第一节角的概念与弧度制及任意角的三角函数

合集下载

第4章 三角函数、解三角形 第1节 任意角和弧度制及任意角的三角函数

第4章 三角函数、解三角形 第1节 任意角和弧度制及任意角的三角函数

因此 cos 2θ=2cos 2θ-1=25-1=-35.
索引
(3)函数 y= 2cos x-1的定义域为__2__k_π_-__π3_,__2_k_π_+__π3__(k_∈__Z__) _.
解析 ∵2cos x-1≥0, ∴cos x≥21. 由三角函数线画出x满足条件的终边范围(如图阴 影部分所示), ∴x∈2kπ-π3,2kπ+π3 (k∈Z).
索引
2.弧度制的定义和公式 (1)定义:把长度等于__半__径__长__的弧所对的圆心角叫做1弧度的角,弧度记作
rad. (2)公式
角 α 的弧度数公式 角度与弧度的换算
|α|=rl(弧长用 l 表示)
1°=1π80
180° rad;1 rad=___π___
弧长公式 扇形面积公式
弧长 l=_|_α_|_r_ S=__12_lr__=__12_|_α_|r2
索引
感悟提升
应用弧度制解决问题时应注意: (1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度. (2)求扇形面积最大值的问题时,常转化为二次函数的最值问题. (3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.
索引
训练1 (1)(2021·长沙质检)已知弧长4π的弧所对的圆心角为2弧度,则这条弧所
在的圆的半径为( D )
A.1
B.2
C.π
D.2π
解析 ∵弧长4π的弧所对的圆心角为2弧度,
∴4rπ=2,解得 r=2π, ∴这条弧所在的圆的半径为2π.
索引
10π (2)在单位圆中,200°的圆心角所对的弧长为______9__,由该弧及半径围成的
5π 扇形的面积为______9__. 解析 单位圆半径 r=1,200°的弧度数是 200×1π80=109π. ∴l=109π,S 扇形=12lr=21×109π×1=59π.

任意角和弧度制及任意角的三角函数

任意角和弧度制及任意角的三角函数
4
tan θ 的值. 世纪金榜导学号
【解析】由题意得r=
3 m2,所以sin θ=
m=
3 m2
2m 4
(m≠0),所以m=± 5 ,故角θ是第二或第三象限角.
【拓展】求 或nθ (n∈N*)所在象限的方法
n
(1)将θ 的范围用不等式(含有k)表示.
(2)两边同除以n或乘以n.
(3)对k进行讨论,得到
n
或nθ
(n∈N*)所在的象限.
提醒:注意“顺转减,逆转加”的应用,如角α 的终边逆 时针旋转180°可得角α +180°的终边,类推可知 α +k·180°(k∈Z)表示终边落在角α 的终边所在直线 上的角.
任意角三角函数的定义,是三角函数的最基本的概 念,很多知识点都是在其基础之上派生出来的.试题常 以选择题、填空题形式出现,考查符号的判断、比较大 小、解不等式及求值等问题.
命题角度1 三角函数值符号的判断问题
【典例】sin 2·cos 3·tan 4的值 ( )
A.小于0
B.大于0
C.等于0
D.不存在
C.510°
D.-150°
【解析】选B.与角330°的终边相同的角为
α =k·360°+330°(k∈Z),令k=-2,可得α =-390°.
4.(2018·福州模拟)与-2 010°终边相同的最小正角 是________.
【解析】因为-2 010°=(-6)×360°+150°, 所以150°与-2 010°终边相同,又终边相同的两个角 相差360°的整数倍,所以在0°~360°中只有150°与 -2 010°终边相同,故与-2 010°终边相同的最小正角 是150°. 答案:150°

高考数学复习:任意角和弧度制及任意角的三角函数

高考数学复习:任意角和弧度制及任意角的三角函数

当m=- 5 时,r=2 2,点P的坐标为 ( 3, 5),
所以cos x 3 6 ,tan y 5 15 ,
r 22 4
x 3 3
综上可知,cos θ=- ,t6an θ=- 或c1o5 s θ=- , 6
2
2.若圆弧长度等于圆内接正方形的边长,则该圆弧所对
圆心角的弧度数为 ( )
A.
B.
C. 2
D. 2
4
2
2
【解析】选D.设圆的直径为2r,则圆内接正方形的边长 为 2r, 因为圆的圆弧长度等于该圆内接正方形的边长, 所以圆弧的长度为 2r, 所以圆心角弧度为 2r 2.
r
考点三 任意角三角函数的定义及应用 【明考点·知考法】
【典例】函数y= sin x 3 的定义域为________.
2
世纪金榜导学号
【解析】由题意可得sin x- ≥30,即sin x≥ .作 3
2
2
直线y= 3交单位圆于A,B两点,连接OA,OB,则OA与OB围
2
成的区域(图中阴影部分含边界)即为角x的终边的范围,
故满足条件的角x的集合为
{x|2k x 2k 2 , k Z}.
2
答案:6π
题组二:走进教材
1.(必修4P5T4改编)下列与 9 的终边相同的角的表达
4
式中正确的是 ( )
A.2kπ+45°(k∈Z) C.k·360°-315°(k∈Z)
B.k·360°+ 9 π(k∈Z)
4
D.kπ+ 5 (k∈Z)
4
【解析】选C.由定义知终边相同的角的表达式中不能
同时出现角度和弧度,应为 +2kπ或k·360°+45°

第一节 任意角、弧度制及任意角的三角函数

第一节 任意角、弧度制及任意角的三角函数

第一节任意角、弧度制及任意角的三角函数高考概览:1.了解任意角的概念;2.了解弧度制的概念,能进行弧度与角度的互化;3.理解任意角的三角函数(正弦、余弦、正切)的定义.[知识梳理]1.角的概念的推广(1)定义:角可以看成平面内的一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z}.2.弧度制的定义和公式(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad.(2)公式3.任意角的三角函数[辨识巧记]1.区分两个概念(1)第一象限角未必是锐角,但锐角一定是第一象限角.(2)不相等的角未必终边不相同,终边相同的角也未必相等.2.两个关注点(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.(2)在同一个问题中采用的度量制度必须一致,不能混用.[双基自测]1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)小于90°的角是锐角.()(2)锐角是第一象限角,反之亦然.()(3)将表的分针拨快5分钟,则分针转过的角度是30°.()(4)相等的角终边一定相同,终边相同的角也一定相等.()[答案](1)×(2)×(3)×(4)×2.(必修4P10A组T10改编)单位圆中,200°的圆心角所对的弧长为( )A .10πB .9π C.910π D.109π[解析] ∵200°=10π9,∴单位圆中,200°的圆心角所对的弧长为l =10π9×1=10π9.故选D.[答案] D3.(必修4P 15练习T 6改编)若角θ满足tan θ>0,sin θ<0,则角θ所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限[解析] 由正切和正弦的象限符号可知,在第三象限.故选C.[答案] C4.已知角α的终边与单位圆交于点⎝ ⎛⎭⎪⎫-45,35,则tan α=( ) A .-43 B .-45 C .-35 D .-34[解析] 根据三角函数的定义,tan α=y x =35-45=-34,故选D. [答案] D5.在(0,2π)内,使sin x >cos x 成立的x 的取值范围为________.[解析] 如图所示,找出在(0,2π)内,使sin x =cos x 的x 值,sin π4=cos π4=22,sin 5π4=cos 5π4=-22.根据三角函数线的变化规律标出满足题中条件的角x ∈⎝ ⎛⎭⎪⎫π4,5π4.[答案] ⎝ ⎛⎭⎪⎫π4,5π4考点一 角的概念及集合表示【例1】 (1)若α是第三象限角,且cos α2>0,则α2是第________象限角. (2)终边在直线y =3x 上的角的集合是________.[解析] (1)解法一:∵α是第三象限角,∴2k π+π<α<2k π+3π2(k∈Z ),则k π+π2<α2<k π+3π4(k ∈Z ).当k =2n (n ∈N )时,2n π+π2<α2<2n π+3π4,不满足cos α2>0,舍去.当k =2n +1(n ∈N )时,2n π+π+π2<α2<2n π+π+3π4,满足cos α2>0,∴α2是第四象限角.解法二:利用等分象限角的方法,可以判断α2是第二或四象限角,又因为cos α2>0,所以α2是第四象限角.(2)在(0,π)内终边在直线y =3x 上的角是π3,∴终边在直线y =3x 上的角的集合为⎩⎨⎧⎭⎬⎫α⎪⎪⎪α=π3+k π,k ∈Z . [答案] (1)四 (2)⎩⎨⎧⎭⎬⎫α|α=π3+k π,k ∈Z(1)确定kα,αk (k ∈N *)的终边位置3步骤①用终边相同角的形式表示出角α的范围;②再写出kα或αk 的范围;③然后根据k 的可能取值讨论确定kα或αk 的终边所在位置.(2)终边在某直线上角的求法3步骤①数形结合,在平面直角坐标系中画出该直线;②按逆时针方向写出[0,π)内的角β;③{α|α=k π+β,k ∈Z }.[对点训练]1.给出下列四个命题:①-3π4是第二象限角;②4π3是第三象限角;③-400°是第四象限角;④-350°是第一象限角.其中正确的命题有( )A .1个B .2个C .3个D .4个[解析] -3π4是第三象限角;4π3是第三象限角;-400°=-40°-360°,所以-400°是第一象限角;-350°=10°-360°,所以350°是第一象限角.故②④正确,故选B.[答案] B2.设集合M =⎩⎨⎧ x ⎪⎪⎪⎭⎬⎫x =k 2×180°+45°,k ∈Z , N =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =k 4×180°+45°,k ∈Z ,则两集合的关系是( ) A .N ⊆M B .M =N C .M ND .M ∩N =∅ [解析] 因为M ={x |x =(2k +1)·45°,k ∈Z }表示的是终边落在四个象限的平分线上的角的集合; 而集合N ={x |x =(k +1)·45°,k ∈Z }表示终边落在坐标轴或四个象限平分线上的角的集合,所以:M N .故选C.[答案] C考点二 扇形的弧长和面积公式【例2】 已知一扇形的圆心角为α(α>0),所在圆的半径为R .(1)若α=60°,R =10 cm ,求扇形的弧长.(2)若扇形的周长是一定值C (C >0),当α为多少弧度时,该扇形有最大面积?[思路引导] (1)化α为弧度制→代入弧长公式求解(2)利用扇形周长为C 确定α和R 的关系→用α表示扇形的面积S →借助函数知识求解[解] (1)设弧长为l ,则α=60°=π3,R =10,l =π3×10=10π3(cm).(2)解法一:扇形周长C =2R +l =2R +αR ,∴R =C2+α, ∴S 扇=12α·R 2=12α·⎝ ⎛⎭⎪⎫C 2+α2 =C 22α·14+4α+α2=C 22·14+α+4α≤C 216.当且仅当α2=4,即α=2时,扇形面积有最大值C 216.解法二:扇形周长C =2R +l ,面积S =12lR =12R (C -2R )=-R 2+12CR =-⎝⎛⎭⎪⎫R -C 42+C 216⎝ ⎛⎭⎪⎫0<R <C 2, 当且仅当R =C 4,即C =4R 时,扇形的面积S 最大,此时C =4R =2R +l ,l =2R ,由l =2R 得α=2,即α=2时,扇形面积有最大值C 216.涉及弧长和扇形面积的计算时,可用的公式有角度表示和弧度表示两种,其中弧度表示的公式结构简单,易记好用,在使用前,应将圆心角用弧度表示.弧长和扇形面积公式:l =|α|R ,S =12|α|R 2=12lR .在公式的选择上以简单,计算量小为原则,如本例(2)中解法二比解法一计算量小.[对点训练]已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为( )A .2B .4C .6D .8[解析] 由S =12×4×R 2=2,得R =1,所以弧长l=4×1=4,故扇形的周长C=2R+l=2+4=6.故选C.[答案] C考点三三角函数的定义任意角的三角函数的定义属于理解内容,单独考查时不多,多结合其他知识一起考查,以选择、填空题形式出现.常见的命题角度有:(1)求三角函数值;(2)判断三角函数值的符号;(3)利用三角函数线解不等式.角度1:求三角函数值【例3-1】已知角α的终边上一点P(-3,m)(m≠0),且sinα=2m4,求cosα,tanα的值.[解]设P(x,y).由题设知x=-3,y=m,所以r2=|OP|2=(-3)2+m2(O为原点),r=3+m2,所以sinα=mr=2m4=m22,所以r=3+m2=22,3+m2=8,解得m=±5. 当m=5时,r=22,x=-3,y=5,所以cosα=-322=-64,tanα=-153;当m =-5时,r =22,x =-3,y =-5,所以cos α=-322=-64,tan α=153. 角度2:判断三角函数值的符号【例3-2】 若sin α·tan α<0,且cos αtan α<0,则角α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角[解析] 由sin α·tan α<0可知sin α,tan α异号,从而α为第二或第三象限的角,由cos αtan α<0,可知cos α,tan α异号.从而α为第三或第四象限角.综上,α为第三象限角.故选C.[答案] C角度3:利用三角函数线解不等式【例3-3】 函数y =lg(3-4sin 2x )的定义域为________. [思路引导] 真数大于0→解三角不等式→ 单位圆中正弦线→看图得结果[解析] ∵3-4sin 2x >0,∴sin 2x <34, ∴-32<sin x <32.利用三角函数线画出x 满足条件的终边范围(如图阴影部分所示).∴x ∈⎝ ⎛⎭⎪⎫k π-π3,k π+π3(k ∈Z ).[答案] ⎝ ⎛⎭⎪⎫k π-π3,k π+π3(k ∈Z )(1)定义法求三角函数的3种情况①已知角α终边上一点P 的坐标,则可先求出点P 到原点的距离r ,然后用三角函数的定义求解.②已知角α的某三角函数值,可求角α终边上一点P 的坐标中的参数值,可根据定义中的两个量列方程求参数值.③已知角α的终边所在的直线方程或角α的大小,根据三角函数的定义可求角α终边上某特定点的坐标.(2)三角函数符号在理解的基础上可借助口诀:一全正,二正弦,三正切,四余弦.(3)在解简单的三角不等式时,利用单位圆及三角函数线是一个小技巧.[对点训练]1.已知角α的终边经过点(-4,3),则cos α=( ) A.45 B.35 C .-35 D .-45[解析] 根据题,cos α=-4(-4)2+32=-45.故选D. [答案] D2.已知角α的终边经过点(3a -9,a +2),且sin α>0,cos α<0,则a 的取值范围是________.[解析] 因为sin α>0,cos α<0,所以α是第二象限角.所以点(3a -9,a +2)在第二象限,所以⎩⎪⎨⎪⎧3a -9<0,a +2>0,解得-2<a <3.[答案] (-2,3)3.函数y =2cos x -1的定义域为________. [解析] ∵2cos x -1≥0,∴cos x ≥12.由三角函数线画出x 满足条件的终边的范围.∴x ∈⎣⎢⎡⎦⎥⎤2k π-π3,2k π+π3(k ∈Z ).[答案] ⎣⎢⎡⎦⎥⎤2k π-π3,2k π+π3(k ∈Z )课后跟踪训练(二十)基础巩固练一、选择题1.下列角中终边与330°相同的角是( ) A .30° B .-30° C .630° D .-630°[解析] 因为330°的角的终边与-30°的角的终边相同,所以选项B 满足题意.故选B.[答案] B2.若sin α=-513,且α为第四象限角,则tan α的值等于( )A.125 B .-125 C.512 D .-512[解析] 因为sin α=-513,且α为第四象限角,所以cos α=1213,所以tan α=-512,故选D.[答案] D3.若角α=2 rad(rad 为弧度制单位),则下列说法错误的是( ) A .角α为第二象限角B .α=⎝ ⎛⎭⎪⎫360π°C .sin α>0D .sin α<cos α[解析] 对于A ,∵π2<α<π,∴角α为第二象限角,故A 正确;对于B ,α=⎝ ⎛⎭⎪⎫360π°=2 rad ,故B 正确;对于C ,sin α>0,故C 正确;对于D ,sin α>0,cos α<0,故D 错误.故选D.[答案] D4.已知扇形的周长是6 cm ,面积是2 cm 2,则扇形的圆心角α的弧度数是( )A .1B .4C .1或4D .2或4[解析] 设扇形的半径为r cm ,弧长为l cm ,则l +2r =6,S =12lr =2,解得r =2,l =2或r =1,l =4,故α=lr =1或4,故选C.[答案] C5.集合⎭⎬⎫{α⎪⎪⎪k π+π4≤α≤k π+π2,k ∈Z 中的角所表示的范围(阴影部分)是( )[解析] 当k =2n (n ∈Z )时,2n π+π4≤α≤2n π+π2,此时α表示的范围与π4≤α≤π2表示的范围一样;当k =2n +1(n ∈Z )时,2n π+π+π4≤α≤2n π+π+π2,此时α表示的范围与π+π4≤α≤π+π2表示的范围一样.故选C.[答案] C 二、填空题6.若α=k ·180°+45°,k ∈Z ,则α为________象限角. [解析] α=k ·180°+45°=k 2·360°+45°.当k 为偶数时,α为第一象限角;当k 为奇数时,α为第三象限角.综上,α为第一或第三象限角.[答案] 第一或第三7.若点⎝ ⎛⎭⎪⎫sin 5π6,cos 5π6在角α的终边上,则sin α的值为________. [解析] ∵角α的终边上一点的坐标为⎝ ⎛⎭⎪⎫sin 5π6,cos 5π6,即⎝ ⎛⎭⎪⎫12,-32,∴由任意角的三角函数的定义,可得sin α=-32.[答案] -328.已知圆O :x 2+y 2=4与y 轴正半轴的交点为M ,点M 沿圆O 顺时针运动π2弧长到达点N ,以ON 为终边的角记为α,则tan α=________.[解析] 圆的半径为2,π2的弧长对应的圆心角为π4,故以ON 为终边的角为⎩⎨⎧⎭⎬⎫α|α=2k π+π4,k ∈Z ,故tan α=1.[答案] 1 三、解答题9.(1)设90°<α<180°,P (x,4)为其终边上的一点,且cos α=15x ,求tan α.(2)已知角θ的终边上有一点P (x ,-1)(x ≠0),且tan θ=-x ,求sin θ,cos θ.[解] (1)∵90°<α<180°,∴cos α<0,∴x <0. 又cos α=15x =x x 2+16,∴x =-3.∴tan α=4x =-43.(2)∵θ的终边过点(x ,-1),∴tan θ=-1x , 又∵tan θ=-x ,∴x 2=1,∴x =±1. 当x =1时,sin θ=-22,cos θ=22; 当x =-1时,sin θ=-22,cos θ=-22.10.(1)已知扇形周长为10,面积是4,求扇形的圆心角; (2)一个扇形OAB 的面积是1 cm 2,它的周长是4 cm ,求圆心角的弧度数和弦长AB .[解] (1)设圆心角是θ,半径是r ,则⎩⎨⎧2r +rθ=10,12θ·r 2=4,解得⎩⎨⎧r =4,θ=12,或⎩⎪⎨⎪⎧r =1,θ=8.(舍去). ∴扇形的圆心角为12.(2)设圆的半径为r cm ,弧长为l cm ,则⎩⎨⎧12lr =1,l +2r =4,解得⎩⎪⎨⎪⎧r =1,l =2.∴圆心角α=lr =2.如图,过O 作OH ⊥AB 于H ,则∠AOH =1 rad. ∴AH =1·sin1=sin1(cm), ∴AB =2sin1(cm).能力提升练11.(2019·江西南昌二中测试)已知角α终边上一点P 的坐标是(2sin2,-2cos2),则sin α等于( )A .sin2B .-sin2C .cos2D .-cos2[解析] r =(2sin2)2+(-2cos2)2=2.由任意角的三角函数的定义,得sin α=yr =-cos2,故选D.[答案] D12.(2019·山东济南外国语学校段考)下列结论中错误的是( ) A .若0<α<π2,则sin α<tan αB .若α是第二象限角,则α2为第一象限或第三象限角 C .若角α的终边过点P (3k,4k )(k ≠0),则sin α=45D .若扇形的周长为6,半径为2,则其圆心角的大小为1弧度 [解析] 选项A ,若0<α<π2,则sin α<tan α=sin αcos α,A 正确;选项B ,若α是第二象限角,即α∈⎝ ⎛⎭⎪⎫2k π+π2,2k π+π,k ∈Z ,则α2∈⎝⎛⎭⎪⎫k π+π4,k π+π2,k ∈Z ,为第一象限或第三象限角,B 正确;选项C ,若角α的终边过点P (3k,4k )(k ≠0),则sin α=4k 9k 2+16k 2=4k 5|k |,不一定等于45,C 不正确;选项D ,若扇形的周长为6,半径为2,则弧长=6-2×2=2,其圆心角的大小为22=1弧度,D 正确.故选C.[答案] C13.(2018·北京第三十五中学期中)如图所示,在平面直角坐标系xOy 中,角α的终边与单位圆的交点A 在第二象限.若cos α=-35,则点A 的坐标为________.[解析] ∵cos α=-35,∴sin α=1-cos 2α=45,∴A ⎝⎛⎭⎪⎫-35,45.[答案] ⎝ ⎛⎭⎪⎫-35,4514.如图所示,A ,B 是单位圆O 上的点,且B 在第二象限,C 是圆与x 轴的正半轴的交点,点A 的坐标为⎝ ⎛⎭⎪⎫513,1213,∠AOB =90°.(1)求cos ∠COA ; (2)求tan ∠COB .[解] (1)因为点A 的坐标为⎝ ⎛⎭⎪⎫513,1213,根据三角函数的定义可得cos ∠COA =513.(2)因为∠AOB =90°,sin ∠COA =1213, 所以cos ∠COB =cos(∠COA +90°)=-sin ∠COA =-1213.又因为点B 在第二象限, 所以sin ∠COB =1-cos 2∠COB =513.故tan ∠COB =sin ∠COB cos ∠COB=-512.拓展延伸练15.(2019·上海长宁、嘉定一模)设角α的顶点为坐标原点,始边为x 轴的正半轴,则“α的终边在第一、二象限”是“sin α>0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件[解析] α的终边在第一、二象限能推出sin α>0,sin α>0成立能推出α的终边在第一、二象限或y 轴的正半轴上,故“α的终边在第一、二象限”是“sin α>0”的充分不必要条件.故选A.[答案] A16.(2019·河北张家口月考)若角θ满足sin θ>0,tan θ<0,则θ2是( )A .第二象限角B .第一象限角C .第一或第三象限角D .第一或第二象限角[解析] ∵角θ满足sin θ>0,tan θ<0,∴θ是第二象限角,即π2+2k π<θ<π+2k π,k ∈Z ,∴π4+k π<θ2<π2+k π,k ∈Z ,∴θ2是第一或第三象限角.故选C.[答案] C。

