第9章:相关与回归分析
第九章:回归分析-30页文档
Chapter 11
Regression and Correlation
Techniques that are used to establish whether there is a mathematical relationship between two or more variables, so that the behavior of one variable can be used to predict the behavior of others. Applicable to “Variables” data only.
run
axis.
b
0
X
A simple linear relationship can be described mathematically by
Y = mX + b
Simple Linear Regression
slope =
rise run
=
(6 - 3)
1
=
(10 - 4)
2
Y
rise
5
run intercept = 1
Rent
Step 1: Scatter plot
2500 2300 2100 1900 1700 1500 1300 1100 900 700 500
500 700 900 1100 1300 1500 1700 1900 2100
Size
Scatter plot suggests that there is a ‘linear’ relationship between Rent and Size
High
9 第九章 回归与相关
估计。
一)、加权最小二乘估计 假定各观测值的权重为Wi,求解回归方 程就要使得以下加权后的残差平方和最小
ss残W Wi Yi aw bw X
2
bw
aW
WX WY WXY W l l WX WX W WY b WX Y b W
二、直线回归方程的求法 直线方程为: a为Y轴上的截距;b为斜率,表示X 每改变一个单位,Y的变化的值,称为回 归系数; 表示在X值处Y的总体均数 估计值。为求a和b两系数,根据数学上 的最小二乘法原理,可导出a和b的算式 如下:
例9-1 某地方病研究所调查了8名正常 儿童的尿肌酐含量(mmol/24h)如表91。估计尿肌酐含量(Y)对其年龄(X) 的关系。
表14,rs界值表,P<0.01,故可认为当地居 民死因的构成和各种死因导致的潜在工作损 失年数WYPLL的构成呈正相关。 二、相同秩次较多时rs的校正 当X及Y中,相同秩次个数多时,宜用下式校 正
第四节
加权直线回归
在一些情况下,根据专业知识考虑 并结合实际数据,某些观察值对于估计 回归方程显得更“重要”,而有些不 “重要”,此时可以采用加权最小二乘
lYY的分析 如图9-4,p点的纵坐标被回归直线与均数 截成三个线段:
图9-4
平方和划分示意图
第一段 第二段
第三段
上述三段代数和为:
移项:
p点是散点图中任取一点,将所有的点子都
按上法处理,并将等式两端平方后再求和,
则有:
它们各自的自由度分别为: 可计算统计量F:
SS回 SS 残
2
F
回 残
表9-3某省1995年到1999年居民死因构成与WYPLL构成
统计学第9章 相关分析和回归分析
回归模型的类型
回归模型
一元回归
线性回归
10 - 28
多元回归
线性回归 非线性回归
非线性回归
统计学
STATISTICS (第二版)
一元线性回归模型
10 - 29
统计学
STATISTICS (第二版)
一元线性回归
1. 涉及一个自变量的回归 2. 因变量y与自变量x之间为线性关系
被预测或被解释的变量称为因变量 (dependent variable),用y表示 用来预测或用来解释因变量的一个或多个变 量称为自变量 (independent variable) ,用 x 表示
统计学
STATISTICS (第二版)
3.相关分析主要是描述两个变量之间线性关 系的密切程度;回归分析不仅可以揭示 变量 x 对变量 y 的影响大小,还可以由 回归方程进行预测和控制 4.回归系数与相关系数的符号是一样的,但 是回归系数是有单位的,相关系数是没 有单位的。
10 - 27
统计学
STATISTICS (第二版)
10 - 19
统计学
STATISTICS (第二版)
相关系数的经验解释
1. 2. 3. 4.
|r|0.8时,可视为两个变量之间高度相关 0.5|r|<0.8时,可视为中度相关 0.3|r|<0.5时,视为低度相关 |r|<0.3时,说明两个变量之间的相关程度 极弱,可视为不相关
10 - 20
10 - 6
统计学
STATISTICS (第二版)
函数关系
(几个例子)
某种商品的销售额 y 与销售量 x 之间的关系 可表示为 y = px (p 为单价)
第九章 第四节 相关性、最小二乘估计、回归分析与独立性检验
分析与独立性检验
9/30/2013
9/30/2013
1.相关性 (1)散点图:在考虑两个量的关系时,为了对_____之间的关 变量 系有一个大致的了解,人们通常将___________的点描出来, 变量所对应 这些点就组成了变量之间的一个图,通常称这种图为变量之间 的散点图.
1.利用统计量χ 2来判断“两个变量X,Y有关系”计算公式为:
2
(A)ad-bc越小,说明X与Y关系越弱
(B)ad-bc越大,说明X与Y关系越强 (C)(ad-bc)2越大,说明X与Y关系越强 (D)(ad-bc)2越接近于0,说明X与Y关系越强
a b c d a c b d
1 2
9/30/2013
【拓展提升】线性相关关系与函数关系的区别 (1)函数关系中的两个变量间是一种确定性关系.例如,正 方形面积S与边长x之间的关系S=x2就是函数关系.
(2)相关关系是一种非确定性关系,即相关关系是非随机变
量与随机变量之间的关系.例如,商品的销售额与广告费是相
关关系.两个变量具有相关关系是回归分析的前提.
50 13 20-10 7) ( 4.844, 23 27 20 30
2
因为χ 2≥3.841,所以有
答案:95%
9/30/2013
考向 1
相关关系的判断
【典例1】(1)对变量x,y有观测数据(xi,yi)(i=1,2,„,
10),得散点图(1);对变量u,v有观测数据(ui,vi)(i=1,
9/30/2013
3.独立性检验
(1)2×2列联表
设A,B为两个变量,每一个变量都可以取两个值,变量A:
回归分析与相关分析
回归分析与相关分析回归分析是通过建立一个数学模型来研究自变量对因变量的影响程度。
回归分析的基本思想是假设自变量和因变量之间存在一种函数关系,通过拟合数据来确定函数的参数。
回归分析可以分为线性回归和非线性回归两种。
线性回归是指自变量和因变量之间存在线性关系,非线性回归是指自变量和因变量之间存在非线性关系。
回归分析可用于预测、解释和控制因变量。
回归分析的应用非常广泛。
例如,在经济学中,回归分析可以用于研究收入与消费之间的关系;在医学研究中,回归分析可以用于研究生活方式与健康之间的关系。
回归分析的步骤包括确定自变量和因变量、选择合适的回归模型、拟合数据、检验模型的显著性和解释模型。
相关分析是一种用来衡量变量之间相关性的方法。
相关分析通过计算相关系数来度量变量之间的关系的强度和方向。
常用的相关系数有Pearson相关系数、Spearman相关系数和判定系数。
Pearson相关系数适用于连续变量,Spearman相关系数适用于顺序变量,判定系数用于解释变量之间的关系。
相关分析通常用于确定两个变量之间是否相关,以及它们之间的相关性强度和方向。
相关分析的应用也非常广泛。
