广东2014届高三下学期十校联考(理数)
2014年广东高考理科数学及答案(word版)
绝密★启用前 试卷类型A2014年普通高等学校招生全国统一考试(广东卷)数学(理科)本试卷共4页,21小题,满分150分.考试用时120分钟.注意事项:1. 答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、考场号、座位号填写在答题卡上.用2B 铅笔将试卷类型A 填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.2. 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3. 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须填写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号(或题组号)对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题:本大题共8小题,每小题5分,满分40分.学科网在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,0,1}M =-,{0,1,2}N =,则M N =A. {0,1}B. {1,0,2}-C. {1,0,1,2}-D. {1,0,1}-2.已知复数Z 满足(34)25i z +=,则Z=A. 34i -+ B . 34i -- C. 34i +D. 34i -3.若变量,x y 满足约束条件121y xx y z x y y ≤⎧⎪+≤=+⎨⎪≥-⎩且的最大值学科网和最小值分别为m 和n ,则m n -=A.5B.6C.7D.84.若实数k 满足09k <<,则曲线221259x y k -=-与曲线221259x y k -=-的 A. 焦距相等 B. 实半轴长相等 C. 虚半轴长相等D. 离心率相等5.已知向量()1,0,1a =-,则下列向量中与a 成60︒夹角的是 A.(-1,1,0)B.(1,-1,0)C.(0,-1,1)D.(-1,0,1)6.已知某地区中小学生人数和近视情况分别如图1和图2所示,学科网为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别是C.200,10D.100,107.若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,l l l l l l ⊥⊥⊥,则学科网下面结论一定正确的是A.14l l ⊥B.14//l lC.14,l l 既不垂直也不平行D.14,l l 的位置关系不确定8.设集合(){}12345=,,,,{1,0,1},1,2,3,4,5i A x x x x x x i ∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为 A.60 B.90C.120D.130二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.不等式521≥++-x x 的解集为 。
2014年高考理科数学广东卷-答案
所以 = = = = .
【提示】直接由等比数列的性质结合已知得到 ,然后利用对数的运算性质化简后得答案.
【考点】等比数列的性质,数列的前n项和,对数的运算
14.【答案】
【解析】曲线 即 ,故其直角坐标方程为: ,曲线 为 ,则其直角坐标方程为 ,所以两曲线的交点坐标为 .
【解析】由图1可得出样本容量为 .
抽取的高中生近视人数为 ,故选A.
【提示】根据图1可得总体个数,根据抽取比例可得样本容量,计算分层抽样的抽取比例,求得样本中的高中学生数,再利用图2求得样本中抽取的高中学生近视人数.
【考点】频率分布直方图,分层抽样
7.【答案】D
【解析】由 , ,将四条直线放入正方体中,如图所示, , , , 面 ,满足已知条件, 为平面 中的任意一条直线,即可得出结论, 的位置关系不确定.
由①②知,当 时, .
【提示】(Ⅰ)在数列递推式中取 得一个关系式,再把 变为 得另一个关系式,进而可求 ,然后把递推式中n取1,再结合 可求得 .
(Ⅱ)由(Ⅰ)中求得的 的值猜测出数列的一个通项公式,然后利用数学归纳法证明.
【考点】数列的项,数学归纳法求数列的通项公式
20.【答案】(Ⅰ)
(Ⅱ)
【解析】(Ⅰ)可知 ,又 ,
所以 ,
所以 .
(Ⅱ)由(Ⅰ)可知 ,
所以 ,
所以 ,
, .
又 ,
所以 ,
.
【提示】(Ⅰ)由函数 的解析式以及 ,求得 的值.
(Ⅱ)由(Ⅰ)可得 ,根据 ,求得 的值,再由 ,求得 的值,从而求得 的值.
【考点】三角函数求值,同角三角函数的基本关系
17.【答案】
(Ⅰ)由题意可得 =7, =2, =0.28, =0.08.
广东省2014高三下学期十校联考数学(理)试卷
广东省2014高三下学期十校联考数学(理)试卷本试卷共6页,21小题, 满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.2.选择题每小题选出答案后,用黑色字迹钢笔或签字笔将答案填写在答题卡上对应题目的序号下面,如需改动,用橡皮擦干净后,再选填其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效. 4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效. 5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U =R ,集合{/|1|1}A x x =-<, 1{0}xB xx-=≤,则A ∩(∁U B )=( ) A .(0,1) B .[0,1) C .(1, 2) D . (0,2) x y -3、已知),2(πα∈,5sin =α,则)4tan(α-的值等于( )A .7-B .71-C .7D .714. 等比数列{}n a 中,39a =,前3项和为32303S x dx =⎰,则公q 的值是( )A. 1B.-12 C. 1或-12 D. - 1或-125.定义在R 上的偶函数f (x )在(0,+∞)上是增函数,且f (13)=0,则不等式()0xf x >的解集是( )A .(0,13)B .(13 ,+∞)C .(- 13,0)∪(13,+∞)D .(-∞,-13)∪(0,13)6.一个几何体的三视图如右图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积...为A .π12B . π3CD 7.已知双曲线22221x y a b-=(0a >,0b >),过其右焦点且垂直于实轴的直线与双曲线交于,M N 两点,O 为坐标原点,若OM ON ⊥,则双曲线的离心率为( )A B C D 8. 已知集合M={(x,y )|y f (x )=},若对于任意11(x ,y )M ∈,存在22(x ,y )M ∈,使得12120x x y y +=成立,则称集合M 是“垂直对点集”.给出下列四个集合: ①M={1(x,y )|y x=}; ②M={1(x,y )|y sin x =+}; ③M={2(x,y )|y log x =}; ④M={2x (x,y )|y e =-}.其中是“垂直对点集”的序号是( ) A.①② B .②④ C .①④ D .②③二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(8~13题)9.下面茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损.则甲的平均成绩超过乙的平均成绩的 概率为 10. 设(5nx 的展开式的各项系数之和为M ,二项式系数之和为N ,若240M N -=,则展开式中的常数项_________.11. 下列说法:①“x ∃∈R ,23x >”的否定是“x ∀∈R ,23x ≤”;②函数sin(2)sin(2)36y x x ππ=+- 的最小正周期是π;③命题“函数()f x 在0x x =处有极值,则0()0f x '=”的否命题是真命题;④()f x 是(,0)(0,)-∞+∞ 上的奇函数,0x >的解析式是()2x f x =,则0x <时的解析式为()2x f x -=-.其中正确的说法是__________.12. 已知向量a =(2,1),b =(x ,y ).若x ∈[-1,2],y ∈[-1,1],则向量a ,b 的夹角是钝角的概率是 .13.右表给出一个“三角形数阵”.已知每一列数成等差数列,从第三行起, 每一行数成等比数列,而且每一行的公比都相等,记第i 行第j 列的数为ij a (*,,N j i j i ∈≥),则53a 等于 ,______(3)mn a m =≥.( ) ▲ 14.在极坐标系中,过点(3,)3π且垂直于极轴的直线方程的极坐标方程是 (请选择正确标号填空)(1)3sin 2=ρθ (2)3cos 2=ρθ (3)3sin 2=ρθ (4)3cos 2=ρθ 15. 如图,在△ABC 和△ACD 中,∠ACB =∠ADC =90°,∠BAC =∠CAD ,⊙O 是以AB 为直径的圆,DC 的延长线与AB 的延长线交于点E . 若EB =6,EC =62,则BC 的长为 .三、解答题:本大题共6小题,共80分。
