测量不确定度评定举例

合集下载

测量不确定度评定例

测量不确定度评定例

相对频率偏差的测量不确定度评定1. 测量方法相对频率偏差:参考频标:铯原子频率标准5071A 被检频标:铷原子频率标准 频标比对器:PO7D 2. 测量结果测量10次,数据如下:oox f f f y -=)(τ3. 测量不确定度来源(1)铯原子频标不准引入的不确定度1u铯原子频标检定证书给出其频率准确度为5×10-13, 按B 类方法进行不确定度评定。

视其为均匀分布,包含因子3=k ,则有:13131109.23/105--⨯=⨯=u(2)铯原子频标不稳引入的不确定度2u测量相对频率偏差的取样时间为100s 。

铯原子频标检定证书给出其100s 频率稳定度为4.9×10-13,按A 类方法进行评定,k=1,则有:132109.4-⨯=u(3)频标比对器引入的不确定度3u频标比对器检定证书100s 比对不确定度为1.2×10-13,按A 类方法进行不确定度评定,k=1,则有:133102.1-⨯=u(4)测量重复性引入的不确定度4u实验标准偏差)(x s n1212109.11)()(-=⨯=--=∑n y yx s ni i in对于平均值,重复性测量引入的不确定度为:13124100.610/109.1--⨯=⨯=u3. 合成标准不确定度c u相对频率偏差测量结果的不确定度分量如下表:以上各不确定度分量互相独立各不相关,可得合成标准不确定度c u :21321321321324232221)100.6()102.1()109.4()109.2(----⨯+⨯+⨯+⨯=++++=u u u u u c 13104.8-⨯= 4. 扩展不确定度取k=2, 则扩展不确定度: 12102-⨯=U 5. 结论相对频率偏差:11100.7-⨯ 不确定度: 12102-⨯ (k=2)频率稳定度的测量不确定度评定1. 测量方法参考频标:高稳晶振8607 被检频标:铷原子频率标准 频标比对器:5120A 2. 测量结果3.不确定度来源(1) 参考频标引入的不确定度测量频率稳定度时使用的参考源为高稳晶振8607,根据其检定证书,其1 s 频率稳定度为7.2E-14,按B 类方法进行评定,k=1,则有:141102.7-⨯=u(2) 测量装置引入的不确定度测量装置使用5120,实测1 s 比对不确定度为1.19E-13,按A 类方法进行不确定度评定,k=1,则有:1321019.1-⨯=u(3) 有限次测量引入的不确定度按A 类方法进行有限次测量不确定度的评定。

力学性能测量不确定度评定中的几个实例

力学性能测量不确定度评定中的几个实例

⑵试样的标距
试样原始标距由划线操作和测量来决 定的,因此量化该项不确定度分量时 仅仅考虑量具是远远不够的。
按GB/T 228–2002标准中规定 原始标距的标记应准确到±1%
⑶断后伸长率不确定度的评定
GB/T 228-2002国家标准中, 对断后伸长的规定有误。
如果按照该标准的规定来评定不确定度, 即使方法正确,也不能得到正确的结果。
CSM 01 01 02 03 -2006 钢绞线弹性模量测量结果不确定度评定
CSM 01 01 02 04 -2006 金属薄板和薄带塑性应变比(r值)测量结果不确定 度评定
⑴ 各种参数都有明确的物理公式作为数学模型。
⑵ 拉伸试验机力值的不确定度分项都是通过标准测 力仪进行检定来评定的。
⑶ 在B类不确定度分量的量化过程中,由于测量方 法和条件的限制,测量的结果往往不是由量具的 误差决定的。也就是说合乎要求的量具仅仅是达 到技术文件规定的保证。
(绝对不可以不考虑)
在“金属材料拉伸试验测量结果不确定 度评定”中采用了25个试样。为了示 范评定A类不确定度中的合并样本标准 差,在 “金属洛氏硬度试验(HRC) 测量结果不确定度评定” 中采用了3个 样本。 绝大多数项目的A类不确定度评定都是 采用5或6个测量点为测量列,并用极 差法来计算标准偏差。
GB/T 228-2002标准B4中给出, 测定原始横截面积时,
测量每个得出的, 在评定工作中可直接引用。
试样断后横截面积的测量误差不取决于量具, 断后缩径处最小直径测量用卡尺,
由于断口配接存在一定困难, 实际的测量误差要远大于量具的误差。
GB/T 228–2002标准19.1中规定 断裂后最小横截面积的测定应准确到±2%。
3.3 硬度试验

