2016年浙江省宁波市宁海县数学中考模拟试卷及参考答案PDF
浙江省宁波市 2016年中考数学真题试卷附解析
2016年浙江省宁波市中考数学试卷参考答案与试题解析一、选择题1 . (2016·浙江宁波)6的相反数是()A.﹣6 B.C.﹣D.6【考点】相反数.【分析】依据相反数的定义求解即可.【解答】解:6的相反数是﹣6.故选:A.【点评】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.(2016·浙江宁波)下列计算正确的是()A.a3+a3=a6B.3a﹣a=3 C.(a3)2=a5D.a•a2=a3【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】根据同类项合并、幂的乘方和同底数幂的乘法计算即可.【解答】解:A、a3+a3=2a3,错误;B、3a﹣a=2a,错误;C、(a3)2=a6,错误;D、a•a2=a3,正确;故选D.【点评】此题考查同类项合并、幂的乘方和同底数幂的乘法,关键是根据同类项合并、幂的乘方和同底数幂的乘法的定义解答.3.(2016·浙江宁波)宁波栎社国际机场三期扩建工程建设总投资84.5亿元,其中84.5亿元用科学记数法表示为()A.0.845×1010元B.84.5×108元C.8.45×109元D.8.45×1010元【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于84.5亿有10位,所以可以确定n=10﹣1=9.【解答】解:84.5亿元用科学记数法表示为8.45×109元.故选:C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.(2016·浙江宁波)使二次根式有意义的x的取值范围是()A.x≠1 B.x>1 C.x≤1 D.x≥1【考点】二次根式有意义的条件.【分析】根据二次根式中的被开方数必须是非负数列出不等式,解不等式即可.【解答】解:由题意得,x﹣1≥0,解得x≥1,故选:D.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.5.(2016·浙江宁波)如图所示的几何体的主视图为()A.B. C.D.【考点】简单几何体的三视图.【分析】利用主视图的定义,即从几何体的正面观察得出视图即可.【解答】解:如图所示:几何体的主视图为:.故选:B.【点评】此题主要考查了简单几何体的三视图,正确把握观察角度是解题关键.6.(2016·浙江宁波)一个不透明布袋里装有1个白球、2个黑球、3个红球,它们除颜色外均相同.从中任意摸出一个球,则是红球的概率为()A.B.C.D.【考点】概率公式.【分析】让红球的个数除以球的总数即为摸到红球的概率.【解答】解:1个白球、2个黑球、3个红球一共是1+2+3=6个,从中任意摸出一个球,则摸出的球是红球的概率是3÷6=.故选:C.【点评】考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.7.(2016·浙江宁波)某班10名学生的校服尺寸与对应人数如表所示:则这10名学生校服尺寸的众数和中位数分别为()A.165cm,165cm B.165cm,170cm C.170cm,165cm D.170cm,170cm【考点】众数;中位数.【专题】统计与概率.【分析】根据表格可以直接得到这10名学生校服尺寸的众数,然后将表格中数据按从小到大的顺序排列即可得到中位数.【解答】解:由表格可知,这10名学生校服尺寸的众数是165cm,这10名学生校服尺寸按从小到大排列是:160、165、165、165、170、170、175、175、180、180,故这10名学生校服尺寸的中位数是:cm,故选B.【点评】本题考查众数和中位数,解题的关键是明确众数和中位数的定义,会求一组数据的众数和中位数.8.(2016·浙江宁波)如图,在△ABC中,∠ACB=90°,CD∥AB,∠ACD=40°,则∠B的度数为()A.40°B.50°C.60°D.70°【考点】平行线的性质.【分析】由CD∥AB,∠ACD=40°,根据两直线平行,内错角相等,即可求得∠A度数,继而求得答案.【解答】解:∵CD∥AB,∠ACD=40°,∴∠A=∠ACD=40°,∵在△ABC中,∠ACB=90°,∴∠B=90°﹣∠A=50°.故选B.【点评】此题考查了平行线的性质以及三角形内角和定理.注意两直线平行,内错角相等.9.(2016·浙江宁波)如图,圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为()A.30πcm2B.48πcm2C.60πcm2D.80πcm2【考点】圆锥的计算.【专题】与圆有关的计算.【分析】首先利用勾股定理求出圆锥的母线长,再通过圆锥侧面积公式可以求得结果.【解答】解:∵h=8,r=6,可设圆锥母线长为l,由勾股定理,l==10,=×2×6π×10=60π,圆锥侧面展开图的面积为:S侧所以圆锥的侧面积为60πcm2.故选:C.【点评】本题主要考察圆锥侧面积的计算公式,解题关键是利用底面半径及高求出母线长即可.10.(2016·浙江宁波)能说明命题“对于任何实数a,|a|>﹣a”是假命题的一个反例可以是()A.a=﹣2 B.a=C.a=1 D.a=【考点】命题与定理.【分析】反例就是符合已知条件但不满足结论的例子.可据此判断出正确的选项.【解答】解:说明命题“对于任何实数a,|a|>﹣a”是假命题的一个反例可以是a=﹣2,故选A.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.11.(2016·浙江宁波)已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A.当a=1时,函数图象过点(﹣1,1)B.当a=﹣2时,函数图象与x轴没有交点C.若a>0,则当x≥1时,y随x的增大而减小D.若a<0,则当x≤1时,y随x的增大而增大【考点】二次函数的性质.【分析】把a=1,x=﹣1代入y=ax2﹣2ax﹣1,于是得到函数图象不经过点(﹣1,1),根据△=8>0,得到函数图象与x轴有两个交点,根据抛物线的对称轴为直线x=﹣=1判断二次函数的增减性.【解答】解:A、∵当a=1,x=﹣1时,y=1+2﹣1=2,∴函数图象不经过点(﹣1,1),故错误;B、当a=﹣2时,∵△=42﹣4×(﹣2)×(﹣1)=8>0,∴函数图象与x轴有两个交点,故错误;C、∵抛物线的对称轴为直线x=﹣=1,∴若a>0,则当x≥1时,y随x的增大而增大,故错误;D、∵抛物线的对称轴为直线x=﹣=1,∴若a<0,则当x≤1时,y随x的增大而增大,故正确;故选D.【点评】本题考查的是二次函数的性质,熟练掌握二次函数的性质是解题的关键.12.(2016·浙江宁波)如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积一定可以表示为()A.4S1B.4S2C.4S2+S3D.3S1+4S3【考点】平行四边形的性质.【分析】设等腰直角三角形的直角边为a,正方形边长为c,求出S2(用a、c表示),得出S1,S2,S3之间的关系,由此即可解决问题.【解答】解:设等腰直角三角形的直角边为a,正方形边长为c,则S2=(a+c)(a﹣c)=a2﹣c2,∴S2=S1﹣S3,∴S3=2S1﹣2S2,∴平行四边形面积=2S1+2S2+S3=2S1+2S2+2S1﹣2S2=4S1.故选A.【点评】本题考查平行四边形的性质、直角三角形的面积等知识,解题的关键是求出S1,S2,S3之间的关系,属于中考常考题型.二、填空题13.(2016·浙江宁波)实数﹣27的立方根是﹣3.【考点】立方根.【分析】由立方根的定义和乘方的关系容易得出结果.【解答】解:∵(﹣3)3=﹣27,∴实数﹣27的立方根是﹣3.故答案为:﹣3.【点评】本题考查了立方根的定义、乘方的意义;熟练掌握立方根的定义是解决问题的关键.14.(2016·浙江宁波)分解因式:x2﹣xy=x(x﹣y).【考点】因式分解-提公因式法.【分析】根据观察可知公因式是x,因此提出x即可得出答案.【解答】解:x2﹣xy=x(x﹣y).【点评】此题考查的是对公因式的提取.通过观察可以得出公因式,然后就可以解题.观察法是解此类题目常见的办法.15.(2016·浙江宁波)下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案①需8根火柴棒,图案②需15根火柴棒,…,按此规律,图案⑦需50根火柴棒.【考点】规律型:图形的变化类.【分析】根据图案①、②、③中火柴棒的数量可知,第1个图形中火柴棒有8根,每多一个多边形就多7根火柴棒,由此可知第n个图案需火柴棒8+7(n﹣1)=7n+1根,令n=7可得答案.【解答】解:∵图案①需火柴棒:8根;图案②需火柴棒:8+7=15根;图案③需火柴棒:8+7+7=22根;…∴图案n需火柴棒:8+7(n﹣1)=7n+1根;当n=7时,7n+1=7×7+1=50,∴图案⑦需50根火柴棒;故答案为:50.【点评】此题主要考查了图形的变化类,解决此类题目的关键在于图形在变化过程中准确抓住不变的部分和变化的部分,变化部分是以何种规律变化.16.(2016·浙江宁波)如图,在一次数学课外实践活动中,小聪在距离旗杆10m的A处测得旗杆顶端B的仰角为60°,测角仪高AD为1m,则旗杆高BC为10+1m(结果保留根号).【考点】解直角三角形的应用-仰角俯角问题.【分析】首先过点A作AE∥DC,交BC于点E,则AE=CD=10m,CE=AD=1m,然后在Rt△BAE中,∠BAE=60°,然后由三角形函数的知识求得BE的长,继而求得答案.【解答】解:如图,过点A作AE∥DC,交BC于点E,则AE=CD=10m,CE=AD=1m,∵在Rt△BAE中,∠BAE=60°,∴BE=AE•tan60°=10(m),∴BC=CE+BE=10+1(m ).∴旗杆高BC 为10+1m .故答案为:10+1.【点评】本题考查仰角的定义.注意能借助仰角构造直角三角形并解直角三角形是解此题的关键.17.(2016·浙江宁波)如图,半圆O 的直径AB=2,弦CD ∥AB ,∠COD=90°,则图中阴影部分的面积为.【考点】扇形面积的计算. 【分析】由CD ∥AB 可知,点A 、O 到直线CD 的距离相等,结合同底等高的三角形面积相等即可得出S △ACD =S △OCD ,进而得出S 阴影=S 扇形COD ,根据扇形的面积公式即可得出结论.【解答】解:∵弦CD ∥AB ,∴S △ACD =S △OCD ,∴S 阴影=S 扇形COD =•π•=×π×=.故答案为:. 【点评】本题考查了扇形面积的计算以及平行线的性质,解题的关键是找出S 阴影=S 扇形COD .本题属于基础题,难度不大,解决该题型题目时,通过分割图形找出面积之间的关系是关键.18.(2016·浙江宁波)如图,点A 为函数y=(x >0)图象上一点,连结OA ,交函数y=(x >0)的图象于点B ,点C 是x 轴上一点,且AO=AC ,则△ABC 的面积为 6 .【考点】反比例函数的图象;三角形的面积;等腰三角形的性质.【专题】推理填空题.【分析】根据题意可以分别设出点A、点B的坐标,根据点O、A、B在同一条直线上可以得到A、B的坐标之间的关系,由AO=AC可知点C的横坐标是点A的横坐标的2倍,从而可以得到△ABC的面积.【解答】解:设点A的坐标为(a,),点B的坐标为(b,),∵点C是x轴上一点,且AO=AC,∴点C的坐标是(2a,0),设过点O(0,0),A(a,)的直线的解析式为:y=kx,∴,解得,k=,又∵点B(b,)在y=上,∴,解得,或(舍去),∴S△ABC=S△AOC﹣S△OBC==,故答案为:6.【点评】本题考查反比例函数的图象、三角形的面积、等腰三角形的性质,解题的关键是明确题意,找出所求问题需要的条件.三、解答题(本大题有8小题,满分78分)19.(2016·浙江宁波)先化简,再求值:(x+1)(x﹣1)+x(3﹣x),其中x=2.【考点】整式的混合运算—化简求值.【分析】利用平方差公式和单项式乘多项式将原式展开,再合并同类项即可化简,把x的值代入计算即可.【解答】解:原式=x2﹣1+3x﹣x2=3x﹣1,当x=2时,原式=3×2﹣1=5.【点评】本题考查了整式的混合运算和求值的应用,能正确运用整式的运算法则进行化简是解此题的关键.20.(2016·浙江宁波)下列3×3网格图都是由9个相同的小正方形组成,每个网格图中有3个小正方形已涂上阴影,请在余下的6个空白小正方形中,按下列要求涂上阴影:(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形,但不是中心对称图形.(2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形.(3)选取2个涂上阴影,使5个阴影小正方形组成一个轴对称图形.(请将三个小题依次作答在图1、图2、图3中,均只需画出符合条件的一种情形)【考点】作图—应用与设计作图;轴对称的性质;中心对称.【分析】(1)根据轴对称定义,在最上一行中间一列涂上阴影即可;(2)根据中心对称定义,在最下一行、最右一列涂上阴影即可;(3)在最上一行、中间一列,中间一行、最右一列涂上阴影即可.【解答】解:(1)如图1所示;(2)如图2所示;(3)如图3所示.【点评】本题主要考查轴对称图形和中心对称图形,掌握轴对称图形和中心对称图形定义是解题的关键.21.(2016·浙江宁波)为深化义务教育课程改革,某校积极开展拓展性课程建设,计划开设艺术、体育、劳技、文学等多个类别的拓展性课程,要求每一位学生都自主选择一个类别的拓展性课程.为了了解学生选择拓展性课程的情况,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图(部分信息未给出):根据统计图中的信息,解答下列问题:(1)求本次被调查的学生人数.(2)将条形统计图补充完整.(3)若该校共有1600名学生,请估计全校选择体育类的学生人数.【考点】条形统计图;用样本估计总体;扇形统计图.【专题】统计与概率.【分析】(1)根据条形统计图和扇形统计图可知选择劳技的学生60人,占总体的30%,从而可以求得调查学生人数;(2)根据文学的百分比和(1)中求得的学生调查数可以求得文学的有多少人,从而可以求得体育的多少人,进而可以将条形统计图补充完整;(3)根据调查的选择体育的学生所占的百分比可以估算出全校选择体育类的学生人数.【解答】解:(1)60÷30%=200(人),即本次被调查的学生有200人;(2)选择文学的学生有:200×15%=30(人),选择体育的学生有:200﹣24﹣60﹣30﹣16=70(人),补全的条形统计图如下图所示,(3)1600×(人).即全校选择体育类的学生有560人.【点评】本题考查条形统计图、用样本估计总体、扇形统计图,解题的关键是明确题意,找出所求问题需要的条件、利用数形结合的思想解答问题.22.(2016·浙江宁波)如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.【考点】二次函数的性质.【专题】动点型.【分析】(1)首先把点B的坐标为(3,0)代入抛物线y=﹣x2+mx+3,利用待定系数法即可求得m的值,继而求得抛物线的顶点坐标;(2)首先连接BC交抛物线对称轴l于点P,则此时PA+PC的值最小,然后利用待定系数法求得直线BC 的解析式,继而求得答案.【解答】解:(1)把点B的坐标为(3,0)代入抛物线y=﹣x2+mx+3得:0=﹣32+3m+3,解得:m=2,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点坐标为:(1,4).(2)连接BC交抛物线对称轴l于点P,则此时PA+PC的值最小,设直线BC的解析式为:y=kx+b,∵点C(0,3),点B(3,0),∴,解得:,∴直线BC的解析式为:y=﹣x+3,当x=1时,y=﹣1+3=2,∴当PA+PC的值最小时,求点P的坐标为:(1,2).【点评】此题考查了二次函数的性质、待定系数法求解析式以及距离最短问题.注意找到点P的位置是解此题的关键.23.(2016·浙江宁波)如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D 作DE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线.(2)求DE的长.【考点】切线的判定.【分析】(1)连接OD,欲证明DE是⊙O的切线,只要证明OD⊥DE即可.(2)过点O作OF⊥AC于点F,只要证明四边形OFED是矩形即可得到DE=OF,在RT△AOF中利用勾股定理求出OF即可.【解答】证明:(1)连接OD,∵AD平分∠BAC,∴∠DAE=∠DAB,∵OA=OD,∴∠ODA=∠DAO,∴∠ODA=∠DAE,∴OD∥AE,∵DE⊥AC,∴OD⊥DE,∴DE是⊙O切线.(2)过点O作OF⊥AC于点F,∴AF=CF=3,∴OF===4.∵∠OFE=∠DEF=∠ODE=90°,∴四边形OFED是矩形,∴DE=OF=4.【点评】本题考查切线的判定、矩形的判定和性质、垂径定理、勾股定理等知识,解题的关键是记住切线的判定方法,学会添加常用辅助线,属于基础题,中考常考题型.24.(2016·浙江宁波)某商场销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如表所示该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元.(1)该商场计划购进A,B两种品牌的教学设备各多少套?(2)通过市场调研,该商场决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少的数量的1.5倍.若用于购进这两种教学设备的总资金不超过69万元,问A种设备购进数量至多减少多少套?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)首先设该商场计划购进A,B两种品牌的教学设备分别为x套,y套,根据题意即可列方程组,解此方程组即可求得答案;(2)首先设A种设备购进数量减少a套,则A种设备购进数量增加1.5a套,根据题意即可列不等式1.5(20﹣a)+1.2(30+1.5a)≤69,解此不等式组即可求得答案.【解答】解:(1)设该商场计划购进A,B两种品牌的教学设备分别为x套,y套,,解得:,答:该商场计划购进A,B两种品牌的教学设备分别为20套,30套;(2)设A种设备购进数量减少a套,则A种设备购进数量增加1.5a套,1.5(20﹣a)+1.2(30+1.5a)≤69,解得:a≤10,答:A种设备购进数量至多减少10套.【点评】此题考查了一元一次不等式与二元一次方程组的应用.注意根据题意找到等量关系是关键.25.从三角形(不是等腰三角形)一个顶点引出一条射线于对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线.(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB的度数.(3)如图2,△ABC中,AC=2,BC=,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.【考点】相似三角形的判定与性质.【专题】新定义.【分析】(1)根据完美分割线的定义只要证明①△ABC不是等腰三角形,②△ACD是等腰三角形,③△BDC∽△BCA即可.(2)分三种情形讨论即可①如图2,当AD=CD时,②如图3中,当AD=AC时,③如图4中,当AC=CD 时,分别求出∠ACB即可.(3)设BD=x,利用△BCD∽△BAC,得=,列出方程即可解决问题.【解答】解:(1)如图1中,∵∠A=40°,∠B=60°,∴∠ACB=80°,∴△ABC不是等腰三角形,∵CD平分∠ACB,∴∠ACD=∠BCD=∠ACB=40°,∴∠ACD=∠A=40°,∴△ACD为等腰三角形,∵∠DCB=∠A=40°,∠CBD=∠ABC,∴△BCD∽△BAC,∴CD是△ABC的完美分割线.(2)①当AD=CD时,如图2,∠ACD=∠A=45°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=96°.②当AD=AC时,如图3中,∠ACD=∠ADC==66°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=114°.③当AC=CD时,如图4中,∠ADC=∠A=48°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∵∠ADC>∠BCD,矛盾,舍弃.∴∠ACB=96°或114°.(3)由已知AC=AD=2,∵△BCD∽△BAC,∴=,设BD=x,∴()2=x(x+2),∵x>0,∴x=﹣1,∵△BCD∽△BAC,∴==,∴CD=×2=﹣.【点评】本题考查相似三角形的判定和性质、等腰三角形的性质等知识,解题的关键是理解题意,学会分类讨论思想,属于中考常考题型.26.如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(5,0),菱形OABC的顶点B,C都在第一象限,tan∠AOC=,将菱形绕点A按顺时针方向旋转角α(0°<∠α<∠AOC)得到菱形FADE(点O的对应点为点F),EF与OC交于点G,连结AG.(1)求点B的坐标.(2)当OG=4时,求AG的长.(3)求证:GA平分∠OGE.(4)连结BD并延长交x轴于点P,当点P的坐标为(12,0)时,求点G的坐标.【考点】四边形综合题.【分析】(1)如图1,过点B作BH⊥x轴于点H,构建直角△ABH,所以利用菱形的四条边相等的性质和解该直角三角形得到AH、BH的长度,则易求点B的坐标;(2)如图1,过点A作AM⊥OC于点M,构建直角△OAM和直角△AMG,通过解直角△OAM求得直角边AM的长度,然后结合图形和勾股定理来求AG的长度;(3)如图1,过点A作AM⊥OC于点M,构建全等三角形:△AOM≌△AFN(ASA),利用该全等三角形的对应边相等得到AM=AN,最后结合角平分线的性质证得结论;(4)如图2,过点G作GQ⊥x轴于点Q,构建相似三角形:△GOA∽△BAP,根据该相似三角形的对应边成比例得到求得GQ的长度.结合已知条件tan∠AOC=,来求边OQ的长度,即可得到点G的坐标.【解答】解:(1)如图1,过点B作BH⊥x轴于点H,∵四边形OABC为菱形,∴OC∥AB,∴∠BAH=∠COA.∵tan∠AOC=,∴tan∠BAH=.又∵在直角△BAH中,AB=5,∴BH=AB=4,AH=AB=3,∴OH=OA+AH=5+3=8,∴点B的坐标为(8,4);(2)如图1,过点A作AM⊥OC于点M,在直角△AOM中,∵tan∠AOC=,OA=5,∴AM=OA=4,OM=OA=3,∵OG=4,∴GM=OG﹣OM=4﹣3=1,∴AG===;(3)如图1,过点A作AN⊥EF于点N,∵在△AOM与△AFN中,,∴△AOM≌△AFN(ASA),∴AM=AN,∴GA平分∠OGE.(4)如图2,过点G作GQ⊥x轴于点Q,由旋转可知:∠OAF=∠BAD=α.∵AB=AD,∴∠ABP=,∵∠AOT=∠F,∠OTA=∠GTF,∴∠OGA=∠EGA=,∴∠OGA=ABP,又∵∠GOA=∠BAP,∴△GOA∽△BAP,∴=,∴GQ=×4=.∵tan∠AOC=,∴OQ=×=,∴G(,).【点评】本题考查了四边形综合题.解题过程中,涉及到了全等三角形的判定与性质,相似三角形的判定与性质,旋转的性质,解直角三角形以及勾股定理等知识点,解答该题的难点在于作出辅助线,构建相关的图形的性质.2016年广西南宁市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(2016·广西南宁)﹣2的相反数是()A.﹣2 B.0 C.2 D.4【考点】相反数.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:﹣2的相反数是2.故选C.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.(2016·广西南宁)把一个正六棱柱如图1摆放,光线由上向下照射此正六棱柱时的正投影是()A.B.C.D.【考点】平行投影.【分析】根据平行投影特点以及图中正六棱柱的摆放位置即可求解.【解答】解:把一个正六棱柱如图摆放,光线由上向下照射此正六棱柱时的正投影是正六边形.故选A.【点评】本题考查了平行投影特点,不同位置,不同时间,影子的大小、形状可能不同,具体形状应按照物体的外形即光线情况而定.3.(2016·广西南宁)据《南国早报》报道:2016年广西高考报名人数约为332000人,创历史新高,其中数据332000用科学记数法表示为()A.0.332×106B.3.32×105C.3.32×104D.33.2×104【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将332000用科学记数法表示为:3.32×105.故选:B.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.4.(2016·广西南宁)已知正比例函数y=3x的图象经过点(1,m),则m的值为()A.B.3 C.﹣D.﹣3【考点】一次函数图象上点的坐标特征.【分析】本题较为简单,把坐标代入解析式即可求出m的值.【解答】解:把点(1,m)代入y=3x,可得:m=3,故选B【点评】此题考查一次函数的问题,利用待定系数法直接代入求出未知系数m,比较简单.5.(2016·广西南宁)某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是()A.80分B.82分C.84分D.86分【考点】加权平均数.【分析】利用加权平均数的公式直接计算即可得出答案.【解答】解:由加权平均数的公式可知===86,故选D.【点评】本题主要考查加权平均数的计算,掌握加权平均数的公式=是解题的关键.6.(2016·广西南宁)如图,厂房屋顶人字形(等腰三角形)钢架的跨度BC=10米,∠B=36°,则中柱AD (D为底边中点)的长是()A.5sin36°米B.5cos36°米C.5tan36°米D.10tan36°米【考点】解直角三角形的应用.【分析】根据等腰三角形的性质得到DC=BD=5米,在Rt△ABD中,利用∠B的正切进行计算即可得到AD的长度.【解答】解:∵AB=AC,AD⊥BC,BC=10米,∴DC=BD=5米,在Rt△ADC中,∠B=36°,∴tan36°=,即AD=BD•tan36°=5tan36°(米).故选:C.【点评】本题考查了解直角三角形的应用.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.7.(2016·广西南宁)下列运算正确的是()A.a2﹣a=a B.ax+ay=axy C.m2•m4=m6D.(y3)2=y5【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】结合选项分别进行幂的乘方与积的乘方、合并同类项、同底数幂的乘法等运算,然后选择正确答案.【解答】解:A、a2和a不是同类项,不能合并,故本选项错误;B、ax和ay不是同类项,不能合并,故本选项错误;C、m2•m4=m6,计算正确,故本选项正确;D、(y3)2=y6≠y5,故本选项错误.故选C.【点评】本题考查了幂的乘方与积的乘方、合并同类项、同底数幂的乘法的知识,解答本题的关键在于掌握各知识点的运算法则.8.(2016·广西南宁)下列各曲线中表示y是x的函数的是()A.B.C.D.【考点】函数的概念.【分析】根据函数的意义求解即可求出答案.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.【点评】主要考查了函数的定义.注意函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.9.(2016·广西南宁)如图,点A,B,C,P在⊙O上,CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,则∠P的度数为()A.140° B.70° C.60° D.40°【考点】圆周角定理.【分析】先根据四边形内角和定理求出∠DOE的度数,再由圆周角定理即可得出结论.【解答】解:∵CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,∴∠DOE=180°﹣40°=140°,∴∠P=∠DOE=70°.故选B.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.10.(2016·广西南宁)超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程()A.0.8x﹣10=90 B.0.08x﹣10=90 C.90﹣0.8x=10 D.x﹣0.8x﹣10=90【考点】由实际问题抽象出一元一次方程.【分析】设某种书包原价每个x元,根据题意列出方程解答即可.【解答】解:设某种书包原价每个x元,可得:0.8x﹣10=90,故选A【点评】本题考查一元一次方程,解题的关键是明确题意,能列出每次降价后的售价.11.(2016·广西南宁)有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2等于()。
浙江省宁波市宁海县中考数学模拟试卷(含解析)-人教版初中九年级全册数学试题
