差分放大电路四种接法

合集下载

差分放大电路

差分放大电路
的任何一个集电极输出与输入的共模信号比,即
(3)共模抑制比KCMR 在双端输出时,共模电压放大倍数,所以
KCMR是一个无穷大的数值,在单端输出时,可以 得到:
KCMR=
1.3 其他接法的差分放大电路
上节中的长尾式差分放 大电EE也要增大,这在集成 电路中不易实现;为了克服 这种困难,可以采用一个电 流源来代替Re。
基极电位为零。
IE=
≈IC
UCC-(-UEE)=ICRC+2IERe+UCE
UCE=
3.抑制零点漂移的原理
静态时,ui1=ui2=0,即uid=0,由于电 路完全对称,UC1=UC2,所以,uo=0,实现 了零输出。
当电源电压波动或者环境温度发生改变 时,两管的集电极电流和集电极电压将同时 发生同样的改变。其效果相当于在两个输入 端加入了共模信号,由于电路的对称性,在 理想的情况下,输出电压仍然保持不变,从 而抑制了零点漂移。
即可以有效的抑制零点漂移,提高共模 抑制比,同时发射极又不要求过高的负电压, 因此在集成电路中广为采用。
模拟 电子 技术 基础
(2)共模信号
双端输出
若输入信号为共模信号,即ui1=ui2=uic,称为共 模信号输入,由于两管的电流的变化方向一致,对电 阻Re而言,相当于每个管子发射极上面接了2Re的电 阻,双端输出时,由于电路对称,uo=uc1-uc2=0, 电压放大倍数为
单端输出 在单端输出的情况下,电压放大倍数为两个管子
在电路理想的情况下,输出信号电压可以表示为 uo=AUD(ui1-ui2)=AUDuid
通常称差模信号是两个输入信号之差,共模信号 是两个输入信号的算术平均值;分别表示为
uid=ui1-ui2 uic=(ui1+ui2)/2

模拟电子技术基础02-19-03 差分放大电路的四种接法_88

模拟电子技术基础02-19-03 差分放大电路的四种接法_88

2 (RBrbe)
双端输入 单端输出
1 (Rc / / RL )
2 RB rbe
2 (RBrbe)
单端输入 双端输出
(R / / RL )
C
2
RB rbe
2 (RBrbe)
Ro
2 Rc
Rc
2 Rc
K★CM输R 入电 ★双端输
阻较∞单很管高放大

路大;RE较高 是单r端be 输出的2倍


很高
双端输入 单端输出
1 (Rc / /RL)
2 RB rbe
单端输入 双端输出
(RC / / RL )
2
RB rbe
单端输入 单端输出
1 (Rc / / RL)
2 RB rbe
Ri★d 差模放大2倍(R数B 只rbe与) 输出方2式(R有B
2 (RBrbe)
2 (RBrbe)
关Rrbe★;o )双端输出时2,RcAd 与单管 Au 基R本c 相同;
差分放大电路的四种接法
差分放大电路的四种接法
RB + ui1 –
RC +
– RC
uo1 uo2
T1
T2
RE –VEE
+VCC 四种工作方式:
RB
+ ui2 –
双端输入双端输出(双入双出) 双端输入单端输出(双入单出) 单端输入双端输出(单入双出) 单端输入单端输出(单入单出)
差分放大电路的四种接法
(1)静态分析
+VCC
RB + ui1 –RCຫໍສະໝຸດ +RL uo
T1

RE
RC T2
–VEE

差动放大电路(

差动放大电路(

§5、1差动放大电路(第三页)这一页我们来学习另一种差动放大电路和差动放大电路的四种接法一:恒流源差动放大电路我们知道长尾式差动电路,由于接入Re,提高了共模信号的抑制能力,且Re越大,抑制能力越强,但Re增大,使得Re上的直流压降增大,要使管子能正常工作,必须提高UEE的值,这样做是很不划算的。

因此我们用恒流源代替Re,它的电路图如右图所示:恒流源差动放大电路的指标运算,与长尾式完全一样,只需用ro3代替Re即可二:差动放大电路的四种接法差动放大电路有两个输入端和两个输出端,因此信号的输入、输出方式有四种情况。

