所以当2x 时,2251331x x x ;当2x 时,2251331x x x ;当02x 时,2251331x x x ;12、设a 、b 为实数,比较22a b 与448a b 的值的大小.【答案】22448a b a b 【详解】由于a 、b 为实数,则 2222224484444220a ba b a a b b a b ,当且仅当22a b时,等号成立.因此,22448a b a b .13、比较221x y 与 21x y 的大小;【答案】 22121x y x y ;【详解】因为 2222211111x y x y x y ,又 2210,10x y ,所以222101x y x y ,所以 22121x y x y ;14、x R ,比较2(1)(1)2x x x 与 2(112x x x 的大小.【答案】 22111122x x x x x x【详解】由22(1)(1)(1212x x x x x x 323233331110222222x x x x x x所以 22111122x x x x x x15、设a ,b 为实数,比较22a b 与1ab a b 的大小.【答案】见解析详解:解:22(1)a b ab a b 221(222222)2a b ab a b22221[(2)(21)(21)]2a b ab a a b b 2221[()(1)(1)]2a b a b 222()0,(1)0,(1)0a b a b ∵,当且仅当1a b 时同时取等号22(1)0a b ab a b ,当且仅当1a b 时取等221a b ab a b 16、已知0a ,0b ,试比较11a b M a b 与11b a N a b的大小.【答案】当a b 时,M N =;当a b ¹时,M N .【详解】11111111a b b a a b a b M N a b a b a a b b Q 211111111a b a b a b a b a b a b a b .因为0a ,0b ,所以 110a b , 20a b ,得0M N 当a b 时,M N =;当a b ¹时,M N .17、已知,R a b的大小.【详解】a ba ba b2,显然成立, ,当且仅当a b 时取等号.18、若0a b ,0c d ,0e ,试比较 2e a c 与 2e b d 的大小.【答案】22e e a c b d 【详解】 22ee a c b d2222e b d a c a c b d22e a b c d b a c d a c b d ∵0a b ,0c d ,0a b ,0c d ,0b a ,0c d ,0a b c d , 0b a c d .∵0e , 0e a b c d b a c d 又 220a c b d , 220eea cb d ,即 22e ea cb d .19、先后两次购买同一种物品,可采取两种不同的方式,第一种是不考虑物品价格的升降,每次购买该物品的数量一定;第二种是不考虑物品价格的升降,每次购买该物品所花的钱数一定.甲、乙二人先后两次结伴购买同一种物品,其中甲在两次购物时采用第一种方式,乙在两次购物时采用第二种方式.已知第一次购物时该物品单价为1p ,第二次购物时该物品单价为2p (12p p ).甲两次购物的平均价格记为1Q ,乙两次购物的平均价格记为2Q .(1)求1Q ,2Q 的表达式(用12p p ,表示);(2)通过比较1Q ,2Q 的大小,说明哪种购物方式比较划算.【答案】(1)1212121222p p p p Q Q p p,;(2)第二种购物方式比较划算.【详解】解:(1)设甲两次购物时购物量均为m,则两次购物总花费为1p m+2p m,购物总量为2m,平均价格为1212122p m p m p p Q m .设乙两次购物时用去钱数均为n,则两次购物总花费2n,购物总量为12n n p p ,平均价格为122121222p p n Q n n p p p p =综上,1212121222p p p p Q Q p p (2)∵12p p ,∴ 2212121212121212121242022()2()p p p p p p p p p p Q Q p p p p p p 12Q Q 由此可知,第二种购物方式比较划算.20、甲、乙两位消费者同时两次购买同一种物品,分别采用两种不同的策略,甲的策略是不考虑物品价格的升降,每次购买这种物品的数量一定;乙的策略是不考虑物品价格的升降,每次购买这种物品所花的钱数一定.(1)若两次购买这种物品的价格分别为6元,4元,求甲两次购买这种物品平均价格和乙两次购买这种物品平均价格分别为多少;(2)设两次购买这种物品的价格分别为a 元,b 元(0,0)a b ,问甲、乙谁的购物比较经济合算.【答案】(1)5,245;(2)乙的购物比较经济合算.【详解】(1)设甲每次购买这种物品的数量为m ,乙每次购买这种物品所花的钱数为n ,所以甲两次购买这种物品平均价格为,645m m m m ,乙两次购买这种物品平均价格为,224564n n n .(2)设甲每次购买这种物品的数量为m ,乙每次购买这种物品所花的钱数为n ,所以甲两次购买这种物品平均价格为,2am bm a b m m ,乙两次购买这种物品平均价格为22n ab n n a b a b ,22222()42()022()2()2()a b ab a b ab a b ab a b a b a b a b a b ,所以乙的购物比较经济合算.。

