高中数学1.2.1几个常见函数的导数教案新人教版选修2_2
新人教A版高中数学(选修22)1.2.1《几种常见函数的导数》word教案
1.2.1 几种常见函数的导数
一、教学目标:熟记公式(C )¢=0 (C为常数),(x)¢=1,( x2 )¢=2x,
.
二、教学重点:牢固、准确地记住五种常见函数的导数,为求导数打下坚实的基础. 教学难点:灵活运用五种常见函数的导数.[来
三、教学过程:
(一)公式1:(C )¢=0 (C为常数).
证明:y=f(x)=C, Δy=f(x+Δx)-f(x)=C-C=0,
也就是说,常数函数的导数等于0.
公式2:函数的导数
证明:(略)
公式3:函数的导数
公式4:函数的导数
公式5:函数的导数
(二)举例分析
例1. 求下列函数的导数.
⑴⑵⑶
解:⑴
⑵
⑶
练习
求下列函数的导数:
⑴y=x5;⑵y=x6;(3)(4)(5)
例2.求曲线和在它们交点处的两条切线与x轴所围成的三角形的面积。
例3.已知曲线上有两点A(1,1),B(2,2)。
求:(1)割线AB的斜率;(2)在[1,1+△x]内的平均变化率;
(3)点A处的切线的斜率;(4)点A处的切线方程
例4.求抛物线y=x2上的点到直线x-y-2=0 的最短距离.
(三)课堂小结
几种常见函数的导数公式网]
(C )¢=0 (C为常数),(x)¢=1 ,( x 2 )¢=2x,.
(四)课后作业。
_高中数学第一章导数及其应用2
f(x)=1x
f ′(x)=-x12=-x-2
f(x)= x
f ′(x)=21 x=12x-12
f(x)=x3
f′(x)=3x2
结论:若f(x)=xα(α为有理数),则f′(x)=αxα-1.
1.y=c表示平行于x轴的直线,或与x轴重合的直线, 其斜率为0,故y=c上任一点处的导数值为____0____, 直线y=x的斜率为1,故直线y=x上任一点处的导数值 为___1_____.
[分析] 只需求出K、Q两点的横坐标即可.
[解析]
设P(x0,y0),则kl1=y′|x=x0=2
1 x0
.
∵直线l1与l2垂直,则kl2=-2 x0,
∴直线l2的方程为y-y0=-2 x0(x-x0).
∵点P(x0,y0)在曲线y= x上,∴y0= x0.
在直线l2的方程中令y=0,则- x0=-2 x0(x-x0).
2.当y=c表示路程关于时间的函数时,常数c表明路 程不变化,因此一直处于__静__止____状态,故瞬时速度 为___0_____,因此y′=____0____;
当y=x表示路程关于时间的函数时,路程的改变量等 于时间的改变量,因此物体做匀速直线运动,瞬时速 度为___1_____,故y′=____1____.
当P点不是切点时,设切点为A(x0,y0),由定义可求得切 线的斜率为k=3x20.
∵A在曲线上,∴y0=x30,∴xx300--82=3x20,
∴x30-3x20+4=0,∴(x0+1)(x0-2)2=0, ∴x0=-1或x0=2(舍去),∴y0=-1,k=3, 此时切线方程y+1=3(x+1),即3x-y+2=0. 故经过点P的曲线的切线有两条,方程为12x-y-16=0和 3x-y+2=0. [警示] 求曲线过点P的切线时,应注意检验点P是否在曲 线上,若点P在曲线上,应分P为切点和P不是切点讨论.