(1)双端输入、双端输出它的电路的接法如图(1)所示:差模电压的放大倍数为:共模电压的放大倍数为:共模抑制比为:CMRR→∞(2)双端输入、单端输出它的电路接法如图(2)所示:差模电压的放大倍数为:共模电压的放大倍数为:共模抑制比为:(3)单端输入、双端输出它的电路接法如图(3)所示:这种放大电路忽略共模信号的放大作用时,它就等效为双端输入的情况。

双端输入的结论均适用单端输入、双端输出。

(4)单端输入、双端输出它的电路的接法如图(4)所示:它等效于双端输入、单端输出。

这种接法的特点是:它比单管基本放大电路的抑制零漂的能力强,还可根据不同的输出端,得到同相或反相关系。

三:总结由以上我们可以看出:差动放大电路电压放大倍数仅与输出形式有关,只要是双端输出,它的差模电压放大倍数与单管基本的放大电路相同;如为单端输出,它的差模电压放大倍数是单管基本电压放大倍数的一半,输入电阻都相同。

下一节返回§5、2集成运算放大器集成运放是一种高放大倍数、高输入电阻、低输出电阻的直接耦合放大电路一:集成运放的组成它有四部分组成:1、偏置电路;2、输入级:为了抑制零漂,采用差动放大电路3、中间级:为了提高放大倍数,一般采用有源负载的共射放大电路。

4、输出级:为了提高电路驱动负载的能力,一般采用互补对称输出级电路二:集成运放的性能指标(扼要介绍)1、开环差模电压放大倍数 Aod它是指集成运放在无外加反馈回路的情况下的差模电压的放大倍数。

差分放大电路

差分放大电路

Ad
1 2
(Rc ∥ RL ) Rb rbe
Ri 2(Rb rbe ),Ro Rc
第21页/共33页
1、 双端输入单端输出:共模信号作用下的分析
Ad
1 2
(Rc ∥ RL ) Rb rbe
Ac
Rb
(Rc ∥ RL ) rbe )Re
第19页/共33页
四、差分放大电路的四种接法
1、 双端输入单端输出:Q点分析
由于输入回路没有变 化,所以IEQ、IBQ、ICQ 与双端输出时一样。但 是UCEQ1≠ UCEQ2。
U CQ1
RL Rc RL
VCC
ICQ (Rc
∥ RL )
UCQ2 VCC ICQ Rc
第20页/共33页
1、 双端输入单端输出:差模信号作用下的分析
第4页/共33页
二、差分放大电路的组成
是直接耦合放大电路基本单元电路
零点
在典型工作点稳定电路中,温
漂移
度变化时ICQ总是有微小变化, 导致输出电压uo的微小变化, 所以也存在稳漂问题
第5页/共33页
第6页/共33页
如何抑制温漂
改变电压输出端,找到一 受温度控制的直流电压源V 电压值与UCQ同步变化 当输入信号ui=0时
I2
IB3,IE3
R2 R1 R2
VEE R3
U BEQ
第28页/共33页
近似为 恒流
六、差分放大电路的改进
1、加调零电位器RW
1) RW取值应大些?还是小 些? 2) RW对动态参数的影响? 3) 若RW滑动端在中点,写 出Ad、Ri的表达式。
Ad
Rb
rbe
Rc
(1
)
RW 2