高中数学教材——三角函数篇

高中数学教材——三角函数篇

第四章 三角函数、解三角形第一节 任意角和弧度制及任意角的三角函数一、基础知识1.角的概念的推广(1)定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)分类⎩⎪⎨⎪⎧按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角.(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+2k π,k ∈Z }.终边相同的角不一定相等,但相等的角其终边一定相同.2.弧度制的定义和公式(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad. (2)公式:有关角度与弧度的两个注意点(1)角度与弧度的换算的关键是π=180°,在同一个式子中,采用的度量制度必须一致,不可混用.(2)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度. 3.任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么sin α=y ,cos α=x ,tan α=yx (x ≠0).(2)几何表示:三角函数线可以看作是三角函数的几何表示.正弦线的起点都在x 轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP ,OM ,AT 分别叫做角α的正弦线、余弦线和正切线.二、常用结论汇总——规律多一点(1)一个口诀三角函数值在各象限的符号:一全正、二正弦、三正切、四余弦. (2)三角函数定义的推广设点P (x ,y )是角α终边上任意一点且不与原点重合,r =|OP |,则sin α=y r ,cos α=xr ,tan α=yx(x ≠0).(3)象限角(4)轴线角考点一 象限角及终边相同的角[典例] (1)若角α是第二象限角,则α2是( )A .第一象限角B .第二象限角C .第一或第三象限角D .第二或第四象限角(2)终边在直线y =3x 上,且在[-2π,2π)内的角α的集合为________. [解析] (1)∵α是第二象限角, ∴π2+2k π<α<π+2k π,k ∈Z , ∴π4+k π<α2<π2+k π,k ∈Z. 当k 为偶数时,α2是第一象限角;当k 为奇数时,α2是第三象限角.故选C.(2)如图,在坐标系中画出直线y =3x ,可以发现它与x 轴的夹角是π3,在[0,2π)内,终边在直线y =3x 上的角有两个:π3,4π3;在[-2π,0)内满足条件的角有两个:-2π3,-5π3,故满足条件的角α构成的集合为⎩⎨⎧⎭⎬⎫-5π3,-2π3,π3,4π3.[答案] (1)C (2)⎩⎨⎧⎭⎬⎫-5π3,-2π3,π3,4π3[题组训练]1.集合⎩⎨⎧⎭⎬⎫α⎪⎪k π≤α≤k π+π4,k ∈Z 中的角所表示的范围(阴影部分)是( )解析:选B 当k =2n (n ∈Z )时,2n π≤α≤2n π+π4(n ∈Z ),此时α的终边和0≤α≤π4的终边一样,当k =2n +1(n ∈Z )时,2n π+π≤α≤2n π+π+π4(n ∈Z ),此时α的终边和π≤α≤π+π4的终边一样. 2.在-720°~0°范围内所有与45°终边相同的角为________. 解析:所有与45°终边相同的角可表示为: β=45°+k ×360°(k ∈Z ),则令-720°≤45°+k ×360°<0°(k ∈Z ), 得-765°≤k ×360°<-45°(k ∈Z ), 解得-765360≤k <-45360(k ∈Z ),从而k =-2或k =-1, 代入得β=-675°或β=-315°. 答案:-675°或-315°考点二 三角函数的定义[典例] 已知角α的终边经过点P (-x ,-6),且cos α=-513,则1sin α+1tan α=________.[解析] ∵角α的终边经过点P (-x ,-6),且cos α=-513,∴cos α=-xx 2+36=-513,解得x =52或x =-52(舍去),∴P ⎝⎛⎭⎫-52,-6,∴sin α=-1213, ∴tan α=sin αcos α=125,则1sin α+1tan α=-1312+512=-23.[答案] -23[解题技法]用定义法求三角函数值的2种类型及解题方法(1)已知角α终边上一点P 的坐标,则可先求出点P 到原点的距离r ,然后用三角函数的定义求解.(2)已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后用三角函数的定义来求解.[题组训练]1.已知角α的终边经过点(3,-4),则sin α+1cos α=( )A .-15B.3715C.3720D.1315解析:选D ∵角α的终边经过点(3,-4),∴sin α=-45,cos α=35,∴sin α+1cos α=-45+53=1315. 2.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos 2θ=( )A .-45B .-35C .35D .45解析:选B 设P (t,2t )(t ≠0)为角θ终边上任意一点,则cos θ=t5|t |.当t >0时,cos θ=55;当t <0时,cos θ=-55.因此cos 2θ=2cos 2θ-1=25-1=-35. 考点三 三角函数值符号的判定[典例] 若sin αtan α<0,且cos αtan α<0,则角α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角[解析] 由sin αtan α<0可知sin α,tan α异号, 则α为第二象限角或第三象限角. 由cos αtan α<0可知cos α,tan α异号, 则α为第三象限角或第四象限角. 综上可知,α为第三象限角. [答案] C[解题技法] 三角函数值符号及角所在象限的判断三角函数在各个象限的符号与角的终边上的点的坐标密切相关.sin θ在一、二象限为正,cos θ在一、四象限为正,tan θ在一、三象限为正.学习时首先把取正值的象限记清楚,其余的象限就是负的,如sin θ在一、二象限为正,那么在三、四象限就是负的.值得一提的是:三角函数的正负有时还要考虑坐标轴上的角,如sin π2=1>0,cos π=-1<0.[题组训练]1.下列各选项中正确的是( ) A .sin 300°>0 B .cos(-305°)<0 C .tan ⎝⎛⎭⎫-22π3>0 D .sin 10<0解析:选D 300°=360°-60°,则300°是第四象限角,故sin 300°<0;-305°=-360°+55°,则-305°是第一象限角,故cos(-305°)>0;-22π3=-8π+2π3,则-22π3是第二象限角,故tan ⎝⎛⎭⎫-22π3<0;3π<10<7π2,则10是第三象限角,故sin 10<0,故选D. 2.已知点P (cos α,tan α)在第三象限,则角α的终边在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选B 由题意得⎩⎪⎨⎪⎧cos α<0,tan α<0⇒⎩⎪⎨⎪⎧cos α<0,sin α>0,所以角α的终边在第二象限. [课时跟踪检测]A 级1.已知扇形的面积为2,扇形圆心角的弧度数是4,则扇形的周长为( ) A .2 B .4 C .6D .8解析:选C 设扇形的半径为r (r >0),弧长为l ,则由扇形面积公式可得2=12lr =12|α|r 2=12×4×r 2,解得r =1,l =|α|r =4,所以所求扇形的周长为2r +l =6. 2.(2019·石家庄模拟)已知角α(0°≤α<360°)终边上一点的坐标为(sin 150°,cos 150°),则α=( )A .150°B .135°C .300°D .60°解析:选C 由sin 150°=12>0,cos 150°=-32<0,可知角α终边上一点的坐标为⎝⎛⎭⎫12,-32,故该点在第四象限,由三角函数的定义得sin α=-32,因为0°≤α<360°,所以角α为300°.3.(2018·长春检测)若角α的顶点为坐标原点,始边在x 轴的非负半轴上,终边在直线y =-3x 上,则角α的取值集合是( )A.⎩⎨⎧⎭⎬⎫α⎪⎪α=2k π-π3,k ∈Z B.⎩⎨⎧⎭⎬⎫α⎪⎪α=2k π+2π3,k ∈Z C.⎩⎨⎧⎭⎬⎫α⎪⎪ α=k π-2π3,k ∈Z D.⎩⎨⎧⎭⎬⎫α⎪⎪α=k π-π3,k ∈Z 解析:选D 当α的终边在射线y =-3x (x ≤0)上时,对应的角为2π3+2k π,k ∈Z ,当α的终边在射线y =-3x (x ≥0)上时,对应的角为-π3+2k π,k ∈Z ,所以角α的取值集合是⎩⎨⎧⎭⎬⎫α⎪⎪α=k π-π3,k ∈Z .4.已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是( )A .(-2,3]B .(-2,3)C .[-2,3)D .[-2,3]解析:选A 由cos α≤0,sin α>0可知,角α的终边落在第二象限或y 轴的正半轴上,所以有⎩⎪⎨⎪⎧3a -9≤0,a +2>0,解得-2<a ≤3.5.在平面直角坐标系xOy 中,α为第二象限角,P (-3,y )为其终边上一点,且sin α=2y4,则y 的值为( ) A. 3 B .- 5 C. 5 D.3或5解析:选C 由题意知|OP |=3+y 2,则sin α=y 3+y 2=2y4,解得y =0(舍去)或y =±5,因为α为第二象限角,所以y >0,则y = 5.6.已知角α=2k π-π5(k ∈Z ),若角θ与角α的终边相同,则y =sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值为( )A .1B .-1C .3D .-3解析:选B 由α=2k π-π5(k ∈Z )及终边相同的概念知,角α的终边在第四象限,因为角θ与角α的终边相同,所以角θ是第四象限角,所以sin θ<0,cos θ>0,tan θ<0.所以y =-1+1-1=-1.7.已知一个扇形的圆心角为3π4,面积为3π2,则此扇形的半径为________.解析:设此扇形的半径为r (r >0),由3π2=12×3π4×r 2,得r =2.答案:28.(2019·江苏高邮模拟)在平面直角坐标系xOy 中,60°角终边上一点P 的坐标为(1,m ),则实数m 的值为________.解析:∵60°角终边上一点P 的坐标为(1,m ),∴tan 60°=m1,∵tan 60°=3,∴m = 3.答案: 39.若α=1 560°,角θ与α终边相同,且-360°<θ<360°,则θ=________. 解析:因为α=1 560°=4×360°+120°, 所以与α终边相同的角为360°×k +120°,k ∈Z , 令k =-1或k =0,可得θ=-240°或θ=120°. 答案:120°或-240°10.在直角坐标系xOy 中,O 为坐标原点,A (3,1),将点A 绕O 逆时针旋转90°到B 点,则B 点坐标为__________.解析:依题意知OA =OB =2,∠AOx =30°,∠BOx =120°, 设点B 坐标为(x ,y ),则x =2cos 120°=-1,y =2sin 120°=3,即B (-1,3). 答案:(-1,3)11.已知1|sin α|=-1sin α,且lg(cos α)有意义.(1)试判断角α所在的象限;(2)若角α的终边上一点M ⎝⎛⎭⎫35,m ,且|OM |=1(O 为坐标原点),求m 的值及sin α的值. 解:(1)由1|sin α|=-1sin α,得sin α<0,由lg(cos α)有意义,可知cos α>0, 所以α是第四象限角.(2)因为|OM |=1,所以⎝⎛⎭⎫352+m 2=1,解得m =±45. 又因为α是第四象限角,所以m <0, 从而m =-45,sin α=y r =m |OM |=-451=-45.12.已知α为第三象限角. (1)求角α2终边所在的象限;(2)试判断 tan α2sin α2cos α2的符号.解:(1)由2k π+π<α<2k π+3π2,k ∈Z ,得k π+π2<α2<k π+3π4,k ∈Z ,当k 为偶数时,角α2终边在第二象限;当k 为奇数时,角α2终边在第四象限.故角α2终边在第二或第四象限.(2)当角α2在第二象限时,tan α2<0,sin α2>0, cos α2<0,所以tan α2sin α2cos α2取正号;当角α2在第四象限时,tan α2<0,sin α2<0, cos α2>0, 所以 tan α2sin α2cos α2也取正号.因此tan α2sin α2cos α2取正号.B 级1.若-3π4<α<-π2,从单位圆中的三角函数线观察sin α,cos α,tan α的大小是( )A .sin α<tan α<cos αB .cos α<sin α<tan αC .sin α<cos α<tan αD .tan α<sin α<cos α解析:选C 如图所示,作出角α的正弦线MP ,余弦线OM ,正切线AT ,因为-3π4<α<-π2,所以α终边位置在图中的阴影部分,观察可得AT >OM >MP ,故有sin α<cos α<tan α. 2.已知点P (sin α-cos α,tan α)在第一象限,且α∈[0,2π],则角α的取值范围是( ) A.⎝⎛⎭⎫π2,3π4∪⎝⎛⎭⎫π,5π4 B.⎝⎛⎭⎫π4,π2∪⎝⎛⎭⎫π,5π4 C.⎝⎛⎭⎫π2,3π4∪⎝⎛⎭⎫5π4,3π2D.⎝⎛⎭⎫π4,π2∪⎝⎛⎭⎫3π4,π解析:选B 因为点P 在第一象限,所以⎩⎪⎨⎪⎧sin α-cos α>0,tan α>0,即⎩⎪⎨⎪⎧sin α>cos α,tan α>0.由tan α>0可知角α为第一或第三象限角,画出单位圆如图.又sin α>cos α,用正弦线、余弦线得满足条件的角α的终边在如图所示的阴影部分(不包括边界),即角α的取值范围是⎝⎛⎭⎫π4,π2∪⎝⎛⎭⎫π,5π4.3.已知角θ的终边过点P (-4a,3a )(a ≠0).(1)求sin θ+cos θ的值;(2)试判断cos(sin θ)·sin(cos θ)的符号.解:(1)因为角θ的终边过点P (-4a,3a )(a ≠0), 所以x =-4a ,y =3a ,r =5|a |,当a >0时,r =5a ,sin θ+cos θ=35-45=-15;当a <0时,r =-5a ,sin θ+cos θ=-35+45=15.(2)当a >0时,sin θ=35∈⎝⎛⎭⎫0,π2, cos θ=-45∈⎝⎛⎭⎫-π2,0, 则cos(sin θ)·sin(cos θ)=cos 35·sin ⎝⎛⎭⎫-45<0; 当a <0时,sin θ=-35∈⎝⎛⎭⎫-π2,0, cos θ=45∈⎝⎛⎭⎫0,π2, 则cos(sin θ)·sin(cos θ)=cos ⎝⎛⎭⎫-35·sin 45>0. 综上,当a >0时,cos(sin θ)·sin(cos θ)的符号为负; 当a <0时,cos(sin θ)·sin(cos θ)的符号为正.第二节 同角三角函数的基本关系与诱导公式一、基础知识1.同角三角函数的基本关系 (1)平方关系:sin 2α+cos 2α=1; (2)商数关系:tan α=sin αcos α. 平方关系对任意角都成立,而商数关系中α≠k π+π2(k ∈Z).2.诱导公式诱导公式可简记为:奇变偶不变,符号看象限.“奇”“偶”指的是“k ·π2+α(k ∈Z )”中的k 是奇数还是偶数.“变”与“不变”是指函数的名称的变化,若k 是奇数,则正、余弦互变;若k 为偶数,则函数名称不变.“符号看象限”指的是在“k ·π2+α(k ∈Z )”中,将α看成锐角时,“k ·π2+α(k ∈Z )”的终边所在的象限.二、常用结论同角三角函数的基本关系式的几种变形 (1)sin 2α=1-cos 2α=(1+cos α)(1-cos α); cos 2α=1-sin 2α=(1+sin α)(1-sin α); (sin α±cos α)2=1±2sin αcos α. (2)sin α=tan αcos α⎝⎛⎭⎫α≠π2+k π,k ∈Z .考点一 三角函数的诱导公式[典例] (1)已知f (α)=cos ⎝⎛⎭⎫π2+αsin ⎝⎛⎭⎫3π2-αcos (-π-α)tan (π-α),则f ⎝⎛⎭⎫-25π3的值为________. (2)已知cos ⎝⎛⎭⎫π6-α=23,则sin ⎝⎛⎭⎫α-2π3=________. [解析] (1)因为f (α)=cos ⎝⎛⎭⎫π2+αsin ⎝⎛⎭⎫3π2-αcos (-π-α)tan (π-α) =-sin α(-cos α)(-cos α)⎝⎛⎭⎫-sin αcos α=cos α,所以f ⎝⎛⎭⎫-25π3=cos ⎝⎛⎭⎫-25π3=cos π3=12. (2)sin ⎝⎛⎭⎫α-2π3=-sin ⎝⎛⎭⎫2π3-α=-sin ⎣⎡⎦⎤π-⎝⎛⎭⎫π3+α=-sin ⎝⎛⎭⎫π3+α=-sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫π6-α=-cos ⎝⎛⎭⎫π6-α=-23. [答案] (1)12 (2)-23[题组训练]1.已知tan α=12,且α∈⎝⎛⎭⎫π,3π2,则cos ⎝⎛⎭⎫α-π2=________. 解析:法一:cos ⎝⎛⎭⎫α-π2=sin α,由α∈⎝⎛⎭⎫π,3π2知α为第三象限角, 联立⎩⎪⎨⎪⎧tan α=sin αcos α=12,sin 2α+cos 2α=1,解得5sin 2α=1,故sin α=-55.法二:cos ⎝⎛⎭⎫α-π2=sin α,由α∈⎝⎛⎭⎫π,3π2知α为第三象限角,由tan α=12,可知点(-2,-1)为α终边上一点,由任意角的三角函数公式可得sin α=-55. 答案:-552. sin(-1 200°)·cos 1 290°+cos(-1 020°)·sin(-1 050°)+tan 945°=________.解析:原式=sin(-3×360°-120°)cos(3×360°+180°+30°)+cos(-3×360°+60°) sin(-3×360°+30°)+tan(2×360°+180°+45°)=sin 120°cos 30°+cos 60°sin 30°+tan 45°=34+14+1=2. 答案:23.已知tan ⎝⎛⎭⎫π6-α=33,则tan ⎝⎛⎭⎫5π6+α=________. 解析:tan ⎝⎛⎭⎫5π6+α=tan ⎝⎛⎭⎫π-π6+α=tan ⎣⎡⎦⎤π-⎝⎛⎭⎫π6-α=-tan ⎝⎛⎭⎫π6-α=-33. 答案:-33考点二 同角三角函数的基本关系及应用[典例] (1)若tan α=2,则sin α+cos αsin α-cos α+cos 2α=( )A.165B .-165C.85D .-85(2)已知sin αcos α=38,且π4<α<π2,则cos α-sin α的值为( )A.12 B .±12C .-14D .-12[解析] (1)sin α+cos αsin α-cos α+cos 2α=sin α+cos αsin α-cos α+cos 2αsin 2α+cos 2α =tan α+1tan α-1+1tan 2α+1, 将tan α=2代入上式,则原式=165.(2)因为sin αcos α=38,所以(cos α-sin α)2=cos 2α-2sin αcos α+sin 2α=1-2sin αcos α=1-2×38=14,因为π4<α<π2,所以cos α<sin α,即cos α-sin α<0,所以cos α-sin α=-12.[答案] (1)A (2)D[题组训练]1.(2018·甘肃诊断)已知tan φ=43,且角φ的终边落在第三象限,则cos φ=( )A.45 B .-45C.35D .-35解析:选D 因为角φ的终边落在第三象限,所以cos φ<0,因为tan φ=43,所以⎩⎪⎨⎪⎧sin 2φ+cos 2φ=1,sin φcos φ=43,cos φ<0,解得cos φ=-35.2.已知tan θ=3,则sin 2θ+sin θcos θ=________.解析:sin 2θ+sin θcos θ=sin 2θ+sin θcos θsin 2θ+cos 2θ=tan 2θ+tan θtan 2θ+1=32+332+1=65.答案:653.已知sin α+3cos α3cos α-sin α=5,则sin 2α-sin αcos α=________.解析:由已知可得sin α+3cos α=5(3cos α-sin α), 即sin α=2cos α,所以tan α=sin αcos α=2,从而sin 2α-sin αcos α=sin 2α-sin αcos αsin 2α+cos 2α=tan 2α-tan αtan 2α+1=22-222+1=25.答案:254.已知-π<α<0,sin(π+α)-cos α=-15,则cos α-sin α的值为________.解析:由已知,得sin α+cos α=15,sin 2α+2sin αcos α+cos 2α=125, 整理得2sin αcos α=-2425. 因为(cos α-sin α)2=1-2sin αcos α=4925,且-π<α<0,所以sin α<0,cos α>0, 所以cos α-sin α>0,故cos α-sin α=75.答案:75[课时跟踪检测]A 级1.已知x ∈⎝⎛⎭⎫-π2,0,cos x =45,则tan x 的值为( ) A.34 B .-34C.43D .-43解析:选B 因为x ∈⎝⎛⎭⎫-π2,0,所以sin x =-1-cos 2x =-35,所以tan x =sin x cos x =-34. 2.(2019·淮南十校联考)已知sin ⎝⎛⎭⎫α-π3=13,则cos ⎝⎛⎭⎫α+π6的值为( ) A .-13B.13C.223D .-223解析:选A ∵sin ⎝⎛⎭⎫α-π3=13,∴cos ⎝⎛⎭⎫α+π6=cos ⎣⎡⎦⎤π2+⎝⎛⎭⎫α-π3=-sin ⎝⎛⎭⎫α-π3=-13. 3.计算:sin 11π6+cos 10π3的值为( ) A .-1 B .1 C .0D.12-32解析:选A 原式=sin ⎝⎛⎭⎫2π-π6+cos ⎝⎛⎭⎫3π+π3 =-sin π6-cos π3=-12-12=-1.4.若sin (π-θ)+cos (θ-2π)sin θ+cos (π+θ)=12,则tan θ的值为( )A .1B .-1C .3D .-3解析:选D 因为sin (π-θ)+cos (θ-2π)sin θ+cos (π+θ)=sin θ+cos θsin θ-cos θ=12,所以2(sin θ+cos θ)=sin θ-cos θ, 所以sin θ=-3cos θ,所以tan θ=-3.5.(2018·大庆四地六校调研)若α是三角形的一个内角,且sin ⎝⎛⎭⎫π2+α+cos ⎝⎛⎭⎫3π2+α=15,则tan α的值为( )A .-43B .-34C .-43或-34D .不存在解析:选A 由sin ⎝⎛⎭⎫π2+α+cos ⎝⎛⎭⎫3π2+α=15, 得cos α+sin α=15,∴2sin αcos α=-2425<0.∵α∈(0,π),∴sin α>0,cos α<0, ∴sin α-cos α=1-2sin αcos α=75,∴sin α=45,cos α=-35,∴tan α=-43.6.在△ABC 中,3sin ⎝⎛⎭⎫π2-A =3sin (π-A ),且cos A =-3cos(π-B ),则△ABC 为( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形D .等边三角形解析:选B 将3sin ⎝⎛⎭⎫π2-A =3sin(π-A )化为3cos A =3sin A ,则tan A =33,则A =π6,将cos A =-3co s(π-B )化为 cos π6=3cos B ,则cos B =12,则B =π3,故△ABC 为直角三角形.7.化简:1-cos 22θcos 2θtan 2θ=________.解析:1-cos 22θcos 2θtan 2θ=sin 22θcos 2θ·sin 2θcos 2θ=sin 2θ. 答案:sin 2θ8.化简:cos ⎝⎛⎭⎫α-π2sin ⎝⎛⎭⎫5π2+α·sin(α-π)·cos(2π-α)=________.解析:原式=cos ⎝⎛⎭⎫π2-αsin ⎝⎛⎭⎫2π+π2+α·(-sin α)·cos α=sin αsin ⎝⎛⎭⎫π2+α·(-sin α)·cos α=sin αcos α·(-sin α)·cos α=-sin 2α. 答案:-sin 2α 9.sin4π3·cos 5π6·tan ⎝⎛⎭⎫-4π3的值为________. 解析:原式=sin ⎝⎛⎭⎫π+π3·cos ⎝⎛⎭⎫π-π6·tan ⎝⎛⎭⎫-π-π3 =⎝⎛⎭⎫-sin π3·⎝⎛⎭⎫-cos π6·⎝⎛⎭⎫-tan π3 =⎝⎛⎭⎫-32×⎝⎛⎭⎫-32×(-3)=-334.答案:-33410.(2019·武昌调研)若tan α=cos α,则1sin α+cos 4α=________.解析:tan α=cos α⇒sin αcos α=cos α⇒sin α=cos 2α,故1sin α+cos 4α=sin 2α+cos 2αsin α+cos 4α=sin α+cos 2αsin α+cos 4α=sin α+sin αsin α+sin 2α=sin 2α+sin α+1=sin 2α+cos 2α+1=1+1=2.答案:211.已知α为第三象限角,f (α)=sin ⎝⎛⎭⎫α-π2·cos ⎝⎛⎭⎫3π2+α·tan (π-α)tan (-α-π)·sin (-α-π).(1)化简f (α);(2)若cos ⎝⎛⎭⎫α-3π2=15,求f (α)的值. 解:(1)f (α)=sin ⎝⎛⎭⎫α-π2·cos ⎝⎛⎭⎫3π2+α·tan (π-α)tan (-α-π)·sin (-α-π)=(-cos α)·sin α·(-tan α)(-tan α)·sin α=-cos α.(2)∵cos ⎝⎛⎭⎫α-3π2=15, ∴-sin α=15,从而sin α=-15.又∵α为第三象限角,∴cos α=-1-sin 2α=-265,∴f (α)=-cos α=265.12.已知sin α=255,求tan(α+π)+sin ⎝⎛⎭⎫5π2+αcos ⎝⎛⎭⎫5π2-α的值.解:因为sin α=255>0,所以α为第一或第二象限角.tan(α+π)+sin ⎝⎛⎭⎫5π2+αcos ⎝⎛⎭⎫5π2-α=tan α+cos αsin α=sin αcos α+cos αsin α=1sin αcos α. ①当α为第一象限角时,cos α=1-sin 2α=55, 原式=1sin αcos α=52.