高中数学人教版选修2-2资料:1.2.1《几个常用函数的导数》导学案设计(学生版)
§1.2.1《几个常用函数的导数》导学案班级__________ 姓名___________, 组号________【学习目标】能够用导数的定义求几个常用函数的导数;利用导数解决简单的问题。
【学习重点】推导几个常用函数的导数;利用导数解决简单的问题。
【学习难点】推导几个常用函数的导数.【知识链接】:1、函数在一点处导数的定义及导数的几何意义。
2、求函数在一点处的导数的步骤:【教学过程】:知识点一: 利用定义求常数的导数1、函数y=()f x c =的导数=∆y = = 。
=∆∆xy 'y =)('x f =xy x ∆∆→∆0lim = = 若c y =表示路程关于时间的函数,则'y =0可以解释 ,即一直处于 。
知识点二: 利用定义求函数)0(≠=k kx y 导数2、函数y=)(x f =x 的导数=∆y = ==∆∆xy'y =)('x f =xy x ∆∆→∆0lim = = '1y =表示函数y x =图象上每一点处的切线的斜率都为1;若x y = 表示路程关于时间的函数,则'1y = 可以解释为【探究1】 在同一坐标系中,画出函数2y x =,3,4y x y x ==的图象,并由导数的定义求它们的导数。
(1)从图象上看,它们的导数分别表示什么?(2)这三个函数中,哪一个增加最快?哪一个增加最慢?(3)函数y kx = (0k ≠)增(减)的快慢与什么有关?知识点三: 利用定义求常见幂函数的导数3、函数y=)(x f =2x 的导数 =∆y = ==∆∆x y = 'y =)('x f =xy x ∆∆→∆0lim = = '2y x =表示函数2y x =图象上每点(x,y )处的切线的斜率为2x ,说明随着x 的变化,切线的斜率也在变化:(1) 当x<0时,随着 x 的增加,2y x =减少得越来越慢;(2)当x>0时,随着 x 的增加,2y x =增加得越来越快。
新湘教版高中数学选择性必修第二册1.2.1几个基本函数的导数
1
x2
则 =k,e =k,所以x1= ,x2=ln
x1
k
k,
1
k
可得直线y=kx与函数f(x)=ln x+a的切点为( ,1),
直线y=kx与函数g(x)=ex的切点为(ln k,k ln
1
ln + a = 1
k),∴ቐ k
,解得a=2.
eln k = k ln k
方法归纳
利用导数的几何意义解决切线问题的两种类型
x
2
(4)y=1-2sin .
(4)因为y=1-2sin2 =cosx,所以y′=-sin x.
2
x
2
方法归纳
利用导数公式求函数的导数的策略
巩固训练1
若f(x)=x3,g(x)=log3x,则f′(x)-g′(x)=________.
1
x ln 3
答案:3x2-
1
,
x ln 3
解析:∵f′(x)=2,g′(x)=
当x=0时,y=a-1,当y=0时,x=1-a,
1
1
则 ×|a-1|×|1-a|= ,又a>0,解得a=2.
2
2
(2)若直线y=kx与f(x),g(x)的图象都相切,求实数a的值.
1
x
解析:(2)由已知f′(x)= ,g′(x)=ex,
设直线y=kx与f(x),g(x)的图象相切的切点分别为(x1,y1),(x2,y2),
1.2.1 几个基本函数的导数
新知初探·课前预习
题型探究·课堂解透
新知初探·课前预习
教 材 要 点
要点一 常见幂函数的导数❶
原函数
导函数
f(x)=c(c为常数)
高中数学第一章导数及其应用1.2.1_2几个常用函数的导数基本初等函数的导数公式及导数的运算法则(一)课件新
1. 能根据定义求函数 y=c(c 为常数),y=x,y=x2,y=1x, y= x的导数.
2.能利用给出的基本初等函数的导数公式求简单函数的导 数.
自主学习 基础认识
|新知预习|
1.几个常用函数的导数
函数 导数 函数
导数
f(x)=c f′(x)=0 f(x)=x f′(x)=1
f(x)=x2 f′(x)=2x f(x)=1x f′(x)=-x12
3.函数 f(x)=sinx,则 f′(6π)=________.
解析:f′(x)=cosx,所以 f′(6π)=1. 答案:1
【解析】 (1)因为 y=sinx,所以 y′=cosx,
曲线在点 Pπ6,12处的切线斜率是
y′|x=π6=cosπ6=
3 2.
所以过点
P
且与切线垂直的直线的斜率为-
2, 3
故所求的直线方程为 y-12=- 23x-π6,
即 2x+ 3y- 23-π3=0.