差分运算放大器电路

差分运算放大器电路

差分运算放大器电路差分运算放大器(Differential Amplifier)是一种用于放大差分信号的电路。

它是运算放大器(Operational Amplifier)的一种特殊形式,常被用于测量和增强微弱的差分输入信号。

差分运算放大器的电路结构由两个输入端口和一个输出端口组成。

两个输入端口分别连接到两个输入电阻上,并与负反馈网络相连。

输出端口则连接到负载电阻上。

差分运算放大器的主要功能是放大差分信号,并抑制共模信号。

差分信号是通过将一个信号与另一个信号相减来获得的。

例如,当两个输入信号分别为Vin+和Vin-时,差分信号为Vd = Vin+ - Vin-。

差分运算放大器的工作原理如下:1.输入端口:差分运算放大器的输入端口由Vin+和Vin-两个输入引脚组成。

通常情况下,Vin+被作为非反相输入端口,Vin-则被作为反相输入端口。

这意味着,当Vin+上升时,输出电压Vout下降,反之亦然。

2.反馈网络:差分运算放大器的反馈网络通常由电阻和电容组成,用于实现负反馈。

负反馈可以使差分运算放大器的增益和频率响应更加稳定,并提高放大器的线性度。

3.输出端口:差分运算放大器的输出端口由Vout引脚组成。

输出电压Vout的幅度和极性取决于输入信号Vin+和Vin-之间的差异。

差分运算放大器的放大倍数可以通过改变反馈网络中的电阻值来调整。

通常情况下,差分运算放大器的放大倍数很高,达到数百甚至数千倍。

这使得差分运算放大器成为测量微弱差分信号和抑制共模噪声的理想选择。

差分运算放大器的主要优点包括:1.高放大倍数:差分运算放大器有很高的开环增益,可以有效地放大微弱的差分信号。

2.抑制共模信号:差分运算放大器通过差分输入和负反馈,能够有效地抑制共模噪声。

共模信号是同时施加于两个输入端口的噪声,如果没有差分放大器进行抑制,它可能会严重干扰信号。

3.精确性:差分运算放大器可以提供高精度的放大,并且具有很低的失调电压和失调电流。

差分式基本放大电路

差分式基本放大电路
uO
uI
直流
uO
放大器
t o
直接耦合放大电路的一对矛盾——放大倍数越大,输出的零 漂越大。
产生零点漂移的主要原因——温度变化,这也是最难克服的 因素
抑制零漂的主要方法—— 1)选用高质量的硅管; 2)利用热敏元件补偿; 3)采用差分式放大电路 这是一种 有效抑制零漂的措施.
3-5-2 差分式基本放大电路
将双端输入转 换为单端输出 时;
常用于多级直 接耦合放大器 的输入级。
将单端输入转 换为双端输出 时;
常用于多级直 接耦合放大器 的输入级。
用于放大器 输入电路、 输出电路均 需要有一端 接地时。
课后小结——见黑板
课前复习及提问:小信号调谐放大器采用什麽负载?其作用 是什么?
思考题:P192 1、2 作业题:P192 3、5、6;P220 3-6 预习内容: 1)什么是甲类、乙类、甲乙类、丙类放大,它
1.差模信号和共模信号
差模信号:两个大小方向完全相同的信号,如ui1=ui2
共模信号:两个大小相等、方向相反的信号,如ui1=-ui2
2. 电路基本形式
+VCC
RC1 RB12
+ uo -
RC2 RB22
RB11
+
+
RB21
+
+
ui
ui1 -
V1
uo1
-
uo2
V2
-
+ ui2 -
-
其中:V1V2参数完全一致,RB11=RB21(输入回路的限流电阻), RB12=RB22(偏置电阻),RC1=RC2 (集电极负载电阻) 信号由V1和V2的基极输入,从集电极输出,因此电路有两 个输入端和两个输出端。

高教版《模拟电子技术基础(第五版)课程讲义复习要点第4章教案3(4.3.3-4.3.4)

高教版《模拟电子技术基础(第五版)课程讲义复习要点第4章教案3(4.3.3-4.3.4)

iE1 I
iE2
VT3
E I
RE
RB2
-VEE
思考:恒流源的恒定电流I如何求取?对差模输入信号, E点电位=?分析电路时,调零电位器RP如何处理?
讨论一
若uI1=10mV,uI2=5mV,则uId=? uIc=?
uId uI1 uI2
uIc
uI1
2
uI2
uId=5mV , uIc=7.5mV
⑤共模抑制比
注意:只要是单出电 路,不管输入方式如 何,如果有共模输入 信号,Ac的分析方法
KCMR
Ad Ac
Rb rbe 2(1 )Re
2 Rb rbe
完全相同。 总结四种
Re
Ac
KCMR
性能越好 电路特点
4.3.4 改进型差分放大电路
一、 问题的提出
如何提高共模抑
若电路参数理想对称,则对于双出电路
2 Rb rbe
②输入电阻
Ri=2(Rb+rbe)
③输出电阻
Ro=Rc
④共模放大倍数
因为双入电路无共模输入信号, 所以一般不必求Ac。
双端输入单端输出问题讨论:
Ad
1 2
(Rc∥RL ) Rb rbe
Ri 2(Rb rbe ),Ro Rc
(1)T2的Rc可以短路吗? (2)什么情况下Ad为“+”? (3)双端输出时的Ad是单端输出时的2倍吗?
制比?
Ac=0,KCMR=∞
对于单出电路
Ac
uOc uIc
Rb
(Rc // RL ) rbe 2(1 )Re
若Re=∞,则 Ac=0, KCMR=∞
调零电位器 实现0入0出
二、 恒流源差分放大电路的实现