例如,在市场研究中,相关分析可以用于研究产品价格与销量之间的关系;在心理学研究中,相关分析可以用于研究学习成绩与学习时间之间的关系。
相关分析的步骤包括确定变量、计算相关系数、检验相关系数的显著性和解释相关系数。
回归分析与相关分析的主要区别在于它们研究的对象不同。
回归分析研究自变量与因变量之间的关系,关注的是因变量的预测和解释;相关分析研究变量之间的关系,关注的是变量之间的相关性。
此外,回归分析通常是为了解释因变量的变化,而相关分析通常是为了量化变量之间的相关性。
综上所述,回归分析和相关分析是统计学中常用的两种数据分析方法。
回归分析用于确定自变量与因变量之间的关系,相关分析用于测量变量之间的相关性。
回归分析和相关分析在实践中有广泛的应用,并且它们的步骤和原理较为相似。
第九章 相关分析
第九章 相关分析
( y y)2
=
( y yc )2
+
( yc y)2
由此可以推导出:
( y yc ) ( y y) ( yc y)
2 2
2
2
Lyy (a bx a b x) Lyy b ( x x)
2 2
Lyy b Lxx
表明两变量完全不相关。 (4)当计算相关系数的原始数据较多(如50项以 上)时,认为相关系数在0.3以下为无相关, 0.3以上为有相关;0.3-0.5为低度相关;0.5-0.8 为显著相关;0.8以上为高度相关。
9
第九章 相关分析
相关系数计算分析例题
生产费用
序 月产量 号 1 1.2 2 2.0 3 3.1 4 3.8 5 5.0 6 6.1 7 7.2 8 8.0 ∑ 36.4
2 2
x n y y
2
2
0.97
说明产量和生产费用之间存在高度正相关。
第九章 相关分析
第三节
回 归 分 析
一、回 归 分 析 的 意 义 回归分析是对具有相关关系的两个或两个以 上变量之间的数量变化的一般关系进行测定,确 立一个相应的数学表达式,以便从一个已知量来 推测另一个未知量,为估算预测提供一个重要的 方法。 二、回 归 的 种 类 按自变量的个数分 按回归线的形态分 一元回归 多元回归 线性回归 非线性回归
Lxx x b b y Lyy
y br r x
Lyy L21 xx
第九章 相关分析
五 回归分析与相关分析的特点
1、回归分析必须区分自变量和因变量,而相关 分析不必区分。 2、回归分析的两个变量一个是自变量,一个是 因变量,通过给定自变量的值来推算因变量 的可能值;而相关分析的两个变量都是随机 变量。 3、回归分析中对于因果关系不甚明确的两个变量, 可以建立两个回归方程;而相关分析只能计算 出一个相关系数。 4、一种回归方程只能做一种推算,即只能给出自 变量的值来推算因变量的值,不能逆推。
西南财经大学向蓉美、王青华《统计学》第三版——第9章:相关与回归分析
相关关系(例)
▪ 单位成本(y)与产量(x) 的关系…… ▪ 父亲身高(y)与子女身高(x)之间的关系 ▪ 社会商品零售额(y)与居民可支配收入(x)之
间的关系 ▪ 收入 (y)与文化程度(x)之间的关系 ▪ 商品销售量(y)与广告费支出(x1)、价格(x2)
之间的关系 ▪ 需要PPT配套视频,请加VX:1033604968
简单相关系数(简单线性相关系数) 对两个变量(定量变量)之间线性相关程 度的度量。 也称直线相关系数, 常简称相关系数。
等级相关(秩相关)
对两个定序变量之间线性相关程度的度量。
9--19
相关系数(Pearson’s
correlation coefficient)
有总体相关系数与样本相关系数之分:
• 总体相关系数ρ
变量间的相互依存关系有 两种类型:
——函数关系 ——相关关系
9--3
函数关系
1. 指变量之间确定性的数量依存关系;
2. 当变量 x 取某个数值时,
y 有确定的值与之对应, 则称 y 是 x 的函数 y = f
(x)
• 通常将作为变动原因的变 量 x 称为自变量,作为变
Y
动结果的变量y 称为因变量
将两个变量成对的观测数据在坐标图上标示出来, 变量 x 的值为横坐标,另一个变量 y 对应的数值 为纵坐标,一对观测值对应一个点,样本数据若 有n 对观测值,则相应的 n 个点形成的图形就称为 散点图。
如果一个是解释变量另一个是被解释变量,则通常 将解释变量放在横轴。
有助于分析者判断相关的有无、方向、形态、密 切程度。
9--5
相关关系
1. 指变量间数量上不确定的依存关系;
2. 一个变量的取值不能唯一地由 另一个变量来确定。当变量 x 取某个值时,与之相关的 变量 y 的取值可能有若干个 (按某种规律在一定范围内
第九章 相关与回归分析
第9章相关与回归分析【教学内容】相关分析与回归分析是两种既有区别又有联系的统计分析方法。
本章阐述了相关关系的概念与特点;相关关系与函数关系的区别与联系;相关关系的种类;相关关系的测定方法(直线相关系数的含义、计算方法与运用);回归分析的概念与特点;回归直线方程的求解及其精确度的评价;估计标准误差的计算。
【教学目标】1、了解相关与回归分析的概念、特点和相关分析与回归分析的区别与联系;2、掌握相关分析的定性和定量分析方法;3、掌握回归模型的拟合方法、对回归方程拟合精度的测定和评价的方法。
【教学重、难点】1、相关分析与回归分析的概念、特点、区别与联系;2、相关与回归分析的有关计算公式和应用条件。
第一节相关分析的一般问题一、相关关系的概念与特点(一)相关关系的概念在自然界与人类社会中,许多现象之间是相互联系、相互制约的,表现在数量上也存在着一定的联系。
这种数量上的联系和关系究其实质,可以概括为两种不同类型,即函数关系与相关关系。
相关关系:是指现象之间客观存在的,在数量变化上受随机因素的影响,非确定性的相互依存关系。
例如,商品销售额与流通费用率之间的关系就是一种相关关系。
(二)相关关系的特点1、相关关系表现为数量相互依存关系。
2、相关关系在数量上表现为非确定性的相互依存关系。
二、相关关系的种类1、相关关系按变量的多少,可分为单相关和复相关2、相关关系从表现形态上划分,可分为直线相关和曲线相关3、相关关系从变动方向上划分,可分为正相关和负相关4、按相关的密切程度分,可分为完全相关、不完全相关和不相关三、相关分析的内容相关分析是对客观社会经济现象间存在的相关关系进行分析研究的一种统计方法。
其目的在于对现象间所存在的依存关系及其所表现出的规律性进行数量上的推断和认识,以便为回归分析提供依据。
相关分析的内容和程序是:(1)判别现象间有无相关关系(2)判定相关关系的表现形态和密切程度第二节相关关系的判断与分析一、相关关系的一般判断(一)定性分析对现象进行定性分析,就是根据现象之间的本质联系和质的规定性,运用理论知识、专业知识、实际经验来进行判断和分析。
第9章直线回归与相关分析(田间试验与统计分析 四川农业大学)
解正规方程组,得:
田间试验与统计分析
Field Experiment and Statistical Analysis
协同变异的大小和性质
均积
协方差
Copyright © 2019 Sichuan Agricultural University All Rights Reserved Producer:Dr. Liu Yongjian
1、作散点图
(月/日)
y, 5/30 20
一
代 三
5/25
15
化
螟 5/20 10
盛
发
期 5/15
5
田间试验与统计分析
Field Experiment and Statistical Analysis
5/10
0
yˆ 48.5485 1.0996x
5/5
-5
29
34
39
44
49
x,3月下旬至4月中旬平均温度累计值
Copyright © 2019 Sichuan Agricultural University All Rights Reserved Producer:Dr. Liu Yongjian