高中数学不等关系的教案

高中数学不等关系的教案

高中数学不等关系的教案
一、教学目标:
1. 知识目标:学生能够掌握不等关系的基本概念和性质。

2. 能力目标:培养学生分析和解决不等关系问题的能力。

3. 情感目标:培养学生对数学的兴趣和学习动力。

二、教学重点和难点:
1. 重点:不等关系的定义、性质和应用。

2. 难点:不等式的解法及不等式组的解法。

三、教学设计:
1. 导入新知识(5分钟):
通过举例引导学生思考何为不等关系,引导学生认识到不等关系的重要性,并提出学习不
等关系的意义。

2. 理论讲解(15分钟):
教师介绍不等关系的基本概念和性质,包括不等式的定义、解法,不等式组的概念等,并
让学生掌握相关概念。

3. 练习与训练(20分钟):
设计一些练习题,并让学生进行解答。

通过课堂练习让学生巩固掌握不等关系的基本解法。

4. 拓展应用(10分钟):
通过实际问题引导学生将所学的知识应用到实际生活中,让学生感受数学在日常生活中的
重要性。

5. 总结提升(5分钟):
教师总结本节课的重点内容,并对学生进行知识点的强化巩固。

四、课后作业:
1. 完成相关练习题,巩固不等关系的基本概念和解法。

2. 自主学习相关知识,扩展应用不等关系的场景。

五、教学反思:
通过设置导入、理论讲解、练习与训练、拓展应用、总结提升的教学环节,帮助学生建立系统的不等关系知识结构。

同时,通过设置课后作业,巩固学生的学习成果,提高学生的数学应用能力。

不等式高中数学教案

不等式高中数学教案

不等式高中数学教案教学目标:1. 能够理解不等式的概念和性质。

2. 能够解决简单的一元不等式。

3. 能够应用不等式解决实际问题。

教学重点和难点:重点:不等式的概念和性质,一元不等式的解法。

难点:应用不等式解决实际问题。

教学准备:1. 教师准备PPT课件,包括不等式的定义、性质和解法。

2. 打印不等式练习题目,用于课堂练习。

教学步骤:一、导入(5分钟)1. 引导学生回顾线性方程的解法,了解不等式的概念。

2. 提出一个简单的不等式问题,让学生思考如何解决。

二、讲解不等式的定义和性质(15分钟)1. 介绍不等式的定义,即含有不等号的等式。

2. 讲解不等式的性质,包括可加性、可乘性和转化性等。

三、解决一元不等式(20分钟)1. 讲解一元不等式的解法,包括加减法解法、乘除法解法和开平方解法。

2. 给学生提供几个简单的一元不等式练习题目,让他们尝试解答。

四、应用不等式解决实际问题(15分钟)1. 引导学生思考如何应用不等式解决实际问题,例如长度、面积和体积等问题。

2. 给学生一个实际问题案例,让他们运用所学知识进行解答。

五、总结复习(5分钟)1. 通过回顾本节课的内容,强化学生对不等式的理解和运用能力。

2. 鼓励学生积极思考和练习不等式相关的题目,提高解决问题的能力。

教学反思:通过本节课的教学,学生应该能够掌握不等式的概念和性质,能够解决简单的一元不等式,并能够应用不等式解决实际问题。

在接下来的教学中,需要继续强化学生对不等式知识的理解和应用能力,提高他们的数学思维和解决问题的能力。

高考数学——不等关系与一元二次不等式-考点复习

高考数学——不等关系与一元二次不等式-考点复习
③可加性:a>b⇔a+c>b+c;(双向性)
④a>b,c>d⇒ a + c > b + d ;(单向性)
1
⑤可乘性: a > b, c > 0 ⇒ ac > bc ;(单向性) a>b,c<0⇒ac<bc;(单向性) ⑥a>b>0,c>d>0⇒ ac > bd ;(单向性) ⑦乘方法则: a > b > 0 ⇒ an > bn (n ∈ N, n ≥ 1) ;(单向性)
(3)画图:画出对应二次函数的图象的草图; (4)求解:利用二次函数的图象与 x 轴的交点确定一元二次不等式的解集. 可用程序框图表示一元二次不等式的求解过程,如图.
3