差分放大电路一

差分放大电路一

3.3 差分放大电路3.3 差分放大电路一、零点漂移现象及其产生的原因二、长尾式差分放大电路的组成三、长尾式差分放大电路的分析四、差分放大电路的四种接法五、具有恒流源的差分放大电路六、差分放大电路的改进一、零点漂移现象及其产生的原因1. 什么是零点漂移现象:Δu I=0,Δu O≠0的现象。

产生原因:温度变化,直流电源波动,元器件老化。

其中晶体管的特性对温度敏感是主要原因,故也称零漂为温漂。

克服温漂的方法:引入直流负反馈,温度补偿。

典型电路:差分放大电路零点漂移参数理想对称:R b1= R b2,R c1= R c2,R e1= R e2;T1、T2在任何温度下特性均相同。

典型电路在理想对称的情况下:1. 克服零点漂移;2. 零输入零输出。

R b是必要的吗?CEQ EQ BQ 1U I I ≈β+=,)()C2CQ2C1=∆+-∆u u u 0c IcOc=∆∆A u u ,参数理想对称时共模信号:数值相等、极性相同的的共模负反馈作用:温度变化所引起的变化等效为共模信号 T(℃)↑→I↑I C2↑→U E↑→I B1C1抑制了每只差分管集电极电流、电位的变化。

差模信号:数值相等,极性相反2/Id对差模信号无反馈作用。

中电流不变,即Re为什么?R∆∆L c CQ CC L c L CQ1 )(R R I V R R R U -⋅+=∥ 由于输入回路没有变化,所以I EQ 、I BQ 、I CQ与双端输出时一样。

但是U CEQ1≠ U CEQ2。

be b L c d )( 21r R R R A +⋅-=∥βco be b )(2R R r R =+=,be b L c d )( 21r R R R A +⋅-=∥βe be b L c c )1(2)( R r R R R A ββ+++-=∥)(2)1(2be b e be b CMR r R R r R K ++++=β(1)T 2的R c 可以短路吗?(2)什么情况下A d 为“+(3)双端输出时的A d 是单端输出时的)T 2的R c 可以短路,因为输入回路对称,所以还是对称的,仅仅U CEQ1≠ U CEQ2)输出端取T2管集电极电压时下共模输入电压差模输入电压输入差模信号的同时总是伴随着共模信号输入:2/I Ic I Id u u u u ==,I d O u A u +⋅=差模输出共模输出五、具有恒流源的差分放大电路为什么要采用电流源?R e 越大,共模负反馈越强,单端输出时的A c 越小,K CMR越大,差分放大电路的性能越好。

第三章(三)差分放大电路

第三章(三)差分放大电路

26 I EQ
200
5 7 .5 9
81 26 0 .2 8 5
7 5 8 9 7 .5 9 K
80
5 2 .7
R L 1 0 / /1 0 5 K
R id 2 rb e 2 7 .5 9 1 5 .2 k R od 2 RC 2 0 K
0CC
RC I CQ1
1 2 1 0 0 .2 8 5 9 .1 5(V )
rb e 2 0 0 (1 )
( 2 ) Au d R L RC / / 1 2 RL rb e
ui1 = 1.01 = 1.00 + 0.01 (V) ui2 = 0.99 = 1.00 – 0.01 (V) uid = u i1 – u i2= 1.01 – 0.99 uic = (ui1+ ui2 ) / 2 =1(V)
u i 1 u ic 1 2 u d ; u i 2 u ic 1 2 u id
I CQ1 I CQ 2
U CQ1 VCC RC I CQ1 U C Q 2 V C C R C I C Q 2 是集电极对地电位值!
(二)动态分析 1. 差模输入与差模特性 差模输入:差分放大电路的两个输入信号大小相等,极性相反。 差模电压放大倍数:差模输出电压uod与差模输入电压uid的比值。 差模输入电阻:从放大电路两个输入端看进去所呈现的等效电阻。 差模输出电阻:差分放大电路两管集电极之间即输出端看进去的对 差模信号所呈现的电阻。
ic1
ic2
IE
IE
REE:静态时:流过两倍的IE,对单边来讲相当于串接了2REE。 动态时:ui1引起ie增加,而ui2引起ie减小,一增一减,在RE上不

