高中物理必修3物理 全册全单元精选试卷专题练习(word版
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理必修3物理 全册全单元精选试卷专题练习(word 版
一、必修第3册 静电场及其应用解答题易错题培优(难)
1.万有引力和库仑力有类似的规律,有很多可以类比的地方。
已知引力常量为G ,静电力常量为k 。
(1)用定义静电场强度的方法来定义与质量为M 的质点相距r 处的引力场强度E G 的表达式;
(2)质量为m 、电荷量为e 的电子在库仑力的作用下以速度v 绕位于圆心的原子核做匀速圆周运动,该模型与太阳系内行星绕太阳运转相似,被称为“行星模型”,如图甲。
已知在一段时间内,电子走过的弧长为s ,其速度方向改变的角度为θ(弧度)。
求出原子核的电荷量Q ;
(3)如图乙,用一根蚕丝悬挂一个金属小球,质量为m ,电荷量为﹣q 。
悬点下方固定一个绝缘的电荷量为+Q 的金属大球,蚕丝长为L ,两金属球球心间距离为R 。
小球受到电荷间引力作用在竖直平面内做小幅振动。
不计两球间万有引力,求出小球在库仑力作用下的振动周期。
【答案】(1)质量为M 的质点相距r 处的引力场强度的表达式为
2
GM
r ;(2)原子核的电荷量为2mv s
ke
θ;(3)小球在库仑力作用下的振动周期为2Lm R kQq π
【解析】 【详解】
(1)根据电场强度的定义式方法,那么质量为M 的质点相距r 处的引力场强度E G 的表达式:
2G F GM
E m r
=
= (2)根据牛顿第二定律,依据库仑引力提供向心力,则有:
2
2Qe v k m R R
= 由几何关系,得
s
R θ
=
解得:
2mv s
Q ke
θ=
(3)因库仑力:
2Qq F R
=
等效重力加速度:
2F kQq g m mR
'=
= 小球在库仑力作用下的振动周期:
22L Lm T R g kQq
π
π'==
2.如图所示,单层光滑绝缘圆形轨道竖直放置,半径r=lm ,其圆心处有一电荷量Q =+l×l0-4
C 的点电荷,轨道左侧是一个钢制“隧道”,一直延伸至圆形轨道最低点B ;在“隧道”底部
辅设绝缘层。
“隧道”左端固定一弹簧,用细线将弹簧与一静止物块拴接,初始状态弹簧被压缩,物块可看成质点,质量m=0.1kg ,电荷量q =-
2
3
×10-6C ,与“隧道”绝缘层间的动摩擦因数μ=0.2。
剪断细线,弹簧释放弹性势能E p ,促使物块瞬间获得初速度(忽略加速过程)。
之后物块从A 点沿直线运动至B 点后沿圆形轨道运动,恰好通过最高点C 。
其中l AB =2m ,设物块运动时电荷量始终不变,且不对Q 的电场产生影响,不计空气阻力,静电力常量为k = 9.0×l09N·
m 2/C 2。
求: (1)物块在最高点C 时的速度大小;
(2)物块在圆形轨道最低点B 时对轨道的压力大小; (3)弹簧压缩时的弹性势能E p 和物块初速度v A 。
【答案】(1) 4m/s (2) 6N (3) 3.2J, 8m/s 【解析】 【详解】
(1)物块恰好通过最高点C ,轨道对物块没有作用力,由牛顿第二定律得
2
C
v mg F m
r
+=库
其中
2Qq
F k
r
=库
解得
v C =4m/s
(2)B →C 过程,由动能定理得
2211222
C B mv v mg r m -⋅=
- 解得
56m/s B v =
在B 点,由牛顿第二定律得
2
B
NB v F F mg m
r
+-=库
解得
F NB =6N
根据牛顿第三定律知物块在圆形轨道最低点B 时对轨道的压力大小 F NB ′=F NB =6N 。
(3)A→B ,由动能定理得
221122
AB B A mv f v l m -=
- 又 f=μmg 解得
v A =8m/s
弹簧压缩时的弹性势能
2
12
p A E mv =
解得
E p =3.2J
3.如图所示,一条长为l 的细线,上端固定,下端拴一质量为m 的带电小球.将它置于一匀强电场中,电场强度大小为E ,方向水平向右.已知当细线离开竖直位置的偏角为α时,小球处于平衡状态.