4.一元二次不等式恒成立问题
(1) ax2 + bx + c > 0(a ≠ 0) 恒成立的充要条件是: a > 0 且 b2 − 4ac < 0(x ∈ R) . (2) ax2 + bx + c ≥ 0(a ≠ 0) 恒成立的充要条件是: a > 0 且 b2 − 4ac ≤ 0(x ∈ R) . (3) ax2 + bx + c < 0(a ≠ 0) 恒成立的充要条件是: a < 0 且 b2 − 4ac < 0(x ∈ R) . (4) ax2 + bx + c ≤ 0(a ≠ 0) 恒成立的充要条件是: a < 0 且 b2 − 4ac ≤ 0(x ∈ R) . (5) ax2 + bx + c > 0 恒成立的充要条件是: a= b= 0 且 c > 0 或 a > 0 且 b2 − 4ac < 0(x ∈ R) . (6) ax2 + bx + c < 0 恒成立的充要条件是: a= b= 0 且 c < 0 或 a < 0 且 b2 − 4ac < 0(x ∈ R) .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七篇不等关系与不等式A 级 基础演练(时间:30分钟 满分:55分)一、选择题(每小题5分,共20分)1.(2011·浙江)若a ,b 为实数,则“0<ab <1”是“a <1b 或b >1a ”的( ).A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析 当0<ab <1时,若b >0,则有a <1b ;若b <0,则a <0,从而有b >1a .故“0<ab <1”是“a <1b 或b >1a ”的充分条件.反之,取b =1,a =-2,则有a <1b 或b >1a ,但ab <0.故选A. 答案 A2.(2013·保定模拟)已知a >b ,则下列不等式成立的是( ).A .a 2-b 2≥0B .ac >bcC .|a |>|b |D .2a >2b解析 A 中,若a =-1,b =-2,则a 2-b 2≥0不成立;当c =0时,B 不成立;当0>a >b 时,C 不成立;由a >b 知2a >2b 成立,故选D. 答案 D3.(2012·晋城模拟)已知下列四个条件:①b >0>a ,②0>a >b ,③a >0>b ,④a >b >0,能推出1a <1b 成立的有 ( ).A .1个B .2个C .3个D .4个解析 运用倒数性质,由a >b ,ab >0可得1a <1b ,②、④正确.又正数大于负数,①正确,③错误,故选C. 答案 C4.如果a ,b ,c 满足c <b <a ,且ac <0,那么下列选项中不一定成立的是 ( ).A .ab >acB .c (b -a )>0C .cb 2<ab 2D .ac (a -c )<0解析 由题意知c <0,a >0,则A 一定正确;B 一定正确;D 一定正确;当b =0时C 不正确. 答案 C二、填空题(每小题5分,共10分)5.若-π2<α<β<π2,则α-β的取值范围是________.解析 由-π2<α<π2,-π2<-β<π2,α<β得-π<α-β<0. 答案 (-π,0)6.(2013·南昌一模)现给出三个不等式:①a 2+1>2a ;②a 2+b 2>2⎝ ⎛⎭⎪⎫a -b -32;③7+10>3+14.其中恒成立的不等式共有________个.解析 因为a 2-2a +1=(a -1)2≥0,所以①不恒成立;对于②,a 2+b 2-2a +2b +3=(a -1)2+(b +1)2+1>0,所以②恒成立;对于③,因为(7+10)2-(3+14)2=270-242>0,且7+10>0,3+14>0,所以7+10>3+14,即③恒成立. 答案 2 三、解答题(共25分)7.(12分)设0<x <1,a >0且a ≠1,比较|log a (1-x )|与|log a (1+x )|的大小.