差分放大电路四种接法

差分放大电路四种接法
结论
并联式差分放大电路在某些应用场景下是一个简单但有效的选择。
共模反馈式差分放大电路
1 应用场景
适用于需要抑制共模干扰的应用,比如传感器信号放大和精密测量。
2 电路特点
共模反馈可以大幅减小输出的共模幅度,提高信号的可靠性和精确性。
3 结论
共模反馈式差分放大电路在对共模噪声抑制要求较高的电子工程中重要的建模工具和设计模块,希望本演示能帮助 您更好地了解差分放大电路及其应用。
差模反馈式差分放大电路
应用场景
适用于需要较大放大倍数和高线 性度的应用,如音频放大器和测 量设备。
电路特点
通过差模反馈可以减小非线性失 真,提高放大电路的线性度和稳 定性。
结论
差模反馈式差分放大电路在对线 性度要求较高的应用中非常常见 且有效。
变压器耦合式差分放大电路
1
应用场景
适用于需使用高压和低压信号同时进行放大的应用,如音频放大器和无线电通信。
进行适当的封装和屏蔽,以提高电路的抗干扰能 力。
进行仿真和测试,验证电路设计的性能和可靠性。
总结
1 灵活性
2 性能
差分放大电路有多种接法, 可以根据应用需求进行选 择和调整。
各种接法各有特点,能满 足不同应用场景的放大要 求。
3 应用广泛
差分放大电路在音频放大 器、信号处理和通信领域 中得到广泛应用。
差分放大电路四种接法
差分放大电路是一种常用的电路拓扑结构,包括四种常用接法:并联式、共 模反馈式、差模反馈式和变压器耦合式。本演示将详细介绍这些接法的应用 场景、特点和结论。
并联式差分放大电路
应用场景
适用于需要高增益、低噪声的信号放大,比如音频放大器和通信设备。
电路特点

差分放大电路资料

差分放大电路资料

差模输出 共模输出
静态时的值
3. 任意信号的输入
输入信号既不是共模也不是差模信号:要把输
入信号分解为一对共模信号和一对差模信号,它们 共同作用在差动电路的输入端。
ui1=uic+uid
ui2=uic-uid
uic

ui1 ui2 2
uid

ui1 ui2 2
输入信号分解为差模和共模信号
例:已知输入信号 ui1=20 mv , ui2=10 mv,求共模 信号uic和差模信号uid.
电阻Re不影响差模电压放大倍数!
Ri 2(Rb rbe )
Ro 2Rc
差分放大电路
4. 动态参数:Ad、Ri、 Ro、 Ac、KCMR
共模抑制比KCMR:综合考察差分放大电路放大差模信号 的能力和抑制共模信号的能力。
K CMR

Ad Ac
在参数理想对称的情况下,KCMR 。
在实际应用时,信号源需要有“ 接地”点,以避免 干扰;或负载需要有“ 接地”点,以安全工作。
由于IBQ ,Rb较小,其上的 电压降可忽略不计。
ui1 Rb1
-UBEQ
IBQ 2IEQ Re
-VEE
Rb2 ui2
I BQ1 I BQ2 I BQ ICQ1 ICQ2 ICQ I EQ1 I EQ2 I EQ U CQ1 U CQ2 U CQ
I EQ

VEE
U BEQ 2Re
+ RL/2
uod
ui1 rbe2 βIb
Rc1
RL/2
-
Rb2 (e) 交流等效电路
uod

2ic1(Rc
//

差分放大电路的四种接法

差分放大电路的四种接法

三、差分放大电路的四种接法1.双端输入单端输出电路/匸电路如右图所示,为双端输入、单端输出差分放大电路。

由于电路参数不对称,影响了静态工作点和动态参数。

直流分析:画出其直流通路如右下图所示,图中【一和:是利用戴维宁定理进行变换得出的等效电源和电阻,其表达式分别为:双端输入暫单端输出差分放大电路虽然由于输入回路参数对称,使静态电流I CQ1 = l cQ2 ;二输出回路的不对称性,使「管和T2管的集电极电位各不相同,即U cQl M U C Q2 ,U cEQI 半U CEQ2。

双端输入.单端电路的応沆通謀二咯-』如盘!十U醛/口侄呼=。

曲_ & F审陽1^00 圉&〕—I-SEQ1}-- 1 迫& + 口砂2交流分析:在差模信号作用时,负载电阻仅取得「管集电极电位的变化量, 所以与双端输出电路相比,其差模放大倍数的数值减小。

