《实数》全章测试
人教版七年级数学下册 第六章 实数。单元测试题精选(Word版附答案)
人教版七年级数学下册第六章实数。
单元测试题精选(Word版附答案)人教版七年级数学第6章《实数》单元测试题精选完成时间:120分钟满分:150分得分评卷人:______________ 姓名:______________ 成绩:______________一、选择题(本大题10小题,每小题4分,共40分。
每小题给出的四个选项中,只有一个选项是符合题意的,请将该选项的标号填入表格内)题号 1 2 3 4 5 6 7 8 9 10答案 B A D A A C D C B B二、填空题(每题5分,共20分)11.m = 3.n = 1.(m+n)^5 = 243.12.(1) 0.000 521 7 (2) 0.002 284.13.3.14.x = 8.三、解答题(共90分)15.1) x = ±5/3;2) x = 3/5.16.1.17.a = 9.b = -8.3a+b的算术平方根为 5.18.已知 $m=\lfloor 313\rfloor$。
$n=0.13$,求 $m-n$ 的值。
19.如图,计划围一个面积为 $50\text{ m}^2$ 的长方形场地,一边靠旧墙(墙长为 $10$ m),另外三边用篱笆围成,并且它的长与宽之比为 $5:2$。
讨论方案时,XXX说:“我们不可能围成满足要求的长方形场地。
”小军说:“面积和长宽比例是确定的,肯定可以围得出来。
”请你判断谁的说法正确,为什么?解:设长为 $5x$,宽为 $2x$,则面积为 $10x^2$,另一条边长为 $10-5x$,由题意得 $10x^2=(10-5x)\times2x$,解得$x=1$,长为 $5$,宽为 $2$,可以围成满足要求的长方形场地,小军的说法正确。
20.若 $x+3+(y-3)^2=3$,则 $(xy)^{\frac{2015}{3}}$ 等于多少?解:移项得 $(y-3)^2=3-x-3=-x$,所以 $xy=\frac{3-x}{y-3}$,将其代入 $(xy)^{\frac{2015}{3}}$ 得 $\left(\frac{3-x}{y-3}\right)^{\frac{2015}{3}}$,根据乘方的运算法则,得$\left(\frac{3-x}{y-3}\right)^{671}$。
第6章 实数 人教版数学七年级下册单元测试(含答案)
第六章实数达标检测一、单选题:1.在实数,,,,,3.212212221…中,无理数的个数是()个.A.1B.2C.3D.4【答案】D【分析】无理数常见的三种类型(1)开不尽的方根;(2)特定结构的无限不循环小数;(3)含有π的绝大部分数,如2π.【详解】−1.414是有限小数,是有理数,是无理数,π是无理数,无限循环小数是有理数,是无理数,3.212212221…是无限不循环小数是无理数,故选:D.【点睛】本题主要考查的是无理数的认识,掌握无理数的常见类型是解题的关键.2.下列各式中,正确的是( )A.B.C.D.【答案】A【分析】根据立方根,算术平方根逐项判断即可.【详解】解:A. ,故该选项正确;B. ,故该选项错误;C. ,故该选项错误;D. ,故该选项错误.故选:A.【点睛】本题考查立方根,算术平方根,解题关键是理解立方根与算术平方根的意义.3.下列说法正确的是()A.平方根是B.的平方根是C.平方根等于它本身的数是1和0D.一定是正数【答案】D【分析】A、根据平方根的概念即可得到答案;B、的平方根其实是9的平方根;C、平方根等于它本身的数与算术平方根是它本身的数要分清楚;D、先判断出,再利用算术平方根的性质直接得到答案.【详解】A、是负数,负数没有平方根,不符合题意;B、,9的平方根是,不符合题意;C、平方根等于它本身的数是0,1的平方根是,不符合题意;D、,正数的算术平方根大于0,符合题意.故选:D.【点睛】此题考查了平方根及算术平方根的定义及性质,熟练掌握相关知识是解题关键.4.下列关于的说法中,错误的是()A.是无理数B.C.5的平方根是D.【答案】C【分析】根据无理数的定义,算术平方根的估算,平方根和化简绝对值依次判断即可.