(2)因为 y′=(x2)′=2x, 设切点为 M(x0,y0), 则 y′|x=x0=2x0, 又因为直线 PQ 的斜率为 k=42- +11=1,而切线平行于直线 PQ,
切线方程为 y-14=-x+12, 即 4x+4y+1=0.
|素养提升|
1.基本初等函数的导数公式可分为四类 第一类为幂函数,y′=(xα)′=αxα-1(注意幂指数 α 可推广到全体 非零实数); 第二类为三角函数,可记为正弦函数的导数为余弦函数,余弦函 数的导数为正弦函数的相反数; 第三类为指数函数,y′=(ax)′=axlna,当 a=e 时,y=ex 的导 数是指数函数的导数的一个特例; 第四类为对数函数,y′=(logax)′=xl1na,也可写为(logax)′= 1x·logae,当 a=e 时,y=lnx 的导数是对数函数的导数的一个特例.
河南省新乡市原阳一中高中数学课件:1.2.1 几个常用函数的导数 选修2-2
y f ( x0 ) f ( x0)( x x0 )
第九页,编辑于星期日:十五点 一分。
题型:导数的几何意义的应用
例1:(1)求函数y=3x2在点(1,3)处的导数.
解:y
|x1
lim
x0
3(1
x)2 x
3
12
lim 3x2 6x
要注意,曲线在某点处的切线: 1)与该点的位置有关; 2)要根据割线是否有极限来判断与求解.如有极限,则在此点 有切线,且切线是唯一的;如不存在,则在此点处无切线; 3)曲线的切线,并不一定与曲线只有一个交点,可以有多个,甚
至可以无穷多个.
第八页,编辑于星期日:十五点 一分。
导数的几何意义
函数 y=f(x)在点x0处的导数的几何意义,就是曲 线 y=f(x)在点P(x0 ,f(x0))处的切线的斜率,即曲线y= f(x)在点P(x0 ,f(x0)) 处的切线的斜率是 f ( x0 ).
x
点P处的切线。
此处切线定义与以前的定义有何不同?
第五页,编辑于星期日:十五点 一分。
y
圆的切线定义并不适用
l1 于一般的曲线。
NAo
通过逼近的方法,将割 线趋于的确定位置的直
Imagel2
线定义为切线(交点可能
B
不惟一)适用于各种曲线
x 。所以,这种定义才真
C
正反映了切线的直观本
质。
第六页,编辑于星期日:十五点 一分。
k f (x0 )
②再利用点斜式求出切线方程
y f ( x0 ) f ( x0)( x x0 )
第十七页,编辑于星期日:十五点 一分。
高中数学 选修2-2 第一章 1.2 导数的计算 1.2.1 1.2.2讲解
3 2.
不正确.因为sin 6π = 12 是一个常数,而常数的导
数为零,所以sin6π′=0.
指数函数、对数函数的导数公式的记忆对于公式(ln
x)′=
1 x
,(ex)′=ex很好记,但公式(logax)′=
1 xln
a
,(ax)′
=axln a的记忆比较难,设平行于直线y=x的直线与曲线y =ex相切于点P(x0,y0),该切点即为与y=x距离最近的点, 如图所示.
则在点P(x0,y0)处的切线斜率为1,即y′|x=x0=1. ∵y′=(ex)′=ex, ∴ex0=1,
得x0=0,代入y=ex,得y0=1,即P(0,1).
利用点到直线的距离公式得最小距离为|0-1|= 2
5.一质点沿直线运动的路程和时间的关系是s= 5 t , 求质点在t=4时的速度.
解:∵s=5 t=t51,∴s′=(t15)′=15t-45.
t=4时,s′=15·4-54=
1 5
.
10 8
即质点在t=4时的速度为 1 . 5
10 8
∴y′=(x32)′=32x21=32
x .
(2)y=x5,∴y′=(x5)′=5x4.
求曲线y=lg x在点M(10,1)处的切线的斜率 和切线方程.
【分析】 M(10,1)在曲线上,故所求切线斜率就是 函数y=lg x在x=10处的导数.