2014年高考广东理科数学试题及答案(word解析版)
2014年普通高等学校招生全国统一考试(广东卷)数学(理科)一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2014年广东,理1,5分】已知集合{1,0,1}M =-,{0,1,2}N =,则M N =( )(A ){1,0,1}- (B ){1,0,1,2}- (C ){1,0,2}- (D ){0,1} 【答案】B【解析】{1,0,1,2}M N =-,故选B . (2)【2014年广东,理2,5分】已知复数z 满足(34i)25z +=,则z =( )(A )34i - (B )34i + (C )34i -- (D )34i -+ 【答案】A【解析】2525(34i)25(34i)=34i 34i (34i)(34i)25z --===-++-,故选A . (3)【2014年广东,理3,5分】若变量,x y 满足约束条件121y xx y z x y y ≤⎧⎪+≤=+⎨⎪≥-⎩且的最大值和最小值分别为M 和m ,则M m -=( )(A )8 (B )7 (C )6 (D )5 【答案】C 【解析】画出可行域,易知在点(2,1)与(1,1)--处目标函数分别取得最大值3M =,与最小值3m =-,6M m ∴-=,故选C .(4)【2014年广东,理4,5分】若实数k 满足09k <<,则曲线221259x y k-=-与曲线221259x y k -=-的( ) (A )离心率相等 (B )虚半轴长相等 (C )实半轴长相等 (D )焦距相等 【答案】D【解析】09k <<,90k ∴->,250k ->,从而两曲线均为双曲线,又25(9)34(25)9k k k +-=-=-+,两双曲线的焦距相等,故选D .(5)【2014年广东,理5,5分】已知向量()1,0,1a =-,则下列向量中与a 成60︒夹角的是( )(A )()1,1,0- (B )()1,1,0- (C )()0,1,1- (D )()1,0,1- 【答案】B 【解析】222222(1,0,1)(1,1,0)1210(1)1(1)0-⋅-=++-⋅+-+,即这两向量的夹角余弦值为12,从而夹角为060,故选A . (6)【2014年广东,理6,5分】已知某地区中小学生人数和近视情况分别如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为( )(A )200,20 (B )100,20 (C )200,10 (D )100,10 【答案】A【解析】样本容量为(350045002000)2%200++⋅=,抽取的高中生近视人数为:20002%50%20⋅⋅=,故选A .(7)【2014年广东,理7,5分】若空间中四条两两不同的直线1234,,,l l l l ,满足12l l ⊥,23l l ⊥,34l l ⊥则下列结论一定正确的是( )(A )14l l ⊥ (B )14//l l (C )14,l l 既不垂直也不平行 (D )14,l l 的位置关系不确定 【答案】D【解析】平面中的四条直线,14l l ⊥,空间中的四条直线,位置关系不确定,故选D .(8)【2014年广东,理8,5分】设集合(){}12345=,,,,{1,0,1},1,2,3,4,5i A x x x x x x i ∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为( )(A )60 (B )90 (C )120 (D )130 【答案】D【解析】12345x x x x x ++++可取1,2,3,和为1的元素个数为:1125C 10C =;和为2的元素个数为:122255C 40C A +=;和为3的元素个数为:1311225254C C C 80C C +=,故满足条件的元素总的个数为104080130++=,故选D .二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13) (9)【2014年广东,理9,5分】不等式125x x -++≥的解集为 . 【答案】(][),32,-∞-+∞【解析】数轴上到1与2-距离之和为5的数为3-和2,故该不等式的解集为:(][),32,-∞-+∞.(10)【2014年广东,理10,5分】曲线52x y e -=+在点(0,3)处的切线方程为 . 【答案】530x y +-= 【解析】'55x y e -=-,'5x y =∴=-,∴所求切线方程为35y x -=-,即530x y +-=.(11)【2014年广东,理11】,5分从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为 .【答案】16【解析】要使6为取出的7个数中的中位数,则取出的数中必有3个不大于6,另外3个不小于6,故所求概率为3671016C C =. (12)【2014年广东,理12,5分】在ABC ∆中,角,,A B C 所对应的边分别为,,a b c ,已知cos cos 2b C c B b +=,则ab= . 【答案】2【解析】解法一:由射影定理知cos cos b C c B a +=,从而2a b =,2ab∴=.解法二:由上弦定理得:sin cos sin cos 2sin B C C B B +=,即sin()2sin B C B +=,sin 2sin A B ∴=,即2a b =,2ab∴=.解法三:由余弦定理得:222222222a b c a c b b b ab ac +-+-⋅+=,即224a ab =,2a b ∴=,即2ab=.(13)【2014年广东,理13,5分】若等比数列{}n a 的各项均为正数,且510119122a a a a e +=,则1220ln ln ln a a a +++= . 【答案】50【解析】1011912a a a a =,51011a a e ∴=,设1220ln ln ln S a a a =+++,则20191ln ln ln S a a a =+++,51201011220ln 20ln 20ln 100S a a a a e ∴====,50S ∴=.(二)选做题(14-15题,考生只能从中选做一题) (14)【2014年广东,理14,5分】(坐标系与参数方程选做题)在极坐标系中,曲线1C 和2C 的方程分别为2sin cos ρθθ=和sin 1ρθ=,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线1C 和2C 的交点的直角坐标为 . 【答案】(1,1)【解析】1C 即2(sin )cos ρθρθ=,故其直角坐标方程为:2y x =,2C 的直角坐标系方程为:1y =,1C ∴与2C 的交点的直角坐标为(1,1).(15)【2014年广东,理15,5分】(几何证明选讲选做题)如图3,在平行四边形ABCD 中,点E 在AB 上且2EB AE =,AC 与DE 交于点,则CDF AEF ∆=∆的面积的面积.【答案】9【解析】显然CDF AEF ∆∆,∴22()()9CDF CD EB AE AEF AE AE∆+===∆的面积的面积.三、解答题:本大题共6题,共80分.解答应写出文字说明,证明过程或演算步骤.(16)【2014年广东,理16,12分】已知函数()sin(),4f x A x x R π=+∈,且53()122f π=.(1)求A 的值;(2)若3()()2f f θθ+-=,(0,)2πθ∈,求3()4f πθ-.解:(1)5523()sin()sin1212432f A A ππππ=+==,32A ∴==.(2)由(1)得:())4f x x π+,()()))44f f ππθθθθ∴+-=+-+3coscos sin ))cos cos()sin )sin 444442πππππθθθθθθ=+-+-==,cos θ∴=,(0,)2πθ∈,sin θ∴33()sin())444f πππθθπθθ∴--+-===. (17)【2014年广东,理17,12分】随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36.