(4份试卷汇总)2020-2021学年山西省吕梁市中考数学经典试题

合集下载

《试卷4份集锦》山西省吕梁市2021中考数学经典试题

《试卷4份集锦》山西省吕梁市2021中考数学经典试题
请你根据统计图提供的信息完成下列填空:这一周访问该网站一共有万人次;周日学生访问该网站有万人次;周六到周日学生访问该网站的日平均增长率为.
21.(6分)某运动品牌对第一季度A、B两款运动鞋的销售情况进行统计,两款运动鞋的销售量及总销售额如图6所示.1月份B款运动鞋的销售量是A款的 ,则1月份B款运动鞋销售了多少双?第一季度这两款运动鞋的销售单价保持不变,求3月份的总销售额(销售额=销售单价×销售量);结合第一季度的销售情况,请你对这两款运动鞋的进货、销售等方面提出一条建议.
2019-2020学年中考数学模拟试卷
一、选择题(本题包括10个小题,每小题只有一个选项符合题意)
1.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB,BD于M,N两点.若AM=2,则线段ON的长为( )
A. B. C.1D.
2.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=1.那么在计算6×7时,左、右手伸出的手指数应该分别为()
若购买者一次性付清所有房款,开发商有两种优惠方案:降价8%,另外每套房赠送a元装修基金;降价10%,没有其他赠送.请写出售价y(元/米2)与楼层x(1≤x≤23,x取整数)之间的函数表达式;老王要购买第十六层的一套房,若他一次性付清所有房款,请帮他计算哪种优惠方案更加合算.
26.(12分)为了解今年初三学生的数学学习情况,某校对上学期的数学成绩作了统计分析,绘制得到如下图表.请结合图表所给出的信息解答下列问题:
22.(8分)先化简,后求值:(1﹣ )÷( ),其中a=1.

《试卷3份集锦》山西省吕梁市2020中考数学经典试题

《试卷3份集锦》山西省吕梁市2020中考数学经典试题

2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是( )A .①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB .①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC .①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD .①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ2.菱形ABCD 中,对角线AC 、BD 相交于点O ,H 为AD 边中点,菱形ABCD 的周长为28,则OH 的长等于( )A .3.5B .4C .7D .143.已知线段AB=8cm ,点C 是直线AB 上一点,BC=2cm ,若M 是AB 的中点,N 是BC 的中点,则线段MN 的长度为( )A .5cmB .5cm 或3cmC .7cm 或3cmD .7cm4.计算6m 3÷(-3m 2)的结果是( )A .-3mB .-2mC .2mD .3m5.若a=10,则实数a 在数轴上对应的点的大致位置是( )A .点EB .点FC .点GD .点H6.已知(AC BC)ABC ∆<,用尺规作图的方法在BC 上确定一点P ,使PA PC BC +=,则符合要求的作图痕迹是( )A .B .C .D .7.已知代数式x+2y 的值是5,则代数式2x+4y+1的值是( )A .6B .7C .11D .128.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为( ) A .5.6×10﹣1 B .5.6×10﹣2 C .5.6×10﹣3 D .0.56×10﹣19.如图,边长为2a 的等边△ABC 中,M 是高CH 所在直线上的一个动点,连接MB ,将线段BM 绕点B 逆时针旋转60°得到BN ,连接HN .则在点M 运动过程中,线段HN 长度的最小值是( )A .12aB .aC .32aD .3a10.下列计算正确的是( )A .2a 2﹣a 2=1B .(ab )2=ab 2C .a 2+a 3=a 5D .(a 2)3=a 6二、填空题(本题包括8个小题)11.如图所示,直线y=x+1(记为l 1)与直线y=mx+n(记为l 2)相交于点P(a,2),则关于x 的不等式x+1≥mx+n 的解集为__________.12.如图,△ABC 内接于⊙O ,AB 为⊙O 的直径,∠CAB=60°,弦AD 平分∠CAB ,若AD=6,则AC=_____.13.已知二次函数2(0)y ax bx c a =++≠,y 与x 的部分对应值如下表所示:x … -1 0 1 2 3 4 …y … 6 1 -2 -3 -2 m … 下面有四个论断:①抛物线2(0)y ax bx c a =++≠的顶点为(23)-,; ②240b ac -=;③关于x 的方程2=2ax bx c ++-的解为12=13x x =,;④=3m -.其中,正确的有___________________.14.如图,AG ∥BC ,如果AF :FB =3:5,BC :CD =3:2,那么AE :EC =_____.15.如图,四边形ABCD 是菱形,∠A =60°,AB =2,扇形EBF 的半径为2,圆心角为60°,则图中阴影部分的面积是_____.16.中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五,羊二,值金十两.牛二,羊五,值金八两。

山西省吕梁市2021版中考数学试卷(II)卷

山西省吕梁市2021版中考数学试卷(II)卷

山西省吕梁市2021版中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)计算-+(-)的正确结果是()A .B . -C . 1D . -12. (2分)下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .3. (2分)(2013·苏州) 世界文化遗产长城总长约为6700000m,若将6700000用科学记数法表示为6.7×10n (n是正整数),则n的值为()A . 5B . 6C . 7D . 84. (2分) (2020八上·青山期末) 下列四个命题中的真命题有()①两条直线被第三条直线所截同位角相等;②三角形的一个外角等于它的两个内角之和;③两边分别相等且一组内角相等的两个三角形全等;④直角三角形的两锐角互余A . 1个B . 2个C . 3个D . 4个5. (2分)下列运算中,结果正确的是()A . 2x+x2=3x3B . x6x2=x3C . 2x•x2=2x2D . (﹣x2)3=﹣x66. (2分) (2017八下·文安期末) 一次函数y=kx+b的图象如图所示,则k、b的值为()A . k>0,b>0B . k>0,b<0C . k<0,b>0D . k<0,b<07. (2分)某厂的40名工人的平均年龄是25.8岁,其中有2人是27岁,3人是26岁,30人是25岁,还有5人的年龄相同,那么这5人的年龄是().A . 28岁B . 30岁C . 29岁D . 25岁8. (2分) (2018八上·汽开区期末) 若a+b=3,ab=2,则a2+b2的值是()A . 2.5B . 5C . 10D . 159. (2分)如图,△ABC内接于⊙O,若sin∠BAC= ,BC=2 ,则⊙O的半径为()A . 3B . 6C . 4D . 210. (2分)(2019·海曙模拟) 在玩俄罗斯方块游戏时,底部已有的图形如图所示,接下去出现如下哪个形状时,通过旋转变换后能与已有图形拼成一个中心对称图形()A .B .C .D .二、填空题 (共8题;共8分)11. (1分)化简=________.12. (1分) (2017八上·永定期末) 一个多边形的内角和是它的外角的和的2倍,这个多边形的边数是________13. (1分)化简:(﹣)×(a2﹣1)=________14. (1分)(2020·丹东) 关于的方程有两个实数根,则的取值范围是________.15. (1分) (2018九下·梁子湖期中) 如图,是一圆锥的主视图,根据图中所标数据,圆锥侧面展开图的扇形圆心角的度数为________.16. (1分) (2018七上·江门期中) 用火柴棒按如图所示的方式摆图形,按照这样的规律继续摆下去,第n 个图形需要________根火柴棒(用含n代数式表示).17. (1分) (2019九上·长春月考) 如图,数学活动小组为了测量学校旗杆AB的高度,使用长为2m的竹竿CD作为测量工具.移动竹竿,使竹竿顶端的影子与旗杆顶端的影子在地面O处重合,测得OD=4m , BD=14m ,则旗杆AB的高为________m .18. (1分)(2017·山西模拟) 如图,在平面直角坐标系中,▱ABCD的顶点B,C在x轴上,A,D两点分别在反比例函数y=﹣(x<0)与y= (x>0)的图象上,则▱ABCD的面积为________.三、解答题 (共9题;共92分)19. (10分) (2019七下·泰兴期中) 计算.(1)(2)20. (5分) (2020九下·吴江月考) 解不等式组,并将解集在数轴上表示出来.21. (5分)(2020·河南模拟) 为践行“绿水青山就是金山银山”的重要思想,某森林保护区开展了寻找古树活动,如图,在一个坡度(坡比 )的山坡上发现一棵古树,测得古树低端C到山脚点A的距离米,在距山脚点A水平距离米的点处,测得古树顶端D的仰角 (古树与山坡的剖面、点E在同一平面内,古树与直线垂直),求古树的高度约为多少米? (结果保留一位小数,参考数据 )22. (16分)(2020·白云模拟) 为了解“停课不停学”期间,学生对线上学习方式的偏好情况,某校随机拍取40名学生进行问卷调查,其统计结果如表:最喜欢的线上学习方式(没人最多选一种)人数直播10录播资源包5线上答疑8合计40(1) ________;(2)若将选取各种“最喜欢的线上学习方式”的人数所占比例绘制成扇形统计图,求“直播"对应扇形的圆心角度数(3)根据调查结果估计该校10000名学生中,最喜欢“线上答疑”的学生人数;(4)在最喜欢“资源包”的学生中,有2名男生,3名女生.现从这5名学生中随机抽取2名学生介绍学习经验,求恰好抽到1名男生和1名女生的概率.23. (15分)(2020·广西模拟) 为了促进学生全面发展,河南省某地区教育局在全区中小学开展“书法、手球、豫剧进校园”活动今年8月份,该区某校举行了“朝阳沟”演唱比赛、比赛分五个等级,该校部分学生参加了学校的比赛,并将比赛结果绘制成如下两幅不完整的统计图,请根据图中信息,解答下列问题:(1)求该校参加本次“朝阳沟”演唱比赛的学生人数;(2)求扇形统计图B等级所对应扇形的圆心角度数;(3)已知A等级的4名学生中有2名男生,2名女生,现从中任意选取2名学生作为全校学生的楷模请你用列表法或画树状图的方法求出恰好选1男1女的概率.24. (10分) (2020九上·路桥期末) 如图,已知AB为⊙O的直径,PA与⊙O相切于A点,点C是⊙O上的一点,且PC=PA.(1)求证:PC是⊙O的切线;(2)若∠BAC=45°,AB=4,求PC的长.25. (10分)(2020·南京模拟) 学校为表彰在“了不起我的国”演讲比赛中获奖的选手,决定购买甲、乙两种图书作为奖品.已知购买30本甲种图书,50本乙种图书共需1350元;购买50本甲种图书,30本乙种图书共需1450元.(1)求甲、乙两种图书的单价分别是多少元?(2)学校要求购买甲、乙两种图书共40本,且甲种图书的数量不少于乙种图书数量的,请设计最省钱的购书方案.26. (10分)(2020·武汉模拟) 已知如图:在⊙O中,直径AB⊥弦CD于G,E为DC延长线上一点,BE交⊙O 于点F.(1)求证:∠EFC=∠BFD;(2)若F为半圆弧AB的中点,且2BF=3EF,求tan∠EFC的值.27. (11分)(2017·海淀模拟) 平面直角坐标系xOy中,抛物线y=mx2﹣2m2x+2交y轴于A点,交直线x=4于B点.(1)抛物线的对称轴为x=________(用含m的代数式表示);(2)若AB∥x轴,求抛物线的表达式;(3)记抛物线在A,B之间的部分为图象G(包含A,B两点),若对于图象G上任意一点P(xp , yp),yp≤2,求m的取值范围.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共9题;共92分)19-1、19-2、20-1、21-1、22-1、22-2、22-3、22-4、23-1、23-2、23-3、24-1、24-2、25-1、25-2、26-1、26-2、27-1、27-2、27-3、。

山西省吕梁市2021年中考数学试卷(I)卷

山西省吕梁市2021年中考数学试卷(I)卷

山西省吕梁市2021年中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)如果某台家用电冰箱冷藏室的温度是4℃,冷冻室的温度比冷藏室的温度低22℃,那么这台电冰箱冷冻室的温度为()A . -26℃B . -22℃C . -18℃D . -16℃2. (2分)绵阳市统计局发布2012年一季度全市完成GDP共317亿元,居全省第二位,将这一数据用科学记数法表示为()A . 31.7×109元B . 3.17×1010元C . 3.17×1011元D . 31.7×1010元3. (2分)下列图形不是轴对称图形的是()A .B .C .D .4. (2分)某住宅小区六月1日至6日每天用水量变化情况如折线图所示,那么这6天的平均用水量是()A . 30吨B . 31吨C . 32吨D . 33吨5. (2分)已知a、b为一元二次方程的两个根,那么的值为()A .B . 0C . 7D . 116. (2分) (2017八下·南通期中) 若直线不经过第三象限,则下列不等式中,总成立的是()A . b﹥0B . b-a﹤0C . b-a﹥0D . a+b﹥07. (2分)如图,点P在双曲线y= 上,以P为圆心的⊙P与两坐标轴都相切,E为y轴负半轴上的一点,PF⊥PE交x轴于点F,则OF﹣OE的值是()A . 6B . 5C . 4D . 28. (2分)下列运算正确的是()A . x2+x2=x4B . ( a-1)2=a2-1C . 3x+2y=5xyD . a2·a3=a59. (2分)(2017·临沭模拟) 如图,在平面直角坐标系中,四边形ABCD是菱形,∠ABC=60°,且点A的坐标为(4,0),若E是AD的中点,则点E的坐标为()A . (﹣2,2 )B . (2,﹣4 )C . (﹣2,4 )D . (2,﹣2 )10. (2分)如图1,在矩形ABCD中,动点P从点B出发,沿矩形的边由运动,设点P运动的路程为x,的面积为y,把y看作x的函数,函数的图像如图2所示,则的面积为()A . 10B . 16C . 18D . 20二、填空题 (共6题;共7分)11. (1分)若关于x的代数式的取值范围为x>﹣1,则这个代数式可以为________ (只需写一个)12. (1分) (2017七下·宁江期末) 如图,超市里的购物车,扶手AB与车底CD平行,∠2比∠3大10°,∠1是∠2的倍,∠2的度数是________.13. (1分)(2011·梧州) 如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所标尺寸(单位:mm),计算出这个立体图形的表面积是________mm2 .14. (2分)把命题“对顶角相等”写成“如果…,那么…”的形式为:如果________,那么________.15. (1分) (2016九上·温州期末) 如图,已知二次函数y= x2﹣ x﹣3的图象与x轴交于A,B两点(点A在点B的左侧),与y轴的负半轴交于点C,顶点为D,作直线CD,点P是抛物线对称轴上的一点,若以P 为圆心的圆经过A,B两点,并且和直线CD相切,则点P的坐标为________16. (1分)圆的对称中心是________ .三、解答题 (共9题;共97分)17. (5分)(2017·苏州模拟) 先化简(﹣)• ,再从0,1,2中选一个合适的x的值代入求值.18. (15分)(2017·东河模拟) 如图,二次函数y=ax2+bx+c的图象与x轴相交于点A(﹣1,0)与B,与y 轴相交于点C(0,﹣3),抛物线的对称轴为直线x=1.(1)求此二次函数的解析式.(2)若抛物线的顶点为D,点E在抛物线上,且与点C关于抛物线的对称轴对称,直线AE交对称轴于点F,试判断四边形CDEF的形状,并说明理由.(3)若点M在x轴上,点P在抛物线上,是否存在以A,E,M,P为顶点且以AE为一边的平行四边形?若存在,请直接写出所有满足要求的点P的坐标;若不存在,请说明理由.19. (15分) (2019九上·江都期末) 某校初三一班组织了一次经典诵读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):(1)写出甲队成绩的中位数和乙队成绩的众数;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4分,则成绩较为整齐的是哪个队?20. (5分)“保护好环境,拒绝冒黑烟”.某市公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两种环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?21. (10分) (2019七下·荔湾期末) 某校计划组织师生共300人参加一次大型公益活动,如果租用6辆大客车和5辆小客车,恰好全部坐满,已知每辆大客车的乘客座位数比小客车多17个.(1)求每辆大客车和每辆小客车的乘客座位数;(2)由于最后参加活动的人数增加了30人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,且所有参加活动的师生都有座位,求租用小客车数量的最大值.22. (5分)(2017·裕华模拟) 如图,贵阳市某中学数学活动小组在学习了“利用三角函数测高”后.选定测量小河对岸一幢建筑物BC的高度.他们先在斜坡上的D处,测得建筑物顶的仰角为30°.且D离地面的高度DE=5m.坡底EA=10m,然后在A处测得建筑物顶B的仰角是50°,点E,A,C在同一水平线上,求建筑物BC的高.(结果保留整数)23. (7分)(2018·焦作模拟) 如图,一次函数y=- x+b与反比例函数y=(x>0)的图象交于点A(2,6)和B(m,1)(1)填空:一次函数的解析式为________,反比例函数的解析式为________;(2)点E为y轴上一个动点,若S△AEB=5,求点E的坐标.24. (15分) (2016九上·南岗期中) ⊙O是△ABC的外接圆,AB是直径,过的中点P作⊙O的直径PG,与弦BC相交于点D,连接AG、CP、PB.(1)如图1,求证:AG=CP;(2)如图2,过点P作AB的垂线,垂足为点H,连接DH,求证:DH∥AG;(3)如图3,连接PA,延长HD分别与PA、PC相交于点K、F,已知FK=2,△ODH的面积为2 ,求AC 的长.25. (20分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的顶点为B(2,1),且过点A(0,2),直线y=x与抛物线交于点D,E(点E在对称轴的右侧),抛物线的对称轴交直线y=x于点C,交x轴于点G,EF⊥x 轴,垂足为F,点P在抛物线上,且位于对称轴的右侧,PQ⊥x轴,垂足为点Q,△PCQ为等边三角形(1)求该抛物线的解析式;(2)求点P的坐标;(3)求证:CE=EF;(4)连接PE,在x轴上点Q的右侧是否存在一点M,使△CQM与△CPE全等?若存在,试求出点M的坐标;若不存在,请说明理由.[注:3+=(+1)2].参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共97分)17-1、18-1、18-2、18-3、19-1、19-2、19-3、20-1、21-1、21-2、22-1、23-1、23-2、24-1、24-2、24-3、25-1、25-2、25-3、25-4、。

山西省吕梁市2021年中考数学试卷(II)卷

山西省吕梁市2021年中考数学试卷(II)卷

山西省吕梁市2021年中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题: (共12题;共24分)1. (2分)已知a=, b=, c=,则下列大小关系正确的是()A . a>b>cB . c>b>aC . b>a>cD . a>c>b2. (2分) (2011七下·广东竞赛) 如图,∠A=35°,∠B=∠C=90°,则∠D的度数是()A . 35°B . 45°C . 55°D . 65°3. (2分) (2016七下·岱岳期末) 下列各式能用完全平方公式进行分解因式的是()A . x2+1B . x2+2x﹣1C . x2+x+1D . x2+4x+44. (2分)(2017·岱岳模拟) 如图是某几何体的三视图,根据图中数据,求得该几何体的体积为()A . 60πB . 70πC . 90πD . 160π5. (2分)已知二次三项式 x2+12x+m2 是一个完全平方式,那么m的值是()A . 36B . 6C . -6D .6. (2分)如图,∠AOB=110°,弦AB所对的圆周角为()A . 55°B . 55°或70°C . 55°或125°D . 55°或110°7. (2分)给出以下四个命题:①一组对边平行的四边形是梯形;②一条对角线平分一个内角的平行四边形是菱形;③对角线互相垂直的矩形是正方形;④一组对边平行,另一组对边相等的四边形是平行四边形.其中真命题有()A . 1个B . 2个C . 3个D . 4个8. (2分) (2017八下·宝丰期末) 下面的图形中,既是轴对称图形又是中心对称图形的是()A . 正三角形B . 平行四边形C . 等腰梯形D . 菱形9. (2分)在平面直角坐标系中,正方形的顶点坐标分别为 A(1,1),B(1,﹣1),C(﹣1,﹣1),D(﹣1,1),y轴上有一点 P(0,2).作点P关于点A的对称点P1 ,作点P1关于点B的对称点P2 ,作点P2关于点C 的对称轴P3 ,作点P3关于点D的对称点P4 ,作点P4关于点A的对称点P5 ,作点P5关于点B的对称点P6 ,…,按此操作下去,则点P2016的坐标为()A . (0,2)B . (2,0)C . (0,-2)D . (﹣2,0)10. (2分)在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为,则原来盒里有白色棋子()A . 1颗B . 2颗C . 3颗D . 4颗11. (2分)下列命题中,正确的是()A . 两条对角线相等的四边形是平行四边形B . 两条对角线相等且互相垂直的四边形是矩形C . 两条对角线互相垂直平分的四边形是菱形D . 两条对角线互相平分且相等的四边形是正方形12. (2分)(2018·东莞模拟) 如图所示的计算程序中,y与x之间的函数关系所对应的图象应为()A .B .C .D .二、填空题 (共6题;共7分)13. (1分)计算:=________14. (1分)(2012·泰州) 根据排列规律,在横线上填上合适的代数式:x,3x2 , 5x3 , ________,9x5 ,….15. (1分)如果函数y=(k﹣2)x|k﹣1|+3是一次函数,则k=________16. (1分)已知 x 满足不等式|ax-1|>ax-1(其中a≠0),那么 x 的取值范围是________.17. (2分)现有多个全等直角三角形,先取三个拼成如图1所示的形状,R为DE的中点,BR分别交AC,CD 于P,Q,易得BP:QR:QR=3:1:2.(1)若取四个直角三角形拼成如图2所示的形状,S为EF的中点,BS分别交AC,CD,DE于P,Q,R,则BP:PQ:QR:RS=________ ;(2)若取五个直角三角形拼成如图3所示的形状,T为FG的中点,BT分别交AC,CD,DE,EF于P,Q,R,S,则BP:PQ:QR:RS:ST=________ .18. (1分)(2016·邵阳) 如图所示,在3×3的方格纸中,每个小方格都是边长为1的正方形,点O,A,B 均为格点,则扇形OAB的面积大小是________.三、解答题 (共8题;共80分)19. (10分)(2017·南岸模拟) 计算:整式的运算和分式的化简(1)(x+3)2﹣x(x+2);(2)÷( + )20. (5分)八年级某班数学实验课安排测量操场上旗杆的高度.小聪同学经过认真思考,研究出了一个可行的测量方案:在某一时刻测得旗杆AB的影长BC和∠ACB的大小,然后在操场上画∠MDN,使得∠MDN=∠ACB,在边DM上截取线段DE=BC,再利用三角形全等的知识求出旗杆的高度,请完成小聪同学的测量方案,并把图形补画完整,说明方案可行的理由.21. (8分)(2014·河池) 某县为了了解初中生对安全知识掌握情况,抽取了50名初中生进行安全知识测试,并将测试成绩进行统计分析,绘制成了频数分布表和频数分布直方图(未完成).安全知识测试成绩频数分布表组别成绩x(分数)组中值频数(人数)190≤x<1009510280≤x<908525370≤x<807512460≤x<70653(1)完成频数分布直方图;(2)这个样本数据的中位数在第________组;(3)若将各组的组中值视为该组的平均成绩,则此次测试的平均成绩为________;(4)若将90分以上(含90分)定为“优秀”等级,则该县10000名初中生中,获“优秀”等级的学生约为________人.22. (10分)(2017·遵义) 乌江快铁大桥是快铁渝黔线的一项重要工程,由主桥AB和引桥BC两部分组成(如图所示),建造前工程师用以下方式做了测量;无人机在A处正上方97m处的P点,测得B处的俯角为30°(当时C处被小山体阻挡无法观测),无人机飞行到B处正上方的D处时能看到C处,此时测得C处俯角为80°36′.(长度均精确到1m,参考数据:≈1.73,sin80°36′≈0.987,cos80°36′≈0.163,tan80°36′≈6.06)(1)求主桥AB的长度;(2)若两观察点P、D的连线与水平方向的夹角为30°,求引桥BC的长.23. (12分) (2020八上·阳泉期末) 下面是学习“分式方程应用”时,老师板书的例题和两名同学所列的方程例:有甲、乙两个工程队,甲队修路400米与乙队修路600米所用时间相等乙队每天比甲队多修20米,求甲队每天修路的长度.冰冰:庆庆:根据以上信息,解答下列问题:(1)冰冰同学所列方程中的x表示________,庆庆同学所列方程中的y表示________;(2)两个方程中任选一个,写出它的等量关系;(3)解(2)中你所选择的方程,并解答老师的例题。