测量不确定度评定1

测量不确定度评定1

三、标准不确定度的B类评定方 法举例
2.校准证书上说明标称值为10Ω的标准电阻,在 23℃时的校准值为10.000074Ω,扩展不确定
度为90μΩ,包含概率为0.99,求电阻校准值
的相对标准不确定度。
三、标准不确定度的B类评定方 法举例
3.手册给出了纯铜在20℃时线热膨胀系数为a20
(Cu)为16.52×10-6℃-1,并说明此值的误差
度,一般假设为反正弦分布(即U形分布);
④ 按级使用量块时(除00级以外),中心长度偏 差的概率分布可假设为两点分布;
二、标准不确定度的B类评定
⑤ 当被测量受服从均匀分布的角度a的影 响呈1-cosa的关系时,角度导致的不确
定度、安装或调整测量仪器的水平或垂 直状态导致的不确定度常假设为投影分 布。
uc2 y C12 C22 2C1 C2 C1 C2 2
uc y C1 C2
d.当-1<r<1,即x1和x2之间部分相关
uc2 y C12 C22 2C1 C2 r x1, x2 uc y C12 C22 2C1 C2 r x1, x2
故必须求出相关系数后才能求出uc y
不确定度的计算
韩永志
一、合成标准不确定度的计算
当被测定的量y是若干个直接测量x1,x2,……,xN的
函数时,即
y f x1, x2,L xN
则有
一、合成标准不确定度的计算
当xi和xj彼此独立时,则有
uc2
y
N i 1
f xi
2
uc2
xi
一、合成标准不确定度的计算
一、合成标准不确定度的计算
x3
uc
y2
y
2
uc

测量不确定度评定的方法以及实例

测量不确定度评定的方法以及实例

测量不确定度评定的方法以及实例1.标准不确定度方法:U =sqrt(∑(xi-x̅)^2/(n-1))其中,xi表示测量值,x̅表示测量值的平均值,n表示测量次数。

标准不确定度包含随机误差和系统误差等。

例如,对一组长度进行测量,测得的数据为10.2、10.3、10.1、10.2、10.3,计算平均值为10.22,标准差为0.069、则标准不确定度为0.069/√5≈0.031,即U=0.0312.扩展不确定度方法:扩展不确定度是在标准不确定度的基础上,考虑到误差的正态分布,对标准不确定度进行扩展得到的结果,通常以U'表示。

其计算公式如下:U'=kU其中,k表示不确定度的覆盖因子,代表了误差分布的概率密度曲线下的面积,一般取k=2例如,对上述例子中的长度进行测量,标准不确定度为0.031,取k=2,则扩展不确定度为0.031×2=0.062,即U'=0.0623.组合不确定度方法:4.直接测量法:直接测量法是通过多次测量同一物理量,统计测得值的离散程度来评估测量的不确定度。

该方法适用于一些简单的测量,如长度、质量等物理量的测量。

例如,对一些小球的直径进行测量,测得的数据为2.51 cm、2.49 cm、2.52 cm、2.50 cm,计算平均值为2.505 cm,标准差为0.013 cm。

则标准不确定度为0.013/√4≈0.007 cm,即U=0.0075.间接测量法:间接测量法是通过已知物理量之间的数学关系,求解未知物理量的方法来评估测量的不确定度。

该方法适用于一些复杂的测量,如测量速度、加速度等物理量的测量。

例如,测量物体的速度v,则有v=S/t,其中S为位移,t为时间。

若S的不确定度为U_S,t的不确定度为U_t,则根据误差传递法则,计算得到v的不确定度为U_v = sqrt(U_S^2 + (U_t * (∂v/∂t))^2 )。

总之,测量不确定度评定的方法包括标准不确定度方法、扩展不确定度方法、组合不确定度方法、直接测量法和间接测量法。

不确定度评定举例

不确定度评定举例
• 数学模型为 • R=RSZ …………………………(1) ) • 式中 • R—电阻器的电阻值,k 电阻器的电阻值, 电阻器的电阻值 • RSZ—数字多用表示值, k 数字多用表示值, 数字多用表示值
举例
• 数字多用表为 位,其最大允许差为 数字多用表为5.5位 • ±(0.005%×读数 ×最小分度 ×读数+3×最小分度) • 数字多用表最小分度为 数字多用表最小分度为0.01 k • 在相同条件下用数字多用表测量电阻器 次电阻, 在相同条件下用数字多用表测量电阻器10次电阻 次电阻, 得到平均值和平均值的标准偏差为: 得到平均值和平均值的标准偏差为: •
举例
不确定度评定
举例
• 例1.用K型热电偶数字式温度计直接测量温度示 . 型热电偶数字式温度计直接测量温度示 值400℃的工业容器的实际温度,分析其测量不 ℃的工业容器的实际温度, 确定度。 确定度。K型热电偶数字式温度计其最小分度为 0.1℃,在400℃经校准修正值为0.5℃,校准的不 确定度为0.3℃; • 测量的数学模型为: • t=d+b…………………………(1) • 式中:t——实际温度,℃ • d——温度计读取的示值,℃ • b——修正值,℃,b=0.5℃
举例
• 引用最大允许差按均匀分布得校准产生的标准不确 定度为
将以上两项合成得: 将以上两项合成得:
举例
• 取K=2,则有 ,
结果表示成: 结果表示成:
谢谢!
举例
• 第三,温度计最小分度为0.1℃,假定读取到其一 第三,温度计最小分度为 ℃ 半,接均匀分布则读数产生的标准不确定度为 :
将以上三项合成得
举例
• 取K=2,则有 • U(t)=0.37×2=0.74≈0.8℃ • 结果表达为 • (400.7±0.8) ℃