(1)小球带何种电荷并求出小球所带电荷量;
(2)若将小球拉到水平位置后放开手,求小球从水平位置摆到悬点正下方位置的过程中,电场力对小球所做的功.
【答案】(1)正,tan /mg E α (2)tan mgl α 【解析】
【详解】
(1)小球所受电场力的方向与场强方向一致,则带正电荷; 由平衡可知:
Eq =mgtanα
得:
mgtan q E
α
=
(2)小球从水平位置摆到悬点正下方位置的过程中,电场力做负功,大小为
W =Eql = mgltanα
4.如图所示,长=1m L 的轻质细绳上端固定,下端连接一个可视为质点的带电小球,小球静止在水平向右的匀强电场中,绳与竖直方向夹角θ=37°。
已知小球所带电荷量
61.010q C -=⨯,匀强电场的场强33.010N/C E =⨯,取重力加速度210m/s g =,
sin370.6︒=。
求:
(1)小球所受电场力F 大小; (2)小球质量m ;
(3)将电场撤去小球回到最低点时速度v 的大小; (4)撤去电场后小球到达最低点时绳子对小球的拉力大小。
【答案】(1)3⨯10-3N ;(2)4⨯10-4kg ;(3)2m/s ;(4)5.6⨯10-3N 【解析】 【分析】 【详解】
(1)小球所受电场力F 大小
3310N F qE -==⨯
(2)球受mg 、绳的拉力T 和电场力F 作用,
根据共点力平衡条件和图中几何关系有
tan mg qE θ=
解得小球的质量
-4
410kg
m=⨯
(3)将电场撤去,小球摆动到最低点的过程由机械能守恒定律得:
2
1
(1-cos37)
2
mgL mv
︒=
解得
2.0m/s
v=
(4)将电场撤去,小球摆动到最低点时由牛顿第二定律得
2
-
v
T mg m
L
=
解得
-3
5.610N
T=⨯
5.如图所示,小球的质量为0.1kg
m=,带电量为5
1.010C
q-
=⨯,悬挂小球的绝缘丝线与竖直方向成30
θ=︒时,小球恰好在水平向右的匀强电场中静止不动.问:
(1)小球的带电性质;
(2)电场强度E的大小;
(3)若剪断丝线,求小球的加速度大小.
【答案】(1)小球带正电(2)4
5.7710N/C
E=⨯(3)2
11.54m/s
a=
【解析】
【详解】
(1)对小球进行受力分析,如图;由电场力的方向可确定小球带正电;
(2)根据共点力平衡条件,有qE=mgtan300
解得:04
5
3
1
303
=/ 5.7710/
10
mgtan
E N C N C
q-
≈⨯
=
(3
)当线断丝线后,小球的合力为0
30mg
F cos =
由牛顿第二定律,则有:22
/11.54/cos303
F g a m s m s m ==== 小球将做初速度为零,加速度的方向沿着线的反向,大小为11.54m/s 2,匀加速直线运动. 【点睛】
本题关键是对小球受力分析,明确带电小球受电场力、细线的拉力和重力,根据共点力平衡条件及牛顿第二定律列示求解.
6.如图,绝缘细杆AB 倾角为α,在杆上B 点处固定有一电荷量为Q 的正电荷.现将带正电的小球由距B 点竖直高度为H 的A 点处无初速释放,小球下滑过程中电荷量不变.己知小球的质量为m 、电荷量为q .不计小球与细杆间的摩擦,整个装置处在真空中.静电力常量为k ,重力加速度为g .求:
(1)正电荷Q 在A 处产生的场强大小; (2)小球刚释放时的加速度大小;
(3)若A 、B 间的距离足够大,小球动能最大时球与B 点间的距离.