根据上述数据得到样本的频率分布表如下:分组 频数 频率 [25,30] 3 0.12 (30,35] 5 0.20 (35,40] 8 0.32 (40,45] 1n 1f(45,50]2n 2f(1)确定样本频率分布表中121,,n n f 和2f 的值;(2)根据上述频率分布表,画出样本频率分布直方图; (3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(]30,35的概率. 解:(1)17n =,22n =,170.2825f ==,220.0825f ==. (2)频率分布直方图如下所示:(3)根据频率分布直方图,可得工人们日加工零件数落在区间(]30,35的概率为0.2,设日加工零件数落在区间(]30,35的人数为随机变量ξ,则(4,0.2)B ξ,故4人中,至少有1人的日加工零件数落在区间(]30,35的概率为:00441(0.2)(0.8)10.40960.5904C -=-=.(18)【2014年广东,理18,14分】如图4,四边形ABCD 为正方形,PD ⊥平面ABCD ,30DPC ∠︒=,AF PC ⊥于点F ,//FE CD ,交PD 于点E . (1)证明:CF ⊥平面ADF ;(2)求二面角D AF E --的余弦值.解:(1)PD ⊥平面ABCD ,PD PCD ⊂,∴平面PCD ⊥平面ABCD ,平面PCD 平面ABCD CD =, AD ⊂平面ABCD ,AD CD ⊥,AD ∴⊥平面PCD ,CF ⊂平面PCD ,CF AD ∴⊥,又 AF PC ⊥,CF AF ∴⊥,,AD AF ⊂平面ADF ,AD AF A =,CF ∴⊥平面ADF . (2)解法一:过E 作//EG CF 交DF 于G ,CF ⊥平面ADF ,EG ∴⊥平面ADF ,过G 作GH AF ⊥于H ,连EH则EHG ∠为二面角D AF E --的平面角,设2CD =,030DPC ∠=,030CDF ∴∠=,从而1==12CF CD , 4CP =,EF DC ∥,DE CF DP CP ∴=,即12=223DE ,32DE ∴=,还易求得32EF =,3DF =,从而 3332243DE EF EG DF ⋅⋅===,易得192AE =,7AF =,32EF =,19331922747AE EF EH AF ⋅⋅∴===, 故22319363()()44747HG =-=,6347257cos 1947319GH EHG EH ∴∠==⋅=.解法二:分别以DP ,DC ,DA 为x ,y ,z 轴建立空间直角坐标系,设2DC =,则(0,0,2)A ,(0,2,0)C ,(23,0,0)P ,设CF CP λ=,则(23,22,0)F λλ-,DF CF ⊥,可得14λ=,从而33(,,0)22F ,易得3(,0,0)2E ,取面ADF 的一个法向量为11(3,1,0)2n CP ==-,设面AEF 的一个法向量为2(,,)n x y z =,利用20n AE ⋅=,且20n AF ⋅=,得2n 可以是(4,0,3),从而二面角的余弦值为12124325719||||219n n n n ⋅==⋅⨯. (19)【2014年广东,理19,14分】设数列{}n a 的前n 和为n S ,满足2*1234,n n S na n n n N +=--∈,且315S =.(1)求123,,a a a 的值; (2)求数列{}n a 的通项公式.解:(1)211222314127a S a a ==-⨯-⨯=- ①2122331212+=432424()204(15)20a a S a S a a a a =-⨯-⨯=---=---,12+8a a ∴= ②联立①②解得1235a a =⎧⎨=⎩,33121587a S a a ∴=--=-=,综上13a =,25a =,37a =.(2)21234n n S na n n +=-- ③ ∴当2n ≥时,212(1)3(1)4(1)n n S n a n n -=----- ④-③④并整理得:1216122n n n n a a n n+-+=+,由(1)猜想21n a n =+,以下用数学归纳法证明: (ⅰ)由(1)知,当1n =时,13211a ==⨯+,猜想成立;(ⅱ)假设当n k =时,猜想成立,即21k a k =+,则当1n k =+时,212161211411(21)33232(1)1222222k k k k k k a a k k k k k k k k k+-+--=+=⋅+++=++=+=++,这就是说1n k =+时,猜想也成立,从而对一切n N *∈,21n a n =+.(20)【2014年广东,理20,14分】已知椭圆2222:1(0)x y C a b a b+=>>的一个焦点为(5,0),离心率为53.(1)求椭圆C 的标准方程;(2)若动点00(,)P x y 为椭圆外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.解:(1)cc e a ==3a ∴=,222954b a c =-=-=,∴椭圆C 的标准方程为:22194x y +=. (2)若一切线垂直x 轴,则另一切线垂直于y 轴,则这样的点P 共4个,它们的坐标分别为(3,2)-±,(3,2)±.若两切线不垂直与坐标轴,设切线方程为00()y y k x x -=-,即00()y k x x y =-+,将之代入椭圆方程22194x y +=中并整理得:2220000(94)18()9()40k x k y kx x y kx ⎡⎤++-+--=⎣⎦,依题意,0∆=, 即22220000(18)()36()4(94)0k y kx y kx k ⎡⎤----+=⎣⎦,即22004()4(94)0y kx k --+=, 2220000(9)240x k x y k y ∴--+-=,两切线相互垂直,121k k ∴=-,即2020419y x -=--,220013x y ∴+=, 显然(3,2)-±,(3,2)±这四点也满足以上方程,∴点P 的轨迹方程为2213x y +=.(21)【2014年广东,理21,14分】设函数()f x =2k <-.(1)求函数()f x 的定义域D (用区间表示); (2)讨论()f x 在区间D 上的单调性;(3)若6k <-,求D 上满足条件()(1)f x f >的x 的集合(用区间表示).解:(1)222(2)2(2)30x x k x x k +++++->,则221x x k ++> ① 或 223x x k ++<- ② 由①得:2210x x k ++->,144(1)4(2)0k k ∆=--=->(2)k <-,∴方程2210x x k ++-=的解为1-∴由2210x x k ++->得1x <-1x >-, 由②得2230x x k +++<,方程2230x x k +++=的判别式244(3)4(2)0k k ∆=-+=-->(2)k <-, ∴该方程的解为1-2230x x k +++<得11x --<-+2k <-,1121112k ∴------<-+-<-+ (,1(12,12)(12,)D k k k ∴=-∞------+---+-+∞. (2)设0u ,则3'221()2(2)(22)2(22)2f x u x x k x x -⎡⎤=-⋅⋅++⋅+++⎣⎦ 3222(1)(21)u x x x k -=-+⋅+++, (ⅰ)当(,1x ∈-∞--时,10x +<,221110x x k +++>+>,'()0f x ∴>;(ⅱ)当(11)x ∈--时,10x +<,221310x x k +++<-+<,'()0f x ∴<; (ⅲ)当(1,1x ∈--+时,10x +>,221310x x k +++<-+<,'()0f x ∴>; (ⅳ)当(1)x ∈-+∞时,10x +>,221110x x k +++>+>,'()0f x ∴<. 综上,()f x 在D 上的单调增区间为:(,11,1-∞----+, ()f x 在D 上的单调减区间为:(11),(1)----++∞. (3)设222(x)(2)2(2)3g x x k x x k =+++++-,由(1)知,当x D ∈时,()0g x >; 又2(1)(3)2(3)3(6)(2)g k k k k =+++-=++,显然,当6k <-时,(1)0g >, 从而不等式()(1)()(1)f x f g x g >⇔<,2222()(1)[(2)2(2)3][(3k)2(3)3]g x g xx k x xk k -=+++++--+++-22222[(2)(3k)]2[(2)(3)](3)(1)(225)x x k x x k k x x x x k =++-++++-+=+-+++,6k<-,11131111∴----<<-+--+(ⅰ)当1x<-(3)(1)0x x +->,∴欲使()(1)f x f >,即()(1)g x g <,亦即22250x x k +++<,即11x -<<-11x ∴-<-;(ⅱ)13x -<-时,(3)(1)0x x +->,22225(2)(5)3(5)0x x k x x k k k +++=++++<-++<, 此时()(1)g x g <,即()(1)f x f >;(ⅲ)31x -<<时,(3)(1)0x x +-<,22253(5)0x x k k +++<-++<()(1)g x g ∴>不合题意;(ⅳ)11x <<-(3)(1)0x x +->,22253(5)0x x k k +++<-++<,()(1)g x g ∴<, 不合题意;(ⅴ)1x >-时,(3)(1)0x x +->,∴欲使()(1)g x g <,则22250x x k +++<,即11x -<-+,从而11x -<-综上所述,()(1)f x f >的解集为:(()()(1112,31,1212,1k kk --------+---+--+.。