田间试验与统计分析
Field Experiment and Statistical Analysis
相关变量间的关系
田间试验与统计分析
田间试验与统计分析
Field Experiment and Statistical Analysis
图9-1 (x,y)散点图
Copyright © 2019 Sichuan Agricultural University All Rights Reserved Producer:Dr. Liu Yongjian
(临床医学)第9章直线相关与回归
04
02 直线相关
直线相关的概念
直线相关是指两个变量之间存在一种线性关系,即当一个变量发生变化时,另一个变量也会按照一定 的方向和强度发生变化。
直线相关可以用相关系数r来表示,r的取值范围为-1到1,r值为正表示正相关,r值为负表示负相关,r值 为0表示无相关。
直线相关的类型
研究非线性关系,即因变量和自变量之间的 关系不是直线关系。
多元线性回归
研究于研究分类因变量的概率预测,常用于二 元分类问题。
回归分析的应用场景
预测模型
通过回归分析建立预测模型,根据已知的自 变量预测未来的因变量值。
病因研究
在医学和流行病学中,回归分析用于研究疾 病发生的危险因素和病因。
响。
学习曲线回归分析,掌握非线 性关系的建模方法。
结合实际案例,实践应用回归 分析解决实际问题。
关注回归分析的最新研究进展 ,提高自己的统计素养。
THANKS FOR WATCHING
感谢您的观看
01
02
03
正相关
当一个变量增加时,另一 个变量也相应增加,呈正 向变化趋势。
负相关
当一个变量增加时,另一 个变量减少,呈反向变化 趋势。
无相关
两个变量之间不存在线性 关系。
直线相关的应用场景
流行病学研究
通过分析疾病发病率与环境因素之间的直 线相关关系,了解疾病发生的原因和机制。
生物统计学
在生物统计学中,直线相关分析被广泛应 用于基因与表型、环境因素与健康状况等
05 案例研究
案例一:心血管疾病与年龄、血压的关系
总结词
心血管疾病与年龄、血压存在显著相关性,年龄越大、血压越高,心血管疾病风险越高。
第9章 相关与回归分析
第九章相关与回归分析习题一、单选题1.下面的函数关系是()。
A、销售人员测验成绩与销售额大小的关系B、圆周的长度决定于它的半径C、家庭的收入和消费的关系D、数学成绩与统计学成绩的关系2.若要证明两变量之间线性相关程度是高的,则计算出的相关系数应接近于()。
A、+1B、0C、0.5D、+1或-13.回归系数和相关系数的符号是一致的,其符号均可用来判断现象()。
A、线性相关还是非线性相关B、正相关还是负相关C、完全相关还是不完全相关D、单相关还是复相关4.在线性相关的条件下,自变量的均方差为2,因变量均方差为5,而相关系数为0.8时,则其回归系数为( )。
A、8B、0.32C、2D、12.55.下面现象间的关系属于相关关系的是()。
A、圆的周长和它的半径之间的关系B、价格不变条件下,商品销售额与销售量之间的关系C、家庭收入愈多,其消费支出也有增长的趋势D、正方形面积和它的边长之间的关系6.下列关系中,属于正相关关系的是()。
A、合理限度内,施肥量和平均单产量之间的关系B、产品产量与单位产品成本之间的关系C、商品的流通费用与销售利润之间的关系D、流通费用率与商品销售量之间的关系7.相关分析是研究()。
A、变量之间的数量关系B、变量之间的变动关系C、变量之间的相互关系的密切程度D、变量之间的因果关系8.在回归直线y=a+bx中,b<0,则x与y之间的相关系数( )。
A、r=0B、r=lC、0<r<1D、-1<r<09.在回归直线y=a+bx中,b表示()。
A、当x增加一个单位时,y增加a的数量B、当y增加一个单位时,x增加b的数量C、当x增加一个单位时,y的平均增加量D、当y增加一个单位时,x的平均增加量10.当相关系数r=0时,表明()。
A、现象之间完全无关B、相关程度较小C、现象之间完全相关D、无直线相关关系11.下列现象相关密切程度最高的是()。
A、某商店的职工人数与商品销售额之间的相关系数0.87B、流通费用水平与利润率之间的相关关系为-0.94C、商品销售额与利润率之间的相关系数为0.51D、商品销售额与流通费用水平的相关系数为-0.8112.估计标准误差是反映()。
第9章 相关分析与一元回归分析
郑州轻工业学院数学与信息科学系第九章:相关分析与一元回归分析概率统计教研组变量之间的关系可以分为函数关系和相关关系两类,函数关系表示变量间确定的对应关系,而相关关系则是变量间的某种非确定的依赖关系.相关分析主要是研究随机变量间相关关系的形式和程度,在相关关系的讨论中,两个变量的地位是同等的,所使用的测度工具是相关系数,而回归分析则侧重考察变量之间的数量伴随关系,并通过一定的数学表达式将这种数量关系描述出来,用于解决预测和控制等实际问题.本章主要学习相关分析和一元回归分析的有关概念、理论和方法.●【回归名称的来历】―回归”这一词最早出现在1885年,英国生物学家兼统计学家——弗朗西斯⋅高尔顿(Francis Galton )在研究遗传现象时引进了这一名词.他研究分析了孩子和父母身高关系后发现:虽然高个子的父母会有高个子的后代,但后代的增高并不与父母的增高等量.他称这一现象为“向平常高度的回归”.尔后,他的朋友麦尔逊等人搜集了上千个家庭成员的身高数据,分析出儿子的平均身高和父亲的身高x 大致为如下关系:(英寸) 93.33516.0ˆ+=y●【回归名称的来历】这表明:(1)父亲身高增加1英寸,儿子的身高平均增加0.516英寸.(2)高个子父辈有生高个子儿子的趋势,但儿子的平均身高要比于父辈低一些.如x =80,那么低于父辈的平均身高.(3)低个子父辈的儿子们虽为低个子,但其平均身高要比父辈高一些.如x =80,那么高于父辈的平均身高,01.75ˆ=y,01.75ˆ=y●【回归名称的来历】可见儿子的高度趋向于“回归”到平均值而不是更极端,这就是“回归”一词的最初含义.诚然,如今对回归这一概念的理解并不是高尔顿的原意,但这一名词却一直沿用下来,成为数理统计中最常用的概念之一.回归分析的思想早已渗透到数理统计学科的其他分支,随着计算机的发展和各种统计软件的出现,回归分析的应用越来越广泛.主要内容§9.1相关分析§9.2回归分析在大量的实际问题中,随机变量之间虽有某种关系,但这种关系很难找到一种精确的表示方法来描述.例如,人的身高与体重之间有一定的关系,知道一个人的身高可以大致估计出他的体重,但并不能算出体重的精确值.其原因在于人有较大的个体差异,因而身高和体重的关系,是既密切但又不能完全确定的关系.随机变量间类似的这种关系在大自然和社会中屡见不鲜.例如,农作物产量与施肥量的关系,商业活动中销售量与广告投入的关系,人的年龄与血压的关系,每种股票的收益与整个市场收益的关系,家庭收入与支出的关系等等这种大量存在于随机变量间既互相联系,但又不是完全确定的关系,称为相关关系.从数量的角度去研究这种关系,是数理统计的一个任务.这包括通过观察和试验数据去判断随机变量之间有无关系,对其关系大小作出数量上的估计,我们把这种统计分析方法称为相关分析.相关分析通常包括考察随机变量观测数据的散点图、计算样本相关系数以及对总体相关系数的显著性检验等内容.●9.1.1散点图散点图是描述变量之间关系的一种直观方法.我们用坐标的横轴代表自变量X ,纵轴代表因变量Y ,每组观测数据(x i ,y i )在坐标系中用一个点表示,由这些点形成的散点图描述了两个变量之间的大致关系,从中可以直观地看出变量之间的关系形态及关系强度.