②当α为第二象限角时,cos α=-1-sin 2α=-55, 原式=1sin αcos α=-52.综合①②知,原式=52或-52.B 级1.已知sin α+cos α=12,α∈(0,π),则1-tan α1+tan α=( )A .-7 B.7 C. 3D .- 3解析:选A 因为sin α+cos α=12,所以(sin α+cos α)2=1+2sin αcos α=14,所以sin αcos α=-38,又因为α∈(0,π),所以sin α>0,cos α<0,所以cos α-sin α<0,因为(cos α-sin α)2=1-2sin αcos α=1-2×⎝⎛⎭⎫-38=74,所以cos α-sin α=-72, 所以1-tan α1+tan α=1-sin αcos α1+sin αcos α=cos α-sin αcos α+sin α=-7212=-7.2.已知θ是第一象限角,若sin θ-2cos θ=-25,则sin θ+cos θ=________.解析:∵sin θ-2cos θ=-25,∴sin θ=2cos θ-25,∴⎝⎛⎭⎫2cos θ-252+cos 2θ=1, ∴5cos 2θ-85cos θ-2125=0,即⎝⎛⎭⎫cos θ-35⎝⎛⎭⎫5cos θ+75=0. 又∵θ为第一象限角,∴cos θ=35,∴sin θ=45,∴sin θ+cos θ=75.答案:753.已知关于x 的方程2x 2-(3+1)x +m =0的两根分别是sin θ和cos θ,θ∈(0,2π),求: (1)sin 2θsin θ-cos θ+cos θ1-tan θ的值; (2)m 的值;(3)方程的两根及此时θ的值. 解:(1)原式=sin 2θsin θ-cos θ+cos θ1-sin θcos θ=sin 2θsin θ-cos θ+cos 2θcos θ-sin θ =sin 2θ-cos 2θsin θ-cos θ=sin θ+cos θ. 由条件知sin θ+cos θ=3+12, 故sin 2θsin θ-cos θ+cos θ1-tan θ=3+12.(2)由已知,得sin θ+cos θ=3+12,sin θcos θ=m2,因为1+2sin θcos θ=(sin θ+cos θ)2, 所以1+2×m 2=⎝ ⎛⎭⎪⎫3+122,解得m =32. (3)由⎩⎪⎨⎪⎧sin θ+cos θ=3+12,sin θcos θ=34,得⎩⎨⎧sin θ=32,cos θ=12或⎩⎨⎧sin θ=12,cos θ=32.又θ∈(0,2π),故θ=π3或θ=π6.故当sin θ=32,cos θ=12时,θ=π3; 当sin θ=12,cos θ=32时,θ=π6.第三节 三角函数的图象与性质一、基础知识1.用五点法作正弦函数和余弦函数的简图 (1)“五点法”作图原理:在正弦函数y =sin x ,x ∈[0,2π]的图象上,五个关键点是:(0,0),⎝⎛⎭⎫π2,1,(π,0),⎝⎛⎭⎫3π2,-1,(2π,0).在余弦函数y =cos x ,x ∈[0,2π]的图象上,五个关键点是:(0,1),⎝⎛⎭⎫π2,0,(π,-1),⎝⎛⎭⎫3π2,0,(2π,1).函数y =sin x ,x ∈[0,2π],y =cos x ,x ∈[0,2π]的五个关键点的横坐标是零点和极值点(最值点).(2)五点法作图的三步骤:列表、描点、连线(注意光滑). 2.正弦、余弦、正切函数的图象与性质R ,且x ≠k π+π2三角函数性质的注意点(1)正、余弦函数一个完整的单调区间的长度是半个周期;y =tan x 无单调递减区间;y =tan x 在整个定义域内不单调.(2)要注意求函数y =A sin(ωx +φ)的单调区间时A 和ω的符号,尽量化成ω>0的形式,避免出现增减区间的混淆.二、常用结论1.对称与周期的关系正弦曲线、余弦曲线相邻的两个对称中心、相邻的两条对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是四分之一个周期;正切曲线相邻两个对称中心之间的距离是半个周期.2.与三角函数的奇偶性相关的结论(1)若y =A sin(ωx +φ)为偶函数,则有φ=k π+π2(k ∈Z );若为奇函数,则有φ=k π (k∈Z ).(2)若y =A cos(ωx +φ)为偶函数,则有φ=k π(k ∈Z );若为奇函数,则有φ=k π+π2 (k∈Z ).(3)若y =A tan(ωx +φ)为奇函数,则有φ=k π(k ∈Z ).第一课时 三角函数的单调性 考点一 求三角函数的单调区间[典例] (2017·浙江高考)已知函数f (x )=sin 2x -cos 2x -23sin x cos x (x ∈R ). (1)求f ⎝⎛⎭⎫2π3的值;(2)求f (x )的最小正周期及单调递增区间. [解] (1)由题意,f (x )=-cos 2x -3sin 2x =-2⎝⎛⎭⎫32sin 2x +12cos 2x =-2sin ⎝⎛⎭⎫2x +π6,故f ⎝⎛⎭⎫2π3=-2sin ⎝⎛⎭⎫4π3+π6=-2sin 3π2=2. (2)由(1)知f (x )=-2sin ⎝⎛⎭⎫2x +π6. 则f (x )的最小正周期是π. 由正弦函数的性质,令π2+2k π≤2x +π6≤3π2+2k π(k ∈Z), 解得π6+k π≤x ≤2π3+k π(k ∈Z),所以f (x )的单调递增区间是⎣⎡⎦⎤π6+k π,2π3+k π(k ∈Z).[题组训练]1.函数y =|tan x |在⎝⎛⎭⎫-π2,3π2上的单调递减区间为________. 解析:作出y =|tan x |的示意图如图,观察图象可知,y =|tan x |在⎝⎛⎭⎫-π2,3π2上的单调递减区间为⎝⎛⎦⎤-π2,0和⎝⎛⎦⎤π2,π. 答案:⎝⎛⎦⎤-π2,0,⎝⎛⎦⎤π2,π 2.函数g (x )=-cos ⎝⎛⎭⎫-2x +π3⎝⎛⎭⎫x ∈⎣⎡⎦⎤-π2,π2的单调递增区间为________. 解析:g (x )=-cos ⎝⎛⎭⎫-2x +π3=-cos ⎝⎛⎭⎫2x -π3, 欲求函数g (x )的单调递增区间,只需求函数y =cos ⎝⎛⎭⎫2x -π3的单调递减区间.由2k π≤2x -π3≤2k π+π(k ∈Z),得k π+π6≤x ≤k π+2π3(k ∈Z).故函数g (x )的单调递增区间为⎣⎡⎦⎤k π+π6,k π+2π3(k ∈Z). 因为x ∈⎣⎡⎦⎤-π2,π2, 所以函数g (x )的单调递增区间为⎣⎡⎦⎤-π2,-π3,⎣⎡⎦⎤π6,π2. 答案:⎣⎡⎦⎤-π2,-π3,⎣⎡⎦⎤π6,π2 3.(2019·金华适应性考试)已知函数f (x )=3cos 2x -2sin 2(x -α),其中0<α<π2,且f ⎝⎛⎭⎫π2=-3-1.(1)求α的值;(2)求f (x )的最小正周期和单调递减区间.解:(1)由已知得f ⎝⎛⎭⎫π2=-3-2sin 2⎝⎛⎭⎫π2-α=-3-2cos 2α=-3-1,整理得cos 2α=12. 因为0<α<π2,所以cos α=22,α=π4.(2)由(1)知,f (x )=3cos 2x -2sin 2⎝⎛⎭⎫x -π4 =3cos 2x -1+cos ⎝⎛⎭⎫2x -π2 =3cos 2x +sin 2x -1 =2sin ⎝⎛⎭⎫2x +π3-1. 易知函数f (x )的最小正周期T =π. 令t =2x +π3,则函数f (x )可转化为y =2sin t -1.显然函数y =2sin t -1与y =sin t 的单调性相同, 当函数y =sin t 单调递减时, 2k π+π2≤t ≤2k π+3π2(k ∈Z),即2k π+π2≤2x +π3≤2k π+3π2(k ∈Z),解得k π+π12≤x ≤k π+7π12(k ∈Z).所以函数f (x )的单调递减区间为⎣⎡⎦⎤k π+π12,k π+7π12(k ∈Z).考点二 求三角函数的值域(最值)[典例] (1)函数f (x )=3sin ⎝⎛⎭⎫2x -π6在区间⎣⎡⎦⎤0,π2上的值域为( ) A.⎣⎡⎦⎤-32,32 B.⎣⎡⎦⎤-32,3 C.⎣⎡⎦⎤-332,332D.⎣⎡⎦⎤-332,3(2)(2017·全国卷Ⅱ)函数f (x )=sin 2x +3cos x -34⎝⎛⎭⎫x ∈⎣⎡⎦⎤0,π2的最大值是________. [解析] (1)当x ∈⎣⎡⎦⎤0,π2时, 2x -π6∈⎣⎡⎦⎤-π6,5π6,sin ⎝⎛⎭⎫2x -π6∈⎣⎡⎦⎤-12,1, 故3sin ⎝⎛⎭⎫2x -π6∈⎣⎡⎦⎤-32,3, 所以函数f (x )的值域为⎣⎡⎦⎤-32,3. (2)依题意,f (x )=sin 2x +3cos x -34=-cos 2x +3cos x +14=-⎝⎛⎭⎫cos x -322+1,因为x ∈⎣⎡⎦⎤0,π2,所以cos x ∈[0,1], 因此当cos x =32时,f (x )max =1. [答案] (1)B (2)1[变透练清]1.(变条件)若本例(1)中函数f (x )的解析式变为:f (x )=3cos ⎝⎛⎭⎫2x -π6,则f (x )在区间⎣⎡⎦⎤0,π2上的值域为________.解析:当x ∈⎣⎡⎦⎤0,π2时,2x -π6∈⎣⎡⎦⎤-π6,5π6, cos ⎝⎛⎭⎫2x -π6∈⎣⎡⎦⎤-32,1, 故f (x )=3cos ⎝⎛⎭⎫2x -π6∈⎣⎡⎦⎤-332,3.答案:⎣⎡⎦⎤-332,3 2.(变条件)若本例(2)中函数f (x )的解析式变为:函数f (x )=sin x +cos x +sin x cos x ,则f (x )的最大值为________.解析:设t =sin x +cos x (-2≤t ≤2), 则sin x cos x =t 2-12,y =t +12t 2-12=12(t +1)2-1,当t =2时,y =t +12t 2-12取最大值为2+12.故f (x )的最大值为22+12.答案:22+123.已知函数f (x )=sin ⎝⎛⎭⎫x +π6,其中x ∈⎣⎡⎦⎤-π3,a ,若f (x )的值域是⎣⎡⎦⎤-12,1,则实数a 的取值范围是________.解析:由x ∈⎣⎡⎦⎤-π3,a ,知x +π6∈⎣⎡⎦⎤-π6,a +π6. ∵x +π6∈⎣⎡⎦⎤-π6,π2时,f (x )的值域是⎣⎡⎦⎤-12,1, ∴由函数的图象知π2≤a +π6≤7π6,∴π3≤a ≤π. 答案:⎣⎡⎦⎤π3,π考点三 根据三角函数单调性确定参数[典例] (1)(2018·全国卷Ⅱ)若f (x )=cos x -sin x 在[-a ,a ]是减函数,则a 的最大值是( )A.π4 B.π2C.3π4D .π(2)若f (x )=2sin ωx (ω>0)在区间⎣⎡⎦⎤-π2,2π3上是增函数,则ω的取值范围是________.[解析] (1)f (x )=cos x -sin x =-2sin ⎝⎛⎭⎫x -π4, 当x ∈⎣⎡⎦⎤-π4,3π4,即x -π4∈⎣⎡⎦⎤-π2,π2时, y =sin ⎝⎛⎭⎫x -π4单调递增, 则f (x )=-2sin ⎝⎛⎭⎫x -π4单调递减. ∵函数f (x )在[-a ,a ]是减函数, ∴[-a ,a ]⊆⎣⎡⎦⎤-π4,3π4,∴0<a ≤π4, ∴a 的最大值是π4.(2)法一:因为x ∈⎣⎡⎦⎤-π2,2π3(ω>0), 所以ωx ∈⎣⎡⎦⎤-πω2,2πω3,因为f (x )=2sin ωx 在⎣⎡⎦⎤-π2,2π3上是增函数, 所以⎩⎪⎨⎪⎧-πω2≥-π2,2πω3≤π2,ω>0,故0<ω≤34.法二:画出函数f (x )=2sin ωx (ω>0)的图象如图所示.要使f (x )在⎣⎡⎦⎤-π2,2π3上是增函数, 需⎩⎨⎧-π2ω≤-π2,2π3≤π2ω,ω>0,即0<ω≤34.[答案] (1)A (2)⎝⎛⎦⎤0,34[解题技法]已知三角函数的单调区间求参数范围的3种方法(1)求出原函数的相应单调区间,由所给区间是所求某区间的子集,列不等式(组)求解. (2)由所给区间求出整体角的范围,由该范围是某相应正、余弦函数的某个单调区间的子集,列不等式(组)求解.(3)由所给区间的两个端点到其相应对称中心的距离不超过14周期列不等式(组)求解.[题组训练]1.若函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,且|φ|<π2在区间⎣⎡⎦⎤π6,2π3上是单调递减函数,且函数值从1减少到-1,则f ⎝⎛⎭⎫π4=________.解析:由题意知T 2=2π3-π6=π2,故T =π,所以ω=2πT=2,又因为f ⎝⎛⎭⎫π6=1,所以sin ⎝⎛⎭⎫π3+φ=1. 因为|φ|<π2,所以φ=π6,即f (x )=sin ⎝⎛⎭⎫2x +π6. 故f ⎝⎛⎭⎫π4=sin ⎝⎛⎭⎫π2+π6=cos π6=32. 答案:322.(2019·贵阳检测)已知函数f (x )=sin ⎝⎛⎭⎫ωx +π4(ω>0)在⎝⎛⎭⎫π2,π上单调递减,则ω的取值范围是________.解析:由π2<x <π,得π2ω+π4<ωx +π4<πω+π4,由题意知⎝⎛⎭⎫π2ω+π4,πω+π4⊆⎣⎡⎦⎤π2,3π2, 所以⎩⎨⎧π2ω+π4≥π2,πω+π4≤3π2,解得12≤ω≤54.答案:⎣⎡⎦⎤12,54[课时跟踪检测]A 级1.函数f (x )=tan ⎝⎛⎭⎫2x -π3的单调递增区间是( ) A.⎣⎡⎦⎤k π2-π12,k π2+5π12(k ∈Z ) B.⎝⎛⎭⎫k π2-π12,k π2+5π12(k ∈Z ) C.⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z ) D.⎝⎛⎭⎫k π+π6,k π+2π3(k ∈Z ) 解析:选B 由k π-π2<2x -π3<k π+π2(k ∈Z),得k π2-π12<x <k π2+5π12(k ∈Z),所以函数f (x )=tan ⎝⎛⎭⎫2x -π3的单调递增区间是⎝⎛⎭⎫k π2-π12,k π2+5π12(k ∈Z). 2.y =|cos x |的一个单调递增区间是( ) A.⎣⎡⎦⎤-π2,π2 B .[0,π] C.⎣⎡⎦⎤π,3π2 D.⎣⎡⎦⎤3π2,2π解析:选D 将y =cos x 的图象位于x 轴下方的部分关于x 轴对称向上翻折,x 轴上方(或x 轴上)的部分不变,即得y =|cos x |的图象(如图).故选D.3.已知函数y =2cos x 的定义域为⎣⎡⎦⎤π3,π,值域为[a ,b ],则b -a 的值是( ) A .2 B .3 C.3+2D .2- 3解析:选B 因为x ∈⎣⎡⎦⎤π3,π,所以cos x ∈⎣⎡⎦⎤-1,12,故y =2cos x 的值域为[-2,1],所以b -a =3.4.(2019·西安八校联考)已知函数f (x )=cos(x +θ)(0<θ<π)在x =π3时取得最小值,则f (x )在[0,π]上的单调递增区间是( )A.⎣⎡⎦⎤π3,πB.⎣⎡⎦⎤π3,2π3 C.⎣⎡⎦⎤0,2π3 D.⎣⎡⎦⎤2π3,π解析:选A 因为0<θ<π,所以π3<π3+θ<4π3,又因为f (x )=cos(x +θ)在x =π3时取得最小值,所以π3+θ=π,θ=2π3,所以f (x )=cos ⎝⎛⎭⎫x +2π3.由0≤x ≤π,得2π3≤x +2π3≤5π3.由π≤x +2π3≤5π3,得π3≤x ≤π,所以f (x )在[0,π]上的单调递增区间是⎣⎡⎦⎤π3,π. 5.(2018·北京东城质检)函数f (x )=sin 2x +3sin x cos x 在区间⎣⎡⎦⎤π4,π2上的最小值为( ) A .1 B.1-32C.32D .1- 3解析:选A 函数f (x )=sin 2x +3sin x cos x =12-12cos 2x +32sin 2x =sin ⎝⎛⎭⎫2x -π6+12. ∵x ∈⎣⎡⎦⎤π4,π2,∴2x -π6∈⎣⎡⎦⎤π3,5π6. 当2x -π6=5π6时,函数f (x )取得最小值为1.6.(2019·广西五市联考)若函数f (x )=2sin ωx (0<ω<1)在区间⎣⎡⎦⎤0,π3上的最大值为1,则ω=( )A.14 B.13C.12D.32解析:选C 因为0<ω<1,0≤x ≤π3,所以0≤ωx <π3,所以f (x )在区间⎣⎡⎦⎤0,π3上单调递增,则f (x )max =f ⎝⎛⎭⎫π3=2sin ωπ3=1,即sin ωπ3=12.又因为0≤ωx <π3,所以ωπ3=π6,解得ω=12. 7.函数y =sin x -cos x 的定义域为________.解析:要使函数有意义,需sin x -cos x ≥0,即sin x ≥cos x , 由函数的图象得2k π+π4≤x ≤2k π+5π4(k ∈Z),故原函数的定义域为⎣⎡⎦⎤2k π+π4,2k π+5π4(k ∈Z). 答案:⎣⎡⎦⎤2k π+π4,2k π+5π4(k ∈Z ) 8.函数f (x )=cos 2x +6cos ⎝⎛⎭⎫π2-x 的最大值为________.解析:因为f (x )=cos 2x +6cos ⎝⎛⎭⎫π2-x =1-2sin 2x +6sin x =-2⎝⎛⎭⎫sin x -322+112,而sin x∈[-1,1],所以当sin x =1时,f (x )取最大值5.答案:59.函数f (x )=2sin ⎝⎛⎭⎫π6x -π3(0≤x ≤9)的最大值与最小值之和为________. 解析:因为0≤x ≤9,所以0≤π6x ≤3π2,即-π3≤π6x -π3≤7π6,所以-32≤sin ⎝⎛⎭⎫π6x -π3≤1, 故f (x )的最大值为2,最小值为-3,它们之和为2- 3. 答案:2- 310.若函数f (x )=sin ωx (ω>0)在区间⎣⎡⎦⎤0,π3上单调递增,在区间⎣⎡⎦⎤π3,π2上单调递减,则ω=________.解析:法一:由于函数f (x )=sin ωx (ω>0)的图象经过坐标原点,由已知并结合正弦函数 的图象可知,π3为函数f (x )的14周期,故2πω=4π3,解得ω=32.法二:由题意,得f (x )max =f ⎝⎛⎭⎫π3=sin π3ω=1. 由已知并结合正弦函数图象可知,π3ω=π2,解得ω=32.答案:3211.已知函数f (x )=2sin ⎝⎛⎭⎫2x +π4. (1)求函数f (x )的单调递增区间;(2)当x ∈⎣⎡⎦⎤π4,3π4时,求函数f (x )的最大值和最小值. 解:(1)令2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,则k π-3π8≤x ≤k π+π8,k ∈Z.故函数f (x )的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z. (2)因为当x ∈⎣⎡⎦⎤π4,3π4时,3π4≤2x +π4≤7π4, 所以-1≤sin ⎝⎛⎭⎫2x +π4≤22,所以-2≤f (x )≤1, 所以当x ∈⎣⎡⎦⎤π4,3π4时,函数f (x )的最大值为1,最小值为- 2.12.已知函数f (x )=12sin 2x -32cos 2x -32.(1)求函数f (x )的最小正周期和最大值; (2)讨论函数f (x )在⎣⎡⎦⎤π6,2π3上的单调性.解:(1)因为函数f (x )=12sin 2x -32cos 2x -32=sin ⎝⎛⎭⎫2x -π3-32, 所以函数f (x )的最小正周期为π,最大值为2-32.(2)当x ∈⎣⎡⎦⎤π6,2π3时,0≤2x -π3≤π, 从而当0≤2x -π3≤π2,即π6≤x ≤5π12时,f (x )单调递增;当π2≤2x -π3≤π,即5π12≤x ≤2π3时,f (x )单调递减. 综上可知,f (x )在⎣⎡⎦⎤π6,5π12上单调递增,在⎣⎡⎦⎤5π12,2π3上单调递减.B 级1.已知函数f (x )=2sin ⎝⎛⎭⎫x +7π3,设a =f ⎝⎛⎭⎫π7,b =f ⎝⎛⎭⎫π6,c =f ⎝⎛⎭⎫π3,则a ,b ,c 的大小关系是________(用“<”表示).解析:函数f (x )=2sin ⎝⎛⎭⎫x +π3+2π=2sin ⎝⎛⎭⎫x +π3, a =f ⎝⎛⎭⎫π7=2sin 10π21, b =f ⎝⎛⎭⎫π6=2sin π2, c =f ⎝⎛⎭⎫π3=2sin 2π3=2sin π3, 因为y =sin x 在⎣⎡⎦⎤0,π2上单调递增,且π3<10π21<π2, 所以sin π3<sin 10π21<sin π2,即c <a <b . 答案:c <a <b2.(2018·四川双流中学模拟)已知函数f (x )=sin ⎝⎛⎭⎫ωx +π4(ω>0),f ⎝⎛⎭⎫π6=f ⎝⎛⎭⎫π3,且f (x )在⎝⎛⎭⎫π2,π上单调递减,则ω=________.解析:由f ⎝⎛⎭⎫π6=f ⎝⎛⎭⎫π3,可知函数f (x ) 的图象关于直线x =π4对称, ∴π4ω+π4=π2+k π,k ∈Z , ∴ω=1+4k ,k ∈Z ,又∵f (x )在⎝⎛⎭⎫π2,π上单调递减, ∴T 2≥π-π2=π2,T ≥π, ∴2πω≥π,∴ω≤2, 又∵ω=1+4k ,k ∈Z ,∴当k =0时,ω=1. 答案:13.已知函数f (x )=2a sin ⎝⎛⎭⎫x +π4+a +b . (1)若a =-1,求函数f (x )的单调递增区间;(2)若x ∈[0,π],函数f (x )的值域是[5,8],求a ,b 的值. 解:(1)当a =-1时,f (x )=-2sin ⎝⎛⎭⎫x +π4+b -1, 由2k π+π2≤x +π4≤2k π+3π2(k ∈Z),得2k π+π4≤x ≤2k π+5π4(k ∈Z),所以f (x )的单调递增区间为⎣⎡⎦⎤2k π+π4,2k π+5π4(k ∈Z). (2)因为0≤x ≤π,所以π4≤x +π4≤5π4,所以-22≤sin ⎝⎛⎭⎫x +π4≤1,依题意知a ≠0. ①当a >0时,有{ 2a +a +b =8,b =5,所以a =32-3,b =5. ②当a <0时,有{ b =8,2a +a +b =5,所以a =3-32,b =8.综上所述,a =32-3,b =5或a =3-32,b =8.第二课时 三角函数的周期性、奇偶性及对称性考点一 三角函数的周期性[典例] (1)(2018·全国卷Ⅲ)函数f (x )=tan x1+tan 2x 的最小正周期为( )A.π4 B.π2C .πD .2π(2)若函数f (x )=2tan ⎝⎛⎭⎫kx +π3的最小正周期T 满足1<T <2,则正整数k 的值为________. [解析] (1)由已知得f (x )=tan x 1+tan 2x =sin x cos x 1+⎝⎛⎭⎫sin x cos x 2=sin xcos x cos 2x +sin 2x cos 2x =sin x cos x =12sin 2x ,所以f (x )的最小正周期为T =2π2=π.(2)由题意知1<πk <2,即π2<k <π.又因为k ∈N *,所以k =2或k =3. [答案] (1)C (2)2或3[解题技法]1.三角函数最小正周期的求解方法 (1)定义法;(2)公式法:函数y =A sin(ωx +φ)(y =A cos(ωx +φ))的最小正周期T =2π|ω|,函数y =A tan(ωx+φ)的最小正周期T =π|ω|;(3)图象法:求含有绝对值符号的三角函数的周期时可画出函数的图象,通过观察图象得出周期.2.有关周期的2个结论(1)函数y =|A sin(ωx +φ)|,y =|A cos(ωx +φ)|,y =|A tan(ωx +φ)|的周期均为T =π|ω|.(2)函数y =|A sin(ωx +φ)+b |(b ≠0),y =|A cos(ωx +φ)+b |(b ≠0)的周期均为T =2π|ω|.[题组训练]1.在函数①y =cos|2x |,②y =|cos x |,③y =cos ⎝⎛⎭⎫2x +π6,④y =tan ⎝⎛⎭⎫2x -π4中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③解析:选A 因为y =cos|2x |=cos 2x , 所以该函数的周期为2π2=π;由函数y =|cos x |的图象易知其周期为π; 函数y =cos ⎝⎛⎭⎫2x +π6的周期为2π2=π; 函数y =tan ⎝⎛⎭⎫2x -π4的周期为π2,故最小正周期为π的函数是①②③. 2.若x =π8是函数f (x )=2sin ⎝⎛⎭⎫ωx -π4,x ∈R 的一个零点,且0<ω<10,则函数f (x )的最小正周期为________.解析:依题意知,f ⎝⎛⎭⎫π8=2sin ⎝⎛⎭⎫ωπ8-π4=0, 即ωπ8-π4=k π,k ∈Z ,整理得ω=8k +2,k ∈Z. 又因为0<ω<10,所以0<8k +2<10,得-14<k <1,而k ∈Z ,所以k =0,ω=2,所以f (x )=2sin ⎝⎛⎭⎫2x -π4,f (x )的最小正周期为π. 答案:π考点二 三角函数的奇偶性[典例] 函数f (x )=3sin ⎝⎛⎭⎫2x -π3+φ,φ∈(0,π)满足f (|x |)=f (x ),则φ的值为( ) A.π6 B.π3C.5π6D.2π3[解析] 因为f (|x |)=f (x ),所以函数f (x )=3sin ⎝⎛⎭⎫2x -π3+φ是偶函数, 所以-π3+φ=k π+π2,k ∈Z ,所以φ=k π+5π6,k ∈Z ,又因为φ∈(0,π),所以φ=5π6.[答案] C[解题技法] 判断三角函数奇偶性的方法三角函数中奇函数一般可化为y =A sin ωx 或y =A tan ωx 的形式,而偶函数一般可化为y =A cos ωx +b 的形式.[题组训练]1.(2018·日照一中模拟)下列函数中,周期为π,且在⎣⎡⎦⎤π4,π2上单调递增的奇函数是( ) A .y =sin ⎝⎛⎭⎫2x +3π2 B .y =cos ⎝⎛⎭⎫2x -π2 C .y =cos ⎝⎛⎭⎫2x +π2 D .y =sin ⎝⎛⎭⎫π2-x解析:选C y =sin ⎝⎛⎭⎫2x +3π2=-cos 2x 为偶函数,排除A ;y =cos ⎝⎛⎭⎫2x -π2=sin 2x 在⎣⎡⎦⎤π4,π2上为减函数,排除B ;y =cos ⎝⎛⎭⎫2x +π2=-sin 2x 为奇函数,在⎣⎡⎦⎤π4,π2上单调递增,且周期为π,符合题意;y =sin ⎝⎛⎭⎫π2-x =cos x 为偶函数,排除D.故选C.2.若函数f (x )=3cos(3x -θ)-sin(3x -θ)是奇函数,则tan θ等于________. 解析:f (x )=3cos(3x -θ)-sin(3x -θ) =2sin ⎝⎛⎭⎫π3-3x +θ =-2sin ⎝⎛⎭⎫3x -π3-θ, 因为函数f (x )为奇函数, 所以-π3-θ=k π,k ∈Z ,即θ=-k π-π3,k ∈Z ,故tan θ=tan ⎝⎛⎭⎫-k π-π3=- 3. 答案:- 3。