【详解】解:A、是无理数,说法正确,不符合题意;B、2<<3,说法正确,不符合题意;C、5的平方根是±,故原题说法错误,符合题意;D、,说法正确, 不符合题意;故选C.【点睛】本题考查了平方根、算术平方根的估算,无理数的定义.注意一个正数的平方根有两个,它们互为相反数.5.计算:-+-的结果是( )A.1B.-1C.5D.-3【答案】D【分析】首先求出各个根式的值,进而即可求解.【详解】-+-,=-3+2-2,=-3.故选D.【点睛】此题主要考查了实数的运算,解题关键是能够求解一些简单的二次根式的加减问题.6.如图,在数轴上表示实数的点可能().A.点P B.点Q C.点M D.点N【答案】C【分析】确定是在哪两个相邻的整数之间,然后确定对应的点即可解决问题.【详解】解:∵9<15<16,∴3<<4,∴对应的点是M.故选:C.【点睛】本题考查实数与数轴上的点的对应关系,解题关键是应先看这个无理数在哪两个有理数之间,进而求解.7.有一个数值转换器,原理如下:当输入的x为4时,输出的y是()A.4B.2C.D.-【答案】C【分析】直接利用规定的运算顺序计算得出答案.【详解】解:4的算术平方根为:=2,则2的算术平方根为:,是无理数.故选C.【点睛】本题考查算术平方根、有理数和无理数定义,正确把握运算顺序是解题关键.8.若与互为相反数,则的值为().A.B.C.D.【答案】A【分析】根据相反数与立方根的性质计算即可得答案.【详解】解:∵与是相反数,∴==∴3x-1=2y-1,整理得:3x=2y,即,故选A.【点睛】本题主要考查立方根的性质,正数的立方根是正数,负数的立方根还是负数,一个数只有一个立方根,熟练掌握立方根的性质是解题关键.9.如图所示,直径为单位1的圆从原点沿着数轴无滑动的逆时针滚动一周到达A点,则A点表示的数是( )A.﹣2π﹣1B.﹣1+πC.﹣1+2πD.﹣π【答案】D【分析】先求出圆的周长π,即得到OA的长,然后根据数轴上的点与实数一一对应的关系即可得到点A表示的数.【详解】∵直径为单位1的圆的周长=π×1=π,∴OA=π,∴点A表示的数为﹣π,故选D.【点睛】本题考查了实数与数轴,解题的关键是熟知数轴上的点与实数一一对应.10.如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是( )A.2B.C.5D.【答案】B【分析】根据三角形数列的特点,归纳出每一行第一个数的通用公式,即可求出第9行从左至右第5个数.【详解】根据三角形数列的特点,归纳出每n行第一个数的通用公式是,所以,第9行从左至右第5个数是=.【点睛】本题主要考查归纳推理的应用,根据每一行第一个数的取值规律,利用累加法求出第9行第五个数的数值是解决本题的关键,考查学生的推理能力.二、填空题:11.的算术平方根是_________;的平方根是____________.【答案】 2【分析】根据算术平方根和平方根的定义求解即可.【详解】解∵,∴的算术平方根是2,的平方根是±3.故答案为:2,±3.【点睛】本题主要考查了算术平方根,平方根的定义,解题的关键在于能够熟练掌握平方根和算术平方根的定义.12._____;______;______;______.【答案】 2 3.5【分析】根据平方根的定义、算术平方根的定义以及立方根的定义,即如果一个数的平方等于a,这个数就叫做a的平方根;一般地,如果一个正数x的平方等于a,即,那么这个正数x叫做a的算术平方根,记作;如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.这就是说,如果,那么x叫做a的立方根,记作:.计算即可.【详解】原式=2;原式;原式;原式;故答案为:2,,,.【点睛】本题主要考查了平方根,算术平方根以及立方根,熟记相关定义是解答本题的关键.13.若将三个数,,表示在数轴上,其中一个数被墨迹覆盖(如图所示),则这个被覆盖的数是______.【分析】根据被覆盖的数的范围求出被开方数的范围,然后即可得解.【详解】设被覆盖的数是,根据图形可得,∴,∴三个数,,中符合范围的是.