可见分光光度计的测量不确定度评定

可见分光光度计的测量不确定度评定
(3)、因实际检测时取n=3次的平均值作为最终结果,所以其标准不确定度为:
0.020
1.3测量不确定度的B类分量计算:
对应表1的B类不确定分量计算如下:
可见分光光度计说明书中所表明的最大误差是0.25nm,即a=0.25;取均匀分布k= ;
0.144
1.4合成不确定度
0.148
1.5扩展不确定度的评定:
不确定度的分量见下表:
误差源
类型
最大误差
分布形态
分布因子
备注
μ1
操作重复性
A
μ2
可见分光光度计
B
0.05V
均匀公布
μ3
人员偏向性
C
只由一名技术人员操作
实际不存在
μ4
环境温度
D
相邻时间,同一环境下
常温下无影响
(表1)
1.1数学模型
X为实测值 检测仪器的误差影响(不可修正部分)
1.2测量不确定的A类分量计算
单位:
测量次数 x1x2x3x4x5x6x7x8x9x10x11x12
实测值0.461 0.452 0.455 0.450 0.447 0.452 0.454 0.450 0.452 0.452 0.451 0.452
表2
(1)、12次观察结果的算术平均值:
0.452
(2)、计算样本标准偏差:0.035来自可见分光光度计的测量不确定度评定
1.可见分光光度计测量不确定度的分析与计算
根据JJF1059-1999《测量不确定评定与表示》标准中对不确定度的定义和评定要求,本实验室对镍及其化合物的吸光度的不确定度进行评定。
根据GBZ/T160.29-2004《工作场所空气中无机含氮化合物的测定方法》的要求;可见分光光度计的操作规范进行测量氨吸光度的不确定度涉及可见分光光度计及其他因素。

测量不确定度评价和计算

测量不确定度评价和计算
测量不确定度评定与表示
1/51
主要内容
测量不确定度定义 测量不确定度评定步骤 测量不确定度的应用 讨论
2/51
测量不确定度定义
测量不确定度
根据所获信息,表征赋予被测量值分散性,是非负参数。 误差:测得的量值减去参考量值,表明被测量估计值偏离参考量值的程度。 误差:+0.2 mg,测量值:1.0 mg,则数据结果为0.8 mg。 点 不确定度:0.2 mg,测量值:1.0 mg。则数据结果(m=1.0 mg±0.2 mg ),k=2, 即0.8 mg≤m ≤1.2 mg。 区间
5/51
测量不确定度评定步骤
二 测量模型的建立
在测量不确定度评定中,建立测量模型也称为测量模型化,目的是 要建立满足测量不确定度评定所要求的数学模型。即被测量的测量模型是 指被测量与测量中涉及的所有已知量间的数学关系。
测量中,当被测量(即输出量) Y由N个其他量X1,X2,…,XN(即输入量) 通过函数 f 来确定时,则公式(1)称为测量模型:
3/51
测量不确定度评定步骤
分析不确定度来源 建立测量模型
评定标准不确定度u i 计算合成标准不确定度uc 确定扩展不确定度U或Up
报告测量结果
图1 用GUM法评定不确定度的一般流程
4/51
测量不确定度评定步骤
一 测量不确定度来源分析
在实际测量中,有许多可能导致测量不确定度的来源 a) 被测量的定义不完整; b) 复现被测量的测量方法不理想; c) 取样的代表性不够,即被测样本不能代表所定义的被测量; d) 对测量过程受环境影响的认识不恰如其分或对环境的测量与控制不完善; e)对模拟式仪器的读数存在人为偏移; f) 测量仪器的计量性能 (如最大允许误差、灵敏度、鉴别力、分辨力、死区及稳 定性等)的局限性,即导致仪器的不确定度; g) 测量标准或标准物质提供的标准值不准确; h) 引用的数据或其他参量值的不准确; i) 测量方法和测量程序中的近似和假设; j) 在相同条件下,被测量重复观测值的变化。

不确定度评定示例

不确定度评定示例

汽车侧滑检验台示值误差测量结果的不确定度评定1、 测量方法用检定装置的位移控制装置缓慢推动滑板,使滑板移动,当检定装置的位移测量装置(或百分表)示值为5mm 时,读取侧滑检测仪的仪表示值,按公式(1)计算其示值误差。

