数学:2.2.3整式的加减-去括号(人教新课标七年级上)

合集下载

人教版七年级数学上册2.2整式的加减去括号教学设计

人教版七年级数学上册2.2整式的加减去括号教学设计
4.培养学生的逻辑思维和批判性思维,使学生形成正确的价值观,懂得用数学的眼光看待世界。
总而言之,本章节的教学设计旨在让学生在掌握整式的加减去括号知识的基础上,提高解决问题的能力,培养良好的学习习惯和团队合作精神,同时激发学生对数学的兴趣和热爱。在教学过程中,教师应关注学生的个体差异,因材施教,使每个学生都能在数学学习中获得成就感。
1.学生对整式概念的理解程度,注意引导学生从具体实例中抽象出整式的定义,使学生在理解的基础上进行学习。
2.学生在去括号和整式加减运算过程中可能出现的错误,如符号错误、运算顺序混乱等,教师应适时纠正,帮助学生巩固运算规则。
3.针对学生个体差异,设计不同难度的练习题,使每个学生都能在原有基础上得到提高,激发学生的学习兴趣和自信心。
学生在小组内部分工合作,共同探讨问题解决方法。讨论过程中,教师巡视各小组,给予提示和指导,鼓励学生积极参与,充分发表自己的见解。
(四)课堂练习
在课堂练习环节,教师针对整式的加减去括号知识点,设计不同难度的练习题。从基本的去括号题目开始,逐步增加难度,让学生在课堂上即时巩固所学知识。
教师选取部分学生的作业进行点评,及时纠正错误,强调运算规则和符号变化。同时,鼓励学生之间相互检查,提高学生发现和解决问题的能力。
(五)总结归纳
在总结归纳环节,教师引导学生回顾本节课所学的整式加减去括号知识。首先,让学生用自己的话总结整式的定义、性质以及加减去括号法则。接着,教师对学生的总结进行点评和补充,确保学生对知识点的全面掌握。
最后,教师强调整式的加减去括号在实际问题中的应用,如购物、行程安排等,让学生认识到数学与生活的紧密联系,激发学生学习数学的兴趣和积极性。同时,鼓励学生在课后继续探索整式的相关知识,为下一节课的学习打下基础。

新课标七年级数学上册《整式加减-去括号法则》教学反思

新课标七年级数学上册《整式加减-去括号法则》教学反思

新课标七年级数学上册《整式加减-去括号法则》教学反思1、新课标七年级数学上册《整式加减-去括号法则》教学反思去括号法则是第二章整式的重点和难点,同时它又是解方程的必要步骤,可见这节课的重要性。

在这节课的准备上,我依旧选择学生身边的事例作为教学出发,探索去括号前后符号之间的变化规律,这些规律的探索培养了学生归纳、概括的能力,使学生建立初步的符号感。

去括号法则的探索是从学生过去熟悉的运算律入手归纳出来的。

运用法则去括号时,开始学生确实容易搞混乱,因为刚探索出来的东西毕竟是新生事物,学生的认知水平不可能马上接受,所以必须经过练习,根据实践,经过练习学生还是能牢固掌握法则的。

以下是对整式加减——去括号法则这节课的.教学反思:一、本节课亮点。

充分的调动了学生的积极性。

在教学引入中,我设置了一个学生身边的事例。

如:小明原来有a元钱,妈妈给他b元,爸爸给他c 元,他现在有多少钱了?学生看见这些问题和自己息息相关,学起来就更有兴趣了。

二、存在的问题。

课堂内容没能很好掌握。

虽然课堂上同学们总结错误点总结的不错,但学生对去括号法则的掌握仍浮于表面,练习少了,课后作业中的问题也就出来了;所以总的说来,这课堂效率不高,没有完成基本的课堂任务;学生一节课下来还是少了练习的机会,看来对求解的题目,课堂上需要更多的练习,从题目中去反馈会显得更加适合。

三、改进及补救的措施。

针对学生对知识的掌握浮于表面的现象,首先是在学生总结完后,让他们自己认真体会。

本节课没完成的任务,希望能在下面的时间里尽快进行补充,让学生能及时对知识进行掌握。

2、小学一年级数学上册第七单元《11-20各数的认识》的教学反思11-20各数的认识是一年级数学上册第七单元的内容,《11-20各数的认识》在整个数的学习体系中具有比较重要的地位,它既是10以内数的认识和延续,又是100以内乃至更大的数的认识的基础,同时也为20以内的进位加法的学习打下算理基础。

在本节课教学中我从学生的认知规律和知识结构特点设计了一系列动手操作和练习的活动,让学生在玩中学、学中玩;使每个学生都能在学习过程中获得成功的体验,体会到数学学习是一件很快乐的事。

2.2.2整式的加减-去括号法则教学设计人教版数学七年级上册

2.2.2整式的加减-去括号法则教学设计人教版数学七年级上册

整式的加减去括号法则教学设计一、案例背景七年级数学二章第二节第2课时“整式的加减去括号法则”二、教学设计(一)教学目标(基于学科核心素养的教学目标)1.知识与技能:能运用运算律探究去括号法则,并且利用去括号法则将整式化简.2.过程与方法:经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力3.情感态度与价值观:培养学生主动探究、由生活中的实例体会数学来源于生活又高于生活.(二)内容分析1.教材分析:本节课的教学内容《去括号》是中学数学部分的一个基础知识点,是在前面学习了有理数、单项式、多项式、同类项、合并同类项的基础上来学习的,它是整式的化简和整式的加减的基础,为进一步学习下一章一元一次方程等后续数学知识做好准备,同时也是是以后分解因式、解方程(组)与不等式(组)、函数等知识点当中的重要环节之一,对于七年级学生来说接受这个知识点存在一个思维上的转换过程,同时它也是一个难点,因此去括号在初中数学教材中有其特殊地位和重要作用。

2.学生分析:七年级的学生在前面已经学习了有理数的运算、单项式、多项式、整式、合并同类项,而且在小学就学习了乘法分配律并用其进行简便运算,已经积累了一定的学习经验,但是对于七年级的学生用字母表示数以及式的运算还不太熟悉,前面学生已经学习了“字母表示数”的问题,接下来要让学生理解字母可以像数一样进行计算,所以本节课类比数学习式,数的运算性质和运算律在式的运算中仍然成立,让学生通过类比学习充分体会“数式通性”,为学习整式的加减运算打好基础,从而实现数到式的飞跃。

3.教学重点、难点:教学重点:去括号法则,准确应用法则将整式化简.教学难点:括号前面是“-”号去括号时,括号内各项变号容易产生错误。

(三)教学策略设计1.教学方法设计:根据七年级学生的思维所呈现出的具体、直观、形象之特点,为突破本节课的难点,我选用“类比——探索——发现”的教学模式。

人教版七年级数学上册第二章2.2.3整式的加减

人教版七年级数学上册第二章2.2.3整式的加减
合并同 类项 去括号
( 3a2 4a2 ) ( ab 6ab) ( 7 7) 7a2 7ab
合并同 类项 去括号
去括号,合并同类项
(1)整式的加减实际上就是合并同类项;
(2)一般步骤是先去括号,再合并同类项: (3)整式加减的结果还是整式。
注意:几个整式相加减,通常先用括号把 每一个整式括起来,再用加减号连接;然 后去括号,合并同类项。
a b = 当a=-2,b=-3时,
原式= =
3 2a b2 7 5a b 2 解:=
2
2a b 2
2 32 2 2 3 2 52 2 2 3 2
2
则去掉括号后原括 号内每项都要变号
1 3 1 4 4 2
例2:计算:
(2) 7(p3+p2-p-1)-2(p3+p)
解: 7(p3+p2-p-1)-2(p3+p)
= 7p3+7p2-7p-7 -2p3 -2p = 5p3 +7p2 -9p -7 去括号要注意: 如果括号前有非±1 的数字因数, 则去掉括号后这个数字因数要乘遍 括号内的每一项。
(3)已知:
(x 2)2 y 1 0, 5xy 2 3x 2 y 3x 2 y xy 2 的 。 求 值