解 法一 当a >1时,由0<x <1知, log a (1-x )<0,log a (1+x )>0, ∴|log a (1-x )|-|log a (1+x )|=-log a (1-x )-log a (1+x )=-log a (1-x 2),∵0<1-x 2<1,∴log a (1-x 2)<0,从而-log a (1-x 2)>0,故|log a (1-x )|>|log a (1+x )|.当0<a <1时,同样可得|log a (1-x )|>|log a (1+x )|. 法二 平方作差 |log a (1-x )|2-|log a (1+x )|2=[log a (1-x )]2-[log a (1+x )]2=log a (1-x 2)·log a 1-x1+x=log a (1-x 2)·log a ⎝ ⎛⎭⎪⎫1-2x 1+x >0.∴|log a (1-x )|2>|log a (1+x )|2, 故|log a (1-x )|>|log a (1+x )|. 法三 作商比较 ∵|log a (1-x )||log a (1+x )|=⎪⎪⎪⎪⎪⎪log a (1-x )log a (1+x )=|log (1+x )(1-x )|, ∵0<x <1,∴log (1+x )(1-x )<0, 故|log a (1-x )||log a (1+x )|=-log (1+x )(1-x )=log (1+x )11-x=1+log (1+x )⎝ ⎛⎭⎪⎫11-x ·11+x =1+log (1+x )11-x 2.由0<x <1知,1+x >1及11-x 2>1, ∴log (1+x )11-x 2>0,故|log a (1-x )||log a (1+x )|>1, ∴|log a (1-x )|>|log a (1+x )|.8.(13分)已知f (x )=ax 2-c 且-4≤f (1)≤-1,-1≤f (2)≤5,求f (3)的取值范围.解 由题意,得⎩⎨⎧a -c =f (1),4a -c =f (2),解得⎩⎪⎨⎪⎧a =13[f (2)-f (1)],c =-43f (1)+13f (2).所以f (3)=9a -c =-53f (1)+83f (2). 因为-4≤f (1)≤-1,所以53≤-53f (1)≤203, 因为-1≤f (2)≤5,所以-83≤83f (2)≤403.两式相加,得-1≤f (3)≤20,故f (3)的取值范围是[-1,20].B 级 能力突破(时间:30分钟 满分:45分)一、选择题(每小题5分,共10分)1.(2011·上海)若a 、b ∈R ,且ab >0,则下列不等式中,恒成立的是 ( ).A .a 2+b 2>2abB .a +b ≥2 ab C.1a +1b >2abD.b a +ab≥2 解析 对A :当a =b =1时满足ab >0,但a 2+b 2=2ab ,所以A 错;对B 、C :当a =b =-1时满足ab >0,但a +b <0,1a +1b <0,而2ab >0,2ab >0,显然B 、C 不对;对D :当ab >0时,由均值定理b a +ab =2 b a ·ab =2.答案 D2.(2013·汉中一模)若a 、b 均为不等于零的实数,给出下列两个条件.条件甲:对于区间[-1,0]上的一切x 值,ax +b >0恒成立;条件乙:2b -a >0,则甲是乙的( ). A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析 当x ∈[-1,0]时,恒有ax +b >0成立, ∴当a >0时,ax +b ≥b -a >0,当a <0时,ax +b ≥b >0,∴b -a >0,b >0,∴2b -a >0, ∴甲⇒乙,乙推不出甲,例如:a =32b ,b >0时, 则2b -a =12b >0,但是,当x =-1时,a ·(-1)+b =-32b +b =-12b <0, ∴甲是乙的充分不必要条件. 