故答案为:.【点睛】本题考查了实数与数轴的关系,根据数轴确定出被覆盖的数的取值范围是解题的关键.14.若一个正数的平方根是2a+1和﹣a+2,则a=_____,这个正数是_____.【答案】 -3 25【分析】根据已知得出方程2a+1﹣a+2=0,求出即可.【详解】解:∵一个正数的平方根是2a+1和﹣a+2,∴2a+1﹣a+2=0,解得:a=﹣3,即这个正数是[2×(﹣3)+1]2=25,故答案为:﹣3;25.【点睛】本题考查了对平方根的应用,注意:正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根.15.计算:=___.【答案】3【分析】原式利用绝对值的代数意义,以及二次根式性质化简即可得到结果.【详解】解:∵>0,<0,﹣2<0,∴原式=﹣()+|﹣2|=﹣2+3-+2=3,故答案为:3.【点睛】本题考查了绝对值的化简,二次根式的性质,准确掌握性质是解题的关键.16.比较大小:____;____;____;____.【答案】 <, <, >, >【分析】根据实数的比较大小,将根指数不同的根式化为与之相等的同根式比较,利用放缩法比较,利用中间过渡法比较,利用有理数化为根式形式比较.【详解】解:∵,,8<9,∴_<_;∵,即,∴_<___;∵,,∴,∴__>__;∵7=,_>__.故答案为<;<;>;>.【点睛】本题考查实数的大小比较,掌握实数的比较方法,化为同次根式,比较被开方数大小,放缩法比较大小,中间过渡法比较是解题关键.17.若与互为相反数,则________.【答案】2.【分析】根据相反数的概念列式,根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【详解】解:由题意得:,则:a−1=0,b+1=0,解得:a=1,b=−1,则1+1=2,故答案为:2.【点睛】本题考查了非负数的性质.解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.18.若2+的小数部分为a,5-的小数部分为b,则a+b的值为______.【答案】1【分析】估算确定出a与b的值,即可求出所求.【详解】解:∵4<6<9,∴2<<3,即4<2+<5,2<5-<3,则a=2+-4,b=5--2,则a+b=2+-4+5--2=1.故答案为1.【点睛】本题考查有理数的大小,弄清估算的方法是解本题的关键.19.已知的立方根是3,的算术平方根是4,c是的整数部分,则的平方根为___________.【答案】±4【分析】利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a、b、c的值,代入代数式求出值后,进一步求得平方根即可.【详解】∵5a+2的立方根是3,3a+b-1的算术平方根是4,∴5a+2=27,3a+b-1=16,∴a=5,b=2,∵c是的整数部分,∴c=3,∴∴的平方根是±4.故答案为:±4.【点睛】本题主要考查的知识点是立方根的意义、算术平方根的意义、无理数的估算方法、平方根的意义、代数式求值,解题关键是读懂题意,掌握解答顺序,正确计算即可.20.已知,若,则______;________;_________;若,则_______.【答案】 214000 214【分析】根据平方根、算术平方根、立方根的概念依次求解即可.【详解】解:∵,且,∴,∵,∴,∵,∴,∵且,∴,故答案为:214000,±0.1463,-0.1289,214.【点睛】本题考查了平方根、算术平方根、立方根的概念等,属于基础题,熟练掌握其定义是解决本类题的关键.三、解答题:21.把下列各数分别填入相应的集合中:-(-230),,0,-0.99,1.31,5,,3.14246792…,-.(1)整数集合:{…}(2)非正数集合:{…}(3)正有理数集合:{…}(4)无理数集合:{…}【答案】(1)整数集合:{-(-230),0,5,…};(2)非正数集合:{0,-0.99,-,…};(3)正有理数集合:{-(-230),,1.31,5,…};(4)无理数集合:{,3.142 467 92…,…}【分析】根据整数、非负数、有理数、无理数的定义判断可得答案.