如右下图所示为差模信号的等效电路。

在差模信号作用时,由双端输入“单端输出差分放大电路 对差模信号的尊效电路而输出信号取自 T2管的集电极, 于Ti 管与T2管中电流大小相等方向相反,所以发射极相当于接地。

输出电压输入电压加卫=2俎届+%)差模放大倍数也% 1俺和R'Ar = -- - • --------叫 2 禺+%电路的输入电阻尽=2幌十%)电路的输出电阻是双端输出电路输出电阻的 一半。

如果输入差模信号极性不变,则输出与输入同相。

当输入共模信号时,由于两边电路的输入信号大小相等极性相 同。

与输出电压相关的Ti 管一边电路对共模信号的等效电路如下图 所示。

发射极电阻 Re 上的电流变化量 ,发射极电位的变化量;对于每只管子而言,可认为是‘仁流过阻值为2Re 的射 极电阻。

山}共模信号作用下肘等效电路共模信号的等效电路输入电压 3 =拉式耳+%) + 2应£&=巧(A +/) + 2(1+皿』&A (a)将射极电阻展进行等效变换输出电压沁"叫®=-砂丄(&畑)共模放大倍数为 (誚输入差模倍 叽*宀广2Q +叭 共模抑制比& _均_卫』+% +玄1+国&4 =—瓦P —结论:R e 愈大,A c 的值愈小,K cMR 愈大,电路的性能愈好。

第5章差分放大电路

第5章差分放大电路

第5章 差分放大电路内容提要:本章介绍差分放大电路,包括差分放大电路的组成、差分放大电路的输入和输出方式、差分放大电路的静态计算和动态计算。

概述差分放大电路(简称差放)就其功能来讲,是放大两个输入信号之差。

由于它具有优良的抑制零点漂移的特性,因此成为集成运放的要紧组成单元。

在电子仪器和医用仪器中经常使用差分放大电路做信号转换电路,将双端输入信号转换为单端输出或将单端输入信号转换为双端输出。

5.1.1 差分放大电路的组成差分放大电路是一种对称结构的放大电路,差分放大电路是由两个特性相同的三极管VT 1、VT 2组成的对称电路,两部份之间通过射极公共电阻R e 耦合在一路。

在差分放大电路的电路图(图5-1-1)中。

R s1、R s2为VT 1、VT 2确信适合的静态工作点。

采纳双电源供电形式,可扩大线性放大范围。

差分放大电路的电路如图5-1-1所示。

+-i1u i2u图5-1-1 差分放大电路差分放大电路是对称电路。

对称电路的含义是两个三极管VT 1、VT 2的特性一致,电路参数对应相等。

即βββ==21BE BE2BE1U U U == be be2be1r r r ==c c21c R R R ==s s21s R R R == 5.1.2 差分放大电路的输入和输出方式差分放大电路一样有两个输入端:反相输入端和同相输入端,如图5-1-1所示。

在输入端A 输入极性为正的信号u i1,输出信号u o 的极性与其相反,称该输入端A 为反相输入端。

在输入端B 输入极性为正的信号i2u ,而输出信号u o 的极性与其相同,称该输入端B 为同相输入端。

极性的判定以图中确信的正方向为准。

信号从三极管的两个基极加入称为双端输入;信号从三极管的一个基极对地加入称为单端输入。

差分放大电路一样有两个输出端:集电极C 1和集电极C 2。

从集电极C 1和集电极C 2之间输出信号称为双端输出,从一个集电极对地输出信号称为单端输出。

一文看懂差分放大电路的接法大全

一文看懂差分放大电路的接法大全

一文看懂差分放大电路的接法大全什么是差分放大电路差分放大电路利用电路参数的对称性和负反馈作用,有效地稳定静态工作点,以放大差模信号抑制共模信号为显著特征,广泛应用于直接耦合电路和测量电路的输入级。