山西省吕梁市2021年中考数学试卷(I)卷

山西省吕梁市2021年中考数学试卷(I)卷

山西省吕梁市2021年中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列各数中最大的数是()A . 5B .C . πD . ﹣82. (2分)(2012·柳州) 娜娜有一个问题请教你,下列图形中对称轴只有两条的是()A . 圆B . 等边三角形C . 矩形D . 等腰梯形3. (2分)观察下列各式从左到右的变形①(a+b)(a﹣b)=a2﹣b2②a2﹣b2﹣1=(a+b)(a﹣b)﹣1③4a+6x=2(2a+3x)④a2﹣2ab+b2=(a﹣b)2⑤a2+1=a (a+ )其中是分解因式的有()A . 1个B . 2个C . 3个D . 4个4. (2分)(2020·枣阳模拟) 下列事件中,是必然事件的是()A . 车辆随机到达一个路口,遇到红灯B . 将油滴在水中,油会浮在水面上C . 如果,那么a=bD . 掷一枚质地均匀的硬币,一定正面向上5. (2分)(2017·广安) 如图所示的几何体,上下部分均为圆柱体,其左视图是()A .B .C .D .6. (2分) (2018七下·太原期中) 纳米是一种长度单位,1米=109纳米,已知某种植物花粉的直径约为35000纳米,那么用科学记数法表示这种花粉的直径为()A . 3.5×10﹣6米B . 3.5×10﹣5米C . 35×1013米D . 3.5×1013米7. (2分)(2019·福州模拟) 已知a、b均为正整数,则数据a、b、10、11、11、12的众数和中位数可能分别是()A . 10、10B . 11、11C . 10、11.5D . 12、10.58. (2分) (2020八下·东湖月考) 小明用四根长度相同的木条制作了能够活动的菱形学具,他先活动学具成为图①所示菱形,并测得∠B=60°,接着活动学具成为图②所示正方形,并测得对角线AC=20cm ,则图①中对角线AC的长为()A . 30cmB . 20 cmC . 20cmD . 10 cm9. (2分)将抛物线向左平移2个单位后所得到的抛物线为()A .B .C .D .10. (2分) (2019八下·南关期中) 如图,在□ 中,∠ 的平分线AE交于点,且=6,若□ 的周长是34,则的长为()A . 5B . 6C . 8D . 11二、填空题 (共5题;共5分)11. (1分)(2020·哈尔滨模拟) 计算的结果是________.12. (1分)(2011·义乌) 某校为了选拔学生参加我市2011年无线电测向比赛中的装机比赛,教练对甲、乙两选手平时五次训练成绩进行统计,两选手五次训练的平均成绩均为30分钟,方差分别是S甲2=51、S乙2=12.则甲、乙两选手成绩比较稳定的是________.13. (1分) (2019九上·台江期中) 一只小鸟自由自在在空中飞翔,然后随意落在下图中,则落在阴影部分的概率是________。

2020-2021学年山西省吕梁市九年级上学期期末考试数学试卷及答案解析

2020-2021学年山西省吕梁市九年级上学期期末考试数学试卷及答案解析

2020-2021学年山西省吕梁市九年级上学期期末考试数学试卷一.选择题(共10小题,满分30分,每小题3分)
1.(3分)若点(3,a﹣2)与点(b+2,﹣1)关于原点对称,则点(b,a)位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(3分)一元二次方程x2=﹣3x的解是()
A.x=0B.x=3C.x1=0,x2=3D.x1=0,x2=﹣3 3.(3分)如图,在Rt△ABC中,∠ACB=90°,∠A=31°,将△ABC绕点C按顺时针旋转后得到△EDC.此时点D在AB边上,则旋转角的大小为()
A.62°B.61°C.60°D.59°
4.(3分)甲、乙两地相距200千米,则汽车从甲地到乙地所用的时间y(h)与汽车的平均速度x(km/h)之间的函数表达式为()
A.y=200x B.x=200y C.y=200
x D.y﹣200=x
5.(3分)已知函数y=k
x的图象过点(2,﹣3),则该函数的图象必在()
A.第二、三象限B.第二、四象限
C.第一、三象限D.第三、四象限
6.(3分)用频率估计概率,可以发现抛掷硬币“正面朝上”的概率为0.5,那么掷一枚质地均匀的硬币10次,下列说法正确的是()
A.每两次必有1次正面向上
B.可能有5次正面向上
C.必有5次正面向上
D.不可能有10次正面
7.(3分)如图,△ABC中,∠ABC=50°,∠ACB=60°,点O是△ABC的外心.则∠BOC=()
第1 页共28 页。

┃试卷合集4套┃2020山西省吕梁市中考第四次质量检测数学试题

┃试卷合集4套┃2020山西省吕梁市中考第四次质量检测数学试题

2019-2020学年数学中考模拟试卷一、选择题1.不等式组21 1(2)13xx xp-≤⎧⎪⎨-+⎪⎩的所有整数解的和为()A .0B .1C .3D .22.不等式组1112xx-⎧⎪⎨>⎪⎩…的解集在数轴上表示正确的是()A.B.C.D.3.若函数y=2x+k的图象与y轴的正半轴相交,则函数kyx=的图象所在的象限是()A.第一、二象限B.第三、四象限C.第二、四象限D.第一、三象限4.若k>0,点P(﹣k,k)在第()象限.A.第一象限B.第二象限C.第三象限D.第四象限5.如图,在平面直角坐标系中,点A坐标为(10,12),点B在x轴上,AO=AB,点C在线段OB上,且OC=3BC,在线段AB的垂直平分线MN上有一动点D,则△BCD周长的最小值为()A. B.13 C. D.186.实数在数轴上的对应点的位置如图所示,若,则下列结论中错误的是()A. B. C. D.7.如图,AB∥DC,ED∥BC,AE∥BD,那么图中与△ABD面积相等的三角形有()A.1个B.2个C.3个D.4个8.有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学知道自己的成绩后,要判断能否进入决赛,还需知道这9名同学成绩的()A.众数B.中位数C.平均数D.方差9.2018年10月24日港珠澳大桥正式通车港珠澳大桥是在“一国两制”方针下,粤港澳三地首次合作共建的超大型基础设施项目,大桥全长55000米.将数据55000用科学记数法可表示为( ) A .5.5×103B .5.5×104C .55×103D .0.55×10510.八年级6班的一个互助学习小组组长收集并整理了组员们讨论如下问题时所需的条件:如图所示,在四边形ABCD 中,点E 、F 分别在边BC 、AD 上,____,求证:四边形AECF 是平行四边形. 你能在横线上填上最少且简捷的条件使结论成立吗?条件分别是:①BE =DF ;②∠B =∠D ;③BAE =∠DCF ;④四边形ABCD 是平行四边形. 其中A 、B 、C 、D 四位同学所填条件符合题目要求的是( )A .①②③④B .①②③C .①④D .④11.一元二次方程2660x x --=配方后化为( ) A.()2315x -=B.()2315x +=C.()2315x +=D.()233x +=12.如图,以正五边形ABCDE 的顶点A 为圆心,AE 为半径作圆弧交BA 的延长线于点A ',再以点B 为圆心,BA '为半径作圆弧交CB 的延长线于B ',依次进行……得到螺旋线,再顺次连结EA ',AB ',BC ',CD ',DE ',得到5块阴影区域,若记它们的面积分别为1S ,2S ,3S ,4S ,5S ,且满足521S S -=,则43S S -的值为( )A .17B .15C .14D .13二、填空题13.如图,在平面直角坐标系中,()()0,2,23,0A B ,点C 是线段AB 上一点,将OCB ∆沿AB 翻折得到'B CB ∆,且满足'B C AO ∕∕. 若反比例函数y (0)kk x=>图象经过点C ,则k 的值为____.14.帐篷厂原计划生产7200顶帐篷,后来为了支援灾区,要求工厂生产的帐比原计划多20%,并需要提前4天完成任务.已知实际生产时每天比原计划多生产720顶帐篷,设实际每天生产x 顶帐篷,根据题意可列方程为__________.15.在Rt △ABC 中,∠BAC=30°,斜边3P 在AB 边上,动点Q 在AC 边上,且∠CPQ=90°,则线段CQ长的最小值=__________ .16.有一张三角形纸片ABC,∠A=80°,点D是AC边上一点,沿BD方向剪开三角形纸片后,发现所得两张纸片均为等腰三角形,则∠C的度数可以是__________.17.将数67500用科学记数法表示为____________.18.和平中学自行车停车棚顶部的剖面如图所示,已知AB=16m,半径OA=10m,高度CD为____m.三、解答题19.如图,轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上,轮船航行半小时到达C处,在C处观测灯塔A位于北偏东60°的方向上,求C处与灯塔A的距离.20.幸福村在推进美丽乡村建设中,决定建设幸福广场,计划铺设相同大小、规格的红色和蓝色地砖,经过调查,获取信息如下表:类别购买数量低于500块购买数量不低于500块红色地砖原价销售以八折销售蓝色地砖原价销售以九折销售块,需付款9900元.(1)红色地砖和蓝色地砖的单价各多少元?(2)经过测算,需要购置地砖1200块,其中蓝色地砖的数量不少于红色地砖的一半,并且不超过600块,如何购买付款最少?最少是多少元?请说明理由.21.某学校为了解本校学生平均每天的体育活动时间情况,随机抽取部分学生进行问卷调查,并将调查结果人数分为A,B,C,D四个等级设活动时间为t(小时),A:t<1,B:1≤t<1.5,C:1.5≤t<2,D:t≥2,根据调查结果绘制了如图所示的两幅不完整的统计图.请你根据图中信息解答下列问题:(1)该校共调查了多少名学生;(2)将条形统计图补充完整;(3)求出表示A等级的扇形圆心角的度数;(4)在此次问卷调查中,甲班有2人平均每天大课间活动时间不足1小时,乙班有3人平均每天大课间活动时间不足1小时,若从这5人中任选2人去参加座谈,试用列表或画树状图的方法求选出的2人来自不同班级的概率.22.已知:二次函数C1:y1=ax2+2ax+a﹣1(a≠0)(1)把二次函数C1的表达式化成y=a(x﹣h)2+b(a≠0)的形式,并写出顶点坐标;(2)已知二次函数C1的图象经过点A(﹣3,1).①求a的值;②点B在二次函数C1的图象上,点A,B关于对称轴对称,连接AB.二次函数C2:y2=kx2+kx(k≠0)的图象,与线段AB只有一个交点,求k的取值范围.23.“全民阅读”活动,是中央宣传部、中央文明办和新闻出版总署贯彻落实关于建设学习型社会要求的一项重要举措.读书必须要讲究方法,只有按照一定的方法去阅读,才能取得事半功倍的效果.常用的阅读方法有:A.圈点批注法;B.摘记法;C.反思法:D.撰写读后感法;E.其他方法.某县某中学张老师为了解本校学生使用不同阅读方法读书的情况,随机抽取部分本校中学生进行了调查,通过数据的收集、整理绘制成以下不完整的统计图表,请根据图表中的信息解答下列问题:中学生阅读方法情况统计表阅读方法频数A 圈点批注法 aB 摘记法20C 反思法 bD 撰写读后感法16E 其他方法 4=,=,=;(2)若该校共有中学生960名,估计该校使用“反思法”读书的学生有人;(3)小明从以上抽样调查所得结果估计全县6000名中学生中有1200人采用“撰写读后感法”读书,你同意小明的观点吗?请说明你的理由.(4)该校决定从本次抽取的“其他方法”4名学生(记为甲,乙,丙,丁)中,随机选择2名成为学校阅读宣讲志愿者,请你用列表法或画树状图的方法,求恰好抽到甲和乙的概率.24.如图,四边形ABCD是平行四边形,点E在BC的延长线上,BC=CE,连接AE,交DC于点F.求证:点F是CD的中点.25.(1)(问题发现)如图1,在Rt△ABC中,AB=AC,∠BAC=90°,点D为BC的中点,以CD为一边作正方形CDEF,点E恰好与点A重合,请判断线段BE与AF的数量关系并写出推断过程;(2)(拓展研究)在(1)的条件下,如果正方形CDEF绕点C旋转,连接BE,CE,AF,线段BE与AF的数量关系有无变化?请仅就图2的情形给出证明;(3)(结论运用)在(1)(2)的条件下,若△ABC的面积为2,当正方形CDEF旋转到B,E,F三点在同一直线上时,请直接写出线段AF的长.【参考答案】***一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12答案 C B D B D A C B B C A D二、填空题 13.3 14.72007200(120%)4720x x+-=-15.216.25°或40°或10° 17.46.7510⨯ 18. 三、解答题 19.25海里 【解析】 【分析】根据题中所给信息,求出∠BCA=90°,再求出∠CBA=45°,从而得到△ABC 为等腰直角三角形,然后根据等腰三角形的腰长相等即可得出答案. 【详解】解:由题意得,∠1=∠2=30°, ∵∠ACD=60°,∴∠ACB=90°, ∴∠CBA=75°-30°=45°, ∴ΔABC 为等腰直角三角形, ∵BC=50×0.5=25, ∴AC=BC=25海里.【点睛】本题考查了等腰直角三角形和方位角,根据方位角求出三角形各角的度数是解题的关键.20.(1)红色地砖每块8元,蓝色地砖每块10元;(2)购买蓝色地砖700块,红色地砖500块,费用最少,最少费用为8980元. 【解析】 【分析】(1)根据题意结合表格中数据,购买红色地砖4000块,蓝色地砖6000块,需付款86000元;购买红色地砖10000块,蓝色地砖3500块,需付款99000元,分别得出方程得出答案; (2)利用已知得出x 的取值范围,再利用一次函数增减性得出答案. 【详解】(1)设红色地砖每块x 元,蓝色地砖每块y 元,由题意可得:4006000.9860010000.83509900x y x y +⨯=⎧⎨⨯+=⎩, 解得810x y =⎧⎨=⎩,答:红色地砖每块8元,蓝色地砖每块10元;(2)设购置蓝色地砖a块,则购置红色地砖(1200﹣a)块,所需的总费用为y元,由题意可得:a 1200a2 1200a600⎧-⎪⎨⎪-⎩……,解得:600≤a≤800,当600≤a<700时,y=8a×0.8+0.9×10(1200﹣a)=10800﹣2.6a,当a=700时y有最小值为:10800﹣2.6×700=8980,当700<x≤800时,y=8a×0.8+10(1200﹣a)=﹣3.6a+12000,当a=800时,y有最小值为:﹣3.6×800+12000=9120,∵9120<9180,∴购买蓝色地砖700块,红色地砖500块,费用最少,最少费用为8980元.【点睛】此题主要考查了一次函数的应用以及二元一次方程组的应用,正确得出函数关系式是解题关键.21.(1)50(名);(2)详见解析;(3)180°;(4)3 5【解析】【分析】(1)利用B组人数19人,占总人数的38%即可求解,(2)用总人数减去A,B,D中的人数求出C组人数,即可补全条形统计图,(3)用360°乘以A组占全体人数的比例即可求解,(4)画出树状图,找到总可能性和满足条件的可能性即可解题.【详解】解:(1)本次抽样调查的人数为:19÷38%=50(名);(2)因为C等级人数为:50﹣(15+19+4)=12(名),条形统计图补充完整如图:(3)表示A等级的扇形圆心角的度数为:1550×360°=180°(4)设甲班的两名同学分别用 A1、A2表示,一班三名同学分别用B1、B2、B3表示,随机选出两人参加座谈的树状图如下:共有20种等可能的结果,而选出2人来自不同班级的有12种,所以P(选出的两人来自不同的班级)=1220=35.【点睛】本题考查了统计和概率的实际应用,中等难度,熟悉条形统计图和扇形统计图,从图中找到关联信息是解题关键.22.(1)y1=a(x+1)2﹣1,顶点为(﹣1,﹣1);(2)①12;②k的取值范围是16≤k≤12或k=﹣4.【解析】【分析】(1)化成顶点式即可求得;(2)①把点A(﹣3,1)代入二次函数C1:y1=ax2+2ax+a﹣1即可求得a的值;②根据对称的性质得出B的坐标,然后分两种情况讨论即可求得;【详解】(1)y1=ax2+2ax+a﹣1=a(x+1)2﹣1,∴顶点为(﹣1,﹣1);(2)①∵二次函数C1的图象经过点A(﹣3,1),∴a(﹣3+1)2﹣1=1,∴a=12;②∵A(﹣3,1),对称轴为直线x=﹣1,∴B(1,1),当k>0时,二次函数C2:y2=kx2+kx(k≠0)的图象经过A(﹣3,1)时,1=9k﹣3k,解得k=16,二次函数C2:y2=kx2+kx(k≠0)的图象经过B(1,1)时,1=k+k,解得k=12,∴16≤k≤12,当k<0时,∵二次函数C2:y2=kx2+kx=k(x+12)2﹣14k,∴﹣14k=1,∴k=﹣4,综上,二次函数C2:y2=kx2+kx(k≠0)的图象,与线段AB只有一个交点,k的取值范围是16≤k≤12或k=﹣4.【点睛】本题考查了二次函数和系数的关系,二次函数的最值问题,轴对称的性质等,分类讨论是解题的关键.23.(1)32,8,10%;(2)96;(3)1200人;(4)16.【解析】【分析】(1)先根据“摘记法”的频数及其频率求得总人数,再根据频数、频率与总数间的关系可得a、b、c的值;(2)总人数乘以样本中“反思法”学生所占比例可得; (3)利用总人数乘以撰写读后感法的百分比即可解答(4)用树状图表示出四人中随机抽取两人有12种可能,即可解答 【详解】解:(1)本次调查的学生有:20÷25%=80, a =80×40%=32,b =80×(100﹣40﹣25﹣20﹣5)%=80×10%=8,c =(100﹣40﹣25﹣20﹣5)%=10%, 故答案为:32,8,10%;(2)若该校共有中学生960名,估计该校使用“反思法”读书的学生有:960×10%=96人, 故答案为:96;(3)同意小明的观点;理由如下:全县6000名中学生中采用“撰写读后感法”读书的有:6000×20%=1200人; (4)树状图如图所示,∵从四人中随机抽取两人有12种可能,恰好是甲和乙的有2种可能, ∴抽取两人恰好是甲和乙的概率是21=126.【点睛】此题考查树状图法,扇形统计图,解题关键在于看懂图中数据 24.详见解析 【解析】 【分析】根据平行线的性质得到∠DAF=∠E ,由AAS 证明△ADF ≌△ECF ,根据全等三角形的性质即可得到结论. 【详解】证明:∵四边形ABCD 是平行四边形, ∴AD=BC ,AD ∥BC , ∴∠DAF=∠E , ∵BC=CE , ∴AD=CE ,在△ADF 与△ECF 中,DAF E AFD EFC AD CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADF ≌△ECF (AAS ), ∴DF=CF ,∴点F 是CD 的中点. 【点睛】本题考查了平行四边形的判定和性质,全等三角形的判定和性质,熟练掌握平行四边形的性质,证明三角形全等是解题的关键.25.(1)BE AF .见解析;(2)无变化.证明见解析;(3)线段AF 1-1. 【解析】 【分析】(1)首先证明△ADB 是等腰直角三角形,推出AD ,再证明AF=AD 即可解决问题;(2)先利用三角函数得出CA CB =,CF CE =CA CF CB CE =,夹角相等即可得出△ACF ∽△BCE ,进而得出结论;(3)分两种情况计算,当点E 在线段BF 上时,如图2,先利用勾股定理求出,,即可得出,借助(2)得出的结论,当点E 在线段BF 的延长线上,同前一种情况一样即可得出结论. 