第三章 第一节 任意角的概念与弧度制、任意角的的三角函数

第三章 第一节  任意角的概念与弧度制、任意角的的三角函数
2
对k的奇偶性讨论可得解. (2)由α所在的象限写出角α的范围,从而得2α, 的范围, 最后确定终边所在的位置. 【规范解答】(1)选B.由 2k<<3 2k,k Z, 得 k<1 <3 k,k Z,
2 2 2 4 故 k< 1 < k, k Z. 4 2 2 当k为偶数时π- 1 α在第一象限,当k取奇数时π- 在第三象 2 2
2 2
13
13
13
13
因此 sin 2 2sin cos ( 3 13 ) 2 2 3 13 2 13 3 .
13 13 13 13
(2)由题设知 x 3,y m,
∴r2=|OP|2=( r 3 m2 .
2 2 3 ) +m (O为原点),
第三章 三角函数、三角恒等变形、
解三角形
第一节 任意角的概念与弧度制、任意角的 三角函数
1.角的有关概念
射线 象限角
旋转
正角 负角
零角
α +k·360o,k∈Z
2.弧度的定义和公式
单位长度 (1)定义:在以单位长为半径的圆中,_________的弧所对的圆心 rad 弧度 角为1弧度的角,它的单位符号是____,读作_____.
从而 sin
m r
2m m , 4 2 2
r 3 m2 2 2,
于是3+m2=8,解得 m 5. 当 m 5 时,r 2 2,x 3,
3 6 15 cos ,tan ; 4 3 2 2 当 m 5 时, 2 2,x 3, r cos 3 6 15 ,tan . 4 3 2 2
v u 于点P(u,v),则sin α =__,cos α =__,tan α = v u 0). (

任意角和弧度制三角函数的概念

任意角和弧度制三角函数的概念

1
23Leabharlann 走进教材·夯实基础 细研考点·突破题型 课时分层作业
三个三角函数的性质如下表:
三角 函数
定义域
sin α
R
cos α
R
第一 象限 符号 + +
第二 象限 符号 + -
第三 象限 符号 - -
第四 象限 符号
- +
tan α
__α_α_≠__k_π_+__π2_,__k_∈__Z____

-+-
第一节 任意角和弧度制、三角函数的概念
1
2
3
走进教材·夯实基础 细研考点·突破题型 课时分层作业
1.判断象限角的两种方法 在平面直角坐标系中,作出已知角并根据象限角的定义直 图象法 接判断已知角是第几象限角 先将已知角化为k·360°+α(0°≤α<360°,k∈Z)的形式,即找 转化法 出与已知角终边相同的角α,再由角α终边所在的象限判断 已知角是第几象限角
第一节 任意角和弧度制、三角函数的概念
1
2
3
走进教材·夯实基础 细研考点·突破题型 课时分层作业
2.确定kα,αk(k∈N*)的终边位置的步骤 (1)用终边相同的角的形式表示出角α的范围; (2)写出kα或αk的范围; (3)根据k的可能取值确定kα或αk的终边所在的位置.
第一节 任意角和弧度制、三角函数的概念
第一节 任意角和弧度制、三角函数的概念
1
2
3
走进教材·夯实基础 细研考点·突破题型 课时分层作业
3.任意角的三角函数 设 α 是一个任意角,α∈R,它的终边 OP 与单位圆相交于点 P(x, y),则 sin α= y ,cos α= x ,tan α=yx(x≠0).

第1讲 任意角和弧度制、三角函数的概念

第1讲 任意角和弧度制、三角函数的概念

第1讲任意角和弧度制、三角函数的概念1.了解任意角的概念和弧度制的概念.2.能进行弧度与角度的互化.3.理解任意角的三角函数(正弦、余弦、正切)的定义.1.任意角(1)任意角包括正角、负角和零角.(2)象限角:在平面直角坐标系中,使角的顶点与原点重合,角的始边与x轴的非负半轴重合,那么,角的终边在□1第几象限,就说这个角是第几□2象限角;如果角的终边在□3坐标轴上,就认为这个角不属于任何一个象限.(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S=□4{β|β=α+k·360°,k∈Z}.2.弧度制的定义和公式(1)定义:把长度等于□5半径长的圆弧所对的圆心角叫做1弧度的角,正角的弧度数是一个□6正数,负角的弧度数是一个□7负数,零角的弧度数是□80.(2)公式角α的弧度数公式|α|=lr(弧长用l表示)角度与弧度的换算1°=π180rad;1rad=□9(180π)°弧长公式弧长l=□10|α|r扇形面积公式S=□1112lr=□1212|α|r2扇形的弧长公式、面积公式中角的单位要用弧度,在同一式子中,采用的度量制必须一致.3.任意角的三角函数(1)概念:任意角α的终边与单位圆交于点P(x,y)时,sinα=□13y,cosα=□14x,tan α=□15y x(x ≠0).(2)概念推广:三角函数坐标法定义中,若取点P (x ,y )是角α终边上异于顶点的任一点,设点P 到原点O 的距离为r ,则sin α=□16y r ,cos α=□17x r ,tan α=□18y x(x ≠0).常用结论1.三角函数值在各象限的符号规律:一全正,二正弦,三正切,四余弦.2.象限角与不属于任何象限的角(1)(2)(3)3.重要不等关系:若α∈(0,π2),则sin α<α<tan α.1.思考辨析(在括号内打“√”或“×”)(1)小于90°的角是锐角.()(2)锐角是第一象限角,第一象限角也都是锐角.()(3)角α的三角函数值与其终边上点P 的位置无关.()(4)若α为第一象限角,则sin α+cos α>1.()答案:(1)×(2)×(3)√(4)√2.回源教材(1)67°30′化为弧度是()A.3π8B.38C.673π1800D.6731800解析:A 67°30′=67.5×π180=38π.(2)已知α是第一象限角,那么α2是()A.第一象限角B.第二象限角C.第一或第二象限角D.第一或第三象限角解析:D 易知2k π<α<π2+2k π,k ∈Z ,故k π<α2<π4+k π,所以α2是第一或第三象限角.(3)已知角θ的终边经过点P (-12,5),则sin θ+cos θ=.解析:由三角函数的定义可得sin θ+cos θ=5(-12)2+52+-12(-12)2+52=513-1213=-713.答案:-713任意角及其表示例1(1)(多选)若α是第二象限角,则()A.-α是第一象限角B.α2是第一或第三象限角C.3π2+α是第二象限角D.2α是第三或第四象限角或终边在y 轴负半轴上解析:BD因为α是第二象限角,所以可得π2+2k π<α<π+2k π,k ∈Z .对于A ,-π-2k π<-α<-π2-2k π,k ∈Z ,则-α是第三象限角,所以A 错误.对于B ,可得π4+k π<α2<π2+k π,k ∈Z ,当k 为偶数时,α2是第一象限角;当k 为奇数时,α2是第三象限角,所以B 正确.对于C ,2π+2k π<3π2+α<5π2+2k π,k ∈Z ,即2(k +1)π<3π2+α<π2+2(k +1)π,k ∈Z ,所以3π2+α是第一象限角,所以C 错误.对于D ,π+4k π<2α<2π+4k π,k ∈Z ,所以2α的终边位于第三象限或第四象限或y 轴负半轴上,所以D 正确.故选BD.(2)集合{α|k π+π4≤α≤k π+π2,k ∈Z }中的角所表示的范围(阴影部分)是()解析:C当k =2n (n ∈Z )时,2n π+π4≤α≤2n π+π2,此时α表示的范围与π4≤α≤π2表示的范围一样;当k =2n +1(n ∈Z )时,2n π+π+π4≤α≤2n π+π+π2,此时α表示的范围与π+π4≤α≤π+π2表示的范围一样.故选C.反思感悟1.表示区间角的三个步骤(1)先按逆时针方向找到区域的起始和终止边界.(2)再按由小到大的顺序分别标出起始和终止边界对应的-360°~360°范围内的角α和β,写出最简区间{x |α<x <β},其中β-α<360°.(3)最后令起始、终止边界对应角α,β再加上360°的整数倍,即得区间角的集合.2.象限角的两种判断方法(1)图象法:在平面直角坐标系中,作出已知角并根据象限角的定义直接判断已知角是第几象限角.(2)转化法:先将已知角化为k ·360°+α(0°≤α<360°,k ∈Z )的形式,即找出与已知角终边相同的角α,再由角α的终边所在的象限判断已知角是第几象限角.训练1(1)把-380°表示成θ+2k π(k ∈Z )的形式,则θ的值可以是()A.π9B.-π9C.8π9D.-8π9解析:B∵-380°=-20°-360°,∴-380°=(-π9-2π)rad ,故选B.(2)终边在直线y =3x 上,且在[-2π,2π)内的角α的集合为.解析:如图,在平面直角坐标系中画出直线y=3x,可以发现它与x轴的夹角是π3,在[0,2π)内,终边在直线y=3x上的角有两个,即π3,4π3;在[-2π,0)内满足条件的角有两个,即-2π3,-5π3,故满足条件的角α构成的集合为{-5π3,-2π3,π3,4π3}.答案:{-5π3,-2π3,π3,4π3}弧度制及其应用例2已知扇形的圆心角是α,半径为R,弧长为l.(1)若α=π3,R=10cm,求扇形的弧长l;(2)若扇形的周长是20cm,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?(3)若α=π3,R=2cm,求扇形的弧所在的弓形的面积.解:(1)因为α=π3,R=10cm,所以l=|α|R=π3×10=10π3(cm).(2)由已知,得l+2R=20,所以S=12lR=12(20-2R)R=10R-R2=-(R-5)2+25.所以当R=5cm时,S取得最大值,此时l=10cm,α=2.(3)设弓形面积为S弓形,由题意知l=2π3cm,所以S弓形=12×2π3×2-12×22×sinπ3=(2π3-3)(cm2).反思感悟应用弧度制解决问题时的注意点(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题,或用基本不等式解决.(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.训练2如图,图1是杭州2022年第19届亚运会的会徽,名为“潮涌”,整个会徽象征着新时代中国特色社会主义大潮的涌动和发展.图2是会徽的几何图形,设弧AD 的长度是l 1,弧BC 的长度是l 2,几何图形ABCD 的面积为S 1,扇形BOC 的面积为S 2,若l 1l 2=2,则S1S 2=()图1图2A.1B.2C.3D.4解析:C 设∠BOC =α,由l 1l 2=2,得OA ·αOB ·α=OA OB =2,即OA =2OB ,∴S1S 2=12α·OA 2-12α·OB 212α·OB 2=OA 2-OB 2OB 2=4OB 2-OB 2OB 2=3.故选C.三角函数的定义及其应用三角函数的定义例3(1)(2024·哈尔滨期中)已知角α的终边经过点P (-3,4),则sin α-cos α-11+tan α的值为()A.-65 B.1C.2D.3解析:A由(-3)2+42=5,得sin α=45,cos α=-35,tan α=-43,代入原式得45-(-35)-11+(-43)=-65.(2)如果点P 在角23π的终边上,且|OP |=2,则点P 的坐标是()A.(1,3)B.(-1,3)C.(-3,1)D.(-3,-1)解析:B由三角函数定义知,cos 23π=x P |OP |=-12,sin 23π=y P |OP |=32,所以x P =-1,y P =3,即P 的坐标是(-1,3).三角函数值的符号例4(1)点P (sin 100°,cos 100°)落在()A.第一象限内B.第二象限内C.第三象限内D.第四象限内解析:D因为sin 100°=sin(90°+10°)=cos 10°>0,cos 100°=cos(90°+10°)=-sin 10°<0,所以点P (sin 100°,cos 100°)落在第四象限内.(2)已知sin θ<0,tan θ<0,则角θ的终边位于()A.第一象限B.第二象限C.第三象限D.第四象限解析:D 由sin θ<0,tan θ<0,根据三角函数的符号与角的象限间的关系,可得角θ的终边位于第四象限.反思感悟1.三角函数定义的应用(1)直接利用三角函数的定义,找到给定角的终边上一个点的坐标,及这点到原点的距离,确定这个角的三角函数值.(2)已知角的某一个三角函数值,可以通过三角函数的定义列出含参数的方程,求参数的值.2.要判定三角函数值的符号,关键是要搞清三角函数中的角是第几象限角,再根据正、余弦函数值在各象限的符号确定值的符号.如果不能确定角所在象限,那就要进行分类讨论求解.训练3(1)(多选)已知角α的终边与单位圆交于点P (35,m5),则sin α的值可能是()A.45B.35C.-45 D.-35解析:AC由题意可得sin α=m 5(35)2+(m 5)2=m 32+m 2=m5,解得m =±4.当m =4时,sin α=45;当m =-4时,sin α=-45.故A ,C 正确,B ,D 错误.(2)(多选)已知角θ的终边经过点(-2,-3),且θ与α的终边关于x 轴对称,则()A.sin θ=-217B.α为钝角C.cos α=-277D.点(tan θ,tan α)在第四象限解析:ACD因为角θ的终边经过点(-2,-3),所以sin θ=-37=-217,故A 正确.因为θ与α的终边关于x 轴对称,所以α的终边经过点(-2,3),则α为第二象限角,不一定为钝角,且cos α=-27=-277,故B 错误,C 正确.因为tanθ=32>0,tan α=-32<0,所以点(tan θ,tan α)在第四象限,D 正确.故选ACD.限时规范训练(二十四)A级基础落实练1.与-2023°终边相同的最小正角是()A.137°B.133°C.57°D.43°解析:A因为-2023°=-360°×6+137°,所以与-2023°终边相同的最小正角是137°.2.下列与角9π4的终边相同的角的表达式中正确的是()A.2kπ+45°(k∈Z)B.k·360°+9π4(k∈Z)C.k·360°-315°(k∈Z)D.kπ+5π4(k∈Z)解析:C对于A,B,2kπ+45°(k∈Z),k·360°+9π4(k∈Z)中角度和弧度混用,不正确;对于C,因为9π4=2π+π4与-315°是终边相同的角,故与角9π4的终边相同的角可表示为k·360°-315°(k∈Z),C正确;对于D,kπ+5π4(k∈Z),不妨取k=0,则表示的角5π4与9π4终边不相同,D错误.3.已知角θ的顶点与原点重合,始边与x轴非负半轴重合,若A(-1,y)是角θ终边上一点,且sinθ=-31010,则y=()A.3B.-3C.1D.-1解析:B因为sinθ=-31010<0,A(-1,y)是角θ终边上一点,所以y<0,由三角函数的定义,得yy2+1=-31010,解得y=-3(正值舍去).4.(2024·鹰潭期中)点A(sin1240°,cos1240°)在直角坐标平面上位于()A.第一象限B.第二象限C.第三象限D.第四象限解析:D1240°=3×360°+160°,160°是第二象限角,所以sin1240°>0,cos1240°<0,P点在第四象限.5.(2023·河东一模)在面积为4的扇形中,其周长最小时半径的值为()A.4B.22C.2D.1解析:C设扇形的半径为R(R>0),圆心角为α,则12αR2=4,所以α=8R2,则扇形的周长为2R+αR=2R+8R≥22R·8R=8,当且仅当2R=8 R,即R=2时,取等号,此时α=2,所以周长最小时半径的值为2.6.给出下列命题:①第二象限角大于第一象限角;②三角形的内角一定是第一象限角或第二象限角;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sinα=sinβ,则α与β的终边相同;⑤若cosθ<0,则θ是第二或第三象限的角.其中正确命题的序号是()A.②④⑤B.③⑤C.③D.①③⑤解析:C①由于120°是第二象限角,390°是第一象限角,故第二象限角大于第一象限角不正确,即①不正确;②直角不属于任何一个象限,故三角形的内角是第一象限角或第二象限角错误,即②不正确;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关,即③正确;④若sinα=sinβ,则α与β的终边相同或终边关于y轴对称,即④不正确;⑤若cosθ<0,则θ是第二象限角或第三象限角或θ的终边落在x轴的负半轴上,即⑤不正确.其中正确命题的序号是③,故选C.7.(多选)已知角α的顶点为坐标原点,始边为x轴的非负半轴,终边上有一点P(1,2sinα),且|α|<π2,则角α的可能取值为()A.-π3B.0C.π6D.π3解析:ABD因为角α的终边上有一点P(1,2sinα),所以tanα=2sinα,所以sinαcosα=2sinα,①若α=0,则sinαcosα=2sinα成立;②若α≠0,则cosα=12,因为|α|<π2,所以α=π3或α=-π3.8.已知角α的终边过点P(-8m,-6sin30°),且cosα=-45,则m的值为.解析:因为r=64m2+9,所以cosα=-8m64m2+9=-45,所以4m264m2+9=125,因为m>0,解得m=12.答案:1 29.α为第二象限角,且|cosα2|=-cosα2,则α2在象限.解析:∵α为第二象限角,∴α2为第一或第三象限角,又|cos α2|=-cos α2,∴cos α2<0,∴α2在第三象限.答案:第三10.若角α的终边与函数5x +12y =0(x <0)的图象重合,则2cos α+sin α=.解析:∵角α的终边与函数5x +12y =0(x <0)的图象重合,∴α为第二象限角,且tan α=-512,即sin α=-512cos α.∴sin 2α+cos 2α=(-512cos α)2+cos 2α=1,解得cos α=-1213.∴sin α=-512cos α=-512×(-1213)=513.∴2cos α+sin α=2×(-1213)+513=-1913.答案:-191311.用弧度制表示终边落在如图所示阴影部分内(含边界)的角θ的集合是.解析:由题图,终边OB 对应角为2k π-π6且k ∈Z ,终边OA 对应角为2k π+3π4且k ∈Z ,所以阴影部分角θ的集合是[2k π-π6,2k π+3π4],k ∈Z .答案:[2k π-π6,2k π+3π4],k ∈Z12.已知扇形的圆心角为23π,扇形的面积为3π,则该扇形的周长为.解析:设扇形的半径为R,利用扇形面积计算公式S=12×23πR2=3π,可得R=3,所以该扇形的弧长为l=23π×3=2π,所以周长为l+2R=6+2π.答案:6+2πB级能力提升练13.(多选)在平面直角坐标系xOy中,角α以Ox为始边,终边经过点P(-1,m)(m>0),则下列各式的值一定为负的是()A.sinα+cosαB.sinα-cosαC.sinαcosαD.sinαtanα解析:CD因为角α终边经过点P(-1,m)(m>0),所以α在第二象限,所以sinα>0,cosα<0,tanα<0,如果α=23π,所以sinα+cosα=32-12>0,所以选项A不满足题意;sinα-cosα>0;sinαcosα<0;sinαtanα<0,故CD正确.14.(2023·长治模拟)水滴是刘慈欣的科幻小说《三体Ⅱ·黑暗森林》中提到的由三体文明使用强相互作用力(SIM)材料所制成的宇宙探测器,因为其外形与水滴相似,所以被人类称为水滴.如图所示,水滴是由线段AB,AC和圆的优弧BC围成,其中AB,AC恰好与圆弧相切.若圆弧所在圆的半径为1,点A到圆弧所在圆的圆心的距离为2,则该封闭图形的面积为()A.3+2π3 B.23+2π3C.23+π3D.3+π3解析:A 如图,设圆弧所在圆的圆心为O ,连接OA ,OB ,OC ,依题意得OB ⊥AB ,OC ⊥AC ,且OB =OC =1,OA =2,则AB =AC =3,∠BAC =π3,所以∠BOC =2π3,所以该封闭图形的面积为2×12×3×1+12×(2π-2π3)×12=3+2π3.15.(2024·牡丹江模拟)在平面直角坐标系xOy 中,已知点A (35,45),将线段OA绕原点顺时针旋转π3得到线段OB ,则点B 的横坐标为.解析:易知A (35,45)在单位圆上,记终边在射线OA 上的角为α,如图所示,根据三角函数定义可知,cos α=35,sin α=45;OA 绕原点顺时针旋转π3得到线段OB ,则终边在射线OB 上的角为α-π3,所以点B 的横坐标为cos(α-π3)=cos αcos π3+sin αsin π3=3+4310.答案:3+431016.若点P (sin α-cos α,tan α)在第一象限,则在[0,2π)内α的取值范围是.解析:由题意可得α-cos α>0,α>0,∈[0,2π),α>0,∈[0,2π),可得α∈(0,π2)或α∈(π,3π2),当α∈(0,π2),即α为第一象限角,则sin α>0,cos α>0,∵sin α-cos α>0,则tan α>1,∴α∈(π4,π2);当α∈(π,3π2),即α为第三象限角,则sin α<0,cos α<0,∵sin α-cos α>0,则0<tan α<1,∴α∈(π,5π4);综上所述,α∈(π4,π2∪(π,5π4).答案:(π4,π2)∪(π,5π4)。