2014年广东省高考数学(理科)试题(Word版)
2014年普通高等学校招生全国统一考试(广东卷)数学理一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{1,0,1},{0,1,2},M N =-=则M N ⋃=A .{1,0,1}- B. {1,0,1,2}- C. {1,0,2}- D. {0,1}2.已知复数Z 满足(34)25,i z +=则Z=A .34i - B. 34i + C. 34i -- D. 34i -+3.若变量,x y 满足约束条件121y xx y z x y y ≤⎧⎪+≤=+⎨⎪≥-⎩且的最大值和学科网最小值分别为M 和m ,则M-m=A .8 B.7 C.6 D.54.若实数k 满足09,k <<则曲线221259x y k -=-与曲线221259x y k -=-的A .离心率相等 B.虚半轴长相等 C. 实半轴长相等 D.焦距相等5.已知向量()1,0,1,a =-则下列向量中与a 成60︒夹角的是A .(-1,1,0) B. (1,-1,0) C. (0,-1,1) D. (-1,0,1)6、已知某地区中小学生人数和近视情况分别如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为A 、200,20B 、100,20C 、200,10D 、100,10 7、若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,,l l l l l l ⊥⊥⊥,则下列结论一定正确的是A .14l l ⊥B .14//l lC .14,l l 既不垂直也不平行D .14,l l 的位置关系不确定8.设集合(){}12345=,,,,1,0,1,1,2,3,4,5i A x x x x x x i ∈-=,zxxk 那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为A .60 B90 C.120 D.130二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13题)9.不等式521≥++-x x 的解集为 。
14年高考真题——理科数学(广东卷)-推荐下载
2014 年普通高校招生全国统考数学试卷广东卷解答
一.BACDB ADD
3/6
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
2014年广东高考数学(理科)真题--word高清版
2014年普通高等学校招生全国统一考试(广东卷)数学理一、选择题:本题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项符合1. 已知集合{1,0,1},{0,1,2},M N =-=则M N ⋃= ( )A .{1,0,1}- B. {1,0,1,2}- C. {1,0,2}- D. {0,1}2.已知复数Z 满足(34)25,i z +=则Z= ( )A .34i - B. 34i + C. 34i -- D. 34i -+3.若变量,x y 满足约束条件121y x x y z x y y ≤⎧⎪+≤=+⎨⎪≥-⎩且的最大值和最小值分别为M 和m ,则M-m= ( )A .8 B.7 C.6 D.54.若实数k 满足09,k <<则曲线221259x y k -=-与曲线221259x y k -=-的 A .离心率相等 B.虚半轴长相等 C. 实半轴长相等 D.焦距相等5.已知向量()1,0,1,a =-则下列向量中与a 成60︒夹角的是A .(-1,1,0) B. (1,-1,0) C. (0,-1,1) D. (-1,0,1)6、已知某地区中小学生人数和近视情况分别如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为A 、200,20B 、100,20C 、200,10D 、100,107、若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,,l l l l l l ⊥⊥⊥,则下列结论一定正确的是A .14l l ⊥B .14//l lC .14,l l 既不垂直也不平行D .14,l l 的位置关系不确定8.设集合(){}12345=,,,,1,0,1,1,2,3,4,5i A x x x x x x i ∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为A .60 B90 C.120 D.130二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13题)9.不等式521≥++-x x 的解集为 。
广东省高三数学下学期十校联考 文 新人教A版(1)
广东省2014届高三数学下学期十校联考 文 新人教A 版本试卷共4页,21小题,满分150分.考试时间120分钟. 注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上. 3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案,不准使用铅笔和涂改液.不按以上要求作答的答案无效.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设a ∈R ,若i )i (2-a (i 为虚数单位)为正实数,则a =( ) A .2 B .1 C .0 D .1-2.已知{}{}{}5,4,2,5,4,35432==N M U ,,,,=,则( ) A .{}4=⋂N M B .M N U =U C .U M N C U =⋃)( D .NN M C U =⋂)(3. 下列命题中的假命题是( )A .0,3<∈∃x R x B .“0>a ”是“0>a ”的充分不必要条件C .,20x x R ∀∈> D .若q p ∧为假命题,则p 、q 均为假命题 4. 若直线l 不平行于平面α,且α⊄l ,则( ).A α内的所有直线与l 异面 B. α内存在唯一的直线与l 平行C.α内不存在与l 平行的直线D. α内的直线与l 都相交 5.在等差数列}{n a 中,21232a a +=,则1532a a +的值是( )A .24B . 48C .96D .无法确定6. 某程序框图如图1所示,该程序运行后输出的值是( ) A .63 B .31 C .27 D .157.动圆M 经过双曲线2213y x -=左焦点且与直线2x =相切,则圆心M 的轨迹方程是( ) 图1结束输出i否是1i =50S >21S S =+21i i =+开始0S =A .24y x =B .24y x =-C .28y x =D .28y x =- 8. O 是ABC ∆所在的平面内的一点,且满足(-)·(+-2)= 0,则ABC ∆的形状一定为( )A .正三角形 B.直角三角形 C.等腰三角形 D.斜三角形9.已知平面直角坐标系xoy 上的区域D 由不等式组0222x y x ⎧≤≤⎪≤⎨⎪≤⎩给定,若(,)M x y 为D 上的动点,点2,0)A ,则||z AM =u u u u r的最大值为 ( )A. 66 C .4 D. 210. 已知a 是函数xx f x 21log 2)(-=的零点,若ax <<00,则)(0x f 的值满足( )A .)(0=x f B .)(0>x f C .)(0<x f D .)(0x f 的符号不能确定二、填空题:本大题共5小题,每小题5分,满分20分.其中14~15题是选做题,考生只能选做一题,两题全答的,只计算前一题得分.11. 某单位有200名职工,现用系统抽样法,从中抽取40名职工作样本,将全体职工随机按1-200编号,并按编号顺序平均分为40组(1-5号,6-10号…,196-200号).若第5组抽出的号码为22,则第9组抽出的号码应是12.在ABC ∆中,a 、b 、c 分别是角A 、B 、C 所对的边,,3,13A a c π===,则ABC∆的面积S= ______.13. 