【解】 ∵y′=(lg x)′=xln110,∴y′|x=10=10l1n 10. ∴曲线y=lg x在点M(10,1)处的切线的斜率为k=10l1n 10. ∴切线方程为y-1=10l1n 10(x-10), 即x-(10ln 10)y+10(ln 10-1)=0.
(x0,x02).
高中数学 121 几种常用函数的导数及导数的运算法则课件 新人教版选修22
(2)y′=(xl+nx1)′ =1xx+x+11-2lnx =1-x+lnx1+2 1x =x-xxx+lnx1+2 1.
第二十四页,共41页。
(3)∵f(x)=(x3+1)(2x2+8x-5) =2x5+8x4-5x3+2x2+8x-5, ∴f′(x)=(2x5+8x4-5x3+2x2+8x-5)′ =10x4+32x3-15x2+4x+8.
第三十页,共41页。
规律技巧 1在求曲线的切线方程时,注意两个“说 法”:求曲线在点P处的切线方程和求曲线过点P的切线方程. 在点P处的切线,一定是以点P为切点,过点P的切线, 不论 点P在不在曲线上,点P不一定是切点.
2求过点P的曲线的切线方程的步骤为:先设出切点坐标 为x0,y0,然后写出切线方程y-y0=f′x0x-x0,代入点P 的坐标,求出x0,y0,再写出切线方程.
(3)f′xgx[g-xf]2xg′x(g(x)≠0)
第十页,共41页。
名师讲解 1.有理数幂函数的导数(xn)′=nxn-1(n为有理数),应注意 其特点 (1)y=xn中,x为自变量,n为常数. (2)它的导数等于幂指数n与自变量x的(n-1)次幂的乘积. (3)公式中n∈Q,但对于n∈R公式也成立. (4)特别注意n为负数或分数时,求导不要搞错.如( x )′ =(x12)′=12x12-1=12·x-12=21 x.
第四十页,共41页。
(3)∵y=1+ sin2xcos2x=1+12sinx,
∴y′=(1+12sinx)′=12cosx.
(4)y′=(
x x+1
)′-(2x)′=
x+1-x x+12
-2xln2=
1 x+12
-
2xln2.
人教版高中数学选修2-2第一章1.2.1几个常用函数的导数
旧知回顾函数y=f(x)在点x处的导数的几何意义,就是曲线y=f(x)在点P(x0 ,f(x0))处的切线的斜率.00()();f x x f xyx x+∆-∆=∆∆lim.xyyx∆→∆'=∆(1)求增量(2)算比值(3)求极限新课导入我们知道,导数的几何意义是曲线在某点处的切线的斜率,物理意义是运动物体在某一时刻的瞬时速度.那么,对于函数y=f(x),如何求它的导数呢?上节内容,我们讲述了导数的定义,可以根据定义求导数. 这节课我们求几个常见函数的导数.3.2 导数的计算导数的计算常见函数导数基本初等函数的导数公式导数运算法则3.2.1 几个常见函数的导数教学目标知识与能力(1)深刻理解导数的几何意义.(2)根据导数定义求基本函数的导数.过程与方法(1)通过分析实例,了解求导数的方法. (2)掌握几个基本函数的导数.情感态度与价值观根据导数的定义可以得出一些常见函数的导数公式,更好的学习导数等概念.教学重难点 重点难点 根据导数定义求解导数方法.21y =c,y =x,y =x ,y =,y =x x 会根据导数的定义求五个函数的导数.知识要点根据导数的定义可以得出一些常见函数的导数公式.1.函数y=f(x)=c的导数.0lim .x ∆→''= y =f(x)=C,ΔyΔy=f(x+Δx)-f(x)=C -C,=0ΔxΔy ∴f (x)=C =0Δx证明:概念理解若 y=c (如图)表示路程关于时间的函数,则y′=0可以解释为某物体的瞬时速度始终为0,即一直处于静止状态.知识拓展公式1: C=0(C为常数)2. 函数y=f(x)=x 的导数 00lim lim 111x x δδ→→==='证明:Δyf(x +Δx)-f(x)∵==Δx Δx Δy ∴y Δx概念理解若 y=x(如图1.2–2)表示路程关于时间的函数,则y′=1可以解释为某物体做瞬时速度为1的匀速直线运动.探究2,3,4y x y x y x===在同一直角坐标系中,画出函数的图像,并根据导数定义,求它们的导数.2040608010012345678910111213141516171819202122xy=2x y=3x y=4x(1)从图像上看,它们的导数分别表示什么?2,3,4y x y x y x === 从图像上看,函数的导数分别表示这些直线的斜率.