2016年某某省某某市某某县中考数学模拟试卷一、选择题1.在﹣5,2,﹣1,3这四个数中,比﹣2小的数是()A.﹣5 B.2 C.﹣1 D.32.下列计算正确的是()A.a2•a3=a6B.(﹣2ab)2=4a2b2C.(a2)3=a5D.3a3b2÷a2b2=3ab×107×107,结果用科学记数法表示为()×107×106C.1×107D.1×1064.在某班组织的跳绳比赛中,第一小组五位同学跳绳次数分别为198,230,220,216,209,则这五个数据的中位数为()A.220 B.218 C.216 D.2095.下列正多边形的地砖中,不能铺满地面的正多边形是()A.正三角形 B.正方形C.正五边形 D.正六边形6.估计的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间7.如图,直线l1,l2,l3交于一点,直线l4∥l1,若∠1=124°,∠2=88°,则∠3的度数为()A.26° B.36° C.46° D.56°8.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x件才能按时交货,则x应满足的方程为()A.B. =C.D.9.如图,⊙O是△ABC的外接圆,已知AD平分∠BAC交⊙O于点D,AD=5,BD=2,则DE的长为()A.B.C.D.10.如图,在4×4正方形网格中,任选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是()A.B.C.D.11.如图,正方形ABCD的边长为4,点P、Q分别是CD、AD的中点,动点E从点A向点B 运动,到点B时停止运动;同时,动点F从点P出发,沿P→D→Q运动,点E、F的运动速度相同.设点E的运动路程为x,△AEF的面积为y,能大致刻画y与x的函数关系的图象是()A.B.C.D.12.把2X形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m,宽为n)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.阴影部分刚好能分割成两X形状大小不同的小长方形卡片(如图③),则分割后的两个阴影长方形的周长和是()A.4m B.2(m+n) C.4n D.4(m﹣n)二、填空题13.6的平方根为.14.分解因式:2a2﹣2=.15.命题“全等三角形的面积相等”的逆命题是命题.(填入“真”或“假”)16.若关于x,y的二元一次方程组的解满足x+y<2,则a的取值X围为.17.如图,△ABC中,CA=CB,AB=6,CD=4,E是高线CD的中点,以CE为半径作⊙C,G是⊙C上一个动点,P是AG中点,则DP的最大值为.18.如图,在△ABC中,AB=AC=a,BC=b,∠A=100°,点D在AC边上,∠ABD=30°,则AD 的长为.三、解答题(本大题有8小题,共78分)19.计算:2×(﹣3)+4×()﹣1﹣20160;(2)解方程:﹣1=0.20.(8分)某中学学生会为考察该校学生参加课外体育活动的情况,采取抽样调查的方法从篮球、排球、乒乓球、足球及其他等五个方面调查了若干名学生的兴趣爱好如图,某某市共湖中有一小岛,湖边有一条笔直的观光小道AB,现决定从小岛架一座与观光小道垂直的小桥PD,在小道上测得如下数据:AB=60米,∠PAB=45°,∠PBA=30°.请帮助小X求出小桥PD的长.(≈1.414,≈1.732,结果精确到)22.(10分)△ABC在平面直角坐标系xOy中的位置如图所示.(1)作△ABC关于点C成中心对称的△A1B1C1.(2)将△A1B1C1向右平移4个单位,作出平移后的△A2B2C2.(3)在x轴上求作一点P,使PA1+PC2的值最小,并写出点P的坐标(不写解答过程,直接写出结果)23.(10分)在平面直角坐标系中,点A(﹣3,4)关于y轴的对称点为点B,连接AB,反比例函数y=(x>0)的图象经过点B,过点B作BC⊥x轴于点C,点P是该反比例函数图象上任意一点,过点P作PD⊥x轴于点D,点Q是线段AB上任意一点,连接OQ、CQ.(1)求k的值;(2)判断△QOC与△POD的面积是否相等,并说明理由.24.(10分)某工厂计划招聘A,B两个工种的工人120人,已知A,B两个工种的工人的月工资分别为800元和1000元.(1)若工厂每月所支付的工资为110 000元,那么A,B两个工种的工人各招聘多少人?(2)若要求B工种的人数不少于A工种人数的2倍,那么招聘A工种的工人多少人时,可使每月所支付的工资最少?25.(12分)定义:有一组邻边相等且对角线相等的四边形称为“美好四边形”.(1)从学过的特殊四边形中,写出一个“美好四边形”;(2)如图,在4×4的网格图中有A、B两个格点,请在答题卷给出的两个网格图上各找出C、D两个格点,使得以A、B、C、D为顶点的四边形互不全等的“美好四边形”,画出相应的“美好四边形”,并写出该“美好四边形”的对角线长.(3)如图,已知等边△ABC,在△ABC外存在点D,设∠BDC=α,∠DAC=β,探究α、β满足什么关系时,四边形ABCD为“美好四边形”.26.(14分)如图1,抛物线y=ax2+bx+c经过A(﹣2,0)、B(8,0)、C(0,4)三点,顶点为D,连结AC,BC.(1)求抛物线的函数关系式及顶点D的坐标;(2)如图2,点P是该抛物线在第一象限内上的一点.①过点P作y轴的平行线交BC于点E,若CP=CE,求点P的坐标;②连结AP交BC于点F,求的最大值.(3)若点Q在该抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,求点Q的坐标.2016年某某省某某市某某县中考数学模拟试卷参考答案与试题解析一、选择题(2016•象山县模拟)在﹣5,2,﹣1,3这四个数中,比﹣2小的数是()A.﹣5 B.2 C.﹣1 D.3【考点】18:有理数大小比较.【分析】根据有理数大小比较的法则直接求得结果,再判定正确选项.【解答】解:∵﹣5<﹣2<﹣1<2<3,∴在﹣5,2,﹣1,3这四个数中,比﹣2小的数是﹣5.故选:A.【点评】考查了有理数大小比较法则.正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小.2.下列计算正确的是()A.a2•a3=a6B.(﹣2ab)2=4a2b2C.(a2)3=a5D.3a3b2÷a2b2=3ab【考点】4H:整式的除法;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】根据同底数幂的乘法、积的乘方、幂的乘方、整式的除法,即可解答.【解答】解:A、a2•a3=a5,故正确;B、正确;C、(a2)3=a6,故错误;D、3a2b2÷a2b2=3,故错误;故选:B.【点评】本题考查了同底数幂的乘法、积的乘方、幂的乘方、整式的除法,解决本题的关键是熟记同底数幂的乘法、积的乘方、幂的乘方、整式的除法的法则.×107×107,结果用科学记数法表示为()×107×106C.1×107D.1×106【考点】1I:科学记数法—表示较大的数.【分析】直接根据乘法分配律即可求解.【解答】×107×107=(3.8﹣3.7)×107×107=1×106.故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.注意灵活运用运算定律简便计算.4.在某班组织的跳绳比赛中,第一小组五位同学跳绳次数分别为198,230,220,216,209,则这五个数据的中位数为()A.220 B.218 C.216 D.209【考点】W4:中位数.【分析】根据中位数的定义进行求解即可.【解答】解:这组数据按照从小到大的顺次排列为:198,209,216,220,230,则中位数为:216;故选C.【点评】本题考查了中位数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.下列正多边形的地砖中,不能铺满地面的正多边形是()A.正三角形 B.正方形C.正五边形 D.正六边形【考点】L4:平面镶嵌(密铺).【分析】平面图形镶嵌的条件:判断一种图形是否能够镶嵌,只要看一看拼在同一顶点处的几个角能否构成周角.若能构成360°,则说明能够进行平面镶嵌;反之则不能.【解答】解:∵用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案,∴只用上面正多边形,不能进行平面镶嵌的是正五边形.故选:C.【点评】本题考查了学生对平面镶嵌知识的掌握情况,体现了学数学用数学的思想.由平面镶嵌的知识可知只用一种正多边形能够铺满地面的是正三角形或正四边形或正六边形.6.估计的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间【考点】2B:估算无理数的大小.【分析】直接利用32=9,42=16得出的取值X围.【解答】解:∵32=9,42=16,∴估计在3和4之间.故选:C.【点评】此题主要考查了估算无理数的大小,正确得出接近无理数的有理数是解题关键.7.如图,直线l1,l2,l3交于一点,直线l4∥l1,若∠1=124°,∠2=88°,则∠3的度数为()A.26° B.36° C.46° D.56°【考点】JA:平行线的性质.【分析】如图,首先运用平行线的性质求出∠AOB的大小,然后借助平角的定义求出∠3即可解决问题.【解答】解:如图,∵直线l4∥l1,∴∠1+∠AOB=180°,而∠1=124°,∴∠AOB=56°,∴∠3=180°﹣∠2﹣∠AOB=180°﹣88°﹣56°=36°,故选B.【点评】该题主要考查了平行线的性质及其应用问题;应牢固掌握平行线的性质,这是灵活运用、解题的基础和关键.8.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x件才能按时交货,则x应满足的方程为()A.B. =C.D.【考点】B6:由实际问题抽象出分式方程.【分析】本题的关键是要弄清因客户要求工作量提速后的工作效率和工作时间,然后根据题目给出的关键语“提前5天”找到等量关系,然后列出方程.【解答】解:因客户的要求每天的工作效率应该为:(48+x)件,所用的时间为:,根据“因客户要求提前5天交货”,用原有完成时间减去提前完成时间,可以列出方程:.故选:D.【点评】这道题的等量关系比较明确,直接分析题目中的重点语句即可得知,再利用等量关系列出方程.9.如图,⊙O是△ABC的外接圆,已知AD平分∠BAC交⊙O于点D,AD=5,BD=2,则DE的长为()A.B.C.D.【考点】S9:相似三角形的判定与性质;M5:圆周角定理.【分析】根据AD平分∠BAC,可得∠BAD=∠DAC,再利用同弧所对的圆周角相等,求证△ABD ∽△BED,利用其对应边成比例可得=,然后将已知数值代入即可求出DE的长.【解答】解;∵AD平分∠BAC,∴∠BAD=∠DAC,∵∠DBC=∠DAC(同弧所对的圆周角相等)∴∠DBC=∠BAD,∴△ABD∽△BED,∴=,∴DE==.故选D.【点评】此题主要考查相似三角形的判定与性质和圆周角定理等知识点的理解和掌握,难度不大,属于基础题,要求学生应熟练掌握.10.如图,在4×4正方形网格中,任选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是()A.B.C.D.【考点】X4:概率公式;P3:轴对称图形.【分析】由共有13个白色的小正方形,任选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的有5种情况,直接利用概率公式求解即可求得答案.【解答】解:如图,∵共有13个白色的小正方形,任选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的有5种情况,∴任选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是:.故选B.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.11.如图,正方形ABCD的边长为4,点P、Q分别是CD、AD的中点,动点E从点A向点B 运动,到点B时停止运动;同时,动点F从点P出发,沿P→D→Q运动,点E、F的运动速度相同.设点E的运动路程为x,△AEF的面积为y,能大致刻画y与x的函数关系的图象是()A.B.C.D.【考点】E7:动点问题的函数图象.【分析】分F在线段PD上,以及线段DQ上两种情况,表示出y与x的函数解析式,即可做出判断.【解答】解:当F在PD上运动时,△AEF的面积为y=AE•AD=2x(0≤x≤2),当F在AD上运动时,△AEF的面积为y=AE•AF=x(6﹣x)=﹣x2+3x(2<x≤4),图象为:故选A【点评】此题考查了动点问题的函数问题,解决本题的关键是读懂图意,得到相应y与x 的函数解析式.12.把2X形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m,宽为n)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.阴影部分刚好能分割成两X形状大小不同的小长方形卡片(如图③),则分割后的两个阴影长方形的周长和是()A.4m B.2(m+n) C.4n D.4(m﹣n)【考点】44:整式的加减.【分析】设2X形状大小完全相同的小长方形卡片的长和宽分别为x、y,然后分别求出阴影部分的2个长方形的长宽即可.【解答】解:设2X形状大小完全相同的小长方形卡片的长和宽分别为x、y.∴GF=DH=y,AG=CD=x,∵HE+CD=n,∴x+y=n,∵长方形ABCD的长为:AD=m﹣DH=m﹣y=m﹣(n﹣x)=m﹣n+x,宽为:CD=x,∴长方形ABCD的周长为:2(AD+CD)=2(m﹣n+2x)=2m﹣2n+4x∵长方形GHEF的长为:GH=m﹣AG=m﹣x,宽为:HE=y,∴长方形GHEF的周长为:2(GH+HE)=2(m﹣x+y)=2m﹣2x+2y,∴分割后的两个阴影长方形的周长和为:2m﹣2n+4x+2m﹣2x+2y=4m﹣2n+2(x+y)=4m,故选(A)【点评】本题考查整式的运算,解题的关键是设2X形状大小完全相同的小长方形卡片的长和宽分别为x、y,然后根据图中的结构求出分割后的两个阴影长方形的周长和.本题属于中等题型.二、填空题13.6的平方根为.【考点】21:平方根.【分析】根据平方运算,可得一个数的平方根.【解答】解:∵()2=6∴6的平方根为,故答案为:.【点评】本题考查了平方根,平方运算是求平方根的关键.14.分解因式:2a2﹣2= 2(a+1)(a﹣1).【考点】55:提公因式法与公式法的综合运用.【分析】先提取公因式2,再对余下的多项式利用平方差公式继续分解.【解答】解:2a2﹣2,=2(a2﹣1),=2(a+1)(a﹣1).【点评】本题考查了提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.15.命题“全等三角形的面积相等”的逆命题是假命题.(填入“真”或“假”)【考点】O1:命题与定理.【分析】把一个命题的条件和结论互换就得到它的逆命题.分析是否为真命题,需要分别分析各题设是否能推出结论,如果能就是真命题.【解答】解:“全等三角形的面积相等”的逆命题是“面积相等的三角形是全等三角形”,根据全等三角形的定义,不符合要求,因此是假命题.【点评】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.16.若关于x,y的二元一次方程组的解满足x+y<2,则a的取值X围为a<4 .【考点】C6:解一元一次不等式;98:解二元一次方程组.【分析】先解关于关于x,y的二元一次方程组的解集,其解集由a表示;然后将其代入x+y<2,再来解关于a的不等式即可.【解答】解:由①﹣②×3,解得y=1﹣;由①×3﹣②,解得x=;∴由x+y<2,得1+<2,即<1,解得,a<4.解法2:由①+②得4x+4y=4+a,x+y=1+,∴由x+y<2,得1+<2,即<1,解得,a<4.故答案是:a<4.【点评】本题综合考查了解二元一次方程组、解一元一次不等式.解答此题时,采用了“加减消元法”来解二元一次方程组;在解不等式时,利用了不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变.17.如图,△ABC中,CA=CB,AB=6,CD=4,E是高线CD的中点,以CE为半径作⊙C,G是⊙C上一个动点,P是AG中点,则DP的最大值为.【考点】KX:三角形中位线定理;KH:等腰三角形的性质;M8:点与圆的位置关系.【分析】据等腰三角形的性质可得点D是AB的中点,然后根据三角形中位线定理可得DP=BG,然后利用两点之间线段最短就可解决问题.【解答】解:连接BG,如图.∵CA=CB,CD⊥AB,AB=6,∴AD=BD=AB=3.又∵CD=4,∴BC=5.∵E是高线CD的中点,∴CE=CD=2,∴CG=CE=2.根据两点之间线段最短可得:BG≤CG+CB=2+5=7.当B、C、G三点共线时,BG取最大值为7.∵P是AG中点,D是AB的中点,∴PD=BG,∴DP最大值为.【点评】本题主要考查的是三角形中位线定理,涉及了等腰三角形的性质、勾股定理、两点之间线段最短等知识,根据题意作出辅助线,利用三角形的中位线定理求解是解决本题的关键.18.如图,在△ABC中,AB=AC=a,BC=b,∠A=100°,点D在AC边上,∠ABD=30°,则AD 的长为.【考点】S9:相似三角形的判定与性质;KH:等腰三角形的性质;KK:等边三角形的性质.【分析】以BC为边在△ABC的下面作等边三角形BCE,连接AE,由等腰三角形和等边三角形的性质得出AE⊥BC,CE=BC=b,∠BCE=60°,由等腰三角形的性质和三角形内角和定理得出∠ACB=∠ABC=50°,∠CAE=∠BAC=50°,求出∠ADB=∠CAE,∠ACE=∠ACB+∠BCE=∠BAC,证出△ABD∽△CAE,得出对应边成比例,即可得出答案.【解答】解:以BC为边在△ABC的下面作等边三角形BCE,连接AE,如图所示:则AE⊥BC,CE=BC=b,∠BCE=60°,∵AB=AC,∠BAC=100°,∴∠ACB=∠ABC=(180°﹣1100°)÷2=50°,∠CAE=∠BAC=50°,∵∠ABD=30°,∴∠ADB=180°﹣∠BAC﹣∠ABD=50°,∴∠ADB=∠CAE,∠ACE=∠ACB+∠BCE=100°=∠BAC,∴△ABD∽△CAE,∴,即,解得:AD=;故答案为:.【点评】本题考查了等腰三角形的性质、等边三角形的性质、相似三角形的判定与性质、三角形内角和定理等知识;熟练掌握等腰三角形的性质,证明三角形相似是解决问题的关键.三、解答题(本大题有8小题,共78分)19.(1)计算:2×(﹣3)+4×()﹣1﹣20160;(2)解方程:﹣1=0.【考点】B3:解分式方程;6E:零指数幂;6F:负整数指数幂.【分析】(1)分别利用负指数幂的性质以及零指数幂的性质分别化简进而求出答案;(2)首先移项,进而去分母解方程即可,再检验得出答案.【解答】解:(1)2×(﹣3)+4×()﹣1﹣20160=﹣6+4×2﹣1=1;(2)原式可变为: =1,则x﹣1=1,解得:x=2,检验:当x=2时,x﹣1≠0,故x=2是原方程的根.【点评】此题主要考查了解分式方程以及实数运算,正确掌握分式方程的解法是解题关键.20.某中学学生会为考察该校学生参加课外体育活动的情况,采取抽样调查的方法从篮球、排球、乒乓球、足球及其他等五个方面调查了若干名学生的兴趣爱好(2016•象山县模拟)如图,某某市共湖中有一小岛,湖边有一条笔直的观光小道AB,现决定从小岛架一座与观光小道垂直的小桥PD,在小道上测得如下数据:AB=60米,∠PAB=45°,∠PBA=30°.请帮助小X求出小桥PD的长.(≈1.414,≈1.732,结果精确到)【考点】T8:解直角三角形的应用.【分析】设PD=x米,根据锐角三角函数的概念用x表示出AD和BD的长,根据题意列式计算即可得到答案.【解答】解:设PD=x米,∵PD⊥AB,则∠ADP=∠BDP=90°.在Rt△PAD中,tan∠PAD=,故AD==x,在Rt△PBD中,tan∠PBD=,则DB===x,又∵AB=60米,∴x+x=60,解得:x=30﹣30≈22.0.答:小桥PD的长度约为.【点评】本题考查的是解直角三角形的应用,掌握锐角三角函数的概念是解题的关键,解答时,把锐角三角函数的概念理解为公式,代入公式计算即可.22.(10分)(2013•某某)△ABC在平面直角坐标系xOy中的位置如图所示.(1)作△ABC关于点C成中心对称的△A1B1C1.(2)将△A1B1C1向右平移4个单位,作出平移后的△A2B2C2.(3)在x轴上求作一点P,使PA1+PC2的值最小,并写出点P的坐标(不写解答过程,直接写出结果)【考点】R8:作图﹣旋转变换;PA:轴对称﹣最短路线问题;Q4:作图﹣平移变换.【分析】(1)延长AC到A1,使得AC=A1C1,延长BC到B1,使得BC=B1C1,即可得出图象;(2)根据△A1B1C1将各顶点向右平移4个单位,得出△A2B2C2;(3)作出A1关于x轴的对称点A′,连接A′C2,交x轴于点P,再利用相似三角形的性质求出P点坐标即可.【解答】解;(1)如图所示:(2)如图所示:(3)如图所示:作出A1关于x轴的对称点A′,连接A′C2,交x轴于点P,可得P点坐标为:(,0).【点评】此题主要考查了图形的平移与旋转和相似三角形的性质等知识,利用轴对称求最小值问题是考试重点,同学们应重点掌握.23.(10分)(2013•某某)在平面直角坐标系中,点A(﹣3,4)关于y轴的对称点为点B,连接AB,反比例函数y=(x>0)的图象经过点B,过点B作BC⊥x轴于点C,点P是该反比例函数图象上任意一点,过点P作PD⊥x轴于点D,点Q是线段AB上任意一点,连接OQ、CQ.(1)求k的值;(2)判断△QOC与△POD的面积是否相等,并说明理由.【考点】GB:反比例函数综合题.【分析】(1)根据点B与点A关于y轴对称,求出B点坐标,再代入反比例函数解析式解可求出k的值;(2)设点P的坐标为(m,n),点P在反比例函数y=(x>0)的图象上,求出S△POD,根据AB∥x轴,OC=3,BC=4,点Q在线段AB上,求出S△QOC即可.【解答】解:(1)∵点B与点A关于y轴对称,A(﹣3,4),∴点B的坐标为(3,4),∵反比例函数y=(x>0)的图象经过点B.∴=4,解得k=12.(2)相等.理由如下:设点P的坐标为(m,n),其中m>0,n>0,∵点P在反比例函数y=(x>0)的图象上,∴n=,即mn=12.∴S△POD=OD•PD=mn=×12=6,∵A(﹣3,4),B(3,4),∴AB∥x轴,OC=3,BC=4,∵点Q在线段AB上,∴S△QOC=OC•BC=×3×4=6.∴S△QOC=S△POD.【点评】本题考查了反比例函数综合题,涉及反比例函数k的几何意义,反比例函数图象上点的坐标特征等,综合性较强.24.(10分)(2007•某某)某工厂计划招聘A,B两个工种的工人120人,已知A,B两个工种的工人的月工资分别为800元和1000元.(1)若工厂每月所支付的工资为110 000元,那么A,B两个工种的工人各招聘多少人?(2)若要求B工种的人数不少于A工种人数的2倍,那么招聘A工种的工人多少人时,可使每月所支付的工资最少?【考点】C9:一元一次不等式的应用;8A:一元一次方程的应用.【分析】(1)A,B两个工种的工人的月工资乘以它们的人数就是工厂每月所支付的工资为110000元,因此可列方程,进而解答;(2)在(1)的基础之上又多出了一个最值问题,需要运用函数,考虑函数和自变量的增减性,找出自变量取值X围,进行解答.【解答】解:(1)设招聘A工种工人x人,则招聘B工种工人(120﹣x)人,根据题意得800x+1 000(120﹣x)=110 000解得x=50,则120﹣x=70即招聘A工种工人50人,招聘B工种工人70人;(2)设每月所支付的工资为y元,招聘A工种工人x人,则招聘B工种工人(120﹣x)人,根据题意得y=800x+1 000(120﹣x)=﹣200x+120 000,由题意得120﹣x≥2x,解得x≤40,y=﹣200x+120 000中的y随x的增大而减少,所以当x=40时,y取得最小值112000.即当招聘A工种工人40人时,可使每月所付工资最少.【点评】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.要熟练掌握利用自变量的取值X围求最值的方法.注意本题的不等关系为:B工种的人数不少于A工种人数的2.25.(12分)(2016•象山县模拟)定义:有一组邻边相等且对角线相等的四边形称为“美好四边形”.(1)从学过的特殊四边形中,写出一个“美好四边形”;(2)如图,在4×4的网格图中有A、B两个格点,请在答题卷给出的两个网格图上各找出C、D两个格点,使得以A、B、C、D为顶点的四边形互不全等的“美好四边形”,画出相应的“美好四边形”,并写出该“美好四边形”的对角线长.(3)如图,已知等边△ABC,在△ABC外存在点D,设∠BDC=α,∠DAC=β,探究α、β满足什么关系时,四边形ABCD为“美好四边形”.【考点】LO:四边形综合题.【分析】(1)根据正方形的性质和“美好四边形”的定义解答;(2)根据“美好四边形”的定义作图,根据勾股定理求出对角线的长;(3)根据等边三角形的性质和“美好四边形”的定义以及三角形内角和定理、等腰三角形的性质计算即可.【解答】解:(1)∵正方形四条边相等且对角线相等,满足“美好四边形”的条件,∴正方形是“美好四边形”;(2)图1中两个四边形ABCD都是“美好四边形”,它们的对角线长都是;(3)∵△ABC是等边三角形,四边形ABCD为“美好四边形”,∴AB=AC=BC=BD,∠CBA=∠CAB=60°,∵∠BDC=α,∴∠BCD=α,∴∠DBC=180°﹣2α,∴∠ABD=60°﹣∠DBC=2α﹣120°,∵BA=BD,∴∠BAD=∠BDA==150°﹣α,∵∠DAC=β,∴150°﹣α﹣β=60°,∴α+β=90°.【点评】本题考查的是新定义、等腰三角形的性质、等边三角形的性质,正确理解“美好四边形”的定义、掌握等腰三角形的性质和等边三角形的性质是解题的关键.26.(14分)(2016•象山县模拟)如图1,抛物线y=ax2+bx+c经过A(﹣2,0)、B(8,0)、C(0,4)三点,顶点为D,连结AC,BC.(1)求抛物线的函数关系式及顶点D的坐标;(2)如图2,点P是该抛物线在第一象限内上的一点.①过点P作y轴的平行线交BC于点E,若CP=CE,求点P的坐标;②连结AP交BC于点F,求的最大值.(3)若点Q在该抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,求点Q的坐标.【考点】HF:二次函数综合题.【分析】(1)设抛物线的解析式为y=a(x+2)(x﹣8),将点C的坐标代入可求得a的值,从而得到抛物线的解析式,然后依据抛物线的对称性得到抛物线的对称轴方程,将x=3代入可求得抛物线的顶点坐标;(2)①如图1所示:作CM⊥PE,垂足为M.先利用待定系数法求得BC的解析式,设点P(m,﹣ m2+m+4),则点E(m,﹣ m+4),M(m,4),接下来依据等腰三角形的性质可得到PM=EM,从而得到关于m的方程,于是可求得点P的坐标②作PN⊥BC,垂足为N.先证明△PNE∽△COB,由相似三角形的性质可知PN=PE,然后再证明△PFN∽△CAF,由相似三角形的性质可得到PF:AF与m的函数关系式,从而可求得的最大值;(3)设⊙Q与直线CD的切点为G,连接QG,过点C作CH⊥QD于H,如图3所示:先依据勾股定理可求得DC的长,设Q(3,b),然后依据锐角三角函数的定义得到QG的长,从而得到AQ的长,最后再△AQP中依据勾股定理可得到关于b的方程,从而得到点Q的坐标.【解答】解:(1)设抛物线的解析式为y=a(x+2)(x﹣8).∵抛物线经过点C(0,4),∴﹣16a=4,解得a=﹣.∴抛物线的解析式为y=﹣(x+2)(x﹣8)=x2+x+4.∵A(﹣2,0)、B(8,0),∴抛物线的对称轴为x=3.∵将x=3代入得:y=,∴抛物线的顶点坐标为(3,).(2)①如图1所示:作CM⊥PE,垂足为M.设直线BC的解析式为y=kx+b.∵将B、C的坐标代入得:,解得k=﹣,b=4,∴直线BC的解析式为y=﹣x+4.设点P(m,﹣ m2+m+4),则点E(m,﹣ m+4),M(m,4).∵PC=EC,CM⊥PE,∴PM=EM.∴﹣m2+m+4﹣4=4﹣(﹣m+4),解得:m=0(舍去),m=4.∴P(4,6).②作PN⊥BC,垂足为N.由①得:PE=﹣m2+2m.∵PE∥y轴,PN⊥BC,∴∠PNE=∠COB=90°,∠PEN=∠BCO.∴△PNE∽△BOC.∴==.∴PN=PE=(﹣m2+2m).∵AB=10,AC=2,BC=4,∴AC2+BC2=AB2.∴∠BCA=90°,又∵∠PFN=∠CFA,∴△PFN∽△CAF.∴==﹣m2+m.∴当m=4时,的最大值为.(3)设⊙Q与直线CD的切点为G,连接QG,过点C作CH⊥QD于H,如图3所示:由(1)可知:CH=3,DH=﹣4=.在△CHD中,由勾股定理可知DC==.设Q(3,b)则QD=﹣b.∵sin∠D==,在△AQP中,由勾股定理得QG=(﹣b)=b2+52.解得:b=0,b=﹣.∴点Q的坐标为(3,0)或(3,﹣).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、一次函数的解析式、等腰三角形的性质、锐角三角函数的定义、勾股定理的应用,与m的函数关系式是解题的关键.。
浙江省宁波市2016年中考数学试卷(解析版)
2016年浙江省宁波市中考数学试卷参考答案与试题解析一、选择题1 .6的相反数是()A.﹣6 B.C.﹣D.6【考点】相反数.【分析】依据相反数的定义求解即可.【解答】解:6的相反数是﹣6.故选:A.【点评】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.下列计算正确的是()A.a3+a3=a6B.3a﹣a=3 C.(a3)2=a5D.a•a2=a3【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】根据同类项合并、幂的乘方和同底数幂的乘法计算即可.【解答】解:A、a3+a3=2a3,错误;B、3a﹣a=2a,错误;C、(a3)2=a6,错误;D、a•a2=a3,正确;故选D.【点评】此题考查同类项合并、幂的乘方和同底数幂的乘法,关键是根据同类项合并、幂的乘方和同底数幂的乘法的定义解答.3.宁波栎社国际机场三期扩建工程建设总投资84.5亿元,其中84.5亿元用科学记数法表示为()A.0.845×1010元B.84.5×108元C.8.45×109元D.8.45×1010元【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于84.5亿有10位,所以可以确定n=10﹣1=9.【解答】解:84.5亿元用科学记数法表示为8.45×109元.故选:C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.使二次根式有意义的x的取值范围是()A.x≠1 B.x>1 C.x≤1 D.x≥1【考点】二次根式有意义的条件.【分析】根据二次根式中的被开方数必须是非负数列出不等式,解不等式即可.【解答】解:由题意得,x﹣1≥0,解得x≥1,故选:D.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.5.如图所示的几何体的主视图为()A.B. C.D.【考点】简单几何体的三视图.【分析】利用主视图的定义,即从几何体的正面观察得出视图即可.【解答】解:如图所示:几何体的主视图为:.故选:B.【点评】此题主要考查了简单几何体的三视图,正确把握观察角度是解题关键.6.一个不透明布袋里装有1个白球、2个黑球、3个红球,它们除颜色外均相同.从中任意摸出一个球,则是红球的概率为()A.B.C.D.【考点】概率公式.【分析】让红球的个数除以球的总数即为摸到红球的概率.【解答】解:1个白球、2个黑球、3个红球一共是1+2+3=6个,从中任意摸出一个球,则摸出的球是红球的概率是3÷6=.故选:C.【点评】考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.7.某班10名学生的校服尺寸与对应人数如表所示:则这10名学生校服尺寸的众数和中位数分别为()A.165cm,165cm B.165cm,170cm C.170cm,165cm D.170cm,170cm【考点】众数;中位数.【专题】统计与概率.【分析】根据表格可以直接得到这10名学生校服尺寸的众数,然后将表格中数据按从小到大的顺序排列即可得到中位数.【解答】解:由表格可知,这10名学生校服尺寸的众数是165cm,这10名学生校服尺寸按从小到大排列是:160、165、165、165、170、170、175、175、180、180,故这10名学生校服尺寸的中位数是:cm,故选B.【点评】本题考查众数和中位数,解题的关键是明确众数和中位数的定义,会求一组数据的众数和中位数.8.如图,在△ABC中,∠ACB=90°,CD∥AB,∠ACD=40°,则∠B的度数为()A.40°B.50°C.60°D.70°【考点】平行线的性质.【分析】由CD∥AB,∠ACD=40°,根据两直线平行,内错角相等,即可求得∠A度数,继而求得答案.【解答】解:∵CD∥AB,∠ACD=40°,∴∠A=∠ACD=40°,∵在△ABC中,∠ACB=90°,∴∠B=90°﹣∠A=50°.故选B.【点评】此题考查了平行线的性质以及三角形内角和定理.注意两直线平行,内错角相等.9.如图,圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为()A.30πcm2B.48πcm2C.60πcm2D.80πcm2【考点】圆锥的计算.【专题】与圆有关的计算.【分析】首先利用勾股定理求出圆锥的母线长,再通过圆锥侧面积公式可以求得结果.【解答】解:∵h=8,r=6,可设圆锥母线长为l,由勾股定理,l==10,=×2×6π×10=60π,圆锥侧面展开图的面积为:S侧所以圆锥的侧面积为60πcm2.故选:C.【点评】本题主要考察圆锥侧面积的计算公式,解题关键是利用底面半径及高求出母线长即可.10.能说明命题“对于任何实数a,|a|>﹣a”是假命题的一个反例可以是()A.a=﹣2 B.a=C.a=1 D.a=【考点】命题与定理.【分析】反例就是符合已知条件但不满足结论的例子.可据此判断出正确的选项.【解答】解:说明命题“对于任何实数a,|a|>﹣a”是假命题的一个反例可以是a=﹣2,故选A.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.11.已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A.当a=1时,函数图象过点(﹣1,1)B.当a=﹣2时,函数图象与x轴没有交点C.若a>0,则当x≥1时,y随x的增大而减小D.若a<0,则当x≤1时,y随x的增大而增大【考点】二次函数的性质.【分析】把a=1,x=﹣1代入y=ax2﹣2ax﹣1,于是得到函数图象不经过点(﹣1,1),根据△=8>0,得到函数图象与x轴有两个交点,根据抛物线的对称轴为直线x=﹣=1判断二次函数的增减性.【解答】解:A、∵当a=1,x=﹣1时,y=1+2﹣1=2,∴函数图象不经过点(﹣1,1),故错误;B、当a=﹣2时,∵△=42﹣4×(﹣2)×(﹣1)=8>0,∴函数图象与x轴有两个交点,故错误;C、∵抛物线的对称轴为直线x=﹣=1,∴若a>0,则当x≥1时,y随x的增大而增大,故错误;D、∵抛物线的对称轴为直线x=﹣=1,∴若a<0,则当x≤1时,y随x的增大而增大,故正确;故选D.【点评】本题考查的是二次函数的性质,熟练掌握二次函数的性质是解题的关键.12.