【答案】(1) 2
2sin A Q E k H α=(2)22
sin sin kQq a g mH
αα=- (3)sin kQq R mg α=【解析】 【详解】 (I)根据
2
Q
E k
r = 又因为
sin H
r α=
所以
2
2sin A Q E k
H
α= (2)根据牛顿第二定律
sin mg F ma α-=
根据库仑定律
Qq F k
r
= 解得
22
sin sin kQq a g mH
α
α=- (3)当小球受到的合力为零,即加速度为零时,动能最大 设此时小球与B 点间的距离为R ,则
2
sin kQq
mg R α=
解得
sin kQq
R mg α
=
答案:(1) 2
2sin A Q E k H α=(2)22
sin sin kQq a g mH
αα=- (3)sin kQq R mg α=
二、必修第3册 静电场中的能量解答题易错题培优(难)
7.如图甲所示,倾角为θ=30°绝缘斜面被垂直斜面直线MN 分为左右两部分,左侧部分光滑,范围足够大,上方存在大小为E =1 000 N/C ,方向沿斜面向上的匀强电场,右侧部分粗糙,范围足够大,一质量为m =1 kg ,长为L =0.8 m 的绝缘体制成的均匀带正电直棒AB 置于斜面上,A 端距MN 的距离为d ,现给棒一个沿斜面向下的初速度v 0,并以此时作为计时的起点,棒在最初0.8 s 的运动图像如图乙所示,已知0.8 s 末棒的B 端刚好进入电场,取重力加速度g =10 m/s 2,求:
(1)直棒AB 开始运动时A 端距MN 的距离为d ; (2)直棒AB 的带电量q ;
(3)直棒AB 最终停止时,直棒B 端到MN 的距离. 【答案】(1)20 m (2)7.5×10-3 C (3)125 m 【解析】 【分析】
根据v-t 图像确定出直棒AB 匀减速直线运动的位移,结合棒的长度,得出直棒AB 开始运动时A 端距MN 的距离为d ;根据图线得出直棒AB 匀减速直线运动的加速度大小,根据加速度,结合牛顿第二定律求出带电量的大小;根据动能定理得出,物体在电场中运动的距离. 【详解】
(1)由v-t 图像可知直棒AB 匀减速直线运动.0~0.8s 内棒运动的位移为:
0120.8m 2
t
v v x t +=
= .A 端距离MN 的距离为:120.80.820m d x L m =-=-=. (2)棒的加速度为:2Δv
a=
=2.5m/s Δt
.对直棒AB 进行受力分析,越过MN 后受到重力、斜面支持力和电场力,合力为sin F Eq mg θ=-.根据牛顿第二定律,:
sin Eq mg ma θ-= ,代入数据解得:37.510C q -=⨯ .
(3)根据动能定律,物体从B 端到达MN 至最终停止的过程,满足:
2221
sin 02
mgx Eqx mv θ-=-.带入数据解得,x 2 =125 m
故B 端在MN 右边且距MN 为125 m . 【点睛】
本题考查了牛顿第二定律、动能定理和运动学公式的综合运用,通过v-t 图像,确定出物体运动的加速度不变,得出物体做匀变速直线运动是解决本题的关键.
8.如图所示,BCD 为固定在竖直平面内的半径为r=10m 的圆弧形光滑绝缘轨道,O 为圆心,OC 竖直,OD 水平,OB 与OC 间夹角为53°,整个空间分布着范围足够大的竖直向下的匀强电场.从A 点以初速v 0=9m/s 沿AO 方向水平抛出质量m=0.1kg 的小球(小球可视为质点),小球带正电荷q=+0.01C ,小球恰好从B 点沿垂直于OB 的方向进入圆弧轨道.不计空气阻力.求:
(1)A 、B 间的水平距离L (2)匀强电场的电场强度E
(3)小球过C 点时对轨道的压力的大小F N (4)小球从D 点离开轨道后上升的最大高度H
【答案】(1)9m (2)20/E N C =(3) 4.41N F N =(4) 3.375H m = 【解析】 【分析】 【详解】
(1)从A 到B ,0tan 53By By v v v at =︒=,,cos53y r =︒,212
y at = 解得1t s =,212/a m s =,09L v t m ==
(2)根据牛顿第二定律可得mg qE ma +=,解得20/E N C = (3)从A 到C ,根据动能定理可得2201122
c mar mv mv =
- 在C 点,2
c N v F ma m r
-=,解得 4.41N F N =
(4)对全过程运用动能定理,2
012
mv maH =,故 3.375H m = 【点睛】
应用动能定理应注意的几个问题(1)明确研究对象和研究过程,找出始末状态的速度.(2)要对物体正确地进行受力分析,明确各力做功的大小及正负情况(待求的功除外).(3)有些力在物体运动过程中不是始终存在的.若物体运动过程中包括几个阶段,物体在不同阶段内的受力情况不同,在考虑外力做功时需根据情况区分对待
9.电容器是一种重要的电学元件,基本工作方式就是充电和放电.由这种充放电的工作方式延伸出来的许多电学现象,使得电容器有着广泛的应用.如图1所示,电源与电容器、电阻、开关组成闭合电路.已知电源电动势为E ,内阻不计,电阻阻值为R ,平行板电容器电容为C ,两极板间为真空,两极板间距离为d ,不考虑极板边缘效应.