解:=6x+3+6-2x
=4x+9 当x=-1时,
(1)3(2x+1)+2(3-x)
原式=4×(-1)+9 =-4+9 (2) 3(a b) 2 -7(a-b) - =5 +5(a-b)+2 2(a b) 2
- x4+x2-5x+2

人教版七年级(上)第二章《整式的加减》知识点

人教版七年级(上)第二章《整式的加减》知识点

人教版七年级(上)数学 第二章<整式的加减>知识点姓名一、整式1. 代数式:用基本的运算符号把 和表示 连接起来的式子叫做代数式,单独的一个数或一个字母也是代数式。

2. 代数式的值:一般地,用 代替代数式里的字母,按照代数式的运算关系计算得出的结果,叫做代数式的值。

注意:(1)当数与字母相乘时,乘号通常简写为“ ”或 ,并且数在 ,字母在 ,若数字是带分数,要化为 。

(2)字母与字母相乘时,乘号通常省略不写或者写为“· ”。

(3)除法写成 的形式。

3.单项式:如100t 、6a 2b 、2.5x 、vt 、-n ,它们都是数或字母的积,像这样的式子叫做 ,单独的一个数或一个字母也是 。

4.单项式的系数:单项式中的 叫做这个单项式的系数。

例如:单项式100t 、6a 2b 、2.5x 、vt 、-n 的系数分别是 、 、 、 、 。

5. 单项式的次数:一个单项式中, 叫做这个单项式的次数。

例如:单项式100t 、6a 2b 、2.5x 、vt 、-n 的次数分别是 、 、 、 、 。

6.多项式:如2x-3,3x+5y+2z ,21ab-πr 2,它们都可以看作几个单项式的和,像这样 叫做多项式。

其中 叫做多项式的项,不含字母的项叫做 项。

例如:在多项式2x-3中,2x 和-3是它的项,其中-3是常数项。

7.多项式的次数:多项式里 次数,叫做这个多项式的次数。

例如:在多项式2x-3中,次数最高的项是一次项2x ,这个多项式的次数是1;在多项式x 2+2x+18中,次数最高的项是二次项x 2,这个多项式的次数是2。

注意:(1)多项式的次数取决于多项式中次数最高项的次数。

(2)多项式的每一项都包括它前面的符号。

(3)多项式的次数不是所有项的次数之和。

(4)多项式中含有几项,就是几项式,最高次数是几,就是几次式。

(5)多项式没有系数的概念,但对多项式中的每一项来说都有系数。

(6)判断一个代数式是不是多项式,关键是代数式能不能写成单项式的和。

(完整版)最新人教版七年级数学上册目录及知识点汇总

(完整版)最新人教版七年级数学上册目录及知识点汇总

人教版新课标七年级上册数学教材目录第一章有理数1.1 正数和负数1.2 有理数1.3 有理数的加减法1.4 有理数的乘除法1.5 有理数的乘方第二章整式的加减2.1 整式2.2 整式的加减第三章一元一次方程3.1 从算式到方程3.2 解一元一次方程(一)——合并同类项与移项3.3 解一元一次方程(二)——去括号与去分母3.4 实际问题与一元一次方程第四章几何图形初步4.1 几何图形4.2 直线、射线、线段4.3 角4.4 课题学习设计制作长方体形状的包装纸盒第一章有理数1.1 正数与负数①正数:大于0的数叫正数。

(根据需要,有时在正数前面也加上“+”)②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。

与正数具有相反意义。

③0既不是正数也不是负数。

0是正数和负数的分界,是唯一的中性数。

注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等1.2 有理数1、有理数(1)整数:正整数、0、负整数统称整数;(2)分数;正分数和负分数统称分数;(3)有理数:整数和分数统称有理数。

2、数轴(1)定义:通常用一条直线上的点表示数,这条直线叫数轴;(2)数轴三要素:原点、正方向、单位长度;(3)原点:在直线上任取一个点表示数0,这个点叫做原点;(4)数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。

3、相反数:只有符号不同的两个数叫做互为相反数。

(例:2的相反数是-2;0的相反数是0)4、绝对值:(1)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。

从几何意义上讲,数的绝对值是两点间的距离。

(2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

两个负数,绝对值大的反而小。

1.3 有理数的加减法①有理数加法法则:1、同号两数相加,取相同的符号,并把绝对值相加。

2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

人教版七年级上册数学教案:2.2整式的加减-去括号

人教版七年级上册数学教案:2.2整式的加减-去括号
具体内容包括:
-去括号的基本原则:同号括号相乘得正,异号括号相乘得负。
-去括号的方法:将括号内的每一项分别乘以括号外的系数,并保留符号。
-去括号的应用:解决整式加减问题,简化计算过程。
二、核心素养目标
1.培养学生的逻辑推理能力:通过学习去括号的方法,使学生能够理解和掌握整式加减的基本规则,提高他们在数学问题中的逻辑思维和推理能力。
三、教学难点与重点
1.教学重点
-重点一:去括号法则的理解与运用。使学生理解并掌握去括号的方法,包括同号括号相乘得正,异号括号相乘得负的规律,并能将其应用于整式的加减运算中。
举例:对于表达式3(x - 2y + z) - 2(x + y - z),学生需要能够去掉括号,得到3x - 6y + 3z - 2x - 2y + 2z。
-重点二:整式加减运算的顺序与法则。强调在进行整式加减时,先去括号,然后按照同类项合并的顺序进行运算。
举例:在解决2(x + 3) - 5 + x - (2x - 1)的问题时,学生应先去掉括号,再合并同类项,得到2x + 6 - 5 + x - 2x + 1。
2.教学难点
-难点一:符号的运用。学生在去括号时,容易在正负符号上出错,特别是在多层括号或括号前有负号的情况下。
举例:对于表达式-2(-3x + 4y - z),学生可能会错误地去掉括号后变为-6x + 8y - 2z,而正确的应该是6x - 8y + 2z。
-难点二:括号内项的分配律应用。学生需要理解并正确应用分配律,将括号外的数与括号内的每一项相乘。
举例:在处理5(2x - 3) + 4(3x + 1)的去括号过程中,学生应正确地将5乘以2x和-3,将4乘以3x和1,得到10x - 15 + 12x + 4。

初中数学教学课例《整式的加减(3)——去括号》课程思政核心素养教学设计及总结反思

初中数学教学课例《整式的加减(3)——去括号》课程思政核心素养教学设计及总结反思

学生主动
探究、合作交流的意识,严谨治学的学习态度,体
会合作与交流的重要性.
我所教的学生中,大部分学生的数学基础比较薄
学生学习能 弱,对于初一学生来说理解该知识点存在一个思维上的
力分析 转换过程,特别是对用字母表示数以及式的运算还比较
陌生。学生学习归纳总结能力弱及知识的迁移能力弱。
为了使学生能够理解字母也可以像数一样进行计
化简吗?
+120(t-0.5)=+120t-60;
-120(t-0.5)=-120t+60 3、想一想:通过上面的练习,你能发现去括号时 符号变化有什么规律吗? 3、特别讲解:+(x+3)与-(x-3)这两种情况。+(x+3) 可以看作+1 与(x+3)相乘,-(x-3)可以看作-1 与(x-3) 相乘,利用乘法分配律,可以将式子中的括号去掉. 4、想一想:通过上面的式子,让学生思考去括号 时符号的变化有什么规律?去括号后项数有什么变化 去括号的依据是什么呢先让学生独立思考,并进行小组 讨论,最后提问 2—3 个同学说说他发现的规律。 最后师生共同讨论的结果是:括号前面是“+”号, 去括号后,括号内的每一项都没变号,括号前面是“-” 号,去括号后,括号内的每一项都变号;去括号后项数 不变,去括号的依据是乘法分配律。 带领学生用自己的术语概括总结上面的语句,得出 去括号的法则的口诀: 去括号,看符号, 是“+”号,不变号, 是“-”号,全变号。
同类项、合并同类项的基础上来进行学习的,它是整式
教材分析 的化简和整式的加减的基础,为进一步学习第三章一元
一次方程等后续数学知识做好准备,因此它在整个初中
数学代数部分中起到了承上启下的作用。