【详解】(1)在Rt △ABC 中,AB =AC ,根据勾股定理得,BC AB ,又∵点D 为BC 的中点,∴AD =12BC AB ,∵四边形CDEF 是正方形,∴AF =EF =AD AB BE ,∴BE AF . (2)无变化.证明:如图2,在Rt △ABC 中,∵AB =AC , ∴∠ABC =∠ACB =45°,∴sin ∠ABC =CA CB =2, 在正方形CDEF 中,∠FEC =12∠FED =45°,在Rt △CEF 中,sin ∠FEC =CF CE =∴CF CACE CB=, ∵∠FCE =∠ACB =45°,∴∠FCE -∠ACE =∠ACB -∠ACE , ∴∠FCA =∠ECB , ∴△ACF ∽△BCE ,∴BE CBAF CA==∴BE AF ,∴线段BE 与AF 的数量关系无变化; (3)当点E 在线段AF 上时,如图2,由(1)知,,在Rt △BCF 中,,根据勾股定理得,BF=6, ∴BE=BF-EF=6-2, 由(2)知,BE=2AF , ∴AF=3-1,当点E 在线段BF 的延长线上时,如图3,在Rt △ABC 中,AB=AC=2, ∴∠ABC=∠ACB=45°, ∴sin ∠ABC=22CA CB =, 在正方形CDEF 中,∠FEC=12∠FED=45°, 在Rt △CEF 中,sin ∠FEC=22CF CE =, ∴CF CACE CB=, ∵∠FCE=∠ACB=45°, ∴∠FCB+∠ACB=∠FCB+∠FCE , ∴∠FCA=∠ECB , ∴△ACF ∽△BCE , ∴2BE CBAF CA== ∴2,由(1)知,2, 在Rt △BCF 中,22, 根据勾股定理得,6, ∴62, 由(2)知,2AF , ∴3.即:当正方形CDEF 旋转到B ,E ,F 三点共线时候,线段AF 33. 【点睛】本题是四边形综合题,主要考查了,等腰直角三角形的性质,正方形的性质,旋转的性质,相似三角形的判定和性质,解(2)(3)的关键是判断出△ACF ∽△BCE .第三问要分情况讨论.2019-2020学年数学中考模拟试卷一、选择题1.如图,在已知的△ABC 中,按以下步骤:(1)分别以B 、C 为圆心,大于12BC 的长为半径作弧,两弧相交M 、N ;(2)作直线MN ,交AB 于D ,连结CD ,若CD =AD ,∠B =20°,则下列结论:①∠ADC =40°②∠ACD =70°③点D 为△ABC 的外心④∠ACD =90°,正确的有( )A .4个B .3个C .2个D .1个2.如图,△ABC 和△DCE 都是边长为8的等边三角形,点B ,C ,E 在同一条直线上接BD ,AE ,则四边形FGCH 的面积为( )A .433B .833C .1433D .16333.(11·孝感)如图,某航天飞机在地球表面点P 的正上方A 处,从A 处观测到地球上的最远点Q ,若∠QAP =α,地球半径为R ,则航天飞机距地球表面的最近距离AP ,以及P 、Q 两点间的地面距离分别是( )A.,sin 180R R παα B.(90),sin 180R RR απα-- C.(90),sin 180R RR απα-- D.(90),sin 180R RR απα+- 4.已知四边形的对角线相交于点,,则下列条件中不能判定四边形为平行四边形的是( ) A.B.C.D.5.据测定,杨絮纤维的直径约为0.0000105m ,该数值用科学记数法表示为( ) A .1.05×105B .0.105×10–4C .1.05×10–5D .105×10–76.如图所示,第1个图案是由黑白两种颜色的六边形地面砖组成的,第2个,第3个图案可以看成是由第1个图案经过平移而得,那么第n 个图案中有白色六边形地面砖( )块.A.6+4(n+1)B.6+4nC.4n ﹣2D.4n+27.如图,AD 是△ABC 外接圆的直径.若∠B =64°,则∠DAC 等于( )A .26°B .28°C .30°D .32° 8.若数组2,2,x ,3,4的平均数为3,则这组数中的( )A .x=3B .中位数为3C .众数为3D .中位数为x9.计算2231366x x x x x+-⋅-+的结果为( ) A.6x x+ B.6x x - C.6x x + D.6x + 10.如图,在△ABC 中,5,6AB AC BC ===,动点P ,Q 在边BC 上(P 在Q 的左边),且2PQ =,则AP AQ +的最小值为( )A .8B .213C .9D .21711.二次函数y =ax 2+bx+c 的部分图象如图,则下列说法错误的是( )A .对称轴是直线x =﹣1B .abc <0C .b 2﹣4ac >0D .方程ax 2+bx+c =0的根是x 1=﹣3和x 2=1 12.下列说法正确的是( ) A .菱形的对角线垂直且相等B .到线段两端点距离相等的点,在线段的垂直平分线上C .角的平分线就是角的对称轴D .形状相同的两个三角形就是全等三角形 二、填空题13.如图所示,将形状、大小完全相同的“•”和线段按照一定规律摆成下列图形.第1幅图形中“•”的个数为,第2幅图形中“•”的个数为,第3幅图形中“•”的个数为,…,以此类推,则的值为_______.……第1幅图 第2幅图 第3幅图 第4幅图14.一组数据﹣1,3,7,4的极差是_______. 15.计算:=________.16.若二次函数y=2x 2的图象向左平移2个单位长度后,得到函数y=2(x+h )2的图象,则h= . 17.分解因式: 24x x +=________________ 18.计算__________三、解答题 19.解方程:252112x x x+--=3. 20.旋转变换是解决数学问题中一种重要的思想方法,通过旋转变换可以将分散的条件集中到一起,从而方便解决问题.已知,△ABC 中,AB =AC ,∠BAC =α,点D 、E 在边BC 上,且∠DAE =12α. (1)如图1,当α=60°时,将△AEC 绕点A 顺时针旋转60°到△AFB 的位置,连接DF , ①求∠DAF 的度数; ②求证:△ADE ≌△ADF ;(2)如图2,当α=90°时,猜想BD 、DE 、CE 的数量关系,并说明理由; (3)如图3,当α=120°,BD =4,CE =5时,请直接写出DE 的长为 .21.目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m 人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.(1)根据图中信息求出m=______,n=______;(2)请你帮助他们将这两个统计图补全;(3)根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?22.如图,已知矩形ABCD,AB=4,BC=5.请用尺规作图画出符合要求的图形,并标注必要的字母及结论(保留作图痕迹,不要求写作法).(1)在图1的矩形ABCD中画出一个面积最大的菱形.(2)我们通常把长与宽之比为2:1的矩形称为标准矩形,请你在图2的矩形ABCD中画出一个面积最大的标准矩形.23.为拓宽学生视野,我市某中学决定组织部分师生去庐山西海开展研学旅行活动,在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生.为了安全,既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师.现有甲、乙两种大客车,它们的载客量和租金如表所示.甲种客车乙种客车载客量/(人/辆)30 42租金/(元/辆)300 400(2)设租用x辆乙种客车,租车总费用为w元,请写出w与x之间的函数关系式;(3)在(2)的条件下,学校计划此次研学旅行活动的租车总费用不超过3100元,租用乙种客车不少5辆,你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.24.如图,在矩形ABCD中,对角线AC,BD相交于点O,OA=6,点E,F是DC的三等分点,△OEF是等边三角形,求EF的长度.25.计算:(1)(x+2y)(x﹣2y)+4(x+y)2(2)(212aa-++a﹣1)÷2244a aa a-++【参考答案】***一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 B B B B C D A B A D B B13.14.815.-216.17.()4x x+18.三、解答题19.12 x=-【解析】【分析】先把分式方程化为整式方程,解整式方程求得x的值,检验即可得分式方程的解. 【详解】原方程变形为253 2121xx x-=--,方程两边同乘以(2x﹣1),得2x﹣5=3(2x﹣1),解得12x=-.检验:把12x=-代入(2x﹣1),(2x﹣1)≠0,∴12x=-是原方程的解,∴原方程的12x=-.【点睛】本题考查了分式方程的解法,把分式方程化为整式方程是解决问题的关键,解分式方程时,要注意验根. 20.(1)①30°②见解析(2)BD2+CE2=DE2(321【解析】【分析】(1)①利用旋转的性质得出∠FAB=∠CAE,再用角的和即可得出结论;②利用SAS判断出△ADE≌△ADF,即可得出结论;(2)先判断出BF=CE,∠ABF=∠ACB,再判断出∠DBF=90°,即可得出结论;(3)同(2)的方法判断出∠DBF=60°,再用含30度角的直角三角形求出BM,FM,最后用勾股定理即可得出结论.【详解】解:(1)①由旋转得,∠FAB=∠CAE,∵∠BAD+∠CAE=∠BAC﹣∠DAE=60°﹣30°=30°,∴∠DAF=∠BAD+∠BAF=∠BAD+∠CAE=30°;②由旋转知,AF=AE,∠BAF=∠CAE,∴∠BAF+∠BAD=∠CAE+∠BAD=∠BAC﹣∠DAE=∠DAE,在△ADE和△ADF中,AF AEDAF DAE AD AD=⎧⎪∠=∠⎨⎪=⎩,∴△ADE≌△ADF(SAS);(2)BD2+CE2=DE2,理由:如图2,将△AEC绕点A顺时针旋转90°到△AFB的位置,连接DF,∴BF=CE,∠ABF=∠ACB,由(1)知,△ADE≌△ADF,∴DE=DF,∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∴∠DBF=∠ABC+∠ABF=∠ABC+∠ACB=90°,根据勾股定理得,BD2+BF2=DF2,即:BD2+CE2=DE2;(3)如图3,将△AEC绕点A顺时针旋转90°到△AFB的位置,连接DF,∴BF=CE,∠ABF=∠ACB,由(1)知,△ADE≌△ADF,∴DE=DF,BF=CE=5,∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=30°,∴∠DBF=∠ABC+∠ABF=∠ABC+∠ACB=60°,过点F作FM⊥BC于M,在Rt△BMF中,∠BFM=90°﹣∠DBF=30°,BF=5,∴55 BM,FM322==,∵BD=4,∴DM=BD﹣BM=32,根据勾股定理得,22DF FM DM21=+=,∴DE=DF=21,故答案为21.【点睛】此题是几何变换综合题,主要考查了旋转的性质,全等三角形的判定和性质,勾股定理,构造全等三角形和直角三角形是解本题的关键.21.(1)100,35 ;(2)见解析;(3)800.【解析】【分析】(1)由共享单车人数及其百分比求得总人数m,用支付宝人数除以总人数可得其百分比n的值;(2)总人数乘以网购人数的百分比可得其人数,用微信人数除以总人数求得其百分比即可补全两个图形;(3)总人数乘以样本中微信人数所占百分比可得答案.【详解】解:(1)∵被调查的总人数m=10÷10%=100人,∴支付宝的人数所占百分比n%=35100×100%=35%,即n=35,故答案为:100,35;(2)网购人数为100×15%=15人,微信对应的百分比为40100×100%=40%,补全图形如下:(3)估算全校2000名学生中,最认可“微信”这一新生事物的人数为2000×40%=800人.【点睛】本题考查的是用列表法或画树状图法求概率以及扇形统计图与条形统计图的知识.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.(1)如图1,菱形BEDF即为所求;见解析;(2)以BC=5为长,则宽AE为522,此时矩形AEFD的面积最大.画图见解析【解析】【分析】(1)以BD或AC为对角线,E、F在AD,BC上,且EF垂直平分BD或AC,则菱形BEDF即为所求(2)以BC=5为长,则宽AE为522,此时矩形AEFD的面积最大【详解】(1)如图1:以BD或AC为对角线,E、F在AD,BC上,且EF垂直平分BD或AC,则菱形BEDF即为所求;(2)如图2,以BC=5为长,则宽AE为522,此时矩形AEFD的面积最大.【点睛】此题主要考查菱形和矩形的性质,其中涉及尺规作图23.(1)老师有16名,学生有284名;租用客车总数为8辆;(2)w=100x+2400;(3)共有3种租车方案:①租用甲种客车3辆,乙种客车5辆,租车费用为2900元;②租用甲种客车2辆,乙种客车6辆,租车费用为3000元;③租用甲种客车1辆,乙种客车7辆,租车费用为3100元;最节省费用的租车方案是:租用甲种客车3辆,乙种客车5辆.【解析】【分析】(1)设出老师有x名,学生有y名,得出二元一次方程组,解出即可;再由每辆客车上至少要有2名老师,且要保证300名师生有车坐,可得租用客车总数;(2)由租用x辆乙种客车,得甲种客车数为:(8﹣x)辆,由题意得出w=400x+300(8﹣x)即可;(3)由题意得出400x+300(8﹣x)≤3100,且x≥5,得出x取值范围,分析得出即可.【详解】解:(1)设老师有x名,学生有y名.依题意,列方程组1712 184x yx y=-⎧⎨=+⎩,解得:16284 xy=⎧⎨=⎩,∵每辆客车上至少要有2名老师,∴汽车总数不能超过8辆;又要保证300名师生有车坐,汽车总数不能小于30050427(取整为8)辆,综合起来可知汽车总数为8辆;答:老师有16名,学生有284名;租用客车总数为8辆.(2)∵租用x辆乙种客车,∴甲种客车数为:(8﹣x)辆,∴w=400x+300(8﹣x)=100x+2400.(3)∵租车总费用不超过3100元,租用乙种客车不少于5辆,∴400x+300(8﹣x)≤3100,x≥5解得:5≤x≤7,为使300名师生都有座,∴42x+30(8﹣x)≥300,解得:x≥5,∴5≤x≤7,(x为整数),∴共有3种租车方案:方案一:租用甲种客车3辆,乙种客车5辆,租车费用为2900元;方案二:租用甲种客车2辆,乙种客车6辆,租车费用为3000元;方案三:租用甲种客车1辆,乙种客车7辆,租车费用为3100元;故最节省费用的租车方案是:租用甲种客车3辆,乙种客车5辆.【点睛】此题主要考查了二元一次方程组的应用与一次不等式的综合应用,由题意得出租用x辆甲种客车与租车费用的不等式关系是解决问题的关键.24.EF=23.【解析】【分析】过O作OG⊥DC,利用等边三角形的性质和矩形的性质以及含30°的直角三角形的性质解答即可.【详解】解:如图,过O作OG⊥DC,∵△OEF是等边三角形,∴EG=GF,∠FEO=60°,OE=EF=OF,∵点E,F是DC的三等分点,∴DE=EF=FC,∴DE=OE,∴∠ODE=30°,∴3,∵矩形ABCD,∴DB=AC=2OA=2OD=12,∴3∴∴【点睛】此题考查矩形的性质,关键是利用等边三角形的性质和矩形的性质以及含30°的直角三角形的性质解答.25.(1)5x2+8xy;(2)2 aa +【解析】【分析】(1)根据平方差公式和完全平方公式进行化简,再进行计算即可得到答案;(2)先对212aa-++a﹣1进行通分化简,再根据完全平方公式对2244a aa a-++的分母进行化简,进行计算即可得到答案.【详解】解:(1)(x+2y)(x﹣2y)+4(x+y)2=x2﹣4y2+4(x+y)2=x2﹣4y2+4(x2+2xy+y2)=x2﹣4y2+4x2+8xy+4y2=5x2+8xy(2)(212aa-++a﹣1)÷2244a aa a-++=21(1)(2)22a a aa a⎡⎤--++⎢⎥++⎣⎦÷2244a aa a-++=2221(22)a aaaa++-+--÷2244a aa a-++=12aa-+÷2(1)(2)a aa-+=12aa-+×2(2)(1)aa a+-=2aa+.【点睛】本题考查平方差公式和完全平方公式,解题的关键是掌握平方差公式和完全平方公式的计算.2019-2020学年数学中考模拟试卷一、选择题1.已知22x y =-⎧⎨=⎩是方程kx+2y =﹣2的解,则k 的值为( )A .﹣3B .3C .5D .﹣52.甲,乙工程队分别承接600米,800米的道路修建工程,已知乙比甲每天多修建12米,结果甲比乙提早1天完成,问甲每天修建多少米?设甲每天修建x 米,根据题意可列出方程是( ) A .x 600=80012x -﹣1 B .x 600=80012x -+1 C .x 600=80012x +﹣1 D .x 600=80012x ++1 3.平方根和立方根都是本身的数是( ) A .0 B .1C .±1D .0和±14.下列计算正确的是( )A. B. C.D.5.如图,平行四边形纸片ABCD ,CD=5,BC=2,∠A=60°,将纸片折叠,使点A 落在射线AD 上(记为点A′),折痕与AB 交于点P ,设AP 的长为x ,折叠后纸片重叠部分的面积为y ,可以表示y 与x 之间关系的大致图象是( )A .B .C .D .6.如图,在△ABC 中,点P ,Q 分别在BC ,AC 上,AQ =PQ ,PR =PS ,PR ⊥AB 于点R ,PS ⊥AC 于点S ,则下面结论错误是( )A.△BPR ≌△QPSB.AS =ARC.QP ∥ABD.∠BAP =∠CAP7.已知x ﹣1x=6,则x 2+21x 的值为( )A .34B .36C .37D .388.如图,5行5列点阵中,左右(或上下)相邻的两个点间距离都是1,若以图中的点为顶点画正方形,共能画出面积互不相等的正方形有( )A .7个B .8个C .9个D .10个9.如图,在平面直角坐标系中2条直线为12:33,:39l y x l y x =-+=-+,直线1l 交x 轴于点A ,交y 轴于点B ,直线2l 交x 轴于点D ,过点B 作x 轴的平行线交2l 于点C ,点A E 、关于y 轴对称,抛物线2y ax bx c =++过E B C 、、三点,下列判断中:①0a b c -+=;②25a b c ++=;③抛物线关于直线1x =对称;④抛物线过点(),b c ;⑤四边形5ABCD S =四边形,其中正确的个数有( )A .5B .4C .3D .210.已知P 为线段AB 的黄金分割点,且AP >PB ,则( )A .AP 2+BP 2=AB 2 B .BP 2=AP•ABC .AP 2=AB•BPD .AB 2=AP•PB11.由6个完全相同的小正方体组成的立体图形如图所示,其主视图是( )A .B .C .D .12.直线y =﹣2x+5分别与x 轴,y 轴交于点C 、D ,与反比例函数y =3x的图象交于点A 、B .过点A 作AE ⊥y 轴于点E ,过点B 作BF ⊥x 轴于点F ,连结EF ;下列结论:①AD =BC ;②EF ∥AB ;③四边形AEFC 是平行四边形;④S △EOF :S △DOC =3:5.其中正确的个数是( )A .1B .2C .3D .4二、填空题13.若式子3x -有意义,则x 的取值范围是______.14.若最简二次根式1a +与42a -是同类二次根式,那么a =________。