2、 测量模型LX X S-=∆ (1) 式中:∆--示值误差,m/km ;X --侧滑检测仪仪表3次示值平均值,m/km ;S X --位移测量装置(或百分表)示值,mm ;L --滑板纵向有效测量长度,m 。

3、 方差和灵敏系数由式(1)得方差:)()()()(2232222212L u c X u c X u c u S c ++=∆ (2)灵敏系数:1)()(1=∂∆∂=X c L X c S 1)()(2-=∂∆∂=23)()(LX L c S =∂∆∂= 4、标准不确定度评定4.1 被检侧滑检测仪引入的标准不确定度被检侧滑检测仪示值的不确定度主要来源于侧滑检测仪的测量结果重复性及数显仪器的分辨力。

由于侧滑检测仪测量重复性引入的标准不确定度与数显仪器的分辨力引入的标准不确定度属于同一种效应导致的不确定度,因此取二者的较大者。

4.1.1测量重复性引入的不确定度测量结果重复性可以通过连续重复测量得到的测量列,采用A 类评定方法进行。

在检定装置的位移测量装置(或百分表)及被检侧滑检测仪正常工作条件下,等精度重复测量10次,数据如下:X =5.03m/km被检侧滑台单次测量实验标准差为:1)(1012--=∑=n X X s i=0.048m/km实际测量时,在重复条件下连续测量3次,以3次测量的算术平均值作为测量结果,则可得侧滑检测仪的测量结果重复性引入的标准不确定度为:()m/km 028.03)(==X s X u A4.1.2被检侧滑台数显分辨力引入的标准不确定度侧滑检测仪的分辨力为0.1m/km ,其量化误差以等概率分布落在宽度为0.05m/km 的区间内,按均匀分布考虑。

不确定度评估实例

不确定度评估实例

不确定度评估实例1、测量问题本次评定实验以物资(商品)检验所游标卡尺09059为测试量具,用游标卡尺测量结构长度270mm的长度ι。

已知卡尺的最大误差为1mm。

用6次测量的平均值作为测量结果。

卡尺的温度效应、弹性效应及其他不确定度来源均忽略不计。

2、数学模型卡尺上得到的读数χ即为测量结果,故得被测长度ι=χ。

但除了读数χ可能引入测量不确定度外,卡尺刻度误差对测量结果也会有影响。

由于卡尺的校准证书未给出其示值误差,因此只能根据其最大允许误差来估计它对测量结果的影响。

若卡尺刻度误差对测量结果的影响διS,则数学模型可以表示为ι=χ+διS式中διS的数学期望值为零,即Ε(διS)=0,但需考虑其不确定度,即μ(διS)≠0。

数学模型是相对的,即使对于同样的被测量,当要求的测量准确度不同时,需要考虑的测量不确定度来源也会有相应的增减,因此数学模型也会不同。

3、测量不确定度分量本测量共有两个不确定度分量,由读数的重复性引入的不确定度μ(χ)和卡尺刻度误差所引起的不确定度μ(διS)。

⑴读数χ的不确定度,μ1(ι)=μ(χ)6次测量结果分别为270、3mm270、1mm270mm271、4mm269、8mm271、2mm则6次测量结果的平均值为==270、47mm平均值的实验标准差为 s()==0、074mm故μ1(ι)=μ()=s()=0、074mm⑵卡尺误差引入的不确定度, μ2(ι)=μ(διS)由于证书未给出卡尺的示值误差,故卡尺刻度误差引入的不确定度由卡尺的最大允许误差得到。

已知卡尺的最大误差为1mm,并以矩形分布估计,于是μ2(ι)=μ(διS)==0、577mm下表给出不确定度分量汇总表符号栏中u1=s1 意为用实验标准s来表示不确定度,言外之意是该不确定度分量有A类评定得到的。

反之,对于未标u=s的不确定度分量,则表示是由B 类评定得到的。

这是经常采用的标明A类评定和B类评定不确定度分量的方法之一。

测量数据不确定度的评定

测量数据不确定度的评定

测量数据不确定度的评定在分析和确定测量结果不确定度时,应使测量数据序列中不包括异常数据。

即应先对测量数据进行异常判别,一旦发现有异常数据就应剔除。

因此,在不确定度的评定前均要首先剔除测量数据序列中的坏值。

1・A类标准不确定度的评定A类标准不确定度的评定通常可以采用下述统计与计算方法。

在同一条件下对被测参量X进行n次等精度测量,测量值为Xi(i=1,2,•…n)。

该样本数据的算术平均值为X=X的实验标准偏差(标准偏差的估计值)可用贝塞尔公式计算式中,冷(X)为实验标准偏差。

用疋作为被测量X测量结果的估计值,则A类标准不确定度uA为际站七佔(1)2•标准不确定度的B类评定方法当测量次数较少,不能用统计方法计算测量结果不确定度时,就需用B类方法评定。