数学复习:第三章三角函数、解三角形第一节任意角和弧度制及任意角的三角函数

数学复习:第三章三角函数、解三角形第一节任意角和弧度制及任意角的三角函数

第三章三角函数、解三角形错误!错误!错误!1。

了解任意角的概念;了解弧度制的概念.2.能进行弧度与角度的互化.3.理解任意角的三角函数(正弦、余弦、正切)的定义.知识点一角的概念的推广角的特点角的分类从运动的角度看角可分为______、______和______从终边位置来看可分为________和轴线角α与β角的终边相同β=______________(或α+k·2π,k∈Z)正角负角零角象限角α+k·360°,k∈Z1.若α是第二象限角,β是第三象限角,则角α,β的大小关系是________.解析:角α可以大于角β,也可以小于角β,但是不能等于角β.答案:不确定2.终边在直线y=x上的角的集合是________.解析:终边在直线y=x上,且在[0°,360°)内的角为45°,225°,写出与其终边相同的的角的集合,整合即得.答案:{α|α=k·180°+45°,k∈Z}知识点二弧度的概念与公式在半径为r的圆中:分类定义(公式)1弧度的角把长度等于______长的弧所对的圆心角叫做1弧度的角,用符号1 rad表示角α的弧度数公式|α|=______(弧长用l表示)角度与弧度的换算①1°=______ rad②1 rad=________弧长公式弧长l=______扇形面积公式S=______=__________答案半径错误!错误!错误!°r|α| 错误!lr错误!r2|α|3.(必修④P10习题1.1A组第10题改编)单位圆中,200°的圆心角所对的弧长为()A.10π B.9πC。

910π D。

错误!π解析:单位圆的半径r=1,200°的弧度数是200×错误!=错误!π,由弧度数的定义得109π=lr,所以l=109π。

答案:D4.已知扇形的周长是6 cm,面积是2 cm2,则扇形的圆心角的弧度数是________.解析:设此扇形的半径为r,弧长为l,则错误!解得错误!或错误!从而α=错误!=错误!=4或α=错误!=错误!=1。

任意角、弧度制及任意角的三角函数

任意角、弧度制及任意角的三角函数

任意角、弧度制及任意角的三角函数1.角的概念(1)任意角:①定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形;②分类:角按旋转方向分为正角、负角和零角.(2)所有与角α终边相同的角,连同角α在内,构成的角的集合是S ={β|β=k ·360°+α,k ∈Z }. (3)象限角:使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角;如果角的终边在坐标轴上,就认为这个角不属于任何一个象限. 2.弧度制(1)定义:把长度等于半径长的弧所对的圆心角叫作1弧度的角,用符号rad 表示,读作弧度.正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0. (2)角度制和弧度制的互化:180°=π rad,1°=π180 rad ,1 rad =⎝⎛⎭⎫180π°. (3)扇形的弧长公式:l =|α|·r ,扇形的面积公式:S =12lr =12|α|·r 2.3.任意角的三角函数任意角α的终边与单位圆交于点P (x ,y )时, 则sin α=y ,cos α=x ,tan α=yx (x ≠0).三个三角函数的性质如下表:4.三角函数线如下图,设角α的终边与单位圆交于点P ,过P 作PM ⊥x 轴,垂足为M ,过A (1,0)作单位圆的切线与α的终边或终边的反向延长线相交于点T .为正弦线;有向线段OM 为余弦线;有向线为正切线概念方法微思考1.总结一下三角函数值在各象限的符号规律. 提示 一全正、二正弦、三正切、四余弦.2.三角函数坐标法定义中,若取点P (x ,y )是角α终边上异于顶点的任一点,怎样定义角α的三角函数?提示设点P 到原点O 的距离为r ,则sin α=y r ,cos α=x r ,tan α=yx (x ≠0).题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)锐角是第一象限的角,第一象限的角也都是锐角.( × ) (2)角α的三角函数值与其终边上点P 的位置无关.( √ ) (3)不相等的角终边一定不相同.( × )(4)若α为第一象限角,则sin α+cos α>1.( √ ) 题组二 教材改编2.角-225°= 弧度,这个角在第 象限. 答案 -5π4二3.若角α的终边经过点Q ⎝⎛⎭⎫-22,22,则sin α= ,cos α= . 答案22 -224.一条弦的长等于半径,这条弦所对的圆心角大小为 弧度.答案 π3题组三 易错自纠5.集合⎩⎨⎧⎭⎬⎫α⎪⎪k π+π4≤α≤k π+π2,k ∈Z 中的角所表示的范围(阴影部分)是( )答案 C解析 当k =2n (n ∈Z )时,2n π+π4≤α≤2n π+π2,此时α表示的范围与π4≤α≤π2表示的范围一样;当k =2n +1 (n ∈Z )时,2n π+π+π4≤α≤2n π+π+π2,此时α表示的范围与π+π4≤α≤π+π2表示的范围一样,故选C. 6.已知点P ⎝⎛⎭⎫32,-12在角θ的终边上,且θ∈[0,2π),则θ的值为( )A.5π6B.2π3 C.11π6 D.5π3答案 C 解析 因为点P ⎝⎛⎭⎫32,-12在第四象限,所以根据三角函数的定义可知tan θ=-1232=-33,又θ∈⎝⎛⎭⎫3π2,2π,所以θ=11π6. 7.在0到2π范围内,与角-4π3终边相同的角是 . 答案2π3解析 与角-4π3终边相同的角是2k π+⎝⎛⎭⎫-4π3(k ∈Z ),令k =1,可得与角-4π3终边相同的角是2π3. 8.(2018·合肥模拟)函数y =2cos x -1的定义域为 .答案 ⎣⎡⎦⎤2k π-π3,2k π+π3(k ∈Z ) 解析 ∵2cos x -1≥0, ∴cos x ≥12.由三角函数线画出x 满足条件的终边范围(如图阴影部分所示),∴x ∈⎣⎡⎦⎤2k π-π3,2k π+π3(k ∈Z ).题型一 角及其表示1.下列与角9π4的终边相同的角的表达式中正确的是 ( )A.2k π+45°(k ∈Z )B.k ·360°+9π4(k ∈Z ) C.k ·360°-315°(k ∈Z ) D.k π+5π4(k ∈Z )答案 C解析 与角9π4的终边相同的角可以写成2k π+9π4(k ∈Z ),但是角度制与弧度制不能混用,所以只有答案C 正确.2.设集合M =⎩⎨⎧⎭⎬⎫x ⎪⎪ x =k 2·180°+45°,k ∈Z ,N =⎩⎨⎧⎭⎬⎫x ⎪⎪x =k4·180°+45°,k ∈Z ,那么( ) A.M =N B.M ⊆N C.N ⊆M D.M ∩N =∅ 答案 B解析 由于M 中,x =k 2·180°+45°=k ·90°+45°=(2k +1)·45°,2k +1是奇数;而N 中,x =k4·180°+45°=k ·45°+45°=(k +1)·45°,k +1是整数,因此必有M ⊆N ,故选B.3.终边在直线y =3x 上,且在[-2π,2π)内的角α的集合为 . 答案 ⎩⎨⎧⎭⎬⎫-53π,-23π,π3,43π解析 如图,在坐标系中画出直线y =3x ,可以发现它与x 轴的夹角是π3,在[0,2π)内,终边在直线y =3x 上的角有两个:π3,43π;在[-2π,0)内满足条件的角有两个:-23π,-53π,故满足条件的角α构成的集合为⎩⎨⎧⎭⎬⎫-53π,-23π,π3,43π.4.若角α是第二象限角,则α2是第 象限角.答案 一或三解析 ∵α是第二象限角, ∴π2+2k π<α<π+2k π,k ∈Z , ∴π4+k π<α2<π2+k π,k ∈Z .当k 为偶数时,α2是第一象限角;当k 为奇数时,α2是第三象限角. 综上,α2是第一或第三象限角.思维升华 (1)利用终边相同的角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k (k ∈Z )赋值来求得所需的角. (2)确定kα,αk(k ∈N +)的终边位置的方法先写出kα或αk 的范围,然后根据k 的可能取值确定kα或αk 的终边所在位置.题型二 弧度制及其应用例1 已知一扇形的圆心角为α,半径为R ,弧长为l .若α=π3,R =10 cm ,求扇形的面积.解 由已知得α=π3,R =10 cm ,∴S 扇形=12α·R 2=12·π3·102=50π3(cm 2).引申探究1.若例题条件不变,求扇形的弧长及该弧所在弓形的面积. 解 l =α·R =π3×10=10π3(cm),S 弓形=S 扇形-S 三角形=12·l ·R -12·R 2·sin π3=12·10π3·10-12·102·32=50π-7533(cm 2). 2.若例题条件改为:“若扇形周长为20 cm ”,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?解 由已知得,l +2R =20,则l =20-2R (0<R <10). 所以S =12lR =12(20-2R )R =10R -R 2=-(R -5)2+25,所以当R =5 cm 时,S 取得最大值25 cm 2,此时l =10 cm ,α=2 rad. 思维升华 应用弧度制解决问题的方法(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度. (2)求扇形面积最大值的问题时,常转化为二次函数的最值问题.(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.跟踪训练1 (1)若圆弧长度等于圆内接正三角形的边长,则其圆心角的弧度数为( ) A.π6 B.π3 C.3 D. 3 答案 D解析 如图,等边三角形ABC 是半径为r 的圆O 的内接三角形,则线段AB 所对的圆心角∠AOB =2π3,作OM ⊥AB ,垂足为M ,在Rt △AOM 中,AO =r ,∠AOM =π3,∴AM =32r ,AB =3r , ∴l =3r ,由弧长公式得α=l r =3rr= 3.(2)一扇形是从一个圆中剪下的一部分,半径等于圆半径的23,面积等于圆面积的527,则扇形的弧长与圆周长之比为 . 答案518解析 设圆的半径为r ,则扇形的半径为2r3,记扇形的圆心角为α, 由扇形面积等于圆面积的527,可得12α⎝⎛⎭⎫2r 32πr 2=527, 解得α=5π6.所以扇形的弧长与圆周长之比为l C =5π6·2r 32πr =518.题型三 三角函数的概念命题点1 三角函数定义的应用例2 (1)(2018·合肥模拟)已知角α的终边与单位圆的交点为P ⎝⎛⎭⎫-12,y ,则sin α·tan α等于( ) A.-33 B.±33 C.-32 D.±32答案 C解析 由OP 2=14+y 2=1,得y 2=34,y =±32.当y =32时,sin α=32,tan α=-3, 此时,sin α·tan α=-32.当y =-32时,sin α=-32,tan α=3, 此时,sin α·tan α=-32.所以sin α·tan α=-32.(2)设θ是第三象限角,且⎪⎪⎪⎪cos θ2=-cos θ2,则θ2是( ) A.第一象限角 B.第二象限角 C.第三象限角D.第四象限角解析 由θ是第三象限角知,θ2为第二或第四象限角,∵⎪⎪⎪⎪cos θ2=-cos θ2,∴cos θ2<0, 综上可知,θ2为第二象限角.命题点2 三角函数线例3 (1)满足cos α≤-12的角的集合是 .答案 ⎩⎨⎧⎭⎬⎫α⎪⎪2k π+23π≤α≤2k π+43π,k ∈Z 解析 作直线x =-12交单位圆于C ,D 两点,连接OC ,OD ,则OC 与OD 围成的区域(图中阴影部分)即为角α终边的范围,故满足条件的角α的集合为⎩⎨⎧⎭⎬⎫α⎪⎪2k π+23π≤α≤2k π+43π,k ∈Z .(2)若-3π4<α<-π2,从单位圆中的三角函数线观察sin α,cos α,tan α的大小关系是 .答案 sin α<cos α<tan α解析 如图,作出角α的正弦线MP ,余弦线OM ,正切线AT ,观察可知sin α<cos α<tan α.思维升华 (1)利用三角函数的定义,已知角α终边上一点P 的坐标可求α的三角函数值;已知角α的三角函数值,也可以求出点P 的坐标.(2)利用三角函数线解不等式要注意边界角的取舍,结合三角函数的周期性写出角的范围. 跟踪训练2 (1)已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0.则实数a 的取值范围是( ) A.(-2,3] B.(-2,3) C.[-2,3)D.[-2,3]解析 ∵cos α≤0,sin α>0,∴角α的终边落在第二象限或y 轴的正半轴上.∴⎩⎪⎨⎪⎧3a -9≤0,a +2>0, ∴-2<a ≤3. (2)在(0,2π)内,使得sin x >cos x 成立的x 的取值范围是( ) A.⎝⎛⎭⎫π4,π2∪⎝⎛⎭⎫π,5π4 B.⎝⎛⎭⎫π4,πC.⎝⎛⎭⎫π4,5π4D.⎝⎛⎭⎫π4,π∪⎝⎛⎭⎫5π4,3π2答案 C解析 当x ∈⎣⎡⎭⎫π2,π时,sin x >0,cos x ≤0,显然sin x >cos x 成立;当x ∈⎝⎛⎦⎤0,π4时,如图,OA 为x 的终边,此时sin x =|MA |,cos x =|OM |,sin x ≤cos x ;当x ∈⎝⎛⎭⎫π4,π2时,如图,OB 为x 的终边,此时sin x =|NB |,cos x =|ON |,sin x >cos x .同理当x ∈⎣⎡⎭⎫π,5π4时,sin x >cos x ;当x ∈⎣⎡⎭⎫5π4,2π时,sin x ≤cos x ,故选C.1.下列说法中正确的是( ) A.第一象限角一定不是负角 B.不相等的角,它们的终边必不相同 C.钝角一定是第二象限角D.终边与始边均相同的两个角一定相等 答案 C解析 因为-330°=-360°+30°,所以-330°角是第一象限角,且是负角,所以A 错误;同理-330°角和30°角不相等,但它们终边相同,所以B 错误;因为钝角的取值范围为(90°,180°),所以C 正确;0°角和360°角的终边与始边均相同,但它们不相等,所以D 错误.2.已知扇形的周长是6,面积是2,则扇形的圆心角的弧度数是( ) A.1 B.4 C.1或4 D.2或4 答案 C解析 设扇形的半径为r ,弧长为l , 则⎩⎪⎨⎪⎧2r +l =6,12rl =2,解得⎩⎪⎨⎪⎧ r =1,l =4或⎩⎪⎨⎪⎧r =2,l =2. 从而α=l r =41=4或α=l r =22=1.3.(2018·西安调研)已知角θ的终边经过点P (4,m ),且sin θ=35,则m 等于( )A.-3B.3C.163 D.±3答案 B 解析 sin θ=m 16+m 2=35,且m >0,解得m =3.4.点P 从(1,0)出发,沿单位圆逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为( )A.⎝⎛⎭⎫-12,32B.⎝⎛⎭⎫-32,-12 C.⎝⎛⎭⎫-12,-32D.⎝⎛⎭⎫-32,12 答案 A解析 点P 旋转的弧度数也为2π3,由三角函数定义可知Q 点的坐标(x ,y )满足x =cos 2π3=-12,y =sin 2π3=32. 5.若sin θ·cos θ>0,sin θ+cos θ<0,则θ在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 答案 C解析 ∵sin θ·cos θ>0,∴sin θ>0,cos θ>0或sin θ<0,cos θ<0.当sin θ>0,cos θ>0时,θ为第一象限角,当sin θ<0,cos θ<0时,θ为第三象限角.∵sin θ+cos θ<0,∴θ为第三象限角.故选C.6.sin 2·cos 3·tan 4的值( ) A.小于0B.大于0C.等于0D.不存在答案 A解析 ∵sin 2>0,cos 3<0,tan 4>0,∴sin 2·cos 3·tan 4<0. 7.已知角α的终边过点P (-8m ,-6sin 30°),且cos α=-45,则m 的值为( ) A.-12 B.-32 C.12 D.32答案 C解析 由题意得点P (-8m ,-3),r =64m 2+9,所以cos α=-8m64m 2+9=-45,解得m =±12, 又cos α=-45<0,所以-8m <0,即m >0, 所以m =12.8.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论是用角度制还是用弧度制度量一个角,它们与扇形的半径的大小无关;④若sin α=sin β,则α与β的终边相同;⑤若cos θ<0,则θ是第二或第三象限的角.其中正确命题的个数是( )A.1B.2C.3D.4答案 A解析 举反例:第一象限角370°不小于第二象限角100°,故①错;当三角形的内角为90°时,其既不是第一象限角,也不是第二象限角,故②错;③正确;由于sin π6=sin 5π6,但π6与5π6的终边不相同,故④错;当cos θ=-1,θ=π时,其既不是第二象限角,也不是第三象限角,故⑤错.综上可知,只有③正确.9.若圆弧长度等于该圆内接正方形的边长,则其圆心角的弧度数是 .答案 2 解析 设圆半径为r ,则圆内接正方形的对角线长为2r ,∴正方形边长为2r ,∴圆心角的弧度数是2r r= 2. 10.若角α的终边与直线y =3x 重合,且sin α<0,又P (m ,n )是角α终边上一点,且|OP |=10,则m -n = .答案 2解析 由已知tan α=3,∴n =3m ,又m 2+n 2=10,∴m 2=1.又sin α<0,∴m =-1,n =-3.故m -n =2.11.已知角α的终边上一点P 的坐标为⎝⎛⎭⎫sin 2π3,cos 2π3,则角α的最小正值为 . 答案 11π6解析 由题意知,点P ⎝⎛⎭⎫32,-12,r =1,所以点P 在第四象限,根据三角函数的定义得cos α=sin 2π3=32, 故α=2k π-π6(k ∈Z ),所以α的最小正值为11π6. 12.函数y =sin x -32的定义域为 . 答案 ⎣⎡⎦⎤2k π+π3,2k π+23π,k ∈Z 解析 利用三角函数线(如图),由sin x ≥32,可知 2k π+π3≤x ≤2k π+23π,k ∈Z .13.已知角α的终边在如图所示阴影表示的范围内(不包括边界),则角α用集合可表示为 .答案 ⎩⎨⎧⎭⎬⎫α⎪⎪2k π+π4<α<2k π+56π,k ∈Z 解析 ∵在[0,2π)内,终边落在阴影部分角的集合为⎝⎛⎭⎫π4,56π,∴所求角的集合为⎩⎨⎧⎭⎬⎫α⎪⎪2k π+π4<α<2k π+56π,k ∈Z . 14.若角α的终边落在直线y =3x 上,角β的终边与单位圆交于点⎝⎛⎭⎫12,m ,且sin α·cos β<0,则cos α·sin β= .答案 ±34解析 由角β的终边与单位圆交于点⎝⎛⎭⎫12,m ,得cos β=12,又由sin α·cos β<0知,sin α<0,因为角α的终边落在直线y =3x 上,所以角α只能是第三象限角.记P 为角α的终边与单位圆的交点,设P (x ,y )(x <0,y <0),则|OP |=1(O 为坐标原点),即x 2+y 2=1,又由y =3x 得x =-12,y =-32,所以cos α=x =-12,因为点⎝⎛⎭⎫12,m 在单位圆上,所以⎝⎛⎭⎫122+m 2=1,解得m =±32,所以sin β=±32,所以cos α·sin β=±34.15.《九章算术》是我国古代数学成就的杰出代表作,其中“方田”章给出了计算弧田面积时所用的经验公式,即弧田面积=12×(弦×矢+矢2).弧田(如图1)由圆弧和其所对弦围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,现有圆心角为2π3,半径为3米的弧田,如图2所示.按照上述经验公式计算所得弧田面积大约是 平方米.(结果保留整数,3≈1.73)答案 5解析 如题图2,由题意可得∠AOB =2π3,OA =3,所以在Rt △AOD 中,∠AOD =π3,∠DAO =π6,OD =12AO =12×3=32,可得CD =3-32=32,由AD =AO ·sin π3=3×32=332,可得AB =2AD =2×332=3 3.所以弧田面积S =12(弦×矢+矢2)=12×⎝⎛⎭⎫33×32+94=943+98≈5(平方米). 16.如图,A ,B 是单位圆上的两个质点,点B 的坐标为(1,0),∠BOA =60°.质点A 以1 rad /s 的角速度按逆时针方向在单位圆上运动,质点B 以2 rad/s 的角速度按顺时针方向在单位圆上运动.则经过1 s 后,∠BOA 的弧度为 ;质点A ,B 在单位圆上第一次相遇所用的时间为 s.答案 π3+3 5π9解析 经过1 s 后,质点A 运动1 rad ,质点B 运动2 rad ,此时∠BOA 的弧度为π3+3. 设经过t s 后质点A ,B 在单位圆上第一次相遇,则t (1+2)+π3=2π, 解得t =5π9, 即经过5π9s 后质点A ,B 在单位圆上第一次相遇.。