(1)闭合开关S ,电源向电容器充电.经过时间t ,电容器基本充满. a .求时间t 内通过R 的平均电流I ;
b .请在图2中画出充电过程中电容器的带电荷量q 随电容器两极板电压u 变化的图象;并求出稳定后电容器储存的能量E0;
(2)稳定后断开开关S .将电容器一极板固定,用恒力F 将另一极板沿垂直极板方向缓慢拉开一段距离x ,在移动过程中电容器电荷量保持不变,力F 做功为W ;与此同时,电容器储存的能量增加了ΔE .请推导证明:W=ΔE .要求最后的表达式用已知量表示. 【答案】(1)a .CE I t
= b .2
012E CE = (2)见解析
【解析】
试题分析:(1)a .设充电完毕电容器所带电量为Q ,即时间t 内通过电阻R 的电量,此时电容器两端电 压等于电源的电动势 根据电容的定义
(2分)
根据电流强度的定义(2分)
解得平均电流(2分)
b.根据q = Cu,画出q-u图像如图1所示(2分)
由图像可知,图线与横轴所围面积即为电容器储存的能量,如图2中斜线部分所示
由图像求出电容器储存的电能(2分)
解得(2分)
(2)设两极板间场强为,两极板正对面积为S
根据,,得,可知极板在移动过程中板间场强不变,两极板间的相互作用力为恒力.两板间的相互作用可以看作负极板电荷处于正极板电荷产生的电场中,可知两板间的相互作用力.(2分)缓慢移动时有
根据功的定义有
代入已知量得出(2分)
电容器增加的能量(或)
(2分)
代入已知量得出(2分)
所以
考点:电容,电动势,能量守恒.
10.如图所示,真空室中电极K发出的电子(初速度不计)经过电势差为U1的加速电场加速后,沿两水平金属板C、D间的中心线射入两板间的偏转电场,电子离开偏转电极时速度方向与水平方向成45°,最后打在荧光屏上,已知电子的质量为m、电荷量为e,C、D 极板长为l,D板的电势比C板的电势高,极板间距离为d,荧光屏距C、D右端的距离为1
.电子重力不计.求:
6
(1)电子通过偏转电场的时间t 0; (2)偏转电极C 、D 间的电压U 2; (3)电子到达荧光屏离O 点的距离Y . 【答案】(1)12m l eU (2)
12d U l (3)2
3
l 【解析】 【分析】 【详解】
(1)电子在离开B 板时的速度为v ,根据动能定理可得:2
112
eU mv = 得:1
2eU v m
=
电子进入偏转电场水平方向做匀速直线运动,则有:01
2l m t l v eU == (2)电子在偏转电极中的加速度:1
eU a md
=
离开电场时竖直方向的速度:201
2y U l e
v at d
mU == 离开电场轨迹如图所示:
电子的速度与水平方向的夹角:21
tan 45?=2y v U l
v
dU =
解得:1
22dU U l
=
(3)离开电场的侧向位移:21012
y at =
解得:12
l y =
电子离开电场后,沿竖直方向的位移:2tan 45=66
l l y =
︒ 电子到达荧光屏离O 点的距离:122
3
Y y y l =+= 【点睛】
本题考查带电粒子在电场中的运动,要注意明确带电粒子的运动可分加速和偏转两类,加速一般采用动能定理求解,而偏转采用的方法是运动的合成和分解.