【详解】解:根据整数、非负数、有理数、无理数的定义可得:(1)整数集合:{-(-230),0,5,…};(2)非正数集合:{0,-0.99,-,…};(3)正有理数集合:{-(-230),,1.31,5,…};(4)无理数集合:{,3.142 467 92…,…}【点睛】本题主要考查整数、非负数、有理数、无理数的定义.22.求下列各式的值:(1);(2);(3);(4).【答案】(1);(2);(3)0.4;(4)0.3【分析】根据平方根和立方根的定义,即可求解.【详解】解:(1);(2);(3);(4).【点睛】本题主要考查了平方根和立方根的定义,熟练掌握一般地,如果一个数的平方等于,则称是的一个平方根,记作:;如果一个数的立方等于,则称是的一个立方根,记作:是解题的关键.23.比较下列各组数的大小:(1)与6;(2)与;(3)与.【答案】(1);(2);(3)【分析】(1)直接化简二次根式进而比较得出答案;(2)直接估算无理数的取值范围进而比较即可;(3)直接估算无理数的取值范围进而比较即可.【详解】解:(1)∵,∴;(2)∵,∴;(3)∵,∴,∵,∴,∴.【点睛】本题主要考查了实数比较大小,正确估算无理数取值范围是解题关键.24.计算:(1)(2)【答案】(1)(2)9【分析】(1)根据绝对值的意义去绝对值,然后合并即可;(2)先进行开方运算,然后进行加法运算.【详解】解:(1)原式==2-4;(2)原式=-(-2)+5+2=2+5+2=9.25.求下列各式中的x:(1);(2)(3);(4).【答案】(1);(2);(3)或;(4)【分析】(1)先移项,系数化为1,再根据平方根定义进行解答.(2)由得=,再根据立方根定义即可解答.(3)由得:,再开平方后解一元一次方程即可.(4)由得:,再开平方后解一元一次方程即可.【详解】(1)移项得:,系数化为1:,∵,∴.(2)由得:,∵,∴,解得:.(3)由得:,∴或,解得:或.(4)由得:,,∴或,解得:.【点睛】本题考查平方根、立方根的意义,等式的性质,掌握等式的性质和平方根、立方根的求法是正确计算的前提.26.已知的平方根是,的算术平方根是4,求的平方根.【答案】【分析】根据平方根和算术平方根的定义即可求出和的值,进而求出a和b的值,将a和b的值代入即可求解.【详解】解:∵的平方根是,的算术平方根是4,∴=9,=16,∴a=4,b=-1把a=4,b=-1代入得:3×4-4×(-1)=16,∴的平方根为:.【点睛】本题主要考查了算术平方根和平方根,熟练掌握算术平方根和平方根的定义是解题的关键.注意:一个正数有两个平方根,它们互为相反数.27.已知M是m+3的算术平方根,N是n﹣2的立方根.求(n﹣m)2008.【答案】【分析】由M是m+3的算术平方根,N是n﹣2的立方根,建立方程组:,解方程组可得答案.【详解】解:M是m+3的算术平方根,N是n﹣2的立方根.即:解得:,【点睛】本题考查的是算术平方根,立方根的含义,二元一次方程组的解法,乘方符号的确定,掌握以上知识是解题的关键.28.观察下列各式,并用所得出的规律解决问题:(1),,,……,,,……由此可见,被开方数的小数点每向右移动______位,其算术平方根的小数点向______移动______位.(2)已知,,则_____;______.(3),,,……小数点的变化规律是_______________________.(4)已知,,则______.【答案】(1)两;右;一;(2)12.25;0.3873;(3)被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)-0.01【分析】(1)观察已知等式,得到一般性规律,写出即可;(2)利用得出的规律计算即可得到结果;(3)归纳总结得到规律,写出即可;(4)利用得出的规律计算即可得到结果.【详解】解:(1),,,……,,,……由此可见,被开方数的小数点每向右移动两位,其算术平方根的小数点向右移动一位.故答案为:两;右;一;(2)已知,,则;;故答案为:12.25;0.3873;(3),,,……小数点的变化规律是:被开方数的小数点向右(左)移三位,其立方根的小数点向右(左)移动一位;(4)∵,,∴,∴,∴y=-0.01.【点睛】此题考查了立方根,以及算术平方根,弄清题中的规律是解本题的关键.。