如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积一定可以表示为()A.4S1B.4S2C.4S2+S3D.3S1+4S3【考点】平行四边形的性质.【分析】设等腰直角三角形的直角边为a,正方形边长为c,求出S2(用a、c表示),得出S1,S2,S3之间的关系,由此即可解决问题.【解答】解:设等腰直角三角形的直角边为a,正方形边长为c,则S2=(a+c)(a﹣c)=a2﹣c2,∴S2=S1﹣S3,∴S3=2S1﹣2S2,∴平行四边形面积=2S1+2S2+S3=2S1+2S2+2S1﹣2S2=4S1.故选A.【点评】本题考查平行四边形的性质、直角三角形的面积等知识,解题的关键是求出S1,S2,S3之间的关系,属于中考常考题型.二、填空题13.实数﹣27的立方根是﹣3.【考点】立方根.【分析】由立方根的定义和乘方的关系容易得出结果.【解答】解:∵(﹣3)3=﹣27,∴实数﹣27的立方根是﹣3.故答案为:﹣3.【点评】本题考查了立方根的定义、乘方的意义;熟练掌握立方根的定义是解决问题的关键.14.分解因式:x2﹣xy=x(x﹣y).【考点】因式分解-提公因式法.【分析】根据观察可知公因式是x,因此提出x即可得出答案.【解答】解:x2﹣xy=x(x﹣y).【点评】此题考查的是对公因式的提取.通过观察可以得出公因式,然后就可以解题.观察法是解此类题目常见的办法.15.下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案①需8根火柴棒,图案②需15根火柴棒,…,按此规律,图案⑦需50根火柴棒.【考点】规律型:图形的变化类.【分析】根据图案①、②、③中火柴棒的数量可知,第1个图形中火柴棒有8根,每多一个多边形就多7根火柴棒,由此可知第n个图案需火柴棒8+7(n﹣1)=7n+1根,令n=7可得答案.【解答】解:∵图案①需火柴棒:8根;图案②需火柴棒:8+7=15根;图案③需火柴棒:8+7+7=22根;…∴图案n需火柴棒:8+7(n﹣1)=7n+1根;当n=7时,7n+1=7×7+1=50,∴图案⑦需50根火柴棒;故答案为:50.【点评】此题主要考查了图形的变化类,解决此类题目的关键在于图形在变化过程中准确抓住不变的部分和变化的部分,变化部分是以何种规律变化.16.如图,在一次数学课外实践活动中,小聪在距离旗杆10m的A处测得旗杆顶端B的仰角为60°,测角仪高AD为1m,则旗杆高BC为10+1m(结果保留根号).【考点】解直角三角形的应用-仰角俯角问题.【分析】首先过点A作AE∥DC,交BC于点E,则AE=CD=10m,CE=AD=1m,然后在Rt△BAE中,∠BAE=60°,然后由三角形函数的知识求得BE的长,继而求得答案.【解答】解:如图,过点A作AE∥DC,交BC于点E,则AE=CD=10m,CE=AD=1m,∵在Rt△BAE中,∠BAE=60°,∴BE=AE•tan60°=10(m),∴BC=CE+BE=10+1(m ).∴旗杆高BC 为10+1m .故答案为:10+1.【点评】本题考查仰角的定义.注意能借助仰角构造直角三角形并解直角三角形是解此题的关键.17.如图,半圆O 的直径AB=2,弦CD ∥AB ,∠COD=90°,则图中阴影部分的面积为 .【考点】扇形面积的计算. 【分析】由CD ∥AB 可知,点A 、O 到直线CD 的距离相等,结合同底等高的三角形面积相等即可得出S △ACD =S △OCD ,进而得出S 阴影=S 扇形COD ,根据扇形的面积公式即可得出结论.【解答】解:∵弦CD ∥AB ,∴S △ACD =S △OCD ,∴S 阴影=S 扇形COD =•π•=×π×=.故答案为:. 【点评】本题考查了扇形面积的计算以及平行线的性质,解题的关键是找出S 阴影=S 扇形COD .本题属于基础题,难度不大,解决该题型题目时,通过分割图形找出面积之间的关系是关键.18.如图,点A 为函数y=(x >0)图象上一点,连结OA ,交函数y=(x >0)的图象于点B ,点C 是x 轴上一点,且AO=AC ,则△ABC 的面积为 6 .【考点】反比例函数的图象;三角形的面积;等腰三角形的性质.【专题】推理填空题.【分析】根据题意可以分别设出点A、点B的坐标,根据点O、A、B在同一条直线上可以得到A、B的坐标之间的关系,由AO=AC可知点C的横坐标是点A的横坐标的2倍,从而可以得到△ABC的面积.【解答】解:设点A的坐标为(a,),点B的坐标为(b,),∵点C是x轴上一点,且AO=AC,∴点C的坐标是(2a,0),设过点O(0,0),A(a,)的直线的解析式为:y=kx,∴,解得,k=,又∵点B(b,)在y=上,∴,解得,或(舍去),∴S△ABC=S△AOC﹣S△OBC==,故答案为:6.【点评】本题考查反比例函数的图象、三角形的面积、等腰三角形的性质,解题的关键是明确题意,找出所求问题需要的条件.三、解答题(本大题有8小题,满分78分)19.先化简,再求值:(x+1)(x﹣1)+x(3﹣x),其中x=2.【考点】整式的混合运算—化简求值.【分析】利用平方差公式和单项式乘多项式将原式展开,再合并同类项即可化简,把x的值代入计算即可.【解答】解:原式=x2﹣1+3x﹣x2=3x﹣1,当x=2时,原式=3×2﹣1=5.【点评】本题考查了整式的混合运算和求值的应用,能正确运用整式的运算法则进行化简是解此题的关键.20.下列3×3网格图都是由9个相同的小正方形组成,每个网格图中有3个小正方形已涂上阴影,请在余下的6个空白小正方形中,按下列要求涂上阴影:(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形,但不是中心对称图形.(2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形.(3)选取2个涂上阴影,使5个阴影小正方形组成一个轴对称图形.(请将三个小题依次作答在图1、图2、图3中,均只需画出符合条件的一种情形)【考点】作图—应用与设计作图;轴对称的性质;中心对称.【分析】(1)根据轴对称定义,在最上一行中间一列涂上阴影即可;(2)根据中心对称定义,在最下一行、最右一列涂上阴影即可;(3)在最上一行、中间一列,中间一行、最右一列涂上阴影即可.【解答】解:(1)如图1所示;(2)如图2所示;(3)如图3所示.【点评】本题主要考查轴对称图形和中心对称图形,掌握轴对称图形和中心对称图形定义是解题的关键.21.为深化义务教育课程改革,某校积极开展拓展性课程建设,计划开设艺术、体育、劳技、文学等多个类别的拓展性课程,要求每一位学生都自主选择一个类别的拓展性课程.为了了解学生选择拓展性课程的情况,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图(部分信息未给出):根据统计图中的信息,解答下列问题:(1)求本次被调查的学生人数.(2)将条形统计图补充完整.(3)若该校共有1600名学生,请估计全校选择体育类的学生人数.【考点】条形统计图;用样本估计总体;扇形统计图.【专题】统计与概率.【分析】(1)根据条形统计图和扇形统计图可知选择劳技的学生60人,占总体的30%,从而可以求得调查学生人数;(2)根据文学的百分比和(1)中求得的学生调查数可以求得文学的有多少人,从而可以求得体育的多少人,进而可以将条形统计图补充完整;(3)根据调查的选择体育的学生所占的百分比可以估算出全校选择体育类的学生人数.【解答】解:(1)60÷30%=200(人),即本次被调查的学生有200人;(2)选择文学的学生有:200×15%=30(人),选择体育的学生有:200﹣24﹣60﹣30﹣16=70(人),补全的条形统计图如下图所示,(3)1600×(人).即全校选择体育类的学生有560人.【点评】本题考查条形统计图、用样本估计总体、扇形统计图,解题的关键是明确题意,找出所求问题需要的条件、利用数形结合的思想解答问题.22.如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.【考点】二次函数的性质.【专题】动点型.【分析】(1)首先把点B的坐标为(3,0)代入抛物线y=﹣x2+mx+3,利用待定系数法即可求得m的值,继而求得抛物线的顶点坐标;(2)首先连接BC交抛物线对称轴l于点P,则此时PA+PC的值最小,然后利用待定系数法求得直线BC 的解析式,继而求得答案.【解答】解:(1)把点B的坐标为(3,0)代入抛物线y=﹣x2+mx+3得:0=﹣32+3m+3,解得:m=2,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点坐标为:(1,4).(2)连接BC交抛物线对称轴l于点P,则此时PA+PC的值最小,设直线BC的解析式为:y=kx+b,∵点C(0,3),点B(3,0),∴,解得:,∴直线BC的解析式为:y=﹣x+3,当x=1时,y=﹣1+3=2,∴当PA+PC的值最小时,求点P的坐标为:(1,2).【点评】此题考查了二次函数的性质、待定系数法求解析式以及距离最短问题.注意找到点P的位置是解此题的关键.23.如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC 的延长线于点E.(1)求证:DE是⊙O的切线.(2)求DE的长.【考点】切线的判定.【分析】(1)连接OD,欲证明DE是⊙O的切线,只要证明OD⊥DE即可.(2)过点O作OF⊥AC于点F,只要证明四边形OFED是矩形即可得到DE=OF,在RT△AOF中利用勾股定理求出OF即可.【解答】证明:(1)连接OD,∵AD平分∠BAC,∴∠DAE=∠DAB,∵OA=OD,∴∠ODA=∠DAO,∴∠ODA=∠DAE,∴OD∥AE,∵DE⊥AC,∴OD⊥DE,∴DE是⊙O切线.(2)过点O作OF⊥AC于点F,∴AF=CF=3,∴OF===4.∵∠OFE=∠DEF=∠ODE=90°,∴四边形OFED是矩形,∴DE=OF=4.【点评】本题考查切线的判定、矩形的判定和性质、垂径定理、勾股定理等知识,解题的关键是记住切线的判定方法,学会添加常用辅助线,属于基础题,中考常考题型.24.某商场销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如表所示该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元.(1)该商场计划购进A,B两种品牌的教学设备各多少套?(2)通过市场调研,该商场决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少的数量的1.5倍.若用于购进这两种教学设备的总资金不超过69万元,问A种设备购进数量至多减少多少套?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)首先设该商场计划购进A,B两种品牌的教学设备分别为x套,y套,根据题意即可列方程组,解此方程组即可求得答案;(2)首先设A种设备购进数量减少a套,则A种设备购进数量增加1.5a套,根据题意即可列不等式1.5(20﹣a)+1.2(30+1.5a)≤69,解此不等式组即可求得答案.【解答】解:(1)设该商场计划购进A,B两种品牌的教学设备分别为x套,y套,,解得:,答:该商场计划购进A,B两种品牌的教学设备分别为20套,30套;(2)设A种设备购进数量减少a套,则A种设备购进数量增加1.5a套,1.5(20﹣a)+1.2(30+1.5a)≤69,解得:a≤10,答:A种设备购进数量至多减少10套.【点评】此题考查了一元一次不等式与二元一次方程组的应用.注意根据题意找到等量关系是关键.25.从三角形(不是等腰三角形)一个顶点引出一条射线于对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线.(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB的度数.(3)如图2,△ABC中,AC=2,BC=,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.【考点】相似三角形的判定与性质.【专题】新定义.【分析】(1)根据完美分割线的定义只要证明①△ABC不是等腰三角形,②△ACD是等腰三角形,③△BDC∽△BCA即可.(2)分三种情形讨论即可①如图2,当AD=CD时,②如图3中,当AD=AC时,③如图4中,当AC=CD 时,分别求出∠ACB即可.(3)设BD=x,利用△BCD∽△BAC,得=,列出方程即可解决问题.【解答】解:(1)如图1中,∵∠A=40°,∠B=60°,∴∠ACB=80°,∴△ABC不是等腰三角形,∵CD平分∠ACB,∴∠ACD=∠BCD=∠ACB=40°,∴∠ACD=∠A=40°,∴△ACD为等腰三角形,∵∠DCB=∠A=40°,∠CBD=∠ABC,∴△BCD∽△BAC,∴CD是△ABC的完美分割线.(2)①当AD=CD时,如图2,∠ACD=∠A=45°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=96°.②当AD=AC时,如图3中,∠ACD=∠ADC==66°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=114°.③当AC=CD时,如图4中,∠ADC=∠A=48°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∵∠ADC>∠BCD,矛盾,舍弃.∴∠ACB=96°或114°.(3)由已知AC=AD=2,∵△BCD∽△BAC,∴=,设BD=x,∴()2=x(x+2),∵x>0,∴x=﹣1,∵△BCD∽△BAC,∴==,∴CD=×2=﹣.【点评】本题考查相似三角形的判定和性质、等腰三角形的性质等知识,解题的关键是理解题意,学会分类讨论思想,属于中考常考题型.26.如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(5,0),菱形OABC的顶点B,C都在第一象限,tan∠AOC=,将菱形绕点A按顺时针方向旋转角α(0°<∠α<∠AOC)得到菱形FADE(点O的对应点为点F),EF与OC交于点G,连结AG.(1)求点B的坐标.(2)当OG=4时,求AG的长.(3)求证:GA平分∠OGE.(4)连结BD并延长交x轴于点P,当点P的坐标为(12,0)时,求点G的坐标.【考点】四边形综合题.【分析】(1)如图1,过点B作BH⊥x轴于点H,构建直角△ABH,所以利用菱形的四条边相等的性质和解该直角三角形得到AH、BH的长度,则易求点B的坐标;(2)如图1,过点A作AM⊥OC于点M,构建直角△OAM和直角△AMG,通过解直角△OAM求得直角边AM的长度,然后结合图形和勾股定理来求AG的长度;(3)如图1,过点A作AM⊥OC于点M,构建全等三角形:△AOM≌△AFN(ASA),利用该全等三角形的对应边相等得到AM=AN,最后结合角平分线的性质证得结论;(4)如图2,过点G作GQ⊥x轴于点Q,构建相似三角形:△GOA∽△BAP,根据该相似三角形的对应边成比例得到求得GQ的长度.结合已知条件tan∠AOC=,来求边OQ的长度,即可得到点G的坐标.【解答】解:(1)如图1,过点B作BH⊥x轴于点H,∵四边形OABC为菱形,∴OC∥AB,∴∠BAH=∠COA.∵tan∠AOC=,∴tan∠BAH=.又∵在直角△BAH中,AB=5,∴BH=AB=4,AH=AB=3,∴OH=OA+AH=5+3=8,∴点B的坐标为(8,4);(2)如图1,过点A作AM⊥OC于点M,在直角△AOM中,∵tan∠AOC=,OA=5,∴AM=OA=4,OM=OA=3,∵OG=4,∴GM=OG﹣OM=4﹣3=1,∴AG===;(3)如图1,过点A作AN⊥EF于点N,∵在△AOM与△AFN中,,∴△AOM≌△AFN(ASA),∴AM=AN,∴GA平分∠OGE.(4)如图2,过点G作GQ⊥x轴于点Q,由旋转可知:∠OAF=∠BAD=α.∵AB=AD,∴∠ABP=,∵∠AOT=∠F,∠OTA=∠GTF,∴∠OGA=∠EGA=,∴∠OGA=ABP,又∵∠GOA=∠BAP,∴△GOA∽△BAP,∴=,∴GQ=×4=.∵tan∠AOC=,∴OQ=×=,∴G(,).【点评】本题考查了四边形综合题.解题过程中,涉及到了全等三角形的判定与性质,相似三角形的判定与性质,旋转的性质,解直角三角形以及勾股定理等知识点,解答该题的难点在于作出辅助线,构建相关的图形的性质.。
浙江省宁波市2016年中考数学真题试题(含答案)
宁波市2016年初中毕业生学业考试数 学 试 题满分150分,考试时间120分钟一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求) 1. 6的相反数是A. -6B. 61C. 61- D. 6 2. 下列计算正确的是A. 633a a a =+B. 33=-a aC. 523)(a a = D. 32a a a =⋅3. 宁波栎社国际机场三期扩建工程建设总投资84.5亿元,其中84.5亿元用科学计数法表示为A. 0.845×1010元 B. 84.5×108元 C. 8.45×109元 D. 8.45×1010元 4. 使二次根式1-x 有意义的x 的取值范围是A. 1≠xB. 1>xC. 1≤xD. 1≥x 5. 如图所示的几何体的主视图为6. 一个不透明布袋里装有1个白球、2个黑球、3个红球,它们除颜色外都相同。
从中任意摸出一个球,是红球的概率为 A.61 B. 31 C. 21 D. 327. 某班10名学生校服尺寸与对应人数如下表所示:则这10名学生校服尺寸的众数和中位数分别为A. 165cm ,165cmB. 165cm ,170cmC. 170cm ,165cmD. 170cm ,170cm8. 如图,在△ABC 中,∠ACB=90°,CD ∥AB ,∠ACD=40°,则∠B 的度数为A. 40°B. 50°C. 60°D. 70°9. 如图,圆锥的底面半径r 为6cm ,高h 为8cm ,则圆锥的侧面积为A. 30πcm 2B. 48πcm 2C. 60πcm 2D. 80πcm 210. 能说明“对于任何实数a ,a a ->”是假命题的一个反例可以是A. 2-=aB. 31=a C. 1=a D. 2=a 11. 已知函数122--=ax ax y (a 是常数,a ≠0),下列结论正确的是A. 当1=a 时,函数图象过点(-1,1)B. 当2-=a 时,函数图象与x 轴没有交点C. 若0>a ,则当1≥x 时,y 随x 的增大而减小D. 若0<a ,则当1≤x 时,y 随x 的增大而增大12. 如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S 1,另两张直角三角形纸片的面积都为S 2,中间一张正方形纸片的面积为S 3,则这个平行四边形的面积一定可以表示为A. 4S 1B. 4S 2C. 4S 2+S 3D. 3S 1+4S 3 二、填空题(每小题4分,共24分) 13. 实数 -27的立方根是 ▲ 14. 分解因式:xy x -2= ▲15. 下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案①需8根火柴棒,图案②需15根火柴棒,……,按此规律,图案⑦需 ▲ 根火柴棒16. 如图,在一次数学课外实践活动中,小聪在距离旗杆10m 的A 处测得旗杆顶端B 的仰角为60°,测角仪高AD 为1m ,则旗杆高BC 为 ▲ m (结果保留根号)17. 如图,半圆O 的直径AB=2,弦CD ∥AB ,∠COD=90°,则图中阴影部分面积为 ▲ 18. 如图,点A 为函数)0(9>=x x y 图象上一点,连结OA ,交函数)0(1>=x xy 的图象于点B ,点C 是x 轴上一点,且AO=AC ,则△ABC 的面积为 ▲三、解答题(本大题有8小题,共78分)19.(本题6分)先化简,再求值:)3()1)(1(x x x x -+-+,其中2=x20.(本题8分)下列3×3网格都是由9个相同小正方形组成,每个网格图中有3个小正方形已涂上阴影,请在余下的6个空白小正方形中,按下列要求涂上阴影:(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形,但不是中心对称图形; (2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形; (3)选取2个涂上阴影,使5个阴影小正方形组成一个轴对称图形。
浙江省宁波市2016届中考数学模拟试卷含答案解析
2016年浙江省宁波市中考数学模拟试卷一、选择题(共12小题,每小题4分,满分48分)1.下列各数中不是分数的是()A.﹣0.2 B.C.D.25%2.宁波轨道交通2号线于2015年9月26日通车,全长50千米,50千米用科学记数法表示为()A.5×104米B.5×125米C.50×103米 D.50×104米3.下列图形都是由两个全等三角形组成的,其中是轴对称图形的是()A.B.C.D.4.方程3x2﹣2x+2=0的根的情况是()A.无实根B.有两个等根C.有两个不等根 D.有分数根5.如图,点C,D在AB同侧,∠CAB=∠DBA,下列条件中不能判定△ABD≌△BAC的是()A.∠D=∠C B.BD=AC C.∠CAD=∠DBC D.AD=BC6.如图,菱形ABCD中,∠A=60°,周长是16,则菱形的面积是()A.16 B.16C.16D.87.如图,Rt△ABC中,∠ACB=90°,AC=5,BC=12,AB的中垂线与BC交于点E,则BE的长等于()A.B.C.D.8.某商品原价每件x元,后来店主将每件增加10元,再降价25%,则现在的单价(元)是()A.25%x+10 B.(1﹣25%)x+10 C.25%(x+10)D.(1﹣25%)(x+10)9.已知一个等腰三角形腰上的高等于底边的一半,那么腰与底边的比是()A.1:B.:1 C.1:D.:110.已知x2+4y2=13,xy=3,求x+2y的值,这个问题我们可以用边长分别为x和y的两种正方形组成一个图形来解决,其中x>y,能较为简单地解决这个问题是图形是()A.B.C.D.11.有一种几何体是用相同正方体组合而成的,有人说:这样的几何体如果只给出主视图和左视图是不能唯一确定的,我们可以找出一个反例来说明这个命题是假命题,这个反例可以是()A.B.C.D.12.已知x,y满足,如果①×a+②×b可整体得到x+11y的值,那么a,b的值可以是()A.a=2,b=﹣1 B.a=﹣4,b=3 C.a=1,b=﹣7 D.a=﹣7,b=5二、填空题(共6小题,每小题4分,满分24分)13.请你写出一个比1小的正无理数是.14.分解因式:x4﹣x2y2=.15.某饮料公司生产多种饮料,为了了解大众更喜欢哪种饮料,公司组织了“你投票,我送礼”的活动,投票者只要在选票所列举的每种饮料后都写上一个1到10之间的评价数即可获利,活动结束后,在平均数、众数、中位数和方差四个统计量中,公司应该关注的一个统计量是.16.如图是一个转盘,转一次指针指向灰色部分的概率是.17.如图,矩形OABC中,OB=6,点O是坐标原点,点A,C分别在x轴,y轴的正半轴上,反比例函数y=(k>0,x>0)的图象分别交AB,BC于点E,F,F是BC的中点,则EF的长为.18.如图是一把折扇,∠O=120°,AB交于点E,F,已知AE=20,EF=4,则扇面(阴影部分)的面积为.三、解答题(共8小题,满分78分)19.计算:(1)(﹣3)3﹣(﹣1)÷(﹣);(2)sin60°.20.已知反比例函数y=的图象的一支位于第一象限.(1)判断该函数图象的另一支所在的象限,并求m的取值范围;(2)如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点B与点A关于x轴对称,若△OAB的面积为6,求m的值.21.某校为了了解本校九年级女生体育测试项目“仰卧起坐”的训练情况,让体育老师随机抽查了该年级若干名女生,并严格地对她们进行了1分钟“仰卧起坐”测试,同时统计了每个人做的个数(假设这个个数为x),现在我们将这些同学的测试结果分为四个等级:优秀(x≥44)、良好(36≤x≤43)、及格(25≤x≤35)和不及格(x≤24),并将统计结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)被测试女生1分钟“仰卧起坐”个数的中位数落在等级;(3)若该年级有650名女生,请你估计该年级女生中1分钟“仰卧起坐”个数达到优秀的人数.22.已知购买1个足球和1个篮球共需130元,购买2个足球和1个篮球共需180元.(1)求每个足球和每个篮球的进价;(2)如果某校计划购买这两种球共54个,总费用不超过4000元,问最多可买多少个篮球?23.如图,矩形ABCD的边长是常量,点E在AD上以每秒3个单位的速度从D运动到A,当运动时间为1秒时,△ABE的面积为10;当运动时间为2秒时,△ABE的面积为4.(1)设AD=a,AB=b,点E的运动时间为t秒,△ABE的面积为S,用含a,b,t的式子表示S;(2)求a和b的值;(3)求运动时间为0.5秒时,△ABE的面积.24.如图,AB是半圆O的直径,点C在半圆上,过点C的切线交BA的延长线于点D,CD=CB,CE∥AB交半圆于点E.(1)求∠D的度数;(2)求证:以点C,O,B,E为顶点的四边形是菱形.25.【阅读理解】已知△ABC的三条中线分别是AD,BE,CF.通过适当平移,这是三条中线可以组成一个三角形,我们把这个三角形叫做△ABC的中线三角形,如图①中,△BEG就是△ABC的中线三角形.【特例研究】(1)已知图①中每个小正方形的边长均为1,△ABC的三边长分别是6,8,10,那么△ABC的面积S1=,△ABC的中线三角形的面积S2=,=.【拓展推广】(2)如图②,△ABC的三条中线分别是AD,BE,CF,将AD平移至GB,连结EG.①求证:△BEG是△ABC的中线三角形;②设△ABC的面积为S1,△BEG的面积为S2,计算的值.26.如图是一个二次函数的图象,顶点是原点O,且过点A(2,1),(1)求出二次函数的表达式;(2)我们把横、纵坐标都为整数的点称为整点,请用整数n表示这条抛物线上所有的整点坐标.(3)过y轴的正半轴上一点C(0,a)作AO的平行线交抛物线于点B,①求出直线BC的函数表达式(用a表示);②如果点B是整点,求证:△OAB的面积是偶数.2016年浙江省宁波市中考数学模拟试卷参考答案与试题解析一、选择题(共12小题,每小题4分,满分48分)1.下列各数中不是分数的是()A.﹣0.2 B.C.D.25%【考点】实数.【分析】根据把“1”平均分成若干份,其中的一份或几份,可得答案.【解答】解:A、﹣0.2是分数,故A不符合题意;B、是分数,故B不符合题意;C、是无理数,故C符合题意;D、25%是分数,故D不符合题意;故选:C.【点评】本题考查了实数,利用分数的定义是解题关键.2.宁波轨道交通2号线于2015年9月26日通车,全长50千米,50千米用科学记数法表示为()A.5×104米B.5×125米C.50×103米 D.50×104米【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:50千米=5×104米,故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列图形都是由两个全等三角形组成的,其中是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此作答.【解答】解:A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:B.【点评】本题考查了轴对称的概念.轴对称的关键是寻找对称轴,图象沿某一直线折叠后可以重合.4.方程3x2﹣2x+2=0的根的情况是()A.无实根B.有两个等根C.有两个不等根 D.有分数根【考点】根的判别式.【分析】先求一元二次方程的判别式,由△与0的大小关系来判断方程根的情况.【解答】解:∵a=3,b=﹣2,c=2,∴△=b2﹣4ac=24﹣24=0,∴一元二次方程有两个相等的实数根.故选B.【点评】此题考查一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.5.如图,点C,D在AB同侧,∠CAB=∠DBA,下列条件中不能判定△ABD≌△BAC的是()A.∠D=∠C B.BD=AC C.∠CAD=∠DBC D.AD=BC【考点】全等三角形的判定.【分析】根据图形知道隐含条件BC=BC,根据全等三角形的判定定理逐个判断即可.【解答】解:A、添加条件∠D=∠C,还有已知条件∠CAB=∠DBA,BC=BC,符合全等三角形的判定定理AAS,能推出△ABD≌△BAC,故本选项错误;B、添加条件BD=AC,还有已知条件∠CAB=∠DBA,BC=BC,符合全等三角形的判定定理AAS,能推出△ABD≌△BAC,故本选项错误;C、∵∠CAB=∠DBA,∠CAD=∠DBC,∴∠DAB=∠CBA,还有已知条件∠CAB=∠DBA,BC=BC,符合全等三角形的判定定理AAS,能推出△ABD≌△BAC,故本选项错误;D、添加条件∠D=∠C,还有已知条件∠CAB=∠DBA,BC=BC,不符合全等三角形的判定定理,不能推出△ABD≌△BAC,故本选项正确;故选D.【点评】本题考查了全等三角形的判定定理的应用,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,符合SSA和AAA不能推出两三角形全等.6.如图,菱形ABCD中,∠A=60°,周长是16,则菱形的面积是()A.16 B.16C.16D.8【考点】菱形的性质.【分析】根据菱形的性质以及锐角三角函数关系得出DE的长,即可得出菱形的面积.【解答】解;如图所示:过点D作DE⊥BC于点E,∵在菱形ABCD中,周长是16,∴AD=AB=4,∵∠A=60°,∴DE=AD•sin60°=2,∴菱形ABCD的面积S=DE×AB=8.故选D.【点评】此题主要考查了菱形的面积以及其性质,得出DE的长是解题关键.7.如图,Rt△ABC中,∠ACB=90°,AC=5,BC=12,AB的中垂线与BC交于点E,则BE的长等于()A.B.C.D.【考点】线段垂直平分线的性质;勾股定理.【分析】根据勾股定理求出AB的长,根据中垂线的定义和相似三角形的判定定理得到△BDE∽△BCA,根据相似三角形的性质列出比例式,计算即可.【解答】解:∵∠ACB=90°,AC=5,BC=12,∴AB==13,∵DE是AB的中垂线,∴BD=AD=6.5,∵DE⊥AB,∠ACB=90°,∴△BDE∽△BCA,∴=,即=,解得,BE=,故选:C.【点评】本题考查的是线段垂直平分线的概念和性质以及勾股定理的应用,掌握线段垂直平分线的定义、相似三角形的判定定理是解题的关键.8.某商品原价每件x元,后来店主将每件增加10元,再降价25%,则现在的单价(元)是()A.25%x+10 B.(1﹣25%)x+10 C.25%(x+10)D.(1﹣25%)(x+10)【考点】列代数式.【专题】探究型.【分析】根据某商品原价每件x元,后来店主将每件增加10元,再降价25%,可以求得表示现在的单价代数式,从而可以解答本题.【解答】解:由题意可得,现在的单价是:(x+10)(1﹣25%),故选D.【点评】本题考查列代数式,解题的关键是明确题意,列出相应的代数式.9.已知一个等腰三角形腰上的高等于底边的一半,那么腰与底边的比是()A.1:B.:1 C.1:D.:1【考点】解直角三角形.【专题】探究型.【分析】根据题意画出合适的图形,然后根据题目中的信息可以得到腰AB与底边BC的关系,从而可以求得腰与底边的比.【解答】解:如下图所示,∵CD⊥BA的延长线于点D,CD=,∴∠B=30°,∵AB=AC,CD⊥BA,∴∠B=∠ACB,∠CDB=90°,∴∠CAD=60°,∴∠ACD=30°,设AD=x,则AC=2x,tan∠DAC=,∴,得CD=,∴BC=2CD=2,∴,故选A.【点评】本题考查解直角三角形,解题的关键是明确题意,画出相应的图形,找出所求问题需要的条件.10.已知x2+4y2=13,xy=3,求x+2y的值,这个问题我们可以用边长分别为x和y的两种正方形组成一个图形来解决,其中x>y,能较为简单地解决这个问题是图形是()A.B.C.D.【考点】完全平方公式的几何背景.【分析】根据完全平方公式得到:(x+2y)2=x2+4xy+4y2=(x﹣2y)2+6xy,即可解答.【解答】解:(x+2y)2=x2+4xy+4y2=(x﹣2y)2+6xy.故选:A.【点评】本题考查了完全平方公式的几何背景,解决本题的关键是熟记完全平方公式.11.有一种几何体是用相同正方体组合而成的,有人说:这样的几何体如果只给出主视图和左视图是不能唯一确定的,我们可以找出一个反例来说明这个命题是假命题,这个反例可以是()A.B.C.D.【考点】命题与定理;由三视图判断几何体.【分析】从A、C、D都可确定几何体,而从B中不能确定几何体.