对某一被测参量只测一次,甚至不测量(各种标准器)就可获得测量结果,则该被测参量所对应的不确定度属于B类标准不确定度,记为uB o B类标准不确定度评定方法的主要信息来源是以前测量的数据、生产厂的产品技术说明书、仪器的鉴定证书或校准证书等。

它通常不是利用直接测量获得数据,而是依据查证已有信息获得。

例如:①最近之前进行类似测试的大量测量数据与统计规律;②本检测仪器近期性能指标的测量和校准报告;③对新购检测设备可参考厂商的技术说明书中的指标;④查询与被测数值相近的标准器件对比测量时获得的数据和误差。

应说明的是,B类标准不确定度uB与A类标准不确定度uA同样可靠,特别是当测量自由度较小时,uA反而不如uB可靠。

B类标准不确定度是根据不同的信息来源,按照一定的换算关系进行评定的。

例如,根据检测仪器近期性能指标的测量和校准报告等,并按某置信概率P评估该检测仪器的扩展不确定度Up,求得Up的覆盖因子k则B类标准不确^(耳竺一逅业)(3)定度uB等于扩展不确定度Up除以覆盖因子k,即uB(X)=Up(X)/k(2)【例1】公称值为100g的标准砝码M,其检定证书上给出的实际值是100.0002.349,并说明这一值的置信概率为0.99的扩展不确定度是0.000120g,假定测量数据符合正态分布。

不确定度的案例3个(供参考)

不确定度的案例3个(供参考)

气相色谱法测定绝缘油溶解气体含量测量不确定度的评定(供参考)一、概述1.1 目的评定绝缘油溶解气体含量测量结果的不确定度。

1.2 依据的技术标准GB/T 17623-1998《绝缘油中溶解气体组分含量的气相色谱测定法》。

1.3 使用的仪器设备(1) 气相色谱分析仪HP5890,经检定合格。

(2) 多功能全自动振荡仪ZHQ701,经检定合格,允差±1℃,分辨力0.1℃。

(3) 经检验合格注射器,在20℃时,体积100mL±0.5mL;体积5mL±0.05mL;体积1mL±0.02mL。

1.4 测量原理气相色谱分析原理是利用样品中各组分,在色谱柱中的气相和固定相之间的分配及吸附系数不同,由载气把绝缘油中溶解气体一氧化碳、二氧化碳、甲烷、乙烷、乙烯、乙炔、氢气带入色谱柱中进行分离,并经过电导和氢火焰检测器进行检测,采用外标法进行定性、定量分析。

1.5 测量程序(1) 校准。

采用国家计量部门授权单位配制的甲烷标准气体。

进样器为1mL玻璃注射器,采用外标气体的绝对校正因子定性分析。

(2) 油样处理。

用100mL玻璃注射器A,取40mL油样并用胶帽密封,并用5mL玻璃注射器向A中注入5mL氮气。

将注入氮气的注射器A放入振荡器中振荡脱气,在50℃下,连续振荡20分钟,静止10分钟。

(3) 油样测试。

然后用5mL玻璃注射器将振荡脱出的气体样品取出,在相同的色谱条件下,进样量与标准甲烷气体相同,对样品进行测定,仪器显示谱图及测量结果。

气体含量测定过程如下。

1.6 不确定度评定结果的应用符合上述条件或十分接近上述条件的同类测量结果,一般可以直接使用本不确定度评定测量结果。

二、 数学模型和不确定度传播律2.1 根据GB/T 17623-1998《绝缘油中溶解气体组分含量的气相色谱测定法》试验方法,绝缘油中溶解气体含量C 的表示式为S s=⨯hC C h μL/L (1) 式中,C ——被测绝缘油中溶解气体甲烷含量,μL/L ;C S ——标准气体中甲烷含量,μL/L ; h ——被测气体中甲烷的峰高A ; h s ——标准气体中甲烷的峰高A 。

(不确定度评定实例)八个不确定度评定实例(供参考)

(不确定度评定实例)八个不确定度评定实例(供参考)
2012-4-14 21
表1 不确定度分量评定预估
序 号 不确定度来源 1 2 测量重复性 标 准 不 确 定 度 分布 正态 包含 因子 1 符号 uAr uBr 数值 1.9% 2.9%
烟气分析仪最大允许误差 均匀
3
3
合成标准不确定度
uc
3.5%
22
2012-4-14
四、 标准不确定度评定
4.1 测量重复性引入的标准不确定度分量uA评定 事先对某锅炉烟气 某锅炉烟气二氧化硫浓度测量进行20次重 复独立测量,测量结果见表2。 用贝塞尔公式计算实验标准差s(c)
1
a1 0.5mg uB1 = = = 0.29mg k1 3
2012-4-14
8
四、 m称量不确定度评定(续)
3.3 天平分辨力引入的标准不确定度分量uB2
数字式测量仪器对示值量化(分辨率)导致的不 确定度服从均匀 服从均匀分布。天平分辨力为0.1mg,区间半宽 度为a2= 0.05mg, k2 = 3 。其标准不确定度uB2为: a2 0.05mg uB2 = = = 0.03mg k2 3
2012-4-14 17
五、定容 、定容体积V的合成标准不确定度uC
分析考察不确定度分量uA , uB1 和 uB2可知, 三者相互独立 互独立,互不相关。因此,V的合成标准不 确定度uC可以采用方和根方法合成。故采用A级 1000mL容量瓶定容的合成标准不确定度为:
2 2 2 uc = uA + uB1 + uB2
s(c ) 3.7 3 uA = = = 2.1mg/m m 3
其相对标准不确定度为
uA 2.1mg/m 3 uAr = = = 1.5% 3 c 142mg/m