(2)这三个函数中,哪一个增加的最快?哪一个增加的最慢?在这三个函数中,y=4x增加的最快,y=3x增加的最慢.(3)函数y=kx(k≠0)增(减)的快慢与什么有关?解:函数增加的快慢与k有关系,即与函数的导数有关系,k越大,增加的越快,反之,越慢.3. 函数y=f(x)= 的导数 2x 00lim lim x x δδ→→==22222'证明:Δy f(x +Δx)-f(x)(x +Δx)-x∵==Δx Δx Δxx +2x Δx +(Δx)-x =Δx=2x +ΔxΔy ∴y (2x +Δx)=2x.Δx ×概念理解 0510152025301234567891011系列2 若 表示路程关于时间的函数,则 可以解释为某物体做变速速度,它在时刻x 的瞬时速度为2x. 2y x ='2y x =4. 函数y=f(x)= 的导数 1x证2'22δx→0δx→0明:Δy f(x +Δ'x)-f(x)x -(Δx)∵==Δx Δx x(x +Δx)Δx 1=-x +xΔxΔy11∴y =lim =lim (-)=-Δx x +xΔx x探究1画出函数y=的图像,x根据图像,描述它的变化情况,并求出曲线在点(1,1)处的切线方程.结合函数图像及其导数发现,当x<0时,随着x 的增加,函数 减少的越来越快;当x>0时,函数减少的越来越慢.'21y x =-1y x='x=1' 点(1,1)处的切线的斜率就是y |=-1,故斜率为-1,过点(1,1)的切线方程y =-x +2.5. 函数y=f(x)= 的导数x 'δx →0δx →0证明:Δy f(x +Δx)-f(x)x +Δx -x∵==Δx Δx Δx1=x +Δx +xΔy 11∴y =lim =lim =Δx x +Δx +x 2x知识拓展公式2: . )()(1Q n nx x n n ∈='- 请注意公式中的条件是 ,但根据我们所掌握的知识,只能就 的情况加以证明.这个公式称为幂函数的导数公式.事实上n 可以是任意实数. n Q ∈*n N ∈例 13(1) (x ) 2(2) 3x 3'21(x )=3x 解:()2' (2)3x )=6x(课堂小结1.根据定义求常用函数的导数.21 ,,,, y c y x y x yx ====课堂小结2. 根据定义求导数的具体步骤(1)计算 ,并化简. y x ∆∆(2)观察当△x 趋近于0时, 趋近于哪个定值.y x ∆∆(3) 趋近于的定值就是函数f=f(x)的函数.y x ∆∆3.认识导数不同方面的意义,建立不同意义方面的联系,能够在不同意义间进行转换.(2007浙江文)32曲线y =x -2x -4x+2在点(1,-3)处的切线方程是 .520x y +-=高考链接(2007江西理)设函数f(x)是R上以5为周期的可导函数,则函数曲线在x=5处的切线的斜率为()B1A. -B. 051C. D. 55随堂练习1..3'1f'(x)f(x)=x+2x+12f(-1)是的导函数,则的值是311,,111.y x x y y x ⎧==⎧⎪⎨⎨=⎩⎪=⎩解:联立方程组解得故交点为(,) 求双曲线 与抛物线 交点处切线的夹角. 1y x =y x =2.211111,,1|1,(1,1)1;x y y x xk y y xk ='==-'∴==-==-双曲线故双曲线在交点处的 切线斜率为121121,,21|,(1,1)21;2x y x y x k y y x k -='=='∴==== 抛物线故抛物线在交点处的切线斜率为1212112tan |||| 3.111(1)2k k k k θ---===++-⋅arctan 3.θ∴=夹角由夹角公式:0||,()0,,1lim 1;x y x y x x xx y x x xy x ∆→=∆+∆-∴>===∆∆∆∴=∆当时则3.解:利用导数的定义求函数y=|x|(x≠0)的导数.00()(),1,lim 1;x x y x x x y x x xy x∆→<∆-+∆--=-==-∆∆∆∴=-∆当时10.10x y x >⎧'∴=⎨-<⎩。
高中数学 第一章 导数及其应用 1.2.1 常数函数与幂函数的导数 1.2.2 导数公式表及数学软
故f′(x)>1时,有0<x< 1 .