但是差分放大电路结构复杂、分析繁琐,特别是其对差模输入和共模输入信号有不同的分析方法,难以理解,因而一直是模拟电子技术中的难点。

差分放大电路:按输入输出方式分:有双端输入双端输出、双端输入单端输出、单端输入双端输出和单端输入单端输出四种类型。

按共模负反馈的形式分:有典型电路和射极带恒流源的电路两种。

(a)射极偏置差放(b)电流源偏置差放差放有两个输入端子和两个输出端子,因此信号的输入和输出均有双端和单端两种方式。

双端输入时,信号同时加到两输入端;单端输入时,信号加到一个输入端与地之间,另一个输入端接地。

双端输出时,信号取于两输出端之间;单端输出时,信号取于一个输出端到地之间。

因此,差分放大电路有双端输入双端输出、单端输入双端输出、双端输入单端输出、单端输入单端输出四种应用方式。

上面两个电路均为双端输入双端输出方式。

(a)电阻Re是T1和T2两管的公共射极电阻,或称射极耦合电阻,它实际上就是在工作点稳定电路中植入的射极电阻,只是此处将两个电阻的射极电阻合并成一个Re,所以经它的作用是稳定静态工作点,对零漂做进一步的抑制。

电阻Re常用等效内阻极大的恒流源I0来代替,以便更有效地提高抑制零漂的作用。

负电源-用来补偿射极电阻Re两端的直流压降,以避免采用电压过高的单一正电源+,并可扩大输出电压范围,使两基极的静态电位为零,基极电阻Rb通常为外接元件,也可不用,其作用是限制基极静态电流并提高输入电阻。

差分放大器工作状态上图a电路,是输入信号IN1=IN2的状态。

(1)因输入端的“虚断”特性,同相输入端为高阻态,其输入电压值仅仅取决于R1、R2分压值,为2V。

同相输入端的2V电压可以看作成为输入端比较基准电压;(2)因两输入端的“虚短”特性,可进而推知其反相输入端,即R3、R4串联分压电路,其b点=a点=2V。

第十讲互补输出级

第十讲互补输出级

(Rc ∥ RL )
2(Rb rbe )
Ac
Rb
(Rc ∥ RL ) rbe 2(1 )Re
K CMR
Rb
rbe 2(1 )Re
2(Rb rbe )
Ro Rc
讨论1:具有恒流源的差分放大电路
为什么要采用电流源?
Re 越大,共模负反馈越 强,单端输出时的Ac越小, KCMR越大,差分放大电路 的性能越好。
如果信号为零时两只管子处于临界导通或微导 通状态,那么当有信号输入时两只管子中至少 有一只导通,因而消除了交越失真。
二极管导通时,对直流电源的作用可近似等效 为一个0.6~0.8V的直流电池,对交流信号的 作用可等效为一个数值很小的动态电阻。
三、消除交越失真的互补输出级
静态:UB1B2 UD1 UD2 动态:ub1 ub2 ui
第四章 集成运算放大电路
第四章 集成运算放大电路
一、概述 二、集成运放中的电流源电路 三、集成运放电路分析 四、集成运放的主要性能指标 五、集成运放的种类
一、概述
集成运算放大电路,简称集成运放,是一个高性能的直接 耦合多级放大电路。因首先用于信号的运算,故而得名。
1. 集成运放的特点
(1)直接耦合方式,充分利用管子性能良好的一致性采 用差分放大电路和电流源电路。 (2)用复杂电路实现高性能的放大电路,因为电路复杂 并不增加制作工序。 (3)用有源元件替代无源元件,如用晶体管取代难于制 作的大电阻。 (4)采用复合管。
§3.3 互补输出级
一、对输出级的要求 二、基本电路 三、消除交越失真的互补输出级 四、准互补输出级 五、直接耦合多级放大电路
一、对输出级的要求
互补输出级是直接耦合的功率放大电路。 对输出级的要求:带负载能力强;直流功耗小; 负载电阻上无直流功耗; 射极输出形式 最大不失真输出电压最大。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
为什么要采用电流源?
Re 越大,共模负反馈越强,单端输出时的Ac 越小,KCMR越大,差分放大电路的性能越好。
但为使静态电流不变,Re 越大,VEE越大,以 至于Re太大就不合理了。
我们需要在低电源条件下,得到趋于无穷大的Re。
解决方法:采用恒流源代替Re!
A
12
具有恒流源差分放大电路
晶体管工作在放大区时,集电 极电流 Ic 仅决定于基极电流,和 管压降UCES基本没有关系,可以把 工作点稳定电路看作是一恒流源
AcRbrb(R ec2 ∥ (1R L))Re
Ad 12(RRbc∥ rbReL)
KCMRRbrbR e b 2(r1be)Re
Re越大,Ac值越小,KCMR越大,电路性能越好,
增大 Re 是改善共模抑制比的A基本措施
6
1、 双端输入单端输出:问题讨论
Ad 12(RRbc∥ rbReL) KCMRRbrbR e b 2(r1be)Re
双端输出:
Ad
(Rc