人教版七年级数学上册目录及知识点汇总

人教版七年级数学上册目录及知识点汇总

人教版七年级数学上册目录及知识点汇总集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)人教版新课标七年级上册数学教材目录第一章有理数1.1 正数和负数1.2 有理数1.3 有理数的加减法1.4 有理数的乘除法1.5 有理数的乘方第二章整式的加减2.1 整式2.2 整式的加减第三章一元一次方程3.1 从算式到方程3.2 解一元一次方程(一)——合并同类项与移项3.3 解一元一次方程(二)——去括号与去分母3.4 实际问题与一元一次方程第四章几何图形初步4.1 几何图形4.2 直线、射线、线段4.3 角4.4 课题学习设计制作长方体形状的包装纸盒第一章有理数1.1 正数与负数①正数:大于0的数叫正数。

(根据需要,有时在正数前面也加上“+”)②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。

与正数具有相反意义。

③0既不是正数也不是负数。

0是正数和负数的分界,是唯一的中性数。

注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等1.2 有理数1、有理数(1)整数:正整数、0、负整数统称整数;(2)分数;正分数和负分数统称分数;(3)有理数:整数和分数统称有理数。

2、数轴(1)定义:通常用一条直线上的点表示数,这条直线叫数轴;(2)数轴三要素:原点、正方向、单位长度;(3)原点:在直线上任取一个点表示数0,这个点叫做原点;(4)数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。

3、相反数:只有符号不同的两个数叫做互为相反数。

(例:2的相反数是-2;0的相反数是0)4、绝对值:(1)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。

从几何意义上讲,数的绝对值是两点间的距离。

(2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

两个负数,绝对值大的反而小。

数学:整式的加减-去括号(人教新课标七年级上) 公开课一等奖课件

数学:整式的加减-去括号(人教新课标七年级上)  公开课一等奖课件

13
5.利用去括号的规律进行整式的化简:
化简下列各式: (1)8a 2b (5a b)
解:原式=8a+2b+5a-b
=13a+b
(2)(5a-3b)-3(a -2b)
解:原式 5a 3b (3a2 6b)
5a 3b 3a 6b 2 3a 5a 3b
高考总分:711分 毕业学校:北京八中 语文139分 数学140分 英语141分 理综291分 报考高校:
北京大学光华管理学院
北京市理科状元杨蕙心
2
14
2
归纳小结
你觉得我们去括号时应特别注意什么? 1、去括号时要将括号前的符号和括号一起去掉
2、去括号时首先弄清括号前是“+”还是“-”;
3、去括号时当括号前有数字因数应用乘法分配 律,切勿漏乘。
15
这节课我们学到了什么? • 1 去括号的依据是:分配律
2 学习了类比的方法
3 去括号的方法
4 去括号在整式加减中的运用
----去括号
知识回顾
1.你记得乘法分配律吗?用字母怎 样表示?
一个数同两个数的和相乘,等于把这个数分别 同这两个数相乘,再把积相加. 用字母表示为: a(b+c)=ab+ac
2
2.利用乘法分配律计算:
(1)12( )
1 6 2 3
(2) 12( )
1 4 1 3
3
探究新知
用类比方法计算下列各式: 2χ+16 (1)2(χ+8)= (2)-3(3χ+4)=
(1)-(-a-b)=a-b × (2)5x-(2x-1)-x2=5x-2x+1+x2 × (3)3xy-0.5(xy-y2)=3xy-0.5xy+y2 × (4)(a3+b3)-3(2a3-3b3)=a3+b36a3+9b3 √

2.2.2 整式的加减——去括号 说课稿 2022—2023学年人教版数学七年级上册

2.2.2 整式的加减——去括号 说课稿  2022—2023学年人教版数学七年级上册

2.2.2 整式的加减——去括号说课稿一、教材分析1. 教材内容本课时是数学七年级上册的第2单元第2节课,主要内容是整式的加减——去括号。

本节课的教学目标是让学生能够理解整式的加减法则,掌握去括号的方法,培养学生运算能力和思维能力。

2. 教学重点和难点本节课的教学重点是引导学生掌握整式的加减法则和去括号的方法。

教学难点在于让学生理解去括号的原理和运用去括号方法解决问题。

3. 教学准备为了能够有效地教授本节课,我准备了以下教学准备:•教案和课件•学生的课本和作业本•黑板和粉笔•各种整式的例题和练习题二、教学过程1. 导入新课通过提问学生已学过的内容,引导学生回忆整式的定义和加减法则,为本节课的学习做铺垫。

2. 介绍整式的去括号方法通过一个简单的例子,向学生展示括号中的项如何进入的去括号过程,引导学生理解去括号的原理和规则。

3. 整式的加减法则结合具体例子,向学生展示整式的加减法则,包括同类项相加减和不同类项相加减的步骤和规则。

4. 练习与巩固让学生在黑板上完成一些练习题,巩固整式的加减法则和去括号的方法。

5. 拓展思考提出一些拓展问题,让学生思考整式的运算性质和应用。

三、教学方法1. 案例教学法通过具体的案例和例题,引导学生理解整式的加减法则和去括号的方法。

2. 合作学习法在练习与巩固环节,鼓励学生进行小组合作,互相讨论和解决问题,提高学生的思维能力和合作能力。

3. 智慧板教学法结合智慧教育技术,使用智慧板进行教学,可以更加直观地展示各种整式的加减过程和去括号的方法。

四、教学评估1. 自我评估通过观察学生的表现和听取学生的回答、解题过程,评估学生是否掌握了整式的加减法则和去括号的方法。

2. 学生评估通过给学生一些作业题目,让他们在课后完成,再进行评估。

可以通过作业的完成情况和成绩来评估学生的学习效果。

五、板书设计去括号公式:(a + b) + c = a + b + c(a + b) - c = a + b - ca - (b + c) = a - b - c六、教学反思本节课的教学目标是引导学生理解整式的加减法则和去括号的方法。