图9-1 不同形态的散点图(a)(b)(c)(d)●9.1.1散点图图9-1 不同形态的散点图从散点图可以看出,变量间相关关系的表现形态大体上可分为线性相关、非线性相关、不相关等几种.就两个变量而言,如果变量之间的关系近似地表现为一条直线,则称为线性相关,如图9-1(a)和(b);(a)(b)(c)(d)●9.1.1散点图图9-1 不同形态的散点图如果变量之间的关系近似地表现为一条曲线,则称为非线性相关或曲线相关;如图9-1(c);如果两个变量的观测点很分散,无任何规律,则表示变量之间没有相关关系,如图9-1(d).(a)(b)(c)(d)●9.1.1散点图图9-1 不同形态的散点图在线性相关中,若两个变量的变动方向相同,一个变量的数值增加,另一个变量的数值也随之增加,或一个变量的数值减少,另一个变量的数值也随之减少,则称为正相关,如图9-1(a);(a)(b)(c)(d)●9.1.1散点图图9-1 不同形态的散点图若两个变量的变动方向相反,一个变量的数值增加,另一个变量的数值随之减少,或一个变量的数值减少,另一个变量的数值随之增加,则称为负相关,如图9-1(b).(a)(b)(c)(d)●9.1.1散点图通过散点图可以判断两个变量之间有无相关关系,并对变量间的关系形态做出大致的描述,但散点图不能准确反映变量之间的关系密切程度.因此,为准确度量两个变量之间的关系密切程度,需要计算相关系数.●9.1.2相关系数相关系数是对两个随机变量之间线性关系密切程度的度量.若相关系数是根据两个变量全部数据计算的,称为总体相关系数.设X ,Y 为两个随机变量,由定义4.5知,当D (X )D (Y )≠0时,总体相关系数的计算公式为:其中Cov (X ,Y )为变量X 和Y 的协方差,D (X )和D (Y )分别为X 和Y 的方差.,),(Cov DY DX Y X XY =ρ●9.1.2相关系数设(x i ,y i ),i =1,2,…,n ,为(X ,Y )的样本,记,11∑==n i i x n x ,11∑==ni i y n y ,)(11122∑=--=n i i x x x n s ∑=--=ni i y y y n s 122)(11●9.1.2相关系数【定义9.1】若s x s y ≠0,称为{x i }和{y i }的相关系数(也可简称为样本相关系数).r xy 常简记为r .r xy 的性质:(1)|r xy |≤1(2)|r xy |=1时,(x i ,y i ),i =1,2,…,n 在一条直线上.∑∑==----==n i i in i i i y x xyxy y y x xy y x x s s s r 1221)()())((●9.1.2相关系数【定义9.2】当r>0时,称{x i}和{y i}正相关,当r xy<0时,xy}和{y i}负相关,当r xy=0时,称{x i}和{y i}不相关称{xi实际应用中,为了说明{x}和{y i}的相关程度,通常将相i关程度分为以下几种情况:当|r|≥0.8时,可视{x i}与{y i}为高度线性相关;xy0.5≤|r|<0.8时,可视{x i}与{y i}为中度线性相关;xy0.3≤|r|<0.5时,视{x i}与{y i}为低度线性相关;xy当|r|<0.3时,说明{x i}与{y i}的线性相关程度极弱.xy●9.1.2相关系数说明:(1)有时个别极端数据可能影响样本相关系数,应用中要多加注意.(2)r xy=0,只能说明{x i}与{y i}之间不存在线性关系,并不能说明{xi}与{y i}之间无其他关系.(3)一般情况下,总体相关系数ρXY是未知的,通常是将样本相关系数rxy 作为ρXY的估计值,于是常用样本相关系数推断两变量间的相关关系.这一点要和相关系数的显著性检验结合起来应用.9.1.2相关系数【例9-1】用来评价商业中心经营好坏的一个综合指标是单位面积的营业额,它是单位时间内(通常为一年)的营业额与经营面积的比值.对单位面积营业额的影响因素的指标有单位小时车流量、日人流量、居民年平均消费额、消费者对商场的环境、设施及商品的丰富程度的满意度评分.这几个指标中车流量和人流量是通过同时对几个商业中心进行实地观测而得到的.而居民年平均消费额、消费者对商场的环境、设施及商品的丰富程度的满意度评分是通过随机采访顾客而得到的平均值数据.9.1.2相关系数【例9-1】某市随机抽取20个商业中心有关数据图9-2 商业中心经营状况指标与数据9.1.2相关系数【例9-1】图9-2所示的Excel工作表为从某市随机抽取20个商业中心有关数据,试据此分析单位面积年营业额与其他各指标的相关关系.解:设各指标(变量)的变量名分别为:单位面积营业额:y,每小时机动车流量:x1,日人流量:x2,居民年消费额:x3,对商场环境的满意度:x4,对商场设施的满意度:x5,为商场商品丰富程度满意度:x6.(1)利用Excel分别作出y与x1,x2,…,x6的散点图.●9.1.2相关系数【例9-1】解:图9-3 y与x1,x2,…,x6的散点图可以看到,各散点图的散点分布和一条直线相比均有一定差别.●9.1.2相关系数【例9-1】解:图9-3 y与x1,x2,…,x6的散点图其中单位面积营业额(y)与日人流量(x2)、居民年消费额(x3)的线性关系相对较明显一些.●9.1.2相关系数【例9-1】解:图9-3 y与x1,x2,…,x6的散点图y与商场商品丰富程度满意度(x6)有一定的线性关系,而y与其余几个变量的线性关系较弱.●9.1.2相关系数【例9-1】图9-2所示的Excel工作表为从某市随机抽取的20个商业中心有关数据,试据此分析单位面积年营业额与其他各指标的相关关系.解:(1)利用Excel分别作出y与x1,x2,…,x6的散点图.实验操作:编号y x1x2x3x4x5x61 2.50.51 3.9 1.947962 3.20.26 4.24 2.867463 2.50.72 4.54 1.618874 3.4 1.23 6.98 1.92610105 1.80.69 4.210.7184760.90.36 2.910.625657 1.70.13 1.43 1.884928 2.60.58 4.14 1.9971069 2.10.81 4.660.9685710 1.90.37 2.15 1.8749311 3.4 1.26 6.47 2.110101012 3.90.12 5.33 3.475671310.23 2.530.5652414 1.70.56 3.780.7774615 2.6 1.04 5.53 1.3107916 2.7 1.18 5.98 1.2887917 1.40.61 1.27 1.4867118 3.2 1.05 5.77 2.1671099.1.2相关系数【例9-1】图9-2所示的Excel工作表为从某市随机抽取的20个商业中心有关数据,试据此分析单位面积年营业额与其他各指标的相关关系.,x2,…,x6的相关系数解:(2)利用Excel分别计算y与x1A B C D E F G22y与x1y与x2y与x3y与x4y与x5y与x6230.41270.790480.794330.341240.450200.69749=CORREL($B2:$B21,C2:C21)计算准备9.1.2相关系数【例9-1】图9-2所示的Excel工作表为从某市随机抽取的20个商业中心有关数据,试据此分析单位面积年营业额与其他各指标的相关关系.