测量不确定度评定实例行业使用

测量不确定度评定实例行业使用

s2
A
0.2
3
分度头度盘不准
u1
u3 U p / k p 0.01m / 2.57 3.9nm , 3 6 1 5
b) 由系统效应引起的分量
比较仪检定证书给出由系统效应引起的不确定度为
0.02m,k 3 ,故
u4 0.02m / 3 6.7nm
优质荟萃
11
此分量为 B 类不确定度,自由度证书中未给出,故采
用B =
时,锥体实际旋转角度与度盘实际旋转角度产生u6 ,则
u6
sin
sin 2 i cos i
当 很小时 90 0 ,i 4'
u6 0.3''
优质荟萃
23
2.3 各项不确定度及总不确定度
五、测量不确定度应用实例 序 号
不确定度来源
符号
类别
数'' 值
1
测微器不准
s1
A
2.0
2
水平仪水泡合像不准
,当 1 x
x
<< 1 时,
1 x

① 对d 项,在正常情况下d 很小,而量块是恒温室检
定,温度条件要求高,故 也很小,且 很小,故相比
于主要项ls d ,这项可忽略;

对 项,虽然 lss s
ls
较大,但ss 为二次项,非常小,
故次项也可忽略;
③ 对ls (ss ) ,虽然(ss ) 项较小,但它为一次项,故应
≈ ls (1 s s ) d (1 )
= ls d ls s s ls d ls s s = (ls d ) ls ( s s ) d ls s s ≈ (ls d ) ls ( s s )

测量结果的不确定度评定实例分析

测量结果的不确定度评定实例分析

2021 June第测量结果的不确定度评定实例分析刘海利中国石化销售股份有限公司油品技术研究所以GB/T 261—2008《闪点的测定 宾斯基-马丁闭口杯法》测量车用柴油闭口闪点为例,按照JJF 1059.1—2012《测量不确定度与表示》要求进行检测实验室测量不确定度评定,通过对实验室测量结果的不确定度评定,实现测量结果不确定度规范与正确表达,进而提升实验室测量结果质量。

作者简介:刘海利,硕士,高级工程师,现主要从事油品质量管理与应用研究工作。

E-mail:liuhaili119@163.com测量不确定度是表征检测和校准实验室测量结果的质量参数,对于一定的测量结果而言,它的不确定度值越小,其质量就越高,使用价值也越高;反之则低。

在CNAS-CL01:2018《检测和校准实验室能力认可准则》中,要求实验室应制定与检测工作相适应的测量不确定度评定程序,对每一项有数值要求的结果进行测量不确定度评定。

因此,测量不确定度评定在检测和校准实验室认可中是一项不可缺少的重要工作[1]。

JJF 1059.1—2012《测量不确定度评定与表示》是评定不确定度最常用、最基本的方法[2]。

闭口闪点是轻质油品运输、储存和使用安全的重要指标,本文以GB/T 261—2008《闪点的测定 宾斯基-马丁闭口杯法》测量车用柴油闭口闪点不确定度为例,阐述测量闭口闪点不确定度步骤,为实验室开展所有测量项目结果的不确定度评定提供参考,提高实验室检测能力。

Teat and Appraisal测试与评定8282三期83一2021 June第各不确定度分量的评定重复性测量引入的标准不确定度分量u 1(T c )车用柴油闭口闪点测量时,试样量、加热速率、搅拌速率、试验过程中温度计深入位置、温度计读数、压力表读数等随机因素带来的不确定度,一并列入重复性测量不确定度分量中进行评定。

试验用温度计修正值∆T =0.0 ℃,压力表修正值∆p =0.1 kPa,在重复性试验条件下,对同一试样独立重复测量10次,结果见表1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

测量不确定度评定举例A.3.1 量块的校准通过这个例子说明如何建立数学模型及进行不确定度的评定;并通过此例说明如何将相关的输入量经过适当处理后使输入量间不相关,这样简化了合成标准不确定度的计算。

最后说明对于非线性测量函数考虑高阶项后测量不确定度的评定结果。

1).校准方法标称值为50mm 的被校量块,通过与相同长度的标准量块比较,由比较仪上读出两个量块的长度差d ,被校量块长度的校准值L 为标准量块长度L s 与长度差d 之和。