山西省吕梁市2021年中考数学试题及答案(含解析)

山西省吕梁市2021年中考数学试题及答案(含解析)

山西省吕梁市2021年中考数学试题及答案(含解析)一、单选题1、下列运算正确的是()A.﹣3﹣2=﹣1 B.3×(﹣)2=﹣C.x3•x5=x15D.•=a【分析】直接利用有理数混合运算法则、同底数幂的乘除运算法则分别化简得出答案.【解答】解:A、﹣3﹣2=﹣5,故此选项错误;B、3×(﹣)2=,故此选项错误;C、x3•x5=x8,故此选项错误;D、•=a,正确.故选:D.【点评】此题主要考查了有理数混合运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.2、如图,直线l1∥l2,点A在直线l1上,以点A为圆心,适当长度为半径画弧,分别交直线l1、l2于B、C两点,连结AC、BC.若∠ABC=70°,则∠1的大小为()A.20°B.35°C.40°D.70°【分析】根据平行线的性质解答即可.【解答】解:∵点A为圆心,适当长度为半径画弧,分别交直线l1、l2于B、C,∴AC=AB,∴∠CBA=∠BCA=70°,∵l1∥l2,∴∠CBA+∠BCA+∠1=180°,∴∠1=180°﹣70°﹣70°=40°,故选:C.【点评】此题考查平行线的性质,关键是根据平行线的性质解答.3、下列事件为必然事件的是()A.打开电视机,正在播放新闻B.任意画一个三角形,其内角和是180°C.买一张电影票,座位号是奇数号D.掷一枚质地均匀的硬币,正面朝上【分析】必然事件就是一定发生的事件,即发生的概率是1的事件.【解答】解:∵A,C,D选项为不确定事件,即随机事件,故不符合题意.∴一定发生的事件只有B,任意画一个三角形,其内角和是180°,是必然事件,符合题意.故选:B.【点评】本题考查的是对必然事件的概念的理解.解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题,提高自身的数学素养.用到的知识点为:必然事件指在一定条件下一定发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4、下列哪个图形是正方体的展开图()A.B.C.D.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:根据正方体展开图的特征,选项A、C、D不是正方体展开图;选项B是正方体展开图..故选:B.【点评】此题主要考查了正方体的展开图,正方体展开图有11种特征,分四种类型,即:第一种:“1﹣4﹣1”结构,即第一行放1个,第二行放4个,第三行放1个;第二种:“2﹣2﹣2”结构,即每一行放2个正方形,此种结构只有一种展开图;第三种:“3﹣3”结构,即每一行放3个正方形,只有一种展开图;第四种:“1﹣3﹣2”结构,即第一行放1个正方形,第二行放3个正方形,第三行放2个正方形.5、式子在实数范围内有意义,则x的取值范围是()A.x>0 B.x≥﹣1 C.x≥1 D.x≤1【分析】根据被开方数是非负数,可得答案.【解答】解:由题意,得x﹣1≥0,解得x≥1,故选:C.【点评】本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式组是解题关键.6、如图,一条公路的转弯处是一段圆弧(),点O是这段弧所在圆的圆心,AB=40m,点C是的中点,且CD=10m,则这段弯路所在圆的半径为()A.25m B.24m C.30m D.60m【分析】根据题意,可以推出AD=BD=20,若设半径为r,则OD=r﹣10,OB=r,结合勾股定理可推出半径r 的值.【解答】解:∵OC⊥AB,∴AD=DB=20m,在Rt△AOD中,OA2=OD2+AD2,设半径为r得:r2=(r﹣10)2+202,解得:r=25m,∴这段弯路的半径为25m故选:A.【点评】本题主要考查垂径定理的应用、勾股定理的应用,关键在于设出半径为r后,用r表示出OD、OB的长度.7、语句“x的与x的和不超过5”可以表示为()A.+x≤5 B.+x≥5 C.≤5 D.+x=5【分析】x的即x,不超过5是小于或等于5的数,按语言叙述列出式子即可.【解答】解:“x的与x的和不超过5”用不等式表示为x+x≤5.故选:A.【点评】本题考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.8、下列倡导节约的图案中,是轴对称图形的是()A.B.C.D.【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误.故选:C.【点评】此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.9、若x1,x2是一元二次方程x2﹣4x﹣5=0的两根,则x1•x2的值为()A.﹣5 B.5 C.﹣4 D.4【分析】利用根与系数的关系可得出x1•x2=﹣5,此题得解.【解答】解:∵x1,x2是一元二次方程x2﹣4x﹣5=0的两根,∴x1•x2==﹣5.故选:A.【点评】本题考查了根与系数的关系,牢记两根之积等于是解题的关键.10、如图是由5个大小相同的小正方体摆成的几何体,它的俯视图是()A.B.C.D.【分析】根据俯视图是从上面看到的图象判定则可.【解答】解:从上面看下来,上面一行是横放3个正方体,左下角一个正方体.故选:D.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.二、填空题1、武汉市某气象观测点记录了5天的平均气温(单位:℃),分别是25、20、18、23、27,这组数据的中位数是23℃.【分析】根据中位数的概念求解可得.【解答】解:将数据重新排列为18、20、23、25、27,所以这组数据的中位数为23℃,故答案为:23℃.【点评】此题考查了中位数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.2、一组数据1,7,8,5,4的中位数是a,则a的值是 5 .【分析】先把原数据按从小到大排列,然后根据中位数的定义求解即可.【解答】解:先把原数据按从小到大排列:1,4,5,7,8,正中间的数5,所以这组数据的中位数a的值是5.故答案为:5.【点评】本题考查了中位数的概念:把一组数据按从小到大的顺序排列,最中间那个数或中间两个数的平均数就是这组数据的中位数.3、已知某几何体的三视图如图所示,其中俯视图为等边三角形,则该几何体的左视图的面积为3cm2.【分析】由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.【解答】解:该几何体是一个三棱柱,底面等边三角形边长为2cm,高为cm,三棱柱的高为3,所以,其左视图的面积为3×=3(cm2),故答案为3cm2.【点评】本题考查了三视图,三视图是中考经常考查的知识内容,难度不大,但要求对三视图画法规则要熟练掌握,对常见几何体的三视图要熟悉.4、如图,数轴上A、B两点所表示的数分别是﹣4和2,点C是线段AB的中点,则点C所表示的数是﹣1 .【分析】根据A、B两点所表示的数分别为﹣4和2,利用中点公式求出线段AB的中点所表示的数即可.【解答】解:∵数轴上A,B两点所表示的数分别是﹣4和2,∴线段AB的中点所表示的数=(﹣4+2)=﹣1.即点C所表示的数是﹣1.故答案为:﹣1【点评】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.5、在矩形ABCD中,M,N,P,Q分别为边AB,BC,CD,DA上的点(不与端点重合),对于任意矩形ABCD,下面四个结论中,①存在无数个四边形MNPQ是平行四边形;②存在无数个四边形MNPQ是矩形;③存在无数个四边形MNPQ是菱形;④至少存在一个四边形MNPQ是正方形.所有正确结论的序号是①②③.【分析】根据矩形的判定和性质,菱形的判定,正方形的判定,平行四边形的判定定理即可得到结论.【解答】解:①如图,∵四边形ABCD是矩形,连接AC,BD交于O,过点O直线MP和QN,分别交AB,BC,CD,AD于M,N,P,Q,则四边形MNPQ是平行四边形,故当MQ∥PN,PQ∥MN,四边形MNPQ是平行四边形,故存在无数个四边形MNPQ是平行四边形;故正确;②如图,当PM=QN时,四边形MNPQ是矩形,故存在无数个四边形MNPQ是矩形;故正确;③如图,当PM⊥QN时,存在无数个四边形MNPQ是菱形;故正确;④当四边形MNPQ是正方形时,MQ=PQ,则△AMQ≌△DQP,∴AM=QD,AQ=PD,∵PD=BM,∴AB=AD,∴四边形ABCD是正方形与任意矩形ABCD矛盾,故错误;故答案为:①②③.【点评】本题考查了矩形的判定和性质,菱形的判定,正方形的判定,平行四边形的判定定理,熟记各定理是解题的关键.三、解答题(难度:中等)1、计算:(﹣)﹣2+(2019﹣π)0﹣tan60°﹣|﹣3|.【分析】本题涉及零指数幂、负整数指数幂、绝对值、特殊角的三角函数值等4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=4+1﹣,=1.【点评】此题主要考查了实数运算,正确化简各数是解题关键.2、计算:﹣2cos60°+()﹣1+(π﹣3.14)0【分析】直接利用二次根式的性质以及零指数幂的性质、负指数幂的性质分别化简得出答案.【解答】解:原式=3﹣2×+8+1=3﹣1+8+1=11.【点评】此题主要考查了实数运算,正确化简各数是解题关键.3、已知AB是⊙O的直径,AM和BN是⊙O的两条切线,DC与⊙O相切于点E,分别交AM、BN于D、C两点.(1)如图1,求证:AB2=4AD•BC;(2)如图2,连接OE并延长交AM于点F,连接CF.若∠ADE=2∠OFC,AD=1,求图中阴影部分的面积.【分析】(1)连接OC、OD,证明△AOD∽△BCO,得出=,即可得出结论;(2)连接OD,OC,证明△COD≌△CFD得出∠CDO=∠CDF,求出∠BOE=120°,由直角三角形的性质得出BC =3,OB=,图中阴影部分的面积=2S△OBC﹣S扇形OBE,即可得出结果.【解答】(1)证明:连接OC、OD,如图1所示:∵AM和BN是它的两条切线,∴AM⊥AB,BN⊥AB,∴AM∥BN,∴∠ADE+∠BCE=180°∵DC切⊙O于E,∴∠ODE=∠ADE,∠OCE=∠BCE,∴∠ODE+∠OCE=90°,∴∠DOC=90°,∴∠AOD+∠COB=90°,∵∠AOD+∠ADO=90°,∴∠AOD=∠OCB,∵∠OAD=∠OBC=90°,∴△AOD∽△BCO,∴=,∴OA2=AD•BC,∴(AB)2=AD•BC,∴AB2=4AD•BC;(2)解:连接OD,OC,如图2所示:∵∠ADE=2∠OFC,∴∠ADO=∠OFC,∵∠ADO=∠BOC,∠BOC=∠FOC,∴∠OFC=∠FOC,∴CF=OC,∴CD垂直平分OF,∴OD=DF,在△COD和△CFD中,,∴△COD≌△CFD(SSS),∴∠CDO=∠CDF,∵∠ODA+∠CDO+∠CDF=180°,∴∠ODA=60°=∠BOC,∴∠BOE=120°,在Rt△DAO,AD=OA,Rt△BOC中,BC=OB,∴AD:BC=1:3,∵AD=1,∴BC=3,OB=,∴图中阴影部分的面积=2S△OBC﹣S扇形OBE=2×××3﹣=3﹣π.【点评】本题考查了相似三角形的判定与性质、切线的性质、全等三角形的判定与性质、扇形面积公式、直角三角形的性质等知识;证明三角形相似和三角形全等是解题的关键.4、如图,在平面直角坐标系xOy中,菱形ABCD的对角线AC与BD交于点P(﹣1,2),AB⊥x轴于点E,正比例函数y=mx的图象与反比例函数y=的图象相交于A,P两点.(1)求m,n的值与点A的坐标;(2)求证:△CPD∽△AEO;(3)求sin∠CDB的值.【分析】(1)根据点P的坐标,利用待定系数法可求出m,n的值,联立正、反比例函数解析式成方程组,通过解方程组可求出点A的坐标(利用正、反比例函数图象的对称性结合点P的坐标找出点A的坐标亦可);(2)由菱形的性质可得出AC⊥BD,AB∥CD,利用平行线的性质可得出∠DCP=∠OAE,结合AB⊥x轴可得出∠AEO=∠CPD=90°,进而即可证出△CPD∽△AEO;(3)由点A的坐标可得出AE,OE,AO的长,由相似三角形的性质可得出∠CDP=∠AOE,再利用正弦的定义即可求出sin∠CDB的值.【解答】(1)解:将点P(﹣1,2)代入y=mx,得:2=﹣m,解得:m=﹣2,∴正比例函数解析式为y=﹣2x;将点P(﹣1,2)代入y=,得:2=﹣(n﹣3),解得:n=1,∴反比例函数解析式为y=﹣.联立正、反比例函数解析式成方程组,得:,解得:,,∴点A的坐标为(1,﹣2).(2)证明:∵四边形ABCD是菱形,∴AC⊥BD,AB∥CD,∴∠DCP=∠BAP,即∠DCP=∠OAE.∵AB⊥x轴,∴∠AEO=∠CPD=90°,∴△CPD∽△AEO.(3)解:∵点A的坐标为(1,﹣2),∴AE=2,OE=1,AO==.∵△CPD∽△AEO,∴∠CDP=∠AOE,∴sin∠CDB=sin∠AOE===.【点评】本题考查了待定系数法求一次函数解析式、待定系数法反比例函数解析式、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征、菱形的性质、相似三角形的判定与性质以及解直角三角形,解题的关键是:(1)根据点的坐标,利用待定系数法求出m,n的值;(2)利用菱形的性质,找出∠DCP=∠OAE,∠AEO=∠CPD =90°;(3)利用相似三角形的性质,找出∠CDP=∠AOE.5、已知抛物y=ax2+bx+c(b<0)与x轴只有一个公共点.(1)若抛物线与x轴的公共点坐标为(2,0),求a、c满足的关系式;(2)设A为抛物线上的一定点,直线l:y=kx+1﹣k与抛物线交于点B、C,直线BD垂直于直线y=﹣1,垂足为点D.当k=0时,直线l与抛物线的一个交点在y轴上,且△ABC为等腰直角三角形.①求点A的坐标和抛物线的解析式;②证明:对于每个给定的实数k,都有A、D、C三点共线.【分析】(1)抛物线与x轴的公共点坐标即为函数顶点坐标,即可求解;(2)①y=kx+1﹣k=k(x﹣1)+1过定点(1,1),且当k=0时,直线l变为y=1平行x轴,与轴的交点为(0,1),即可求解;②计算直线AD表达式中的k值、直线AC表达式中的k值,两个k值相等即可求解.【解答】解:(1)抛物线与x轴的公共点坐标即为函数顶点坐标,故:y=a(x﹣2)2=ax2﹣4ax+4a,则c=4a;(2)y=kx+1﹣k=k(x﹣1)+1过定点(1,1),且当k=0时,直线l变为y=1平行x轴,与轴的交点为(0,1),又△ABC为等腰直角三角形,∴点A为抛物线的顶点;①c=1,顶点A(1,0),抛物线的解析式:y=x2﹣2x+1,②,x2﹣(2+k)x+k=0,x=(2+k±),x D=x B=(2+k﹣),y D=﹣1;则D,y C=(2+k2+k,C,A(1,0),∴直线AD表达式中的k值为:k AD==,直线AC表达式中的k值为:k AC=,∴k AD=k AC,点A、C、D三点共线.【点评】本题考查的是二次函数综合运用,涉及到一次函数、等腰三角形性质等知识点,本题关键是复杂数据的计算问题,难度不大.6、如图,若b是正数,直线l:y=b与y轴交于点A;直线a:y=x﹣b与y轴交于点B;抛物线L:y=﹣x2+bx的顶点为C,且L与x轴右交点为D.(1)若AB=8,求b的值,并求此时L的对称轴与a的交点坐标;(2)当点C在l下方时,求点C与l距离的最大值;(3)设x0≠0,点(x0,y1),(x0,y2),(x0,y3)分别在l,a和L上,且y3是y1,y2的平均数,求点(x0,0)与点D间的距离;(4)在L和a所围成的封闭图形的边界上,把横、纵坐标都是整数的点称为“美点”,分别直接写出b=2019和b=2019.5时“美点”的个数.【分析】(1)当x=0吋,y=x﹣b=﹣b,所以B(0,﹣b),而AB=8,而A(0,b),则b﹣(﹣b)=8,b =4.所以L:y=﹣x2+4x,对称轴x=2,当x=2吋,y=x﹣4=﹣2,于是L的对称轴与a的交点为(2,﹣2 );(2)y=﹣(x﹣)2+,顶点C()因为点C在l下方,则C与l的距离b﹣=﹣(b﹣2)2+1≤1,所以点C与1距离的最大值为1;(3)由題意得,即y1+y2=2y3,得b+x0﹣b=2(﹣x02+bx0)解得x0=0或x0=b﹣.但x0#0,取x0=b﹣,对于L,当y=0吋,0=﹣x2+bx,即0=﹣x(x﹣b),解得x1=0,x2=b,右交点D(b,0).因此点(x0,0)与点D间的距离b﹣(b﹣)=(4)①当b=2019时,抛物线解析式L:y=﹣x2+2019x直线解析式a:y=x﹣2019,美点”总计4040个点,②当b=2019.5时,抛物线解析式L:y=﹣x2+2019.5x,直线解析式a:y=x﹣2019.5,“美点”共有1010个.【解答】解:(1)当x=0吋,y=x﹣b=﹣b,∴B(0,﹣b),∵AB=8,而A(0,b),∴b﹣(﹣b)=8,∴b=4.∴L:y=﹣x2+4x,∴L的对称轴x=2,当x=2吋,y=x﹣4=﹣2,∴L的对称轴与a的交点为(2,﹣2 );(2)y=﹣(x﹣)2+,∴L的顶点C()∵点C在l下方,∴C与l的距离b﹣=﹣(b﹣2)2+1≤1,∴点C与1距离的最大值为1;(3)由題意得,即y1+y2=2y3,得b+x0﹣b=2(﹣x02+bx0)解得x0=0或x0=b﹣.但x0#0,取x0=b﹣,对于L,当y=0吋,0=﹣x2+bx,即0=﹣x(x﹣b),解得x1=0,x2=b,∵b>0,∴右交点D(b,0).∴点(x0,0)与点D间的距离b﹣(b﹣)=(4)①当b=2019时,抛物线解析式L:y=﹣x2+2019x直线解析式a:y=x﹣2019联立上述两个解析式可得:x1=﹣1,x2=2019,∴可知每一个整数x的值都对应的一个整数y值,且﹣1和2019之间(包括﹣1和﹣2019)共有2021个整数;∵另外要知道所围成的封闭图形边界分两部分:线段和抛物线,∴线段和抛物线上各有2021个整数点∴总计4042个点,∵这两段图象交点有2个点重复,∴美点”的个数:4042﹣2=4040(个);②当b=2019.5时,抛物线解析式L:y=﹣x2+2019.5x,直线解析式a:y=x﹣2019.5,联立上述两个解析式可得:x1=﹣1,x2=2019.5,∴当x取整数时,在一次函数y=x﹣2019.5上,y取不到整数值,因此在该图象上“美点”为0,在二次函数y=x2+2019.5x图象上,当x为偶数时,函数值y可取整数,可知﹣1到2019.5之间有1009个偶数,并且在﹣1和2019.5之间还有整数0,验证后可知0也符合条件,因此“美点”共有1010个.故b=2019时“美点”的个数为4040个,b=2019.5时“美点”的个数为1010个.【点评】本题考查了二次函数,熟练运用二次函数的性质以及待定系数法求函数解析式是解题的关键.7、已知∠AOB=30°,H为射线OA上一定点,OH=+1,P为射线OB上一点,M为线段OH上一动点,连接PM,满足∠OMP为钝角,以点P为中心,将线段PM顺时针旋转150°,得到线段PN,连接ON.(1)依题意补全图1;(2)求证:∠OMP=∠OPN;(3)点M关于点H的对称点为Q,连接QP.写出一个OP的值,使得对于任意的点M总有ON=QP,并证明.【分析】(1)根据题意画出图形.(2)由旋转可得∠MPN=150°,故∠OPN=150°﹣∠OPM;由∠AOB=30°和三角形内角和180°可得∠OMP=180°﹣30°﹣∠OPM=150°﹣∠OPM,得证.(3)根据题意画出图形,以ON=QP为已知条件反推OP的长度.由(2)的结论∠OMP=∠OPN联想到其补角相等,又因为旋转有PM=PN,已具备一边一角相等,过点N作NC⊥OB于点C,过点P作PD⊥OA于点D,即可构造出△PDM≌△NCP,进而得PD=NC,DM=CP.此时加上ON=QP,则易证得△OCN≌△QDP,所以OC=QD.利用∠AOB=30°,设PD=NC=a,则OP=2a,OD=a.再设DM=CP=x,所以QD=OC=OP+PC=2a+x,MQ=DM+QD =2a+2x.由于点M、Q关于点H对称,即点H为MQ中点,故MH=MQ=a+x,DH=MH﹣DM=a,所以OH=OD+DH=a+a=+1,求得a=1,故OP=2.证明过程则把推理过程反过来,以OP=2为条件,利用构造全等证得ON=QP.【解答】解:(1)如图1所示为所求.(2)设∠OPM=α,∵线段PM绕点P顺时针旋转150°得到线段PN∴∠MPN=150°,PM=PN∴∠OPN=∠MPN﹣∠OPM=150°﹣α∵∠AOB=30°∴∠OMP=180°﹣∠AOB﹣∠OPM=180°﹣30°﹣α=150°﹣α∴∠OMP=∠OPN(3)OP=2时,总有ON=QP,证明如下:过点N作NC⊥OB于点C,过点P作PD⊥OA于点D,如图2∴∠NCP=∠PDM=∠PDQ=90°∵∠AOB=30°,OP=2∴PD=OP=1∴OD=∵OH=+1∴DH=OH﹣OD=1∵∠OMP=∠OPN∴180°﹣∠OMP=180°﹣∠OPN即∠PMD=∠NPC在△PDM与△NCP中∴△PDM≌△NCP(AAS)∴PD=NC,DM=CP设DM=CP=x,则OC=OP+PC=2+x,MH=MD+DH=x+1∵点M关于点H的对称点为Q∴HQ=MH=x+1∴DQ=DH+HQ=1+x+1=2+x∴OC=DQ在△OCN与△QDP中∴△OCN≌△QDP(SAS)∴ON=QP【点评】本题考查了根据题意画图,旋转的性质,三角形内角和180°,勾股定理,全等三角形的判定和性质,中心对称的性质.第(3)题的解题思路是以ON=QP为条件反推OP的长度,并结合(2)的结论构造全等三角形;而证明过程则以OP=2为条件构造全等证明ON=QP.8、如图,P是与弦AB所围成的图形的外部的一定点,C是上一动点,连接PC交弦AB于点D.小腾根据学习函数的经验,对线段PC,PD,AD的长度之间的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点C在上的不同位置,画图、测量,得到了线段PC,PD,AD的长度的几组值,如下表:位置1 位置2 位置3 位置4 位置5 位置6 位置7 位置8PC/cm 3.44 3.30 3.07 2.70 2.25 2.25 2.64 2.83PD/cm 3.44 2.69 2.00 1.36 0.96 1.13 2.00 2.83AD/cm0.00 0.78 1.54 2.30 3.01 4.00 5.11 6.00在PC,PD,AD的长度这三个量中,确定AD的长度是自变量,PD的长度和PC的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当PC=2PD时,AD的长度约为 1.59(答案不唯一)cm.【分析】(1)按照变量的定义,根据函数的定义,PC、PD不可能为自变量,只能是AD为自变量,即可求解;(2)描点画出如图图象;(3)PC=2PD,即PD=PC,画出y=x,交曲线AD的值为所求,即可求解.【解答】解:(1)根据函数的定义,PC、PD不可能为自变量,只能是AD为自变量故答案为:AD、PC、PD;(2)描点画出如图图象;(3)PC=2PD,即PD=PC,画出y=x,交曲线AD的值约为1.59,故答案为1.59(答案不唯一).【点评】本题考查的是动点的函数图象,此类问题主要是通过描点画出函数图象,根据函数关系,在图象上查出相应的近似数值.。

吕梁市2020年中考数学试卷(II)卷

吕梁市2020年中考数学试卷(II)卷

吕梁市2020年中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题(每小题3分,共24分.下列各题的备选答案中,只有一个 (共8题;共16分)1. (2分)(2019·河南模拟) 下列四个选项中,计算结果最大的是()A .B . |﹣2|C . (﹣2)0D .2. (2分) (2019七下·温州期中) 计算a6•a2的结果是()A . a12B . a8C . a4D . a33. (2分)(2020·卧龙模拟) 一个几何体由一些大小相同的小正方体组成,如图是它的主视图和左视图,那么组成该几何体所需小正方体的个数最少为()A . 5B . 6C . 7D . 84. (2分)如图,AB∥EF∥CD,∠ABC=46°,∠CEF=154°,则∠BCE等于()A . 23°B . 16°C . 20°D . 26°5. (2分)(2018·龙岩模拟) 掷两枚质地相同的硬币,正面都朝上的概率是().A . 1B .C .D . 06. (2分)已知圆锥的母线长为5,底面半径为3,则圆锥的表面积为()A . 15πB . 24πC . 30πD . 39π7. (2分)(2018·龙港模拟) 如图,直线y=kx+b与x轴交于点(﹣4,0),则y>0时,x的取值范围是()A . x>﹣4B . x>0C . x<﹣4D . x<08. (2分) (2019七下·蜀山期中) 已知一个正方形的边长为a ,将该正方形的边长增加1,则得到的新正方形的面积为()A . a2+2a+1B . a2﹣2a+1C . a2+1D . a+1二、填空题(每小题3分,共24分) (共8题;共9分)9. (1分)(2017·蜀山模拟) 把多项式4x2y﹣4xy2﹣x3分解因式的结果是________.10. (2分) (2017八下·湖州月考) 数据10,11,12,13,10的众数是________,中位数是________.11. (1分)(2018·铜仁) 分式方程 =4的解是x=________.12. (1分) (2019七上·港南期中) 我国倡导的“一带一路”建设将促进我国与世界各国的互利合作,“一带一路”地区覆盖总人口约为4400000000人,将数据4400000000用科学记数法表示为________.13. (1分) (2020八下·高新期末) 等腰三角形的顶角是40°,则底角的度数为________°。

吕梁市2020版中考数学试卷(I)卷

吕梁市2020版中考数学试卷(I)卷

吕梁市2020版中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题:本大题共12小题,每小题3分,共36分,给出的四个选 (共12题;共24分)1. (2分)(2018·金华模拟) 的相反数是A . 3B .C .D .2. (2分) (2015七下·邳州期中) 如图,直线a、b被直线c所截,a∥b,∠1=35°,则∠2等于()A . 35°B . 55°C . 165°D . 145°3. (2分)在下列数-3,+2.3,- ,0.65,-2 ,-2.5,0中,整数和负分数一共有()A . 3个B . 4个C . 5个D . 6个4. (2分) (2017七上·埇桥期中) 一个几何体从上面看是圆,从左面和正面看都是长方形,则该几何体是()A . 正方体B . 圆锥C . 圆柱D . 球5. (2分)计算|﹣3|的结果是()A . 3B . -C . -3D .6. (2分)下列计算正确的是()A . a2•a3=a6B . a2+a3=a5C . (a2)3=a6D . (﹣2x)3=﹣6x37. (2分) 701班小明同学想利用木条为七年级数学组制作一个三角形的工具,那么下列哪组数据的三根木条的长度能符合他的要求?()A . 4,2,2B . 3,6,6C . 2,3,6D . 7,13,68. (2分)(2017·济宁模拟) 分式方程 =1的解为()A . x=﹣2B . x=﹣3C . x=2D . x=39. (2分)(2020·武汉模拟) 如图所示,A1(1,),A2(,),A3(2,),A4(3,0).作折线A1A2A3A4关于点A4的中心对称图形,再做出新的折线关于与x轴的下一个交点的中心对称图形……以此类推,得到一个大的折线.现有一动点P从原点O出发,沿着折线一每秒1个单位的速度移动,设运动时间为t.当t =2020时,点P的坐标为()A . (1010,)B . (2020,)C . (2016,0)D . (1010,)10. (2分)二次函数y=ax2+bx+c(a≠0)的大致图象如图所示(1<x=h<2,0<xA<1),下列结论:① 2a+b>0;② abc<0;③ 若OC=2OA,则2b-ac = 4;④ 3a﹣c<0.其中正确的个数是()A . 1B . 2C . 3D . 411. (2分)一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半径是().A . 1B .C .D .12. (2分)若a , b , c是三角形的三边之长,则代数式a -2ac+c -b的值()A . 小于0B . 大于0C . 等于0D . 以上三种情况均有可能二、填空题:本大题共6小题,每小题3分,共18分,请把答案填在答 (共6题;共6分)13. (1分)(2019·台州模拟) 当x________时,式子有意义.14. (1分)体育中考前夕,某校将九年级部分男生分成五组,进行了跳绳模拟测试,经统计,这五个小组平均每分钟跳绳次数如下:180,190,x,176,180.若该组数据的众数与平均数相等,那么这组数据的中位数是________.15. (1分)根治水土流失刻不容缓,目前全国水土流失面积已达36700000平方米,用科学记数法表示为________米2 .16. (1分)如图所示,在梯形ABCD中,AD∥BC,AB=CD,△ADE是等边三角形.若∠BAD=60°,AB=2a,BC=3a,则梯形中位线的长为________.17. (1分)(2018·遵义模拟) 在实数范围内因式分解:x2y-3y=________.18. (1分)如图,已知点A是第一象限内横坐标为的一个定点,AC⊥x轴于点M,交直线y=﹣x于点N.若点P是线段ON上的一个动点,∠APB=30°,BA⊥PA,则点P在线段ON上运动时,A点不变,B点随之运动.求当点P从点O运动到点N时,点B运动的路径长是________.三、解答题:本大题共8题,满分66分,解答应写出文字说明、证明过 (共8题;共78分)19. (20分)计算:(1);(2)(3) |1﹣ |+(3.14﹣π)0﹣ +()﹣1(4).20. (5分) (2016七上·金乡期末) 己知:x=3是方程 + =2的解,n满足关系式|2n+m丨=1,求m+n的值.21. (11分)随着人民生活水平不断提高,我市“初中生带手机”现象也越来越多,为了了解家长对此现象的态度,某校数学课外活动小组随机调查了若干名学生家长,并将调查结果进行统计,得出如下所示的条形统计图和扇形统计图.(1)这次调查的学生家长总人数为________(2)请补全条形统计图,并求出持“很赞同”态度的学生家长占被调查总人数的百分比.(3)求扇形统计图中表示学生家长持“无所谓”态度的扇形圆心角的度数.22. (5分)如图,一楼房AB后有一假山,其斜坡CD坡比为1:,山坡坡面上点 E处有一休息亭,测得假山坡脚C与楼房水平距离BC=25米,与亭子距离CE=20米,小丽从楼房顶测得点E的俯角为45°.(1)求点E距水平面BC的高度;(2)求楼房AB的高.(结果精确到0.1米,参考数据≈1.414,≈1.732).23. (11分)如图,点O为矩形ABCD对角线交点,AB=10cm,BC=12cm,点E、F、G分别从D,C,B三点同时出发,沿矩形的边DC、CB、BA匀速运动,点E的运动速度为2cm/s,点F的运动速度为6cm/s,点G的运动速度为3cm/s,当点F到达点B(点F与点B重合)时,三个点随之停止运动.在运动过程中,△EFC关于直线EF的对称图形是△EFC′.设点E、F、G运动的时间为t(单位:s)(1)当t=________s时,四边形ECFC′为正方形;(2)若以点E、C、F为顶点的三角形与以点F、B、G为顶点的三角形相似,求t的值;(3)是否存在实数t,使得点C′与点O重合?若存在,直接写出t的值;若不存在,请说明理由.24. (10分) (2018九上·点军期中) 2016年某园林绿化公司购回一批香樟树,全部售出后利润率为20%.(1)求 2016年每棵香樟树的售价与成本的比值.(2) 2017年,该公司购入香樟树数量增加的百分数与每棵香樟树成本降低的百分数均为a,经测算,若每棵香樟树售价不变,则总成本将比2016年的总成本减少8万元;若每棵香樟树售价提高百分数也为a,则销售这批香樟树的利润率将达到4a.求a的值及相应的2017年购买香樟树的总成本.25. (10分)如图,在Rt△ABC中,∠ACB=90°,以BC为直径作⊙O,交AB于点D,取AC的中点E,连接DE.(1)求证:DE是⊙O的切线;(2)若tanB= ,DE=5,求BD的长.26. (6分)(2017·孝义模拟) 阅读下列材料,完成相应任务:折纸三等分角三等分角问题(trisection of an angle)是二千四百年前,古希腊人提出的几何三大作图问题之一(三等分任意角、化圆为方、倍立方),即用圆规与直尺(没有刻度,只能做直线的尺子)把一任意角三等分,这问题曾吸引着许多人去研究,但无一成功.1837年法国数学家凡齐尔(1814~1848)运用代数方法证明了,仅用尺规不可鞥呢三等分角.如果作图工具没有限制,将条件放宽,将任意角三等分是可以解决的.下面介绍一种折纸三等分任意锐角的方法:①在正方形纸片上折出任意∠SBC,将正方形ABCD对折,折痕为记为MN,再将矩形MBCN对折,折痕记为EF,得到图1;②翻折左下角使点B与EF上的点T重合,点M与SB上的点P重合,点E对折后的对应点记为Q,折痕为记为GH,得到图2;③折出射线BQ,BT,得到图3,则射线BQ,BT就是∠SBC的三等分线.下面是证明BQ,BT是∠SBC三等分线的部分过程:证明:过T作TK⊥BC,垂足为K,则四边形EBKT为矩形根据折叠,得EB=QT,∠EBT=∠QTB,BT=TB∴△EBT≌△QTB,∴∠BQT=∠TEB=90°,∴BQ⊥PT…学习任务:(1)将剩余部分的证明过程补充完整;(2)若将图1中的点S与点D重合,重复材料中的操作过程得到图4,请利用图4,直接写出tan15°=________(不必化简)参考答案一、选择题:本大题共12小题,每小题3分,共36分,给出的四个选 (共12题;共24分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题:本大题共6小题,每小题3分,共18分,请把答案填在答 (共6题;共6分) 13-1、14-1、15-1、16-1、17-1、18-1、三、解答题:本大题共8题,满分66分,解答应写出文字说明、证明过 (共8题;共78分) 19-1、19-2、19-3、19-4、20-1、21-1、21-2、21-3、22-1、23-1、23-2、23-3、24-1、24-2、25-1、25-2、26-1、26-2、。