【解答】解:说明这个命题是假命题,这个反例可以是B.故选B.【点评】本考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了三视图.12.已知x,y满足,如果①×a+②×b可整体得到x+11y的值,那么a,b的值可以是()A.a=2,b=﹣1 B.a=﹣4,b=3 C.a=1,b=﹣7 D.a=﹣7,b=5【考点】解二元一次方程组.【专题】计算题;一次方程(组)及应用.【分析】利用加减消元法判断即可确定出a与b的值.【解答】解:已知x,y满足,如果①×a+②×b可整体得到x+11y的值,那么a,b 的值可以是a=﹣7,b=5,故选D.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.二、填空题(共6小题,每小题4分,满分24分)13.请你写出一个比1小的正无理数是.【考点】实数大小比较.【专题】开放型.【分析】根据实数的大小比较法则计算即可.【解答】解:此题答案不唯一,举例如:,等,故答案为.【点评】本题考查了实数的大小比较,解题的关键是理解正无理数这一概念.14.分解因式:x4﹣x2y2=x2(x+y)(x﹣y).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式x2,再对余下的多项式利用平方差公式继续分解.【解答】解:x4﹣x2y2,=x2(x2﹣y2),=x2(x+y)(x﹣y).故答案为:x2(x+y)(x﹣y).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.15.某饮料公司生产多种饮料,为了了解大众更喜欢哪种饮料,公司组织了“你投票,我送礼”的活动,投票者只要在选票所列举的每种饮料后都写上一个1到10之间的评价数即可获利,活动结束后,在平均数、众数、中位数和方差四个统计量中,公司应该关注的一个统计量是众数.【考点】统计量的选择.【分析】平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.既然是对该饮料销售情况作调查,那么应该关注那种饮料的最多,故值得关注的是众数.【解答】解:由于众数是数据中出现次数最多的数,故应最关心这组数据中的众数.故答案为:众数.【点评】此题主要考查统计的有关知识,关键是根据平均数、中位数、众数、方差的意义解答.16.如图是一个转盘,转一次指针指向灰色部分的概率是.【考点】几何概率.【分析】根据几何概率的求法:指针指向阴影部分的概率即阴影部分面积与总面积的比值,也即为阴影部分所占的圆心角与360的比值.【解答】解:指向阴影部分概率是=.故答案为:.【点评】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.17.如图,矩形OABC中,OB=6,点O是坐标原点,点A,C分别在x轴,y轴的正半轴上,反比例函数y=(k>0,x>0)的图象分别交AB,BC于点E,F,F是BC的中点,则EF的长为3.【考点】矩形的性质;三角形中位线定理.【分析】连接AC,根据矩形的性质得到AC=BO=6,根据反比例函数图象上点的坐标特征求出点E 是AB的中点,根据三角形中位线定理计算即可.【解答】解:连接AC,∵四边形OABC是矩形,∴AC=BO=6,设OA=a,OC=b,则CF=,∵点F在反比例函数y=的图象上,∴ab=k,设点E的坐标为(a,d),∵点E在反比例函数y=的图象上,∴ad=k=ab,∴d=b,即点E是AB的中点,∴EF=AC=3,故答案为:3.【点评】本题考查的是反比例函数图象上点的坐标特征、矩形的性质和三角形中位线定理的应用,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.18.如图是一把折扇,∠O=120°,AB交于点E,F,已知AE=20,EF=4,则扇面(阴影部分)的面积为1444π.【考点】扇形面积的计算.【分析】过点O作OH⊥AB于点H,利用垂径定理和解直角△AHO求得AO的长度,然后根据扇形面积的计算公式进行解答.【解答】解:如图,过点O作OH⊥AB于点H,连接EO.∵AE=20,EF=4,∴AH=22.又∵∠O=120°,∴∠AOH=60°,∴AO==,OH=AO=,∴OE2=EH2+OH2=164,==1444π.则S阴影故答案是:1444π.【点评】本题考查了扇形面积的计算,垂径定理以及解直角三角形的应用.熟记扇形面积公式是解题的关键.三、解答题(共8小题,满分78分)19.计算:(1)(﹣3)3﹣(﹣1)÷(﹣);(2)sin60°.【考点】实数的运算;特殊角的三角函数值.【专题】计算题;实数.【分析】(1)原式先计算乘方运算,再计算除法运算,最后算加减运算即可得到结果;(2)原式利用算术平方根及特殊角的三角函数值计算即可得到结果.【解答】解:(1)原式=﹣27﹣×=﹣27﹣4=﹣31;(2)原式=﹣×=﹣=0.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.已知反比例函数y=的图象的一支位于第一象限.(1)判断该函数图象的另一支所在的象限,并求m的取值范围;(2)如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点B与点A关于x轴对称,若△OAB的面积为6,求m的值.【考点】反比例函数的性质;反比例函数的图象;反比例函数图象上点的坐标特征;关于x轴、y 轴对称的点的坐标.【分析】(1)根据反比例函数的图象是双曲线.当k>0时,则图象在一、三象限,且双曲线是关于原点对称的;(2)由对称性得到△OAC的面积为3.设A(x、),则利用三角形的面积公式得到关于m 的方程,借助于方程来求m的值.【解答】解:(1)根据反比例函数的图象关于原点对称知,该函数图象的另一支在第三象限,且m ﹣7>0,则m>7;(2)∵点B与点A关于x轴对称,若△OAB的面积为6,∴△OAC的面积为3.设A(x,),则x•=3,解得m=13.【点评】本题考查了反比例函数的性质、图象,反比例函数图象上点的坐标特征等知识点.根据题意得到△OAC的面积是解题的关键.21.某校为了了解本校九年级女生体育测试项目“仰卧起坐”的训练情况,让体育老师随机抽查了该年级若干名女生,并严格地对她们进行了1分钟“仰卧起坐”测试,同时统计了每个人做的个数(假设这个个数为x),现在我们将这些同学的测试结果分为四个等级:优秀(x≥44)、良好(36≤x≤43)、及格(25≤x≤35)和不及格(x≤24),并将统计结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)被测试女生1分钟“仰卧起坐”个数的中位数落在良好等级;(3)若该年级有650名女生,请你估计该年级女生中1分钟“仰卧起坐”个数达到优秀的人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据各个等级的百分比得出答案即可;(2)根据中位数的定义知道中位数是第25和26个数的平均数,由此即可得出答案;(3)首先根据扇形图得出优秀人数占的百分比,条形统计图可以求出平均数的最小值,然后即可求出答案.【解答】解:(1);(2)∵13+20+12+5=50,50÷2=25,25+1=26,∴中位数落在良好等级,故答案为:良好;(3)650×26%=169(人),即该年级女生中1分钟“仰卧起坐”个数达到优秀的人数是169.【点评】本题难度中等,主要考查统计图表的识别;解本题要懂得频率分布直分图的意义.同时考查了平均数和中位数的定义.22.已知购买1个足球和1个篮球共需130元,购买2个足球和1个篮球共需180元.(1)求每个足球和每个篮球的进价;(2)如果某校计划购买这两种球共54个,总费用不超过4000元,问最多可买多少个篮球?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)设每个篮球x元,每个足球y元,根据买1个篮球和2个足球共需180元,购买1个篮球和1个足球共需130元,列出方程组,求解即可;(2)设买m个篮球,则购买(54﹣m)个足球,根据总价钱不超过4000元,列不等式求出x的最大整数解即可.【解答】解:(1)设每个篮球x元,每个足球y元,由题意得,,解得:,答:每个篮球80元,每个足球50元;(2)设买m个篮球,则购买(54﹣m)个足球,由题意得,80m+50(54﹣m)≤4000,解得:m≤,∵m为整数,∴m最大取43,答:最多可以买43个篮球.【点评】本题考查了二元一次方程组的一元一次不等式的应用,解答本题的关键是读懂题意,找出合适的等量关系,列方程求解.23.如图,矩形ABCD的边长是常量,点E在AD上以每秒3个单位的速度从D运动到A,当运动时间为1秒时,△ABE的面积为10;当运动时间为2秒时,△ABE的面积为4.(1)设AD=a,AB=b,点E的运动时间为t秒,△ABE的面积为S,用含a,b,t的式子表示S;(2)求a和b的值;(3)求运动时间为0.5秒时,△ABE的面积.【考点】四边形综合题.【分析】(1)根据路程=速度×时间得出DE=3t,则AE=AD﹣DE=a﹣3t,再根据S△ABE=AE•AB,代入数据即可求出S=ab﹣bt;(2)将t=1,S=10;t=2,S=4分别代入(1)中所求解析式,得出关于a、b的方程组,求解即可求出a和b的值;(3)由(2)可得S=16﹣6t,将t=0.5代入计算即可求解.【解答】解:(1)∵点E在AD上以每秒3个单位的速度从D运动到A,AD=a,∴DE=3t,AE=AD﹣DE=a﹣3t,∴S△ABE=AE•AB=(a﹣3t)•b=ab﹣bt,即S=ab﹣bt;(2)∵当运动时间为1秒时,△ABE的面积为10,∴ab﹣b=10,∵当运动时间为2秒时,△ABE的面积为4,∴ab﹣3b=4.解方程组,得,即a的值为8,b的值为4;(3)∵a=8,b=4,∴S=×8×4﹣×4t,即S=16﹣6t,运动时间为0.5秒时,将t=0.5代入S=16﹣6t,得S=16﹣6×0.5=13.即△ABE的面积为13.【点评】本题是四边形综合题,其中涉及到路程、速度与时间关系的应用,三角形的面积,求函数解析式以及代数式求值.用含a,b,t的式子正确表示出S是解题的关键.24.如图,AB是半圆O的直径,点C在半圆上,过点C的切线交BA的延长线于点D,CD=CB,CE∥AB交半圆于点E.(1)求∠D的度数;(2)求证:以点C,O,B,E为顶点的四边形是菱形.【考点】切线的性质;菱形的判定.【分析】(1)连接AC,根据切线的性质以及等腰三角形的性质得出∠D=∠ACD=∠ABC,根据圆周角定理得出∠ACB=90°,然后根据三角形内角和定理即可求得∠D的度数;(2)连接OC、BE,先证得△AOC是等边三角形,然后证得四边形COBE是平行四边形即可证得结论.【解答】(1)解:连接AC,∵CD是⊙O的切线,∴∠ACD=∠ABC,∵AB是直径,∴∠ACB=90°,∵CD=CB,∴∠D=∠ABC,∴∠D=∠ACD=∠ABC,∵∠D+∠ACD+∠ABC+∠ACB=90°,∴∠D=30°;(2)证明:连接OC、BE,∵∠D=∠ACD=30°,∴∠CAB=60°,∵OA=OC,∴△AOC是等边三角形,∴AC=OC,∠AOC=60°,∵CE∥AB,∴AC=EB,∴四边形ACEB是等腰梯形,OC=BE,∴∠CAB=∠EBA=60°,∴∠AOC=∠EBA=60°,∴OC∥BE,∴四边形COBE是平行四边形,∵OC=OB,∴以点C,O,B,E为顶点的四边形是菱形.【点评】本题考查了切线的性质,圆周角定理,等腰梯形的判定和性质,菱形的判定等,作出辅助线构建直角三角形和等边三角形是解题的关键.25.【阅读理解】已知△ABC的三条中线分别是AD,BE,CF.通过适当平移,这是三条中线可以组成一个三角形,我们把这个三角形叫做△ABC的中线三角形,如图①中,△BEG就是△ABC的中线三角形.【特例研究】(1)已知图①中每个小正方形的边长均为1,△ABC的三边长分别是6,8,10,那么△ABC的面积S1=24,△ABC的中线三角形的面积S2=18,=.【拓展推广】(2)如图②,△ABC的三条中线分别是AD,BE,CF,将AD平移至GB,连结EG.①求证:△BEG是△ABC的中线三角形;②设△ABC的面积为S1,△BEG的面积为S2,计算的值.【考点】相似形综合题;面积及等积变换;全等三角形的判定与性质;勾股定理的逆定理;平行四边形的判定与性质.【专题】阅读型.【分析】(1)根据勾股定理的逆定理可证到∠ACB=90°,就可求出S1,然后运用割补法就可求出是S2,从而可求出;(2)①连接AG、GF、EF,如图2①,要证△BEG是△ABC的中线三角形,只需证EG=CF,只需证四边形ECFG是平行四边形,只需证EC∥GF,EC=GF,由于AE=EC,只需证四边形AEFG是平行四边形即可;②延长GA、BE交于点N,如图2②,易证△AEN≌△CEB,从而可得AN=BC,NE=BE,即可得到AN=2AG,NG=3AG,=.由AE=EC,NE=BE,根据等高三角形的面积比等于底的比可得S2=S△NEG,S1=2S△ABE=2S△ANE,进而可得==2×,问题得以解决.【解答】解:(1)如图1,∵BC=6,AC=8,AB=10,∴BC2+AC2=AB2,∴∠ACB=90°,∴S1=×6×8=24,S2=6×8﹣×3×4﹣×3×8﹣×4×6=18,∴==.故答案为24,18,;(2)①连接AG、GF、EF,如图2①,∵AD∥BG,AD=BG,∴四边形ADBG是平行四边形,∴AG∥BD,AG=DB.∵AE=EC,AF=BF,CD=BD,∴EF∥BC,EF=BC=DB,∴AG∥EF,AG=EF,∴四边形AEFG是平行四边形,∴AE∥GF,AE=GF,∴EC∥GF,EC=GF,∴四边形ECFG是平行四边形,∴EG=CF,∴△BEG是△ABC的中线三角形;②延长GA、BE交于点N,如图2②,∵AG∥BC即AN∥BC,∴∠N=∠EBC.在△AEN和△CEB中,,∴△AEN≌△CEB,∴AN=BC,NE=BE,∴AN=BC=2AG,∴NG=NA+AG=BC+AG=3AG,∴==.∵AE=EC,NE=BE,∴S△BEG=S△NEG,S△ABC=2S△ABE=2S△ANE,∴==2×=2×=.【点评】本题主要考查来了勾股定理的逆定理、平行四边形的判定与性质、全等三角形的判定与性质、等高三角形的面积比等于底的比、三角形中位线定理、平行线的传递性等知识,证到四边形ECFG 是平行四边形是解决第(2)①小题的关键,借助于平行线和中点构造全等三角形是解决第(2)②小题的关键.26.如图是一个二次函数的图象,顶点是原点O,且过点A(2,1),(1)求出二次函数的表达式;(2)我们把横、纵坐标都为整数的点称为整点,请用整数n表示这条抛物线上所有的整点坐标.(3)过y轴的正半轴上一点C(0,a)作AO的平行线交抛物线于点B,①求出直线BC的函数表达式(用a表示);②如果点B是整点,求证:△OAB的面积是偶数.【考点】二次函数综合题;奇数与偶数;待定系数法求一次函数解析式;两条直线相交或平行问题.【专题】综合题.【分析】(1)可设抛物线的解析式为y=ax2,然后只需把点A的坐标代入抛物线的解析式,就可解决问题;(2)由抛物线的解析式可知,要使y是整数,只需x是偶数,故x可用2n表示(n为整数),由此就可解决问题;(3)①可运用待定系数法求出直线OA的解析式,然后根据两直线平行一次项的系数相同,就可得到直线BC的函数表达式;②由于点B是整点,点B的坐标可表示为(2n,n2),代入直线BC 的解析式,即可得到a的值(用n表示),然后根据平行等积法可得S△OAB=S△OAC=n(n﹣1),由于n与n﹣1是相邻整数,必然一奇一偶,因而n(n﹣1)是偶数,问题得以解决.【解答】解:(1)设抛物线的解析式为y=ax2,。
浙江省宁波市2016年中考数学试题(附解析)
浙江省宁波市2016年中考数学试题满分150分,考试时间120分钟一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求) 1. 6的相反数是 A. -6 B. 61 C. 61- D. 6 【答案】A. 【解析】试题分析:根据只有符号不同的两个数互为相反数可得6的相反数是-6,故答案选A. 考点:相反数. 2. 下列计算正确的是A. 633a a a =+B. 33=-a aC. 523)(a a = D. 32a a a =⋅【答案】D.考点:合并同类项法则;同底数幂乘法法则;幂的乘方运算.3. 宁波栎社国际机场三期扩建工程建设总投资84.5亿元,其中84.5亿元用科学计数法表示为A. 0.845×1010元B. 84.5×108元C. 8.45×109元D. 8.45×1010元 【答案】C. 【解析】试题分析:科学计数法是指:a ×n10,且101 a ≤,n 为原数的整数位数减一.84.5亿=8 450 000 000=8.45×109,故答案选C. 考点:科学计数法.4. 使二次根式1-x 有意义的x 的取值范围是A. 1≠xB. 1>xC. 1≤xD. 1≥x 【答案】D. 【解析】试题分析:使二次根式a 有意义的条件是被开方数a ≥0,所以使二次根式1-x 有意义的条件是x-1≥0,即x ≥1,故答案选D. 考点:二次根式有意义的条件. 5. 如图所示的几何体的主视图为【答案】B. 【解析】试题分析:从正面看这个几何体是由两个大小一样的矩形组成,故答案选B. 考点:几何体的三视图.6. 一个不透明布袋里装有1个白球、2个黑球、3个红球,它们除颜色外都相同。
从中任意摸出一个球,是红球的概率为 A.61 B. 31 C. 21 D. 32 【答案】C.考点:概率公式.7. 某班10名学生校服尺寸与对应人数如下表所示:则这10名学生校服尺寸的众数和中位数分别为A. 165cm,165cmB. 165cm,170cmC. 170cm,165cmD. 170cm,170cm【答案】B.【解析】试题分析:众数是一组数据中出现次数最多的数据,所以众数是165;把数据按从小到大顺序排列,可得中位数=(170+170)÷2=170,故答案选B.考点:中位数;众数.8. 如图,在△ABC中,∠ACB=90°,CD∥AB,∠ACD=40°,则∠B的度数为A. 40°B. 50°C. 60°D. 70°【答案】B.考点:平行线的性质;直角三角形的两锐角互余.9. 如图,圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为A. 30πcm2B. 48πcm2C. 60πcm2D. 80πcm2【答案】C.【解析】试题分析:如图,根据勾股定理可求得圆锥的母线l=10,再由圆锥的侧面积公式S=πrl=π×6×8=60πcm2,故答案选C.考点:勾股定理;圆锥的侧面积公式.10. 能说明“对于任何实数a ,a a ->”是假命题的一个反例可以是 A. 2-=a B. 31=a C. 1=a D. 2=a 【答案】A. 【解析】试题分析:把选项A 代入a a ->可得)2(2-->-,即2>2,错误,其它三个选项代入都成立,故答案选A. 考点:命题.11. 已知函数122--=ax ax y (a 是常数,a ≠0),下列结论正确的是 A. 当1=a 时,函数图象过点(-1,1) B. 当2-=a 时,函数图象与x 轴没有交点 C. 若0>a ,则当1≥x 时,y 随x 的增大而减小 D. 若0<a ,则当1≤x 时,y 随x 的增大而增大 【答案】D.当0<a ,在对称轴的左侧,即当1≤x 时,y 随x 的增大而增大,所以选项C 错误,选项D 正确,故答案选D.考点:二次函数的性质.12. 如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S 1,另两张直角三角形纸片的面积都为S 2,中间一张正方形纸片的面积为S 3,则这个平行四边形的面积一定可以表示为A. 4S 1B. 4S 2C. 4S 2+S 3D. 3S 1+4S 3【答案】A.考点:直角三角形的面积.二、填空题(每小题4分,共24分) 13. 实数-27的立方根是 【答案】-3. 【解析】试题分析:因为(-3)3=-27,根据立方根的定义可得实数-27的立方根是-3. 考点:立方根.14. 分解因式:xy x -2= 【答案】x(x-y). 【解析】试题分析:直接提公因式x 可得xy x -2=x(x-y). 考点:因式分解.15. 下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案①需8根火柴棒,图案②需15根火柴棒,……,按此规律,图案⑦需 根火柴棒【答案】50.考点:图形规律探究题.16. 如图,在一次数学课外实践活动中,小聪在距离旗杆10m 的A 处测得旗杆顶端B 的仰角为60°,测角仪高AD 为1m ,则旗杆高BC 为 m (结果保留根号)【答案】103+1. 【解析】试题分析:如图,由题意可得AE=DC=10m ,AD=CE=1m ,在Rt △AEC 中,tan ∠BAE=AEBE,即103BE,解得BE=103m ,所以BC=BE+CE=(103+1)m.考点:解直角三角形的应用.17. 如图,半圆O 的直径AB=2,弦CD ∥AB ,∠COD=90°,则图中阴影部分面积为【答案】4π.考点:扇形的面积. 18. 如图,点A 为函数)0(9>=x x y 图象上一点,连结OA ,交函数)0(1>=x xy 的图象于点B ,点C 是x 轴上一点,且AO=AC ,则△ABC 的面积为【答案】6. 【解析】试题分析:如图,分别作AE ⊥x 轴,BD ⊥x 轴,垂足分别为点E 、D ,根据反比例函数k 的几何意义可得21=∆OBD S ,29=∆AOE S ,由AE ⊥x 轴,BD ⊥x 轴可得△BOD ∽△AOE,根据相似三角形的性质可得AOEBODS S OE OD ∆∆=2)(,即可得31=OE OD ,因为AO=AC ,根据等腰三角形的性质可得OE=EC ,所以61=OC OD ,又因612121==⋅⋅=∆∆OC OD BD OC BDOD S S BOC BOD ,21=∆OBD S ,所以可得3=∆BOC S ,在由于AO=AC ,AE ⊥x 轴,可得29==∆∆ACE AOE S S ,9=∆AOC S ,所以639=-=-=∆∆∆BOC AOC ABC S S S.考点:反比例函数综合题.三、解答题(本大题有8小题,共78分)19.(本题6分)先化简,再求值:)3()1)(1(x x x x -+-+,其中2=x 【答案】原式=13-x ;当2=x 时,原式=5.考点:整式的化简求值.20.(本题8分)下列3×3网格都是由9个相同小正方形组成,每个网格图中有3个小正方形已涂上阴影,请在余下的6个空白小正方形中,按下列要求涂上阴影:(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形,但不是中心对称图形; (2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形;(3)选取2个涂上阴影,使5个阴影小正方形组成一个轴对称图形。
中考数学一模试卷(含解析)10
浙江省宁波市慈溪市2016年中考数学一模试卷一、选择题(毎小题4分,共48分,在每小题给出的四个选项中,只有一项是正确的)1.﹣2016的倒数是()A.2016 B.2016 C.D.2.下列计算正确的是()A.(a2)3=a5B.2a﹣a=2 C.(2a)2=4a D.a•a3=a43.宁波地铁1号线二期于2016年3月19日开通试运营,当天客流量超25万人次,数据25万用科学记数法表示为()A.2.5×104B.2.5×105C.0.25×105D.0.25×1064.不等式组的解集是()A.x>﹣B.x<﹣C.x<1 D.﹣<x<15.在一次汉字听写大赛中,10名学生得分情况如表:那么这10名学生所得分数的中位数和众数分别是()A.85和82.5 B.85.5和85 C.85和85 D.85.5和806.如图所示的几何体是由一些正方体组合而成的立体图形,则这个几何体的俯视图是()A. B. C. D.7.用配方法解方程x2﹣4x+1=0时,配方后所得的方程是()A.(x﹣2)2=3 B.(x+2)2=3 C.(x﹣2)2=1 D.(x﹣2)2=﹣18.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠B=135°,则的长()A .2πB .πC .D .9.如图,在空白网格内将某一个小正方形涂成阴影部分,且所涂的小正方形与原阴影图形的小正方形至少有一边重合.小红按要求涂了一个正方形,所得到的阴影图形恰好是轴对称图形的概率为( )A .B .C .D .10.在平面直角坐标系中,二次函数y=﹣x 2+6x ﹣9的图象顶点为A ,与y 轴交于点B .若在该二次函数图形上取一点C ,在x 轴上取一点D ,使得四边形ABCD 为平行四边形,则D 点的坐标为( )A .(﹣9,0)B .(﹣6,0)C .(6,0)D .(9,0)11.如图,在△ABC 、△ADE 中,C 、D 两点分别在AE 、AB 上,BC 、DE 交于点F ,若BD=DC=CE ,∠ADC+∠ACD=114°,则∠DFC 为( )A .114°B .123°C .132°D .147°12.如图1是一张等腰直角三角形彩色纸,将斜边上的高线四等分,然后裁出三张宽度相等的长方形纸条,若恰好可以用这些纸条为一幅正方形美术作品镶边(纸条不重叠),则这张彩色纸的面积与镶嵌所得的作品(如图2)面积之比为( )A.2:3 B.3:4 C.1:1 D.4:3二、填空题13.已知函数y=,下列x的值:①x=﹣9;②x=0;③x=4:其中在自变量取值范围内的有(只要填序号即可)14.已知直线y=kx+b经过点(2,3),则4k+2b﹣7= .15.一个不透明的布袋中,装有红、黄、白、黑四种只有颜色不同的小球,其中红色小球有30个,黄、白、黑色小球的数目相同.为估计袋中黄色小球的数目,每次将袋中小球搅匀后摸出一个小球记下颜色,放回后再次搅匀…多次试验发现摸到红球的频率是,则估计黄色小球的数目是.16.如图,在Rt△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B恰好落在AC边上的点E处.若∠A=26°,则∠CDE= .17.如图,0为原点,A(4,0),E(0,3),四边形OABC,四边形OCDE都为平行四边形,OC=5,函数y=(x>0)的图象经过AB的中点F和DE的中点G,则k的值为.18.如图,A点的坐标是(0,6),AB=BO,∠ABO=120°,C在x轴上运动,在坐标平面内作点D,使AD=DC,∠ADC=120°,连结OD,则OD的长的最小值为.三、解答题(19题6分,20~21每题8分,22〜24每題10分,25题12分,26题14分,共78分)19.(6分)计算:(﹣3)2+()0﹣+2﹣1+•tan30°.20.(8分)先化简,再求值:,其中x=﹣3.21.(8分)中考英语听力测试期间T需要杜绝考点周围的噪音.如图,点A是某市一中考考点,在位于考点南偏西15°方向距离500米的C点处有一消防队.在听力考试期间,消防队突然接到报警电话,消防车需沿北偏东75°方向的公路CF前往救援.已知消防车的警报声传播半径为400米,若消防车的警报声对听力测试造成影响,则消防车必须改道行驶.试问:消防车是否需要改道行驶?说明理由.(≈1.732)22.(10分)如图,在平面直角坐标系中,一次函数y=ax﹣a(a为常数)的图象与y轴相交于点A,与函数的图象相交于点B(m,1).(1)求点B的坐标及一次函数的解析式;(2)若点P在y轴上,且△PAB为直角三角形,请直接写出点P的坐标.23.(10分)垃圾的分类处理与回收利用,可以减少污染,节省资源.某城市环保部门为了提高宣传实效,抽样调查了部分居民小区一段时间内生活垃圾的分类情况,其相关信息如图:(注:A为可回收物,B为厨余垃圾,C为有害垃圾,D为其他垃圾)根据图表解答下列问题:(1)在抽样数据中,产生的有害垃圾共多少吨?(2)请将条形统计图补充完整;(3)调查发现,在可回收物中塑料类垃圾占,每回收1吨塑料类垃圾可获得0.7吨二级原料.假设该城市每月产生的生活垃圾为5000吨,且全部分类处理,那么每月回收的塑料类垃圾可以获得多少吨二级原料?24.(10分)我市某校准备组织学生及学生家长坐高铁到杭州进行社会实践,为了便于管理.所有人员必须乘坐在同一列高铁上.根据报名人数,若都买一等座单程火车票需6560元,若都买二等座单程火车票,则需3120元(学生票二等座打7.5折,一等座不打折).已知学生家长与教师的人数之比为3:1,余姚北站到杭州东站的火车票价格如表所示:(1)参加社会实践的老师、家长与学生各有多少人?(2)由于各种原因,二等座火车票单程只能买m张(m小于参加社会实践的人数),其余的须买一等座火车票,在保证每位参与人员都有座位坐的前提下,请你设计最经济的购票方案,并写出购买火车票的总费用(单程)y(元)(用含m的代数式表示).25.(12分)定义:圆心在三角形的一边上,与另一边相切,且经过三角形一个顶点(非切点)的圆,称为这个三角形圆心所在边上的“伴随圆”.(1)如图1,△ABC中,∠C=90°,AB=5,BC=3,则AC边上的伴随圆的半径为.(2)如图2,已知等腰△ABC,AB=AC=5,BC=6,画草图并直接写出它的所有伴随圆的半径.(3)如图3,△ABC中,∠ACB=90°,点P在边AB上,AP=2BP,D为AC中点,且∠CPD=90°.①求证:△CPD的外接圆是△ABC某一条边上的伴随圆;②求cos∠PDC的值.26.(14分)如图,抛物线y=ax2+bx+3交x轴于A(﹣1,0)和B(5,0),交y轴于点C,点D是线段OB上一动点,连接CD,将CD绕点D顺时针旋转90°得到线段DE,过点E作直线l⊥x轴,垂足为H,过点C作CF⊥l于F,连接DF,CE交于点G.(1)求抛物线解析式;(2)求线段DF的长;(3)当DG=时,①求tan∠CGD的值;②试探究在x轴上方的抛物线上,是否存在点P,使∠EDP=45°?若存在,请写出点P的坐标;若不存在,请说明理由.2016年浙江省宁波市慈溪市中考数学一模试卷参考答案与试题解析一、选择题(毎小题4分,共48分,在每小题给出的四个选项中,只有一项是正确的)1.﹣2016的倒数是()A.2016 B.2016 C.D.【考点】倒数.【分析】直接利用倒数的定义分析得出答案.【解答】解:﹣2016的倒数是,故选D【点评】此题主要考查了倒数的定义,正确把握互为倒数之间关系是解题关键.2.下列计算正确的是()A.(a2)3=a5B.2a﹣a=2 C.(2a)2=4a D.a•a3=a4【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质,合并同类项的法则,对各选项分析判断后利用排除法求解.【解答】解:A、(a2)3=a6,故错误;B、2a﹣a=a,故错误;C、(2a)2=4a2,故错误;D、正确;故选:D.【点评】本题考查了合并同类项,同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.3.宁波地铁1号线二期于2016年3月19日开通试运营,当天客流量超25万人次,数据25万用科学记数法表示为()A.2.5×104B.2.5×105C.0.25×105D.0.25×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【解答】解:25万=2.5×105, 故选:B .【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.不等式组的解集是( )A .x >﹣B .x <﹣C .x <1D .﹣<x <1 【考点】解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x <﹣,由②得,x <1,故不等式组的解集为:x<﹣. 故选B .【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.在一次汉字听写大赛中,10名学生得分情况如表:那么这10名学生所得分数的中位数和众数分别是( ) A .85和82.5B .85.5和85C .85和85D .85.5和80【考点】众数;中位数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,可得答案.【解答】解:在这一组数据中85是出现次数最多的,故众数是85;排序后处于中间位置的两个数都是85,那么由中位数的定义可知,这组数据的中位数是85;故选:C.【点评】本题为统计题,考查众数与中位数的意义.众数是一组数据中出现次数最多的数据;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.6.如图所示的几何体是由一些正方体组合而成的立体图形,则这个几何体的俯视图是()A. B. C. D.【考点】简单组合体的三视图.