任意角的概念、弧度制、任意角的三角函数

任意角的概念、弧度制、任意角的三角函数

数学辅导专题讲座——三角函数(一)任意角的概念、弧度制、任意角的三角函数:了解任意角的概念.弧度制概念,能进行弧度与角度的互化,弧长公式、扇形面积公式;任意角的三角函数的定义、三角函数线。

基础巩固一、角的概念的推广1.与角α终边相同的角的集合为 .2.与角α终边互为反向延长线的角的集合为 .3.轴线角(终边在坐标轴上的角)终边在x 轴上的角的集合为 ,终边在y 轴上的角的集合为 ,终边在坐标轴上的角的集合为 .4.象限角是指: .5.区间角是指: .6.弧度制的意义:圆周上弧长等于半径长的弧所对的圆心角的大小为1弧度的角,它将任意角的集合与实数集合之间建立了一一对应关系.7.弧度与角度互化:180º= 弧度,1º= 弧度,1弧度= ≈ º.8.弧长公式:l = ;扇形面积公式:S = .二、任意角的三角函数9.定义:设P(x, y)是角α终边上任意一点,且 |PO| =r ,则sin α= ; cos α= ;tan α= ;10.三角函数的符号与角所在象限的关系:1213.三角函数线:在图中作出角α的正弦线、余弦线、正切线.- + -+cos x ,+ + - - sin x ,- + + - tan x ,x y O xyO x y O例1. 若α是第二象限的角,试分别确定2α,2α ,3α的终边所在位置.变式训练1:已知α是第三象限角,问3α是哪个象限的角?例2. 在单位圆中画出适合下列条件的角α的终边的范围,并由此写出角α的集合:(1)sin α≥23; (2)cos α≤21-.变式训练2:求下列函数的定义域:(1)y=1cos 2-x ; (2)y=lg(3-4sin 2x ).例3. 已知角α的终边在直线3x+4y=0上,求sin α,cos α,tan α的值.变式训练3:已知角θ的终边经过点P ()(0),sin 4m m m θ≠=且,试判断角θ所在的象限,并求cos tan θθ和的值.例4. 已知一扇形中心角为α,所在圆半径为R . (1) 若α3π=,R =2cm ,求扇形的弧长及该弧所在弓形面积;(2) 若扇形周长为一定值C(C>0),当α为何值时,该扇形面积最大,并求此最大值.变式训练4:扇形OAB 的面积是1cm 2,它的周长是4cm ,求中心角的弧度数和弦长AB .1、设α是第三、四象限角,mm --=432sin α,则m 的取值范围是A 、(-1,1)B 、(-1,)21C 、(-1,)23 D 、⎪⎭⎫⎢⎣⎡-23,1 2、如果θ是第一象限角,那么恒有A 、2sin θ>0 B 、2tan θ<1 C 、2sin θ>2cos θ D 、2sin θ<2cos θ3、将时钟拨慢10分钟,则分针转过的弧度数是A 、3π B 、3π- C 、5πD 、5π-4、如图,设点A 是单位圆上的一定点,动点P 从点A 出发在圆上按逆时针方向旋转一周,点P 所旋转过的弧AP 的长为l ,弦AP 的长为d ,则函数d =f (l )的图象大致是 ( )5、方程sin πx =14x 的解的个数是( )A .5B .6C .7D .86、一钟表的分针长10 cm ,经过35分钟,分针的端点所转过的长为:( )A .70 cmB .670 cm C .(3425-3π)cm D .3π35 cm7、已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是 ( )A .2B .1sin 2 C .1sin 2 D .2sin8、设集合M =⎩⎨⎧⎭⎬⎫α|α=k π2-π3,k ∈Z ,N ={α|-π<α<π},则M ∩N =________. 9、设角α、β满足180180αβ-<<<,则αβ-的范围是___________.10、α的终边与6π的终边关于直线x y =对称,则α=______。

高考数学一轮复习任意角和弧度制、三角函数的概念

高考数学一轮复习任意角和弧度制、三角函数的概念

3.(忽视对参数的讨论)已知角α的终边过点P(-8m,6m)(m≠0),则sin α= ________.
解析:由题意得 x=-8m,y=6m,所以 r=10|m|. 当 m> 0 时,sin α=160mm=53; 当 m< 0 时,sin α=-61m0m=-53. 答案:35或-35
Ⅲ.微点知能的优化拓展 1.掌握 5 个常用结论 (1)若 α∈0,π2,则 tan α> α> sin α. (2)α,β终边相同⇔β=α+2kπ,k∈Z. (3)α,β终边关于x轴对称⇔β=-α+2kπ,k∈Z. (4)α,β终边关于y轴对称⇔β=π-α+2kπ,k∈Z. (5)α,β终边关于原点对称⇔β=π+α+2kπ,k∈Z.
数时,α2为第二象限角;当 k 为奇数时,α2为第四象限角,而 2α 的终 边落在第一、二象限或 y 轴的非负半轴上. 答案:二、四 第一、二象限或 y 轴的非负半轴上
[一“点”就过] 1.利用终边相同的角的集合求适合某些条件的角 先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参 数k赋值来求得所需的角.
限角,故 C 正确;-315°=-360°+45°,所以-315°是第一象
限角,故 D 正确,故选 B 、C 、D . 答案:B C D
3.集合α|kπ+π4≤α≤kπ+π2,k∈Z中的角所表示的范围(阴影部分)是( )
解析:当 k=2n(n∈Z )时,2nπ+π4≤α≤2nπ+π2,此时 α 表示的范围 与π4≤α≤π2表示的范围一样;当 k=2n+1(n∈Z )时,2nπ+π+π4 ≤α≤2nπ+π+π2,此时 α 表示的范围与π+π4≤α≤π+π2表示的范 围一样,故选 C . 答案:C
4.设集合 M=x|x=k2·180°+45°,k∈Z,N=x|x=k4·180°+45°,k∈Z,

高考数学总复习 31 角的概念推广、弧度制及任意角的三

高考数学总复习 31 角的概念推广、弧度制及任意角的三

()
π A.3 C. 3
2π B. 3 D.2
解析:设圆半径为 R,则其内接正三角形的边长为 3R,于是圆
心角的弧度数为 R3R= 3. 答案:C
4.弧长为 3π,圆心角为 135°的扇形半径为______,面积为 ______.
解析:弧长 l=3π,圆心角 α=34π, 由弧长公式 l=α·r 得 r=αl =33π=4,
B.k·360°+250°,k∈Z
C.k·360°+70°,k∈Z
D.k·360°+270°,k∈Z
解析:由于 610°=360°+250°,所以 610°与 250°角的终边相同.
答案:B
2.如果角 α 是第三象限角,则-α,π­α,π+α 角的终边分别落 在第______,______,______象限.
\\\\\\方法规律\\\\\ (1)利用终边相同的角的集合 S={β|β=2kπ+α,k∈Z}判断一个
角 β 所在的象限时,只需把这个角写成[0,2π)范围内的一个角 α 与 2π 的整数倍的和,然后判断角 α 的象限.
(2)利用终边相同的角的集合可以求适合某些条件的角,方法是 先写出与这个角的终边相同的所有角的集合,然后通过对 k 赋值来 求得所需角.
第一节 角的概念推广、弧度制及任意角的三角函数
目标定位
学习指向
1.主要考查对三角函数定义的理解和 1.了解任意角的概念.
运用,如三角函数值符号的选取及基 2.了解弧度制的概念,能
本运算能力. 进行弧度与角度的互化.
2.在高考中会结合三角函数的其他知 3.理解任意角三角函数(正
识进行考查,一般不会单独命题. 弦、余弦、正切)的定义.
l r
.
3.角度与弧度的换算