答案 A二、填空题(每小题5分,共10分)3.(2012·泉州一模)已知奇函数f(x)在区间(-∞,+∞)上是单调减函数,α,β,γ∈R,且α+β>0,β+γ>0,γ+α>0,则f(α)+f(β)+f(γ)与0的关系是________.解析∵f(x)在R上是奇函数,∴f(-x)=-f(x),∵α+β>0,β+γ>0,γ+α>0,∴α>-β,β>-γ,γ>-α,而f(x)在R上是单调减函数,∴f(α)<f(-β)=-f(β),f(β)<f(-γ)=-f(γ),f(γ)<f(-α)=-f(α),以上三式相加得:2[f(α)+f(β)+f(γ)]<0,即f(α)+f(β)+f(γ)<0.答案f(α)+f(β)+f(γ)<04.(2013·南京一模)给出下列四个命题:①若a>b>0,则1a>1 b;②若a>b>0,则a-1a>b-1b;③若a>b>0,则2a+ba+2b>ab;④设a,b是互不相等的正数,则|a-b|+1a-b≥2.其中正确命题的序号是________(把你认为正确命题的序号都填上).解析①作差可得1a-1b=b-aab,而a>b>0,则b-aab<0,此式错误.②a>b>0,则1a<1b,进而可得-1a>-1b,所以可得a-1a>b-1b正确.③2a+ba+2b-ab=b(2a+b)-a(a+2b)(a+2b)b =b2-a2(a+2b)b=(b-a)(b+a)(a+2b)b<0,错误.④当a-b<0时此式不成立,错误.答案②三、解答题(共25分)5.(12分)(2011·安徽)(1)设x≥1,y≥1,证明x+y+1xy≤1x+1y+xy;(2)设1<a ≤b ≤c ,证明log a b +log b c +log c a ≤log b a +log c b +log a c . 证明 (1)由于x ≥1,y ≥1,所以x +y +1xy ≤1x +1y +xy ⇔xy (x +y )+1≤y +x +(xy )2. 将上式中的右式减左式,得[y +x +(xy )2]-[xy (x +y )+1]=[(xy )2-1]-[xy (x +y )-(x +y )]=(xy +1)(xy -1)-(x +y )(xy -1)=(xy -1)(xy -x -y +1)=(xy -1)(x -1)(y -1). 既然x ≥1,y ≥1,所以(xy -1)(x -1)(y -1)≥0, 从而所要证明的不等式成立.(2)设log a b =x ,log b c =y ,由对数的换底公式得 log c a =1xy ,log b a =1x ,log c b =1y ,log a c =xy . 于是,所要证明的不等式即为 x +y +1xy ≤1x +1y +xy其中x =log a b ≥1,y =log b c ≥1.故由(1)可知所要证明的不等式成立. 6.(13分)已知f (x )是定义在(-∞,4]上的减函数,是否存在实数m ,使得f (m -sin x )≤f ⎝ ⎛⎭⎪⎫1+2m -74+cos 2x 对定义域内的一切实数x 均成立?若存在,求出实数m 的取值范围;若不存在,请说明理由.思维启迪:不等式和函数的结合,往往要利用函数的单调性和函数的值域. 解 假设实数m 存在,依题意, 可得⎩⎪⎨⎪⎧m -sin x ≤4,m -sin x ≥1+2m -74+cos 2x ,即⎩⎪⎨⎪⎧m -4≤sin x ,m -1+2m +12≥-⎝ ⎛⎭⎪⎫sin x -122.因为sin x 的最小值为-1,且-(sin x -12)2的最大值为0,要满足题意,必须有⎩⎪⎨⎪⎧m -4≤-1,m -1+2m +12≥0,解得m =-12或32≤m ≤3.所以实数m 的取值范围是⎣⎢⎡⎦⎥⎤32,3∪⎩⎨⎧⎭⎬⎫-12.探究提高 不等式恒成立问题一般要利用函数的值域,m ≤f (x )恒成立,只需m ≤f (x )min .。

相关文档
最新文档