即:L=L s +d实测时,d 取5次读数的平均值d ,d =0.000215mm ,标准量块长度L s 由校准证书给出,其校准值L s =50.000623mm 。

2)测量模型长度差d 在考虑到影响量后为:d =L (1+αθ )-L s (1+αs θs ) 所以被校量的测量模型为:])1([11d L L s s s +++=θααθ此模型为非线性函数,可将此式按泰勒级数展开:L =ΛΛ+-++)(θαθαs s s s L d L忽略高次项后得到近似的线性函数式:)(θαθα-++=s s s s L d L L (A.1)式中:L —被校量块长度;L s —标准量块在20℃时的长度,由标准量块的校准证书给出; α—被校量块的热膨胀系数; αs —标准量块的热膨胀系数;θ —被校量块的温度与20℃参考温度的差值; θs —标准量块的温度与20℃参考温度的差值。

在上述测量模型中,由于被校量块与标准量块处于同一温度环境中,所以θ与θs 是相关的量;两个量块采用同样的材料,α与αs 也是相关的量。

为避免相关,设被校量块与标准量块的温度差为δθ,δθ= θ-θs ;他们的热膨胀系数差为δα,δα= α-αs ;将θs = θ-δθ和 α=δα+αs 代入式(A.1),由此,数学模型可改写成:),,,,,(θαδδθαs s d l f l ==][θαδαθδs s s l d l +-+ (A.2) 测量模型中输入量δα与αs 以及δθ与θ不相关了。

特别要注意:在此式中的δα和δθ是近似为零的,但他们的不确定度不为零,在不确定度评定中要考虑。

由于δα和δθ是近似为零,所以被测量的估计值可以由下式得到:L =L s +d (A.3)3).测量不确定度分析 根据测量模型,),,,,,(θαδδθαs s d l f l =即: l = ][θαδαθδs s s l d l +-+由于各输入量间不相关,所以合成标准不确定度的计算公式为:)()()()()()()(222222222222θδαδθαδδθαθαu c u c u c u c d u c l u c l u s d s s c s +++++=(A.4) 式中灵敏系数为:1)(11=+-=∂∂==θαδαθδs ss l fc c ,0132=-=∂∂===∂∂==θαδαs sd l fc c df c c s04=-=∂∂==αθδθs l fc c θδαδαs l fc c -=∂∂==5 s s l fc c αδθδθ-=∂∂==6 由此可见,灵敏系数c 3和c 4为零,也就是说明αs 及θ的不确定度对测量结果的不确定度没有影响。

合成标准不确定度公式可写成(A.5):)()()()()(22222222θαδαδθu l u l d u l u l u s s s s c +++= (A.5)4).标准不确定度分量的评定○1标准量块的校准引入的标准不确定度u (l s ) 标准量块的校准证书给出:校准值为l s =50.000623mm ,U = 0.075μm (k =3),有效自由度为νeff (l s )=18。

则标准量块校准引入的标准不确定度为:u (L s )=0.075/3=25nm , νeff (L s )=18○2测得的长度差引入的不确定度u (d ) a. 用对两个量块的长度差进行25次独立重复观测,用贝塞尔公式计算的实验标准偏差为s (d )=13nm ;本次比较时仅测5次,取5次测量的算术平均值为被校量块的长度,所以读数观测的重复性引入的标准不确定度u (d )是平均值的实验标准偏差为s (d )8.55/13/)()()(====n d s d s d u nm由于s (d )是通过25次测量得到,所以u (d )的自由度ν1=25-1=24。

b. 由比较仪示值不准引起长度差测量的不确定度u B (d):由比较仪的校准证书给出最大允许误差为±0.015μm,有效期内的检定证书证明该比较仪的示值误差合格.则由比较仪示值不准引起长度差测量的标准不确定度用B 类评定,可能值区间的半宽度a 为0.015μm ,设在区间内呈均匀分布, 取包含因子k = 3。