11.如图,带电荷量为q =+2×10-3C 、质量为m =0.1kg 的小球B 静置于光滑的水平绝缘板右端,板的右侧空间有范围足够大的、方向水平向左、电场强度E =103N/C 的匀强电场.与B 球形状相同、质量为0.3kg 的绝缘不带电小球A 以初速度0v =10m/s 向B 运动,两球发生弹性碰撞后均逆着电场的方向进入电场,在电场中两球又发生多次弹性碰撞,已知每次碰撞时间极短,小球B 的电荷量始终不变,重力加速度g 取10m/s 2求: (1)第一次碰撞后瞬间两小球的速度大小; (2)第二次碰撞前瞬间小球B 的动能; (3)第三次碰撞的位置
【答案】25.(1)5m/s ;15m/s (2)6.25J ;(3)第三次碰撞的位置是在第一次碰撞点右方5m 、下方20m 处. 【解析】 【分析】 【详解】
(1)第一次碰撞时,
两小球动量守恒,即3mv 0=3mv 1+mv 2
机械能守恒,即
22201211133222
mv mv mv ⋅=⋅+ 解得碰后A 的速度v 1=5m/s ,B 的速度v 2=15m/s
(2)碰后AB 两球进入电场,竖直方向二者相对静止均做自由落体运动;水平方向上,A 做匀速运动,
B 做匀减速直线运动,其加速度大小a B =
qE
m
=20m/s 2 设经过t 时间两小球再次相碰,则有v 1t =v 2t -1
2
a B t 2 解得t =1s
此时,B 的水平速度为v x =v 2-a B t =-5 m/s (负号表明方向向左)
竖直速度为v y =gt =10 m/s 故第二次碰前B 的动能22211() 6.2522
KB B x y E mv m v v J =
=+= (3)第二次碰撞时,AB 小球水平方向上动量守恒'
'
1133x x mv mv mv mv +=+ 机械能守恒,即
2222'2'2'2
'21111113()()3()()2222
y x y y x y m v v m v v m v v m v v ⋅++⋅+=⋅++⋅+ 解得第二次碰后水平方向A 的速度'10v =,B 的速度'
x v =10m/s
故第二次碰撞后A 竖直下落(B 在竖直方向上的运动与A 相同), 水平方向上, B 做匀减速直线运动,
设又经过t '时间两小球第三次相碰,则有 '
2
1'02
x B v t a t -= 解得t '=1s
因此,第三次相碰的位置在第一次碰撞点右方x =v 1t =5m 下方y =
1
2
g (t +t ')2=20m
12.如图,在竖直平面内,一半径为R 的光滑绝缘圆弧轨道ABC 和水平绝缘轨道PA 在A 点相切,BC 为圆弧轨道的直径,O 为圆心,OA 和OB 之间的夹角为α,3
sin 5
α=
,整个装置处于水平向右的匀强电场中。
一质量为m 、电荷量为q (q >0)的带电小球在电场力的作用下沿水平轨道向右运动,经A 点沿圆弧轨道通过C 点,落至水平轨道。
已知小球在C 点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零,重力加速度大小为g .求:
(1)匀强电场的场强大小;
(2)小球到达A 点时速度的大小。
(结果保留根号)
【答案】(1)34mg
q
23gR 【解析】 【详解】
(1)设小球所受电场力为0F ,电场强度的大小为E 由力的合成法则有
tan F mg
α=
0F qE =
解得:34mg
E q
=
(2)小球到达C 点时所受合力的大小为F ,由力的合成法则有:
()2
220F mg F =+
设小球到达C 点时的速度大小为c v ,由牛顿第二定律得
2
c v F m R
= 解得:52
c gR
v =
设小球到达A 点的速度大小为A v ,作CD ⊥PA ,交PA 于D 点,由几何关系得
sin DA R α= ()1cos CD R α=+
由动能定理有
221122
C A mg C
D q
E DA mv mv -⋅-⋅=
- 故小球在A 点的速度大小为23A gR
v =
三、必修第3册 电路及其应用实验题易错题培优(难)
13.某同学改装和校准电压表的电路图如图所示,图中虚线框内是电压表的改装电路. (1)已知表头
满偏电流为100μA ,表头上标记的内阻值为900Ω.R 1、R 2和R 3是定值电
阻.利用R 1和表头构成1 mA 的电流表,然后再将其改装为两个量程的电压表.若使用a 、b 两个接线柱,电压表的量程为1 V ;若使用a 、c 两个接线柱,电压表的量程为3 V .则根据题给条件,定值电阻的阻值应选R 1=___Ω,R 2=______Ω,R 3=_______Ω.