山西省吕梁市2020年中考数学试卷(II)卷

山西省吕梁市2020年中考数学试卷(II)卷

山西省吕梁市2020年中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2017·潍城模拟) 下列各组数中,结果相等的是()A . ﹣12与(﹣1)2B .C . ﹣|﹣2|与﹣(﹣2)D . (﹣3)3与﹣332. (2分)(2018·甘肃模拟) 如图,一个正方体切去一个三棱锥后所得几何体的俯视图是()A .B .C .D .3. (2分)若a、b 是正数,a-b=1,ab=2,则a+b=()A . -3B . 3C . ±3D . 94. (2分) (2018八上·衢州期中) 如图,在△ABC 中,∠BAC 和∠ABC 的平分线相交于点 O,过点 O 作EF∥AB 交 BC 于F,交AC于E,过点O作OD⊥BC于D,下列四个结论:① ∠AOB=90°+ ②AE+BF=EF;③当∠C=90°时,E,F 分别是 AC,BC的中点;④若 OD=a,CE+CF=2b,则S△CEF=ab其中正确的是()A . ①②B . ③④C . ①②④D . ①③④5. (2分)(2018·阜新) 某中学篮球队12名队员的年龄情况如下表:年龄/岁1213141516人数13422关于这12名队员的年龄,下列说法中正确的是()A . 众数为14B . 极差为3C . 中位数为13D . 平均数为146. (2分)如图,△ABC中,D、E分别为AC、BC边上的点,AB∥DE,CF为AB边上的中线,若AD=5,CD=3,DE=4,则BF的长为()A .B .C .D .7. (2分)(2017·林州模拟) 如图,放置的△OAB1 ,△B1A1B2 ,△B2A2B3 ,…都是边长为2的等边三角形,边AO在y轴上,点B1 , B2 , B3 ,…都在直线y= x上,则A2017的坐标为()A . 2015 ,2017B . 2016 ,2018C . 2017 ,2019D . 2017 ,20178. (2分) (2017九上·宁波期中) 某学校在进行防溺水安全教育活动中,将以下几种在游泳时的注意事项写在纸条上并折好,内容分别是:①互相关心;②互相提醒;③不要相互嬉水;④相互比潜水深度;⑤选择水流湍急的水域;⑥选择有人看护的游泳池.小颖从这6张纸条中随机抽出一张,抽到内容描述正确的纸条的概率是()A .B .C .D .9. (2分)(2017·平顶山模拟) 如图所示,在平面直角坐标系中A(0,0),B(2,0),△AP1B是等腰直角三角形,且∠P1=90°,把△AP1B绕点B顺时针旋转180°,得到△BP2C;把△BP2C绕点C顺时针旋转180°,得到△CP3D,依此类推,则旋转第2016次后,得到的等腰直角三角形的直角顶点P2017的坐标为()A . (4030,1)B . (4029,﹣1)C . (4033,1)D . (4031,﹣1)10. (2分) (2017八下·钦北期末) 已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①因为a>0,所以函数y有最大值;②该函数的图象关于直线x=﹣1对称;③当x=﹣2时,函数y的值等于0;④当x=﹣3或x=1时,函数y的值都等于0.其中正确结论的个数是()A . 4B . 3C . 2D . 1二、填空题 (共6题;共6分)11. (1分) (2020九下·重庆月考) 计算: -()-1-3tan 30°+|-2|=________。

吕梁市2020年中考数学试卷(I)卷

吕梁市2020年中考数学试卷(I)卷

吕梁市2020年中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题(本题有10小题,每小题3分,共30分) (共10题;共30分)1. (3分) (2020七上·巴东期末) 如果80 m表示向东走80 m,则-60 m表示().A . 向东走60 mB . 向西走60 mC . 向南走60 mD . 向北走60 m2. (3分)(2017·曲靖模拟) 一个数用科学记数法表示为2.37×105 ,则这个数是()A . 237B . 2370C . 23700D . 2370003. (3分)(2016·荆门) 由5个大小相同的小正方体拼成的几何体如图所示,则下列说法正确的是()A . 主视图的面积最小B . 左视图的面积最小C . 俯视图的面积最小D . 三个视图的面积相等4. (3分) (2017八上·新会期末) 给出下列计算,其中正确的是()A . a5+a5=a10B . (2a2)3=6a6C . a8÷a2=a4D . (a3)4=a125. (3分)(2018·河南模拟) 在一个口袋中有4个完全相同的小球,把它们分别标号为 1,2,3,4,随机地摸出一个小球然后放回,再随机地摸出一个小球.则两次摸出的小球的标号的和等于6的概率为()A .B .C .D .6. (3分)抛物线y=2(x﹣1)2+3的顶点坐标为()A . (2,1)B . (2,﹣1)C . (﹣1,3)D . (1,3)7. (3分)如图所示,△ABE和△ADC是△ABC分别沿着AB,AC边翻折180°形成的,若∠1∶∠2∶∠3=28∶5∶3,则∠α的度数为()A . 80°B . 100°C . 60°D . 45°8. (3分) (2018九上·连城期中) 已知⊙O的直径CD=10cm,AB是⊙O的弦,AB=8cm,且AB⊥CD,垂足为M,则AC的长为()A . 2 cmB . 4 cmC . 2 cm或4 cmD . 2 cm或4 cm9. (3分)(2012·深圳) 如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为()A . 6B . 12C . 32D . 6410. (3分) (2020九上·德清期末) 如图1,在菱形ABCD中,∠A=120°,点E是BC边的中点,点P是对角线BD上一动点,设PD的长度为x,PE与PC的长度和为y,图2是y关于x的函数图象,其中H是图象上的最低点,则a+b的值为()A . 7B .C .D .二、填空题(本题共有6小题,每小题4分,共24分) (共6题;共24分)11. (4分)(2017·武汉模拟) 计算: + =________.12. (4分)(2019·温州模拟) 某篮球兴趣小组有15名同学,在一次投篮比赛中,他们的成绩如下面的条形图所示.这15名同学进球数的众数是________.13. (4分)计算:=________.14. (4分)课外活动小组测量学校旗杆的高度.如图,当太阳光线与地面成30°角时,测得旗杆AB在地面上的影长BC为24米,那么旗杆AB的高度约是________米.(结果保留根号)15. (4分) (2018九上·杭州月考) 已知抛物线开口向上且经过点,双曲线经过点,给出下列结论:① ;② ;③ ,是关于的一元二次方程的两个实数根;④ .其中正确结论是________(填写序号)16. (4分) (2017八下·淅川期末) 如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B 的坐标分别为(1,0)、(4,0).(1)点C的坐标是________;(2)将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段AC扫过的面积为________.三、解答题(本题共有8小题,第17~19小题每小题6分,第20- (共8题;共66分)17. (6分)计算: + .18. (6分) (2015八下·武冈期中) 如图,四边形ABCD是菱形,对角线AC、BD相交于点O,DH⊥AB于H,连接OH,求证:∠DHO=∠DCO.19. (6分) (2019九上·宜兴期末) 已知,(1)用无刻度的直尺和圆规作,使且的面积为面积的一半,只需要画出一个即可作图不必写作法,但要保留作图痕迹(2)在中,若,,则面积的最大值是________20. (8.0分) (2015七上·南山期末) 某校开展“人人会乐器”的活动,根据实际开设了四种乐器的相关课程.学校为了了解学生最喜欢哪一种乐器(每位学生只能选一类),随机抽取了部分学生进行调查,并将调查结果绘制成如图统计图.请你根据图中提供的信息,回答下列问题:(1)总共随机抽查了多少位学生?请你把条形统计图补全.(2)样本中喜欢电子琴的人数比喜欢葫芦丝的多________人.(3)该校一共有2000名学生,你认为全校喜欢哪种乐器的学生人最多?估计有多少人?21. (8分)如图,已知AB,AC分别为⊙O的直径和弦,D是的中点,DE⊥AC于E,DE=3,AC=8.(1)求证:DE是⊙O的切线;(2)求直径AB的长.22. (10.0分)已知二次函数y=﹣x2+2x+3图象的对称轴为直线.(1)请求出该函数图象的对称轴;(2)在坐标系内作出该函数的图象;(3)有一条直线过点P(1,5),若该直线与二次函数y=﹣x2+2x+3只有一个交点,请求出所有满足条件的直线的关系式.23. (10分) (2019七上·海淀期中) 阅读下列材料:我们给出如下定义:数轴上给定两点,以及一条线段,若线段的中点在线段上(点可以与点或重合),则称点与点关于线段径向对称.下图为点与点关于线段径向对称的示意图.解答下列问题:如图1,在数轴上,点为原点,点表示的数为-1,点表示的数为2.(1)①点,,分别表示的数为-3,,3,在,,三点中,________与点关于线段径向对称;②点表示的数为,若点与点关于线段径向对称,则的取值范围是________;(2)在数轴上,点,,表示的数分别是-5,-4,-3,当点以每秒1个单位长度的速度向正半轴方向移动时,线段同时以每秒3个单位长度的速度向正半轴方向移动.设移动的时间为()秒,问为何值时,线段上至少存在一点与点关于线段径向对称.24. (12分)(2018·宁晋模拟) 如图,⊙O是△ABC的外接圆,BC为⊙O的直径,点E为△ABC的内心,连接AE并延长交⊙O于D点,连接BD并延长至F,使得BD=DF,连接CF、BE.(1)求证:DB=DE;(2)求证:直线CF为⊙O的切线.参考答案一、选择题(本题有10小题,每小题3分,共30分) (共10题;共30分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题(本题共有6小题,每小题4分,共24分) (共6题;共24分)11-1、12-1、13-1、14-1、15-1、16-1、16-2、三、解答题(本题共有8小题,第17~19小题每小题6分,第20- (共8题;共66分) 17-1、18-1、19-1、19-2、20-1、20-2、20-3、21-1、21-2、22-1、22-2、第11 页共13 页22-3、23-1、23-2、第12 页共13 页24-1、24-2、第13 页共13 页。