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面看易得左侧有2个正方形,右侧有一个正方形.故选A.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.7.用配方法解方程x2﹣4x+1=0时,配方后所得的方程是()A.(x﹣2)2=3 B.(x+2)2=3 C.(x﹣2)2=1 D.(x﹣2)2=﹣1【考点】解一元二次方程-配方法.【分析】方程变形后,配方得到结果,即可做出判断.【解答】解:方程x2﹣4x+1=0,变形得:x2﹣4x=﹣1,配方得:x2﹣4x+4=﹣1+4,即(x﹣2)2=3,故选A.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.8.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠B=135°,则的长()A.2πB.πC.D.【考点】弧长的计算;圆周角定理;圆内接四边形的性质.【分析】连接OA、OC,然后根据圆周角定理求得∠AOC的度数,最后根据弧长公式求解.【解答】解:连接OA、OC,∵∠B=135°,∴∠D=180°﹣135°=45°,∴∠AOC=90°,则的长==π.故选B.【点评】本题考查了弧长的计算以及圆周角定理,解答本题的关键是掌握弧长公式L=.9.如图,在空白网格内将某一个小正方形涂成阴影部分,且所涂的小正方形与原阴影图形的小正方形至少有一边重合.小红按要求涂了一个正方形,所得到的阴影图形恰好是轴对称图形的概率为()A.B.C.D.【考点】几何概率;轴对称图形.【分析】直接利用轴对称图形的定义得出符合题意的图形,进而利用概率公式求出答案.【解答】解:如图所示:所涂的小正方形与原阴影图形的小正方形至少有一边重合的一共有9个,能构成轴对称图形的有所标数据1,2,3,4,共4个,则所得到的阴影图形恰好是轴对称图形的概率为:.故选:C.【点评】此题主要考查了结合概率以及轴对称图形的定义,正确得出符合题意的图形位置是解题关键.10.在平面直角坐标系中,二次函数y=﹣x2+6x﹣9的图象顶点为A,与y轴交于点B.若在该二次函数图形上取一点C,在x轴上取一点D,使得四边形ABCD为平行四边形,则D点的坐标为()A.(﹣9,0)B.(﹣6,0)C.(6,0) D.(9,0)【考点】平行四边形的判定;二次函数图象上点的坐标特征.【分析】首先将二次函数配方求得顶点A的坐标,然后求得抛物线与y轴的交点坐标,根据电C和点B的纵坐标相同求得点C的坐标,从而求得线段BC的长,根据平行四边形的性质求得AD的长即可求得点D的坐标.【解答】解:如图:∵y=﹣x2+6x﹣9=﹣(x﹣3)2,∴顶点A的坐标为(3,0),令x=0得到y=﹣9,∴点B的坐标为(0,﹣9),令y=﹣x2+6x﹣9=﹣9,解得:x=0或x=6,∴点C的坐标为(6,﹣9),∴BC=AD=6,∴OD=OA+AD=3+6=9,∴点D的坐标为(9,0),故选D.【点评】本题考查了平行四边形的判定以及二次函数的性质等知识.主要利用了抛物线与坐标轴交点的求法,平行四边形的对边平行且相等的性质.11.如图,在△ABC、△ADE中,C、D两点分别在AE、AB上,BC、DE交于点F,若BD=DC=CE,∠ADC+∠ACD=114°,则∠DFC为()A.114°B.123°C.132°D.147°【考点】等腰三角形的性质.【分析】先根据等腰三角形的性质得出∠B=∠DCB,∠E=∠CDE,再利用三角形的内角和进行分析解答即可.【解答】解:∵BD=CD=CE,∴∠B=∠DCB,∠E=∠CDE,∵∠ADC+∠ACD=114°,∴∠BDC+∠ECD=360°﹣114°=246°,∴∠B+∠DCB+∠E+∠CDE=360°﹣246°=114°,∴∠DCB+∠CDE=57°,∴∠DFC=180°﹣57°=123°,【点评】此题考查等腰三角形的性质,关键是利用等边对等角和三角形内角和分析解答.12.如图1是一张等腰直角三角形彩色纸,将斜边上的高线四等分,然后裁出三张宽度相等的长方形纸条,若恰好可以用这些纸条为一幅正方形美术作品镶边(纸条不重叠),则这张彩色纸的面积与镶嵌所得的作品(如图2)面积之比为()A.2:3 B.3:4 C.1:1 D.4:3【考点】相似三角形的应用.【分析】设三张宽度相等的长方形纸条的宽为x,则△ABC的高为4x,如图1,根据等腰直角三角形的性质得到AB=8x,则S△ABC=16x2,根据平行线分线段成比例定理由DE∥AB,FG∥AB,MN∥AB得到=, =, =,则DE=2x,FG=4x,MN=6x,所以DE+FG+MN=2x+4x+6x=12x,即镶嵌所得的作品的周长为16x,所以镶嵌所得的作品的面积=16x2,然后计算这张彩色纸的面积与镶嵌所得的作品(如图2)面积之比.【解答】解:设三张宽度相等的长方形纸条的宽为x,则等腰直角三角形的高为4x,如图1,∴AB=8x,∴S△ABC=•4x•8x=16x2,∵DE∥AB,FG∥AB,MN∥AB,∴=, =, =,∴DE=AB=2x,FG=4x,MN=6x,∴DE+FG+MN=2x+4x+6x=12x,∴镶嵌所得的作品的周长为12x=4x=16x,∴镶嵌所得的作品的边长为4x,∴镶嵌所得的作品的面积=16x2,∴这张彩色纸的面积与镶嵌所得的作品(如图2)面积之比为1:1.【点评】本题考查了相似三角形的应用:从实物图中抽象出几何图形,再证明三角形相似,然后利用相似比计算相应的线段长.也考查了等腰三角形和正方形的性质.二、填空题13.已知函数y=,下列x的值:①x=﹣9;②x=0;③x=4:其中在自变量取值范围内的有②(只要填序号即可)【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0,分母不等于0列式计算求出x的取值范围,然后选择答案即可.【解答】解:由题意得,x≥0且﹣2≠0,解得x≥0且x≠4.所以,在自变量取值范围内的有②.故答案为:②.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.14.已知直线y=kx+b经过点(2,3),则4k+2b﹣7= ﹣1 .【考点】一次函数图象上点的坐标特征.【分析】由点在直线上可得出3=2k+b,将代数式4k+2b﹣7化成2k+b的形式,代入数据即可得出结论.【解答】解:∵直线y=kx+b经过点(2,3),∴3=2k+b.∴4k+2b﹣7=2×(2k+b)﹣7=2×3﹣7=﹣1.故答案为:﹣1.【点评】本题考查了一次函数图象上点的坐标特征,解题的关键是找出2k+b=3.本题属于基础题,难度不大,解决该题型题目时,根据点在直线上,找出两未知数间的关系是关键.15.一个不透明的布袋中,装有红、黄、白、黑四种只有颜色不同的小球,其中红色小球有30个,黄、白、黑色小球的数目相同.为估计袋中黄色小球的数目,每次将袋中小球搅匀后摸出一个小球记下颜色,放回后再次搅匀…多次试验发现摸到红球的频率是,则估计黄色小球的数目是20个.【考点】用样本估计总体.【分析】根据布袋中红球有30个,多次试验发现摸到红球的频率是,可以得到布袋中小球总的数量,由一个不透明的布袋中,装有红、黄、白、黑四种只有颜色不同的小球,其中红色小球有30个,黄、白、黑色小球的数目相同,可以得到黄色小球的数目.【解答】解:由题意可得,布袋中小球一共有:30÷=90,∵布袋中红色小球有30个,黄、白、黑色小球的数目相同,∴黄色小球的数目是:(90﹣30)÷3=60÷3=20(个),故答案为:20个.【点评】本题考查用样本估计总体,解题的关键是明确题意,由红球的数量和出现的频率得到总的小球数量.16.如图,在Rt△ABC中,∠ACB=90°,点D在AB边上,将△CBD沿CD折叠,使点B恰好落在AC边上的点E处.若∠A=26°,则∠CDE= 71°.【考点】翻折变换(折叠问题).【分析】根据三角形内角和定理求出∠B,根据折叠求出∠ECD和∠CED,根据三角形内角和定理求出即可.【解答】解:∵在Rt△ABC中,∠ACB=90°,∠A=26°,∴∠B=64°,∵将△CBD沿CD折叠,使点B恰好落在AC边上的点E处,∠ACB=90°,∴∠BCD=∠ECD=45°,∠CED=∠B=64°,∴∠CDE=180°﹣∠ECD﹣∠CED=71°,故答案为:71°.【点评】本题考查了折叠的性质,三角形内角和定理的应用,能求出∠CED和∠ECD的度数是解此题的关键,注意:折叠后的两个图形全等.17.如图,0为原点,A(4,0),E(0,3),四边形OABC,四边形OCDE都为平行四边形,OC=5,函数y=(x>0)的图象经过AB的中点F和DE的中点G,则k的值为9 .【考点】反比例函数图象上点的坐标特征;平行四边形的性质.【分析】(1)根据两平行四边形对边平行且相等可知:OE=3,OA=4,并由设出C、B、D的坐标;(2)表示出点F和G的坐标,并根据反比例函数列等式,求出a与b的关系:3a=4b,a=;(3)由OC的长及点C的坐标列式:a2+b2=52,求出a与b的值;(4)写出点G或点F的坐标,计算k的值.【解答】解:∵A(4,0),E(0,3),∴OE=3,OA=4,由▱OABC和▱OCDE得:OE∥DC,BC∥OA且DC=OE=3,BC=OA=4,设C(a,b),则D(a,b+3)、B(4+a,b),∵AB的中点F和DE的中点G,∴G(),F(),∵函数y=(x>0)的图象经过点G和F,则,3a=4b,a=,∵OC=5,C(a,b),∴a2+b2=52,,b=±3,∵b>0,∴b=3,a=4,∴F(6,),∴k=6×=9;故答案为:9.【点评】本题考查了平行四边形及反比例函数的性质,根据坐标特点及平行四边形对边平行相等的性质,利用点C的坐标表示出点B和D的坐标是本题的突破口,找出两组等量关系列方程是本题的关键;同时利用待定系数法求反比例函数的比例系数.18.如图,A点的坐标是(0,6),AB=BO,∠ABO=120°,C在x轴上运动,在坐标平面内作点D,使AD=DC,∠ADC=120°,连结OD,则OD的长的最小值为.【考点】相似三角形的判定与性质;坐标与图形性质;含30度角的直角三角形.【分析】先判定△ABO∽△ADC,得出=,再根据∠BAD=∠OAC,得出△ACO∽△ADB,进而得到∠ABD=∠AOC=90°,得到D始终在直线BE上,当OD⊥BE时,OD最小,最后过O作OF⊥BD于F,根据∠OBF=30°,求得OF=OB=,即OD最小值为;作B关于y轴的对称点B',则同理可得OD最小值为.【解答】解:如图,作直线BD,由∠DAC=∠DCA=∠BAO=∠BOA=30°,可得△ABO∽△ADC,∴=,即=,又∵∠BAD=∠OAC,∴△ACO∽△ADB,∴∠ABD=∠AOC=90°,∴D始终在直线BE上,当OD⊥BE时,OD最小,过O作OF⊥BD于F,则△BOF为Rt△,∵A点的坐标是(0,6),AB=BO,∠ABO=120°,∴易得OB=2,∵ABO=120°,∠ABD=90°,∴∠OBF=30°,∴OF=OB=,即OD最小值为;如图,作B关于y轴的对称点B',作直线DB',则同理可得:△ACO∽△ADB',∴∠AB'D=∠AOC=90°,∴D始终在直线B'E上,当OD⊥B'E时,OD最小,过O作OF'⊥B'D于F',则△B'OF'为Rt△,∵A点的坐标是(0,6),AB'=B'O,∠A B'O=120°,∴易得OB'=2,∵AB'O=120°,∠AB'D=90°,∴∠OB'F'=30°,∴OF'=OB'=,即OD最小值为.故答案为:.【点评】本题主要考查了相似三角形的判定与性质、含30°角的直角三角形的性质的综合应用,解决问题的关键是作辅助线,利用垂线段最短进行判断分析.解题时注意:在直角三角形中,30°角所对的直角边等于斜边的一半.三、解答题(19题6分,20~21每题8分,22〜24每題10分,25题12分,26题14分,共78分)19.计算:(﹣3)2+()0﹣+2﹣1+•tan30°.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式利用零指数幂、负整数指数幂法则,乘方的意义,立方根定义,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=9+1﹣2++×=9.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.先化简,再求值:,其中x=﹣3.【考点】分式的化简求值.【分析】化简分式,首先把分式的分母分解因式,确定各个分式的最简公分母,把两个分式通分,然后即可利用同分母的分式的加减即可求解.【解答】解:原式=====.当x=﹣3时,原式==1.【点评】本题考查了分式的化简求值,关键是分式的化简,容易出现=的错误.21.中考英语听力测试期间T需要杜绝考点周围的噪音.如图,点A是某市一中考考点,在位于考点南偏西15°方向距离500米的C点处有一消防队.在听力考试期间,消防队突然接到报警电话,消防车需沿北偏东75°方向的公路CF前往救援.已知消防车的警报声传播半径为400米,若消防车的警报声对听力测试造成影响,则消防车必须改道行驶.试问:消防车是否需要改道行驶?说明理由.(≈1.732)【考点】解直角三角形的应用-方向角问题.【分析】过A作AD⊥CF于D,根据题意求出∠ACD=60°,根据正弦的定义求出AD的长,比较即可得到答案.【解答】解:过A作AD⊥CF于D,由题意得∠CAG=15°,∴∠ACE=15°,∵∠ECF=75°,∴∠ACD=60°,在Rt△ACD中,sin∠ACD=,则AD=AC•sin∠ACD=250≈433米,433米>400米,∴不需要改道.答:消防车不需要改道行驶.【点评】本题考查的是解直角三角形的应用﹣方向角问题,正确标注方向角、熟记锐角三角函数的概念是解题的关键.22.(10分)(2016•商丘三模)如图,在平面直角坐标系中,一次函数y=ax﹣a(a为常数)的图象与y轴相交于点A,与函数的图象相交于点B(m,1).(1)求点B的坐标及一次函数的解析式;(2)若点P在y轴上,且△PAB为直角三角形,请直接写出点P的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)由点在函数图象上,得到点的坐标满足函数解析式,利用待定系数法即可求得.(2)分两种情况,一种是∠BPA=90°,另一种是∠PBA=90°,所以有两种答案.【解答】解:(1)∵B在的图象上,∴把B(m,1)代入y=得m=2∴B点的坐标为(2,1)∵B(2,1)在直线y=ax﹣a(a为常数)上,∴1=2a﹣a,∴a=1∴一次函数的解析式为y=x﹣1.(2)过B点向y轴作垂线交y轴于P点.此时∠BPA=90°∵B点的坐标为(2,1)∴P点的坐标为(0,1)当PB⊥AB时,在Rt△P1AB中,PB=2,PA=2∴AB=2在等腰直角三角形PAB中,PB=PA=2∴PA==4∴OP=4﹣1=3∴P点的坐标为(0,3)∴P点的坐标为(0,1)或(0,3).【点评】主要考查了一次函数和反比例函数的交点问题,待定系数法是常用的方法,结合图形去分析,体现数形结合思想的重要性.23.(10分)(2016•慈溪市一模)垃圾的分类处理与回收利用,可以减少污染,节省资源.某城市环保部门为了提高宣传实效,抽样调查了部分居民小区一段时间内生活垃圾的分类情况,其相关信息如图:(注:A为可回收物,B为厨余垃圾,C为有害垃圾,D为其他垃圾)根据图表解答下列问题:(1)在抽样数据中,产生的有害垃圾共多少吨?(2)请将条形统计图补充完整;(3)调查发现,在可回收物中塑料类垃圾占,每回收1吨塑料类垃圾可获得0.7吨二级原料.假设该城市每月产生的生活垃圾为5000吨,且全部分类处理,那么每月回收的塑料类垃圾可以获得多少吨二级原料?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据题意可以求得在抽样数据中,有害垃圾由多少吨;(2)根据题意可以求得B的吨数,从而可以将条形统计图补充完整;(3)根据题意可以求得每月回收的塑料类垃圾可以获得的二级原料有多少吨.【解答】解:(1)由题意可得,在抽样数据中,产生的有害垃圾有:5÷10%×(1﹣10%﹣30%﹣54%)=5÷10%×6%=3(吨),即在抽样数据中,产生的有害垃圾共3吨;(2)由题意可得,B有:5÷10%×30%=15(吨),补全的条形统计图如右图所示,(3)由题意可得,每月回收的塑料类垃圾可以获得的二级原料有:5000×54%××0.7=945(吨),即每月回收的塑料类垃圾可以获得的二级原料有945吨.【点评】本题考查条形统计图、用样本估计总体、扇形统计图,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.24.(10分)(2016•慈溪市一模)我市某校准备组织学生及学生家长坐高铁到杭州进行社会实践,为了便于管理.所有人员必须乘坐在同一列高铁上.根据报名人数,若都买一等座单程火车票需6560元,若都买二等座单程火车票,则需3120元(学生票二等座打7.5折,一等座不打折).已知学生家长与教师的人数之比为3:1,余姚北站到杭州东站的火车票价格如表所示:(1)参加社会实践的老师、家长与学生各有多少人?(2)由于各种原因,二等座火车票单程只能买m张(m小于参加社会实践的人数),其余的须买一等座火车票,在保证每位参与人员都有座位坐的前提下,请你设计最经济的购票方案,并写出购买火车票的总费用(单程)y(元)(用含m的代数式表示).【考点】二元一次方程组的应用.【分析】(1)设设教师人数为x人,学生家长人数为3x人,学生人数为y人,根据:若都买一等座单程火车票需6560元、若都买二等座单程火车票,则需3120元(学生票二等座打7.5折,一等座不打折)列方程组求解可得;(2)根据0<m<60、60≤m<80分别列示表示即可.【解答】解:(1)设教师人数为x人,学生家长人数为3x人,学生人数为y人.由题意得:,解得:,∴3x=3×5=15答:老师5人,家长15人,学生60人.(2)①当0<m<60时,y=82(80﹣m)+48×75%m=6560﹣46m;②当60≤m<80时,y=48×75%×60+48(m﹣60)+82(80﹣m)=5840﹣34m.【点评】本题考查二元一次方程组的知识解决实际问题,解决本题的关键是根据相等关系列出方程组及分段函数的运用.25.(12分)(2016•慈溪市一模)定义:圆心在三角形的一边上,与另一边相切,且经过三角形一个顶点(非切点)的圆,称为这个三角形圆心所在边上的“伴随圆”.(1)如图1,△ABC中,∠C=90°,AB=5,BC=3,则AC边上的伴随圆的半径为 2 .(2)如图2,已知等腰△ABC,AB=AC=5,BC=6,画草图并直接写出它的所有伴随圆的半径.(3)如图3,△ABC中,∠ACB=90°,点P在边AB上,AP=2BP,D为AC中点,且∠CPD=90°.①求证:△CPD的外接圆是△ABC某一条边上的伴随圆;②求cos∠PDC的值.【考点】圆的综合题.【分析】(1)先依据勾股定理求得AC的长,然后依据切线的性质可知AC为圆的直径,故此可求得△BAC的伴随圆的半径等于AC的一半;(2)当O在BC上时,连接OD,过点A作AE⊥BC.由等腰三角形的性质和勾股定理求得AE=4,依据切线的性质可证明OD⊥AB,接下来证明△ODB∽△AEB,由相似三角形的性质可求得圆O 的半径;当O在AB上且圆O与BC相切时,连接OD、过点A作AE⊥BC,垂足为E.先证明△BOD∽△BAE,由相似三角形的性质可求得圆O的半径,当O在AB上且圆O与AC相切时,连接OD、过点B作BF⊥AC,过点A作AE⊥BC,垂足为E.先依据面积法求得BF的长,然后再证明△AOD∽△ABF,由相似三角形的性质可求得圆O的半径;。
2016年浙江省宁波市中考数学模拟试卷
2016年浙江省宁波市中考数学模拟试卷一、选择题(共12小题,每小题4分,满分48分)1.(4分)(2016?宁波模拟)下列各数中不是分数的是()A.﹣0.2 B.C.D.25%2.(4分)(2016?宁波模拟)宁波轨道交通2号线于2015年9月26日通车,全长50千米,50千米用科学记数法表示为()A.5×104米B.5×125米C.50×103米 D.50×104米3.(4分)(2016?宁波模拟)下列图形都是由两个全等三角形组成的,其中是轴对称图形的是()A.B.C.D.4.(4分)(2016?宁波模拟)方程3x2﹣2x+2=0的根的情况是()A.无实根B.有两个等根C.有两个不等根 D.有分数根5.(4分)(2016?宁波模拟)如图,点C,D在AB同侧,∠CAB=∠DBA,下列条件中不能判定△ABD≌△BAC的是()A.∠D=∠C B.BD=AC C.∠CAD=∠DBC D.AD=BC6.(4分)(2016?宁波模拟)如图,菱形ABCD中,∠A=60°,周长是16,则菱形的面积是()A.16 B.16C.16D.87.(4分)(2016?宁波模拟)如图,Rt△ABC中,∠ACB=90°,AC=5,BC=12,AB的中垂线与BC交于点E,则BE的长等于()A.B.C.D.8.(4分)(2016?宁波模拟)某商品原价每件x元,后来店主将每件增加10元,再降价25%,则现在的单价(元)是()A.25%x+10 B.(1﹣25%)x+10 C.25%(x+10)D.(1﹣25%)(x+10)9.(4分)(2016?宁波模拟)已知一个等腰三角形腰上的高等于底边的一半,那么腰与底边的比是()A.1:B.:1 C.1:D.:110.(4分)(2016?宁波模拟)已知x 2+4y2=13,xy=3,求x+2y的值,这个问题我们可以用边长分别为x和y的两种正方形组成一个图形来解决,其中x>y,能较为简单地解决这个问题是图形是()A.B.C.D.11.(4分)(2016?宁波模拟)有一种几何体是用相同正方体组合而成的,有人说:这样的几何体如果只给出主视图和左视图是不能唯一确定的,我们可以找出一个反例来说明这个命题是假命题,这个反例可以是()A.B.C.D.12.(4分)(2016?宁波模拟)已知x,y满足,如果①×a+②×b可整体得到x+11y的值,那么a,b的值可以是()A.a=2,b=﹣1 B.a=﹣4,b=3 C.a=1,b=﹣7 D.a=﹣7,b=5二、填空题(共6小题,每小题4分,满分24分)13.(4分)(2016?宁波模拟)请你写出一个比1小的正无理数是.14.(4分)(2016?宁波模拟)分解因式:x4﹣x2y2=.15.(4分)(2016?宁波模拟)某饮料公司生产多种饮料,为了了解大众更喜欢哪种饮料,公司组织了“你投票,我送礼”的活动,投票者只要在选票所列举的每种饮料后都写上一个1到10之间的评价数即可获利,活动结束后,在平均数、众数、中位数和方差四个统计量中,公司应该关注的一个统计量是.16.(4分)(2016?宁波模拟)如图是一个转盘,转一次指针指向灰色部分的概率是.17.(4分)(2016?宁波模拟)如图,矩形OABC中,OB=6,点O是坐标原点,点A,C 分别在x轴,y轴的正半轴上,反比例函数y=(k>0,x>0)的图象分别交AB,BC于点E,F,F是BC的中点,则EF的长为.18.(4分)(2016?宁波模拟)如图是一把折扇,∠O=120°,AB交于点E,F,已知AE=20,EF=4,则扇面(阴影部分)的面积为.三、解答题(共8小题,满分78分)19.(6分)(2016?宁波模拟)计算:(1)(﹣3)3﹣(﹣1)÷(﹣);(2)sin60°.20.(8分)(2015?广州)已知反比例函数y=的图象的一支位于第一象限.(1)判断该函数图象的另一支所在的象限,并求m的取值范围;(2)如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点B与点A关于x轴对称,若△OAB的面积为6,求m的值.21.(8分)(2015?陕西)某校为了了解本校九年级女生体育测试项目“仰卧起坐”的训练情况,让体育老师随机抽查了该年级若干名女生,并严格地对她们进行了1分钟“仰卧起坐”测试,同时统计了每个人做的个数(假设这个个数为x),现在我们将这些同学的测试结果分为四个等级:优秀(x≥44)、良好(36≤x≤43)、及格(25≤x≤35)和不及格(x≤24),并将统计结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)被测试女生1分钟“仰卧起坐”个数的中位数落在等级;(3)若该年级有650名女生,请你估计该年级女生中1分钟“仰卧起坐”个数达到优秀的人数.22.(10分)(2015?广西)已知购买1个足球和1个篮球共需130元,购买2个足球和1个篮球共需180元.(1)求每个足球和每个篮球的售价;(2)如果某校计划购买这两种球共54个,总费用不超过4000元,问最多可买多少个篮球?23.(10分)(2016?宁波模拟)如图,矩形ABCD的边长是常量,点E在AD上以每秒3个单位的速度从D运动到A,当运动时间为1秒时,△ABE的面积为10;当运动时间为2秒时,△ABE的面积为4.(1)设AD=a,AB=b,点E的运动时间为t秒,△ABE的面积为S,用含a,b,t的式子表示S;(2)求a和b的值;(3)求运动时间为0.5秒时,△ABE的面积.24.(10分)(2016?宁波模拟)如图,AB是半圆O的直径,点C在半圆上,过点C的切线交BA的延长线于点D,CD=CB,CE∥AB交半圆于点E.(1)求∠D的度数;(2)求证:以点C,O,B,E为顶点的四边形是菱形.25.(12分)(2016?宁波模拟)【阅读理解】已知△ABC的三条中线分别是AD,BE,CF.通过适当平移,这是三条中线可以组成一个三角形,我们把这个三角形叫做△ABC的中线三角形,如图①中,△BEG就是△ABC的中线三角形.【特例研究】(1)已知图①中每个小正方形的边长均为1,△ABC的三边长分别是6,8,10,那么△ABC 的面积S1=,△ABC的中线三角形的面积S2=,=.【拓展推广】(2)如图②,△ABC的三条中线分别是AD,BE,CF,将AD平移至GB,连结EG.①求证:△BEG是△ABC的中线三角形;②设△ABC的面积为S1,△BEG的面积为S2,计算的值.26.(14分)(2016?宁波模拟)如图是一个二次函数的图象,顶点是原点O,且过点A(2,1),(1)求出二次函数的表达式;(2)我们把横、纵坐标都为整数的点称为整点,请用整数n表示这条抛物线上所有的整点坐标.(3)过y轴的正半轴上一点C(0,a)作AO的平行线交抛物线于点B,①求出直线BC的函数表达式(用a表示);②如果点B是整点,求证:△OAB的面积是偶数.2016年浙江省宁波市中考数学模拟试卷参考答案与试题解析一、选择题(共12小题,每小题4分,满分48分)1.(4分)(2016?宁波模拟)下列各数中不是分数的是()A.﹣0.2 B.C.D.25%【解答】解:A、﹣0.2是分数,故A不符合题意;B、是分数,故B不符合题意;C、是无理数,故C符合题意;D、25%是分数,故D不符合题意;故选:C.2.(4分)(2016?宁波模拟)宁波轨道交通2号线于2015年9月26日通车,全长50千米,50千米用科学记数法表示为()A.5×104米B.5×125米C.50×103米 D.50×104米【解答】解:50千米=5×104米,故选:A.3.(4分)(2016?宁波模拟)下列图形都是由两个全等三角形组成的,其中是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:B.4.(4分)(2016?宁波模拟)方程3x2﹣2x+2=0的根的情况是()A.无实根B.有两个等根C.有两个不等根 D.有分数根【解答】解:∵a=3,b=﹣2,c=2,∴△=b2﹣4ac=24﹣24=0,∴一元二次方程有两个相等的实数根.故选B.5.(4分)(2016?宁波模拟)如图,点C,D在AB同侧,∠CAB=∠DBA,下列条件中不能判定△ABD≌△BAC的是()A.∠D=∠C B.BD=AC C.∠CAD=∠DBC D.AD=BC【解答】解:A、添加条件∠D=∠C,还有已知条件∠CAB=∠DBA,BC=BC,符合全等三角形的判定定理AAS,能推出△ABD≌△BAC,故本选项错误;B、添加条件BD=AC,还有已知条件∠CAB=∠DBA,BC=BC,符合全等三角形的判定定理AAS,能推出△ABD≌△BAC,故本选项错误;C、∵∠CAB=∠DBA,∠CAD=∠DBC,∴∠DAB=∠CBA,还有已知条件∠CAB=∠DBA,BC=BC,符合全等三角形的判定定理AAS,能推出△ABD≌△BAC,故本选项错误;D、添加条件∠D=∠C,还有已知条件∠CAB=∠DBA,BC=BC,不符合全等三角形的判定定理,不能推出△ABD≌△BAC,故本选项正确;故选D.6.(4分)(2016?宁波模拟)如图,菱形ABCD中,∠A=60°,周长是16,则菱形的面积是()A.16 B.16C.16D.8【解答】解;如图所示:过点D作DE⊥BC于点E,∵在菱形ABCD中,周长是16,∴AD=AB=4,∵∠A=60°,∴DE=AD?sin60°=2,∴菱形ABCD的面积S=DE×AB=8.故选D.7.(4分)(2016?宁波模拟)如图,Rt△ABC中,∠ACB=90°,AC=5,BC=12,AB的中垂线与BC交于点E,则BE的长等于()A.B.C.D.【解答】解:∵∠ACB=90°,AC=5,BC=12,∴AB==13,∵DE是AB的中垂线,∴BD=AD=6.5,∵DE⊥AB,∠ACB=90°,∴△BDE∽△BCA,∴=,即=,解得,BE=,故选:C.8.(4分)(2016?宁波模拟)某商品原价每件x元,后来店主将每件增加10元,再降价25%,则现在的单价(元)是()A.25%x+10 B.(1﹣25%)x+10 C.25%(x+10)D.(1﹣25%)(x+10)【解答】解:由题意可得,现在的单价是:(x+10)(1﹣25%),故选D.9.(4分)(2016?宁波模拟)已知一个等腰三角形腰上的高等于底边的一半,那么腰与底边的比是()A.1:B.:1 C.1:D.:1【解答】解:如下图所示,∵CD⊥BA的延长线于点D,CD=,∴∠B=30°,∵AB=AC,CD⊥BA,∴∠B=∠ACB,∠CDB=90°,∴∠CAD=60°,∴∠ACD=30°,设AD=x,则AC=2x,tan∠DAC=,∴,得CD=,∴BC=2CD=2,∴,故选A.10.(4分)(2016?宁波模拟)已知x2+4y2=13,xy=3,求x+2y的值,这个问题我们可以用边长分别为x和y的两种正方形组成一个图形来解决,其中x>y,能较为简单地解决这个问题是图形是()A.B.C.D.【解答】解:(x+2y)2=x2+4xy+4y2=(x﹣2y)2+6xy.故选:A.11.(4分)(2016?宁波模拟)有一种几何体是用相同正方体组合而成的,有人说:这样的几何体如果只给出主视图和左视图是不能唯一确定的,我们可以找出一个反例来说明这个命题是假命题,这个反例可以是()A.B.C.D.【解答】解:说明这个命题是假命题,这个反例可以是B.故选B.12.(4分)(2016?宁波模拟)已知x,y满足,如果①×a+②×b可整体得到x+11y的值,那么a,b的值可以是()A.a=2,b=﹣1 B.a=﹣4,b=3 C.a=1,b=﹣7 D.a=﹣7,b=5【解答】解:已知x,y满足,如果①×a+②×b可整体得到x+11y的值,那么a,b的值可以是a=﹣7,b=5,故选D.二、填空题(共6小题,每小题4分,满分24分)13.(4分)(2016?宁波模拟)请你写出一个比1小的正无理数是.【解答】解:此题答案不唯一,举例如:,等,故答案为.14.(4分)(2016?宁波模拟)分解因式:x 4﹣x2y2=x2(x+y)(x﹣y).【解答】解:x4﹣x2y2,=x2(x2﹣y2),=x2(x+y)(x﹣y).故答案为:x2(x+y)(x﹣y).15.(4分)(2016?宁波模拟)某饮料公司生产多种饮料,为了了解大众更喜欢哪种饮料,公司组织了“你投票,我送礼”的活动,投票者只要在选票所列举的每种饮料后都写上一个1到10之间的评价数即可获利,活动结束后,在平均数、众数、中位数和方差四个统计量中,公司应该关注的一个统计量是众数.【解答】解:由于众数是数据中出现次数最多的数,故应最关心这组数据中的众数.故答案为:众数.16.(4分)(2016?宁波模拟)如图是一个转盘,转一次指针指向灰色部分的概率是.【解答】解:指向阴影部分概率是=.故答案为:.17.(4分)(2016?宁波模拟)如图,矩形OABC中,OB=6,点O是坐标原点,点A,C 分别在x轴,y轴的正半轴上,反比例函数y=(k>0,x>0)的图象分别交AB,BC于点E,F,F是BC的中点,则EF的长为3.【解答】解:连接AC,∵四边形OABC是矩形,∴AC=BO=6,设OA=a,OC=b,则CF=,∵点F在反比例函数y=的图象上,∴ab=k,设点E的坐标为(a,d),∵点E在反比例函数y=的图象上,∴ad=k=ab,∴d=b,即点E是AB的中点,∴EF=AC=3,故答案为:3.18.(4分)(2016?宁波模拟)如图是一把折扇,∠O=120°,AB交于点E,F,已知AE=20,EF=4,则扇面(阴影部分)的面积为1444π.