已知实数0m ≠,函数2,1()2,1x m x f x x m x +<⎧=⎨--≥⎩,若(1)(1)f m f m -=+,则m 的值为________.14、(坐标系与参数方程选做题) 已知点P 是曲线cos :(sin =⎧⎨=⎩43x θC θy θ为参数,)πθπ≤≤2上一点,O 为原点.若直线OP 的倾斜角为4π,则点P 的直角坐标为 .15.(几何证明选讲选做题)如图2,O e 和'O e 相交于A B 、两点,过A 作两圆的切线分别交两圆于C 、D 两点,连接DB 、CB ,已知3BC =,4BD =,则AB = .图2 三、解答题共6小题,共80分.解答应写出文字说明、演算步骤或证明过程. 16(本小题满分12分). 已知函数()2sin 2cos()f x x x π=+-.(1)求函数()f x 的最小正周期和值域;(2)若函数()f x 的图象过点6(,)5α,344ππα<<.求()4f πα+的值.17(本小题满分12分)为了了解某年段1000名学生的百米成绩情况,随机抽取了 若干学生的百米成绩,成绩全部介于13秒与18秒之间,将 成绩按如下方式分成五组:第一组[13,14);第二组[14,15); ……;第五组[17,18].按上述分组方法得到的频率分布直方图如 图3所示,已知图中从左到右的前3个组的频率之比为3∶8∶19, 且第二组的频数为8.(1)将频率当作概率,请估计该年段学生中百米成绩在 图3[16,17)内的人数; (2)求调查中随机抽取了多少个学生的百米成绩; (3)若从第一、五组中随机取出两个成绩,求这两个成绩的差的绝对值大于1秒的概率.[来18(本小题满分14分) 一个几何体是由圆柱11ADD A 和三棱锥E ABC -组合而成,点A 、B 、C 在圆O 的圆周上,其正(主)视图、侧(左)视图的面积分别为10和12,如图4所示,其中EA ABC ⊥平面,AB AC ⊥,AB AC =,2AE =.(1)求证:AC BD ⊥; (2)求三棱锥E BCD -的体积.图419(本小题满分14分)已知数列2{}n a a p=有(常数0p >),其前n 项和为,n S1()2n n n a a S -=满足(*n N ∈)(1)求数列}{n a 的首项1a ,并判断}{n a 是否为等差数列,若是求其通项公式,不是,说明理由;(2)令}{,2112n n n n n n n P T S S S S P 是数列+++++=的前n 项和,求证:32<-n T n20 (本小题满分14分)如图5,椭圆2222:1(0)x y E a b a b +=>>的左焦点为1F ,右焦点为2F ,过1F 的直线交椭圆于A B 、两点,2ABF ∆ 的周长为8,且12AF F ∆面积最大时,12AF F ∆为正三角形. (1)求椭圆E 的方程;(2)设动直线:l y kx m =+与椭圆E 有且只有一个公共点P ,且与直线4x =相交于点Q , 证明:点(1,0)M 在以PQ 为直径的圆上。
2014年广东高考理科数学试题及参考答案
2014年普通高等学校招生全国统一考试(广东卷)(数学理科)一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,0,1}M =-,{0,1,2}N =,则M N = A.{1,0,1}- B.{1,0,1,2}- C.{1,0,2}- D.{0,1} 2.已知复数Z 满足(34)25i z +=,则Z=A.34i -B.34i +C.34i --D.34i -+3.若变量,x y 满足约束条件121y x x y z x y y ≤⎧⎪+≤=+⎨⎪≥-⎩且的最大值和最小值分别为m 和n ,则m n -=A.8B.7C.6D.54.若实数k 满足09k <<,则曲线221259x y k-=-与曲线221259x y k -=-的 A.离心率相等B.虚半轴长相等C.实半轴长相等D.焦距相等5.已知向量()1,0,1a =-,则下列向量中与a 成60︒夹角的是A.(-1,1,0)B.(1,-1,0)C.(0,-1,1)D.(-1,0,1)6.已知某地区中小学生人数和近视情况分别如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别是A.200,20B.100,20C.200,10D.100,107.若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,l l l l l l ⊥⊥⊥,则下面结论一定正确的是A.14l l ⊥B.14//l lC.14,l l 既不垂直也不平行D.14,l l 的位置关系不确定 8.设集合(){}12345=,,,,{1,0,1},1,2,3,4,5i A x x x x x x i ∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为A.60B.90C.120D.130二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.不等式521≥++-x x 的解集为 。
2014年高考理科数学广东卷有答案
数学试卷 第1页(共16页) 数学试卷 第2页(共16页)绝密★启用前2014年普通高等学校招生全国统一考试(广东卷)数学(理科)本试卷共4页,21小题,满分150分.考试用时120分钟. 注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、考场号、座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液,不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回. 一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,0,1}M =-,{0,1,2}N =,则M N = ( ) A .{0,1} B .{1,0,2}- C .{1,0,1,2}-D .{1,0,1}- 2.已知复数z 满足(34i)25z +=,则z =( )A .34i -+B .34i --C .34i +D .34i -3.若变量x ,y 满足约束条件,1,1,y x x y y ⎧⎪+⎨⎪-⎩≤≤≥且2z x y =+的最大值和最小值分别为m 和n ,则m n -=( )A .5B .6C .7D .84.若实数k 满足9k 0<<,则曲线221259x y k-=-与曲线221259x y k -=-的 ( )A .焦距相等B .实半轴长相等C .虚半轴长相等D .离心率相等5.已知向量(1,0,1)=-a ,则下列向量中与a 成60夹角的是( )A .(1,1,0)-B .(1,1,0)-C .(0,1,1)-D .(1,0,1)-6.已知某地区中小学生人数和近视情况分别如图1和图2所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为( )A .200,20B .100,20C .200,10D .100,10 7.若空间中四条两两不同的直线1l ,2l ,3l ,4l ,满足12l l ⊥,23l l ⊥,34l l ⊥,则下列结论一定正确的是( )A .14l l ⊥B .14l l ∥C .1l 与4l 既不垂直也不平行D .1l 与4l 的位置关系不确定8.设集合12345{(,,,,)|{1,0,1},1,2,3,4,5}i A x x x x x xi =∈-=,那么集合A 中满足条件“12345||||||||||3x x x x x ++++1≤≤”的元素个数为( )A .60B .90C .120D .130二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.不等式|1||2|x x -++≥5的解集为 . 10.曲线52x y e -=+在点(0,3)处的切线方程为 .11.从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为 .12.在ABC △中,角A ,B ,C 所对应的边分别为a ,b ,c ,已知cos cos 2b C c B b +=,则ab= . 13.若等比数列{}n a 的各项均为正数,且510119122e a a a a +=,则1220ln ln ln =a a a +++… .姓名________________ 准考证号_____________--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共16页) 数学试卷 第4页(共16页)(二)选做题(14-15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在极坐标系中,曲线1C 和2C 的方程分别为2sin cos ρθθ=和sin 1ρθ=.