解:(2)利用Excel分别计算y与x,x2,…,x6的相关系数1编号y x1x2x3x4x5x61 2.50.51 3.9 1.947962 3.20.26 4.24 2.867463 2.50.72 4.54 1.618874 3.4 1.23 6.98 1.92610105 1.80.69 4.210.7184760.90.36 2.910.625657 1.70.13 1.43 1.884928 2.60.58 4.14 1.9971069 2.10.81 4.660.9685710 1.90.37 2.15 1.8749311 3.4 1.26 6.47 2.110101012 3.90.12 5.33 3.475671310.23 2.530.5652414 1.70.56 3.780.7774615 2.6 1.04 5.53 1.3107916 2.7 1.18 5.98 1.2887917 1.40.61 1.27 1.4867118 3.2 1.05 5.77 2.16710919 2.9 1.06 5.71 1.7469920 2.50.58 4.11 1.85796y与x1y与x2y与x3y与x4y与x5y与x60.410.790.790.340.450.7计算结果●9.1.2相关系数【例9-1】图9-2所示的Excel工作表为从某市随机抽取的20个商业中心有关数据,试据此分析单位面积年营业额与其他各指标的相关关系.解:(2)利用Excel分别计算y与x1,x2,…,x6的相关系数从相关系数的取值来看,单位面积营业额(y)与日人流量(x2)、居民年消费额(x3)接近高度相关;A B C D E F G 22y与x1y与x2y与x3y与x4y与x5y与x6 230.41280.79050.79430.34120.45020.69749●9.1.2相关系数【例9-1】图9-2所示的Excel工作表为从某市随机抽取的20个商业中心有关数据,试据此分析单位面积年营业额与其他各指标的相关关系.解:(2)利用Excel分别计算y与x1,x2,…,x6的相关系数y与商场商品丰富程度满意度(x6)则属于中度相关;A B C D E F G 22y与x1y与x2y与x3y与x4y与x5y与x6 230.41280.79050.79430.34120.45020.69749●9.1.2相关系数【例9-1】图9-2所示的Excel工作表为从某市随机抽取的20个商业中心有关数据,试据此分析单位面积年营业额与其他各指标的相关关系.解:(2)利用Excel分别计算y与x1,x2,…,x6的相关系数y与每小时机动车流量(x1)、对商场环境的满意度(x4)、对商场设施的满意度(x5)为低度相关;A B C D E F G22y与x1y与x2y与x3y与x4y与x5y与x6 230.41280.79050.79430.34120.45020.69749●9.1.3相关性检验设(xi ,yi),i=1,2,…,n,为(X,Y)的样本,相关性检验也就是检验总体X,Y的相关系数是否为0,通常采用费歇尔(Fisher)提出的t分布检验,该检验可以用于小样本,也可以用于大样本.检验的具体步骤如下:1)提出假设:假设样本是从不相关的两个总体中抽出的,即H0:ρXY= 0,H1:ρXY≠ 0如果否定了H就认为X,Y是相关的.●9.1.3相关性检验2)可以证明,当H 0成立时,统计量 因为H 0立时,|r xy |应该很小,从而T 的观测值应该取值较小,于是,在显著水平α下H 0的拒绝域是若T 的观测值记为t 0,衡量观测结果极端性的P 值:P = P {| T | ≥ | t 0|} = 2P {T ≥ | t 0 |})2(~122---=n t r n r T xyxy212xyxyr n r t --=)},2(|{|2/-≥n t t α●9.1.3相关性检验【例9-2】利用例9-1的数据,在显著水平 =0.05下,检验单位面积营业额与各变量之间的相关性.解:在例9.1的Excel工作表中继续如下操作:A B C D E F G22y与x1y与x2y与x3y与x4y与x5y与x623r=0.41270.790480.794330.341240.450200.69749 =B23*SQRT(20-2)/SQRT(1-B23^2)24t= 1.9224 5.4756 5.5519 1.5402 2.1391 4.129625P=0.0705 3.36E-05 2.86E-050.14090.46390.0006 =TDIST(B24,20-2,2)计算准备●9.1.3相关性检验【例9-2】利用例9-1的数据,在显著水平 =0.05下,检验单位面积营业额与各变量之间的相关性.解:在例9.1的Excel工作表中继续如下操作:编号y与x1x1x2x3x4x5x61 2.50.51 3.9 1.947962 3.20.26 4.24 2.867463 2.50.72 4.54 1.618874 3.4 1.23 6.98 1.92610105 1.80.69 4.210.7184760.90.36 2.910.625657 1.70.13 1.43 1.884928 2.60.58 4.14 1.9971069 2.10.81 4.660.9685710 1.90.37 2.15 1.8749311 3.4 1.26 6.47 2.110101012 3.90.12 5.33 3.475671310.23 2.530.5652414 1.70.56 3.780.7774615 2.6 1.04 5.53 1.3107916 2.7 1.18 5.98 1.2887917 1.40.61 1.27 1.4867118 3.2 1.05 5.77 2.16710919 2.9 1.06 5.71 1.7469920 2.50.58 4.11 1.85796y与x1y与x2y与x3y与x4y与x5y与x6r=0.412710.790480.794330.341240.45020.69749t= 1.92235 5.47556 5.54751 1.54023 2.13905 4.12956P=0.07053 3.4E-05 2.9E-050.14090.046390.00063计算结果●9.1.3相关性检验【例9-2】利用例9-1的数据,在显著水平 =0.05下,检验单位面积营业额与各变量之间的相关性.解:在例9.1的Excel工作表中继续如下操作:检验结果来看,单位面积营业额(y)与日人流量(x2)、居民年消费额(x3)、商场商品的丰富程度满意度(x6)、A B C D E F G 22y与x1y与x2y与x3y与x4y与x5y与x6 23r=0.41270.790480.794330.341240.450200.69749 24t= 1.9224 5.4756 5.5519 1.5402 2.1391 4.1296 25P=0.0705 3.36E-05 2.86E-050.14090.46390.0006●9.1.3相关性检验【例9-2】利用例9-1的数据,在显著水平α=0.05下,检验单位面积营业额与各变量之间的相关性. 解:在例9.1的Excel 工作表中继续如下操作:对商场设施的满意度(x 5)的相关系数显著不为0(P <α=0.05),即其相关性显著;A B C D E F G 22y 与x1y 与x2y 与x3y 与x4y 与x5y 与x623r =0.41270.790480.794330.341240.450200.6974924t = 1.9224 5.4756 5.5519 1.5402 2.1391 4.129625P =0.07053.36E-052.86E-050.14090.46390.0006●9.1.3相关性检验【例9-2】利用例9-1的数据,在显著水平 =0.05下,检验单位面积营业额与各变量之间的相关性. 