初中数学七年级上学期整式的加减—去括号与添括号知识讲解及例题解析

初中数学七年级上学期整式的加减—去括号与添括号知识讲解及例题解析

整式的加减(二)—去括号与添括号知识讲解及例题解析 【学习目标】1.掌握去括号与添括号法则,注意变号法则的应用;2. 熟练运用整式的加减运算法则,并进行整式的化简与求值.【要点梳理】要点一、去括号法则如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.要点诠释:(1)去括号法则实际上是根据乘法分配律得到的结论:当括号前为“+”号时,可以看作+1与括号内的各项相乘;当括号前为“-”号时,可以看作-1与括号内的各项相乘.(2)去括号时,首先要弄清括号前面是“+”号,还是“-”号,然后再根据法则去掉括号及前面的符号.(3)对于多重括号,去括号时可以先去小括号,再去中括号,也可以先去中括号.再去小括号.但是一定要注意括号前的符号.(4)去括号只是改变式子形式,不改变式子的值,它属于多项式的恒等变形.要点二、添括号法则添括号后,括号前面是“+”号,括到括号里的各项都不变符号;添括号后,括号前面是“-”号,括到括号里的各项都要改变符号.要点诠释:(1)添括号是添上括号和括号前面的符号,也就是说,添括号时,括号前面的“+”号或“-”号也是新添的,不是原多项式某一项的符号“移”出来得到的.(2)去括号和添括号的关系如下:如:()a b c a b c +-+-添括号去括号, ()a b c a b c -+--添括号去括号要点三、整式的加减运算法则一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.要点诠释:(1)整式加减的一般步骤是:①先去括号;②再合并同类项.(2)两个整式相减时,减数一定先要用括号括起来.(3)整式加减的最后结果的要求:①不能含有同类项,即要合并到不能再合并为止;②一般按照某一字母的降幂或升幂排列;③不能出现带分数,带分数要化成假分数.【典型例题】类型一、去括号1.化简m ﹣n ﹣(m+n )的结果是( )A . 0B . 2mC . ﹣2nD . 2m ﹣2n【答案】C【解析】解:原式=m ﹣n ﹣m ﹣n=﹣2n .故选C .【总结升华】解决此类题目的关键是熟记去括号法则,及熟练运用合并同类项的法则,其是各地中考的常考点.注意去括号法则为:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.类型二、添括号2.按要求把多项式321a b c -+-添上括号:(1)把含a 、b 的项放到前面带有“+”号的括号里,不含a 、b 的项放到前面带有“-”号的括号里;(2)把项的符号为正的放到前面带有“+”号的括号里,项的符号为负的放到前面带有“-”号的括号里.【答案与解析】解:(1)321(32)(1)a b c a b c -+-=---+;(2)321(3)(21)a b c a c b -+-=+-+.【总结升华】在括号里填上适当的项,要特别注意括号前面的符号,考虑是否要变号.举一反三:【变式】添括号:(1)22()101025()10()25x y x y x y +--+=+-+.(2)()()[(_______)][(_______)]a b c d a b c d a a -+-+-+=-+.【答案】(1)x y +; (2),b c d b c d -+-+ .类型三、整式的加减3. 3243245348x x x x x x -+--+-一个多项式加上得,求这个多项式.【答案与解析】解:在解答此题时应先根据题意列出代数式,注意把加式、和式看作一个整体,用括号括起来,然后再进行计算,在计算过程中找同类项,可以用不同的记号标出各同类项,减少运算的错误.43232(348)(45)x x x x x x --+---+ 4323243348453813.x x x x x x x x x =--+--+-=-+-答:所求多项式为433813x x x -+-.【总结升华】整式加减的一般步骤是:①先去括号;②再合并同类项.举一反三:【变式】化简:(1)15+3(1-x)-(1-x+x 2)+(1-x+x 2-x 3).(2)3x 2y-[2x 2z-(2xyz-x 2z+4x 2y)].(3)-3[(a 2+1)-16(2a 2+a)+13(a-5)]. (4)ab-{4a 2b-[3a 2b-(2ab-a 2b)+3ab]}.【答案】解: (1) 15+3(1-x)-(1-x+x 2)+(1-x+x 2-x 3)=15+3(1-x)-(1-x+x 2)+(1-x+x 2)-x 3=18-3x-x 3.. ……整体合并,巧去括号(2) 3x 2y-[2x 2z-(2xyz-x 2z+4x 2y)]=3x 2y-2x 2z+(2xy-x 2z+4x 2y) ……由外向里,巧去括号=3x 2y-2x 2z+2xyz-x 2z+4x 2y=7x 2y-3x 2z+2xyz. (3) 22113[(1)(2)(5)]63a a a a -+-++- 2213(1)(2)(5)2a a a a =-+++-- 2213352a a a a =--++-+ 21222a a =--+. (4)ab-{4a 2b-[3a 2b-(2ab-a 2b)+3ab]}=ab-4a 2b+3a 2b-2ab+a 2b+3ab ……一举多得,括号全脱=2ab.类型四、化简求值4.先化简,再求值:3x 2y ﹣[2x 2﹣(xy 2﹣3x 2y )﹣4xy 2],其中|x|=2,y=,且xy <0.【思路点拨】原式去括号合并得到最简结果,利用绝对值的代数意义求出x 的值,代入原式计算即可得到结果.【答案与解析】解:原式=3x 2y ﹣2x 2+xy 2﹣3x 2y+4xy 2=5xy 2﹣2x 2,∵|x|=2,y=,且xy <0,∴x=﹣2,y=,则原式=﹣﹣8=﹣. 【总结升华】化简求值题一般采用“一化二代三计算”,此类题最后结果的书写格式一般为:当x=…时,原式=….举一反三:【变式】先化简,再求值:﹣2x 2﹣[3y 2﹣2(x 2﹣y 2)+6],其中x=﹣1,y=﹣.【答案】解:原式=﹣2x 2﹣y 2+x 2﹣y 2﹣3=﹣x 2﹣y 2﹣3,当x=﹣1,y=﹣时,原式=﹣1﹣﹣3=﹣4.5. 已知3a 2-4b 2=5,2a 2+3b 2=10.求:(1)-15a 2+3b 2的值;(2)2a 2-14b 2的值.【答案与解析】显然,由条件不能求出a 、b 的值.此时,应采用技巧求值,先进行拆项变形.解:(1)-15a 2+3b 2=-3(5a 2-b 2)=-3[(3a 2+2a 2)+(-4b 2+3b 2)]=-3[(3a 2-4b 2)+(2a 2+3b 2)]=-3×(5+10)=-45;(2)2a 2-14b 2=2(a 2-7b 2)=2[(3a 2-2a 2)+(-4b 2-3b 2)]=2×[(3a 2-4b 2)-(2a 2+3b 2)]=2×(5-10)=-10.【总结升华】求整式的值,一般先化简后求值,但当题目中含未知数的部分可以看成一个整体时,要用整体代入法,即把“整体”当成一个新的字母,求关于这个新的字母的代数式的值,这样会使运算更简便. 举一反三:【变式】当2m π=时,多项式31am bm ++的值是0,则多项式3145_____2a b ππ++=. 【答案】∵ 3(2)210a b ππ++=, ∴ 338212(4)10a b a b ππππ++=++=,即3142a b ππ+=-. ∴31114555222a b ππ++=-+=. 6. 已知多项式2x ax y b +-+与2363bx x y -+-的差的值与字母x 无关,求代数式:22223(2)(4)a ab b a ab b ---++的值.【答案与解析】解:222(363)(1)(3)7(3)x ax y b bx x y b x a x y b +-+--+-=-++-++.由于多项式2x ax y b +-+与2363bx x y -+-的差的值与字母x 无关,可知:10b -=,30a +=,即有1,3b a ==-.又2222223(2)(4)74a ab b a ab b a ab b ---++=---,将1,3b a ==-代入可得:22(3)7(3)1418---⨯-⨯-⨯=.【总结升华】本例解题的关键是多项式的值与字母x 无关.“无关”意味着合并同类项后,其结果不含“x ”的项,所以合并同类项后,让含x 的项的系数为0即可.类型五、整式加减运算的应用7.有一种石棉瓦(如图所示),每块宽60厘米,用于铺盖屋顶时,每相邻两块重叠部分的宽都为10厘米,那么n(n 为正整数)块石棉瓦覆盖的宽度为 ( ) .A .60n 厘米B .50n 厘米C .(50n+10)厘米D .(60n-10)厘米【答案】C.【解析】观察上图,可知n 块石棉瓦重叠的部分有(n-1)处,则n 块石棉瓦覆盖的宽度为:60n-10(n-1)=(50n+10)厘米.【总结升华】求解本题时一定要注意每相邻两块重叠部分的宽都为10厘米这一已知条件,一不小心就可能弄错.举一反三:【变式】如图所示,长方形内有两个相邻的正方形,面积分别为9和a 2(a >0).那么阴影部分的面积为________.【答案】3a-a 2提示:由图形可知阴影部分面积=长方形面积29a --,而长方形的长为3+a ,宽为3,从而使问题获解.。