山西省吕梁市2020中考数学经典试题

山西省吕梁市2020中考数学经典试题

2019-2020学年中考数学模拟试卷 一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.如图,平行于BC 的直线DE 把△ABC 分成面积相等的两部分,则BD AD的值为( )A .1B .22C .2-1D .2+12.如图,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B 恰好碰到地面,经测量AB=2m,则树高为( )米A .5B .3C .5+1D .33.如图,扇形AOB 中,OA=2,C 为弧AB 上的一点,连接AC ,BC ,如果四边形AOBC 为菱形,则图中阴影部分的面积为( )A .233π-B .2233π-C .433π-D .4233π- 4.如图,正比例函数11y k x =的图像与反比例函数22k y x=的图象相交于A 、B 两点,其中点A 的横坐标为2,当12y y >时,x 的取值范围是( )A .x <-2或x >2B .x <-2或0<x <2C .-2<x <0或0<x <2D .-2<x <0或x >25.有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的( )A .方差B .中位数C .众数D .平均数6.已知直线m∥n,将一块含30°角的直角三角板ABC,按如图所示方式放置,其中A、B两点分别落在直线m、n上,若∠1=25°,则∠2的度数是()A.25°B.30°C.35°D.55°7.如图,直线a∥b,直线c与直线a、b分别交于点A、点B,AC⊥AB于点A,交直线b于点C.如果∠1=34°,那么∠2的度数为()A.34°B.56°C.66°D.146°8.如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD的度数为( )A.30°B.45°C.50°D.75°9.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为()A.零上3℃B.零下3℃C.零上7℃D.零下7℃10.不等式组12342xx+>⎧⎨-≤⎩的解集表示在数轴上正确的是()A.B.C.D.二、填空题(本题包括8个小题)11.计算:___________.12.中国的陆地面积约为9 600 000km2,把9 600 000用科学记数法表示为.13.如图,一艘轮船自西向东航行,航行到A处测得小岛C位于北偏东60°方向上,继续向东航行10海里到达点B处,测得小岛C在轮船的北偏东15°方向上,此时轮船与小岛C的距离为_________海里.(结果保留根号)14.计算:82-=_______________.15.有下列等式:①由a=b ,得5﹣2a=5﹣2b ;②由a=b ,得ac=bc ;③由a=b ,得a b c c =;④由23a b c c=,得3a=2b ;⑤由a 2=b 2,得a=b .其中正确的是_____.16.若m 是方程2x 2﹣3x ﹣1=0的一个根,则6m 2﹣9m+2016的值为_____.17.如图,直线y=2x+4与x ,y 轴分别交于A ,B 两点,以OB 为边在y 轴右侧作等边三角形OBC ,将点C 向左平移,使其对应点C′恰好落在直线AB 上,则点C′的坐标为 .18.如图,从直径为4cm 的圆形纸片中,剪出一个圆心角为90°的扇形OAB ,且点O 、A 、B 在圆周上,把它围成一个圆锥,则圆锥的底面圆的半径是_____cm .三、解答题(本题包括8个小题)19.(6分)先化简,再求值:2441x x x +++÷(31x +﹣x+1),其中x=sin30°+2﹣1+4. 20.(6分)如图,AB ∥CD ,△EFG 的顶点F ,G 分别落在直线AB ,CD 上,GE 交AB 于点H ,GE 平分∠FGD .若∠EFG=90°,∠E=35°,求∠EFB 的度数.21.(6分)如图,已知()()()3,3,2,1,1,2A B C ------是直角坐标平面上三点.将ABC ∆先向右平移3个单位,再向上平移3个单位,画出平移后的图形111A B C ∆;以点()0,2为位似中心,位似比为2,将111A B C ∆放大,在y 轴右侧画出放大后的图形222A B C ∆;填空:222A B C ∆面积为 .22.(8分)某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.请补全条形统计图;若该校共有志愿者600人,则该校九年级大约有多少志愿者?23.(8分)一天晚上,李明和张龙利用灯光下的影子长来测量一路灯D的高度.如图,当李明走到点A 处时,张龙测得李明直立身高AM与其影子长AE正好相等,接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25 m,已知李明直立时的身高为1.75 m,求路灯的高CD的长.(结果精确到0.1 m)24.(10分)如图,以AB边为直径的⊙O经过点P,C是⊙O上一点,连结PC交AB于点E,且∠ACP=60°,PA=PD.试判断PD与⊙O的位置关系,并说明理由;若点C是弧AB的中点,已知AB=4,求CE•CP的值.25.(10分)为了提高中学生身体素质,学校开设了A:篮球、B:足球、C:跳绳、D:羽毛球四种体育活动,为了解学生对这四种体育活动的喜欢情况,在全校随机抽取若干名学生进行问卷调查(每个被调查的对象必须选择而且只能在四种体育活动中选择一种),将数据进行整理并绘制成以下两幅统计图(未画完整).这次调查中,一共调查了________名学生;请补全两幅统计图;若有3名喜欢跳绳的学生,1名喜欢足球的学生组队外出参加一次联谊活动,欲从中选出2人担任组长(不分正副),求一人是喜欢跳绳、一人是喜欢足球的学生的概率.26.(12分)如图,在平面直角坐标系中,直线y1=2x﹣2与双曲线y2=kx交于A、C两点,AB⊥OA交x轴于点B,且OA=AB.求双曲线的解析式;求点C的坐标,并直接写出y1<y2时x的取值范围.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.C【解析】【分析】由DE∥BC可得出△ADE∽△ABC,利用相似三角形的性质结合S△ADE=S四边形BCED,可得出22 ADAB,结合BD=AB﹣AD即可求出BDAD的值.【详解】∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴2ADEABCS ADAB S⎛⎫=⎪⎝⎭,∵S△ADE=S四边形BCED,S△ABC=S△ADE+S四边形BCED,∴22ADAB=,∴22212BD AB ADAD AD--===-,故选C.【点睛】本题考查了相似三角形的判定与性质,牢记相似三角形的面积比等于相似比的平方是解题的关键.2.C【解析】由题意可知,AC=1,AB=2,∠CAB=90°据勾股定理则BC=2222125AC AB+=+=m;∴AC+BC=(1+5)m.答:树高为(1+5)米.故选C.3.D【解析】连接OC,过点A作AD⊥CD于点D,四边形AOBC是菱形可知OA=AC=2,再由OA=OC可知△AOC是等边三角形,可得∠AOC=∠BOC=60°,故△ACO与△BOC为边长相等的两个等边三角形,再根据锐角三角函数的定义得出AD=OA•sin60°=2×3=3,因此可求得S阴影=S扇形AOB﹣2S△AOC=21202360π⨯﹣2×12×2×3=43π﹣23.故选D.点睛:本题考查的是扇形面积的计算,熟记扇形的面积公式及菱形的性质是解答此题的关键.4.D【解析】【分析】先根据反比例函数与正比例函数的性质求出B 点坐标,再由函数图象即可得出结论.【详解】解:∵反比例函数与正比例函数的图象均关于原点对称,∴A 、B 两点关于原点对称,∵点A 的横坐标为1,∴点B 的横坐标为-1,∵由函数图象可知,当-1<x <0或x >1时函数y 1=k 1x 的图象在22k y x的上方, ∴当y 1>y 1时,x 的取值范围是-1<x <0或x >1.故选:D .【点睛】本题考查的是反比例函数与一次函数的交点问题,能根据数形结合求出y 1>y 1时x 的取值范围是解答此题的关键.5.A【解析】试题分析:方差是用来衡量一组数据波动大小的量,体现数据的稳定性,集中程度;方差越大,即波动越大,数据越不稳定;反之,方差越小,数据越稳定.故教练要分析射击运动员成绩的波动程度,只需要知道训练成绩的方差即可.故选A.考点:1、计算器-平均数,2、中位数,3、众数,4、方差6.C【解析】【分析】根据平行线的性质即可得到∠3的度数,再根据三角形内角和定理,即可得到结论.【详解】解:∵直线m ∥n ,∴∠3=∠1=25°,又∵三角板中,∠ABC =60°,∴∠2=60°﹣25°=35°,故选C .【点睛】本题考查平行线的性质,熟练掌握平行线的性质是解题的关键.7.B【解析】分析:先根据平行线的性质得出∠2+∠BAD=180°,再根据垂直的定义求出∠2的度数.详解:∵直线a∥b,∴∠2+∠BAD=180°.∵AC⊥AB于点A,∠1=34°,∴∠2=180°﹣90°﹣34°=56°.故选B.点睛:本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同旁内角互补,此题难度不大.8.B【解析】试题解析:∵AB=AC,∠A=30°,∴∠ABC=∠ACB=75°,∵AB的垂直平分线交AC于D,∴AD=BD,∴∠A=∠ABD=30°,∴∠BDC=60°,∴∠CBD=180°﹣75°﹣60°=45°.故选B.9.B【解析】试题分析:由题意知,“-”代表零下,因此-3℃表示气温为零下3℃.故选B.考点:负数的意义10.C【解析】【详解】根据题意先解出12342xx+>⎧⎨-≤⎩的解集是,把此解集表示在数轴上要注意表示时要注意起始标记为空心圆圈,方向向右;表示时要注意方向向左,起始的标记为实心圆点,综上所述C的表示符合这些条件.故应选C.二、填空题(本题包括8个小题)11.【解析】【分析】原式括号中两项通分并利用同分母分式的加法法则计算,约分即可得到结果.【详解】解:原式=•= -•= -2(m+3)=-2m-6,故答案为:-2m-6【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.12.9.6×1.【解析】【详解】将9600000用科学记数法表示为9.6×1.故答案为9.6×1.13.52【解析】【分析】如图,作BH⊥AC于H.在Rt△ABH中,求出BH,再在Rt△BCH中,利用等腰直角三角形的性质求出BC 即可.【详解】如图,作BH⊥AC于H.在Rt△ABH中,∵AB=10海里,∠BAH=30°,∴∠ABH=60°,BH=12AB=5(海里),在Rt△BCH中,∵∠CBH=∠C=45°,BH=5(海里),∴BH=CH=5海里,∴2(海里).故答案为.【点睛】本题考查了解直角三角形的应用-方向角问题,解题的关键是学会添加常用辅助线,构造特殊三角形解决问题.14【解析】【分析】,再合并同类二次根式即可得解.【详解】=.【点睛】本题考查了二次根式的运算,正确对二次根式进行化简是关键.15.①②④【解析】①由a=b,得5﹣2a=5﹣2b,根据等式的性质先将式子两边同时乘以-2,再将等式两边同时加上5,等式仍成立,所以本选项正确,②由a=b,得ac=bc,根据等式的性质,等式两边同时乘以相同的式子,等式仍成立,所以本选项正确, ③由a=b,得a b c c=,根据等式的性质,等式两边同时除以一个不为0的数或式子,等式仍成立,因为c 可能为0,所以本选项不正确,④由23a b c c=,得3a=2b, 根据等式的性质,等式两边同时乘以相同的式子6c,等式仍成立,所以本选项正确, ⑤因为互为相反数的平方也相等,由a 2=b 2,得a=b,或a=-b,所以本选项错误,故答案为: ①②④.16.2.【解析】【分析】把x =m 代入方程,求出2m 2﹣3m =2,再变形后代入,即可求出答案.【详解】解:∵m 是方程2x 2﹣3x ﹣2=0的一个根,∴代入得:2m 2﹣3m ﹣2=0,∴2m 2﹣3m =2,∴6m2﹣9m+2026=3(2m2﹣3m)+2026=3×2+2026=2,故答案为:2.【点睛】本题考查了求代数式的值和一元二次方程的解,解此题的关键是能求出2m2﹣3m=2.17.(﹣2,2)【解析】试题分析:∵直线y=2x+4与y轴交于B点,∴x=0时,得y=4,∴B(0,4).∵以OB为边在y轴右侧作等边三角形OBC,∴C在线段OB的垂直平分线上,∴C点纵坐标为2.将y=2代入y=2x+4,得2=2x+4,解得x=﹣2.所以C′的坐标为(﹣2,2).考点:2.一次函数图象上点的坐标特征;2.等边三角形的性质;3.坐标与图形变化-平移.18.2【解析】【分析】AB cm,根设圆锥的底面圆的半径为r,由于∠AOB=90°得到AB为圆形纸片的直径,则OB=2据弧长公式计算出扇形OAB的弧AB的长,然后根据圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长进行计算.【详解】解:设圆锥的底面圆的半径为r,连结AB,如图,∵扇形OAB的圆心角为90°,∴∠AOB=90°,∴AB为圆形纸片的直径,∴AB=4cm,∴OB =2222AB =cm , ∴扇形OAB 的弧AB 的长=90222180π⋅⋅=π, ∴2πr =2π,∴r =22(cm ). 故答案为2.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长.也考查了圆周角定理和弧长公式.三、解答题(本题包括8个小题)19.-5【解析】【分析】根据分式的运算法则以及实数的运算法则即可求出答案.【详解】当x=sin30°+2﹣14时,∴x=12+12+2=3, 原式=2(x 2)x 1++÷24x x 1-+=x 2x 2+--=﹣5. 【点睛】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.20.20°【解析】【分析】依据三角形内角和定理可得∠FGH=55°,再根据GE 平分∠FGD ,AB ∥CD ,即可得到∠FHG=∠HGD=∠FGH=55°,再根据∠FHG 是△EFH 的外角,即可得出∠EFB=55°-35°=20°.【详解】∵∠EFG=90°,∠E=35°, ∴∠FGH=55°,∵GE 平分∠FGD ,AB ∥CD ,∴∠FHG=∠HGD=∠FGH=55°,∵∠FHG 是△EFH 的外角,∴∠EFB=55°﹣35°=20°.【点睛】本题考查了平行线的性质,两直线平行时,应该想到它们的性质,由两直线平行的关系得到角之间的数量关系,从而达到解决问题的目的.21.(1)详见解析;(2)详见解析;(3)6.【解析】【分析】(1)分别画出A 、B 、C 三点的对应点即可解决问题;(2)由(1)得111A B C ∆各顶点的坐标,然后利用位似图形的性质,即可求得222A B C ∆各点的坐标,然后在图中作出位似三角形即可.(3)求得222A B C ∆所在矩形的面积减去三个三角形的面积即可.【详解】(1)如图,111A B C ∆即为所求作;(2)如图,222A B C ∆即为所求作;(3)222A B C ∆面积=4×4-12×2×4-12×2×2-12×2×4=6. 【点睛】本题主要考查了利用平移变换作图、位似作图以及求三角形的面积,作图时要先找到图形的关键点,把这几个关键点按平移的方向和距离确定对应点后,再顺序连接对应点即可得到平移后的图形.22.(1)作图见解析;(2)1.试题分析:(1)根据百分比=计算即可解决问题,求出八年级、九年级、被抽到的志愿者人数画出条形图即可;(2)用样本估计总体的思想,即可解决问题;试题解析:解:(1)由题意总人数=20÷40%=50人,八年级被抽到的志愿者:50×30%=15人九年级被抽到的志愿者:50×20%=10人,条形图如图所示:(2)该校共有志愿者600人,则该校九年级大约有600×20%=1人.答:该校九年级大约有1名志愿者.23.路灯的高CD 的长约为6.1 m.【解析】设路灯的高CD 为xm ,∵CD ⊥EC ,BN ⊥EC ,∴CD ∥BN ,∴△ABN ∽△ACD ,∴BN AB CD AC=, 同理,△EAM ∽△ECD ,又∵EA =MA ,∵EC =DC =xm ,∴1.75 1.251.75x x =-,解得x =6.125≈6.1. ∴路灯的高CD 约为6.1m .24.(1)PD 是⊙O 的切线.证明见解析.(2)1.【解析】试题分析:(1)连结OP ,根据圆周角定理可得∠AOP=2∠ACP=120°,然后计算出∠PAD 和∠D 的度数,进而可得∠OPD=90°,从而证明PD 是⊙O 的切线;(2)连结BC ,首先求出∠CAB=∠ABC=∠APC=45°,然后可得AC 长,再证明△CAE ∽△CPA ,进而可得,然后可得CE•CP 的值.试题解析:(1)如图,PD 是⊙O 的切线.连结OP,∵∠ACP=60°,∴∠AOP=120°,∵OA=OP,∴∠OAP=∠OPA=30°,∵PA=PD,∴∠PAO=∠D=30°,∴∠OPD=90°,∴PD是⊙O的切线.(2)连结BC,∵AB是⊙O的直径,∴∠ACB=90°,又∵C为弧AB的中点,∴∠CAB=∠ABC=∠APC=45°,∵AB=4,AC=Absin45°=.∵∠C=∠C,∠CAB=∠APC,∴△CAE∽△CPA,∴,∴CP•CE=CA2=()2=1.考点:相似三角形的判定与性质;圆心角、弧、弦的关系;直线与圆的位置关系;探究型.25.(1)200;(2)答案见解析;(3)12.【解析】【分析】(1)由题意得:这次调查中,一共调查的学生数为:40÷20%=200(名);(2)根据题意可求得B占的百分比为:1-20%-30%-15%=35%,C的人数为:200×30%=60(名);则可补全统计图;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与一人是喜欢跳绳、一人是喜欢足球的学生的情况,再利用概率公式即可求得答案.【详解】解:(1)根据题意得:这次调查中,一共调查的学生数为:40÷20%=200(名);故答案为:200;(2)C组人数:200-40-70-30=60(名)B组百分比:70÷200×100%=35%如图(3)分别用A,B,C表示3名喜欢跳绳的学生,D表示1名喜欢足球的学生;画树状图得:∵共有12种等可能的结果,一人是喜欢跳绳、一人是喜欢足球的学生的有6种情况,∴一人是喜欢跳绳、一人是喜欢足球的学生的概率为:61122=.【点睛】此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.用到的知识点为:概率=所求情况数与总情况数之比.26.(1)24yx=;(1)C(﹣1,﹣4),x的取值范围是x<﹣1或0<x<1.【解析】【分析】(1)作高线AC,根据等腰直角三角形的性质和点A的坐标的特点得:x=1x﹣1,可得A的坐标,从而得双曲线的解析式;(1)联立一次函数和反比例函数解析式得方程组,解方程组可得点C的坐标,根据图象可得结论.【详解】(1)∵点A在直线y1=1x﹣1上,∴设A(x,1x﹣1),过A作AC⊥OB于C,∵AB⊥OA,且OA=AB,∴OC=BC,∴AC=12OB=OC,∴x=1x﹣1,x=1,∴A(1,1),∴k=1×1=4,∴24yx =;(1)∵224y xyx=-⎧⎪⎨=⎪⎩,解得:1122xy=⎧⎨=⎩,2214xy=-⎧⎨=-⎩,∴C(﹣1,﹣4),由图象得:y1<y1时x的取值范围是x<﹣1或0<x<1.【点睛】本题考查了反比例函数和一次函数的综合;熟练掌握通过求点的坐标进一步求函数解析式的方法;通过观察图象,从交点看起,函数图象在上方的函数值大.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知M,N,P,Q四点的位置如图所示,下列结论中,正确的是( )A.∠NOQ=42°B.∠NOP=132°C.∠PON比∠MOQ大D.∠MOQ与∠MOP互补2.已知点P(a,m),Q(b,n)都在反比例函数y=2x的图象上,且a<0<b,则下列结论一定正确的是()A.m+n<0 B.m+n>0 C.m<n D.m>n3.若x=-2 是关于x的一元二次方程x2-52ax+a2=0的一个根,则a的值为()A.1或4 B.-1或-4 C.-1或4 D.1或-44.对于反比例函数y=kx(k≠0),下列所给的四个结论中,正确的是()A.若点(3,6)在其图象上,则(﹣3,6)也在其图象上B.当k>0时,y随x的增大而减小C.过图象上任一点P作x轴、y轴的线,垂足分别A、B,则矩形OAPB的面积为kD.反比例函数的图象关于直线y=﹣x成轴对称5.如图1,在等边△ABC中,D是BC的中点,P为AB 边上的一个动点,设AP=x,图1中线段DP的长为y,若表示y与x的函数关系的图象如图2所示,则△ABC的面积为()A.4 B.23C.12 D.436.如图,平行于BC的直线DE把△ABC分成面积相等的两部分,则BDAD的值为()A.1 B.22C.2-1 D.2+17.下列各曲线中表示y是x的函数的是()A.B.C.D.8.对于不为零的两个实数a,b,如果规定:a★b=()()a b a baa bb+<⎧⎪⎨-≥⎪⎩,那么函数y=2★x的图象大致是()A. B.C. D.9.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是()A.49B.13C.29D.1910.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米,所列方程正确的是()A.1000100030x x-+=2 B.1000100030x x-+=2C.1000100030x x--=2 D.1000100030x x--=2二、填空题(本题包括8个小题)11.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图,已知EF=CD=80cm,则截面圆的半径为cm.12.如图,一束光线从点A(3,3)出发,经过y轴上点C反射后经过点B(1,0),则光线从点A到点B经过的路径长为_____.13.已知二次函数2(0)y ax bx c a =++≠,y 与x 的部分对应值如下表所示:x… -1 0 1 2 3 4 … y…61-2-3-2m…下面有四个论断:①抛物线2(0)y ax bx c a =++≠的顶点为(23)-,; ②240b ac -=;③关于x 的方程2=2ax bx c ++-的解为12=13x x =,; ④=3m -.其中,正确的有___________________.14.如图,点E 在正方形ABCD 的边CD 上.若△ABE 的面积为8,CE=3,则线段BE 的长为_______.15.关于x 的一元二次方程ax 2﹣x ﹣14=0有实数根,则a 的取值范围为________. 16.若方程x 2﹣2x ﹣1=0的两根分别为x 1,x 2,则x 1+x 2﹣x 1x 2的值为_____. 17.已知a+1a =2,求a 2+21a=_____. 18.近年来,我国持续大面积的雾霾天气让环保和健康问题成为焦点.为进一步普及环保和健康知识,我市某校举行了“建设宜居成都,关注环境保护”的知识竞赛,某班的学生成绩统计如下: 成绩(分) 60 70 80 90 100 人 数4812115则该办学生成绩的众数和中位数分别是( )A .70分,80分B .80分,80分C.90分,80分D.80分,90分三、解答题(本题包括8个小题)19.(6分)一个不透明的袋子中装有3个标号分别为1、2、3的完全相同的小球,随机地摸出一个小球不放回,再随机地摸出一个小球.采用树状图或列表法列出两次摸出小球出现的所有可能结果;求摸出的两个小球号码之和等于4的概率.20.(6分)学生对待学习的态度一直是教育工作者关注的问题之一.为此,某区教委对该区部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B 级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:此次抽样调查中,共调查了名学生;将图①补充完整;求出图②中C级所占的圆心角的度数.21.(6分)某市出租车计费方法如图所示,x(km)表示行驶里程,y(元)表示车费,请根据图象回答下列问题:出租车的起步价是多少元?当x>3时,求y关于x的函数关系式;若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程.22.(8分)在平面直角坐标系中,抛物线y=(x﹣h)2+k的对称轴是直线x=1.若抛物线与x轴交于原点,求k的值;当﹣1<x<0时,抛物线与x轴有且只有一个公共点,求k的取值范围.23.(8分)某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件.当每件的销售价为52元时,该纪念品每天的销售数量为件;当每件的销售价x为多少时,销售该纪念品每天获得的利润y最大?并求出最大利润.24.(10分)实践:如图△ABC是直角三角形,∠ACB=90°,利用直尺和圆规按下列要求作图,并在图中标明相应的字母.(保留作图痕迹,不写作法)作∠BAC的平分线,交BC于点O.以O为圆心,OC为半径作圆.综合运用:在你所作的图中,AB 与⊙O 的位置关系是_____ .(直接写出答案)若AC=5,BC=12,求⊙O 的半径.25.(10分)如图所示,AB 是⊙O 的直径,AE 是弦,C 是劣弧AE 的中点,过C 作CD ⊥AB 于点D ,CD 交AE 于点F ,过C 作CG ∥AE 交BA 的延长线于点G .求证:CG 是⊙O 的切线.求证:AF =CF .若sinG =0.6,CF =4,求GA 的长.26.(12分)先化简,再求值:()2111x x ⎛⎫-÷-⎪+⎝⎭,其中x 为方程2320x x ++=的根. 参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.C 【解析】试题分析:如图所示:∠NOQ=138°,选项A 错误;∠NOP=48°,选项B 错误;如图可得∠PON=48°,∠MOQ=42°,所以∠PON 比∠MOQ 大,选项C 正确;由以上可得,∠MOQ 与∠MOP 不互补,选项D 错误.故答案选C .考点:角的度量. 2.D 【解析】 【分析】根据反比例函数的性质,可得答案.【详解】∵y=−2x的k=-2<1,图象位于二四象限,a<1,∴P(a,m)在第二象限,∴m>1;∵b>1,∴Q(b,n)在第四象限,∴n<1.∴n<1<m,即m>n,故D正确;故选D.【点睛】本题考查了反比例函数的性质,利用反比例函数的性质:k<1时,图象位于二四象限是解题关键.3.B【解析】【详解】试题分析:把x=﹣2代入关于x的一元二次方程x2﹣52ax+a2=0即:4+5a+a2=0解得:a=-1或-4,故答案选B.考点:一元二次方程的解;一元二次方程的解法.4.D【解析】分析:根据反比例函数的性质一一判断即可;详解:A.若点(3,6)在其图象上,则(﹣3,6)不在其图象上,故本选项不符合题意;B.当k>0时,y随x的增大而减小,错误,应该是当k>0时,在每个象限,y随x的增大而减小;故本选项不符合题意;C.错误,应该是过图象上任一点P作x轴、y轴的线,垂足分别A、B,则矩形OAPB的面积为|k|;故本选项不符合题意;D.正确,本选项符合题意.故选D.点睛:本题考查了反比例函数的性质,解题的关键是熟练掌握反比例函数的性质,灵活运用所学知识解决问题,属于中考常考题型. 5.D 【解析】 分析:由图1、图2结合题意可知,当DP ⊥AB 时,DP 最短,由此可得DP 最短=y 最小=3,这样如图3,过点P 作PD ⊥AB 于点P ,连接AD ,结合△ABC 是等边三角形和点D 是BC 边的中点进行分析解答即可. 详解:由题意可知:当DP ⊥AB 时,DP 最短,由此可得DP 最短=y 最小=3,如图3,过点P 作PD ⊥AB 于点P ,连接AD ,∵△ABC 是等边三角形,点D 是BC 边上的中点, ∴∠ABC=60°,AD ⊥BC ,∵DP ⊥AB 于点P ,此时DP=3, ∴BD=332sin 60PD =÷=,∴BC=2BD=4, ∴AB=4,∴AD=AB·sin ∠B=4×sin60°=23, ∴S △ABC=12AD·BC=1234432⨯⨯=. 故选D.点睛:“读懂题意,知道当DP ⊥AB 于点P 时,DP 最短3是解答本题的关键. 6.C 【解析】【分析】由DE ∥BC 可得出△ADE ∽△ABC ,利用相似三角形的性质结合S △ADE =S 四边形BCED ,可得出22AD AB =,结合BD=AB ﹣AD 即可求出BDAD的值. 【详解】∵DE ∥BC ,∴∠ADE=∠B ,∠AED=∠C , ∴△ADE ∽△ABC ,∴2ADE ABCS AD AB S ⎛⎫= ⎪⎝⎭,∵S △ADE =S 四边形BCED ,S △ABC =S△ADE +S 四边形BCED , ∴2AD AB =,∴1BD AB AD AD AD -===, 故选C .【点睛】本题考查了相似三角形的判定与性质,牢记相似三角形的面积比等于相似比的平方是解题的关键.7.D 【解析】根据函数的意义可知:对于自变量x 的任何值,y 都有唯一的值与之相对应,故D 正确. 故选D . 8.C 【解析】 【分析】先根据规定得出函数y =2★x 的解析式,再利用一次函数与反比例函数的图象性质即可求解. 【详解】由题意,可得当2<x ,即x >2时,y =2+x ,y 是x 的一次函数,图象是一条射线除去端点,故A 、D 错误; 当2≥x ,即x≤2时,y =﹣2x,y 是x 的反比例函数,图象是双曲线,分布在第二、四象限,其中在第四象限时,0<x≤2,故B 错误. 故选:C . 【点睛】本题考查了新定义,函数的图象,一次函数与反比例函数的图象性质,根据新定义得出函数y =2★x 的解析式是解题的关键. 9.A 【解析】 【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【详解】画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,∴两次都摸到黄球的概率为49,故选A.【点睛】此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.10.A【解析】分析:设原计划每天施工x米,则实际每天施工(x+30)米,根据:原计划所用时间﹣实际所用时间=2,列出方程即可.详解:设原计划每天施工x米,则实际每天施工(x+30)米,根据题意,可列方程:1000100030x x-+=2,故选A.点睛:本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程.二、填空题(本题包括8个小题)11.1【解析】【分析】过点O作OM⊥EF于点M,反向延长OM交BC于点N,连接OF,设OF=r,则OM=80-r,MF=40,然后在Rt△MOF中利用勾股定理求得OF的长即可.【详解】过点O作OM⊥EF于点M,反向延长OM交BC于点N,连接OF,设OF=x,则OM=80﹣r,MF=40,在Rt△OMF中,∵OM2+MF2=OF2,即(80﹣r)2+402=r2,解得:r=1cm.故答案为1.12.2【解析】【分析】延长AC交x轴于B′.根据光的反射原理,点B、B′关于y轴对称,CB=CB′.路径长就是AB′的长度.结合A点坐标,运用勾股定理求解.【详解】解:如图所示,延长AC交x轴于B′.则点B、B′关于y轴对称,CB=CB′.作AD⊥x轴于D点.则AD=3,DB′=3+1=1.由勾股定理AB′=2∴AC+CB = AC+CB′= AB′=2.即光线从点A到点B经过的路径长为2.考点:解直角三角形的应用点评:本题考查了直角三角形的有关知识,同时渗透光学中反射原理,构造直角三角形是解决本题关键13.①③.【解析】【分析】根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可.【详解】由二次函数y=ax2+bx+c(a≠0),y与x的部分对应值可知:该函数图象是开口向上的抛物线,对称轴是直线x=2,顶点坐标为(2,-3);与x轴有两个交点,一个在。