解:在例9.1的Excel 工作表中继续如下操作:而不能拒绝y 与每小时机动车流量(x 1)、对商场环境的满意度(x 4)相关系数为0的假设(P >0.05),即其相关性不显著.A B C D E F G 22y 与x1y 与x2y 与x3y 与x4y 与x5y 与x623r =0.41270.790480.794330.341240.450200.6974924t = 1.9224 5.4756 5.5519 1.5402 2.1391 4.129625P =0.07053.36E-052.86E-050.14090.46390.0006回归分析是针对两个或两个以上具有相关关系的变量,研究它们的数量伴随关系,并通过一定的数学表达式将这种关系描述出来,建立回归模型.回归分析中总假设因变量是随机变量,自变量可以是随机变量也可以是一般变量(可以控制或精确测量的变量),我们只讨论自变量为一般变量的情况.为简单起见,以后的所有随机变量及其观测值均用小写字母表示.如果设随机变量y是因变量,x1,x2,…,xn是影响y的自变量,回归模型的一般形式为:y= f (x1,x2,…,x n) + ε其中ε为均值为0的正态随机变量,它表示除x1,x2,…,x n之外的随机因素对y的影响.在回归分析中,当只有一个自变量时,称为一元回归分析;当自变量有两个或两个以上时,称为多元回归分析;f是线性函数时,称线性回归分析,所建回归模型称为线性回归模型;f是非线性函数时,称非线性回归分析,所建回归模型称为非线性回归模型.线性回归模型的一般形式为:其中,β0和βi (i =1,2,…,k )是未知常数,称为回归系数,实际中常假定ε~N (0,σ2).一元线性回归模型的一般形式为:由ε~N (0,σ2)的假定,容易推出y ~N (β0+β1x ,σ2). 本章主要讨论一元线性回归分析和可化为线性回归的一元非线性回归分析.它们是反映两个变量之间关系的简单模型,但从中可了解到回归分析的基本思想、方法和应用,22110εββββ+++++=k k x x x y ,110εββ++=x y ),0(~2σεN●9.2.1一元线性回归分析让我们用一个例子来说明如何进行一元线性回归分析. 为了研究合金钢的强度和合金中含碳量的关系,专业人员收集了12组数据如表9-1所示.表9-1 合金钢的强度与合金中含碳量的关系序号123456789101112含碳量x(%)0.100.110.120.130.140.150.160.170.180.200.210.23合金钢的强度y(107Pa)42.043.045.045.045.047.549.053.050.055.055.060.0 试根据这些数据进行合金钢的强度y(单位:107Pa)与合金中含碳量x(%)之间的回归分析.●9.2.1一元线性回归分析为了研究这些数据中所蕴含的规律性,首先在Excel中由12对数据作出散点图,如图9-7所示.图9-7 画散点图从图看到,数据点大致落在一条直线附近,这告诉我们变量x和y之间大致可看作线性关系.●9.2.1一元线性回归分析为了研究这些数据中所蕴含的规律性,首先在Excel中由12对数据作出散点图,如图9-7所示.图9-7 画散点图从图中还看到,这些点又不完全在一条直线上,这表明x和y的关系并没有确切到给定x就可以唯一确定y的程度.●9.2.1一元线性回归分析为了研究这些数据中所蕴含的规律性,首先在Excel中由12对数据作出散点图,如图9-7所示.图9-7 画散点图事实上,还有许多其它随机因素对y产生影响.●9.2.1一元线性回归分析如果只研究x 和y 的关系,可考虑建立一元线性回归模型:(9.1)其中ε是除含碳量x 外其它诸多随机因素对合金钢强度y 的综合影响,假定它是零均值的正态随机变量. 由(9.1)式,不难算得y 的数学期望:(9.2)该式表示当x 已知时,可以精确地算出E (y ).称方程(9.2)为y 关于x 的回归方程.,110εββ++=x y ),0(~2σεN x y E 10)(ββ+=●9.2.1一元线性回归分析现对变量x ,y 进行了n 次独立观察,得样本(x i ,y i )(i =1,2,…,n ).据(9.1)式,此样本可由方程(9.3)来描述.这里εi 是第i 次观测时ε的值,是不能观测到的 由于各次观测独立,εi 看作是相互独立与ε同分布的随机变量.即有y i = β0+ β1x i + εi , (9.4)εi 相互独立,且εi ~N (0,σ2),i =1,2,…,ni i i x y εββ++=10●9.2.1一元线性回归分析y i = β0+ β1x i + εi , (9.4)εi 相互独立,且εi ~N (0,σ2),i =1,2,…,n(9.4)给出了样本(x 1,y 1),(x 2,y 2),…,(x n ,y n )的概率性质.它是对理论模型进行统计推断的依据,也常称(9.4)式为一元线性回归模型.要建立一元线性回归模型,首先利用n 组独立观测数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )来估计β0和β1,以估计值和分别代替(9.2)式中的β0和β1,得到(9.5)x y 10ˆˆˆββ+=●9.2.1一元线性回归分析(9.5) 由于此方程的建立有赖于通过观察或试验积累的数据,所以称其为经验回归方程(或经验公式),经验回归方程也简称为回归方程,其图形称为回归直线.当给定x= x0时,称为拟合值(预测值或回归值).那么,如何利用n组独立观察数据来估计β0和β1呢?一般常用最小二乘估计法和最大似然估计法,下面只介绍β和β1的最小二乘估计法.xy1ˆˆˆββ+=●9.2.1一元线性回归分析1.参数β0和β1的最小二乘估计设对模型(9.1)中的变量x ,y 进行了n 次独立观察,得样本(x i ,y i )(i =1,2,…,n ).由(9.3)式知随机误差εi =y i –(β0+β1x i ).最小二乘法的思想是:由x i ,y i 估计β0,β1时,使误差平方和达到最小的,分别作为β0,β1的估计,并称和为β0和β1的最小二乘估计.∑=+-=n i i i x y Q 121010)]([),(ββββ。
统计学第九章 相关与回归分析
第九章相关与回归分析Ⅰ. 学习目的和要求本章所要学习的相关与回归分析是经济统计分析中最常重要的统计方法之一。
具体要求:1.掌握有关相关与回归分析的基本概念;2.掌握单相关系数的计算与检验的方法,理解标准的一元线性回归模型,能够对模型进行估计和检验并利用模型进行预测;3.理解标准的多元线性回归模型,掌握估计、检验的基本方法和预测的基本公式,理解复相关系数和偏相关系数及其与单相关系数的区别;4.了解常用的非线性函数的特点,掌握常用的非线性函数线性变换与估计方法,理解相关指数的意义;5.能够应用Excel软件进行相关与回归分析。
Ⅱ. 课程内容要点第一节相关与回归分析的基本概念一、函数关系与相关关系当一个或几个变量取一定的值时,另一个变量有确定值与之相对应,这种关系称为确定性的函数关系。
当一个或几个相互联系的变量取一定数值时,与之相对应的另一变量的值虽然不确定,但仍按某种规律在一定的范围内变化。
这种关系,称为具有不确定性的相关关系。
变量之间的函数关系和相关关系,在一定条件下是可以互相转化的。
116117二、相关关系的种类按相关的程度可分为完全相关、不完全相关和不相关。
按相关的方向可分为正相关和负相关。
按相关的形式可分为线性相关和非线性相关。
按所研究的变量多少可分为单相关、复相关和偏相关。
三、相关分析与回归分析相关分析是用一个指标来表明现象间相互依存关系的密切程度。
回归分析是根据相关关系的具体形态,选择一个合适的数学模型,来近似地表达变量间的平均变化关系。