(2)用量程为3V ,内阻为2500Ω的标准电压表对改装电表3V 挡的不同刻度进行校准.所
用电池的电动势E 为5V ;滑动变阻器R 有两种规格,最大阻值分别为50Ω和5kΩ.为了方便实验中调节电压,图中R 应选用最大阻值为______Ω的滑动变阻器.
(3)校准时,在闭合开关S 前,滑动变阻器的滑动端P 应靠近_______(填“M”或“N”)端. (4)若由于表头G 上标记的内阻值不准,造成改装后电压表的读数比标准电压表的读数偏小,则表头G 内阻的真实值_________(填“大于”或“小于”)900Ω. 【答案】100 910 2000 50 M 大于 【解析】 【分析】 【详解】
(1)[1]根据题意,R 1与表头
构成1mA 的电流表,则()
1g g g I R I I R =- ,得R 1=100Ω;
[2]若使用a 、b 两个接线柱,电压表的量程为1V ,则2910ab g g
U I R R I -==Ω ; [3]若使用a 、c 两个接线柱,电压表的量程为3V ,则322000ac g g
U I R R R I
-=
-=Ω .
(2)[4]电压表与改装电表并联之后,电阻小于2500Ω,对于分压式电路,要求滑动变阻器的最大阻值小于并联部分,同时还要便于调节,故滑动变阻器选择小电阻,即选择50Ω的电阻.
(3)[5]在闭合开关S 前,滑动变阻器的滑动端P 应靠近M 端,使并联部分分压为零,起到保护作用.
(4)[6]造成改装后电压表的读数比标准电压表的读数偏小,说明通过表头的电流偏
小,则实际电阻偏大,故表头G 内阻的真实值大于900Ω. 【点睛】
本题关键是电压表和电流表的改装原理,分析清楚电路结构,应用串并联电路特点与欧姆定律即可正确解题.
14.有一额定电压为2.8 V ,额定功率0.56 W 的小灯泡,现要用伏安法描绘这个小灯泡的伏安特性曲线,有下列器材可供选用: A .电压表(量程0~3 V 内阻约6 kΩ) B .电压表(量程0~6 V ,内阻约20 kΩ) C .电流表(量程0~0.6 A ,内阻约0.5 Ω) D .电流表(量程0~200 mA ,内阻约20 Ω) E.滑动变阻器(最大电阻10 Ω,允许最大电流2 A ) F.滑动变阻器(最大电阻200 Ω,允许最大电流150 mA ) G.三节干电池(电动势约为4.5 V ) H.电键、导线若干
(1)为提高实验的精确程度,电压表应选用____;电流表应选用___;滑动变阻器应选用____;(以上均填器材前的序号)
(2)请在虚线框内画出描绘小灯泡伏安特性曲线的电路图____;
(3)通过实验描绘出小灯泡的伏安特性曲线如图所示,某同学将一电源(电动势E =2 V ,内阻r =5 Ω)与此小灯泡直接连接时,小灯泡的实际功率是____W (保留两位有效数字)。
【答案】A D E 0.18(0.16~0.20范围内均给对)
【解析】 【分析】 【详解】
(1)由题意可知,灯泡的额定电压为2.8V ,为了准确性及安全性原则,电压表应选择A ;由P =UI 可得,灯泡的额定电流为:0.56A 200mA 2.8
P I U =
==,故电流表应选择D ;测量灯泡的伏安特性曲线实验中应采用分压接法,故滑动变阻器应选用小电阻,故滑动变阻器应选择 E ;
(2)测量小灯泡的伏安特性曲线时,要求电压值从零开始变化,故滑动变阻器应采有分压接法;灯泡内阻约为:14U
I
=Ω,而电流表内阻约为20Ω,故电流表应采用外接法;故电路图如图所示∶
(3) 由电源的电动势和内阻作出电源的伏安特性曲线如图所示:
则交点为灯泡的工作点,由图可知,灯泡的电压为1.38V,电流为0.15A,则灯泡的功率
P=UI=1.3×0.13=0.17W;(0.16~0.20范围内均给对)
【点睛】