山西省吕梁市2020年中考数学经典试题

山西省吕梁市2020年中考数学经典试题

2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知二次函数y=ax1+bx+c+1的图象如图所示,顶点为(﹣1,0),下列结论:①abc>0;②b1﹣4ac=0;③a>1;④ax1+bx+c=﹣1的根为x1=x1=﹣1;⑤若点B(﹣14,y1)、C(﹣12,y1)为函数图象上的两点,则y1>y1.其中正确的个数是()A.1 B.3 C.4 D.52.为了解中学300名男生的身高情况,随机抽取若干名男生进行身高测量,将所得数据整理后,画出频数分布直方图(如图).估计该校男生的身高在169.5cm~174.5cm之间的人数有()A.12 B.48 C.72 D.963.小张同学制作了四张材质和外观完全一样的书签,每个书签上写着一本书的名称或一个作者姓名,分别是:《西游记》、施耐庵、《安徒生童话》、安徒生,从这四张书签中随机抽取两张,则抽到的书签正好是相对应的书名和作者姓名的概率是( )A.12B.13C.14D.164.下列命题是假命题的是()A.有一个外角是120°的等腰三角形是等边三角形B.等边三角形有3条对称轴C.有两边和一角对应相等的两个三角形全等D.有一边对应相等的两个等边三角形全等5.如图,在△ABC中,BC=8,AB的中垂线交BC于D,AC的中垂线交BC于E,则△ADE的周长等于()A.8 B.4 C.12 D.166.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为()A.x(x+1)=1035 B.x(x-1)=1035 C.12x(x+1)=1035 D.12x(x-1)=10357.如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为()A.115°B.120°C.130°D.140°8.若分式11xx-+的值为零,则x的值是( )A.1 B.1-C.1±D.29.若△ABC∽△A′B′C′,∠A=40°,∠C=110°,则∠B′等于()A.30°B.50°C.40°D.70°10.在平面直角坐标系中,若点A(a,-b)在第一象限内,则点B(a,b)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题(本题包括8个小题)11.如图,点G是ABC的重心,AG的延长线交BC于点D,过点G作GE//BC交AC于点E,如果BC6=,那么线段GE的长为______.12.函数y1x-x的取值范围是________.分别交AB,AC于点E,F;②分别以点E,F为圆心,大于12EF的长为半径画弧,两弧相交于点G;③作射线AG交BC边于点D.则∠ADC的度数为.14.如图,直径为1000mm的圆柱形水管有积水(阴影部分),水面的宽度AB为800mm,则水的最大深度CD是______mm.15.-3的倒数是___________16.若关于x的方程x2-2x+sinα=0有两个相等的实数根,则锐角α的度数为___.17.分解因式:2a2﹣2=_____.18.某物流仓储公司用如图A,B两种型号的机器人搬运物品,已知A型机器人比B型机器人每小时多搬运20kg,A型机器人搬运1000kg所用时间与B型机器人搬运800kg所用时间相等,设B型机器人每小时搬运x kg物品,列出关于x的方程为_____.三、解答题(本题包括8个小题)19.(6分)请根据图中提供的信息,回答下列问题:一个水瓶与一个水杯分别是多少元?甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和n(n>10,且n为整数)个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)20.(6分)如图,在Rt△ABC中,∠C=90°,翻折∠C,使点C落在斜边AB上某一点D处,折痕为EF(点E、F分别在边AC、BC上)若△CEF 与△ABC 相似.①当AC=BC=2时,AD 的长为 ;②当AC=3,BC=4时,AD 的长为 ;当点D 是AB 的中点时,△CEF 与△ABC 相似吗?请说明理由. 21.(6分)如图,在直角坐标系xOy 中,直线y mx =与双曲线n y x=相交于A (-1,a )、B 两点,BC ⊥x 轴,垂足为C ,△AOC 的面积是1. 求m 、n 的值;求直线AC 的解析式.22.(8分)为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y (千克)与销售价x (元/千克)有如下关系:y=﹣2x+1.设这种产品每天的销售利润为w 元.求w 与x 之间的函数关系式.该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?23.(8分)如图,△ABC 是等腰三角形,AB =AC ,点D 是AB 上一点,过点D 作DE ⊥BC 交BC 于点E ,交CA 延长线于点F .证明:△ADF 是等腰三角形;若∠B =60°,BD =4,AD =2,求EC 的长,24.(10分)如图,在边长为1的小正方形组成的方格纸上,将△ABC 绕着点A 顺时针旋转90°画出旋转之后的△AB′C′;求线段AC 旋转过程中扫过的扇形的面积.25.(10分)如图,在平面直角坐标系中,一次函数y =﹣x+3的图象与反比例函数y =(x >0,k 是常数)的图象交于A (a ,2),B (4,b )两点.求反比例函数的表达式;点C 是第一象限内一点,连接AC ,BC ,使AC ∥x 轴,BC ∥y 轴,连接OA ,OB .若点P 在y 轴上,且△OPA 的面积与四边形OACB 的面积相等,求点P 的坐标.26.(12分)如图,在ABCD 中,点E 是AB 边的中点,DE 与CB 的延长线交于点F .求证:△ADE ≌△BFE ;若DF 平分∠ADC ,连接CE .试判断CE 和DF 的位置关系,并说明理由.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.D【解析】 【分析】根据二次函数的图象与性质即可求出答案.【详解】解:①由抛物线的对称轴可知:02b a-<, ∴0ab >,由抛物线与y 轴的交点可知:22c +>,∴0c >,∴0abc >,故①正确;∴0∆=,∴240b ac -=,故②正确;③令1x =-,∴20y a b c =-++=, ∵12b a-=-, ∴2b a =,∴220a a c -++=,∴2a c =+,∵22c +>,∴2a >,故③正确;④由图象可知:令0y =,即202ax bx c =+++的解为121x x ==-,∴22ax bx c ++=-的根为121x x ==-,故④正确;⑤∵11124-<-<-, ∴12y y >,故⑤正确;故选D .【点睛】考查二次函数的图象与性质,解题的关键是熟练运用数形结合的思想.2.C【解析】【详解】解:根据图形,身高在169.5cm ~174.5cm 之间的人数的百分比为:12100%=24%6+10+16+12+6⨯, ∴该校男生的身高在169.5cm ~174.5cm 之间的人数有300×24%=72(人).故选C .3.D【解析】【分析】根据题意先画出树状图得出所有等情况数和到的书签正好是相对应的书名和作者姓名的情况数,再根据概【详解】解:根据题意画图如下:共有12种等情况数,抽到的书签正好是相对应的书名和作者姓名的有2种情况,则抽到的书签正好是相对应的书名和作者姓名的概率是212=16;故选D.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.4.C【解析】解:A.外角为120°,则相邻的内角为60°,根据有一个角为60°的等腰三角形是等边三角形可以判断,故A选项正确;B.等边三角形有3条对称轴,故B选项正确;C.当两个三角形中两边及一角对应相等时,其中如果角是这两边的夹角时,可用SAS来判定两个三角形全等,如果角是其中一边的对角时,则可不能判定这两个三角形全等,故此选项错误;D.利用SSS.可以判定三角形全等.故D选项正确;故选C.5.A【解析】【详解】∵AB的中垂线交BC于D,AC的中垂线交BC于E,∴DA=DB,EA=EC,则△ADE的周长=AD+DE+AE=BD+DE+EC=BC=8,故选A.6.B【解析】试题分析:如果全班有x名同学,那么每名同学要送出(x-1)张,共有x名学生,那么总共送的张数应该∵全班有x名同学,∴每名同学要送出(x-1)张;又∵是互送照片,∴总共送的张数应该是x(x-1)=1.故选B考点:由实际问题抽象出一元二次方程.7.A【解析】解:∵把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,∴∠BFE=∠EFB',∠B'=∠B=90°.∵∠2=40°,∴∠CFB'=50°,∴∠1+∠EFB'﹣∠CFB'=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故选A.8.A【解析】试题解析:∵分式11xx-+的值为零,∴|x|﹣1=0,x+1≠0,解得:x=1.故选A.9.A【解析】【分析】利用三角形内角和求∠B,然后根据相似三角形的性质求解.【详解】解:根据三角形内角和定理可得:∠B=30°,根据相似三角形的性质可得:∠B′=∠B=30°.故选:A.【点睛】本题考查相似三角形的性质,掌握相似三角形对应角相等是本题的解题关键.10.D【解析】【分析】先根据第一象限内的点的坐标特征判断出a、b的符号,进而判断点B所在的象限即可.∵点A(a,-b)在第一象限内,∴a>0,-b>0,∴b<0,∴点B((a,b)在第四象限,故选D.【点睛】本题考查了点的坐标,解决本题的关键是牢记平面直角坐标系中各个象限内点的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.二、填空题(本题包括8个小题)11.2【解析】分析:由点G是△ABC重心,BC=6,易得CD=3,AG:AD=2:3,又由GE∥BC,可证得△AEG∽△ACD,然后由相似三角形的对应边成比例,即可求得线段GE的长.详解:∵点G是△ABC重心,BC=6,∴CD=1BC=3,AG:AD=2:3,2∵GE∥BC,∴△AEG∽△ADC,∴GE:CD=AG:AD=2:3,∴GE=2.故答案为2.点睛:本题考查了三角形重心的定义和性质、相似三角形的判定和性质.利用三角形重心的性质得出AG:AD=2:3是解题的关键.12.x≤1【解析】分析:根据二次根式有意义的条件解答即可.详解:∵二次根式有意义,被开方数为非负数,∴1 -x≥0,解得x≤1.故答案为x≤1.点睛:本题考查了二次根式有意义的条件,熟知二次根式有意义,被开方数为非负数是解题的关键. 13.65°【分析】根据已知条件中的作图步骤知,AG是∠CAB的平分线,根据角平分线的性质解答即可.【详解】根据已知条件中的作图步骤知,AG是∠CAB的平分线,∵∠CAB=50°,∴∠CAD=25°;在△ADC中,∠C=90°,∠CAD=25°,∴∠ADC=65°(直角三角形中的两个锐角互余);故答案是:65°.14.200【解析】【分析】先求出OA的长,再由垂径定理求出AC的长,根据勾股定理求出OC的长,进而可得出结论.【详解】解:∵⊙O的直径为1000mm,∴OA=OA=500mm.∵OD⊥AB,AB=800mm,∴AC=400mm,∴=300mm,∴CD=OD-OC=500-300=200(mm).答:水的最大深度为200mm.故答案为:200【点睛】本题考查的是垂径定理的应用,根据勾股定理求出OC的长是解答此题的关键.15.1 3 -【解析】【分析】乘积为1的两数互为相反数,即a的倒数即为1a,符号一致【详解】∵-3的倒数是13-∴答案是13-试题解析:∵关于x的方程2sin0xα+=有两个相等的实数根,∴()2241sin0,α=--⨯⨯=解得:1 sin2α=,∴锐角α的度数为30°;故答案为30°.17.2(a+1)(a﹣1).【解析】【分析】先提取公因式2,再对余下的多项式利用平方差公式继续分解.【详解】解:2a2﹣2,=2(a2﹣1),=2(a+1)(a﹣1).【点睛】本题考查了提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.18.100080020x x=+【解析】【分析】设B型机器人每小时搬运x kg物品,则A型机器人每小时搬运(x+20)kg物品,根据“A型机器人搬运1000kg 所用时间与B型机器人搬运800kg所用时间相等”可列方程.【详解】设B型机器人每小时搬运x kg物品,则A型机器人每小时搬运(x+20)kg物品,根据题意可得100080020x x=+,故答案为100080020x x=+.【点睛】本题考查了由实际问题抽象出分式方程,解题的关键是根据数量关系列出关于x的分式方程.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程是关键.三、解答题(本题包括8个小题)19.(1)一个水瓶40元,一个水杯是8元;(2)当10<n<25时,选择乙商场购买更合算.当n>25时,选择甲商场购买更合算.【解析】【分析】(1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,根据题意列出方程,求出方程的解即可得到结果;(2)计算出两商场得费用,比较即可得到结果.【详解】解:(1)设一个水瓶x元,表示出一个水杯为(48﹣x)元,根据题意得:3x+4(48﹣x)=152,解得:x=40,则一个水瓶40元,一个水杯是8元;(2)甲商场所需费用为(40×5+8n)×80%=160+6.4n乙商场所需费用为5×40+(n﹣5×2)×8=120+8n则∵n>10,且n为整数,∴160+6.4n﹣(120+8n)=40﹣1.6n讨论:当10<n<25时,40﹣1.6n>0,160+0.64n>120+8n,∴选择乙商场购买更合算.当n>25时,40﹣1.6n<0,即160+0.64n<120+8n,∴选择甲商场购买更合算.【点睛】此题主要考查不等式的应用,解题的关键是根据题意找到等量关系与不等关系进行列式求解.20.解:(1).②95或52.(2)当点D是AB的中点时,△CEF与△ABC相似.理由见解析.【解析】【分析】(1)①当AC=BC=2时,△ABC为等腰直角三角形;②若△CEF与△ABC相似,分两种情况:①若CE:CF=3:4,如图1所示,此时EF∥AB,CD为AB边上的高;②若CF:CE=3:4,如图2所示.由相似三角形角之间的关系,可以推出∠A=∠ECD与∠B=∠FCD,从而得到CD=AD=BD,即D点为AB的中点;(2)当点D是AB的中点时,△CEF与△ABC相似.可以推出∠CFE=∠A,∠C=∠C,从而可以证明两个三角形相似.【详解】(1)若△CEF与△ABC相似.①当AC=BC=2时,△ABC为等腰直角三角形,如答图1所示,此时D为AB边中点,AD=22AC=2.②当AC=3,BC=4时,有两种情况:(I)若CE:CF=3:4,如答图2所示,∵CE:CF=AC:BC,∴EF∥BC.由折叠性质可知,CD⊥EF,∴CD⊥AB,即此时CD为AB边上的高.在Rt△ABC中,AC=3,BC=4,∴BC=1.∴cosA=35.∴AD=AC•cosA=3×35=95.(II)若CF:CE=3:4,如答图3所示.∵△CEF∽△CAB,∴∠CEF=∠B.由折叠性质可知,∠CEF+∠ECD=90°.又∵∠A+∠B=90°,∴∠A=∠ECD,∴AD=CD.同理可得:∠B=∠FCD,CD=BD.∴AD=BD.∴此时AD=AB=12×1=52.综上所述,当AC=3,BC=4时,AD的长为95或52.(2)当点D是AB的中点时,△CEF与△CBA相似.理由如下:如图所示,连接CD,与EF交于点Q.∵CD是Rt△ABC的中线∴CD=DB=12AB,∴∠DCB=∠B.由折叠性质可知,∠CQF=∠DQF=90°,∴∠DCB+∠CFE=90°,∵∠B+∠A=90°,∴∠CFE=∠A ,又∵∠ACB=∠ACB ,∴△CEF ∽△CBA .21.(1)m =-1,n =-1;(2)y =-12x +12 【解析】【分析】(1)由直线y mx =与双曲线n y x=相交于A(-1,a)、B 两点可得B 点横坐标为1,点C 的坐标为(1,0),再根据△AOC 的面积为1可求得点A 的坐标,从而求得结果;(2)设直线AC 的解析式为y =kx +b ,由图象过点A (-1,1)、C (1,0)根据待定系数法即可求的结果.【详解】(1)∵直线y mx =与双曲线n y x =相交于A(-1,a)、B 两点, ∴B 点横坐标为1,即C(1,0)∵△AOC 的面积为1,∴A(-1,1)将A(-1,1)代入y mx =,n y x=可得m =-1,n =-1; (2)设直线AC 的解析式为y =kx +b∵y =kx +b 经过点A (-1,1)、C (1,0)∴1,{0,k b k b -+=+=解得k =-12,b =12. ∴直线AC 的解析式为y =-12x +12. 【点睛】本题考查了一次函数与反比例函数图象的交点问题,此类问题是初中数学的重点,在中考中极为常见,熟练掌握待定系数法是解题关键.22. (1)2w 2x 120x 1600=-+-;(2) 该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润2元;(3)该农户想要每天获得150元的销售利润,销售价应定为每千克25元.【解析】【分析】(1)根据销售额=销售量×销售价单x ,列出函数关系式.(2)用配方法将(2)的函数关系式变形,利用二次函数的性质求最大值.(3)把y=150代入(2)的函数关系式中,解一元二次方程求x ,根据x 的取值范围求x 的值.【详解】解:(1)由题意得:()()()2w x 20y x 202x 802x 120x 1600=-⋅=--+=-+-, ∴w 与x 的函数关系式为:2w 2x 120x 1600=-+-.(2)()22w 2x 120x 16002x 30200=-+-=--+,∵﹣2<0,∴当x=30时,w 有最大值.w 最大值为2.答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润2元.(3)当w=150时,可得方程﹣2(x ﹣30)2+2=150,解得x 1=25,x 2=3.∵3>28,∴x 2=3不符合题意,应舍去.答:该农户想要每天获得150元的销售利润,销售价应定为每千克25元.23.(1)见解析;(2)EC =1.【解析】【分析】(1)由AB =AC ,可知∠B =∠C ,再由DE ⊥BC ,可知∠F+∠C =90°,∠BDE+∠B =90°,然后余角的性质可推出∠F =∠BDE ,再根据对顶角相等进行等量代换即可推出∠F =∠FDA ,于是得到结论;(2)根据解直角三角形和等边三角形的性质即可得到结论.【详解】(1)∵AB =AC ,∴∠B =∠C ,∵FE ⊥BC ,∴∠F+∠C =90°,∠BDE+∠B =90°,∴∠F =∠BDE ,而∠BDE =∠FDA ,∴∠F =∠FDA ,∴AF =AD ,∴△ADF 是等腰三角形;(2)∵DE ⊥BC ,∴∠DEB =90°,∵∠B =60°,BD =1,∴BE =12BD =2,∵AB=AC,∴△ABC是等边三角形,∴BC=AB=AD+BD=6,∴EC=BC﹣BE=1.【点睛】本题主要考查等腰三角形的判定与性质、余角的性质、对顶角的性质等知识点,关键根据相关的性质定理,通过等量代换推出∠F=∠FDA,即可推出结论.24..(1)见解析(2)π【解析】【分析】(1)根据网格结构找出点B、C旋转后的对应点B′、C′的位置,然后顺次连接即可.(2)先求出AC的长,再根据扇形的面积公式列式进行计算即可得解.【详解】解:(1)△AB′C′如图所示:(2)由图可知,AC=2,∴线段AC旋转过程中扫过的扇形的面积2902360ππ⋅⋅==.25.(1) 反比例函数的表达式为y=(x>0);(2) 点P的坐标为(0,4)或(0,﹣4)【解析】【分析】(1)根据点A(a,2),B(4,b)在一次函数y=﹣x+3的图象上求出a、b的值,得出A、B两点的坐标,再运用待定系数法解答即可;(2)延长CA交y轴于点E,延长CB交x轴于点F,构建矩形OECF,根据S四边形OACB=S矩形OECF﹣S△OAE﹣S△OBF,设点P(0,m),根据反比例函数的几何意义解答即可.【详解】(1)∵点A(a,2),B(4,b)在一次函数y=﹣x+3的图象上,∴﹣a+3=2,b=﹣×4+3,∴a=2,b=1,∴点A的坐标为(2,2),点B的坐标为(4,1),又∵点A(2,2)在反比例函数y=的图象上,∴k=2×2=4,∴反比例函数的表达式为y=(x>0);(2)延长CA交y轴于点E,延长CB交x轴于点F,∵AC∥x轴,BC∥y轴,则有CE⊥y轴,CF⊥x轴,点C的坐标为(4,2)∴四边形OECF为矩形,且CE=4,CF=2,∴S四边形OACB=S矩形OECF﹣S△OAE﹣S△OBF=2×4﹣×2×2﹣×4×1=4,设点P的坐标为(0,m),则S△OAP=×2•|m|=4,∴m=±4,∴点P的坐标为(0,4)或(0,﹣4).【点睛】此题考查了反比例函数与一次函数的交点问题,涉及的知识有:坐标与图形性质,直线与坐标轴的交点,待定系数法求函数解析式,熟练掌握待定系数法是解本题的关键.26.(1)见解析;(1)见解析.【解析】【分析】(1)由全等三角形的判定定理AAS证得结论.(1)由(1)中全等三角形的对应边相等推知点E是边DF的中点,∠1=∠1;根据角平分线的性质、等量代换以及等角对等边证得DC=FC,则由等腰三角形的“三合一”的性质推知CE⊥DF.【详解】解:(1)证明:如图,∵四边形ABCD是平行四边形,∴AD∥BC.又∵点F在CB的延长线上,∴AD∥CF.∴∠1=∠1.∵点E是AB边的中点,∴AE=BE,∵在△ADE与△BFE中,12DEA FEBAE BE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADE≌△BFE(AAS).(1)CE⊥DF.理由如下:如图,连接CE,由(1)知,△ADE≌△BFE,∴DE=FE,即点E是DF的中点,∠1=∠1.∵DF平分∠ADC,∴∠1=∠2.∴∠2=∠1.∴CD=CF.∴CE⊥DF.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,已知BD 是ABC △的角平分线,ED 是BC 的垂直平分线,90BAC ∠=︒,3AD =,则CE 的长为( )A .6B .5C .4D .332.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙同学:它有8条棱.该模型的形状对应的立体图形可能是( )A .三棱柱B .四棱柱C .三棱锥D .四棱锥3.如图,AB ∥CD ,∠1=45°,∠3=80°,则∠2的度数为( )A .30°B .35°C .40°D .45°4.有理数a ,b 在数轴上的对应点如图所示,则下面式子中正确的是( )①b <0<a ; ②|b|<|a|; ③ab >0; ④a ﹣b >a+b .A .①②B .①④C .②③D .③④5.如图所示的几何体是由4 个大小相同的小立方体搭成,其俯视图是( )A .B .C .D .6.已知关于x 的一元二次方程(a+1)x 2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是( ) A .1一定不是关于x 的方程x 2+bx+a=0的根B .0一定不是关于x 的方程x 2+bx+a=0的根C .1和﹣1都是关于x 的方程x 2+bx+a=0的根D .1和﹣1不都是关于x 的方程x 2+bx+a=0的根7.如图,AB 切⊙O 于点B ,OA =23,AB =3,弦BC ∥OA ,则劣弧BC 的弧长为( )A .33πB .32πC .πD .32π 8.若△ABC 与△DEF 相似,相似比为2:3,则这两个三角形的面积比为( )A .2:3B .3:2C .4:9D .9:49.如图,直线a ∥b ,一块含60°角的直角三角板ABC (∠A =60°)按如图所示放置.若∠1=55°,则∠2的度数为( )A .105°B .110°C .115°D .120°10.为了支援地震灾区同学,某校开展捐书活动,九(1)班40名同学积极参与.现将捐书数量绘制成频数分布直方图如图所示,则捐书数量在5.5~6.5组别的频率是( )A .0.1B .0.2C .0.3D .0.4二、填空题(本题包括8个小题) 11.一个圆锥的侧面展开图是半径为6,圆心角为120°的扇形,那么这个圆锥的底面圆的半径为____. 12.如图,若点 A 的坐标为 ()1,3 ,则 sin 1∠ =________.13.如图,小军、小珠之间的距离为2.7 m ,他们在同一盏路灯下的影长分别为1.8 m ,1.5 m ,已知小军、小珠的身高分别为1.8 m ,1.5 m ,则路灯的高为____m.14.如图,边长为的正方形纸片剪出一个边长为m 的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为15.如图,直径为1000mm 的圆柱形水管有积水(阴影部分),水面的宽度AB 为800mm ,则水的最大深度CD 是______mm .16.将一副三角板如图放置,若20AOD ∠=,则BOC ∠的大小为______.17.已知23-是一元二次方程240x x c -+=的一个根,则方程的另一个根是________.18.如图,五边形ABCDE 是正五边形,若12l l //,则12∠-∠=__________.三、解答题(本题包括8个小题)19.(6分)一个不透明的口袋里装有分别标有汉字“美”、“丽”、“光”、“明”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.若从中任取一个球,求摸出球上的汉字刚好是“美”的概率;甲从中任取一球,不放回,再从中任取一球,请用树状图或列表法,求甲取出的两个球上的汉字恰能组成“美丽”或“光明”的概率.20.(6分)如图,AD 是⊙O 的直径,AB 为⊙O 的弦,OP ⊥AD ,OP 与AB 的延长线交于点P ,过B 点的切线交OP 于点C .求证:∠CBP=∠ADB .若OA=2,AB=1,求线段BP 的长.21.(6分)2013年6月,某中学结合广西中小学阅读素养评估活动,以“我最喜爱的书籍”为主题,对学生最喜爱的一种书籍类型进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题:在这次抽样调查中,一共调查了多少名学生?请把折线统计图(图1)补充完整;求出扇形统计图(图2)中,体育部分所对应的圆心角的度数; 如果这所中学共有学生1800名,那么请你估计最喜爱科普类书籍的学生人数.22.(8分)小马虎做一道数学题,“已知两个多项式24A x x =-,2234B x x =+-,试求2A B +.”其中多项式A 的二次项系数印刷不清楚.小马虎看答案以后知道2228A B x x +=+-,请你替小马虎求出系数“”;在(1)的基础上,小马虎已经将多项式A 正确求出,老师又给出了一个多项式C ,要求小马虎求出A C -的结果.小马虎在求解时,误把“A C -”看成“A C +”,结果求出的答案为262x x --.请你替小马虎求出“A C -”的正确答案.23.(8分)矩形AOBC 中,OB=4,OA=1.分别以OB ,OA 所在直线为x 轴,y 轴,建立如图1所示的平面直角坐标系.F是BC边上一个动点(不与B,C重合),过点F的反比例函数y=kx(k>0)的图象与边AC交于点E。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,小明要测量河内小岛B 到河边公路l 的距离,在A 点测得30BAD ∠=︒,在C 点测得60BCD ∠=︒,又测得50AC =米,则小岛B 到公路l 的距离为( )米.A .25B .253C .1003D .25253+2.下列图形是轴对称图形的有( )A .2个B .3个C .4个D .5个3.如图,在菱形ABCD 中,E 是AC 的中点,EF ∥CB ,交AB 于点F ,如果EF=3,那么菱形ABCD 的周长为( )A .24B .18C .12D .94.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是( ) A .49B .13C .29D .195.为确保信息安全,信息需加密传输,发送方将明文加密后传输给接收方,接收方收到密文后解密还原为明文,已知某种加密规则为,明文a ,b 对应的密文为a +2b ,2a -b ,例如:明文1,2对应的密文是5,0,当接收方收到的密文是1,7时,解密得到的明文是( ) A .3,-1B .1,-3C .-3,1D .-1,36.