通过相关与回归分析虽然可以从数量上反映现象之间的联系形式及其密切程度,但是无法准确地判断现象内在联系的有无,也无法单独以此来确定何种现象为因,何种现象为果。
只有以实质性科学理论为指导,并结合实际经验进行分析研究,才能正确判断事物的内在联系和因果关系。
四、相关图相关图又称散点图。
它是以直角坐标系的横轴代表变量X ,纵轴代表变量Y,将两个变量间相对应的变量值用坐标点的形式描绘出来,用来反映两变量之间相关关系的图形。
第九章 相关分析
第九章一、1. 进行相关分析,要求相关的两个变量(AA.都是随机的B.C. 一个是随机的,一个不是随机的D.2. 判定现象之间相关关系密切程度的主要方法是( DA. 编制相关表B. 进行定性分析C. 绘制相关图 D. 计算相关系数3. 相关分析是研究( CA.变量之间的数量关系B.C.变量之间相互关系的密切程度 D.4. 相关系数的取值范围是( DA. r=0B. -1≤r≤0C. 0≤r≤1 D. -1≤r≤15. 现象之间相互依存关系的程度越低,则相关系数( AA. 越接近于0B. 越接近于-1C. 越接近于1 D. 越接近于0.56. 当所有观察值都落在回归直线上,则x与y之间的相关系数( CA. r=0B. -1<r<1C.|r|=1 D. 0<r<17. 在回归直线中,若b<0,则x与y之间的相关系数( DA. r=0B. r=1C. 0<r<1 D. -1<r<08. 在回归直线中,b表示( CA. 当x增加一个单位,y增加a的数量B. 当y增加一个单位时,x增加bC. 当x增加一个单位时,y的平均增加量D. 当y增加一个单位时,x9. 当相关系数r=0时,表明( DA. 现象之间完全无关B. 相关程度较小C. 现象之间完全相关 D.无直线相关关系10. r值越接近于-1,表明两变量间()。
A. 没有相关关系B. 线性相关关系越弱C. 负相关关系越强 D. 负相关关系越弱11. 下列直线回归方程中,肯定错误的是(CA.yc=2+3x, r=0.88B.yc=4+5x, r=0.55C.Yc=-10+5X r=-0.90D.yc=-100-0.9x, r=-0.8312. 正相关的特点是( BA.B.C.D.13. 下列现象的相关密切程度高的是( B A. 某商店的职工人数与商品销售额之间的相关系数为0.87B. 流通费用率与商业利润率之间的相关系数为-0.94C. 商品销售额与商业利润率之间的相关系数为0.51D. 商品销售额与流通费用率之间的相关系数为-0.8114. 两个变量间的相关关系称为( A )。
第九章双变量相关与回归分析
X Y X X Y Y XY
n
二、直线回归中的统计推断
回归方程的假设检验:有方差分析和t检验方法。 总体回归系数β的可信区间 利用回归方程进行估计和预测
例题
SPSS操作分析步骤如下
1、建立数据文件
•建立两个变量: X变量:年龄,数值型 Y变量:尿肌酸含量,数值型
2、统计分析
(1)散点图的制作
graph scatter simple
通过散点图可看出两个变量间不具有直线趋势而是有曲线趋势, 可通过曲线拟合方法来刻画两变量间数量上的依存关系。
(2)曲线拟合的菜单操作
analyze
regression
Curve estimation主对话框
(
适用于两变量间关系为非直线形式,可以通过曲线拟 合方法来刻画两变量间数量上的依存关系。 毒理学动物试验中动物死亡率与给药剂量的关系、细 菌繁殖与培养时间的关系等情况。
例题
SPSS操作分析步骤如下
1、建立数据文件
•建立两个变量: X变量:住院天数,数值型 Y变量:预后指数,数值型
第六章 双变量相关与回归分析
例如:为了研究微量元素锰在胆固醇合成中的作用, 探讨大鼠肝脏中胆固醇含量和锰含量之间是否存在直 线关系?这种关系为随着锰含量的增加,胆固醇的含 量是增加还是减少呢?——直线相关问题
第一节 直线相关
直线相关:又称简单相关,是研究两个变量间线性关 系的一种常用统计方法。 直线相关分析的是两变量之间是否存在直线相关关系, 以及相关的方向和程度。直线相关系数又称Pearson相 关系数,使描述两变量线性相关关系程度和方向的统 计量。 作直线相关分析要求资料服从双变量正态分布。对于 不符合双变量正态分布的资料,不能直接计算Pearson 相关系数,可用非参数统计方法,即计算Kendall相关 系数或Spearman相关系数。
第九章 直线回归与相关分析
ˆ L1 = y − t0.05 s y = 19.0645 − 2.447 × 2.1603 = 13.7782 ˆ L2 = y + t0.05 s y = 19.0645 + 2.447 × 0.8559 = 24.3508
第三节 直线相关
一、相关系数和决定系数 如果两个变量间呈线性关系,又不需要由x来估计 如果两个变量间呈线性关系,又不需要由 来估计 y,只需了 和y相关以及相关的性质,可通过计算 相关以及相关的性质, ,只需了x和 相关以及相关的性质 x和y相关程度和性质的统计数-相关系数来进行 相关程度和性质的统计数- 和 相关程度和性质的统计数 研究。 研究。 相关系数r为 相关系数 为: SP
ˆ L1 = y − t0.05 s y = 19.0645 − 2.447 × 0.8559 = 16.9701 ˆ ˆ L2 = y + t0.05 s y = 19.0645 + 2.447 × 0.8559 = 21.1589 ˆ
(四)单个y值的置信区间
单个y观测值的标准误为: 单个 观测值的标准误为: 观测值的标准误为
2
ˆ L1 = y − t a s y ˆ ˆ L2 = y + t a s y ˆ
根据例1,估计出黏虫孵化历期平均温度为 ℃ 根据例 ,估计出黏虫孵化历期平均温度为15℃时, 历期天数为多少( 置信区间)。 历期天数为多少(取95%置信区间)。 置信区间
x = 15 df = n − 2 = 8 − 2 = 6 ˆ y = a + bx = 57.04 + (−2.5317) × 15 = 19.0645 sy = sy / x ˆ 1 ( x − x )2 1 (15 − 16.8375) 2 + = 1.9835 × + = 0.8559 n SS x 8 55.1788
第9章 回归分析
1. 多元线性回归模型 设随机变量 y 与 m (m ≥ 2) 个自变量 x1 , x2 , ⋅⋅⋅, xm 之间存在相关关系,且有
y= a + b1 x1 + b2 x2 + ⋅⋅⋅ + bm xm + ε 2 ε ~ N (0, σ )
其中 a, b1 , b2 , ⋅⋅⋅, bm , σ 是与 x1 , x2 , ⋅⋅⋅, xm 无关的未知参数, ε 是不可观测的随机变量.称上式
= F
SR ~ F (1, n − 2) , Se /(n − 2)
168
对于给定的显著性水平 α ,拒绝域为 = F
SR ≥ Fα (1, n − 2) . Se /(n − 2)
Se
2
t 检验法: ˆ ~ N (b, 由b
此得到
σ2
lxx
) 知,
ˆ−b b
σ
lxx ~ N (0,1) .又由
σ
=
= i 1
n
ˆ ( x − x )x ∑ xi yi − y ∑ xi − b ∑ i i
= i 1= i 1
n n
n
= i 1
ˆ ( x − x )( x − x + x ) ∑ xi yi − y ∑ xi − b ∑ i i
= i 1= i 1 n n n
=
= i 1
ˆˆ ( x − x ) 2 − b ∑ xi yi − y ∑ xi − b ∑ i
当原假设 H 0 为真时, (3) F 检验法
σ
SR
2
~ χ 2 (m) ,且 S R 与 Se 相互独立.