高考数学复习任意角和弧度制及任意角的三角函数

高考数学复习任意角和弧度制及任意角的三角函数

第1讲任意角和弧度制及任意角的三角函数最新考纲考向预测1.了解任意角的概念和弧度制.2.能进行弧度与角度的互化,体会引入弧度制的必要性.3.借助单位圆理解任意角的三角函数(正弦、余弦、正切)的定义. 命题趋势本部分内容高考较少直接考查,而是与三角函数的恒等变换、三角函数的图象与性质结合考查,难度较小.核心素养数学建模、数学抽象1.任意角的概念(1)定义:角可以看成平面内的一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)角的分类按旋转方向正角按逆时针方向旋转而成的角负角按顺时针方向旋转而成的角零角射线没有旋转按终边位置前提:角的顶点在原点,始边与x轴的非负半轴重合象限角角的终边在第几象限,这个角就是第几象限角其他角的终边落在坐标轴上集合S={β|β=α+k·360°,k∈Z}.2.弧度制(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad.(2)公式角α的弧度数公式|α|=l r角度与弧度的换算1°=π180rad,1 rad=⎝⎛⎭⎪⎫180π°≈57°18′弧长公式l=α·r扇形面积公式S=12l·r=12α·r23.任意角的三角函数三角函数正弦余弦正切定义设α是一个任意角,它的终边与单位圆交于点P(x,y),那么y叫做α的正弦,记作sin αx叫做α的余弦,记作cos αyx叫做α的正切,记作tan α各象限符号Ⅰ正正正Ⅱ正负负Ⅲ负负正Ⅳ负正负口诀一全正,二正弦,三正切,四余弦4.三角函数线用单位圆中的有向线段表示三角函数.如图:sin α=MP,cos α=OM,tan α=AT.常用结论 1.象限角2.轴线角3.三角函数定义的推广设点P (x ,y )是角α终边上任意一点且不与原点重合,r =|OP |,则sin α=yr ,cos α=x r ,tan α=yx .常见误区1.相等的角终边一定相同,但终边相同的角却不一定相等. 2.在同一个式子中,不能同时出现角度制与弧度制.3.已知三角函数值的符号求角的终边位置时,不要遗忘终边在坐标轴上的情况.4.利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.1.判断正误(正确的打“√”,错误的打“×”)(1)锐角是第一象限的角,第一象限的角也都是锐角.( ) (2)角α的三角函数值与其终边上点P 的位置无关.( ) (3)不相等的角终边一定不相同.( ) (4)终边相同的角的同一三角函数值相等.( ) (5)若α∈⎝ ⎛⎭⎪⎫0,π2,则tan α>sin α.( )(6)若α为第一象限角,则sin α+cos α>1.( ) 答案:(1)× (2)√ (3)× (4)√ (5)√ (6)√2.(多选)下列与角2π3的终边相同的角是()A.14π3B.2kπ-2π3(k∈Z)C.2kπ+2π3(k∈Z) D.(2k+1)π+2π3(k∈Z)解析:选AC.与角2π3的终边相同的角为2kπ+2π3(k∈Z),k=2时,4π+2π3=143π.3.若sin α<0,且tan α>0,则α是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角解析:选C.由sin α<0知α的终边在第三、第四象限或y轴的非正半轴上;由tan α>0知α的终边在第一或第三象限,故α是第三象限角.故选C.4.一条弦长等于半径,则此弦所对圆心角的弧度数为________rad.解析:因为弦长等于半径,所以弦和与弦两端点相交的两条半径构成等边三角形,所以弦所对的圆心角为60°,即为π3rad.答案:π35.已知角α的终边过点P(-4,3),则2sin α+tan α的值为________.解析:因为角α的终边经过点P(-4,3),所以r=|OP|=5.所以sin α=35,cos α=-45,tan α=-34.所以2sin α+tan α=2×35+⎝⎛⎭⎪⎫-34=920.答案:920象限角及终边相同的角[题组练透]1.把-114π表示成θ+2k π(k ∈Z )的形式,使|θ|最小的θ值是( ) A .-3π4 B .-π4 C.π4 D.3π4解析:选 A.因为-11π4=-2π-3π4,所以-11π4与-3π4是终边相同的角,且此时⎪⎪⎪⎪⎪⎪-3π4=3π4是最小的.2.集合⎩⎨⎧⎭⎬⎫α⎪⎪⎪k π+π4≤α≤k π+π2,k ∈Z 中的角所表示的范围(阴影部分)是( )解析:选C.当k =2n (n ∈Z )时,2n π+π4≤α≤2n π+π2,此时α表示的范围与π4≤α≤π2表示的范围一样;当k =2n +1(n ∈Z )时,2n π+π+π4≤α≤2n π+π+π2,此时α表示的范围与π+π4≤α≤π+π2表示的范围一样,故选C.3.(多选)已知角2α的终边在x 轴的上方,那么角α可能是( ) A .第一象限角 B .第二象限角 C .第三象限角D .第四象限角解析:选AC.因为角2α的终边在x 轴的上方,所以k ·360°<2α<k ·360°+180°,k ∈Z ,则有k ·180°<α<k ·180°+90°,k ∈Z .故当k =2n ,n ∈Z 时,n ·360°<α<n ·360°+90°,n ∈Z ,α为第一象限角; 当k =2n +1,n ∈Z 时,n ·360°+180°<α<n ·360°+270°,n ∈Z ,α为第三角限角.故选AC.4.在-720°~0°范围内所有与45°终边相同的角为________. 解析:所有与45°终边相同的角可表示为 β=45°+k ×360°(k ∈Z ).令-720°≤45°+k ×360°<0°(k ∈Z ), 得-765°≤k ×360°<-45°(k ∈Z ),解得-765360≤k<-45360(k∈Z),从而k=-2和k=-1,代入得β=-675°和β=-315°. 答案:-675°和-315°(1)象限角的2种判断方法图象法在平面直角坐标系中,作出已知角并根据象限角的定义直接判断已知角是第几象限角转化法先将已知角化为k·360°+α(0°≤α<360°,k∈Z)的形式,即找出与已知角终边相同的角α,再由角α终边所在的象限判断已知角是第几象限角(2)求θn或nθ(n∈N*)所在象限的步骤①将θ的范围用不等式(含有k,且k∈Z)表示;②两边同除以n或乘以n;③对k进行讨论,得到θn或nθ(n∈N*)所在的象限.[注意]注意“顺转减,逆转加”的应用,如角α的终边逆时针旋转180°可得角α+180°的终边,类推可知α+k·180°(k∈Z)表示终边落在角α的终边所在直线上的角.扇形的弧长及面积公式已知扇形的圆心角是α,半径为R,弧长为l.(1)若α=60°,R=10 cm,求扇形的弧长l;(2)若扇形的周长为20 cm,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?【解】(1)α=60°=π3,l=10×π3=10π3(cm).(2)由已知得,l+2R=20,则l=20-2R,0<R<10,所以扇形的面积S=12lR=12(20-2R)R=10R-R2=-(R-5)2+25,所以当R=5时,S取得最大值最大值为25 cm2,此时l=10 cm,α=2 rad.弧长、扇形面积问题的解题策略(1)明确弧度制下弧长公式l =|α|r ,扇形的面积公式是S =12lr =12|α|r 2(其中l 是扇形的弧长,α是扇形的圆心角).(2)求扇形面积的关键是求扇形的圆心角、半径、弧长三个量中的任意两个量.[提醒] 运用弧度制下有关弧长、扇形面积公式的前提是角的度量单位为弧度.1.(多选)已知扇形的周长是6 cm ,面积是2 cm 2,则下列选项正确的有( ) A .扇形的半径为2 B .扇形的半径为1 C .圆心角的弧度数是1D .圆心角的弧度数是2解析:选ABC.设扇形半径为r ,圆心角的弧度数为α,则由题意得⎩⎪⎨⎪⎧2r +αr =6,12αr 2=2,解得⎩⎨⎧r =1,α=4或⎩⎨⎧r =2,α=1,可得圆心角的弧度数是4或1,扇形的半径是1或2.2.一扇形是从一个圆中剪下的一部分,半径等于圆半径的23,面积等于圆面积的527,则扇形的弧长与圆周长之比为________.解析:设圆的半径为r ,则扇形的半径为2r3,记扇形的圆心角为α,则12α⎝ ⎛⎭⎪⎫2r 32πr 2=527,所以α=5π6.所以扇形的弧长与圆周长之比为l C =5π6·2r 32πr =518. 答案:518三角函数的定义 角度一 利用三角函数的定义求值(1)已知点M ⎝ ⎛⎭⎪⎫13,a 在函数y =log 3x 的图象上,且角θ的终边所在的直线过点M ,则tan θ=( )A .-13B .±13 C .-3 D .±3(2)若角α的终边落在直线y =3x 上,角β的终边与单位圆交于点⎝ ⎛⎭⎪⎫12,m ,且sin α cos β<0,则cos α cos β=________.【解析】 (1)因为点M ⎝ ⎛⎭⎪⎫13,a 在函数y =log 3x 的图象上,所以a =log 313=-1,即M ⎝ ⎛⎭⎪⎫13,-1,所以tan θ=-113=-3. (2)由角β的终边与单位圆交于点⎝ ⎛⎭⎪⎫12,m ,得cos β=12,又由sin α cos β<0知,sin α<0,因为角α的终边落在直线y =3x 上,所以角α只能是第三象限角.记P 为角α的终边与单位圆的交点,设P (x ,y )(x <0,y <0),则|OP |=1(O 为坐标原点),即x 2+y 2=1,又由y =3x 得x =-12,y =-32,所以cos α=x =-12,则cos αcos β=-14.【答案】 (1)C (2)-14三角函数定义问题的解题策略(1)已知角α终边上一点P 的坐标,可求角α的三角函数值.先求P 到原点的距离,再用三角函数的定义求解.(2)已知角α的某三角函数值,可求角α终边上一点P 的坐标中的参数值,可根据定义中的两个量列方程求参数值.(3)已知角α的终边所在的直线方程或角α的大小,根据三角函数的定义可求角α终边上某特定点的坐标.角度二 判断三角函数值的符号(2020·高考全国卷Ⅱ)若α为第四象限角,则( ) A .cos 2α>0B .cos 2α<0C .sin 2α>0D .sin 2α<0【解析】 通解:由题意,知-π2+2k π<α<2k π(k ∈Z ),所以-π+4k π<2α<4k π(k ∈Z ),所以cos 2α≤0或cos 2α>0,sin 2α<0,故选D.优解:当α=-π4时,cos 2α=0,sin 2α=-1,排除A ,B ,C ,故选D. 【答案】 D三角函数值符号的判断方法要判定三角函数值的符号,关键是要搞清三角函数中的角是第几象限角,再根据正、余弦函数值在各象限的符号确定值的符号.如果不能确定角所在的象限,那就要进行分类讨论求解.角度三 三角函数线的应用函数y =lg(3-4sin 2 x )的定义域为________.【解析】 因为3-4sin 2x >0,所以sin 2x <34,所以-32<sin x <32.利用三角函数线画出x 满足条件的终边范围(如图中阴影部分所示),所以x ∈⎝ ⎛⎭⎪⎫k π-π3,k π+π3(k ∈Z ).【答案】 ⎝ ⎛⎭⎪⎫k π-π3,k π+π3(k ∈Z )三角函数线三角函数线是三角函数的几何表示,正弦线、正切线的方向同纵轴一致,向上为正,向下为负;余弦线的方向同横轴一致,向右为正,向左为负.1.下列各选项中正确的是( ) A .sin 300°>0B .cos(-305°)<0C .tan ⎝ ⎛⎭⎪⎫-22π3>0D .sin 10<0解析:选D.300°=360°-60°,则300°是第四象限角,故sin 300°<0;-305°=-360°+55°,则-305°是第一象限角,故cos(-305°)>0;-22π3=-8π+2π3,则-22π3是第二象限角,故tan ⎝ ⎛⎭⎪⎫-22π3<0;3π<10<7π2,则10是第三象限角,故sin10<0,故选D.2.已知角β的顶点与坐标原点重合,始边与x 轴的非负半轴重合,终边上有一点P (-4,a ),且sin β cos β=34,则a 的值为( )A .4 3B .±4 3C .-43或-43 3D . 3解析:选 C.因为点P (-4,a )在角β的终边上且sin βcos β=34,所以-4a (-4)2+a 2=34.解得a =-43或a =-43 3.故选C. 3.若角α的终边落在直线y =-x 上,则sin α|cos α|+|sin α|cos α=________. 解析:因为角α的终边落在直线y =-x 上,所以角α的终边位于第二或第四象限.当角α的终边位于第二象限时,sin α|cos α|+|sin α|cos α=sin α-cos α+sin αcos α=0;当角α的终边位于第四象限时,sin α|cos α|+|sin α|cos α=sin αcos α+-sin αcos α=0.所以sin α|cos α|+|sin α|cos α=0.答案:0[A 级 基础练]1.已知角α的始边与x 轴的正半轴重合,顶点在坐标原点,角α终边上的一点P 到原点的距离为2,若α=π4,则点P 的坐标为( )A .(1,2)B .(2,1)C .(2,2)D .(1,1)解析:选D.设点P 的坐标为(x ,y ), 则由三角函数的定义得⎩⎪⎨⎪⎧sin π4=y 2,cos π4=x 2,即⎩⎪⎨⎪⎧x =2cos π4=1,y =2sin π4=1.故点P 的坐标为(1,1).2.若角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边在直线y =-3x 上,则角α的取值集合是( )A.⎩⎨⎧⎭⎬⎫α|α=2k π-π3,k ∈ZB.⎩⎨⎧⎭⎬⎫α|α=2k π+2π3,k ∈ZC.⎩⎨⎧⎭⎬⎫α|α=k π-2π3,k ∈Z D.⎩⎨⎧⎭⎬⎫α|α=k π-π3,k ∈Z 解析:选D.因为直线y =-3x 的倾斜角是2π3,所以终边落在直线y =-3x 上的角的取值集合为{α|α=k π-π3,k ∈Z }.3.(多选)关于角度,下列说法正确的是( ) A .时钟经过两个小时,时针转过的角度是60° B .钝角大于锐角C .三角形的内角必是第一或第二象限角D .若α是第二象限角,则α2是第一或第三象限角解析:选BD.对于A ,时钟经过两个小时,时针转过的角是-60°,故错误; 对于B ,钝角一定大于锐角,显然正确;对于C ,若三角形的内角为90°,则是终边在y 轴正半轴上的角,故错误; 对于D ,因为角α的终边在第二象限,所以2k π+π2<α<2k π+π,k ∈Z , 所以k π+π4<α2<k π+π2,k ∈Z .当k =2n ,n ∈Z 时,2n π+π4<α2<2n π+π2,n ∈Z ,得α2是第一象限角; 当k =2n +1,n ∈Z 时,(2n +1)π+π4<α2<(2n +1)π+π2,n ∈Z ,得α2是第三角限角,故正确.4.(多选)(2020·山东师范大学附属中学第三次月考)在平面直角坐标系xOy 中,角α的顶点在原点O ,以x 正半轴为始边,终边经过点P (1,m )(m <0),则下列各式的值恒大于0的是( )A.sin αtan α B .cos α-sin α C .sin αcos αD .sin α+cos α解析:选AB.由题意知sin α<0,cos α>0,tan α<0. 选项A ,sin αtan α>0;选项B ,cos α-sin α>0;选项C ,sin αcos α<0;选项D ,sin α+cos α符号不确定.故选AB. 5.已知点P (sin x -cos x ,-3)在第三象限,则x 的可能区间是( ) A.⎝ ⎛⎭⎪⎫π2,π B.⎝ ⎛⎭⎪⎫-π4,3π4 C.⎝ ⎛⎭⎪⎫-π2,π2 D.⎝ ⎛⎭⎪⎫-3π4,π4 解析:选D.由点P (sin x -cos x ,-3)在第三象限,可得sin x -cos x <0,即sin x <cos x ,所以-3π4+2k π<x <π4+2k π,k ∈Z .当k =0时,x 所在的一个区间是⎝ ⎛⎭⎪⎫-3π4,π4. 6.已知扇形的圆心角为π6,面积为π3,则扇形的弧长等于________. 解析:设扇形半径为r ,弧长为l , 则⎩⎪⎨⎪⎧l r =π6,12lr =π3,解得⎩⎪⎨⎪⎧l =π3,r =2.答案:π37.函数y =2sin x -1的定义域为________. 解析:因为2sin x -1≥0,所以sin x ≥12.由三角函数线画出x 满足条件的终边范围(如图中阴影部分所示).所以x ∈⎣⎢⎡⎦⎥⎤2k π+π6,2k π+5π6(k ∈Z ).答案:⎣⎢⎡⎦⎥⎤2k π+π6,2k π+5π6(k ∈Z )8.已知点P (sin θ,cos θ)是角α终边上的一点,其中θ=2π3,则与角α终边相同的最小正角为________.解析:因为θ=2π3,故P ⎝ ⎛⎭⎪⎫32,-12,故α为第四象限角且cos α=32,所以α=2k π+11π6,k ∈Z ,所以与角α终边相同的最小正角为11π6.答案:11π69.已知角α是第三象限角,试判断:(1)π-α是第几象限角?(2)α2是第几象限角?(3)2α是第几象限角?解:(1)因为α是第三象限角, 所以2k π+π<α<2k π+3π2,k ∈Z . 所以-2k π-π2<π-α<-2k π,k ∈Z . 所以π-α是第四象限角. (2)因为k π+π2<α2<k π+3π4,k ∈Z . 所以α2是第二或第四象限角.(3)因为4k π+2π<2α<4k π+3π,k ∈Z ,所以2α是第一或第二象限角或y 轴非负半轴上的角.10.如图,在平面直角坐标系xOy 中,角α的始边与x 轴的非负半轴重合且与单位圆相交于A 点,它的终边与单位圆相交于x 轴上方一点B ,始边不动,终边在运动.(1)若点B 的横坐标为-45,求tan α的值;(2)若△AOB 为等边三角形,写出与角α终边相同的角β的集合. 解:(1)由题意可得B ⎝ ⎛⎭⎪⎫-45,35,根据三角函数的定义得tan α=y x =-34. (2)若△AOB 为等边三角形,则∠AOB =π3, 故与角α终边相同的角β的集合为⎩⎨⎧⎭⎬⎫β⎪⎪⎪β=π3+2k π,k ∈Z .[B 级 综合练]11.(多选)已知角α的终边过点P (-4m ,3m )(m ≠0),则2sin α+cos α的值可能是( )A .1B .25C .-25D .-1解析:选BC.因为角α的终边过点P (-4m ,3m )(m ≠0),所以r =(-4m )2+(3m )2=5|m |,所以sin α=y r =3m 5|m |,cos α=x r =-4m5|m |. ①当m >0时,sin α=3m 5m =35,cos α=-4m 5m =-45,2sin α+cos α=2×35-45=25; ②当m <0时,sin α=3m -5m =-35,cos α=-4m -5m=45,2sin α+cos α=2×⎝ ⎛⎭⎪⎫-35+45=-25.综上知,2sin α+cos α的值可能是25或-25.故答案为BC.12.(2020·四川乐山、峨眉山二模)《九章算术》是我国古代数学成就的杰出代表作,其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积=12(弦×矢+矢2),弧田由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”指半径长与圆心到弦的距离之差.现有圆心角为2π3,半径长为4的弧田(如图所示),按照上述公式计算出弧田的面积为________.解析:由题意可得∠AOB =2π3,OA =4.在Rt △AOD 中,易得∠AOD =π3,∠DAO =π6,OD =12OA =12×4=2,可得矢=4-2=2.由AD =AO sin π3=4×32=23,可得弦AB =2AD =4 3.所以弧田面积=12(弦×矢+矢2)=12×(43×2+22)=43+2.答案:43+213.已知1|sin α|=-1sin α,且lg(cos α)有意义. (1)试判断角α所在的象限;(2)若角α的终边上一点M ⎝ ⎛⎭⎪⎫35,m ,且|OM |=1(O 为坐标原点),求m 的值及sin α的值.解:(1)由1|sin α|=-1sin α,得sin α<0, 由lg(cos α)有意义,可知cos α>0,所以α是第四象限角.(2)因为|OM |=1,所以⎝ ⎛⎭⎪⎫352+m 2=1,解得m =±45. 又α为第四象限角,故m <0,从而m =-45, sin α=y r =m |OM |=-451=-45.14.若角θ的终边过点P (-4a ,3a )(a ≠0). (1)求sin θ+cos θ的值;(2)试判断cos(sin θ)·sin(cos θ)的符号.解:(1)因为角θ的终边过点P (-4a ,3a )(a ≠0), 所以x =-4a ,y =3a ,r =5|a |, 当a >0时,r =5a ,sin θ+cos θ=-15. 当a <0时,r =-5a ,sin θ+cos θ=15. (2)当a >0时,sin θ=35∈⎝ ⎛⎭⎪⎫0,π2,cos θ=-45∈⎝ ⎛⎭⎪⎫-π2,0,则cos(sin θ)·sin(cos θ) =cos 35·sin ⎝ ⎛⎭⎪⎫-45<0;当a <0时,sin θ=-35∈⎝ ⎛⎭⎪⎫-π2,0,cos θ=45∈⎝ ⎛⎭⎪⎫0,π2,则cos(sin θ)·sin(cos θ) =cos ⎝ ⎛⎭⎪⎫-35·sin 45>0.综上,当a >0时,cos(sin θ)·sin(cos θ)的符号为负;当a <0时,cos(sin θ)·sin (cos θ)的符号为正.[C 级 创新练]15.(2020·开封市模拟考试)在平面直角坐标系xOy 中,角α与角β均以Ox为始边,它们的终边关于y 轴对称.若sin α=13,则cos(α-β)=( )A .-1B .-79C .429D .79解析:选B.因为角α与角β均以Ox 为始边,且它们的终边关于y 轴对称,所以β=π-α+2k π,k ∈Z ,则cos(α-β)=cos(α-π+α-2k π)=cos(2α-π)=cos(π-2α)=-cos 2α,又sin α=13,所以cos 2α=1-2sin 2α=79,所以cos(α-β)=-79,故选B.16.已知圆O 与直线l 相切于点A ,点P ,Q 同时从A 点出发,P 沿着直线l 向右运动,Q 沿着圆周按逆时针方向以相同的速度运动,当Q 运动到点A 时,点P 也停止运动,连接OQ ,OP (如图),则阴影部分面积S 1,S 2的大小关系是________.解析:设运动速度为m ,运动时间为t ,圆O 的半径为r , 则AQ ︵=AP =tm ,根据切线的性质知OA ⊥AP , 所以S 1=12tm ·r -S 扇形AOB ,S 2=12tm ·r -S 扇形AOB , 所以S 1=S 2恒成立. 答案:S 1=S 2第1讲任意角和弧度制及任意角的三角函数最新考纲考向预测1.了解任意角的概念和弧度制.2.能进行弧度与角度的互化,体会引入弧度制的必要性.3.借助单位圆理解任意角的三角函数(正弦、余弦、正切)的定义. 命题趋势本部分内容高考较少直接考查,而是与三角函数的恒等变换、三角函数的图象与性质结合考查,难度较小.核心素养数学建模、数学抽象1.任意角的概念(1)定义:角可以看成平面内的一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)角的分类按旋转方向正角按逆时针方向旋转而成的角负角按顺时针方向旋转而成的角零角射线没有旋转按终边位置前提:角的顶点在原点,始边与x轴的非负半轴重合象限角角的终边在第几象限,这个角就是第几象限角其他角的终边落在坐标轴上集合S={β|β=α+k·360°,k∈Z}.2.弧度制(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad.(2)公式角α的弧度数公式|α|=l r角度与弧度的换算1°=π180rad,1 rad=⎝⎛⎭⎪⎫180π°≈57°18′弧长公式l=α·r扇形面积公式S=12l·r=12α·r23.任意角的三角函数三角函数正弦余弦正切定义设α是一个任意角,它的终边与单位圆交于点P(x,y),那么y叫做α的正弦,记作sin αx叫做α的余弦,记作cos αyx叫做α的正切,记作tan α各象限符号Ⅰ正正正Ⅱ正负负Ⅲ负负正Ⅳ负正负口诀一全正,二正弦,三正切,四余弦4.三角函数线用单位圆中的有向线段表示三角函数.如图:sin α=MP,cos α=OM,tan α=AT.常用结论 1.象限角2.轴线角3.三角函数定义的推广设点P (x ,y )是角α终边上任意一点且不与原点重合,r =|OP |,则sin α=yr ,cos α=x r ,tan α=yx .常见误区1.相等的角终边一定相同,但终边相同的角却不一定相等. 2.在同一个式子中,不能同时出现角度制与弧度制.3.已知三角函数值的符号求角的终边位置时,不要遗忘终边在坐标轴上的情况.4.利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.1.判断正误(正确的打“√”,错误的打“×”)(1)锐角是第一象限的角,第一象限的角也都是锐角.( ) (2)角α的三角函数值与其终边上点P 的位置无关.( ) (3)不相等的角终边一定不相同.( ) (4)终边相同的角的同一三角函数值相等.( ) (5)若α∈⎝ ⎛⎭⎪⎫0,π2,则tan α>sin α.( )(6)若α为第一象限角,则sin α+cos α>1.( ) 答案:(1)× (2)√ (3)× (4)√ (5)√ (6)√2.(多选)下列与角2π3的终边相同的角是()A.14π3B.2kπ-2π3(k∈Z)C.2kπ+2π3(k∈Z) D.(2k+1)π+2π3(k∈Z)解析:选AC.与角2π3的终边相同的角为2kπ+2π3(k∈Z),k=2时,4π+2π3=143π.3.若sin α<0,且tan α>0,则α是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角解析:选C.由sin α<0知α的终边在第三、第四象限或y轴的非正半轴上;由tan α>0知α的终边在第一或第三象限,故α是第三象限角.故选C.4.一条弦长等于半径,则此弦所对圆心角的弧度数为________rad.解析:因为弦长等于半径,所以弦和与弦两端点相交的两条半径构成等边三角形,所以弦所对的圆心角为60°,即为π3rad.答案:π35.已知角α的终边过点P(-4,3),则2sin α+tan α的值为________.解析:因为角α的终边经过点P(-4,3),所以r=|OP|=5.所以sin α=35,cos α=-45,tan α=-34.所以2sin α+tan α=2×35+⎝⎛⎭⎪⎫-34=920.答案:920象限角及终边相同的角[题组练透]1.把-114π表示成θ+2k π(k ∈Z )的形式,使|θ|最小的θ值是( ) A .-3π4 B .-π4 C.π4 D.3π4解析:选 A.因为-11π4=-2π-3π4,所以-11π4与-3π4是终边相同的角,且此时⎪⎪⎪⎪⎪⎪-3π4=3π4是最小的.2.集合⎩⎨⎧⎭⎬⎫α⎪⎪⎪k π+π4≤α≤k π+π2,k ∈Z 中的角所表示的范围(阴影部分)是( )解析:选C.当k =2n (n ∈Z )时,2n π+π4≤α≤2n π+π2,此时α表示的范围与π4≤α≤π2表示的范围一样;当k =2n +1(n ∈Z )时,2n π+π+π4≤α≤2n π+π+π2,此时α表示的范围与π+π4≤α≤π+π2表示的范围一样,故选C.3.(多选)已知角2α的终边在x 轴的上方,那么角α可能是( ) A .第一象限角 B .第二象限角 C .第三象限角D .第四象限角解析:选AC.因为角2α的终边在x 轴的上方,所以k ·360°<2α<k ·360°+180°,k ∈Z ,则有k ·180°<α<k ·180°+90°,k ∈Z .故当k =2n ,n ∈Z 时,n ·360°<α<n ·360°+90°,n ∈Z ,α为第一象限角; 当k =2n +1,n ∈Z 时,n ·360°+180°<α<n ·360°+270°,n ∈Z ,α为第三角限角.故选AC.4.在-720°~0°范围内所有与45°终边相同的角为________. 解析:所有与45°终边相同的角可表示为 β=45°+k ×360°(k ∈Z ).令-720°≤45°+k ×360°<0°(k ∈Z ), 得-765°≤k ×360°<-45°(k ∈Z ),解得-765360≤k<-45360(k∈Z),从而k=-2和k=-1,代入得β=-675°和β=-315°. 答案:-675°和-315°(1)象限角的2种判断方法图象法在平面直角坐标系中,作出已知角并根据象限角的定义直接判断已知角是第几象限角转化法先将已知角化为k·360°+α(0°≤α<360°,k∈Z)的形式,即找出与已知角终边相同的角α,再由角α终边所在的象限判断已知角是第几象限角(2)求θn或nθ(n∈N*)所在象限的步骤①将θ的范围用不等式(含有k,且k∈Z)表示;②两边同除以n或乘以n;③对k进行讨论,得到θn或nθ(n∈N*)所在的象限.[注意]注意“顺转减,逆转加”的应用,如角α的终边逆时针旋转180°可得角α+180°的终边,类推可知α+k·180°(k∈Z)表示终边落在角α的终边所在直线上的角.扇形的弧长及面积公式已知扇形的圆心角是α,半径为R,弧长为l.(1)若α=60°,R=10 cm,求扇形的弧长l;(2)若扇形的周长为20 cm,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?【解】(1)α=60°=π3,l=10×π3=10π3(cm).(2)由已知得,l+2R=20,则l=20-2R,0<R<10,所以扇形的面积S=12lR=12(20-2R)R=10R-R2=-(R-5)2+25,所以当R=5时,S取得最大值最大值为25 cm2,此时l=10 cm,α=2 rad.弧长、扇形面积问题的解题策略(1)明确弧度制下弧长公式l =|α|r ,扇形的面积公式是S =12lr =12|α|r 2(其中l 是扇形的弧长,α是扇形的圆心角).(2)求扇形面积的关键是求扇形的圆心角、半径、弧长三个量中的任意两个量.[提醒] 运用弧度制下有关弧长、扇形面积公式的前提是角的度量单位为弧度.1.(多选)已知扇形的周长是6 cm ,面积是2 cm 2,则下列选项正确的有( ) A .扇形的半径为2 B .扇形的半径为1 C .圆心角的弧度数是1D .圆心角的弧度数是2解析:选ABC.设扇形半径为r ,圆心角的弧度数为α,则由题意得⎩⎪⎨⎪⎧2r +αr =6,12αr 2=2,解得⎩⎨⎧r =1,α=4或⎩⎨⎧r =2,α=1,可得圆心角的弧度数是4或1,扇形的半径是1或2.2.一扇形是从一个圆中剪下的一部分,半径等于圆半径的23,面积等于圆面积的527,则扇形的弧长与圆周长之比为________.解析:设圆的半径为r ,则扇形的半径为2r3,记扇形的圆心角为α,则12α⎝ ⎛⎭⎪⎫2r 32πr 2=527,所以α=5π6.所以扇形的弧长与圆周长之比为l C =5π6·2r 32πr =518. 答案:518三角函数的定义 角度一 利用三角函数的定义求值(1)已知点M ⎝ ⎛⎭⎪⎫13,a 在函数y =log 3x 的图象上,且角θ的终边所在的直线过点M ,则tan θ=( )A .-13B .±13 C .-3 D .±3(2)若角α的终边落在直线y =3x 上,角β的终边与单位圆交于点⎝ ⎛⎭⎪⎫12,m ,且sin α cos β<0,则cos α cos β=________.【解析】 (1)因为点M ⎝ ⎛⎭⎪⎫13,a 在函数y =log 3x 的图象上,所以a =log 313=-1,即M ⎝ ⎛⎭⎪⎫13,-1,所以tan θ=-113=-3. (2)由角β的终边与单位圆交于点⎝ ⎛⎭⎪⎫12,m ,得cos β=12,又由sin α cos β<0知,sin α<0,因为角α的终边落在直线y =3x 上,所以角α只能是第三象限角.记P 为角α的终边与单位圆的交点,设P (x ,y )(x <0,y <0),则|OP |=1(O 为坐标原点),即x 2+y 2=1,又由y =3x 得x =-12,y =-32,所以cos α=x =-12,则cos αcos β=-14.【答案】 (1)C (2)-14三角函数定义问题的解题策略(1)已知角α终边上一点P 的坐标,可求角α的三角函数值.先求P 到原点的距离,再用三角函数的定义求解.(2)已知角α的某三角函数值,可求角α终边上一点P 的坐标中的参数值,可根据定义中的两个量列方程求参数值.(3)已知角α的终边所在的直线方程或角α的大小,根据三角函数的定义可求角α终边上某特定点的坐标.角度二 判断三角函数值的符号(2020·高考全国卷Ⅱ)若α为第四象限角,则( ) A .cos 2α>0B .cos 2α<0C .sin 2α>0D .sin 2α<0【解析】 通解:由题意,知-π2+2k π<α<2k π(k ∈Z ),所以-π+4k π<2α<4k π(k ∈Z ),所以cos 2α≤0或cos 2α>0,sin 2α<0,故选D.优解:当α=-π4时,cos 2α=0,sin 2α=-1,排除A ,B ,C ,故选D. 【答案】 D三角函数值符号的判断方法要判定三角函数值的符号,关键是要搞清三角函数中的角是第几象限角,再根据正、余弦函数值在各象限的符号确定值的符号.如果不能确定角所在的象限,那就要进行分类讨论求解.角度三 三角函数线的应用函数y =lg(3-4sin 2 x )的定义域为________.【解析】 因为3-4sin 2x >0,所以sin 2x <34,所以-32<sin x <32.利用三角函数线画出x 满足条件的终边范围(如图中阴影部分所示),所以x ∈⎝ ⎛⎭⎪⎫k π-π3,k π+π3(k ∈Z ).【答案】 ⎝ ⎛⎭⎪⎫k π-π3,k π+π3(k ∈Z )三角函数线三角函数线是三角函数的几何表示,正弦线、正切线的方向同纵轴一致,向上为正,向下为负;余弦线的方向同横轴一致,向右为正,向左为负.1.下列各选项中正确的是( ) A .sin 300°>0B .cos(-305°)<0C .tan ⎝ ⎛⎭⎪⎫-22π3>0D .sin 10<0解析:选D.300°=360°-60°,则300°是第四象限角,故sin 300°<0;-305°=-360°+55°,则-305°是第一象限角,故cos(-305°)>0;-22π3=-8π+2π3,则-22π3是第二象限角,故tan ⎝ ⎛⎭⎪⎫-22π3<0;3π<10<7π2,则10是第三象限角,故sin10<0,故选D.2.已知角β的顶点与坐标原点重合,始边与x 轴的非负半轴重合,终边上有一点P (-4,a ),且sin β cos β=34,则a 的值为( )A .4 3B .±4 3C .-43或-43 3D . 3解析:选 C.因为点P (-4,a )在角β的终边上且sin βcos β=34,所以-4a (-4)2+a 2=34.解得a =-43或a =-43 3.故选C. 3.若角α的终边落在直线y =-x 上,则sin α|cos α|+|sin α|cos α=________. 解析:因为角α的终边落在直线y =-x 上,所以角α的终边位于第二或第四象限.当角α的终边位于第二象限时,sin α|cos α|+|sin α|cos α=sin α-cos α+sin αcos α=0;当角α的终边位于第四象限时,sin α|cos α|+|sin α|cos α=sin αcos α+-sin αcos α=0.所以sin α|cos α|+|sin α|cos α=0.答案:0[A 级 基础练]1.已知角α的始边与x 轴的正半轴重合,顶点在坐标原点,角α终边上的一点P 到原点的距离为2,若α=π4,则点P 的坐标为( )A .(1,2)B .(2,1)C .(2,2)D .(1,1)解析:选D.设点P 的坐标为(x ,y ), 则由三角函数的定义得⎩⎪⎨⎪⎧sin π4=y 2,cos π4=x 2,即⎩⎪⎨⎪⎧x =2cos π4=1,y =2sin π4=1.故点P 的坐标为(1,1).2.若角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边在直线y =-3x 上,则角α的取值集合是( )A.⎩⎨⎧⎭⎬⎫α|α=2k π-π3,k ∈ZB.⎩⎨⎧⎭⎬⎫α|α=2k π+2π3,k ∈ZC.⎩⎨⎧⎭⎬⎫α|α=k π-2π3,k ∈Z D.⎩⎨⎧⎭⎬⎫α|α=k π-π3,k ∈Z 解析:选D.因为直线y =-3x 的倾斜角是2π3,所以终边落在直线y =-3x 上的角的取值集合为{α|α=k π-π3,k ∈Z }.3.(多选)关于角度,下列说法正确的是( ) A .时钟经过两个小时,时针转过的角度是60° B .钝角大于锐角C .三角形的内角必是第一或第二象限角D .若α是第二象限角,则α2是第一或第三象限角解析:选BD.对于A ,时钟经过两个小时,时针转过的角是-60°,故错误; 对于B ,钝角一定大于锐角,显然正确;对于C ,若三角形的内角为90°,则是终边在y 轴正半轴上的角,故错误; 对于D ,因为角α的终边在第二象限,所以2k π+π2<α<2k π+π,k ∈Z , 所以k π+π4<α2<k π+π2,k ∈Z .当k =2n ,n ∈Z 时,2n π+π4<α2<2n π+π2,n ∈Z ,得α2是第一象限角; 当k =2n +1,n ∈Z 时,(2n +1)π+π4<α2<(2n +1)π+π2,n ∈Z ,得α2是第三角限角,故正确.4.(多选)(2020·山东师范大学附属中学第三次月考)在平面直角坐标系xOy 中,角α的顶点在原点O ,以x 正半轴为始边,终边经过点P (1,m )(m <0),则下列各式的值恒大于0的是( )A.sin αtan α B .cos α-sin α C .sin αcos αD .sin α+cos α解析:选AB.由题意知sin α<0,cos α>0,tan α<0. 选项A ,sin αtan α>0;选项B ,cos α-sin α>0;选项C ,sin αcos α<0;选项D ,sin α+cos α符号不确定.故选AB. 5.已知点P (sin x -cos x ,-3)在第三象限,则x 的可能区间是( ) A.⎝ ⎛⎭⎪⎫π2,π B.⎝ ⎛⎭⎪⎫-π4,3π4 C.⎝ ⎛⎭⎪⎫-π2,π2 D.⎝ ⎛⎭⎪⎫-3π4,π4 解析:选D.由点P (sin x -cos x ,-3)在第三象限,可得sin x -cos x <0,即sin x <cos x ,所以-3π4+2k π<x <π4+2k π,k ∈Z .当k =0时,x 所在的一个区间是⎝ ⎛⎭⎪⎫-3π4,π4. 6.已知扇形的圆心角为π6,面积为π3,则扇形的弧长等于________. 解析:设扇形半径为r ,弧长为l , 则⎩⎪⎨⎪⎧l r =π6,12lr =π3,解得⎩⎪⎨⎪⎧l =π3,r =2.答案:π37.函数y =2sin x -1的定义域为________. 解析:因为2sin x -1≥0,所以sin x ≥12.由三角函数线画出x 满足条件的终边范围(如图中阴影部分所示).所以x ∈⎣⎢⎡⎦⎥⎤2k π+π6,2k π+5π6(k ∈Z ).答案:⎣⎢⎡⎦⎥⎤2k π+π6,2k π+5π6(k ∈Z )8.已知点P (sin θ,cos θ)是角α终边上的一点,其中θ=2π3,则与角α终边相同的最小正角为________.解析:因为θ=2π3,故P ⎝ ⎛⎭⎪⎫32,-12,故α为第四象限角且cos α=32,所以α=2k π+11π6,k ∈Z ,所以与角α终边相同的最小正角为11π6.答案:11π69.已知角α是第三象限角,试判断:(1)π-α是第几象限角?(2)α2是第几象限角?(3)2α是第几象限角?解:(1)因为α是第三象限角, 所以2k π+π<α<2k π+3π2,k ∈Z . 所以-2k π-π2<π-α<-2k π,k ∈Z . 所以π-α是第四象限角. (2)因为k π+π2<α2<k π+3π4,k ∈Z . 所以α2是第二或第四象限角.。