根据小灯泡的额定电压可以选出电压表,根据灯泡的额定功率可求出额定电流,则可确定出电流表;根据滑动变阻器的接法可选出滑动变阻器;根据测伏安特性曲线的实验要求可以选出滑动变阻器的接法,由电流表及电压表内阻的关系可得出电流表的接法;在图中作出电源的伏安特性曲线,图像与灯泡的伏安特性曲线的交点为灯泡的工作点,则可得出灯泡的电压及电流,由功率公式可求得实际功率。
15.在一次实验技能比赛中,要求较精确地测量电阻的阻值,有下列器材供选用:
A.待测电阻Rx(约300Ω)
B.电压表V(量程3V,内阻约3kΩ)
C.电流表A1(量程20mA,内阻约5Ω)
D.电流表A2(量程10mA,内阻约10Ω)
E.滑动变阻器R1(0~20Ω,额定电流2A)
F.滑动变阻器R2((0~2000Ω,额定电流0.5A)
G.直流电源E(3V,内阻约1Ω)
H.开关、导线若干
(1)甲同学根据以上器材设计成用伏安法测量电阻的电路,电路图如图甲所示,则电流表应选择_________(选填“A1”或“A2”),滑动变阻器应选择____________(选填“R1”或
“R2”)。
(2)乙同学经过反复思考,利用所给器材设计出了如图乙所示的测量电路,具体操作如下:
①按图乙连接好实验电路,闭合开关S1前调节滑动变阻器R1、R2的滑片至适当位置;
②闭合开关S 1,开关S 2处于断开状态,调节滑动变阻器R 1、R 2的滑片,使电流表A 2的示数恰好为电流表A 1的示数的一半;
③闭合开关S 2并保持滑动变阻器R 2的滑片位置不变,读出电压表V 和电流表A 2的示数,分别记为U 、I ;
④则待测电阻的阻值Rx=__________(用题中所给字母表示)。
(3)比较两同学测量电阻Rx 的方法,你认为哪个同学方法更有利于减小系统误差?____________(选填“甲”或“乙”)同学。
【答案】A 2 R 1 U
I
乙 【解析】 【分析】
由题意可知考查伏安法测电阻,消除系统误差的方法。
根据欧姆定律、串并联电路关系分析可得。
【详解】
(1)[1] [2] 估算一下待测电流,
3A=0.01A=10mA 300
U I R =
=, 故电流表选择A 2,因滑动变阻器采用分压式接法,选择R 1调节更方便,故滑动变阻器选择R 1;
(2)[3] 闭合开关S 1,开关S 2处于断开状态,调节滑动变阻器R 1、R 2的滑片,使电流表A 2的示数恰好为电流表A 1的示数的一半;此时A 2和R 2电阻之和等于R x 的电阻。
当闭合开关S 2并保持滑动变阻器R 2的滑片位置不变,读出电压表V 和电流表A 2的示数,分别记为U 、I ;A 2和R 2电阻之和等于R x 的电阻等于U 与I 的比值。
(3)[4] 甲图存在系统误差,测量值大于真实值,乙图方案消除了系统误差,故乙同学的方案更有利于减小系统误差。
【点睛】
电流表内接法测量值大于真实值,外接法测量值小于真实值,当R X ,电流表选
择内接法,当R X
16.(1)甲同学按如图甲所示电路测量量程为500μA 的电流表G 的内阻.他按图甲连接好电路后,先闭合S 1,断开S 2,调节R 1,使电流表G 的指针满偏.再闭合S 2,保持R 1的滑动触头不动,调节R 2使电流表G 的指针指到满刻度的1/3.若此时电阻箱R 2各旋钮的位置如图乙所示,则电流表G 的内阻测量值R G =____Ω.
(2)现将该电流表G 改装成量程为3V 的电压表V ,需给该电流表G 串联一阻值为_____Ω的电阻.
(3)乙同学将(2)问中改装的电压表V 校准后采用伏安法测量某待测电阻R x ,实验室还备有以下器材:
A .待测电阻R x ,阻值约为200Ω
B .电源E
,电动势为3V ,内阻可忽略不计 C .电流表A ,量程为0~15 mA ,内阻r A =20Ω D .滑动变阻器R′1,最大阻值10Ω E .滑动变阻器R′2,最大阻值5kΩ F .开关S ,导线若干
①为提高实验精确度,尽可能测量多组数据,实验中滑动变阻器应选择____(填器材序号字母).