SR / m , 当 H 0 为真时, F ~ F ( m, n − m − 1) . 因此 ,对于给定 Se / (n − m − 1) 的显著性水平 α ,拒绝域为 F ≥ Fα (m, n − m − 1) .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8 - 19 2008年8月
统计学
STATISTICS (第三版)
相关系数的性质
性质2:r具有对称性。即x与y之间的相关系数和y与x之间 的相关系数相等,即rxy= ryx 性质3:r数值大小与x和y原点及尺度无关,即改变x和y的 数据原点及计量尺度,并不改变r数值大小 性质4:仅仅是x与y之间线性关系的一个度量,它不能用 于描述非线性关系。这意为着, r=0只表示两个 变量之间不存在线性相关关系,并不说明变量之 间没有任何关系 性质5:r虽然是两个变量之间线性关系的一个度量,却不 一定意味着x与y一定有因果关系
8-9 2008年8月
统计学
STATISTICS (第三版)
(三) 按相关形式划分 按相关关系的表现形态不同可分为线性相关和 非线性相关。 当两种相关现象之间的相关关系在直角坐标系 中近似地表现为一条直线时,称之为线性相关。 如果两种相关现象之间, 在图上并不表现为直 线形式而是表现为某种曲线形式时,则称这种 相关关系为非线性相关。
统计学
STATISTICS (第三版)
2 人均销售额 x 利润率( %)y x 6 12.6 36 5 10.4 25 8 18.5 64 1 3.0 1 4 8.1 16 7 16.3 49 6 12.3 36 3 6.2 9 3 6.6 9 7 16.8 49 50 110.8 294
8 - 17
1. 度量变量之间线性关系强度的一个统计量
也 称 为 Pearson 相 关 系 数 coefficient)
(Pearson’s correlation
2. 样本相关系数的计算公式
r
8 - 15
( x x )( y y) (x x ) ( y y)
2
2
2008年8月
2008年8月
子女的身高与其父母身高的关系
一个人的收入水平同他受教育程度的关系
农作物的单位面积产量与降雨量之间的关系
8-6
统计学
STATISTICS (第三版)
相关关系
(correlation)
1. 一 个 变 量 的 取 值 不 能 由另一个变量唯一确 y 定 2. 当变量 x 取某个值时, 变量 y 的取值对应着 一个分布 3. 各 观 测 点 分 布 在 直 线 周围
原始数据
8 - 13 2008年8月
统计学
STATISTICS (第三版)
散点图
(销售收入和广告费用的散点图)
8 - 14
2008年8月
统计学
STATISTICS (第三版)
相关系数
(correlation coefficient)
若相关系数是根据总体全部数据计算的,称为总体 相关系数,记为 若是根据样本数据计算的,则称为样本相关系数, 简称为相关系数,记为 r
不相关
2008年8月
正线性相关
8 - 12
统计学
STATISTICS (第三版)
用散点图描述变量间的关系
(例题分析)
【例】为研究销售收入与广告费用支出之间的关系,某医 药管理部门随机抽取20家药品生产企业,得到它们的 年销售收入和广告费用支出(万元)的数据如下。绘制 散点图描述销售收入与广告费用之间的关系
统计学
STATISTICS (第三版)
相关系数的性质
性质1:r 的取值范围是 [-1,1]
|r|=1,为完全相关
r =1,为完全正相关 r =-1,为完全负相关
r = 0,不存在线性相关关系 -1r<0,为负相关 0<r1,为正相关 |r|越趋于 1表示关系越强; |r|越趋于0表示关 系越弱
1 x x y y n ( ( xy xy ) n n n 22 2 2 1 ( ( x x ) ) ( y ) ) 22 2 n xx y y2 n nn n
8 - 16
xy x y x2 x 2 y2 y2
2008年8月
第 9 章 相关与回归分析
• • • • 变量间关系的度量 一元线性回归 利用回归方程进行预测 残差分析
统计学
STATISTICS (第三版)
子代与父代一样吗?
Galton 被誉为现代回归和相关技术的创始人。 1875 年, Galton 利用豌豆实验来确定尺寸的遗传规律。他挑选了 7 组不同尺寸的豌豆,并说服他在英国不同地区的朋友每一 组种植 10 粒种子,最后把原始的豌豆种子 ( 父代 ) 与新长的 豌豆种子(子代)进行尺寸比较 当结果被绘制出来之后,他发现并非每一个子代都与父代 一样,不同的是,尺寸小的豌豆会得到更大的子代,而尺 寸大的豌豆却得到较小的子代。 Galton 把这一现象叫做 “返祖” ( 趋向于祖先的某种平均类型 ) ,后来又称之为 “向平均回归”。一个总体中在某一时期具有某一极端特 征 ( 低于或高于总体均值 ) 的个体在未来的某一时期将减弱 它的极端性 ( 或者是单个个体或者是整个子代 ) ,这一趋势 现在被称作“回归效应”。人们发现它的应用很广,而不 仅限于从一代到下一代豌豆大小问题
2008年8月
8-4
统计学
STATISTICS (第三版)
变量间的关系:函数关系
1. 是一一对应的确定关系 2. 设有两个变量 x 和 y ,变量 y y 随变量 x 一起变化,并完 全依赖于 x ,当变量 x 取某 个数值时, y 依确定的关系 取相应的值,则称 y 是 x 的 函数,记为 y = f (x),其中 x 称为自变量,y 称为因变量 x 3. 各观测点落在一条线上
8 - 20 2008年8月
统计学
STATISTICS (第三版)
相关系数的经验解释
|r|0.8时,可视为两个变量之间高度相关 0.5|r|<0.8时,可视为中度相关 0.3|r|<0.5时,视为低度相关 |r|<0.3时,说明两个变量之间的相关程度 极弱,可视为不相关 5. 上述解释必须建立在对相关系数的显著性 进行检验的基础之上 1. 2. 3. 4.
2
~ t (n 2)
2008年8月
[例]为了解营业员每人月平均销售额(万元)和利润率(% )之间的关系,特从100家商店中随机抽取10家,得到如 下资料,试计算样本相关系数并进行检验(=0.05)。 解:提出假设:H0:=0 H1:0 已知:r=0.987,n=10 r 0 0.987 t 17.37 2 2 1 r 1 0.987 n2 10 2
r
nxy xy nx 2 (x) 2 ny 2 (y) 2
10 654.9 50 110.8 10 294 502 10 1465 110.8 2
1009 440 2373.36
0.987
答:人均销售额与利润率之间存在着高度的正相关关系。
2008年8月
统计学
STATISTICS (第三版)
散点图
(scatter diagram)
非线性相关
完全正线性相关
完全负线性相关
负线性
STATISTICS (第三版)
[r的简捷计算式]
s xy sx s y ( x x )( y y ) ( x x ) 2 ( y y ) 2
r
xy xy n 2 2 ( x ) ( y ) x 2 y 2 n n
nxy xy nx 2 (x) 2 ny 2 (y) 2
8-3 2008年8月
统计学
STATISTICS (第三版)
回归分析研究什么?
研究某些实际问题时往往涉及到多个变量。在这些变量 中,有一个变量是研究中特别关注的,称为因变量,而 其他变量则看成是影响这一变量的因素,称为自变量 假定因变量与自变量之间有某种关系,并把这种关系用 适当的数学模型表达出来,那么,就可以利用这一模型 根据给定的自变量来预测因变量,这就是回归要解决的 问题 在回归分析中,只涉及一个自变量时称为一元回归,涉 及多个自变量时则称为多元回归。如果因变量与自变量 之间是线性关系,则称为线性回归 (linear regression) ; 如果因变量与自变量之间是非线性关系则称为非线性回 归(nonlinear regression)
8-7
x
2008年8月
统计学
STATISTICS (第三版)
相关关系的种类
(一) 按变量多少划分 按相关关系涉及变量的多少可分为单相关、复 相关和偏相关。 两个现象的相关,即一个变量对另一个变量的 相关关系,称为单相关。 当所研究的是一个变量对两个或两个以上其他 变量的相关关系时,称为复相关。 在某一现象与多种现象相关的场合,当假定 其他变量不变时,其中两个变量的相关关系称 为偏相关。
8-8 2008年8月
统计学
STATISTICS (第三版)
(二) 按相关程度划分 按变量之间相关关系的密切程度不同,可分为完全 相关、不完全相关和不相关。 当一种现象的数量变化完全由另一个现象的数量变化 所确定时,称这两种现象间的关系为完全相关。 当两个现象彼此互不影响,其数量变化各自独立时, 称为不相关。 两个现象之间的关系介于完全相关和不相关之间,称 为不完全相关,一般的相关现象都是指这种不完全 相关。
8-2 2008年8月
统计学
STATISTICS (第三版)
子代与父代一样吗?
正如Galton进一步发现的那样,平均来说,非常矮小的父 辈倾向于有偏高的子代;而非常高大的父辈则倾向于有偏 矮的子代。在第一次考试中成绩最差的那些学生在第二次 考试中倾向于有更好的成绩 ( 比较接近所有学生的平均成 绩),而第一次考试中成绩最好的那些学生在第二次考试中 则倾向于有较差的成绩 ( 同样比较接近所有学生的平均成 绩)。同样,平均来说,第一年利润最低的公司第二年不会 最差,而第一年利润最高的公司第二年则不会是最好的 如果把父代和子代看作两个变量,找出这两个变量的关系, 并根据这种关系建立适当的数学模型,就可以根据父代的 数值预测子代的取值,这就是经典的回归方法要解决的问 题。学完本章的内容你会对回归问题有更深入的理解