人教版七年级上数学教案:2.2整式的加减----去括号

人教版七年级上数学教案:2.2整式的加减----去括号

时,于是,冻土地段的路程为100t千米,
•非冻土地段的路程为120(t-0.5)千米,因此,
这段铁路全长为
100t+120(t-0.5)千米①
冻土地段与非冻土地段相差
100t-120(t-0.5)千米②
上面的式子①、②都带有括号,它们应如何化简?
思路点拨:教师引导,启发学生类比数的运算,利用分配律.学生练习、交流后,教师归纳:
利用分配律,可以去括号,合并同类项,得:
100t+120(t-0.5)=100t+120t+120×(-0.5)=220t-60
100t-120(t-0.5)=100t-120t-120×(-0.5)=-20t+60
我们知道,化简带有括号的整式,首先应先去括号.上面两式去括号部分变形分别为:
+120(t-0.5)=+120t-60 ③
-120(t-0.5)=-120+60 ④
比较③、④两式,你能发现去括号时符号变化的规律吗?
思路点拨:
如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.特别地,+(x-3)与-(x-3)可以分别看作1与-1分别乘(x-鼓励学生
通过观
察,试用
自己的语
言叙述去
括号法
则,然后
教师板书
(或用屏
幕)展示:
解答过程
按课本,
可由学生
口述,教
师板书.
老师让
学生上
黑板
全班集中
交流以上
结论,归
纳引出去
括号法
则。