【解答】解:如图,过点O作OH⊥AB于点H,连接EO.∵AE=20,EF=4,∴AH=22.又∵∠O=120°,∴∠AOH=60°,∴AO==,OH=AO=,∴OE2=EH2+OH2=164,则S阴影==1444π.故答案是:1444π.三、解答题(共8小题,满分78分)19.(6分)(2016?宁波模拟)计算:(1)(﹣3)3﹣(﹣1)÷(﹣);(2)sin60°.【解答】解:(1)原式=﹣27﹣×=﹣27﹣4=﹣31;(2)原式=﹣×=﹣=0.20.(8分)(2015?广州)已知反比例函数y=的图象的一支位于第一象限.(1)判断该函数图象的另一支所在的象限,并求m的取值范围;(2)如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点B与点A关于x轴对称,若△OAB的面积为6,求m的值.【解答】解:(1)根据反比例函数的图象关于原点对称知,该函数图象的另一支在第三象限,且m﹣7>0,则m>7;(2)∵点B与点A关于x轴对称,若△OAB的面积为6,∴△OAC的面积为3.设A(x,),则x?=3,解得m=13.21.(8分)(2015?陕西)某校为了了解本校九年级女生体育测试项目“仰卧起坐”的训练情况,让体育老师随机抽查了该年级若干名女生,并严格地对她们进行了1分钟“仰卧起坐”测试,同时统计了每个人做的个数(假设这个个数为x),现在我们将这些同学的测试结果分为四个等级:优秀(x≥44)、良好(36≤x≤43)、及格(25≤x≤35)和不及格(x≤24),并将统计结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)被测试女生1分钟“仰卧起坐”个数的中位数落在良好等级;(3)若该年级有650名女生,请你估计该年级女生中1分钟“仰卧起坐”个数达到优秀的人数.【解答】解:(1);(2)∵13+20+12+5=50,50÷2=25,25+1=26,∴中位数落在良好等级,故答案为:良好;(3)650×26%=169(人),即该年级女生中1分钟“仰卧起坐”个数达到优秀的人数是169.22.(10分)(2015?广西)已知购买1个足球和1个篮球共需130元,购买2个足球和1个篮球共需180元.(1)求每个足球和每个篮球的售价;(2)如果某校计划购买这两种球共54个,总费用不超过4000元,问最多可买多少个篮球?【解答】解:(1)设每个篮球x元,每个足球y元,由题意得,,解得:,答:每个篮球80元,每个足球50元;(2)设买m个篮球,则购买(54﹣m)个足球,由题意得,80m+50(54﹣m)≤4000,解得:m≤,∵m为整数,∴m最大取43,答:最多可以买43个篮球.23.(10分)(2016?宁波模拟)如图,矩形ABCD的边长是常量,点E在AD上以每秒3个单位的速度从D运动到A,当运动时间为1秒时,△ABE的面积为10;当运动时间为2秒时,△ABE的面积为4.(1)设AD=a,AB=b,点E的运动时间为t秒,△ABE的面积为S,用含a,b,t的式子表示S;(2)求a和b的值;(3)求运动时间为0.5秒时,△ABE的面积.【解答】解:(1)∵点E在AD上以每秒3个单位的速度从D运动到A,AD=a,∴DE=3t,AE=AD﹣DE=a﹣3t,∴S△ABE=AE?AB=(a﹣3t)?b=ab﹣bt,即S=ab﹣bt;(2)∵当运动时间为1秒时,△ABE的面积为10,∴ab﹣b=10,∵当运动时间为2秒时,△ABE的面积为4,∴ab﹣3b=4.解方程组,得,即a的值为8,b的值为4;(3)∵a=8,b=4,∴S=×8×4﹣×4t,即S=16﹣6t,运动时间为0.5秒时,将t=0.5代入S=16﹣6t,得S=16﹣6×0.5=13.即△ABE的面积为13.24.(10分)(2016?宁波模拟)如图,AB是半圆O的直径,点C在半圆上,过点C的切线交BA的延长线于点D,CD=CB,CE∥AB交半圆于点E.(1)求∠D的度数;(2)求证:以点C,O,B,E为顶点的四边形是菱形.【解答】(1)解:连接AC,∵CD是⊙O的切线,∴∠ACD=∠ABC,∵AB是直径,∴∠ACB=90°,∵CD=CB,∴∠D=∠ABC,∴∠D=∠ACD=∠ABC,∵∠D+∠ACD+∠ABC+∠ACB=90°,∴∠D=30°;(2)证明:连接OC、BE,∵∠D=∠ACD=30°,∴∠CAB=60°,∵OA=OC,∴△AOC是等边三角形,∴AC=OC,∠AOC=60°,∵CE∥AB,∴AC=EB,∴四边形ACEB是等腰梯形,OC=BE,∴∠CAB=∠EBA=60°,∴∠AOC=∠EBA=60°,∴OC∥BE,∴四边形COBE是平行四边形,∵OC=OB,∴以点C,O,B,E为顶点的四边形是菱形.25.(12分)(2016?宁波模拟)【阅读理解】已知△ABC的三条中线分别是AD,BE,CF.通过适当平移,这是三条中线可以组成一个三角形,我们把这个三角形叫做△ABC的中线三角形,如图①中,△BEG就是△ABC的中线三角形.【特例研究】(1)已知图①中每个小正方形的边长均为1,△ABC的三边长分别是6,8,10,那么△ABC的面积S1=24,△ABC的中线三角形的面积S2=18,=.【拓展推广】(2)如图②,△ABC的三条中线分别是AD,BE,CF,将AD平移至GB,连结EG.①求证:△BEG是△ABC的中线三角形;②设△ABC的面积为S1,△BEG的面积为S2,计算的值.【解答】解:(1)如图1,∵BC=6,AC=8,AB=10,∴BC2+AC2=AB2,∴∠ACB=90°,∴S1=×6×8=24,S2=6×8﹣×3×4﹣×3×8﹣×4×6=18,∴==.故答案为24,18,;(2)①连接AG、GF、EF,如图2①,∵AD∥BG,AD=BG,∴四边形ADBG是平行四边形,∴AG∥BD,AG=DB.∵AE=EC,AF=BF,CD=BD,∴EF∥BC,EF=BC=DB,∴AG∥EF,AG=EF,∴四边形AEFG是平行四边形,∴AE∥GF,AE=GF,∴EC∥GF,EC=GF,∴四边形ECFG是平行四边形,∴EG=CF,∴△BEG是△ABC的中线三角形;②延长GA、BE交于点N,如图2②,∵AG∥BC即AN∥BC,∴∠N=∠EBC.在△AEN和△CEB中,,∴△AEN≌△CEB,∴AN=BC,NE=BE,∴AN=BC=2AG,∴NG=NA+AG=BC+AG=3AG,∴==.∵AE=EC,NE=BE,∴S△BEG=S△NEG,S△ABC=2S△ABE=2S△ANE,∴==2×=2×=.26.(14分)(2016?宁波模拟)如图是一个二次函数的图象,顶点是原点O,且过点A(2,1),(1)求出二次函数的表达式;(2)我们把横、纵坐标都为整数的点称为整点,请用整数n表示这条抛物线上所有的整点坐标.(3)过y轴的正半轴上一点C(0,a)作AO的平行线交抛物线于点B,①求出直线BC的函数表达式(用a表示);②如果点B是整点,求证:△OAB的面积是偶数.【解答】解:(1)设抛物线的解析式为y=ax2,把A(2,1)代入y=ax2,得1=4a,解得a=,∴二次函数的表达式为y=x2;(2)抛物线上整点坐标可表示为(2n,n2),其中n为整数;(3)①设直线OA的解析式为y=kx,把点A(2,1)代入y=kx,得1=2k,解得k=,∴直线OA 的解析式为y=x ,则过点C (0,c )与直线OA 平行的直线的解析式为y=x+c ;②证明:∵点B 是整点,∴点B 的坐标可表示为(2n ,n 2),其中n 为整数,把B (2n ,n 2)代入y=x+c ,得n 2=n+c ,∴c=n 2﹣n=n (n ﹣1).∵BC ∥OA ,∴S △OAB =S △OAC =×c ×2=c=n (n ﹣1).∵n 为整数,∴n 与n ﹣1一奇一偶,∴n (n ﹣1)是偶数,∴△OAB 的面积是偶数.。
浙江省宁波市2016年中考数学试卷(解析版)
2016年浙江省宁波市中考数学试卷一、选择题1 . 6的相反数是()A.﹣6 B.C.﹣D.62.下列计算正确的是()A.a3+a3=a6B.3a﹣a=3 C.(a3)2=a5D.a•a2=a33.宁波栎社国际机场三期扩建工程建设总投资84.5亿元,其中84.5亿元用科学记数法表示为()A.0.845×1010元B.84.5×108元C.8.45×109元D.8.45×1010元4.使二次根式有意义的x的取值范围是()A.x≠1 B.x>1 C.x≤1 D.x≥15.如图所示的几何体的主视图为()A.B. C.D.6.一个不透明布袋里装有1个白球、2个黑球、3个红球,它们除颜色外均相同.从中任意摸出一个球,则是红球的概率为()A.B.C.D.7.某班10名学生的校服尺寸与对应人数如表所示:则这10名学生校服尺寸的众数和中位数分别为()A.165cm,165cm B.165cm,170cm C.170cm,165cm D.170cm,170cm8.如图,在△ABC中,∠ACB=90°,CD∥AB,∠ACD=40°,则∠B的度数为()A.40°B.50°C.60°D.70°9.如图,圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为()A.30πcm2B.48πcm2C.60πcm2D.80πcm210.能说明命题“对于任何实数a,|a|>﹣a”是假命题的一个反例可以是()A.a=﹣2 B.a=C.a=1 D.a=11.已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A.当a=1时,函数图象过点(﹣1,1)B.当a=﹣2时,函数图象与x轴没有交点C.若a>0,则当x≥1时,y随x的增大而减小D.若a<0,则当x≤1时,y随x的增大而增大12.如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积一定可以表示为()A.4S1B.4S2C.4S2+S3D.3S1+4S3二、填空题13.实数﹣27的立方根是.14.分解因式:x2﹣xy=.15.下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案①需8根火柴棒,图案②需15根火柴棒,…,按此规律,图案⑦需根火柴棒.16.如图,在一次数学课外实践活动中,小聪在距离旗杆10m的A处测得旗杆顶端B的仰角为60°,测角仪高AD为1m,则旗杆高BC为m(结果保留根号).17.如图,半圆O的直径AB=2,弦CD∥AB,∠COD=90°,则图中阴影部分的面积为.18.如图,点A为函数y=(x>0)图象上一点,连结OA,交函数y=(x>0)的图象于点B,点C是x 轴上一点,且AO=AC,则△ABC的面积为.三、解答题(本大题有8小题,满分78分)19.先化简,再求值:(x+1)(x﹣1)+x(3﹣x),其中x=2.20.下列3×3网格图都是由9个相同的小正方形组成,每个网格图中有3个小正方形已涂上阴影,请在余下的6个空白小正方形中,按下列要求涂上阴影:(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形,但不是中心对称图形.(2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形.(3)选取2个涂上阴影,使5个阴影小正方形组成一个轴对称图形.(请将三个小题依次作答在图1、图2、图3中,均只需画出符合条件的一种情形)21.为深化义务教育课程改革,某校积极开展拓展性课程建设,计划开设艺术、体育、劳技、文学等多个类别的拓展性课程,要求每一位学生都自主选择一个类别的拓展性课程.为了了解学生选择拓展性课程的情况,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图(部分信息未给出):根据统计图中的信息,解答下列问题:(1)求本次被调查的学生人数.(2)将条形统计图补充完整.(3)若该校共有1600名学生,请估计全校选择体育类的学生人数.22.如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.23.如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线.(2)求DE的长.24.某商场销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如表所示该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元.(1)该商场计划购进A,B两种品牌的教学设备各多少套?(2)通过市场调研,该商场决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少的数量的1.5倍.若用于购进这两种教学设备的总资金不超过69万元,问A种设备购进数量至多减少多少套?25.从三角形(不是等腰三角形)一个顶点引出一条射线于对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线.(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB的度数.(3)如图2,△ABC中,AC=2,BC=,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.26.如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(5,0),菱形OABC的顶点B,C都在第一象限,tan∠AOC=,将菱形绕点A按顺时针方向旋转角α(0°<∠α<∠AOC)得到菱形FADE(点O的对应点为点F),EF与OC交于点G,连结AG.(1)求点B的坐标.(2)当OG=4时,求AG的长.(3)求证:GA平分∠OGE.(4)连结BD并延长交x轴于点P,当点P的坐标为(12,0)时,求点G的坐标.2016年浙江省宁波市中考数学试卷参考答案与试题解析一、选择题1 .6的相反数是()A.﹣6 B.C.﹣D.6【考点】相反数.【分析】依据相反数的定义求解即可.【解答】解:6的相反数是﹣6.故选:A.【点评】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.下列计算正确的是()A.a3+a3=a6B.3a﹣a=3 C.(a3)2=a5D.a•a2=a3【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】根据同类项合并、幂的乘方和同底数幂的乘法计算即可.【解答】解:A、a3+a3=2a3,错误;B、3a﹣a=2a,错误;C、(a3)2=a6,错误;D、a•a2=a3,正确;故选D.【点评】此题考查同类项合并、幂的乘方和同底数幂的乘法,关键是根据同类项合并、幂的乘方和同底数幂的乘法的定义解答.3.宁波栎社国际机场三期扩建工程建设总投资84.5亿元,其中84.5亿元用科学记数法表示为()A.0.845×1010元B.84.5×108元C.8.45×109元D.8.45×1010元【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于84.5亿有10位,所以可以确定n=10﹣1=9.【解答】解:84.5亿元用科学记数法表示为8.45×109元.故选:C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.使二次根式有意义的x的取值范围是()A.x≠1 B.x>1 C.x≤1 D.x≥1【考点】二次根式有意义的条件.【分析】根据二次根式中的被开方数必须是非负数列出不等式,解不等式即可.【解答】解:由题意得,x﹣1≥0,解得x≥1,故选:D.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.5.如图所示的几何体的主视图为()A.B. C.D.【考点】简单几何体的三视图.【分析】利用主视图的定义,即从几何体的正面观察得出视图即可.【解答】解:如图所示:几何体的主视图为:.故选:B.【点评】此题主要考查了简单几何体的三视图,正确把握观察角度是解题关键.6.一个不透明布袋里装有1个白球、2个黑球、3个红球,它们除颜色外均相同.从中任意摸出一个球,则是红球的概率为()A.B.C.D.【考点】概率公式.【分析】让红球的个数除以球的总数即为摸到红球的概率.【解答】解:1个白球、2个黑球、3个红球一共是1+2+3=6个,从中任意摸出一个球,则摸出的球是红球的概率是3÷6=.故选:C.【点评】考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.7.某班10名学生的校服尺寸与对应人数如表所示:则这10名学生校服尺寸的众数和中位数分别为()A.165cm,165cm B.165cm,170cm C.170cm,165cm D.170cm,170cm【考点】众数;中位数.【专题】统计与概率.【分析】根据表格可以直接得到这10名学生校服尺寸的众数,然后将表格中数据按从小到大的顺序排列即可得到中位数.【解答】解:由表格可知,这10名学生校服尺寸的众数是165cm,这10名学生校服尺寸按从小到大排列是:160、165、165、165、170、170、175、175、180、180,故这10名学生校服尺寸的中位数是:cm,故选B.【点评】本题考查众数和中位数,解题的关键是明确众数和中位数的定义,会求一组数据的众数和中位数.8.如图,在△ABC中,∠ACB=90°,CD∥AB,∠ACD=40°,则∠B的度数为()A.40°B.50°C.60°D.70°【考点】平行线的性质.【分析】由CD∥AB,∠ACD=40°,根据两直线平行,内错角相等,即可求得∠A度数,继而求得答案.【解答】解:∵CD∥AB,∠ACD=40°,∴∠A=∠ACD=40°,∵在△ABC中,∠ACB=90°,∴∠B=90°﹣∠A=50°.故选B.【点评】此题考查了平行线的性质以及三角形内角和定理.注意两直线平行,内错角相等.9.如图,圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为()A.30πcm2B.48πcm2C.60πcm2D.80πcm2【考点】圆锥的计算.【专题】与圆有关的计算.【分析】首先利用勾股定理求出圆锥的母线长,再通过圆锥侧面积公式可以求得结果.【解答】解:∵h=8,r=6,可设圆锥母线长为l,由勾股定理,l==10,=×2×6π×10=60π,圆锥侧面展开图的面积为:S侧所以圆锥的侧面积为60πcm2.故选:C.【点评】本题主要考察圆锥侧面积的计算公式,解题关键是利用底面半径及高求出母线长即可.10.能说明命题“对于任何实数a,|a|>﹣a”是假命题的一个反例可以是()A.a=﹣2 B.a=C.a=1 D.a=【考点】命题与定理.【分析】反例就是符合已知条件但不满足结论的例子.可据此判断出正确的选项.【解答】解:说明命题“对于任何实数a,|a|>﹣a”是假命题的一个反例可以是a=﹣2,故选A.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.11.已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A.当a=1时,函数图象过点(﹣1,1)B.当a=﹣2时,函数图象与x轴没有交点C.若a>0,则当x≥1时,y随x的增大而减小D.若a<0,则当x≤1时,y随x的增大而增大【考点】二次函数的性质.【分析】把a=1,x=﹣1代入y=ax2﹣2ax﹣1,于是得到函数图象不经过点(﹣1,1),根据△=8>0,得到函数图象与x轴有两个交点,根据抛物线的对称轴为直线x=﹣=1判断二次函数的增减性.【解答】解:A、∵当a=1,x=﹣1时,y=1+2﹣1=2,∴函数图象不经过点(﹣1,1),故错误;B、当a=﹣2时,∵△=42﹣4×(﹣2)×(﹣1)=8>0,∴函数图象与x轴有两个交点,故错误;C、∵抛物线的对称轴为直线x=﹣=1,∴若a>0,则当x≥1时,y随x的增大而增大,故错误;D、∵抛物线的对称轴为直线x=﹣=1,∴若a<0,则当x≤1时,y随x的增大而增大,故正确;故选D.【点评】本题考查的是二次函数的性质,熟练掌握二次函数的性质是解题的关键.12.如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积一定可以表示为()A.4S1B.4S2C.4S2+S3D.3S1+4S3【考点】平行四边形的性质.【分析】设等腰直角三角形的直角边为a,正方形边长为c,求出S2(用a、c表示),得出S1,S2,S3之间的关系,由此即可解决问题.【解答】解:设等腰直角三角形的直角边为a,正方形边长为c,则S2=(a+c)(a﹣c)=a2﹣c2,∴S2=S1﹣S3,∴S3=2S1﹣2S2,∴平行四边形面积=2S1+2S2+S3=2S1+2S2+2S1﹣2S2=4S1.故选A.【点评】本题考查平行四边形的性质、直角三角形的面积等知识,解题的关键是求出S1,S2,S3之间的关系,属于中考常考题型.二、填空题13.实数﹣27的立方根是﹣3.【考点】立方根.【分析】由立方根的定义和乘方的关系容易得出结果.【解答】解:∵(﹣3)3=﹣27,∴实数﹣27的立方根是﹣3.故答案为:﹣3.【点评】本题考查了立方根的定义、乘方的意义;熟练掌握立方根的定义是解决问题的关键.14.分解因式:x2﹣xy=x(x﹣y).【考点】因式分解-提公因式法.【分析】根据观察可知公因式是x,因此提出x即可得出答案.【解答】解:x2﹣xy=x(x﹣y).【点评】此题考查的是对公因式的提取.通过观察可以得出公因式,然后就可以解题.观察法是解此类题目常见的办法.15.下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案①需8根火柴棒,图案②需15根火柴棒,…,按此规律,图案⑦需50根火柴棒.【考点】规律型:图形的变化类.【分析】根据图案①、②、③中火柴棒的数量可知,第1个图形中火柴棒有8根,每多一个多边形就多7根火柴棒,由此可知第n个图案需火柴棒8+7(n﹣1)=7n+1根,令n=7可得答案.【解答】解:∵图案①需火柴棒:8根;图案②需火柴棒:8+7=15根;图案③需火柴棒:8+7+7=22根;…∴图案n需火柴棒:8+7(n﹣1)=7n+1根;当n=7时,7n+1=7×7+1=50,∴图案⑦需50根火柴棒;故答案为:50.【点评】此题主要考查了图形的变化类,解决此类题目的关键在于图形在变化过程中准确抓住不变的部分和变化的部分,变化部分是以何种规律变化.16.如图,在一次数学课外实践活动中,小聪在距离旗杆10m的A处测得旗杆顶端B的仰角为60°,测角仪高AD为1m,则旗杆高BC为10+1m(结果保留根号).【考点】解直角三角形的应用-仰角俯角问题.【分析】首先过点A作AE∥DC,交BC于点E,则AE=CD=10m,CE=AD=1m,然后在Rt△BAE中,∠BAE=60°,然后由三角形函数的知识求得BE的长,继而求得答案.【解答】解:如图,过点A作AE∥DC,交BC于点E,则AE=CD=10m,CE=AD=1m,∵在Rt△BAE中,∠BAE=60°,∴BE=AE•tan60°=10(m),∴BC=CE+BE=10+1(m).∴旗杆高BC为10+1m.故答案为:10+1.【点评】本题考查仰角的定义.注意能借助仰角构造直角三角形并解直角三角形是解此题的关键.17.如图,半圆O 的直径AB=2,弦CD ∥AB ,∠COD=90°,则图中阴影部分的面积为.【考点】扇形面积的计算.【分析】由CD ∥AB 可知,点A 、O 到直线CD 的距离相等,结合同底等高的三角形面积相等即可得出S △ACD =S △OCD ,进而得出S 阴影=S 扇形COD ,根据扇形的面积公式即可得出结论. 【解答】解:∵弦CD ∥AB , ∴S △ACD =S △OCD ,∴S 阴影=S 扇形COD =•π•=×π×=.故答案为:.【点评】本题考查了扇形面积的计算以及平行线的性质,解题的关键是找出S 阴影=S 扇形COD .本题属于基础题,难度不大,解决该题型题目时,通过分割图形找出面积之间的关系是关键.18.如图,点A 为函数y=(x >0)图象上一点,连结OA ,交函数y=(x >0)的图象于点B ,点C 是x 轴上一点,且AO=AC ,则△ABC 的面积为 6 .【考点】反比例函数的图象;三角形的面积;等腰三角形的性质.【专题】推理填空题.【分析】根据题意可以分别设出点A、点B的坐标,根据点O、A、B在同一条直线上可以得到A、B的坐标之间的关系,由AO=AC可知点C的横坐标是点A的横坐标的2倍,从而可以得到△ABC的面积.【解答】解:设点A的坐标为(a,),点B的坐标为(b,),∵点C是x轴上一点,且AO=AC,∴点C的坐标是(2a,0),设过点O(0,0),A(a,)的直线的解析式为:y=kx,∴,解得,k=,又∵点B(b,)在y=上,∴,解得,或(舍去),∴S△ABC=S△AOC﹣S△OBC==,故答案为:6.【点评】本题考查反比例函数的图象、三角形的面积、等腰三角形的性质,解题的关键是明确题意,找出所求问题需要的条件.三、解答题(本大题有8小题,满分78分)19.先化简,再求值:(x+1)(x﹣1)+x(3﹣x),其中x=2.【考点】整式的混合运算—化简求值.【分析】利用平方差公式和单项式乘多项式将原式展开,再合并同类项即可化简,把x的值代入计算即可.【解答】解:原式=x2﹣1+3x﹣x2=3x﹣1,当x=2时,原式=3×2﹣1=5.【点评】本题考查了整式的混合运算和求值的应用,能正确运用整式的运算法则进行化简是解此题的关键.20.下列3×3网格图都是由9个相同的小正方形组成,每个网格图中有3个小正方形已涂上阴影,请在余下的6个空白小正方形中,按下列要求涂上阴影:(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形,但不是中心对称图形.(2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形.(3)选取2个涂上阴影,使5个阴影小正方形组成一个轴对称图形.(请将三个小题依次作答在图1、图2、图3中,均只需画出符合条件的一种情形)【考点】作图—应用与设计作图;轴对称的性质;中心对称.【分析】(1)根据轴对称定义,在最上一行中间一列涂上阴影即可;(2)根据中心对称定义,在最下一行、最右一列涂上阴影即可;(3)在最上一行、中间一列,中间一行、最右一列涂上阴影即可.【解答】解:(1)如图1所示;(2)如图2所示;(3)如图3所示.【点评】本题主要考查轴对称图形和中心对称图形,掌握轴对称图形和中心对称图形定义是解题的关键.21.为深化义务教育课程改革,某校积极开展拓展性课程建设,计划开设艺术、体育、劳技、文学等多个类别的拓展性课程,要求每一位学生都自主选择一个类别的拓展性课程.为了了解学生选择拓展性课程的情况,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图(部分信息未给出):根据统计图中的信息,解答下列问题:(1)求本次被调查的学生人数.(2)将条形统计图补充完整.(3)若该校共有1600名学生,请估计全校选择体育类的学生人数.【考点】条形统计图;用样本估计总体;扇形统计图.【专题】统计与概率.【分析】(1)根据条形统计图和扇形统计图可知选择劳技的学生60人,占总体的30%,从而可以求得调查学生人数;(2)根据文学的百分比和(1)中求得的学生调查数可以求得文学的有多少人,从而可以求得体育的多少人,进而可以将条形统计图补充完整;(3)根据调查的选择体育的学生所占的百分比可以估算出全校选择体育类的学生人数.【解答】解:(1)60÷30%=200(人),即本次被调查的学生有200人;(2)选择文学的学生有:200×15%=30(人),选择体育的学生有:200﹣24﹣60﹣30﹣16=70(人),补全的条形统计图如下图所示,(3)1600×(人).即全校选择体育类的学生有560人.【点评】本题考查条形统计图、用样本估计总体、扇形统计图,解题的关键是明确题意,找出所求问题需要的条件、利用数形结合的思想解答问题.22.如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.【考点】二次函数的性质.【专题】动点型.【分析】(1)首先把点B的坐标为(3,0)代入抛物线y=﹣x2+mx+3,利用待定系数法即可求得m的值,继而求得抛物线的顶点坐标;(2)首先连接BC交抛物线对称轴l于点P,则此时PA+PC的值最小,然后利用待定系数法求得直线BC的解析式,继而求得答案.【解答】解:(1)把点B的坐标为(3,0)代入抛物线y=﹣x2+mx+3得:0=﹣32+3m+3,解得:m=2,∴y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点坐标为:(1,4).(2)连接BC交抛物线对称轴l于点P,则此时PA+PC的值最小,设直线BC的解析式为:y=kx+b,∵点C(0,3),点B(3,0),∴,解得:,∴直线BC的解析式为:y=﹣x+3,当x=1时,y=﹣1+3=2,∴当PA+PC的值最小时,求点P的坐标为:(1,2).【点评】此题考查了二次函数的性质、待定系数法求解析式以及距离最短问题.注意找到点P的位置是解此题的关键.23.如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E.(1)求证:DE是⊙O的切线.(2)求DE的长.【考点】切线的判定.【分析】(1)连接OD,欲证明DE是⊙O的切线,只要证明OD⊥DE即可.(2)过点O作OF⊥AC于点F,只要证明四边形OFED是矩形即可得到DE=OF,在RT△AOF中利用勾股定理求出OF即可.【解答】证明:(1)连接OD,∵AD平分∠BAC,∴∠DAE=∠DAB,∵OA=OD,∴∠ODA=∠DAO,∴∠ODA=∠DAE,∴OD∥AE,∵DE⊥AC,∴OD⊥DE,∴DE是⊙O切线.(2)过点O作OF⊥AC于点F,∴AF=CF=3,∴OF===4.∵∠OFE=∠DEF=∠ODE=90°,∴四边形OFED是矩形,∴DE=OF=4.【点评】本题考查切线的判定、矩形的判定和性质、垂径定理、勾股定理等知识,解题的关键是记住切线的判定方法,学会添加常用辅助线,属于基础题,中考常考题型.24.某商场销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如表所示该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元.(1)该商场计划购进A,B两种品牌的教学设备各多少套?(2)通过市场调研,该商场决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少的数量的1.5倍.若用于购进这两种教学设备的总资金不超过69万元,问A种设备购进数量至多减少多少套?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)首先设该商场计划购进A,B两种品牌的教学设备分别为x套,y套,根据题意即可列方程组,解此方程组即可求得答案;(2)首先设A种设备购进数量减少a套,则A种设备购进数量增加1.5a套,根据题意即可列不等式1.5(20﹣a)+1.2(30+1.5a)≤69,解此不等式组即可求得答案.【解答】解:(1)设该商场计划购进A,B两种品牌的教学设备分别为x套,y套,,解得:,答:该商场计划购进A,B两种品牌的教学设备分别为20套,30套;(2)设A种设备购进数量减少a套,则A种设备购进数量增加1.5a套,1.5(20﹣a)+1.2(30+1.5a)≤69,解得:a≤10,答:A种设备购进数量至多减少10套.【点评】此题考查了一元一次不等式与二元一次方程组的应用.注意根据题意找到等量关系是关键.25.从三角形(不是等腰三角形)一个顶点引出一条射线于对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线.(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB的度数.(3)如图2,△ABC中,AC=2,BC=,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.【考点】相似三角形的判定与性质.【专题】新定义.【分析】(1)根据完美分割线的定义只要证明①△ABC不是等腰三角形,②△ACD是等腰三角形,③△BDC∽△BCA即可.(2)分三种情形讨论即可①如图2,当AD=CD时,②如图3中,当AD=AC时,③如图4中,当AC=CD 时,分别求出∠ACB即可.(3)设BD=x,利用△BCD∽△BAC,得=,列出方程即可解决问题.【解答】解:(1)如图1中,∵∠A=40°,∠B=60°,∴∠ACB=80°,∴△ABC不是等腰三角形,∵CD平分∠ACB,∴∠ACD=∠BCD=∠ACB=40°,∴∠ACD=∠A=40°,∴△ACD为等腰三角形,∵∠DCB=∠A=40°,∠CBD=∠ABC,∴△BCD∽△BAC,∴CD是△ABC的完美分割线.(2)①当AD=CD时,如图2,∠ACD=∠A=45°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=96°.②当AD=AC时,如图3中,∠ACD=∠ADC==66°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=114°.③当AC=CD时,如图4中,∠ADC=∠A=48°,∵△BDC∽△BCA,∴∠BCD=∠A=48°,∵∠ADC>∠BCD,矛盾,舍弃.∴∠ACB=96°或114°.(3)由已知AC=AD=2,∵△BCD∽△BAC,∴=,设BD=x,∴()2=x(x+2),∵x>0,∴x=﹣1,∵△BCD∽△BAC,∴==,∴CD=×2=﹣.【点评】本题考查相似三角形的判定和性质、等腰三角形的性质等知识,解题的关键是理解题意,学会分类讨论思想,属于中考常考题型.26.如图,在平面直角坐标系中,O为坐标原点,点A的坐标为(5,0),菱形OABC的顶点B,C都在第一象限,tan∠AOC=,将菱形绕点A按顺时针方向旋转角α(0°<∠α<∠AOC)得到菱形FADE(点O的对应点为点F),EF与OC交于点G,连结AG.(1)求点B的坐标.(2)当OG=4时,求AG的长.(3)求证:GA平分∠OGE.(4)连结BD并延长交x轴于点P,当点P的坐标为(12,0)时,求点G的坐标.【考点】四边形综合题.【分析】(1)如图1,过点B作BH⊥x轴于点H,构建直角△ABH,所以利用菱形的四条边相等的性质和解该直角三角形得到AH、BH的长度,则易求点B的坐标;(2)如图1,过点A作AM⊥OC于点M,构建直角△OAM和直角△AMG,通过解直角△OAM求得直角边AM的长度,然后结合图形和勾股定理来求AG的长度;(3)如图1,过点A作AM⊥OC于点M,构建全等三角形:△AOM≌△AFN(ASA),利用该全等三角形的对应边相等得到AM=AN,最后结合角平分线的性质证得结论;(4)如图2,过点G作GQ⊥x轴于点Q,构建相似三角形:△GOA∽△BAP,根据该相似三角形的对应边成比例得到求得GQ的长度.结合已知条件tan∠AOC=,来求边OQ的长度,即可得到点G的坐标.【解答】解:(1)如图1,过点B作BH⊥x轴于点H,∵四边形OABC为菱形,∴OC∥AB,∴∠BAH=∠COA.∵tan∠AOC=,∴tan∠BAH=.又∵在直角△BAH中,AB=5,∴BH=AB=4,AH=AB=3,∴OH=OA+AH=5+3=8,∴点B的坐标为(8,4);(2)如图1,过点A作AM⊥OC于点M,在直角△AOM中,∵tan∠AOC=,OA=5,∴AM=OA=4,OM=OA=3,∵OG=4,∴GM=OG﹣OM=4﹣3=1,∴AG===;(3)如图1,过点A作AN⊥EF于点N,∵在△AOM与△AFN中,,∴△AOM≌△AFN(ASA),∴AM=AN,∴GA平分∠OGE.(4)如图2,过点G作GQ⊥x轴于点Q,由旋转可知:∠OAF=∠BAD=α.∵AB=AD,∴∠ABP=,∵∠AOT=∠F,∠OTA=∠GTF,∴∠OGA=∠EGA=,∴∠OGA=ABP,又∵∠GOA=∠BAP,∴△GOA∽△BAP,∴=,∴GQ=×4=.∵tan∠AOC=,∴OQ=×=,∴G(,).【点评】本题考查了四边形综合题.解题过程中,涉及到了全等三角形的判定与性质,相似三角形的判定与性质,旋转的性质,解直角三角形以及勾股定理等知识点,解答该题的难点在于作出辅助线,构建相关的图形的性质.。