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线1C 和2C 的交点的直角坐标为 . 15.(几何证明选讲选做题)如图,在平行四边形ABCD 中,点E 在AB 上且2EB AE =,AC 与DE 交于点F ,则CDF AEF ∆=∆的面积的面积 .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数π()sin()4f x A x =+,x ∈R ,且5π3()122f =.(Ⅰ)求A 的值; (Ⅱ)若3()()2f f θθ+-=,π(0,)2θ∈,求3π()4f θ-.17.(本小题满分13分)随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36. 根据上述数据得到样本的频率分布表如下:分组 频数 频率 [25,30] 3 0.12 (30,35] 5 0.20 (35,40] 80.32(40,45] 1n 1f (45,50]2n2f(Ⅰ)确定样本频率分布表中1n ,2n ,1f 和2f 的值; (Ⅱ)根据上述频率分布表,画出样本频率分布直方图;(Ⅲ)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(30,50]的概率.18.(本小题满分13分)如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,30DPC ∠=,AF PC ⊥于点F ,FE CD ∥,交PD于点E .(Ⅰ)证明:CF ⊥平面ADF ; (Ⅱ)求二面角D AF E --的余弦值.19.(本小题满分14分)设数列{}n a 的前n 项和为n S ,满足21234n n S na n n +=--,*n ∈N ,且315S =. (Ⅰ)求1a ,2a ,3a 的值; (Ⅱ)求数列{}n a 的通项公式.20.(本小题满分14分)已知椭圆C :22221(0)x y a b a b+=>>的一个焦点为,离心率为3.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若动点00(,)P x y 为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.21.(本小题满分14分)设函数()f x =,其中2k <-.(Ⅰ)求函数()f x 的定义域D (用区间表示); (Ⅱ)讨论函数()f x 在D 上的单调性;(Ⅲ)若6k <-,求D 上满足条件()(1)f x f >的x 的集合(用区间表示).数学试卷 第5页(共16页) 数学试卷 第6页(共16页){1,0,1,2}M N =-在点(1,1)--处目标函数分别取得最小值3n =-,则6m n -=,故选B.【解析】09k <<(9)34k -=-【提示】根据k 的取值范围,判断曲线为对应的双曲线,以及221)(1,1,0)(1)1--+22221)(1,1,0)1(1)0-=+-+221)(0,1,1)1(1)-+-221)(1,0,1)1(1)-+-【提示】根据空间向量数量积的坐标公式,即可得到结论2000)2%200=20002%50%20=可得总体个数,根据抽取比例可得样本容量,计算分层抽样的抽取比例,求得样本中的高中学生数,再利用图可得出结论,14l l ,的位置关系不确定.3)(2,)+∞式|1|x-+3)(2,)+∞.【提示】把原不等式去掉绝对值,转化为与之等价的三个不等式组,分别求得每个不等式组的解集,再取并集,即得所求20ln a++=220)a=ln(直接由等比数列的性质结合已知得到数学试卷第7页(共16页)数学试卷 第9页(共16页) 数学试卷 第10页(共16页)32A32=,3A =.(Ⅰ)PD ⊥平面PD CD D =,,数学试卷 第11页(共16页) 数学试卷 第12页(共16页)m AF m EF ⎧⊥⎪⎨⊥⎪⎩,又330AE EF ⎧⎛=⎪ ⎪⎝⎨⎪⎛= ⎪⎩,3434m AF x m EF y ⎧=⎪⎪⎨⎪==(Ⅰ)知平面ADF 的一个法向量(3,1,0)PC =-,设二面角|m PCm PC m PC <>==419(Ⅰ)324a S =(21k +++数学试卷 第13页(共16页) 数学试卷 第14页(共16页))(12,12)(12,)k k k -----+---+--+∞,12)k ---和(1,12)k --+-,1)k --和(12,)k -+-+∞)(12,3)(1,12)(12,1k k k ------+---+--+3]2[(2x x +3或22x x +(20)k k -->)(12,12)(12,)k k k -----+---+--+∞.232222)(22)2(22)2)2(2)3x x k x x x x k x x k +++++⎤+++++-⎦)(12,3)(1,12)(12,1k k k ------+---+--+数学试卷 第15页(共16页) 数学试卷 第16页(共16页).【提示】(Ⅰ)由题意可知222(2)2(2)30x x k x x k +++++->,又2k <-,解不等式即可求出函数的定义域.(Ⅱ)根据复合函数的定义域之间的关系即可得到结论. (Ⅲ)根据函数的单调性,即可得到不等式的解集.【考点】函数的定义域,导数的运算,利用导数求函数的单调性,函数单调性的应用。
2014年广东高考理科数学试题参考答案与解析
2014年普通高等学校招生全国统一考试(广东卷)数学理一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{1,0,1},{0,1,2},M N =-=则M N ⋃=A .{1,0,1}- B. {1,0,1,2}- C. {1,0,2}- D. {0,1}2.已知复数Z 满足(34)25,i z +=则Z=A .34i - B. 34i + C. 34i -- D. 34i -+3.若变量,x y 满足约束条件121y x x y z x y y ≤⎧⎪+≤=+⎨⎪≥-⎩且的最大值和最小值分别为M 和m ,则M-m=A .8 B.7 C.6 D.54.若实数k 满足09,k <<则曲线221259x y k-=-与曲线221259x y k -=-的 A .离心率相等 B.虚半轴长相等 C. 实半轴长相等 D.焦距相等5.已知向量()1,0,1,a =-则下列向量中与a 成60︒夹角的是A .(-1,1,0) B. (1,-1,0) C. (0,-1,1) D. (-1,0,1)6、已知某地区中小学生人数和近视情况分别如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为A 、200,20B 、100,20C 、200,10D 、100,107、若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,,l l l l l l ⊥⊥⊥,则下列结论一定正确的是A .14l l ⊥B .14//l lC .14,l l 既不垂直也不平行D .14,l l 的位置关系不确定8.设集合(){}12345=,,,,1,0,1,1,2,3,4,5i A x x x x x x i ∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为A .60 B90 C.120 D.130二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13题)9.不等式521≥++-x x 的解集为 。
2014年广东高考理科数学试题及其参考答案word
2014年普通高等学校招生全国统一考试(广东卷)数学理一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,0,1}M =-,{0,1,2}N =,则M N = A.{1,0,1}- B.{1,0,1,2}- C.{1,0,2}- D.{0,1} 2.已知复数Z 满足(34)25i z +=,则Z=A.34i -B.34i +C.34i --D.34i -+3.若变量,x y 满足约束条件121y xx y z x y y ≤⎧⎪+≤=+⎨⎪≥-⎩且的最大值和最小值分别为m 和n ,则m n -=A.8B.7C.6D.54.若实数k 满足09k <<,则曲线221259x y k -=-与曲线221259x y k -=-的 A.离心率相等B.虚半轴长相等C.实半轴长相等D.焦距相等5.已知向量()1,0,1a =-,则下列向量中与a 成60︒夹角的是A.(-1,1,0)B.(1,-1,0)C.(0,-1,1)D.(-1,0,1)6.已知某地区中小学生人数和近视情况分别如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别是A.200,20B.100,20C.200,10D.100,107.若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,l l l l l l ⊥⊥⊥,则下面结论一定正确的是A.14l l ⊥B.14//l lC.14,l l 既不垂直也不平行D.14,l l 的位置关系不确定8.设集合(){}12345=,,,,{1,0,1},1,2,3,4,5iA x x x x x x i ∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为A.60B.90C.120D.130二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.不等式521≥++-x x 的解集为 。