两个学生
上黑板做
题,其他
同学在练
习本上完
成。

七年级数学上册目录及知识点汇总

七年级数学上册目录及知识点汇总

人教版新课标七年级上册数学教材目录第一章有理数1.1 正数和负数1.2 有理数1.3 有理数的加减法1.4 有理数的乘除法1.5 有理数的乘方第二章整式的加减2.1 整式2.2 整式的加减第三章一元一次方程3.1 从算式到方程3.2 解一元一次方程一——合并同类项与移项3.3 解一元一次方程二——去括号与去分母3.4 实际问题与一元一次方程第四章几何图形初步4.1 几何图形4.2 直线、射线、线段4.3 角4.4 课题学习设计制作长方体形状的包装纸盒第一章有理数1.1 正数与负数①正数:大于0的数叫正数..根据需要;有时在正数前面也加上“+”②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数..与正数具有相反意义..③0既不是正数也不是负数..0是正数和负数的分界;是唯一的中性数..注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等1.2 有理数1、有理数1整数:正整数、0、负整数统称整数;2分数;正分数和负分数统称分数;3有理数:整数和分数统称有理数..2、数轴1定义:通常用一条直线上的点表示数;这条直线叫数轴;2数轴三要素:原点、正方向、单位长度;3原点:在直线上任取一个点表示数0;这个点叫做原点;4数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来;但数轴上的点;不都是表示有理数..3、相反数:只有符号不同的两个数叫做互为相反数..例:2的相反数是-2;0的相反数是04、绝对值:1数轴上表示数a的点与原点的距离叫做数a的绝对值;记作|a|..从几何意义上讲;数的绝对值是两点间的距离..2 一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0..两个负数;绝对值大的反而小..1.3 有理数的加减法①有理数加法法则:1、同号两数相加;取相同的符号;并把绝对值相加..2、绝对值不相等的异号两数相加;取绝对值较大的加数的符号;并用较大的绝对值减去较小的绝对值..互为相反数的两个数相加得0..3、一个数同0相加;仍得这个数..加法的交换律和结合律②有理数减法法则:减去一个数;等于加这个数的相反数..1.4 有理数的乘除法①有理数乘法法则:两数相乘;同号得正;异号得负;并把绝对值相乘;任何数同0相乘;都得0;乘积是1的两个数互为倒数..乘法交换律/结合律/分配律②有理数除法法则:除以一个不等于0的数;等于乘这个数的倒数;两数相除;同号得正;异号得负;并把绝对值相除;0除以任何一个不等于0的数;都得0..1.5 有理数的乘方1、求n个相同因数的积的运算;叫乘方;乘方的结果叫幂..在a的n次方中;a叫做底数;n叫做指数..负数的奇次幂是负数;负数的偶次幂是正数..正数的任何次幂都是正数;0的任何次幂都是0..2、有理数的混合运算法则:先乘方;再乘除;最后加减;同级运算;从左到右进行;如有括号;先做括号内的运算;按小括号、中括号、大括号依次进行..3、把一个大于10的数表示成a×10的n次方的形式;使用的就是科学计数法;注意a的范围为1≤a <10..4、从一个数的左边第一个非0数字起;到末位数字止;所有数字都是这个数的有效数字..四舍五入遵从精确到哪一位就从这一位的下一位开始;而不是从数字的末尾往前四舍五入..比如:3.5449精确到0.01就是3.54而不是3.55.第二章整式的加减2.1 整式1、单项式:由数字和字母乘积组成的式子..系数;单项式的次数. 单项式指的是数或字母的积的代数式.单独一个数或一个字母也是单项式.因此;判断代数式是否是单项式;关键要看代数式中数与字母是否是乘积关系;即分母中不含有字母;若式子中含有加、减运算关系;其也不是单项式.2、单项式的系数:是指单项式中的数字因数;3、单项数的次数:是指单项式中所有字母的指数的和.4、多项式:几个单项式的和..判断代数式是否是多项式;关键要看代数式中的每一项是否是单项式.每个单项式称项;常数项;多项式的次数就是多项式中次数最高的次数..多项式的次数是指多项式里次数最高项的次数;这里是次数最高项;其次数是6;多项式的项是指在多项式中;每一个单项式.特别注意多项式的项包括它前面的性质符号.5、它们都是用字母表示数或列式表示数量关系..注意单项式和多项式的每一项都包括它前面的符号..6、单项式和多项式统称为整式..2.2整式的加减1、同类项:所含字母相同;并且相同字母的指数也相同的项..与字母前面的系数≠0无关..2、同类项必须同时满足两个条件:1所含字母相同;2相同字母的次数相同;二者缺一不可.同类项与系数大小、字母的排列顺序无关3、合并同类项:把多项式中的同类项合并成一项..可以运用交换律;结合律和分配律..4、合并同类项法则:合并同类项后;所得项的系数是合并前各同类项的系数的和;且字母部分不变;5、去括号法则:去括号;看符号:是正号;不变号;是负号;全变号..6、整式加减的一般步骤:一去、二找、三合1如果遇到括号按去括号法则先去括号. 2结合同类项. 3合并同类项第三章一元一次方程3.1 一元一次方程1、方程是含有未知数的等式..2、方程都只含有一个未知数元x;未知数x的指数都是1次;这样的方程叫做一元一次方程..注意:判断一个方程是否是一元一次方程要抓住三点:1未知数所在的式子是整式方程是整式方程;2化简后方程中只含有一个未知数;3经整理后方程中未知数的次数是1.3、解方程就是求出使方程中等号左右两边相等的未知数的值;这个值就是方程的解..4、等式的性质: 1等式两边同时加或减同一个数或式子;结果仍相等;2等式两边同时乘同一个数;或除以同一个不为0的数;结果仍相等..注意:运用性质时;一定要注意等号两边都要同时变;运用性质2时;一定要注意0这个数.3.2 、3.3解一元一次方程在实际解方程的过程中;以下步骤不一定完全用上;有些步骤还需重复使用. 因此在解方程时还要注意以下几点:①去分母:在方程两边都乘以各分母的最小公倍数;不要漏乘不含分母的项;分子是一个整体;去分母后应加上括号;去分母与分母化整是两个概念;不能混淆;②去括号:遵从先去小括号;再去中括号;最后去大括号;不要漏乘括号的项;不要弄错符号;③移项:把含有未知数的项移到方程的一边;其他项都移到方程的另一边移项要变符号移项要变号;④合并同类项:不要丢项;解方程是同解变形;每一步都是一个方程;不能像计算或化简题那样写能连等的形式;⑤系数化为1::字母及其指数不变系数化成1;在方程两边都除以未知数的系数a;得到方程的解..不要分子、分母搞颠倒..3.4 实际问题与一元一次方程一.概念梳理⑴列一元一次方程解决实际问题的一般步骤是:①审题;特别注意关键的字和词的意义;弄清相关数量关系;②设出未知数注意单位;③根据相等关系列出方程;④解这个方程;⑤检验并写出答案包括单位名称..⑵一些固定模型中的等量关系及典型例题参照一元一次方程应用题专练学案..二、思想方法本单元常用到的数学思想方法小结⑴建模思想:通过对实际问题中的数量关系的分析;抽象成数学模型;建立一元一次方程的思想.⑵方程思想:用方程解决实际问题的思想就是方程思想.⑶化归思想:解一元一次方程的过程;实质上就是利用去分母、去括号、移项、合并同类项、未知数的系数化为1等各种同解变形;不断地用新的更简单的方程来代替原来的方程;最后逐步把方程转化为x=a的形式. 体现了化“未知”为“已知”的化归思想.⑷数形结合思想:在列方程解决问题时;借助于线段示意图和图表等来分析数量关系;使问题中的数量关系很直观地展示出来;体现了数形结合的优越性.⑸分类思想:在解含字母系数的方程和含绝对值符号的方程过程中往往需要分类讨论;在解有关方案设计的实际问题的过程中往往也要注意分类思想在过程中的运用.三、数学思想方法的学习1. 解一元一次方程时;要明确每一步过程都作什么变形;应该注意什么问题.2. 寻找实际问题的数量关系时;要善于借助直观分析法;如表格法;直线分析法和图示分析法等.3. 列方程解应用题的检验包括两个方面:⑴检验求得的结果是不是方程的解;⑵是要判断方程的解是否符合题目中的实际意义.四、一元一次方程典型例题例1. 已知方程2x m-3+3x=5是一元一次方程;则m= .解:由一元一次方程的定义可知m-3=1;解得m=4.或m-3=0;解得m=3所以m=4或m=3警示:很多同学做到这种题型时就想到指数是1;从而写成m=1;这里一定要注意x的指数是m-3.例2. 已知2x=-是方程ax2-2a-3x+5=0的解;求a的值.解:∵x=-2是方程ax2-2a-3x+5=0的解∴将x=-2代入方程;得a·-22-2a-3·-2+5=0化简;得 4a+4a-6+5=01∴ a=8点拨:要想解决这道题目;应该从方程的解的定义入手;方程的解就是使方程左右两边值相等的未知数的值;这样把x=-2代入方程;然后再解关于a的一元一次方程就可以了.例3. 解方程2x+1-34x-3=91-x.解:去括号;得 2x+2-12x+9=9-9x;移项;得 2+9-9=12x-2x-9x.合并同类项;得 2=x;即x=2.点拨:此题的一般解法是去括号后将所有的未知项移到方程的左边;已知项移到方程的右边;其实;我们在去括号后发现所有的未知项移到方程的左边合并同类项后系数不为正;为了减少计算的难度;我们可以根据等式的对称性;把所有的未知项移到右边去;已知项移到方程的左边;最后再写成x=a的形式.例4. 解方程 175321416181=⎭⎬⎫⎩⎨⎧+⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+-x . 解析:方程两边乘以8;再移项合并同类项;得111351642x ⎡-⎤⎛⎫++= ⎪⎢⎥⎝⎭⎣⎦同样;方程两边乘以6;再移项合并同类项;得113142x -⎛⎫+= ⎪⎝⎭ 方程两边乘以4;再移项合并同类项;得112x -= 方程两边乘以2;再移项合并同类项;得x=3.