历年中考数学模拟试题(含答案)(41)
宁波市 2016 年初中毕业生学业考试数学试题满分 15 0 分,考试时间120 分钟一、选择题(每题 4 分,共 48 分,在每题给出的四个选项中,只有一项切合题目要求)1. 6 的相反数是11A.-6B.C.D.6662.以下计算正确的选项是A.a3a3 a 6B.3a a 3C.(a 3 ) 2a5D. a a2a33. 宁波栎社国际机场三期扩建工程建设总投资84.5 亿元,此中84.5 亿元用科学计数法表示为A. 0.845 ×1010元B. 84.5× 108元C. 8.45× 109元D. 8.45 × 1010元4.使二次根式 x 1 存心义的 x 的取值范围是A.x 1B.x 1C.x 1D.x15.以下图的几何体的主视图为6. 一个不透明布袋里装有1个白球、2个黑球、3个红球,它们除颜色外都同样。
从中任意摸出一个球,是红球的概率为1112A. B. C. D.63237.某班 10 名学生校服尺寸与对应人数以下表所示:尺寸( cm)160165170175180学生人数(人)13222则这 10 名学生校服尺寸的众数和中位数分别为A. 165cm , 165cmB. 165cm , 170cmC. 170cm , 165cmD. 170cm ,170cm8. 如图,在△ ABC 中,∠ ACB=90 °, CD∥AB ,∠ ACD=40 °,则∠ B 的度数为A. 40°B. 5 0°C. 60°D. 70°9.如,的底面半径r 6cm,高h8cm,的面A. 30 π cm2B. 48 π cm2C. 60π cm2D. 80π cm210.能明“ 于任何数 a ,a a ”是假命的一个反例能够是A. a2B.1C. a 1D. a2 a311.已知函数 y ax 22ax1( a 是常数, a ≠0),以下正确的选项是A.当 a 1,函数象点(- 1,1)B.当 a 2 ,函数象与x没有交点C. 若a0 ,当 x1, y 随x的增大而减小D. 若a0,当 x1, y 随x的增大而增大12.如是一个由 5 片拼成的平行四形,相片之互不重叠也无隙,此中两等腰直角三角形片的面都S1,另两直角三角形片的面都S2,中一正方形片的面S3,个平行四形的面必定能够表示A. 4S1B. 4S2C. 4S +S3D. 3S +4S321二、填空(每小 4 分,共 24 分)13.数 - 27 的立方根是▲14.分解因式: x 2xy =▲15.以下案是用度同样的火柴棒按必定律拼搭而成,案①需 8 根火柴棒,案②需15 根火柴棒,⋯⋯,按此律,案⑦需▲根火柴棒16. 如,在一次数学外践活中,小在距离旗杆10m 的 A 得旗杆端 B 的仰角为 60°,测角仪高AD 为 1m ,则旗杆高 BC 为 ▲ m (结果保存根号)17. 如图,半圆 O 的直径 AB=2 ,弦 CD ∥ AB ,∠ COD=90 °,则图中暗影部分面积为▲ 18. 如图,点 A 为函数 y9( x 0) 图象上一点,连接OA ,交函 数 y1( x 0) 的图象xx于点 B ,点 C 是 x 轴上一点,且AO=AC ,则△ ABC 的面积为▲三、解答题(本大题有8 小题,共 78 分)19.(此题 6 分)先化简,再求值:(x 1)( x 1) x(3 x) ,此中 x 220.(此题 8 分)以下 3× 3 网格都是由 9 个同样小正方形构成,每个网格图中有3 个小正方形已涂上暗影,请在余下的6 个空白小正方形中,按以下要求涂上暗影:( 1)选用 1 个涂上暗影, 使 4 个暗影小正方形构成一个轴对称图形,但不是中心对称图形;( 2)选用 1 个涂上暗影, 使 4 个暗影小正方形构成一此中心对称图形,但不是轴对称图形;( 3)选用 2 个涂上暗影,使 5 个暗影小正方形构成一个轴对称图形。
2016中考宁波鄞州区一模(数学)
初中数学模拟考试参考答案和评分标准三、解答题:(第19题6分,第20、21题8分,第22~24题各10分,第25题12分,第26题14分,共78分)19. 解:原式=aa a a a a a 1)1()1(112-=+-⨯-+ ······························································ 4分 当a =3 时,原式==-a a 132······························································· 6分 20.(1)总人数50人个, ·············································································· 1分A :17人,E :5人(图略,如果图上没有标注出17、5数字的扣1分) ··········· 3分 (2)选出的2·················································································································· 7分选出的2人恰好1人选修篮球,1人选修足球的概率P (AB )=41123= ········ 8分 21.解:过点B 作BD ⊥x 轴于点D ,则BD =n ,OD =m .········································ 1分∵tan ∠BOD =m n OD BD ==12∴m =2n ··············································· 3分 又∵点B 在直线y 1=x -2上,∴n = m -2 ··········································· 5分 ∴n =2n -2,解得:n =2,则m =4 ··················································· 6分 ∴点B 的坐标为(4,2) ·························································· 7分 将(4,2)代入y 2=k x 得, 4k=2,∴k =8 ∴反比例函数的解析式为y 2=x8. ················································· 8分 22.解:(1)∵四边形ABCD 是平行四边形 ∴OD =OB ,AB ∥CD∴∠FDO =∠EBO 又∵∠FOD =∠BOE ∴△FDO ≌△EBO ∴OE =OF . ··· 5分 (2)当EF =BD 时,四边形BEDF 是矩形. ·················································· 6分理由:∵OE =OF ,OD =OB ∴四边形BEDF 是平行四边形, 又∵EF =BD ,四边形BEDF 是矩形. ························································· 10分23.解:(1)连结OB ,OC ,作OM ⊥BC 于M∵△ABC 是等边三角形 ∴∠A =60°∴∠BOC =120° ································· 1分 又∵OM ⊥BC ∴BM =CM =3 ······································································· 2分 又∵OB =OC ∴∠OBC =∠OCB =30° ··························································· 3分∴⊙O 半径=3/cos30°=23 ································································· 4分(2)弧BC 的长=π334 ······································································ 7分弓形BC 的面积=4π-. ································································ 10分24.解:(1)设乙队每天能完成绿化的面积是x m 2 ,则甲队每天能完成绿化的面积是2x m 2.由题意可得:40040042x x+= ··························································· 3分 得:2004x= ∴ x =50 经检验,x =50符合题意,则2x =100 ·························································· 5分 答:甲队每天能完成绿化的面积是100 m 2,乙队每天能完成绿化的面积是50m 2.(2)设安排甲队工作a 天,那么乙队工作(1800100a50-)天,即(36-2a )天 6分则: 0.4a + 0.25(36 -2a )≤8 8分-0.1a ≤ -1 a ≥10 9分 答:至少安排甲队工作10天. ································································· 10分25.解:(1)∵∠BAC =RT ∠ ∴∠B+∠C =90°又∵AD ⊥BC ∴∠B+∠BAD =90° ∴∠BAD =∠C 又∵∠BDA=∠BAC =90°∴△BAD ∽△BCA∴ABBD BC AB =即BC BD AB ∙=2··················································· 2分 (如果学生直接用射影定理来扣1分)同理可得:BC CD AC ∙=2------------------------------------------------------------3分∴CD BD ACAB =22∴AD 为BC 边上的“平方比线”.-------------------------------------4分(2)①设A (0,m )(m >0)则OA=m ,而OB=4,OC=1所以2AB =216m + 2AC =21m +∵OA 为BC 边上的“平方比线”∴CO BOACAB =22 ······································· 6分∴411622=++m m ,解得:m =2 ∴A (0,2). ········································ 8分 ②证明:连结PM ,则PM =AM =3102)38(22=+ ······································ 9分∵MC ⨯MB ===⨯910032035PM 2 ∴PMMB MC PM = 又∵∠PMC=∠PMB ∴△MPC ∽△MBP ∴2131035===PM MC BP PC ·································· 11分 ∴OBOCBP PC ==4122 ∴PO 始终是BC 边上的“平方比线”. ··················· 12分26.解:(1)易知:C (0,2t ),D (-2t ,0)故OC =OD ∵∠COD =90°∴∠CDO =∠DCO =45°. ································································ 3分(2)作FG ⊥x 轴于点G ,FH ⊥y 轴于点H ∵∠HOG =∠OGF =∠FHO =90° ∴四边形OGFH 是矩形 ∴∠HFG =90° ∴∠1+∠3=90° 又∵CF ⊥AE ∴∠2+∠3=90° ∴∠1=∠2 又∵∠CAE =∠CDO =45° ∴∠FCA =45° ∴CF =AF 又∵∠FGA =∠CHF =90° ∴△FGA ≌△FHC ··································· 6分 ∴FH =FG ,HC =AG设F (m ,m )则2t -m =m -2 得m =t +1 ∴F (t +1,t +1). ··················· 8分(3)∵S △COD -S 四边形COAF = S △COD -S 正方形HOGF =7 ∴7)1()2(2122=+-t t , 解得:t =4或-2(舍去) ····························· 10分 则A 点坐标(2,0),B 点坐标(4,0),C 点坐标(0,8)设)4)(2(--=x x a y ,C 为(0,8),解得a =1 ····································· 11分 ∴2(2)(4)=6+8y x x x x =---. ························································ 12分(4)23或=t ······················································································· 14分 第4小题说明:作ET ⊥HF 于T ,求得:E 的横坐标是112-+t t ,1-=t CH ,12-=t FT易证:△HCF ∽△TFE 则EF CF FT CH =,得:EFCFt =-2)1(2 当△OBC ∽△FEC 时,2==EF CF OB OC ,22)1(2=-t ,解得(舍去)或1-3=t当△OBC ∽△FCE 时,21==EF CF OC OB ,212)1(2=-t ,解得(舍去)或02=t。
浙江省宁波市2016年中考数学真题试题(含答案)
宁波市2016年初中毕业生学业考试数 学 试 题满分150分,考试时间120分钟一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求) 1. 6的相反数是A. -6B. 61C. 61- D. 6 2. 下列计算正确的是A. 633a a a =+B. 33=-a aC. 523)(a a = D. 32a a a =⋅3. 宁波栎社国际机场三期扩建工程建设总投资84.5亿元,其中84.5亿元用科学计数法表示为A. 0.845×1010元 B. 84.5×108元 C. 8.45×109元 D. 8.45×1010元 4. 使二次根式1-x 有意义的x 的取值范围是A. 1≠xB. 1>xC. 1≤xD. 1≥x 5. 如图所示的几何体的主视图为6. 一个不透明布袋里装有1个白球、2个黑球、3个红球,它们除颜色外都相同。
从中任意摸出一个球,是红球的概率为 A.61 B. 31 C. 21 D. 327. 某班10名学生校服尺寸与对应人数如下表所示:则这10名学生校服尺寸的众数和中位数分别为A. 165cm ,165cmB. 165cm ,170cmC. 170cm ,165cmD. 170cm ,170cm8. 如图,在△ABC 中,∠ACB=90°,CD ∥AB ,∠ACD=40°,则∠B 的度数为A. 40°B. 50°C. 60°D. 70°9. 如图,圆锥的底面半径r 为6cm ,高h 为8cm ,则圆锥的侧面积为A. 30πcm 2B. 48πcm 2C. 60πcm 2D. 80πcm 210. 能说明“对于任何实数a ,a a ->”是假命题的一个反例可以是A. 2-=aB. 31=a C. 1=a D. 2=a 11. 已知函数122--=ax ax y (a 是常数,a ≠0),下列结论正确的是A. 当1=a 时,函数图象过点(-1,1)B. 当2-=a 时,函数图象与x 轴没有交点C. 若0>a ,则当1≥x 时,y 随x 的增大而减小D. 若0<a ,则当1≤x 时,y 随x 的增大而增大12. 如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S 1,另两张直角三角形纸片的面积都为S 2,中间一张正方形纸片的面积为S 3,则这个平行四边形的面积一定可以表示为A. 4S 1B. 4S 2C. 4S 2+S 3D. 3S 1+4S 3 二、填空题(每小题4分,共24分) 13. 实数 -27的立方根是 ▲ 14. 分解因式:xy x -2= ▲15. 下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案①需8根火柴棒,图案②需15根火柴棒,……,按此规律,图案⑦需 ▲ 根火柴棒16. 如图,在一次数学课外实践活动中,小聪在距离旗杆10m 的A 处测得旗杆顶端B 的仰角为60°,测角仪高AD 为1m ,则旗杆高BC 为 ▲ m (结果保留根号)17. 如图,半圆O 的直径AB=2,弦CD ∥AB ,∠COD=90°,则图中阴影部分面积为 ▲ 18. 如图,点A 为函数)0(9>=x x y 图象上一点,连结OA ,交函数)0(1>=x xy 的图象于点B ,点C 是x 轴上一点,且AO=AC ,则△ABC 的面积为 ▲三、解答题(本大题有8小题,共78分)19.(本题6分)先化简,再求值:)3()1)(1(x x x x -+-+,其中2=x20.(本题8分)下列3×3网格都是由9个相同小正方形组成,每个网格图中有3个小正方形已涂上阴影,请在余下的6个空白小正方形中,按下列要求涂上阴影:(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形,但不是中心对称图形; (2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形; (3)选取2个涂上阴影,使5个阴影小正方形组成一个轴对称图形。
2016年浙江省宁波市中考数学模拟试卷甄选
2016年浙江省宁波市中考数学模拟试卷(优选.)2016年浙江省宁波市中考数学模拟试卷一、选择题(共12小题,每小题4分,满分48分)1.(4分)(2016•宁波模拟)下列各数中不是分数的是()A.﹣0.2 B.C.D.25%2.(4分)(2016•宁波模拟)宁波轨道交通2号线于2015年9月26日通车,全长50千米,50千米用科学记数法表示为()A.5×104米B.5×125米C.50×103米D.50×104米3.(4分)(2016•宁波模拟)下列图形都是由两个全等三角形组成的,其中是轴对称图形的是()A.B.C.D.4.(4分)(2016•宁波模拟)方程3x2﹣2x+2=0的根的情况是()A.无实根 B.有两个等根C.有两个不等根D.有分数根5.(4分)(2016•宁波模拟)如图,点C,D在AB同侧,∠CAB=∠DBA,下列条件中不能判定△ABD≌△BAC的是()A.∠D=∠C B.BD=AC C.∠CAD=∠DBC D.AD=BC6.(4分)(2016•宁波模拟)如图,菱形ABCD中,∠A=60°,周长是16,则菱形的面积是()A.16 B.16C.16D.87.(4分)(2016•宁波模拟)如图,Rt△ABC中,∠ACB=90°,AC=5,BC=12,AB的中垂线与BC交于点E,则BE的长等于()A.B.C.D.8.(4分)(2016•宁波模拟)某商品原价每件x元,后来店主将每件增加10元,再降价25%,则现在的单价(元)是()A.25%x+10 B.(1﹣25%)x+10 C.25%(x+10)D.(1﹣25%)(x+10)9.(4分)(2016•宁波模拟)已知一个等腰三角形腰上的高等于底边的一半,那么腰与底边的比是()A.1:B.:1 C.1:D.:110.(4分)(2016•宁波模拟)已知x2+4y2=13,xy=3,求x+2y的值,这个问题我们可以用边长分别为x和y的两种正方形组成一个图形来解决,其中x>y,能较为简单地解决这个问题是图形是()A.B.C.D.11.(4分)(2016•宁波模拟)有一种几何体是用相同正方体组合而成的,有人说:这样的几何体如果只给出主视图和左视图是不能唯一确定的,我们可以找出一个反例来说明这个命题是假命题,这个反例可以是()A.B.C.D.12.(4分)(2016•宁波模拟)已知x,y满足,如果①×a+②×b可整体得到x+11y的值,那么a,b的值可以是()A.a=2,b=﹣1 B.a=﹣4,b=3 C.a=1,b=﹣7 D.a=﹣7,b=5二、填空题(共6小题,每小题4分,满分24分)13.(4分)(2016•宁波模拟)请你写出一个比1小的正无理数是.14.(4分)(2016•宁波模拟)分解因式:x4﹣x2y2=.15.(4分)(2016•宁波模拟)某饮料公司生产多种饮料,为了了解大众更喜欢哪种饮料,公司组织了“你投票,我送礼”的活动,投票者只要在选票所列举的每种饮料后都写上一个1到10之间的评价数即可获利,活动结束后,在平均数、众数、中位数和方差四个统计量中,公司应该关注的一个统计量是.16.(4分)(2016•宁波模拟)如图是一个转盘,转一次指针指向灰色部分的概率是.17.(4分)(2016•宁波模拟)如图,矩形OABC中,OB=6,点O是坐标原点,点A,C分别在x轴,y轴的正半轴上,反比例函数y=(k>0,x>0)的图象分别交AB,BC于点E,F,F是BC的中点,则EF的长为.18.(4分)(2016•宁波模拟)如图是一把折扇,∠O=120°,AB交于点E,F,已知AE=20,EF=4,则扇面(阴影部分)的面积为.三、解答题(共8小题,满分78分)19.(6分)(2016•宁波模拟)计算:(1)(﹣3)3﹣(﹣1)÷(﹣);(2)sin60°.20.(8分)(2015•广州)已知反比例函数y=的图象的一支位于第一象限.(1)判断该函数图象的另一支所在的象限,并求m的取值范围;(2)如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点B与点A关于x轴对称,若△OAB的面积为6,求m的值.21.(8分)(2015•陕西)某校为了了解本校九年级女生体育测试项目“仰卧起坐”的训练情况,让体育老师随机抽查了该年级若干名女生,并严格地对她们进行了1分钟“仰卧起坐”测试,同时统计了每个人做的个数(假设这个个数为x),现在我们将这些同学的测试结果分为四个等级:优秀(x≥44)、良好(36≤x≤43)、及格(25≤x≤35)和不及格(x≤24),并将统计结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)被测试女生1分钟“仰卧起坐”个数的中位数落在等级;(3)若该年级有650名女生,请你估计该年级女生中1分钟“仰卧起坐”个数达到优秀的人数.22.(10分)(2015•广西)已知购买1个足球和1个篮球共需130元,购买2个足球和1个篮球共需180元.(1)求每个足球和每个篮球的售价;(2)如果某校计划购买这两种球共54个,总费用不超过4000元,问最多可买多少个篮球?23.(10分)(2016•宁波模拟)如图,矩形ABCD的边长是常量,点E在AD上以每秒3个单位的速度从D 运动到A,当运动时间为1秒时,△ABE的面积为10;当运动时间为2秒时,△ABE的面积为4.(1)设AD=a,AB=b,点E的运动时间为t秒,△ABE的面积为S,用含a,b,t的式子表示S;(2)求a和b的值;(3)求运动时间为0.5秒时,△ABE的面积.24.(10分)(2016•宁波模拟)如图,AB是半圆O的直径,点C在半圆上,过点C的切线交BA的延长线于点D,CD=CB,CE∥AB交半圆于点E.(1)求∠D的度数;(2)求证:以点C,O,B,E为顶点的四边形是菱形.25.(12分)(2016•宁波模拟)【阅读理解】已知△ABC的三条中线分别是AD,BE,CF.通过适当平移,这是三条中线可以组成一个三角形,我们把这个三角形叫做△ABC的中线三角形,如图①中,△BEG就是△ABC的中线三角形.【特例研究】(1)已知图①中每个小正方形的边长均为1,△ABC的三边长分别是6,8,10,那么△ABC的面积S1=,△ABC的中线三角形的面积S2=,=.【拓展推广】(2)如图②,△ABC的三条中线分别是AD,BE,CF,将AD平移至GB,连结EG.①求证:△BEG是△ABC的中线三角形;②设△ABC的面积为S1,△BEG的面积为S2,计算的值.26.(14分)(2016•宁波模拟)如图是一个二次函数的图象,顶点是原点O,且过点A(2,1),(1)求出二次函数的表达式;(2)我们把横、纵坐标都为整数的点称为整点,请用整数n表示这条抛物线上所有的整点坐标.(3)过y轴的正半轴上一点C(0,a)作AO的平行线交抛物线于点B,①求出直线BC的函数表达式(用a表示);②如果点B是整点,求证:△OAB的面积是偶数.2016年浙江省宁波市中考数学模拟试卷参考答案与试题解析一、选择题(共12小题,每小题4分,满分48分)1.(4分)(2016•宁波模拟)下列各数中不是分数的是()A.﹣0.2 B.C.D.25%【解答】解:A、﹣0.2是分数,故A不符合题意;B、是分数,故B不符合题意;C、是无理数,故C符合题意;D、25%是分数,故D不符合题意;故选:C.2.(4分)(2016•宁波模拟)宁波轨道交通2号线于2015年9月26日通车,全长50千米,50千米用科学记数法表示为()A.5×104米B.5×125米C.50×103米D.50×104米【解答】解:50千米=5×104米,故选:A.3.(4分)(2016•宁波模拟)下列图形都是由两个全等三角形组成的,其中是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:B.4.(4分)(2016•宁波模拟)方程3x2﹣2x+2=0的根的情况是()A.无实根 B.有两个等根C.有两个不等根D.有分数根【解答】解:∵a=3,b=﹣2,c=2,∴△=b2﹣4ac=24﹣24=0,∴一元二次方程有两个相等的实数根.故选B.5.(4分)(2016•宁波模拟)如图,点C,D在AB同侧,∠CAB=∠DBA,下列条件中不能判定△ABD≌△BAC的是()A.∠D=∠C B.BD=AC C.∠CAD=∠DBC D.AD=BC【解答】解:A、添加条件∠D=∠C,还有已知条件∠CAB=∠DBA,BC=BC,符合全等三角形的判定定理AAS,能推出△ABD≌△BAC,故本选项错误;B、添加条件BD=AC,还有已知条件∠CAB=∠DBA,BC=BC,符合全等三角形的判定定理AAS,能推出△ABD≌△BAC,故本选项错误;C、∵∠CAB=∠DBA,∠CAD=∠DBC,∴∠DAB=∠CBA,还有已知条件∠CAB=∠DBA,BC=BC,符合全等三角形的判定定理AAS,能推出△ABD≌△BAC,故本选项错误;D、添加条件∠D=∠C,还有已知条件∠CAB=∠DBA,BC=BC,不符合全等三角形的判定定理,不能推出△ABD≌△BAC,故本选项正确;故选D.6.(4分)(2016•宁波模拟)如图,菱形ABCD中,∠A=60°,周长是16,则菱形的面积是()A.16 B.16C.16D.8【解答】解;如图所示:过点D作DE⊥BC于点E,∵在菱形ABCD中,周长是16,∴AD=AB=4,∵∠A=60°,∴DE=AD•sin60°=2,∴菱形ABCD的面积S=DE×AB=8.故选D.7.(4分)(2016•宁波模拟)如图,Rt△ABC中,∠ACB=90°,AC=5,BC=12,AB的中垂线与BC交于点E,则BE的长等于()A.B.C.D.【解答】解:∵∠ACB=90°,AC=5,BC=12,∴AB==13,∵DE是AB的中垂线,∴BD=AD=6.5,∵DE⊥AB,∠ACB=90°,∴△BDE∽△BCA,∴=,即=,解得,BE=,故选:C.8.(4分)(2016•宁波模拟)某商品原价每件x元,后来店主将每件增加10元,再降价25%,则现在的单价(元)是()A.25%x+10 B.(1﹣25%)x+10 C.25%(x+10)D.(1﹣25%)(x+10)【解答】解:由题意可得,现在的单价是:(x+10)(1﹣25%),故选D.9.(4分)(2016•宁波模拟)已知一个等腰三角形腰上的高等于底边的一半,那么腰与底边的比是()A.1:B.:1 C.1:D.:1【解答】解:如下图所示,∵CD⊥BA的延长线于点D,CD=,∴∠B=30°,∵AB=AC,CD⊥BA,∴∠B=∠ACB,∠CDB=90°,∴∠CAD=60°,∴∠ACD=30°,设AD=x,则AC=2x,tan∠DAC=,∴,得CD=,∴BC=2CD=2,∴,故选A.10.(4分)(2016•宁波模拟)已知x2+4y2=13,xy=3,求x+2y的值,这个问题我们可以用边长分别为x和y的两种正方形组成一个图形来解决,其中x>y,能较为简单地解决这个问题是图形是()A.B.C.D.【解答】解:(x+2y)2=x2+4xy+4y2=(x﹣2y)2+6xy.故选:A.11.(4分)(2016•宁波模拟)有一种几何体是用相同正方体组合而成的,有人说:这样的几何体如果只给出主视图和左视图是不能唯一确定的,我们可以找出一个反例来说明这个命题是假命题,这个反例可以是()A.B.C.D.【解答】解:说明这个命题是假命题,这个反例可以是B.故选B.12.(4分)(2016•宁波模拟)已知x,y满足,如果①×a+②×b可整体得到x+11y的值,那么a,b的值可以是()A.a=2,b=﹣1 B.a=﹣4,b=3 C.a=1,b=﹣7 D.a=﹣7,b=5【解答】解:已知x,y满足,如果①×a+②×b可整体得到x+11y的值,那么a,b的值可以是a=﹣7,b=5,故选D.