RL 2
R b rbe
)
Ac 0
K CMR
Ro 2Rc
单端输出:
Ad
(Rc ∥ RL ) 2(Rb rbe )
Ac
Rb
(Rc ∥ RL ) rbe 2(1 )Re
K CMR
Rb rbe 2(1 )Re 2(Rb rbe )
Ro Rc
A
11
五、具有恒流源的差分放大电路
VC' C
RL Rc RL
VCC
Rc' = ( Rc∥ RL )
UCQ1
RL Rc RL
VCC
ICQ(Rc∥RL)
UCQ2 VCCICQRc
A
3
1、 双端输入单端输出:差模信号作用下的分析
差模信号作用下,负载仅取得T1管集电极电位的变化量, 所以Ad比原来小
Ad 1 2(R Rbc ∥ rbReL)
R i2 (R b rb), e R oR c
1、什么情况下Ad为“+”? 2 、双端输出时的Ad是单端输出时的2倍吗?
A
7
2、单端输入双端输出
两个输入端中的一个接地,输入信号加在另一输入端和地 之间
在输入信号作用下发射极的电位变化吗?说明什么?
A
8
2、单端输入双端输出
对输入信号进行等效变换
共模输入电压 差模输入电压
R i2 (R brb e), R oR c
如果RL接在T2集电极,则 Ad为A 正 是双端输出时的一半 4
1、 双端输入单端输出:共模信号作用下的分析
在共模信号作用下,发射极电阻Re上的电流变化量为 2iE
对每个晶体管而言,相当于 iE 流经阻值为2Re的电阻
A
5
共模信号作用下的分析
与 输出电压相关的T1管一边的 对共模信号的等效电路如右图
恒流源等效电阻
R uCE ic
A
近似为 恒流
13
具有恒流源差分放大电路
R1,R2,R3,T3组成恒流源,在I2>I3
时, I1 I2
U R2
R2 R1 R2
V EE
IC3
IE3
U R2
U BE 3 R3
在UBE3的变化忽略不计时,IC3 基本不受温度影响。另外, 电路中的动态电流不会作用到T3的基极或发射极,可以认 为IC为一恒定电流
A
9
电路特点
输入差模信号的同时总是伴随着共模信号输入: uId uI uIc 1 2uI
输出电压包含两部分,差模输出电压和共模输出电压
uoAduIAc1 2uI
静态工作点Q和动态参数分析, 与双端输入双端输出电路完全相同
A
10
3、四种接法的比较:电路参数理想对称条件下
Ri均为2(Rb+rbe); 双ห้องสมุดไป่ตู้输入时无共模信号输入,单端输入时有共模输入。 输出方式:Q点、Ad、 Ac、 KCMR、Ro均与之有关。
A
14
六、差分放大电路的改进
1、加调零电位器RW
实际电路中,参数难以理 想对称,加一阻值较小的 RW,称为调零电位器。通 过调制,使输入信号为0时 输出信号为0
自己分析Rw对动态参数的影响
A
15
2、场效应管差分放大电路
Ad g m Rd Ri Ro 2Rd
为了提高放大电路的输入电阻,可以用场效应管代替差 分放大晶体管
四、差分放大电路的四种接法 五、具有恒流源的差分放大电路
A
1
四、差分放大电路的四种接法
1、 双端输入单端输出:Q点分析
由于输入回路没有变化,所以IEQ、IBQ、ICQ与 双端输出时一样。但是UCEQ1≠ UCEQ2。
A
2
输出回路不再对称,VC'C和Rc' 是使用戴维宁定理得到的
等效电源和等效内阻
=?
=?
A
18
A
16
讨论一
若uI1=10mV,uI2=5mV,则uId=? uIc=? uId=5mV ,uIc=7.5mV
A
17
讨论二
1、uI=10mV,则uId=? uIc=? 2、若Ad=-102、KCMR=103 用直流表测uO ,uO=?
uId=10mV ,uIc=5mV
=? uO= Ad uId+ Ac uIc+UCQ1
相关文档
最新文档