标准不确定度u B (d)为:u (d )=0.015μm /3= 8,7 nm按下式估计其自由度: 2)()(21-⎥⎦⎤⎢⎣⎡∆≈i i i x u x u ν假设评定u B (d)的不可靠程度达25%, 计算得到8≈i ν c. 由以上分析得到长度差引入的标准不确定度分量u (d )为:8.97.85.4)()()(2222=+=+=d u d u d u nm自由度νeff (d )为:126.128)7.6(8)7.8(24)5.4()8.9()()()()(444424144==++=++=νννd u d u d u d B eff ○3膨胀系数差值引入的标准不确定度u (δα) 估计两个量块的膨胀系数之差在±1×10-6℃-1区间内,假设在区间内为均匀分布,则标准不确定度为:u (δα)=1×10-6℃-1/3=0.58×10-6℃-1自由度:估计u (δα)的不可靠程度⎥⎦⎤⎢⎣⎡∆)()(ααδδu u 为10%,计算得到ν(δα)=50%)10(212=-○4量块温度差引入的标准不确定度u (δθ) 希望被校量块与标准量块处于同一温度,但实际存在温度差异,温度差估计以等概率落在±0.05℃区间内,则标准不确定度为:u (δθ)=0.05/3=0.029℃估计u (δθ)只有50%的可靠性,计算得到自由度为:ν(δθ)=2%)50(212=-○5量块温度偏差引入的标准不确定度u (θ) 报告给出的测试台温度为(19.9±0.5)℃, 在热作用下温度的近似周期性变化的幅度为0.5℃. 平均温度的偏差值为:1.0209.19-=-=θ(℃)由于测试台的平均温度的不确定度引起的θ 的标准不确定度为:u (θ)=0.2 ℃而温度随时间周期变化形成U 形的分布(即反正弦分布),则: u(△)= 0.5℃/2 =0.35℃θ的标准不确定度可由下式得到:u(θ)= 41.035.02.0)()(2222=+=∆+u u θ℃ 由于c 4 = c θ=0=-=∂∂θδθs l f, 这个不确定度对l 的不确定度不引入一阶的贡献, 然而它具有二阶贡献.○6 热膨胀系数引入的标准不确定度u (αS ) 标准量块的热膨胀系数给定为αS =11.5×10-6℃-1, 具有一个矩形分布的不确定度,其界限为±2×10-6℃-1, 则标准不确定度为:u (αS )= 2×10-6℃-1/3 = 1.2×10-6℃-1由于c 3 = c αs =0=-=∂∂θδαs Sl f, 这个不确定度对L 的不确定度不引入一阶的贡献, 然而它具有二阶贡献. 5)计算合成标准不确定度的 ○1计算灵敏系数 由标准量块的校准证书得到L s =50.000623mm ,被校量块与参考温度20℃之差估计为-0. 1℃,标准量块的热膨胀系数αs 为11.5×10-6℃-1,由这些信息计算得到:c 1=1,c 2=1, c 3=0, c 4=0,c 5=-l s θ = -50.000623mm×(-0.1℃)=-5.0000623mm℃, c 6=-l s αs = -50.000623mm×11.5×10-6℃-1=-5.75×10-4mm ℃-1○2计算合成标准不确定度 )()()()()()()()()(22222222226225222221θαθαδαδθδδu l u l d u l u u c u c d u c l u c l u s s s s s c +++=+++== 32 nm ○3u (l )的自由度: νeff (l )=3.172)6.16(50)9.2(12)8.9(18)25()32(44444=+++ 取νeff (l )=176)确定扩展不确定度要求包含概率P 为0.99,由νeff (l )=17,查表得:t 0.99(17)=2.90,取k 99= t 0.99(17)=2.90,扩展不确定度U 99= k 99u c (l )= 2.90,×32nm=93nm 。

7)校准结果:l =l s +d =50.000623mm+ 0.000215mm =50.000838mm U 99= 93nm (νeff =17)或l =(50.000838±0.000093)mm其中±号后的值是扩展不确定度U 99,由u c =32nm 乘包含因子k =2.90得到,k 是由自由度ν=17,包含概率p =0.99时查t 分布值表得到,由该扩展不确定度所包含的区间具有包含概率为0.99。

量块校准时标准不确定度分量汇总见表A.1表A.1 量块校准时标准不确定度分量汇总表可见,不确定度的主要分量显然是标准量块的不确定度u (l s )= 25nm 。

注: 用蒙特卡洛法(MCM)验证, 得到:传播输出量分布的标准偏差 u(l)=36nm, 最小包含区间的半宽度U 99=94nm, 与本规范的结果基本一致.说明本规范的方法评定不确定度基本可信的. 8)考虑二阶项时不确定度的评定前面所进行的不确定度的评定是不完全的,实际上在本案例中,测量模型存在着明显的非线性,在泰勒级数展开中的高阶项不可忽略。

在合成标准不确定度评定中,有两项明显的不可忽略的二阶项对u c (l )有贡献:)()()()(222222θαδαθδu u l u u l s s s +)()(222θδαu u l s =(0.05m )×(0.58×10-6℃-1) ×(0.41℃)=11.7nm)()(222θδαu u l s s =(0.05m )×(1.2×10-6℃-1) ×(0.029℃)=1.7nm考虑二阶项后的合成标准不确定度:u′c(l)=227.12+=34nm32+7.11扩展不确定度U99(l)= 99nm (k =2.92,νeff =16,P =0.99) 或相对扩展不确定度U99/l=2.0×10-6A.3.2温度计的校准这个例子说明用最小二乘法获得线性校准曲线时,如何用校准曲线的截距、斜率和他们的估计方差与协方差,计算由校准曲线获得的预期修正值及其标准不确定度。

相关文档
最新文档