说明:解方程时;遇到多重括号;一般的方法是从里往外或从外往里运用乘法的分配律逐层去特号;而本题最简捷的方法却不是这样;是通过方程两边分别乘以一个数;达到去分母和去括号的目的..例5. 解方程4 1.550.8 1.20.50.20.1x x x ----=. 解析:方程可以化为 (4 1.5)2(50.8)5(1.2)100.520.250.110x x x -⨯-⨯-⨯-=⨯⨯⨯ 整理;得 2(4 1.5)5(50.8)10(1.2)x x x ---=-去括号移项合并同类项;得 -7x=11;所以x=117-. 说明:一见到此方程;许多同学立即想到老师介绍的方法;那就是把分母化成整数;即各分数分子分母都乘以10;再设法去分母;其实;仔细观察这个方程;我们可以将分母化成整数与去分母两步一步到位;第一个分数分子分母都乘以2;第二个分数分子分母都乘以5;第三个分数分子分母都乘以10.例6. 解方程 1.6122030x x x x +++= 解析:原方程可化为1.23344556x x x x +++=⨯⨯⨯⨯ 方程即为 1.23344556xx x x x x x x -+-+-+-=所以有 1.26x x -=再来解之;就能很快得到答案: x=3.知识链接:此题如果直接去分母;或者通分;数字较大;运算烦琐;发现分母6=2×3;12=3×4;20=4×5;30=5×6;联系到我们小学曾做过这样的分式化简题;故采用拆项法解之比较简便.例7. 参加某保险公司的医疗保险;住院治疗的病人可享受分段报销;•保险公司制度的报销细则如下表;某人今年住院治疗后得到保险公司报销的金额是1260元;那么此人的实际医疗费是A. 2600元元解析:设此人的实际医疗费为x元;根据题意列方程;得500×0+500×60%+x-500-500 ×80%=1260.解之;得x=2200;即此人的实际医疗费是2200元. 故选B.点拨:解答本题首先要弄清题意;读懂图表;从中应理解医疗费是分段计算累加求和而得的. 因为500×60%<1260<2000×80%;所以可知判断此人的医疗费用应按第一档至第三档累加计算.例8. 我市某县城为鼓励居民节约用水;对自来水用户按分段计费方式收取水费:若每月用水不超过7立方米;则按每立方米1元收费;若每月用水超过7立方米;则超过部分按每立方米2元收费. 如果某户居民今年5月缴纳了17元水费;那么这户居民今年5月的用水量为__________立方米.解析:由于1×7<17;所以该户居民今年5月的用水量超标.设这户居民5月的用水量为x立方米;可得方程:7×1+2x-7=17; 解得x=12.所以;这户居民5月的用水量为12立方米.例9. 足球比赛的记分规则为:胜一场得3分;平一场得1分;输一场得0分;一支足球队在某个赛季中共需比赛14场;现已比赛了8场;输了1场;得17分;请问:⑴前8场比赛中;这支球队共胜了多少场⑵这支球队打满14场比赛;最高能得多少分⑶通过对比赛情况的分析;这支球队打满14场比赛;得分不低于29分;就可以达到预期的目标;请你分析一下;在后面的6场比赛中;这支球队至少要胜几场;才能达到预期目标解析:⑴设这个球队胜了x场;则平了8-1-x场;根据题意;得:3x+8-1-x=17.解得x=5.所以;前8场比赛中;这个球队共胜了5场.⑵打满14场比赛最高能得17+14-8×3=35分.⑶由题意知;以后的6场比赛中;只要得分不低于12分即可.∴胜不少于4场;一定能达到预期目标. 而胜了3场;平3场;正好达到预期目标. 所以在以后的比赛中;这个球队至少要胜3场.例10. 国家为了鼓励青少年成才;特别是贫困家庭的孩子能上得起大学;设置了教育储蓄;其优惠在于;目前暂不征收利息税. 为了准备小雷5年后上大学的学费6000元;他的父母现在就参加了教育储蓄;小雷和他父母讨论了以下两种方案:⑴先存一个2年期;2年后将本息和再转存一个3年期;⑵直接存入一个5年期.你认为以上两种方案;哪种开始存入的本金较少教育储蓄整存整取年利率一年:2. 25%;二年:2. 27%;三年:3. 24%;五年:3. 60%.解析:了解储蓄的有关知识;掌握利息的计算方法;是解决这类问题的关键;对于此题;我们可以设小雷父母开始存入x元. 然后分别计算两种方案哪种开始存入的本金较少.⑴2年后;本息和为x1+2. 70%×2=1. 054x;再存3年后;本息和要达到6000元;则1. 054x1+3. 24%×3=6000.解得 x≈5188.⑵按第二种方案;可得方程 x1+3. 60%×5=6000.解得 x≈5085.所以;按他们讨论的第二种方案;开始存入的本金比较少.例11. 扬子江药业集团生产的某种药品包装盒的侧面展开图如图所示. 如果长方体盒子的长比宽多4cm;求这种药品包装盒的体积.分析:从展开图上的数据可以看出;展开图中两高与两宽和为14cm;所以一个宽与一个高的和为7cm;如果设这种药品包装盒的宽为xcm;则高为7-xcm;因为长比宽多4cm;所以长为x+4cm;根据展开图可知一个长与两个高的和为13cm;由此可列出方程.解:设这种药品包装盒的宽为xcm;则高为7-xcm;长为x+4cm.根据题意;得x+4+27-x=13;解得 x=5;所以7-x=2;x+4=9.故长为9cm;宽为5cm;高为2cm.所以这种药品包装盒的体积为:9×5×2=90cm3.例12. 某石油进口国这个月的石油进口量比上个月减少了5%;由于国际油价上涨;这个月进口石油的费用反而比上个月增加了14%. 求这个月的石油价格相对上个月的增长率.解:设这个月的石油价格相对上个月的增长率为x. 根据题意得1+x1-5%=1+14%解得x=20%答:这个月的石油价格相对上个月的增长率为20%.点评:本题是一道增长率的应用题. 本月的进口石油的费用等于上个月的费用加上增加的费用;也就是本月的石油进口量乘以本月的价格. 设出未知数;分别表示出每一个数量;列出方程进行求解. 列方程解应用题的关键是找对等量关系;然用代数式表示出其中的量;列方程解答.例13. 某市参加省初中数学竞赛的选手平均分数为78分;其中参赛的男选手比女选手多50%;而女选手的平均分比男选手的平均分数高10%;那么女选手的平均分数为____________.解析:总平均分数和参赛选手的人数及其得分有关. 因此;必须增设男选手或女选手的人数为辅助未知数. 不妨设男选手的平均分数为x分;女选手的人数为a人;那么女选手的平均分数为1. 1x 分;男选手的人数为1. 5a 人;从而可列出方程1.5 1.1781.5a x x a a a⋅+⋅=+;解得x=75;所以1. 1x=82. 5. 即女选手的平均分数为82. 5分.第四章 几何图形初步4.1 几何图形1、几何图形:从形形色色的物体外形中得到的图形叫做几何图形..2、立体图形:这些几何图形的各部分不都在同一个平面内..3、平面图形:这些几何图形的各部分都在同一个平面内..4、虽然立体图形与平面图形是两类不同的几何图形;但它们是互相联系的..立体图形中某些部分是平面图形..5、三视图:从左面看;从正面看;从上面看6、展开图:有些立体图形是由一些平面图形围成的;将它们的表面适当剪开;可以展开成平面图形..这样的平面图形称为相应立体图形的展开图..7、⑴几何体简称体;包围着体的是面;面面相交形成线;线线相交形成点;⑵点无大小;线、面有曲直;⑶几何图形都是由点、线、面、体组成的;⑷点动成线;线动成面;面动成体;⑸点:是组成几何图形的基本元素..4.2 直线、射线、线段1、直线公理:经过两点有一条直线;并且只有一条直线..即:两点确定一条直线..2、当两条不同的直线有一个公共点时;我们就称这两条直线相交;这个公共点叫做它们的交点..3、把一条线段分成相等的两条线段的点;叫做这条线段的中点.. ma 4、线段公理:两点的所有连线中;线段做短两点之间;线段最短..5、连接两点间的线段的长度;叫做这两点的距离..6、直线的表示方法:如图的直线可记作直线AB或记作直线m.1用几何语言描述右面的图形;我们可以说:点P 在直线AB 外;点A 、B 都在直线AB 上.2如图;点O 既在直线m 上;又在直线n 上;我们称直线m 、n 相交;交点为O .7、在直线上取点O;把直线分成两个部分;去掉一边的一个部分;保留点0和另一部分就得到一条射线;如图就是一条射线;记作射线OM 或记作射线a .注意:射线有一个端点;向一方无限延伸.8、在直线上取两个点A 、B;把直线分成三个部分;去掉两边的部分;保留点A 、B 和中间的一部分就得到一条线段.如图就是一条线段;记作线段AB 或记作线段a . 注意:线段有两个端点.4.3 角1. 角的定义:有公共端点的两条射线组成的图形叫角..这个公共端点是角的顶点;两条射线为角的两边..如图;角的顶点是O;两边分别是射线OA 、OB .2、角有以下的表示方法:① 用三个大写字母及符号“∠”表示.三个大写字母分别是顶点和两边上的任意点;顶点的字母必须写在中间.如上图的角;可以记作∠AOB 或∠BOA . ② 用一个大写字母表示.这个字母就是顶点.如上图的角可记作 1O B Am a∠O.当有两个或两个以上的角是同一个顶点时;不能用一个大写字母表示.③用一个数字或一个希腊字母表示.在角的内部靠近角的顶点处画一弧线;写上希腊字母或数字.如图的两个角;分别记作∠ 、∠12、以度、分、秒为单位的角的度量制;叫做角度制..角的度、分、秒是60进制的..1度=60分 1分=60秒 1周角=360度 1平角=180度3、角的平分线:一般地;从一个角的顶点出发;把这个角分成两个相等的角的射线;叫做这个角的平分线..4、如果两个角的和等于90度直角;就说这两个叫互为余角;即其中每一个角是另一个角的余角;如果两个角的和等于180度平角;就说这两个叫互为补角;即其中每一个角是另一个角的补角..5、同角等角的补角相等;同角等角的余角相等..6、方位角:一般以正南正北为基准;描述物体运动的方向..。