角的概念与弧度制及任意角的三角函数

角的概念与弧度制及任意角的三角函数

积化和差公式
sinαsinβ=-[cos(α+β)-cos(α-β)]/2, cosαcosβ=[cos(α+β)+cos(α-β)]/2, sinαcosβ=[sin(α+β)+sin(α-β)]/2, cosαsinβ=[sin(α+β)-sin(α-β)]/2。
VS
和差化积公式
sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2], sinθ-sinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2], cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2], cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2]。
02
弧度制及其运算
弧度制的定义与性质
弧度制的定义
弧长等于半径的弧,其所对的圆心角为1弧度。即两条射线从圆心向圆周射出,形成一个夹角和夹角正对的一段 弧。当这段弧长正好等于圆的半径时,两条射线的夹角的弧度为1。
弧度制的性质
在弧度制下,角的度量单位是弧度,弧长等于半径的弧所对的圆心角叫做1弧度的角,记作1 rad。长度等于半径 长的圆弧所对的圆心角叫做1弧度的角。
角的概念与弧度制及 任意角的三角函数
目录
• 角的概念与分类 • 弧度制及其运算 • 任意角的三角函数 • 三角函数的图像与性质 • 三角函数的诱导公式与和差公式 • 三角函数的应用举例
01
角的概念与分类
角的定义及表示方法
角的定义
角是由两条射线共享一个端点而形成的几何图形,这个共享的端点称为角的顶 点,两条射线称为角的边。
sinx+siny=2sin((x+y)/2)cos((x -y)/2),sinxsiny=2cos((x+y)/2)sin((xy)/2), cosx+cosy=2cos((x+y)/2)cos( (x-y)/2),cosx-cosy=2sin((x+y)/2)sin((x-y)/2)。

必修4第一章任意角的概念与弧度制,三角函数定义

必修4第一章任意角的概念与弧度制,三角函数定义

角的概念的推广一、考点突破1. 掌握用“旋转”定义角的概念,理解并掌握“正角”“负角”“象限角”“终边相同的角”的含义;2. 掌握所有与α角终边相同的角(包括α角)的表示方法;3. 体会运动变化观点,深刻理解推广后的角的概念。

二、重难点提示重点:掌握用“旋转”定义角的概念,并进而理解“正角”“负角”“象限角”“终边相同的角”的含义。

难点:终边相同的角、第几象限角的表示。

1. 角的概念的推广:一条射线由原来位置OA,绕着它的端点O 点,可以向两个方向旋转:按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,未作任何旋转时,也看作一个角,叫零角。

这样就形成了任意大小的角。

2. 记法与运算: (1)记法:射线OA 绕O 点旋转到OB 所成的角记作∠AOB ; 射线OB 绕O 点旋转到OA 所成的角记作∠BOA ; (2)运算:各角和的旋转量等于各角旋转量的和:射线OA 绕点O 旋转到OB ,又从OB 旋转到OC ,得到∠AOC ,这个过程可表示成角的运算:∠AOC=∠AOB+∠BOC 。

3. 终边相同的角:与α终边相同的角的集合:},360|{Z k k ∈︒⨯+=αββ。

4. 象限角:角的顶点与坐标原点重合,始边与x 轴正半轴重合,此时终边在第几象限,则称这个角是第几象限角。

例题1 射线OA 绕点A 顺时针旋转80°到OB ,再逆时针旋转300°到OC ,再顺时针旋转100°到OD 位置,求AOD ∠的大小。

思路分析:利用正负角的概念结合角的运算求解。

答案:解:AOD ∠=AOB ∠+BOC ∠+COD ∠=︒=︒-+︒+︒-120)100(300)80(。

例题2 在 0~360之间,找出下列终边相同的角,并判定它们是第几象限角: (1)︒-150;(2)︒650;(3)'︒-15950。

思路分析:把负角逆时针旋转一周或者几周,即可得到 0~ 360之间的角,把超过 360 的角顺时针旋转一周或者几周,即可得到 0~ 360之间的角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
α α α cos =-cos ,则角 属于 2 2 2
(2)设角α属于第三象限,且 ( )
A.第一象限 C.第三象限
B.第二象限 D.第四象限
高考总复习•数学(文科) 解析:(1)由已知得,
解得α∈
.故选D.
(2)由α是第三象限角,得2kπ+π<α<2kπ+ (k∈Z),则 kπ+ <kπ+ (k∈Z).
由于k∈Z,从而k=-2或k=-1,
高考总复习•数学(文科) 代回得角β=-675°或角β=-315°. (2)因为M={x|x=(2k+1)×45°,k∈Z} 表示的是终 边落在四个象限的平分线上的角的集合,集合N = {x|x =
(k + 1)×45°, k∈Z} 表示终边落在坐标轴或四个象限平
的取值范围,再根据范围确定其所在象限.此外本题也可用 几何法来确定 , 所在的象限.
高考总复习•数学(文科)
自主解答:
解析:(1)①因为角α是第二象限角, 所以k×360°+90°<α<k×360°+180°(k∈Z),
则 k×180°+45°< +90°(n∈Z), 可知
<k×180°+90°(k∈Z).
函数值sin α,cos α,tan α. (2)已知角α的顶点在原点,始边与x轴的非负半轴重合,终边为 射线4x+3y=0(x>0),求sin α +cos2α的值.
解析:(1)因为角α的终边过点(a,2a)(a≠0), 所以x=a,y=2a,r= ①当a>0时,sin α= cos α= ,tan α= =2 ; |a|. ,
分线上的角的集合,因此M 形式,应注意: N. 点评: 与角 α 终边相同的角可以表示为 β = 2kπ + α(k∈Z) 的
(1)α是任意角;
(2)相等的角终边一定相同,终边相同的角不一定相等; (3)角度制与弧度制不能混用.
高考总复习•数学(文科)
变式探究
1.若角α和角β的终边关于x轴对称,则角α可以用角β表 示为( )

S扇= αR2= α2 当且仅当α=


时,即α=2(α=-2舍去)时,扇形的面积有最
大值为
.
高考总复习•数学(文科) 点评:(1)弧长公式l=|α|R,面积公式S= lR= |α|R2,其
中α必须是弧度制单位,而S=
lR类似于三角形的面积公式,
弧长相当于三角形的底、半径相当于三角形的高; (2)扇形的圆心角θ、半径R、弧长l、面积S之间有下列比例 关系: .
Ⅲ象限的符号所表示的区域即为 的终边所在的区域.
由图可知, 是第一或第三或第四象限角.
高考总复习•数学(文科) 点评:(1)已知角α的范围或所在的象限,求 所在的象限是
常考题型之一,一般解法有直接法和几何法.
若α是第k(k取1,2,3,4之一)象限的角,利用单位圆判断 (n∈N*)
是第几象限角的方法:把单位圆上每
高考总复习•数学(文科)
②当a<0时,sin α=
cos α= 综上所述,sin α=± =2. ,cos α=± ,tan α=2.
(2)在射线4x+3y=0上取一点P(3,-4),则r=5,依三角函数 的定义有sin α=- (法一)∴sin α = (法二)sin α =sin2α+sin α· . +cos2α +cos2α=1+cos α= . ,cos α= ,tan α=- ,
个象限的圆弧n等分,并从x轴正半轴 开始,沿逆时针方向依次在每个区域 标上1,2,3,4,再循环,直到填满为止,
高考总复习•数学(文科) 则有标号k的区域就是角 (n∈N*)终边所在的范围.
如:k=2,则角 是第一或第二或第四象限角.上图中标有
号码2的区域就是 终边所在位置.
(2) 确定角所在的象限是确定函数值符号的关键,故必
当k=2n(n∈Z)时,θ在第一象限,
当k=2n+1(n∈Z)时,θ在第三象限,
故θ在第一或第三象限.
(法三)若令θ= 代入sin θcos θ>0,可以验证知,
只有θ=
,满足条件,所以θ在第一或第三象限.
高考总复习•数学(文科)
点评: (1) 单位圆中的三角函数线是实现数形结合的
重要工具,利用单位圆中的三角函数线可以研究同角三 角函数关系、诱导公式以及三角函数的图象,要注意三
A.2kπ+β(k∈Z)
C.kπ+β(k∈Z)
B.2kπ-β(k∈Z)
D.kπ-β(k∈Z)
解析: 因为角 α 和角 β 的终边关于 x 轴对称,所以 α + β =2 kπ(k∈Z).所以α=2 kπ-β(k∈Z). 答案:B
高考总复习•数学(文科) 象限角的确定 【例2】 (1)若角α是第二象限角,则:① 是第几象限角? 是第几象限
高考总复习•数学(文科) 变式探究
3.已知一扇形的面积为定值S,当圆心角α为多少弧度时,
该扇形的周长C有最小值?并求出最小值.
解析:因为S=
R≥
Rl , 所 以 Rl = 2S , 所 以 周 长 C = l + 2
, , .
当且仅当l=2 R时,C=
所以当α= =2时,周长C有最小值
高考总复习•数学(文科) 利用定义求三角函数值 【例4】 (1) 已知角 α 的终边过点 (a,2a)(a≠0) ,求 α 的三角
,x=- ,
.
∴cosm=- 时,r=2 ,x=- ,
∴cos α=
,tan α=
.
高考总复习•数学(文科) 根据三角函数值的符号确定角所处象限 取值范围 【例5】 若sin θcos θ>0,试确定角θ所在的象限. 思路点拨:(1)首先确定sin θ与cos θ的符号,再判断θ所 在的象限. (2)先化简关系式再确定θ的范围.
根据整数k的奇偶性可知, 是第二或第四象限角,再由cos
≤0可得,
只能是第二象限角.故选B.
答案:(1)D (2)B
(2)若扇形的周长是一定值C(C>0),当α为多少弧度时,该
扇形的面积有最大值?并求出这个最大值. 解析:(1)设弧长为l,弓形面积为S弓, 因为α=60°= ,R=10 cm,所以l= cm,
S弓=S扇-SΔ= ×10×
- ×100×sin 60°=50
cm2.
高考总复习•数学(文科)
(2)因为C=2R+l=2R+αR,所以R=
(3) 因判断 θ所在的象限,故本题可以用特殊值 ( 各个象
限各取一个)来判断.
高考总复习•数学(文科) 解析:(法一)由sin θcos θ>0知 由上可知θ在第一或第三象限. (法二)由 sin θcos θ>0有sin 2θ>0,即sin 2θ>0, 所以2kπ<2θ<2kπ+π⇒kπ<θ<kπ+ 或
须掌握已知角α的范围,求与α有运算关系的角的范围这一
类问题的解法.
高考总复习•数学(文科) 变式探究 2 . (2014· 黑龙江双鸭山一中第一次月考 ) 若 α = k· 180° +45°(k∈Z) ,则α的终边在( A.第一或第三象限 )
B.第一或第二象限
C.第二或第四象限 D.第三或第四象限
高考总复习•数学(文科)
解析: k 为偶数时,角 α的终边在第一象限, k 为奇数时, 角α的终边在第三象限,故选A. 答案:A
高考总复习•数学(文科) 扇形弧长、面积的计算
【例3】 已知一扇形的中心角是α,所在圆的半径是R.
(1)若α=60°,R=10 cm,求扇形的弧长及该弧所在的弓 形的面积;
高考总复习•数学(文科) 变式探究 4.已知角α的终边上一点P(- cos α,tan α的值. 解析:由题设知x=- ,y=m, ,m)(m≠0),且sin α= ,求
∴r2=|OP|2=(-
sin α=
)2+m2(O为原点),得r=

.从而
∴r=
当m= 时,r=2
,于是3+m2=8,解得m=±
高考总复习•数学(文科)
第三章
第一节 角的概念与弧度制及任意 角的三角函数
高考总复习•数学(文科)
终边相同的角的表示 【例1】 已知角α=45°, (1)在区间[-720°,0°]内找出所有与角α终边相同的角β.
(2)设集合M=

N=
,那么两集合的关系是什么?
高考总复习•数学(文科) 思路点拨:(1)从终边相同的角的表示入手分析问题,先
<n×360°
当k是偶数时,设k=2n(n∈Z),则n×360°+45°<
在第一象限;
当k是奇数时,设k=2n+1(n∈Z),则n×360°+225°< <n×360°+270°(n∈Z),可知 综上所述,若角α是第二象限角,则 角. 在第三象限. 是第一象限角或第三象限
高考总复习•数学(文科) ②因为 2k×360°+ 180°<2α<2k×360°+ 360°,可知角 2α 的终边应在第三象限或第四象限或y 轴的非正半轴上.
表示出所有与角α终边相同的角,然后列出一个关于k的不等
式,找出相应的整数k,代回求出所有角; (2)可对整数k的奇、偶数情况展开讨论. 自主解答: 解 析 : (1) 所 有 与 角 α 终 边 相 同 的 角 可 表 示 为 45° + k×360°(k∈Z),则令-720°≤45°+k×360°≤0°, 解得- ≤k≤- ,
角?②2α是第几象限角? (2)已知α是第三象限角,则
思路点拨:对于(1),由角α是第二象限角,可得到角α的
范围,即 k×360°+ 90°<α<k×360°+ 180°(k∈Z) ,进而 可得到 ,2α的取值范围,再根据范围确定其象限;对于(2),
同理由角 α 是第三象限角,可得到角 α 的范围,进而可得到
相关文档
最新文档