ln 3
答案: ( 0, 1 )
ln 3
1199
类型一 利用导数公式求函数的导数
【典例】1.下列函数求导运算正确的个数为
①(3x)′=3xlog3e;
② (log2x)′=
③ l n 1=x x ;
;1
x ln 2
()
2200
④若y= 1,则在x=3处的导数为- . 2
1133
【自我检测】
1.思维辨析(对的打“√”,错的打“×”)
(1)(sinx)′=-cos x. ( )
(2)
(1 x
).
1 x2
(
)
(3)(log5x)′=
. 1(
5 ln x
)
(4)(lnx)′= . ( 1 )
x
1144
提示:(1)×.(sin x)′=cos x.
(2)×. ( ′1=) (x-1)′=-x-2=- . 1
x
1 x2
1111
2.关于几个基本初等函数导数公式的特点 (1)幂函数f(x)=xα中的α可以由Q*推广到任意实数. (2)正、余弦函数的导数可以记忆为“正余互换,(符号) 正同余反”.
1122
(3)指数函数的导数等于指数函数本身乘以底数的自然 对数. (4)对数函数的导数等于x与底数的自然对数乘积的倒数. (5)注意区分幂函数f(x)=xα与指数函数f(x)=ax的导数.
44
(4)若y=f(x)=x3,则f′(x)=___. 3x2
(5)若y=f(x)= (6)若y=f(x)=
1
,则1x f′(x)=____= ____x(x2 ≠0). -x-2
(人教版)高中数学选修2-2课件:第1章 导数及其应用1.2.1、2(1)
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
求简单函数的导函数有两种基本方法: (1)用导数的定义求导,但运算比较繁杂; (2)用导数公式求导 ,可以简化运算过程、降低运算难 度.解题时根据所给问题的特征,将题中函数的结构进行调 整,再选择合适的求导公式.
数学 选修2-2
第一章 导数及其应用
A.(0,0)
B.(0,1)
C.(1,0)
D.以上都不是
解析: (x3)′=3x2,若切线平行或重合于x轴则切线斜率k
=0,即3x2=0得x=0,
∴y=0,即切点为(0,0).故选A.
答案: A
数学 选修2-2
第一章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
3.函数f(x)=sin x,则f′(6π)=________. 解析: f′(x)=cos x,所以f′(6π)=1. 答案: 1
6分 8分
10 分 12 分
数学 选修2-2
第一章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
1.求过点P的切线方程时应注意,P点在曲线 上还是在曲线外,两种情况的解法是不同的.
2.解决此类问题应充分利用切点满足的三个关系: 一是切点坐标满足曲线方程;二是切点坐标满足对应切线 的方程;三是切线的斜率是曲线在此切点处的导数值.
数学 选修2-2
第一章 导数及其应用
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
(1)y′=-3x-4.(2)y′=3xln 3.
(4)y′=xln1 5.(5)y=sin x,y′=cos x. (6)y′=0.(7)y′=1x.(8)y′=ex.