《九章算术》是中国古代数学专著,《九章算术》方程篇中有这样一道题:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,问几何步及之?”这是一道行程问题,意思是说:走路快的人走100步的时候,走路慢的才走了60步;走路慢的人先走100步,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?如果走路慢的人先走100步,设走路快的人要走 x 步才能追上走路慢的人,那么,下面所列方程正确的是( )A.x x10060100-=B.x x10010060-=C.x x10060100+=D.x x10010060+=7.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙同学:它有8条棱.该模型的形状对应的立体图形可能是()A.三棱柱B.四棱柱C.三棱锥D.四棱锥8.在△ABC中,∠C=90°,sinA=45,则tanB等于()A.43B.34C.35D.459.如图,数轴上有A,B,C,D四个点,其中表示互为倒数的点是()A.点A与点B B.点A与点D C.点B与点D D.点B与点C10.如图,在平面直角坐标系中,已知点A(―3,6)、B(―9,一3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(―1,2)B.(―9,18)C.(―9,18)或(9,―18)D.(―1,2)或(1,―2)二、填空题(本题包括8个小题)11.某种水果的售价为每千克a元,用面值为50元的人民币购买了3千克这种水果,应找回元(用含a的代数式表示).12.如图,在平面直角坐标系中,已知点A(﹣4,0)、B(0,3),对△AOB连续作旋转变换依次得到三角形(1)、(2)、(3)、(4)、…,则第(5)个三角形的直角顶点的坐标是_____,第(2018)个三角形的直角顶点的坐标是______.13.方程22310x x+-=的两个根为1x、2x,则1211+x x的值等于______.14.如图,PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P= 40°,则∠BAC=.15.已知线段a=4,线段b=9,则a,b的比例中项是_____.16.如图,有一个横截面边缘为抛物线的水泥门洞,门洞内的地面宽度为8m,两侧离地面4m高处各有一盏灯,两灯间的水平距离为6m,则这个门洞的高度为_______m.(精确到0.1m )17.为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示,按照这样的规律,摆第n个图,需用火柴棒的根数为_______________.18.甲乙两人进行飞镖比赛,每人各投5次,所得平均环数相等,其中甲所得环数的方差为15,乙所得环数如下:0,1,5,9,10,那么成绩较稳定的是_____(填“甲”或“乙”).三、解答题(本题包括8个小题)19.(6分)为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件元,出厂价为每件元,每月销售量(件)与销售单价(元)之间的关系近似满足一次函数:.李明在开始创业的第一个月将销售单价定为元,那么政府这个月为他承担的总差价为多少元?设李明获得的利润为(元),当销售单价定为多少元时,每月可获得最大利润?物价部门规定,这种节能灯的销售单价不得高于元.如果李明想要每月获得的利润不低于元,那么政府为他承担的总差价最少为多少元?20.(6分)如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C 的仰角为45°,已知OA=100米,山坡坡度(竖直高度与水平宽度的比)i=1:2,且O、A、B在同一条直线上.求电视塔OC的高度以及此人所在位置点P的铅直高度.(测倾器高度忽略不计,结果保留根号形式)21.(6分)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.求每台A型电脑和B型电脑的销售利润;该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y 元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.22.(8分)随着互联网的发展,同学们的学习习惯也有了改变,一些同学在做题遇到困难时,喜欢上网查找答案.针对这个问题,某校调查了部分学生对这种做法的意见(分为:赞成、无所谓、反对),并将调查结果绘制成图1和图2两个不完整的统计图.请根据图中提供的信息,解答下列问题:此次抽样调查中,共调查了多少名学生?将图1补充完整;求出扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数;根据抽样调查结果,请你估计该校1500名学生中有多少名学生持“无所谓”意见.23.(8分)为更精准地关爱留守学生,某学校将留守学生的各种情形分成四种类型:A.由父母一方照看;B.由爷爷奶奶照看;C.由叔姨等近亲照看;D.直接寄宿学校.某数学小组随机调查了一个班级,发现该班留守学生数量占全班总人数的20%,并将调查结果制成如下两幅不完整的统计图.该班共有名留守学生,B类型留守学生所在扇形的圆心角的度数为;将条形统计图补充完整;已知该校共有2400名学生,现学校打算对D类型的留守学生进行手拉手关爱活动,请你估计该校将有多少名留守学生在此关爱活动中受益?24.(10分)如图,在五边形ABCDE中,∠C=100°,∠D=75°,∠E=135°,AP平分∠EAB,BP平分∠ABC,求∠P的度数.25.(10分)已知2是关于x的方程x2﹣2mx+3m=0的一个根,且这个方程的两个根恰好是等腰△ABC的两条边长,则△ABC的周长为_____.26.(12分)水龙头关闭不紧会造成滴水,小明用可以显示水量的容器做图①所示的试验,并根据试验数据绘制出图②所示的容器内盛水量W(L)与滴水时间t(h)的函数关系图象,请结合图象解答下列问题:容器内原有水多少?求W与t之间的函数关系式,并计算在这种滴水状态下一天的滴水量是多少升?图① 图②参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.B【解析】【详解】解:过点B作BE⊥AD于E.设BE=x.∵∠BCD=60°,tan∠BCE BE=,CE3∴=,CE x在直角△ABE中,3x,AC=50米,3x x=,350x=解得253即小岛B到公路l的距离为253故选B.2.C【解析】试题分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;图(3)有二条对称轴,是轴对称图形,符合题意;图(3)有五条对称轴,是轴对称图形,符合题意;图(3)有一条对称轴,是轴对称图形,符合题意.故轴对称图形有4个.故选C.考点:轴对称图形.3.A【解析】【分析】易得BC长为EF长的2倍,那么菱形ABCD的周长=4BC问题得解.【详解】∵E是AC中点,∵EF∥BC,交AB于点F,∴EF是△ABC的中位线,∴BC=2EF=2×3=6,∴菱形ABCD的周长是4×6=24,故选A.【点睛】本题考查了三角形中位线的性质及菱形的周长公式,熟练掌握相关知识是解题的关键. 4.A【解析】【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到黄球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【详解】画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到黄球的有4种结果,∴两次都摸到黄球的概率为49,故选A.【点睛】此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.5.A【解析】【分析】根据题意可得方程组2127a ba b+=⎧⎨-=⎩,再解方程组即可.【详解】由题意得:21 27 a ba b+=⎧⎨-=⎩,解得:31 ab=⎧⎨=-⎩,故选A.6.B 【解析】解:设走路快的人要走x 步才能追上走路慢的人,根据题意得:10010060x x-=.故选B.点睛:本题考查了一元一次方程的应用.找准等量关系,列方程是关键.7.D【解析】试题分析:根据有四个三角形的面,且有8条棱,可知是四棱锥.而三棱柱有两个三角形的面,四棱柱没有三角形的面,三棱锥有四个三角形的面,但是只有6条棱.故选D考点:几何体的形状8.B【解析】法一,依题意△ABC为直角三角形,∴∠A+∠B=90°,∴cosB=45,∵22cos sin1B B+=,∴sinB=35,∵tanB=sincosBB=34故选B法2,依题意可设a=4,b=3,则c=5,∵tanb=34ba故选B9.A【解析】【详解】试题分析:主要考查倒数的定义和数轴,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.根据倒数定义可知,-2的倒数是-12,有数轴可知A对应的数为-2,B对应的数为-12,所以A与B是互为倒数.故选A.考点:1.倒数的定义;2.数轴.10.D 【解析】【详解】试题分析:方法一:∵△ABO和△A′B′O关于原点位似,∴△ ABO∽△A′B′O且OA'OA=13.∴A EAD=0E0D=1 3.∴A′E=13AD=2,OE=13OD=1.∴A′(-1,2).同理可得A′′(1,―2).方法二:∵点A(―3,6)且相似比为13,∴点A的对应点A′的坐标是(―3×13,6×13),∴A′(-1,2).∵点A′′和点A′(-1,2)关于原点O对称,∴A′′(1,―2).故答案选D.考点:位似变换.二、填空题(本题包括8个小题)11.(50-3a).【解析】试题解析:∵购买这种售价是每千克a元的水果3千克需3a元,∴根据题意,应找回(50-3a)元.考点:列代数式.12.(1645,125)(806845,125)【解析】【分析】利用勾股定理列式求出AB的长,再根据图形写出第(5)个三角形的直角顶点的坐标即可;观察图形不难发现,每3个三角形为一个循环组依次循环,用2018除以3,根据商和余数的情况确定出第(2018)个三角形的直角顶点到原点O的距离,然后写出坐标即可.【详解】∵点A(﹣4,0),B(0,3),∴OA=4,OB=3,∴,∴第(2)个三角形的直角顶点的坐标是(445,125); ∵5÷3=1余2,∴第(5)个三角形的直角顶点的坐标是(1645,125), ∵2018÷3=672余2,∴第(2018)个三角形是第672组的第二个直角三角形, 其直角顶点与第672组的第二个直角三角形顶点重合, ∴第(2018)个三角形的直角顶点的坐标是(806845,125). 故答案为:(1645,125);(806845,125) 【点睛】本题考查了坐标与图形变化-旋转,解题的关键是根据题意找出每3个三角形为一个循环组依次循环. 13.1. 【解析】 【分析】根据一元二次方程根与系数的关系求解即可. 【详解】解:根据题意得1232x x +=-,1212x x =-, 所以1211+x x =1212x x x x +=3212--=1. 故答案为1. 【点睛】本题考查了根与系数的关系:若1x 、2x 是一元二次方程20ax bx c ++=(a≠0)的两根时,12b x x a+=-,12c x x a=. 14.20° 【解析】 【分析】根据切线的性质可知∠PAC =90°,由切线长定理得PA =PB ,∠P =40°,求出∠PAB 的度数,用∠PAC ﹣∠PAB 得到∠BAC 的度数. 【详解】解:∵PA 是⊙O 的切线,AC 是⊙O 的直径,∴∠PAC =90°.∵PA ,PB 是⊙O 的切线,∴PA =PB .∵∠P =40°,∴∠PAB =(180°﹣∠P )÷2=(180°﹣40°)÷2=70°,∴∠BAC =∠PAC ﹣∠PAB =90°﹣70°=20°.故答案为20°.【点睛】本题考查了切线的性质,根据切线的性质和切线长定理进行计算求出角的度数.15.6【解析】【分析】根据已知线段a =4,b =9,设线段x 是a ,b 的比例中项,列出等式,利用两内项之积等于两外项之积即可得出答案.【详解】解:∵a =4,b =9,设线段x 是a ,b 的比例中项, ∴a x x b= , ∴x 2=ab =4×9=36,∴x =6,x =﹣6(舍去).故答案为6【点睛】本题主要考查比例线段问题,解题关键是利用两内项之积等于两外项之积解答.16.9.1【解析】【分析】建立直角坐标系,得到二次函数,门洞高度即为二次函数的顶点的纵坐标【详解】如图,以地面为x 轴,门洞中点为O 点,画出y 轴,建立直角坐标系由题意可知各点坐标为A (-4,0)B (4,0)D (-3,4)设抛物线解析式为y=ax 2+c (a≠0)把B 、D 两点带入解析式 可得解析式为2464y 77x =-+,则C (0,647) 所以门洞高度为647m≈9.1m【点睛】本题考查二次函数的简单应用,能够建立直角坐标系解出二次函数解析式是本题关键17.6n+1.【解析】寻找规律:不难发现,后一个图形比前一个图形多6根火柴棒,即:第1个图形有8根火柴棒,第1个图形有14=6×1+8根火柴棒,第3个图形有10=6×1+8根火柴棒,……,第n个图形有6n+1根火柴棒.18.甲.【解析】乙所得环数的平均数为:0159105++++=5,S2=1n[21x x(-)+22x x(-)+23x x(-)+…+2nx x(-)]=15[205(-)+215(-)+255(-)+295(-)+2105(-)]=16.4,甲的方差<乙的方差,所以甲较稳定.故答案为甲.点睛:要比较成绩稳定即比方差大小,方差越大,越不稳定;方差越小,越稳定.三、解答题(本题包括8个小题)19.(1)政府这个月为他承担的总差价为644元;(2)当销售单价定为34元时,每月可获得最大利润144元;(3)销售单价定为25元时,政府每个月为他承担的总差价最少为544元.【解析】试题分析:(1)把x=24代入y=﹣14x+544求出销售的件数,然后求出政府承担的成本价与出厂价之间的差价;(2)由利润=销售价﹣成本价,得w=(x﹣14)(﹣14x+544),把函数转化成顶点坐标式,根据二次函数的性质求出最大利润;(3)令﹣14x2+644x﹣5444=2,求出x的值,结合图象求出利润的范围,然后设设政府每个月为他承担的总差价为p元,根据一次函数的性质求出总差价的最小值.试题解析:(1)当x=24时,y=﹣14x+544=﹣14×24+544=344,344×(12﹣14)=344×2=644元,即政府这个月为他承担的总差价为644元;(2)依题意得,w=(x﹣14)(﹣14x+544)=﹣14x2+644x﹣5444=﹣14(x﹣34)2+144∵a=﹣14<4,∴当x=34时,w有最大值144元.即当销售单价定为34元时,每月可获得最大利润144元;(3)由题意得:﹣14x2+644x﹣5444=2,解得:x1=24,x2=1.∵a=﹣14<4,抛物线开口向下,∴结合图象可知:当24≤x≤1时,w≥2.又∵x≤25,∴当24≤x≤25时,w≥2.设政府每个月为他承担的总差价为p元,∴p=(12﹣14)×(﹣14x+544)=﹣24x+3.∵k=﹣24<4.∴p随x的增大而减小,∴当x=25时,p有最小值544元.即销售单价定为25元时,政府每个月为他承担的总差价最少为544元.考点:二次函数的应用.20.电视塔OC高为1003米,点P的铅直高度为)100313(米).【解析】【分析】过点P作PF⊥OC,垂足为F,在Rt△OAC中利用三角函数求出3根据山坡坡度=1:2表示出PB=x , AB =2x, 在Rt △PCF 中利用三角函数即可求解.【详解】过点P 作PF ⊥OC ,垂足为F .在Rt △OAC 中,由∠OAC =60°,OA =100,得OC =OA•tan ∠OAC =1003(米),过点P 作PB ⊥OA ,垂足为B .由i =1:2,设PB =x ,则AB =2x .∴PF =OB =100+2x ,CF =1003﹣x .在Rt △PCF 中,由∠CPF =45°,∴PF =CF ,即100+2x =1003﹣x ,∴x =10031003- ,即PB =10031003-米.【点睛】本题考查了特殊的直角三角形,三角函数的实际应用,中等难度,作出辅助线构造直角三角形并熟练应用三角函数是解题关键.21. (1) 每台A 型100元,每台B 150元;(2) 34台A 型和66台B 型;(3) 70台A 型电脑和30台B 型电脑的销售利润最大【解析】【分析】(1)设每台A 型电脑销售利润为a 元,每台B 型电脑的销售利润为b 元;根据题意列出方程组求解,(2)①据题意得,y=﹣50x+15000,②利用不等式求出x 的范围,又因为y=﹣50x+15000是减函数,所以x 取34,y 取最大值,(3)据题意得,y=(100+m )x ﹣150(100﹣x ),即y=(m ﹣50)x+15000,分三种情况讨论,①当0<m <50时,y 随x 的增大而减小,②m=50时,m ﹣50=0,y=15000,③当50<m <100时,m ﹣50>0,y 随x 的增大而增大,分别进行求解.【详解】解:(1)设每台A 型电脑销售利润为a 元,每台B 型电脑的销售利润为b 元;根据题意得解得100150 ab=⎧⎨=⎩答:每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元.(2)①据题意得,y=100x+150(100﹣x),即y=﹣50x+15000,②据题意得,100﹣x≤2x,解得x≥3313,∵y=﹣50x+15000,﹣50<0,∴y随x的增大而减小,∵x为正整数,∴当x=34时,y取最大值,则100﹣x=66,即商店购进34台A型电脑和66台B型电脑的销售利润最大.(3)据题意得,y=(100+m)x+150(100﹣x),即y=(m﹣50)x+15000,3313≤x≤70①当0<m<50时,y随x的增大而减小,∴当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大.②m=50时,m﹣50=0,y=15000,即商店购进A型电脑数量满足3313≤x≤70的整数时,均获得最大利润;③当50<m<100时,m﹣50>0,y随x的增大而增大,∴当x=70时,y取得最大值.即商店购进70台A型电脑和30台B型电脑的销售利润最大.【点睛】本题主要考查了一次函数的应用,二元一次方程组及一元一次不等式的应用,解题的关键是根据一次函数x值的增大而确定y值的增减情况.22.()1200名;()2见解析;()336;(4)375.【解析】【分析】()1根据统计图中的数据可以求得此次抽样调查中,共调查了多少名学生;()2根据()1中的结果和统计图中的数据可以求得反对的人数,从而可以将条形统计图补充完整;()3根据统计图中的数据可以求得扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数;()4根据统计图中的数据可以估计该校1500名学生中有多少名学生持“无所谓”意见.【详解】解:()113065%200÷=,答:此次抽样调查中,共调查了200名学生;()2反对的人数为:2001305020--=,补全的条形统计图如右图所示;()3扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数是:2036036200⨯=;(4)50 1500375200⨯=,答:该校1500名学生中有375名学生持“无所谓”意见.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.23.(1)10,144;(2)详见解析;(3)96【解析】【分析】(1)依据C类型的人数以及百分比,即可得到该班留守的学生数量,依据B类型留守学生所占的百分比,即可得到其所在扇形的圆心角的度数;(2)依据D类型留守学生的数量,即可将条形统计图补充完整;(3)依据D类型的留守学生所占的百分比,即可估计该校将有多少名留守学生在此关爱活动中受益.【详解】解:(1)2÷20%=10(人),410×100%×360°=144°,故答案为10,144;(2)10﹣2﹣4﹣2=2(人),如图所示:(3)2400×210×20%=96(人),答:估计该校将有96名留守学生在此关爱活动中受益.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.24.65°【解析】∵∠EAB+∠ABC+∠C+∠D+∠E=(5-2)×180°=540°,∠C=100°,∠D=75°,∠E=135°,∴∠EAB+∠ABC=540°-∠C-∠D-∠E=230°.∵AP平分∠EAB,∴∠PAB=12∠EAB.同理可得,∠ABP=12∠ABC.∵∠P+∠PAB+∠PBA=180°,∴∠P=180°-∠PAB-∠PBA=180°-12∠EAB-12∠ABC=180°-12(∠EAB+∠ABC)=180°-12×230°=65°.25.11【解析】【分析】将x=2代入方程找出关于m的一元一次方程,解一元一次方程即可得出m的值,将m的值代入原方程解方程找出方程的解,再根据等腰三角形的性质结合三角形的三边关系即可得出三角形的三条边,根据三角形的周长公式即可得出结论.【详解】将x=2代入方程,得:1﹣1m+3m=0,解得:m=1.当m=1时,原方程为x2﹣8x+12=(x﹣2)(x﹣6)=0,解得:x1=2,x2=6,∵2+2=1<6,∴此等腰三角形的三边为6、6、2,∴此等腰三角形的周长C=6+6+2=11.【点睛】考点:根与系数的关系;一元二次方程的解;等腰三角形的性质26.(1)0.3 L;(2)在这种滴水状态下一天的滴水量为9.6 L.【解析】【分析】(1)根据点()0,0.3的实际意义可得;(2)设W 与t 之间的函数关系式为W kt b =+,待定系数法求解可得,计算出24t =时W 的值,再减去容器内原有的水量即可.【详解】(1)由图象可知,容器内原有水0.3 L.(2)由图象可知W 与t 之间的函数图象经过点(0,0.3),故设函数关系式为W =kt +0.3.又因为函数图象经过点(1.5,0.9),代入函数关系式,得1.5k +0.3=0.9,解得k =0.4.故W 与t 之间的函数关系式为W =0.4t +0.3.当t =24时,W =0.4×24+0.3=9.9(L ),9.9-0.3=9.6(L ),即在这种滴水状态下一天的滴水量为9.6 L.【点睛】本题考查了一次函数的应用,关键是利用待定系数法正确求出一次函数的解析式.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,线段AB 两个端点的坐标分别为A (2,2)、B (3,1),以原点O 为位似中心,在第一象限内将线段AB 扩大为原来的2倍后得到线段CD ,则端点C 的坐标分别为( )A .(4,4)B .(3,3)C .(3,1)D .(4,1)2.已知抛物线y =x 2+3向左平移2个单位,那么平移后的抛物线表达式是( )A .y =(x+2)2+3B .y =(x ﹣2)2+3C .y =x 2+1D .y =x 2+53.函数228y x x m =--+的图象上有两点()11,A x y ,()22,B x y ,若122x x <<-,则( )A .12y y <B .12y y >C .12 y y =D .1y 、2y 的大小不确定4.如图,AB 是⊙O 的直径,点E 为BC 的中点,AB=4,∠BED=120°,则图中阴影部分的面积之和为( )A .1B .3C .3D .235.第 24 届冬奥会将于 2022 年在北京和张家口举行,冬奥会的项目有滑雪(如跳台滑雪、高山滑雪、单板滑雪等)、滑冰(如短道速滑、速度滑冰、花样滑冰等)、冰球、冰壶等.如图,有 5 张形状、大小、质地均相同的卡片,正面分别印有高山滑雪、速度滑冰、冰球、单板滑雪、冰壶五种不同的图案,背面完全相同.现将这 5 张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面恰好是滑雪项目图案的概率是( )A .15B .25C .12D .356.如图,在△ABC 中,AB=AC=5,BC=6,点M 为BC 的中点,MN ⊥AC 于点N ,则MN 等于( )A.125B.95C.65D.1657.若数a使关于x的不等式组()3x a2x11x2x2⎧-≥--⎪⎨--≥⎪⎩有解且所有解都是2x+6>0的解,且使关于y的分式方程y51y--+3=ay1-有整数解,则满足条件的所有整数a的个数是()A.5 B.4 C.3 D.28.下列各式:①a0=1 ②a2·a3=a5 ③ 2–2= –14④–(3-5)+(–2)4÷8×(–1)=0⑤x2+x2=2x2,其中正确的是( ) A.①②③B.①③⑤C.②③④D.②④⑤9.下列图形是轴对称图形的有()A.2个B.3个C.4个D.5个10.一、单选题在反比例函数4yx=的图象中,阴影部分的面积不等于4的是()A.B.C.D.二、填空题(本题包括8个小题)11.用一个半径为10cm半圆纸片围成一个圆锥的侧面(接缝忽略不计),则该圆锥的高为.12.如图,在平行四边形ABCD中,E为边BC上一点,AC与DE相交于点F,若CE=2EB,S△AFD=9,则S△EFC 等于_____.13.如图,点D、E、F分别位于△ABC的三边上,满足DE∥BC,EF∥AB,如果AD:DB=3:2,那么BF:FC=_____.14.有一个计算程序,每次运算都是把一个数先乘2,再除以它与1的和,多次重复进行这种运算的过程如下:则第n次的运算结果是____________(用含字母x和n的代数式表示).15.因式分解:32a ab=_______________.16.已知一个菱形的边长为5,其中一条对角线长为8,则这个菱形的面积为_____.17.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B'处,当△CEB'为直角三角形时,BE的长为.18.下图是在正方形网格中按规律填成的阴影,根据此规律,则第n个图中阴影部分小正方形的个数是.三、解答题(本题包括8个小题)19.(6分)在锐角△ABC中,边BC长为18,高AD长为12如图,矩形EFCH的边GH在BC边上,其余两个顶点E、F分别在AB、AC边上,EF交AD于点K,求EFAK的值;设EH=x,矩形EFGH的面积为S,求S与x的函数关系式,并求S的最大值.20.(6分)已知△OAB在平面直角坐标系中的位置如图所示.请解答以下问题:按要求作图:先将△ABO绕原点O 逆时针旋转90°得△OA 1B 1,再以原点O 为位似中心,将△OA 1B 1在原点异侧按位似比2:1进行放大得到△OA 2B 2;直接写出点A 1的坐标,点A 2的坐标.21.(6分)已知2410x x --=,求代数式22(23)()()x x y x y y --+--的值. 22.(8分)如图,足球场上守门员在O 处开出一高球,球从离地面1米的A 处飞出(A 在y 轴上),运动员乙在距O 点6米的B 处发现球在自己头的正上方达到最高点M ,距地面约4米高,球落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.求足球开始飞出到第一次落地时,该抛物线的表达式.足球第一次落地点C 距守门员多少米?(取437=)运动员乙要抢到第二个落点D ,他应再向前跑多少米? 23.(8分)我市某中学艺术节期间,向全校学生征集书画作品.九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.王老师采取的调查方式是 (填“普查”或“抽样调查”),王老师所调查的4个班征集到作品共 件,其中b 班征集到作品 件,请把图2补充完整;王老师所调查的四个班平均每个班征集作品多少件?请估计全年级共征集到作品多少件?如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生.现在要在其中抽两人去参加学校总结表彰座谈会,请直接写出恰好抽中一男一女的概率.24.(10分)已知C 为线段AB 上一点,关于x 的两个方程()112x m +=与()23x m m +=的解分别为线段AC BC ,的长,当2m =时,求线段AB 的长;若C 为线段AB 的三等分点,求m 的值.25.(10分)如图,在四边形ABCD 中,AB=BC=1,CD=3,DA=1,且∠B=90°,求:∠BAD 的度数;四边形ABCD 的面积(结果保留根号).26.(12分)如图所示,点B 、F 、C 、E 在同一直线上,AB ⊥BE ,DE ⊥BE ,连接AC 、DF ,且AC=DF ,BF=CE ,求证:AB=DE .参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.A【解析】【分析】利用位似图形的性质结合对应点坐标与位似比的关系得出C 点坐标.【详解】∵以原点O 为位似中心,在第一象限内将线段AB 扩大为原来的2倍后得到线段CD ,。

相关文档
最新文档