2.2整式的加减——去括号法则教学设计2022-2023学年人教版七年级上册数学

2.2整式的加减——去括号法则教学设计2022-2023学年人教版七年级上册数学

2.2 整式的加减——去括号法则教学设计一、教学目标1.理解去括号法则的概念和原理。

2.掌握整式去括号的方法和技巧。

3.能够应用去括号法则解决实际问题。

二、教学重点1.整式的加减运算法则。

2.去括号法则的应用。

三、教学内容本节课主要讲解整式的加减运算中的去括号法则。

1. 什么是去括号法则?去括号法则是指将一个整式在进行加减运算时,先将括号里的内容乘以括号外的系数,再按照正负号的规则进行运算。

2. 去括号法则的应用以一个具体的例子进行说明:将表达式 3a + (2a - 5b) - (4a + b) 进行加减运算。

•第一步:将括号里的内容乘以括号外的系数,我们有: 3a + 2a - 5b - 4a - b•第二步:按照正负号的规则进行运算,我们有: (3a + 2a - 4a) + (-5b - b)•第三步:进行合并运算,我们有: a - 6b通过这个例子,我们可以总结出去括号法则的步骤: 1. 将括号里的内容乘以括号外的系数。

2. 按照正负号的规则进行运算。

3. 进行合并运算。

3. 去括号法则的注意事项在进行去括号运算时,需要注意以下几点: - 注意正负号的运算规则,即正数加正数为正数,负数加负数为负数,正数加负数要看绝对值大小。

- 注意特殊符号的运算,如乘号和减号的运算规则。

- 注意整式中的字母项,字母项之间可以合并,系数之间可以进行运算。

四、教学过程1. 导入通过一个简单的问题导入,引发学生对去括号法则的兴趣。

问题:小明买了3本书,每本书的价格分别是12元、15元和18元,他使用了一张30元的优惠券,那么他还需要付多少钱?2. 概念解释与例子演示在导入问题的基础上,引入去括号法则的概念,通过一个具体的例子演示去括号法则的应用。

例子1问题:计算表达式 3a + (2a - 5b) - (4a + b) 的值。

解答:首先根据去括号法则,将括号里的内容乘以括号外的系数,得到: 3a + 2a - 5b - 4a - b接着按照正负号的规则进行运算,得到: (3a + 2a - 4a) + (-5b - b)最后进行合并运算,得到: a - 6b答案:表达式 3a + (2a - 5b) - (4a + b) 的值为 a - 6b。

人教版七年级数学上册《整式的加减——去括号》教学设计

人教版七年级数学上册《整式的加减——去括号》教学设计

人教版《义务教育教科书·数学》七年级上册2.2整式的加减-去括号一、内容和内容解析1.内容整式的去括号法则.2.内容解析整式的去括号法则是本小节的主要内容,也是本章的难点,它是整式加减的基础,也是今后学习因式分解、分式运算及解方程的基础.本节课类比数的运算,让学生体会在数的运算中遇到括号时怎样去掉括号,去掉括号的理由是什么.在学生搞清楚数的运算中去括号的算理后,可以让学生归纳得出式子中去括号时符号的变化规律:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.合并同类项和去括号的学习将为学习整式加减的运算做好铺垫,使得整式加减运算法则的学习水到渠成.基于以上分析,可以确定本节课的教学重点为:掌握去括号时符号的变化规律.二、目标和目标解析1.目标(1)经历去括号法则的推导过程,体验“数式通性”的数学研究方法.(2)能熟练、准确地应用去括号法则,并能进行整式的化简.2.目标解析达成目标(1)的标志是:使学生明白式子中的字母表示数,数的运算中去括号的方法在式的去括号中仍然成立,由学生归纳得出去括号时符号的变化规律.达成目标(2)的标志是:学生能准确地化简例2中的4道小题,掌握去括号的过程中应对括号内的每一项的符号都予考虑,做到要变都变;要不变都不变;另外,括号内原有几项,去掉括号后仍有几项.三、教学问题诊断分析本节课是“整式的加减”的第三节课.括号中符号的处理是教学的难点,也是学生容易出错的地方.掌握去括号的关键是让学生理解去括号的依据,并进行一定量的训练.学生在进行去括号时,有时不能做到改变括号内每一项的符号;括号前有数字因数,去括号时经常没有把数字因数与括号内的每一项相乘,出现漏乘的现象.基于以上分析,可以确定本节课的教学难点:括号中符号的处理四、教学策略分析本节课是“整式的加减”的第三节课.本节课先通过三个问题引出列出三个等量关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

巩固新知
2.判断下列计算是否正确:
(1) : 3(x 8) 3x 8
不正确
(2) : 3(x 8) 3x 24 不正确
(3) : 2(6 x) 12 2x 正确
(4) : 4(3 2x) 12 8x 不正确
3.下列去括号正确吗?如有错误 请改正。
(1)-(-a-b)=a-b ×
----去括号
知识回顾
1.你记得乘法分配律吗?用字母怎 样表示?
一个数同两个数的和相乘,等于把这个数分别 同这两个数相乘,再把积相加.
用字母表示为: a(b+c)=ab+ac
2.利用乘法分配律计算:
(1)12(
1 6
2 3
)
(2)
12(
1 4
1 3
)
探究新知
用类比方法计算下列各式:
(1)2(χ+8)= 2χ+16
(2)-3(3χ+4)= -9χ-12 (3)-7(7y-5)= -49y+35
(1)2(χ+8)=2χ+16 观察与思考:
(2)-3(+3χ+4)= -9χ-12
(3)-7(+7y-5)= -49y+35
去括号前后,括
(1) :12(x 0.5) 12x 6
(2) : 5(1 1 x) 5
去括号法则:
)”,括号内各项的符号不变。 )”,括号内各项的符号改变。
用三个字母a、b、c表示去括号前后的变 化规律:
a+(b+c) = a+b+c a-(b+c) = a-b-c
读一读下面顺口溜,你是怎样理解的?
s 去括号, 看符号: s 是“+”号,不变号; s 是“-”号,全变号
s你明白它们变化的依据吗?
(2)5x-(2x-1)-x2=5x-2x+1+x2 ×
(3)3xy-0.5(xy-y2)=3xy-0.5xy+y2 ×

(4)(a3+b3)-3(2a3-3b3)=a3+b3-
-
6a3+9b3

5.利用去括号的规律进行整式的化简:
化简下列各式:
(1)8a 2b (5a b)
解:原式=8a+2b+5a-b
布置作业
甲本:P68 练习1 新干线
再见
巩固新知
1.口答:去括号 (1)a + (– b + c ) = a-b+c ( 2 ) ( a – b ) – ( c + d ) = a-b-c-d ( 3 ) – (– a + b ) – c = a-b-c ( 4 ) – (2x – y ) – ( - x2 + y2 ) = -2x+y+x2-y2
=13a+b
(2)(5a-3b)-3(a2 -2b)
解:原式 5a 3b (3a2 6b)
5a 3b 3a2 6b 3a2 5a 3b
归纳小结
你觉得我们去括号时应特别注意什么?
1、去括号时要将括号前的符号和括号一起去掉 2、去括号时首先弄清括号前是“+”还是“-”; 3、去括号时当括号前有数字因数应用乘法分配 律,切勿漏乘。
此次活动也得到了诸多演艺明星、运动明星的祝福,教育界也在经历一场严峻的考验,为阻断疫情向学校蔓延,确保师生的生命安全和身体健康成为首要任务,第三章 组织机构第十一条 学校设立由校领导 和相关部门负责人组成的招生工作领导小组,负责制定招生政策,讨论决定招生重大事宜,排烟风机 /,过去,许多同学临近高考时会熬夜上补习班补习英语,可缺乏休息的 熬夜补习效率极低,一个月后英语作文中可能依旧有许多生硬语句;而搜狗AI写作助手能够随时随地帮你训练写作技巧,无论是课间休息还是放学途中,我们都可以在作文批改中直接输入语句练习,写 完后点击批改作文就能马上看到修改批注,并且还能看到对我们作文语句优化的优化建议,省时又高效,在信息技术高速发展的今天,智慧课堂的发展潜力是无可估量的,如何突破学困生在课堂中跟不 上的问题?加快语速,短时间调动学生,注意力高度集中时传输重点内容;观察学生的微表情,当学生在老师讲解后仍旧面露难色的时候,组织小组互助,限时解决疑问
5 x
(3) : (x 3) x 3
号里各项的符号 有什么变化?
(4) : (x 3) x 3
s 如果括号外的因数是正数,去括号后原
括号内的各项的符号与原来的符号
(
);
s 如果括号外的因数是负数,去括号后原
括号内的各项的符号与原来的符号 ( )。
s
项数都没变
s
乘法分配律
去掉“+( 去掉“–(
相关文档
最新文档