2014年广东省数学(理)高考真题含答案(超完美word版)
2014年普通高等学校招生全国统一考试(广东卷)数学(理科)一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,0,1}M =-,{0,1,2}N =,则M N =A. {0,1}B. {1,0,2}-C. {1,0,1,2}-D. {1,0,1}-2.已知复数Z 满足(34)25i z +=,则Z=A. 34i -+B. 34i --C. 34i +D. 34i -3.若变量,x y 满足约束条件121y x x y z x y y ≤⎧⎪+≤=+⎨⎪≥-⎩且的最大值和最小值分别为m 和n ,则m n -=A.5B.6C.7D.84.若实数k 满足09k <<,则曲线221259x y k -=-与曲线221259x y k -=-的 A. 焦距相等 B. 实半轴长相等 C. 虚半轴长相等 D. 离心率相等5.已知向量()1,0,1a =-,则下列向量中与a 成60︒夹角的是A.(-1,1,0)B.(1,-1,0)C.(0,-1,1)D.(-1,0,1)6.已知某地区中小学生人数和近视情况分别如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别是A.200,20B.100,20C.200,10D.100,107.若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,l l l l l l ⊥⊥⊥,则下面结论一定正确的是 A.14l l ⊥ B.14//l l C.14,l l 既不垂直也不平行 D.14,l l 的位置关系不确定8.设集合(){}12345=,,,,{1,0,1},1,2,3,4,5iA x x x x x x i ∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为A.60B.90C.120D.130二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.不等式521≥++-x x 的解集为 。
2014年广东高考理科数学试题与参考答案
2014年普通高等学校招生全国统一考试(卷)(数学理科)一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,0,1}M =-,{0,1,2}N =,则M N =U A.{1,0,1}- B.{1,0,1,2}- C.{1,0,2}- D.{0,1} 2.已知复数Z 满足(34)25i z +=,则Z=A.34i -B.34i +C.34i --D.34i -+3.若变量,x y 满足约束条件121y x x y z x y y ≤⎧⎪+≤=+⎨⎪≥-⎩且的最大值和最小值分别为m 和n ,则m n -=A.8B.7C.6D.54.若实数k 满足09k <<,则曲线221259x y k -=-与曲线221259x y k -=-的 A.离心率相等B.虚半轴长相等C.实半轴长相等D.焦距相等5.已知向量()1,0,1a =-,则下列向量中与a 成60︒夹角的是 A.(-1,1,0) B.(1,-1,0) C.(0,-1,1) D.(-1,0,1)6.已知某地区中小学生人数和近视情况分别如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别是A.200,20B.100,20C.200,10D.100,10 7.若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,l l l l l l ⊥⊥⊥,则下面结论一定正确的是A.14l l ⊥B.14//l lC.14,l l 既不垂直也不平行D.14,l l 的位置关系不确定 8.设集合(){}12345=,,,,{1,0,1},1,2,3,4,5iA x x x x x x i ∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为A.60B.90C.120D.130小学 初中高中 年级 O二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.不等式521≥++-x x 的解集为 。
2014年广东卷数学试题及答案(理)
2014年普通高等学校招生全国统一考试(广东卷)数学理一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{1,0,1},{0,1,2},M N =-=则M N ⋃=A .{1,0,1}- B. {1,0,1,2}- C. {1,0,2}- D. {0,1}2.已知复数Z 满足(34)25,i z +=则Z=A .34i - B. 34i + C. 34i -- D. 34i -+3.若变量,x y 满足约束条件121y x x y z x y y ≤⎧⎪+≤=+⎨⎪≥-⎩且的最大值和最小值分别为M 和m ,则M-m=A .8 B.7 C.6 D.54.若实数k 满足09,k <<则曲线221259x y k -=-与曲线221259x y k -=-的 A .离心率相等 B.虚半轴长相等 C. 实半轴长相等 D.焦距相等5.已知向量()1,0,1,a =-则下列向量中与a 成60︒夹角的是A .(-1,1,0) B. (1,-1,0) C. (0,-1,1) D. (-1,0,1)6、已知某地区中小学生人数和近视情况分别如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为A 、200,20B 、100,20C 、200,10D 、100,107、若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,,l l l l l l ⊥⊥⊥,则下列结论一定正确的是A .14l l ⊥B .14//l lC .14,l l 既不垂直也不平行D .14,l l 的位置关系不确定8.设集合(){}12345=,,,,1,0,1,1,2,3,4,5i A x x x x x x i ∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为A .60 B90 C.120 D.130二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.(一)必做题(9~13题)9.不等式521≥++-x x 的解集为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广东2014届高三下学期十校联考数学(理科)本试卷共6页,21小题, 满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上. 2.选择题每小题选出答案后,用黑色字迹钢笔或签字笔将答案填写在答题卡上对应题目的序号下面,如需改动,用橡皮擦干净后,再选填其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U =R ,集合{/|1|1}A x x =-<, 1{0}xB xx-=≤,则A ∩(∁U B )=( ) A .(0,1) B .[0,1) C .(1, 2) D . (0,2)x y -3、已知),2(πα∈,5sin =α,则)4tan(α-的值等于( )A .7-B .71-C .7D .714. 等比数列{}n a 中,39a =,前3项和为32303S x dx =⎰,则公q 的值是( )A. 1B.-12 C. 1或-12 D. - 1或-125.定义在R 上的偶函数f (x )在(0,+∞)上是增函数,且f (13)=0,则不等式()0xf x >的解集是( )A .(0,13)B .(13 ,+∞)C .(- 13,0)∪(13,+∞)D .(-∞,-13)∪(0,13)6.