高中数学教案选修2-2《1.2.1 常见函数的导数》
教学目标:1.能根据导数的定义推导部分基本初等函数的导数公式;2.能利用导数公式求简单函数的导数.教学重点:基本初等函数的导数公式的应用.教学过程:一、问题情境1.问题情境.(1)在上一节中,我们用割线逼近切线的方法引入了导数的概念,那么如何求函数的导数呢? (2)求曲线在某点处的切线方程的基本步骤:给定函数()y f x =计算()()y f x x f x x x∆∆∆∆+-=令x ∆无限趋近于0xy ∆∆无限趋近于)(x f ' )(x f '①求出P 点的坐标;②利用切线斜率的定义求出切线的斜率;③利用点斜式求切线方程.(3)函数导函数的概念2.探究活动.用导数的定义求下列各函数的导数:思考 由上面的结果,你能发现什么规律?二、建构数学1.几个常用函数的导数: 思考 由上面的求导公式(3)~(7),你能发现什么规律?2.基本初等函数的导数:(1)()kx b k '+=;(2)0C '=(C 为常数);(3)()1x '=;(4)2()2x x '=;(5)32()3x x '=;(6)211()x x '=-; (7)1()2x x '=.三、数学运用例1 利用求导公式求下列函数导数.(1)5y x -=; (2)y ; (3)πsin 3y =; (4)4x y =; (5)3log y x =; (6)πsin()2y x =+; (7)cos(2π)y x =-. 例2 若直线y x b =-+为函数1y x=图象的切线,求b 及切点坐标. 点评 求切线问题的基本步骤:找切点—求导数—得斜率.变式1 求曲线2y x =在点(1,1)处的切线方程.变式2 求曲线2y x =过点 (0,-1)的切线方程.点评 求曲线“在某点”与“过某点”的切线是不一样的.变式3 已知直线l :1y x =-,点P 为2y x =上任意一点,求P 在什么位置时到直线l 的距离最短.练习:1.见课本P20练习.第3题: ;第5题:(1) ;(2) ;(3) ;(4) .2.见课本P26.第4题:(1) ;(2) .3.见课本P27第14题(2).(4)f = ;(4)f = .四、回顾小结(1)求函数导数的方法.(2)掌握几个常见函数的导数和基本初等函数的导数公式.五、课外作业1.课本P26第2题.2.补充.(1)在曲线24y x =上求一点P ,使得曲线在该点处的切线的倾斜角为135°. (2)当常数k 为何值时,直线y x =才能与函数2y x k =+相切?并求出切点.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1.2.1几个常见函数的导数
【学情分析】:
本节重要是介绍求导数的方法.根据导数定义求导数是最基本的方法.但是,由于最终总会归结为求极限,而本章并没有介绍极限知识,因此,教科书只是采用这种方法
计算2
1
,,,,y c y x y x y y x
====
=.学生只要会用导数公式和求简单函数的导数即可. 【教学目标】:
(1)用导数定义,
求函数2
1
,,,,y c y x y x y y x
====
=. (2)能用基本初等函数的导数公式和导数运算法则求简单函数的导数. (3)理解变化率的概念,解决一些物理上的简单问题,培养学生的应用意识. 【教学重点】:
能用导数定义,
求函数2
1
,,,,y c y x y x y y x
=====. 【教学难点】:
能用基本初等函数的导数公式和导数加减运算法则求简单函数的导数. 【教学过程设计】:
练习与测试: A .基础题.
1.求下列函数的导数:
(1)12
y x = (2)y =(3)41y x
=
(4)y = 答案:(1)'11
12y x = (2)'
y =
(3)'
5
4y x -=-
(4)2'
5
35
y x -=
2.已知函数2()f x x =,则'
(3)f =( ) (A )0 (B )2x (C )6 (D )9 答案:C
3.已知函数1()f x x =,则'
(2)f -=( ) (A )4 (B )14 (C )4- (D )1
4
-
答案:D
4.已知函数3
()f x x =的切线的斜率等于3,则其切线方程有( ) (A )1条 (B )2条 (C )多余2条 (D )不存在 答案:B B .难题
1.已知(1,1),(2,4)P Q -是曲线2
y x =上两点,求与直线PQ 平行的曲线2
y x =的切线方程.
'(1,1),(2,4)121
11
,24
11424410PQ P Q k y x x y y x x y -∴=====-
=---=解:令得所以曲线的切线方程为:即
2.设曲线3
y x =过点3
(,)a a 的切线与直线,0x a y ==所围成的三角形面积为13
,求a .
3'2
332233
3()|3(,)3()320
2
0,;,3
12
()1
231
x a k x a a a y a a x a a x a y y x a x a y a S a a a a ===∴-=---======-=∴=±解:过点的切线方程为即令得得。