二、填空题(共6小题,每小题4分,满分24分)13.(4分)(2016•宁波模拟)请你写出一个比1小的正无理数是.【解答】解:此题答案不唯一,举例如:,等,故答案为.14.(4分)(2016•宁波模拟)分解因式:x4﹣x2y2=x2(x+y)(x﹣y).【解答】解:x4﹣x2y2,=x2(x2﹣y2),=x2(x+y)(x﹣y).故答案为:x2(x+y)(x﹣y).15.(4分)(2016•宁波模拟)某饮料公司生产多种饮料,为了了解大众更喜欢哪种饮料,公司组织了“你投票,我送礼”的活动,投票者只要在选票所列举的每种饮料后都写上一个1到10之间的评价数即可获利,活动结束后,在平均数、众数、中位数和方差四个统计量中,公司应该关注的一个统计量是众数.【解答】解:由于众数是数据中出现次数最多的数,故应最关心这组数据中的众数.故答案为:众数.16.(4分)(2016•宁波模拟)如图是一个转盘,转一次指针指向灰色部分的概率是.【解答】解:指向阴影部分概率是=.故答案为:.17.(4分)(2016•宁波模拟)如图,矩形OABC中,OB=6,点O是坐标原点,点A,C分别在x轴,y轴的正半轴上,反比例函数y=(k>0,x>0)的图象分别交AB,BC于点E,F,F是BC的中点,则EF的长为3.【解答】解:连接AC,∵四边形OABC是矩形,∴AC=BO=6,设OA=a,OC=b,则CF=,∵点F在反比例函数y=的图象上,∴ab=k,设点E的坐标为(a,d),∵点E在反比例函数y=的图象上,∴ad=k=ab,∴d=b,即点E是AB的中点,∴EF=AC=3,故答案为:3.18.(4分)(2016•宁波模拟)如图是一把折扇,∠O=120°,AB交于点E,F,已知AE=20,EF=4,则扇面(阴影部分)的面积为1444π.【解答】解:如图,过点O作OH⊥AB于点H,连接EO.∵AE=20,EF=4,∴AH=22.又∵∠O=120°,∴∠AOH=60°,∴AO==,OH=AO=,∴OE2=EH2+OH2=164,则S阴影==1444π.故答案是:1444π.三、解答题(共8小题,满分78分)19.(6分)(2016•宁波模拟)计算:(1)(﹣3)3﹣(﹣1)÷(﹣);(2)sin60°.【解答】解:(1)原式=﹣27﹣×=﹣27﹣4=﹣31;(2)原式=﹣×=﹣=0.20.(8分)(2015•广州)已知反比例函数y=的图象的一支位于第一象限.(1)判断该函数图象的另一支所在的象限,并求m的取值范围;(2)如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点B与点A关于x轴对称,若△OAB的面积为6,求m的值.【解答】解:(1)根据反比例函数的图象关于原点对称知,该函数图象的另一支在第三象限,且m﹣7>0,则m>7;(2)∵点B与点A关于x轴对称,若△OAB的面积为6,∴△OAC的面积为3.设A(x,),则x•=3,解得m=13.21.(8分)(2015•陕西)某校为了了解本校九年级女生体育测试项目“仰卧起坐”的训练情况,让体育老师随机抽查了该年级若干名女生,并严格地对她们进行了1分钟“仰卧起坐”测试,同时统计了每个人做的个数(假设这个个数为x),现在我们将这些同学的测试结果分为四个等级:优秀(x≥44)、良好(36≤x≤43)、及格(25≤x≤35)和不及格(x≤24),并将统计结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)被测试女生1分钟“仰卧起坐”个数的中位数落在良好等级;(3)若该年级有650名女生,请你估计该年级女生中1分钟“仰卧起坐”个数达到优秀的人数.【解答】解:(1);(2)∵13+20+12+5=50,50÷2=25,25+1=26,∴中位数落在良好等级,故答案为:良好;(3)650×26%=169(人),即该年级女生中1分钟“仰卧起坐”个数达到优秀的人数是169.22.(10分)(2015•广西)已知购买1个足球和1个篮球共需130元,购买2个足球和1个篮球共需180元.(1)求每个足球和每个篮球的售价;(2)如果某校计划购买这两种球共54个,总费用不超过4000元,问最多可买多少个篮球?【解答】解:(1)设每个篮球x元,每个足球y元,由题意得,,解得:,答:每个篮球80元,每个足球50元;(2)设买m个篮球,则购买(54﹣m)个足球,由题意得,80m+50(54﹣m)≤4000,解得:m≤,∵m为整数,∴m最大取43,答:最多可以买43个篮球.23.(10分)(2016•宁波模拟)如图,矩形ABCD的边长是常量,点E在AD上以每秒3个单位的速度从D 运动到A,当运动时间为1秒时,△ABE的面积为10;当运动时间为2秒时,△ABE的面积为4.(1)设AD=a,AB=b,点E的运动时间为t秒,△ABE的面积为S,用含a,b,t的式子表示S;(2)求a和b的值;(3)求运动时间为0.5秒时,△ABE的面积.【解答】解:(1)∵点E在AD上以每秒3个单位的速度从D运动到A,AD=a,∴DE=3t,AE=AD﹣DE=a﹣3t,∴S△ABE=AE•AB=(a﹣3t)•b=ab﹣bt,即S=ab﹣bt;(2)∵当运动时间为1秒时,△ABE的面积为10,∴ab﹣b=10,∵当运动时间为2秒时,△ABE的面积为4,∴ab﹣3b=4.解方程组,得,即a的值为8,b的值为4;(3)∵a=8,b=4,∴S=×8×4﹣×4t,即S=16﹣6t,运动时间为0.5秒时,将t=0.5代入S=16﹣6t,得S=16﹣6×0.5=13.即△ABE的面积为13.24.(10分)(2016•宁波模拟)如图,AB是半圆O的直径,点C在半圆上,过点C的切线交BA的延长线于点D,CD=CB,CE∥AB交半圆于点E.(1)求∠D的度数;(2)求证:以点C,O,B,E为顶点的四边形是菱形.【解答】(1)解:连接AC,∵CD是⊙O的切线,∴∠ACD=∠ABC,∵AB是直径,∴∠ACB=90°,∵CD=CB,∴∠D=∠ABC,∴∠D=∠ACD=∠ABC,∵∠D+∠ACD+∠ABC+∠ACB=90°,∴∠D=30°;(2)证明:连接OC、BE,∵∠D=∠ACD=30°,∴∠CAB=60°,∵OA=OC,∴△AOC是等边三角形,∴AC=OC,∠AOC=60°,∵CE∥AB,∴AC=EB,∴四边形ACEB是等腰梯形,OC=BE,∴∠CAB=∠EBA=60°,∴∠AOC=∠EBA=60°,∴OC∥BE,∴四边形COBE是平行四边形,∵OC=OB,∴以点C,O,B,E为顶点的四边形是菱形.25.(12分)(2016•宁波模拟)【阅读理解】已知△ABC的三条中线分别是AD,BE,CF.通过适当平移,这是三条中线可以组成一个三角形,我们把这个三角形叫做△ABC的中线三角形,如图①中,△BEG就是△ABC的中线三角形.【特例研究】(1)已知图①中每个小正方形的边长均为1,△ABC的三边长分别是6,8,10,那么△ABC的面积S1= 24,△ABC的中线三角形的面积S2=18,=.【拓展推广】(2)如图②,△ABC的三条中线分别是AD,BE,CF,将AD平移至GB,连结EG.①求证:△BEG是△ABC的中线三角形;②设△ABC的面积为S1,△BEG的面积为S2,计算的值.【解答】解:(1)如图1,∵BC=6,AC=8,AB=10,∴BC2+AC2=AB2,∴∠ACB=90°,∴S1=×6×8=24,S2=6×8﹣×3×4﹣×3×8﹣×4×6=18,∴==.故答案为24,18,;(2)①连接AG、GF、EF,如图2①,∵AD∥BG,AD=BG,∴四边形ADBG是平行四边形,∴AG∥BD,AG=DB.∵AE=EC,AF=BF,CD=BD,∴EF∥BC,EF=BC=DB,∴AG∥EF,AG=EF,∴四边形AEFG是平行四边形,∴AE∥GF,AE=GF,∴EC∥GF,EC=GF,∴四边形ECFG是平行四边形,∴EG=CF,∴△BEG是△ABC的中线三角形;②延长GA、BE交于点N,如图2②,∵AG∥BC即AN∥BC,∴∠N=∠EBC.在△AEN和△CEB中,,∴△AEN≌△CEB,∴AN=BC,NE=BE,∴AN=BC=2AG,∴NG=NA+AG=BC+AG=3AG,∴==.∵AE=EC,NE=BE,∴S△BEG=S△NEG,S△ABC=2S△ABE=2S△ANE,∴==2×=2×=.26.(14分)(2016•宁波模拟)如图是一个二次函数的图象,顶点是原点O,且过点A(2,1),(1)求出二次函数的表达式;(2)我们把横、纵坐标都为整数的点称为整点,请用整数n表示这条抛物线上所有的整点坐标.(3)过y轴的正半轴上一点C(0,a)作AO的平行线交抛物线于点B,①求出直线BC的函数表达式(用a表示);②如果点B是整点,求证:△OAB的面积是偶数.【解答】解:(1)设抛物线的解析式为y=ax2,把A(2,1)代入y=ax2,得1=4a,解得a=,∴二次函数的表达式为y=x2;(2)抛物线上整点坐标可表示为(2n,n2),其中n为整数;(3)①设直线OA的解析式为y=kx,把点A(2,1)代入y=kx,得1=2k,解得k=,∴直线OA的解析式为y=x,则过点C(0,c)与直线OA平行的直线的解析式为y=x+c;②证明:∵点B是整点,∴点B的坐标可表示为(2n,n2),其中n为整数,把B(2n,n2)代入y=x+c,得n2=n+c,∴c=n2﹣n=n(n﹣1).∵BC∥OA,∴S△OAB=S△OAC=×c×2=c=n(n﹣1).∵n为整数,∴n与n﹣1一奇一偶,∴n(n﹣1)是偶数,∴△OAB的面积是偶数.赠人玫瑰,手留余香。
宁海县初三模拟数学试卷
一、选择题(本大题共10小题,每小题3分,共30分)1. 已知二次函数y=ax^2+bx+c(a≠0)的图象开口向上,且顶点坐标为(1,-2),则a、b、c的符号分别为()A. a>0,b>0,c>0B. a>0,b<0,c>0C. a<0,b>0,c<0D. a<0,b<0,c<02. 在△ABC中,∠A=30°,∠B=75°,则sinC的值为()A. √3/2B. √3/4C. √2/2D. 1/23. 已知一次函数y=kx+b(k≠0)的图象与x轴、y轴分别交于A、B两点,若OA=3,OB=4,则k的值为()A. 3/4B. 4/3C. -3/4D. -4/34. 已知数列{an}的通项公式为an=2n-1,则数列{an}的前n项和S_n的值为()A. n^2B. n(n+1)C. n(n+1)/2D. n^2+15. 已知等差数列{an}的公差为d,若a_1+a_3+a_5=18,a_2+a_4+a_6=27,则d的值为()A. 3B. 4C. 5D. 66. 已知圆C的方程为x^2+y^2=4,点P(2,0)在圆C上,则直线OP的斜率为()A. 0B. 1C. -1D. 不存在7. 已知函数f(x)=ax^2+bx+c(a≠0)的图象开口向上,且顶点坐标为(1,-2),则下列结论正确的是()A. f(0)>0B. f(1)>0C. f(-1)>0D. f(2)>08. 已知函数f(x)=x^2-2x+1,则f(x)的对称轴为()A. x=1B. x=0C. x=-1D. x=29. 已知等比数列{an}的公比为q,若a_1=2,a_3=8,则q的值为()A. 2B. 4C. 1/2D. 1/410. 已知函数f(x)=kx^2+bx+c(k≠0)的图象开口向上,且顶点坐标为(1,-2),则下列结论正确的是()A. f(0)>0B. f(1)>0C. f(-1)>0D. f(2)>0二、填空题(本大题共10小题,每小题3分,共30分)11. 已知数列{an}的通项公式为an=3n-2,则数列{an}的前5项和S_5的值为______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年浙江省宁波市宁海县中考数学模拟试卷一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一个符合题目要求)1.(4分)在﹣5,2,﹣1,3这四个数中,比﹣2小的数是()A.﹣5 B.2 C.﹣1 D.32.(4分)下列计算正确的是()A.a2•a3=a6 B.(﹣2ab)2=4a2b2C.(a2)3=a5D.3a3b2÷a2b2=3ab3.(4分)计算3.8×107﹣3.7×107,结果用科学记数法表示为()A.0.1×107B.0.1×106C.1×107D.1×1064.(4分)在某班组织的跳绳比赛中,第一小组五位同学跳绳次数分别为198,230,220,216,209,则这五个数据的中位数为()A.220 B.218 C.216 D.2095.(4分)下列正多边形的地砖中,不能铺满地面的正多边形是()A.正三角形B.正方形C.正五边形D.正六边形6.(4分)估计的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间7.(4分)如图,直线l1,l2,l3交于一点,直线l4∥l1,若∠1=124°,∠2=88°,则∠3的度数为()A.26°B.36°C.46°D.56°8.(4分)某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x件才能按时交货,则x应满足的方程为()A.B.=C.D.9.(4分)如图,⊙O是△ABC的外接圆,已知AD平分∠BAC交⊙O于点D,AD=5,BD=2,则DE的长为()A.B.C.D.10.(4分)如图,在4×4正方形网格中,任选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是()A.B.C.D.11.(4分)如图,正方形ABCD的边长为4,点P、Q分别是CD、AD的中点,动点E从点A向点B运动,到点B时停止运动;同时,动点F从点P出发,沿P→D→Q 运动,点E、F的运动速度相同.设点E的运动路程为x,△AEF的面积为y,能大致刻画y与x的函数关系的图象是()A.B.C.D.12.(4分)把2张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m,宽为n)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.阴影部分刚好能分割成两张形状大小不同的小长方形卡片(如图③),则分割后的两个阴影长方形的周长和是()A.4m B.2(m+n)C.4n D.4(m﹣n)二、填空题(每小题4分,共24分)13.(4分)6的平方根为.14.(4分)分解因式:2a2﹣2=.15.(4分)命题“全等三角形的面积相等”的逆命题是命题.(填入“真”或“假”)16.(4分)若关于x,y的二元一次方程组的解满足x+y<2,则a的取值范围为.17.(4分)如图,△ABC中,CA=CB,AB=6,CD=4,E是高线CD的中点,以CE 为半径作⊙C,G是⊙C上一个动点,P是AG中点,则DP的最大值为.18.(4分)如图,在△ABC中,AB=AC=a,BC=b,∠A=100°,点D在AC边上,∠ABD=30°,则AD的长为.三、解答题(本大题有8小题,共78分)19.(6分)(1)计算:2×(﹣3)+4×()﹣1﹣20160;(2)解方程:﹣1=0.20.(8分)某中学学生会为考察该校学生参加课外体育活动的情况,采取抽样调查的方法从篮球、排球、乒乓球、足球及其他等五个方面调查了若干名学生的兴趣爱好(每人只能选其中一项),并将调查结果绘制成如下两幅不完整的统计图,请根据图中提供的信息解答下列问题:(1)在这次考察中一共调查了多少名学生?(2)在扇形统计图中,“乒乓球”部分所对应的圆心角是多少度?(3)补全条形统计图;(4)若全校有1800名学生,试估计该校喜欢篮球的学生约有多少人?21.(8分)如图,宁波市共湖中有一小岛,湖边有一条笔直的观光小道AB,现决定从小岛架一座与观光小道垂直的小桥PD,在小道上测得如下数据:AB=60米,∠PAB=45°,∠PBA=30°.请帮助小张求出小桥PD的长.(≈1.414,≈1.732,结果精确到0.1米)22.(10分)△ABC在平面直角坐标系xOy中的位置如图所示.(1)作△ABC关于点C成中心对称的△A1B1C1.(2)将△A1B1C1向右平移4个单位,作出平移后的△A2B2C2.(3)在x轴上求作一点P,使PA1+PC2的值最小,并写出点P的坐标(不写解答过程,直接写出结果)23.(10分)在平面直角坐标系中,点A(﹣3,4)关于y轴的对称点为点B,连接AB,反比例函数y=(x>0)的图象经过点B,过点B作BC⊥x轴于点C,点P是该反比例函数图象上任意一点,过点P作PD⊥x轴于点D,点Q是线段AB上任意一点,连接OQ、CQ.(1)求k的值;(2)判断△QOC与△POD的面积是否相等,并说明理由.24.(10分)某工厂计划招聘A,B两个工种的工人120人,已知A,B两个工种的工人的月工资分别为800元和1000元.(1)若工厂每月所支付的工资为110 000元,那么A,B两个工种的工人各招聘多少人?(2)若要求B工种的人数不少于A工种人数的2倍,那么招聘A工种的工人多少人时,可使每月所支付的工资最少?25.(12分)定义:有一组邻边相等且对角线相等的四边形称为“美好四边形”.(1)从学过的特殊四边形中,写出一个“美好四边形”;(2)如图,在4×4的网格图中有A、B两个格点,请在答题卷给出的两个网格图上各找出C、D两个格点,使得以A、B、C、D为顶点的四边形互不全等的“美好四边形”,画出相应的“美好四边形”,并写出该“美好四边形”的对角线长.(3)如图,已知等边△ABC,在△ABC外存在点D,设∠BDC=α,∠DAC=β,探究α、β满足什么关系时,四边形ABCD为“美好四边形”.26.(14分)如图1,抛物线y=ax2+bx+c经过A(﹣2,0)、B(8,0)、C(0,4)三点,顶点为D,连结AC,BC.(1)求抛物线的函数关系式及顶点D的坐标;(2)如图2,点P是该抛物线在第一象限内上的一点.①过点P作y轴的平行线交BC于点E,若CP=CE,求点P的坐标;②连结AP交BC于点F,求的最大值.(3)若点Q在该抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,求点Q的坐标.2016年浙江省宁波市宁海县中考数学模拟试卷参考答案与试题解析一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一个符合题目要求)1.(4分)在﹣5,2,﹣1,3这四个数中,比﹣2小的数是()A.﹣5 B.2 C.﹣1 D.3【解答】解:∵﹣5<﹣2<﹣1<2<3,∴在﹣5,2,﹣1,3这四个数中,比﹣2小的数是﹣5.故选:A.2.(4分)下列计算正确的是()A.a2•a3=a6 B.(﹣2ab)2=4a2b2C.(a2)3=a5D.3a3b2÷a2b2=3ab【解答】解:A、a2•a3=a5,故正确;B、正确;C、(a2)3=a6,故错误;D、3a2b2÷a2b2=3,故错误;故选:B.3.(4分)计算3.8×107﹣3.7×107,结果用科学记数法表示为()A.0.1×107B.0.1×106C.1×107D.1×106【解答】解:3.8×107﹣3.7×107=(3.8﹣3.7)×107=0.1×107=1×106.故选:D.4.(4分)在某班组织的跳绳比赛中,第一小组五位同学跳绳次数分别为198,230,220,216,209,则这五个数据的中位数为()A.220 B.218 C.216 D.209【解答】解:这组数据按照从小到大的顺次排列为:198,209,216,220,230,则中位数为:216;故选C.5.(4分)下列正多边形的地砖中,不能铺满地面的正多边形是()A.正三角形B.正方形C.正五边形D.正六边形【解答】解:∵用一种正多边形镶嵌,只有正三角形,正四边形,正六边形三种正多边形能镶嵌成一个平面图案,∴只用上面正多边形,不能进行平面镶嵌的是正五边形.故选:C.6.(4分)估计的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间【解答】解:∵32=9,42=16,∴估计在3和4之间.故选:C.7.(4分)如图,直线l1,l2,l3交于一点,直线l4∥l1,若∠1=124°,∠2=88°,则∠3的度数为()A.26°B.36°C.46°D.56°【解答】解:如图,∵直线l4∥l1,∴∠1+∠AOB=180°,而∠1=124°,∴∠AOB=56°,∴∠3=180°﹣∠2﹣∠AOB=180°﹣88°﹣56°=36°,故选B.8.(4分)某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x件才能按时交货,则x应满足的方程为()A.B.=C.D.【解答】解:因客户的要求每天的工作效率应该为:(48+x)件,所用的时间为:,根据“因客户要求提前5天交货”,用原有完成时间减去提前完成时间,可以列出方程:.故选:D.9.(4分)如图,⊙O是△ABC的外接圆,已知AD平分∠BAC交⊙O于点D,AD=5,BD=2,则DE的长为()A.B.C.D.【解答】解;∵AD平分∠BAC,∴∠BAD=∠DAC,∵∠DBC=∠DAC(同弧所对的圆周角相等)∴∠DBC=∠BAD,∴△ABD∽△BED,∴=,∴DE==.故选D.10.(4分)如图,在4×4正方形网格中,任选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是()A.B.C.D.【解答】解:如图,∵共有13个白色的小正方形,任选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的有5种情况,∴任选取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是:.故选B.11.(4分)如图,正方形ABCD的边长为4,点P、Q分别是CD、AD的中点,动点E从点A向点B运动,到点B时停止运动;同时,动点F从点P出发,沿P→D→Q 运动,点E、F的运动速度相同.设点E的运动路程为x,△AEF的面积为y,能大致刻画y与x的函数关系的图象是()A.B.C.D.【解答】解:当F在PD上运动时,△AEF的面积为y=AE•AD=2x(0≤x≤2),当F在AD上运动时,△AEF的面积为y=AE•AF=x(6﹣x)=﹣x2+3x(2<x ≤4),图象为:故选A12.(4分)把2张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m,宽为n)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.阴影部分刚好能分割成两张形状大小不同的小长方形卡片(如图③),则分割后的两个阴影长方形的周长和是()A.4m B.2(m+n)C.4n D.4(m﹣n)【解答】解:设2张形状大小完全相同的小长方形卡片的长和宽分别为x、y.∴GF=DH=y,AG=CD=x,∵HE+CD=n,∴x+y=n,∵长方形ABCD的长为:AD=m﹣DH=m﹣y=m﹣(n﹣x)=m﹣n+x,宽为:CD=x,∴长方形ABCD的周长为:2(AD+CD)=2(m﹣n+2x)=2m﹣2n+4x∵长方形GHEF的长为:GH=m﹣AG=m﹣x,宽为:HE=y,∴长方形GHEF的周长为:2(GH+HE)=2(m﹣x+y)=2m﹣2x+2y,∴分割后的两个阴影长方形的周长和为:2m﹣2n+4x+2m﹣2x+2y=4m﹣2n+2(x+y)=4m,故选(A)二、填空题(每小题4分,共24分)13.(4分)6的平方根为.【解答】解:∵()2=6∴6的平方根为,故答案为:.14.(4分)分解因式:2a2﹣2=2(a+1)(a﹣1).【解答】解:2a2﹣2,=2(a2﹣1),=2(a+1)(a﹣1).15.(4分)命题“全等三角形的面积相等”的逆命题是假命题.(填入“真”或“假”)【解答】解:“全等三角形的面积相等”的逆命题是“面积相等的三角形是全等三角形”,根据全等三角形的定义,不符合要求,因此是假命题.16.(4分)若关于x,y的二元一次方程组的解满足x+y<2,则a的取值范围为a<4.【解答】解:由①﹣②×3,解得y=1﹣;由①×3﹣②,解得x=;∴由x+y<2,得1+<2,即<1,解得,a<4.解法2:由①+②得4x+4y=4+a,x+y=1+,∴由x+y<2,得1+<2,即<1,解得,a<4.故答案是:a<4.17.(4分)如图,△ABC中,CA=CB,AB=6,CD=4,E是高线CD的中点,以CE为半径作⊙C,G是⊙C上一个动点,P是AG中点,则DP的最大值为.【解答】解:连接BG,如图.∵CA=CB,CD⊥AB,AB=6,∴AD=BD=AB=3.又∵CD=4,∴BC=5.∵E是高线CD的中点,∴CE=CD=2,∴CG=CE=2.根据两点之间线段最短可得:BG≤CG+CB=2+5=7.当B、C、G三点共线时,BG取最大值为7.∵P是AG中点,D是AB的中点,∴PD=BG,∴DP最大值为.18.(4分)如图,在△ABC中,AB=AC=a,BC=b,∠A=100°,点D在AC边上,∠ABD=30°,则AD的长为.【解答】解:以BC为边在△ABC的下面作等边三角形BCE,连接AE,如图所示:则AE⊥BC,CE=BC=b,∠BCE=60°,∵AB=AC,∠BAC=100°,∴∠ACB=∠ABC=(180°﹣1100°)÷2=50°,∠CAE=∠BAC=50°,∵∠ABD=30°,∴∠ADB=180°﹣∠BAC﹣∠ABD=50°,∴∠ADB=∠CAE,∠ACE=∠ACB+∠BCE=100°=∠BAC,∴△ABD∽△CAE,∴,即,解得:AD=;故答案为:.三、解答题(本大题有8小题,共78分)19.(6分)(1)计算:2×(﹣3)+4×()﹣1﹣20160;(2)解方程:﹣1=0.【解答】解:(1)2×(﹣3)+4×()﹣1﹣20160=﹣6+4×2﹣1=1;(2)原式可变为:=1,则x﹣1=1,解得:x=2,检验:当x=2时,x﹣1≠0,故x=2是原方程的根.20.(8分)某中学学生会为考察该校学生参加课外体育活动的情况,采取抽样调查的方法从篮球、排球、乒乓球、足球及其他等五个方面调查了若干名学生的兴趣爱好(每人只能选其中一项),并将调查结果绘制成如下两幅不完整的统计图,请根据图中提供的信息解答下列问题:(1)在这次考察中一共调查了多少名学生?(2)在扇形统计图中,“乒乓球”部分所对应的圆心角是多少度?(3)补全条形统计图;(4)若全校有1800名学生,试估计该校喜欢篮球的学生约有多少人?【解答】解:(1)∵∴这次考查中一共调查了60名学生.(2)∵1﹣25%﹣10%﹣20%﹣20%=25%,∴360°×25%=90°,∴在扇形统计图中,“乒乓球”部分所对应的圆心角为90度.(3)∵60×20%=12,∴补全统计图如图:(4)∵1800×25%=450,∴可以估计该校学生喜欢篮球活动的约有450人.21.(8分)如图,宁波市共湖中有一小岛,湖边有一条笔直的观光小道AB,现决定从小岛架一座与观光小道垂直的小桥PD,在小道上测得如下数据:AB=60米,∠PAB=45°,∠PBA=30°.请帮助小张求出小桥PD的长.(≈1.414,≈1.732,结果精确到0.1米)【解答】解:设PD=x米,∵PD⊥AB,则∠ADP=∠BDP=90°.在Rt△PAD中,tan∠PAD=,故AD==x,在Rt△PBD中,tan∠PBD=,则DB===x,又∵AB=60米,∴x+x=60,解得:x=30﹣30≈22.0.答:小桥PD的长度约为22.0m.22.(10分)△ABC在平面直角坐标系xOy中的位置如图所示.(1)作△ABC关于点C成中心对称的△A1B1C1.(2)将△A1B1C1向右平移4个单位,作出平移后的△A2B2C2.(3)在x轴上求作一点P,使PA1+PC2的值最小,并写出点P的坐标(不写解答过程,直接写出结果)【解答】解;(1)如图所示:(2)如图所示:(3)如图所示:作出A1关于x轴的对称点A′,连接A′C2,交x轴于点P,可得P点坐标为:(,0).23.(10分)在平面直角坐标系中,点A(﹣3,4)关于y轴的对称点为点B,连接AB,反比例函数y=(x>0)的图象经过点B,过点B作BC⊥x轴于点C,点P是该反比例函数图象上任意一点,过点P作PD⊥x轴于点D,点Q是线段AB上任意一点,连接OQ、CQ.(1)求k的值;(2)判断△QOC与△POD的面积是否相等,并说明理由.【解答】解:(1)∵点B与点A关于y轴对称,A(﹣3,4),∴点B的坐标为(3,4),∵反比例函数y=(x>0)的图象经过点B.∴=4,解得k=12.(2)相等.理由如下:设点P的坐标为(m,n),其中m>0,n>0,∵点P在反比例函数y=(x>0)的图象上,∴n=,即mn=12.=OD•PD=mn=×12=6,∴S△POD∵A(﹣3,4),B(3,4),∴AB∥x轴,OC=3,BC=4,∵点Q在线段AB上,=OC•BC=×3×4=6.∴S△QOC=S△POD.∴S△QOC24.(10分)某工厂计划招聘A,B两个工种的工人120人,已知A,B两个工种的工人的月工资分别为800元和1000元.(1)若工厂每月所支付的工资为110 000元,那么A,B两个工种的工人各招聘多少人?(2)若要求B工种的人数不少于A工种人数的2倍,那么招聘A工种的工人多少人时,可使每月所支付的工资最少?【解答】解:(1)设招聘A工种工人x人,则招聘B工种工人(120﹣x)人,根据题意得800x+1 000(120﹣x)=110 000解得x=50,则120﹣x=70即招聘A工种工人50人,招聘B工种工人70人;(2)设每月所支付的工资为y元,招聘A工种工人x人,则招聘B工种工人(120﹣x)人,根据题意得y=800x+1 000(120﹣x)=﹣200x+120 000,由题意得120﹣x≥2x,解得x≤40,y=﹣200x+120 000中的y随x的增大而减少,所以当x=40时,y取得最小值112000.即当招聘A工种工人40人时,可使每月所付工资最少.25.(12分)定义:有一组邻边相等且对角线相等的四边形称为“美好四边形”.(1)从学过的特殊四边形中,写出一个“美好四边形”;(2)如图,在4×4的网格图中有A、B两个格点,请在答题卷给出的两个网格图上各找出C、D两个格点,使得以A、B、C、D为顶点的四边形互不全等的“美好四边形”,画出相应的“美好四边形”,并写出该“美好四边形”的对角线长.(3)如图,已知等边△ABC,在△ABC外存在点D,设∠BDC=α,∠DAC=β,探究α、β满足什么关系时,四边形ABCD为“美好四边形”.【解答】解:(1)∵正方形四条边相等且对角线相等,满足“美好四边形”的条件,∴正方形是“美好四边形”;(2)图1中两个四边形ABCD都是“美好四边形”,它们的对角线长都是;(3)∵△ABC是等边三角形,四边形ABCD为“美好四边形”,∴AB=AC=BC=BD,∠CBA=∠CAB=60°,∵∠BDC=α,∴∠BCD=α,∴∠DBC=180°﹣2α,∴∠ABD=60°﹣∠DBC=2α﹣120°,∵BA=BD,∴∠BAD=∠BDA==150°﹣α,∵∠DAC=β,∴150°﹣α﹣β=60°,∴α+β=90°.26.(14分)如图1,抛物线y=ax2+bx+c经过A(﹣2,0)、B(8,0)、C(0,4)三点,顶点为D,连结AC,BC.(1)求抛物线的函数关系式及顶点D的坐标;(2)如图2,点P是该抛物线在第一象限内上的一点.①过点P作y轴的平行线交BC于点E,若CP=CE,求点P的坐标;②连结AP交BC于点F,求的最大值.(3)若点Q在该抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,求点Q的坐标.【解答】解:(1)设抛物线的解析式为y=a(x+2)(x﹣8).∵抛物线经过点C(0,4),∴﹣16a=4,解得a=﹣.∴抛物线的解析式为y=﹣(x+2)(x﹣8)=x2+x+4.∵A(﹣2,0)、B(8,0),∴抛物线的对称轴为x=3.∵将x=3代入得:y=,∴抛物线的顶点坐标为(3,).(2)①如图1所示:作CM⊥PE,垂足为M.设直线BC的解析式为y=kx+b.∵将B、C的坐标代入得:,解得k=﹣,b=4,∴直线BC的解析式为y=﹣x+4.设点P(m,﹣m2+m+4),则点E(m,﹣m+4),M(m,4).∵PC=EC,CM⊥PE,∴PM=EM.∴﹣m2+m+4﹣4=4﹣(﹣m+4),解得:m=0(舍去),m=4.∴P(4,6).②作PN⊥BC,垂足为N.由①得:PE=﹣m2+2m.∵PE∥y轴,PN⊥BC,∴∠PNE=∠COB=90°,∠PEN=∠BCO.∴△PNE∽△BOC.∴==.∴PN=PE=(﹣m2+2m).∵AB=10,AC=2,BC=4,∴AC2+BC2=AB2.∴∠BCA=90°,又∵∠PFN=∠CFA,∴△PFN∽△CAF.∴==﹣m2+m.∴当m=4时,的最大值为.(3)设⊙Q与直线CD的切点为G,连接QG,过点C作CH⊥QD于H,如图3所示:由(1)可知:CH=3,DH=﹣4=.在△CHD中,由勾股定理可知DC==.设Q(3,b)则QD=﹣b.∵sin∠D==,在△AQP中,由勾股定理得QG=(﹣b)=b2+52.解得:b=0,b=﹣.∴点Q的坐标为(3,0)或(3,﹣).。