②请在虚线框内画出乙同学用伏安法测量电阻R x 的电路图_______.
【答案】(1)100 (2)5900 (3)①D ②见解析; 【解析】 【详解】
(1)[1].因s 2闭合前后电总电流不变,则电流表达满偏刻度的1/3时,则并联电阻的电流为电流表满偏电流的2/3.因是并联关系,则
g R g
R I R I = 得:
R g =R
g
I I R =2R
由电阻箱可读出:
R =50Ω
则:
R g=2R =2×50=100Ω
(2)[2].改装成电压表要串联的阻值为
R =
g
U
I −R g =5900Ω (3)[3].因测量范围大,要采用滑动变阻器分压式接法,宜用小阻值,故选D . [4].因电压表内阻比得测电阻大的多,宜用电流表外接法.故画得电路图如图所示;
【点睛】
考查的电阻箱的读数,半偏法测电阻,明确总电流认为不变;电路的设计,电流表的内外接法要求大电阻内接法,小电阻外接法.滑动变阻器分压式接法宜用小阻值.
17.某同学在“测定金属丝电阻率”的实验中:
(1)在用游标为20分度的游标卡尺测其长度时,示数如图甲所示,读数为______cm.(2)用螺旋测微器测量金属丝的直径,示数如图乙所示,读数为______mm.
(3)在测量金属丝的电阻率的实验中,已知电阻丝的电阻约为10Ω,现备有下列器材供选用:
A.量程是0-0.6A,内阻是0.5Ω的电流表;
B.量程是0-3A,内阻是0.1Ω的电流表;
C.量程是0-3V,内阻是6kΩ的电压表;
D.量程是0-15V,内阻是30kΩ的电压表;
E.阻值为0-1kΩ,额定电流为0.5A的滑动变阻器;
F.阻值为0-10Ω,额定电流为2A的滑动变阻器;
G.蓄电池(6V);
H.开关一个,导线若干.
为使测量结果尽量准确,电流表应选用______,电压表应选用______,滑动变阻器应选
______.(只填字母代号)
若图所示的实验仪器就是我们选定,请用铅笔画线连接实验电路.(______)
【答案】5.015 5.700 C A F
【解析】 【详解】 (
1)[1]游标卡尺的主尺读数为:5.0cm=50mm ,游标尺上第3个刻度和主尺上某一刻度对齐,所以游标读数为:
3×0.05mm=0.15mm
所以最终读数为:
50mm+0.15mm=50.15mm=5.015cm
(2)[2]螺旋测微器的固定刻度为5.5mm ,可动刻度为:
20.0×0.01mm=0.200mm
所以最终读数为:
5.5mm+0.200mm=5.700mm
(3)[4][5][6]电源电动势为6V ,电压表应选C 、量程是0-3V ,内阻6kΩ;如果选D 、量程是0-15V ,内阻30kΩ,电源电动势不到电压表量程的一半,读数误差较大;电路最大电流约为:
60.610
E I R ===A 则电流表应选:A 、量程是0-0.6A ,内阻是0.5Ω;为方便实验操作,滑动变阻器应选:
F 、阻值为0-10Ω,额定电流为2A ;待测电阻为10Ω,滑动变阻器最大电阻为10Ω,为测多组实验数据,滑动变阻器应采用分压接法;由于:
106000206000.510
V A R R R R ==<== 则电流表应采用外接法,电路图如图所示:
18.要测绘一个标有“3V 0.6W”小灯泡的伏安特性曲线,要求灯泡两端的电压需要由零逐渐增加到3V ,并便于操作.已选用的器材有:
直流电源(电压为4V );
电流表(量程为0—0.6A .内阻约0.2Ω);
电压表(量程为0--3V );
电键一个、导线若干.
①实验中所用的滑动变阻器应选下列中的_______(填字母代号).
A .滑动变阻器(最大阻值10Ω,额定电流1A )
B .滑动变阻器(最大阻值1k Ω,额定电流0.3A )
②(1)为了设计合理的实验方案,某同学用多用电表来粗略测量电压表的内阻,表盘读数。