一个几何体的三视图如右图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积...为A .π12B . π3C D7.已知双曲线22221x y a b-=(0a >,0b >),过其右焦点且垂直于实轴的直线与双曲线交于,M N两点,O 为坐标原点,若OM ON ⊥,则双曲线的离心率为( )A B C D 8. 已知集合M={(x,y )|y f (x )=},若对于任意11(x ,y )M ∈,存在22(x ,y )M ∈,使得12120x x y y +=成立,则称集合M 是“垂直对点集”.给出下列四个集合:①M={1(x,y )|y x=}; ②M={1(x,y )|y sin x =+};③M={2(x,y )|y log x =}; ④M={2x (x,y )|y e =-}.其中是“垂直对点集”的序号是( ) A.①② B .②④ C .①④ D .②③二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(8~13题)9.下面茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损.则甲的平均成绩超过乙的平均成绩的 概率为 10. 设(5nx 的展开式的各项系数之和为M ,二项式系数之和为N ,若240M N -=,则展开式中的常数项_________.11. 下列说法:①“x ∃∈R ,23x >”的否定是“x ∀∈R ,23x ≤”;②函数s i n (2)s i n (2)36y x x ππ=+- 的最小正周期是π;③命题“函数()f x 在0x x =处有极值,则0()0f x '=”的否命题是真命题;④()f x 是(,0)(0,)-∞+∞ 上的奇函数,0x >的解析式是()2x f x =,则0x <时的解析式为()2x f x -=-.其中正确的说法是__________.12. 已知向量a =(2,1),b =(x ,y ).若x ∈[-1,2],y ∈[-1,1],则向量a ,b 的夹角是钝角的概率是 .13.右表给出一个“三角形数阵”.已知每一列数成等差数列,从第三行起, 每一行数成等比数列,而且每一行的公比都相等,记第i 行第j 列的数为ij a (*,,N j i j i ∈≥),则53a 等于 ,______(3)mn a m =≥.( ) ▲ 14.在极坐标系中,过点(3,)3π且垂直于极轴的直线方程的极坐标方程是 (请选择正确标号填空) (1)3sin 2=ρθ (2)3cos 2=ρθ (3)3sin 2=ρθ (4)3cos 2=ρθ15. 如图,在△ABC 和△ACD 中,∠ACB =∠ADC =90°,∠BAC =∠CAD ,⊙O 是以AB 为直径的圆,DC 的延长线与AB 的延长线交于点E . 若EB =6,EC =62,则BC 的长为 .三、解答题:本大题共6小题,共80分。
解答应写出文字说明,证明过程或演算步骤。
16、(本小题满分12分)已知函数2()2sin cos f x x x x ωωω=+0ω>)的最小正周期为π.(Ⅰ)求函数)(x f 的单调增区间; (Ⅱ)将函数)(x f 的图象向左平移6π个单位,再向上平移1个单位,得到函数()y g x =的图象.若()y g x =在[0,](0)b b >上至少含有10个零点,求b 的最小值.17.(本小题满分12分)某高中为了推进新课程改革,满足不同层次学生的需求,决定从高一年级开始,在每周的周一、周三、周五的课外活动期间同时开设数学、物理、化学、生物和信息技术辅导讲座,每位有兴趣的同学可以在期间的任何一天参加任何一门科目的辅导讲座,也可以放弃任何一门科目的辅导讲座。
(规定:各科达到预先设定的人数时称为满座,否则称为不满座)统计数据表明,各学科讲座各天的满座的概率如下表:根据上表:(1)求数学辅导讲座在周一、周三、周五都不满座的概率;(2)设周三各辅导讲座满座的科目数为ξ,求随机变量ξ的分布列和数学期望。
18. (本小题满分14分)在直角梯形ABCD 中,//AD BC ,2BC AD =2AB ==AB BC ⊥,如图,把ABD ∆沿BD 翻折,使得平面ABD ⊥平面BCD .(I )求证:CD AB ⊥;(II )若点M 为线段BC 中点,求点M 到平面ACD 的距离; (III )在线段BC 上是否存在点N ,使得AN 与平面ACD 所成角为60?若存在,求出BNBC的值;若不存在,请说明理由. 19.(本小题满分14分)设椭圆222:12x y M a +=(a >的右焦点为1F ,直线2:22-=a a x l与x 轴交于点A ,若112OF AF +=0(其中O 为坐标原点). (1)求椭圆M 的方程;(2)设P 是椭圆M 上的任意一点,EF 为圆()12:22=-+y x N 的任意一条直径(E 、F 为直径的两个端点),求PF PE ⋅的最大值.20.(本小题满分14分)已知各项均为正数的数列{}n a 满足12212+++=n n n n a a a a , 且42342+=+a a a ,其中*n N ∈.(1) 求数列{}n a 的通项公式;(2) 设数列}{n b 满足nnn n na b 2)12(⋅+=,是否存在正整数, (1)m n m n <<,使得n m b b b ,,1成等比数列?若存在,求出所有的,m n 的值;若不存在,请说明理由。
(3) 令22(1)1(1)n n n c n n a +++=+,记数列}{n c 的前n 项和为n S ,其中*n N ∈,证明:51162n S ≤<。
21. (本小题满分14分) 已知函数2()(0)f x x ax a =-≠,()ln g x x =,()f x 图象与x 轴异于原点的交点M 处的切线为1l ,(1)g x -与x 轴的交点N 处的切线为2l , 并且1l 与2l 平行. (1)求(2)f 的值;(2)已知实数t∈R,求[]ln ,1,u x x x e =∈的取值范围及函数[][()+],1,y f xg x t x e =∈的最小值; (3)令()()'()F x g x g x =+,给定1212,(1,),x x x x ∈+∞<,对于两个大于1的正数βα,,存在实数m 满足:21)1(x m mx -+=α,21)1(mx x m +-=β,并且使得不等式12|()()||()()|F F F x F x αβ-<-恒成立,求实数m 的取值范围.理科数学参考答案一、选择题:A D A C CB D B二、填空题 9. 45 10. 20- 11. ①④ 12. 13 13. 5,16 12n m +14.(4) 15. 2 3.1. 【答案】A 【解析】由|1|1x -<,得-1<x -1<1,即0<x <2 , ∴ A =(0,2). 由10xx-≤,得(1)00x x x -≤⎧⎨≠⎩(1)00,10x x x x x -≥⎧⇒⇒<≥⎨≠⎩或,∴ B =(,0)[1,)-∞+∞ , ∁U B =[0,1), A ∩(∁U B )= (0,1).2. 【答案】D ;【解析】(x ﹣2)i ﹣y=1,即(x ﹣2)i=y+1, 所以,解得x=2,y=﹣1,所以(1)x y i -+=(1+i )2+1=(1+i )3=﹣2+2i , 故选D .3.答案:D ),2(ππα∈,53sin =α, 4cos 5α∴==- ,sin 3tan cos 4ααα==- )4tan(πα-3tan tan144731tan tan 144παπα---==-=-+-。
4.【答案】C 【解析】3233300327027S x dx x ===-=⎰,设公比为q ,又93=a ,则279992=++q q,即0122=--q q ,解得1=q 或21-=q ,故选C . 5. 【答案】 C 【解析】 ∵偶函数f (x )在(0,+∞)上为增函数,又f (13)=0,所以函数f (x )的代表图如图,()0xf x >解集是(- 13,0)∪(13,+∞),选C6.【答案】B 【解析】由三视图可得,该几何体为一条侧棱垂直于底面的四棱锥, 如下图中1C ABCD -,其中底面ABCD 为边长为1的正方形,11C C = 由图可知,该四棱锥的外接球球心即该四棱锥所在的正方体的中心,由此可得球半径R =,所以其表面积为243S R ππ==,故选B 7. 【答案】D .【解析】:画出图形,根据双曲线的对称性及OM ON ⊥可得OMN ∆是等腰直角三角形(不妨设点M 在第一象限),2OF 平分角MON ∠,所以22OF MF =, 即2b c a =(因为由22221c y a b -=得到22222c a y a b-=,所以2b y a =±),所以22ca c a =-,整理得210e e --=,解得e =1e >,可得e =,故选D . 8. 【答案】 B 【解析】:依题意:要使得12120x x y y +=成立,只需过原点任作一直线1l 与该函数的图象相交,再过原点作与1l 垂直的直线2l 也与该函数的图象相交即可。