新人教第6章《实数》测试
第6章《实数》单元测试题一.选择题(每题2分,共20分)1.下列说法中,正确的是( )A .有理数都是实数B .实数都是有理数C .带根号的数都是无理数D .无理数是开方开不尽的数2.在-2.87、22 3.257π、 -3.140 1.212112……这几个数中,无理数的个数是( ). A .4个 B .5个 C .6个 D .7个3.下列语句:①无理数的相反数是无理数;②一个数的绝对值一定是非负数;③有理数比无理数小;④无限小数不一定是无理数,其中正确的是( )A .①②③B .②③④C .①②④D .②④4. 下列命题:①(-3)2的平方根是-3 ;②-8的立方根是-23;④平方根与立方根相等的数只有0; 其中正确的命题的个数有( ) A 、1个 B 、2个 C 、3个 D 、4个5.使等式2(x =成立的x 的值( ) A 、是正数 B 、是负数 C 、是0 D 、不能确定6.若330a a --+=,则a 的取值范围是( )A .a ≤3 B .a <3 C .a ≥3 D .a >37.(y +2)20,则xy 的值等于( )A .-6 B .-2 C .2 D .68.当0<a <1时,a ,a 2,1a)A .a <21a aB .21a a a <C 21a a a <<D .21a a a<<9.在数-22,-(-2)、2(-2)、-2-,3(-2)中,负数的个数为( )A .3个B .2个C .4个D .5个10.我们知道,一元二次方程x 2=-1没有实数根,即不存在一个实数的平方等于-1.若我们规定一个新数“i ”,使其满足i 2=-1(即方程x 2=-1有一个根为i ).并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有i 1=i ,i 2=-1,i 3=i 2•i =(-1)•i =-i ,i 4=(i 2)2=(-1)2=1,从而对于任意正整数n ,我们可以得到i 4n +1=i 4n •i =(i 4)n •i =i ,同理可得i 4n +2=-1,i 4n +3=-i ,i 4n =1.那么i +i 2+i 3+i 4+…+i 2012+i 2013的值为( )A .0B .1C .-1D .i二.填空题(每题2分,共20分)11. 立方根等于本身的实数是 .12. 49的算术平方根是______;______;-8的立方根是______.13.满足x x 是___________.14.如果29a =2,且0ab <,则_________a b +=.15. 3,则a =______.16. =所揭示的规律,可得出一般的结论是 . 17.计算:2(-2)+112-()= .18.若实数a 、b 满足2310a b +-,则c -a b 的值为 .19. 已知(a -3)2与1b -互为相反数,则式子a b b a-÷()(a +b )的值是 .20. 如图,已知实数a 、b 、c 对应数轴上的点A 、B 、C ,化简:a +b c +b c -= .三.解答题(共80分)21.计算:(每题5分,共20分)①② 1)③④ 132-22.求下列各式中x 的值.(每题5分,共20分)①2(1)121x -= ②38(1)125x -=③33(4)375x -=- ④ 10x -=23. 已知x 、y 是实数,且2(1)x y -+(6分)24.如果实数3和10a b 、,求出a b +的精确值.(6分)25.已知2m -3和m -12是数p 的平方根,试求p 的值.(6分)26.已知a ,b ,c |a −b |+|c −a |+.(6分)27.已知m ,n 是有理数,且2)(370m n +-+=,求m 、n 的值. (8分)28.已知20142(4a x a -=+,求x 的个位数字. (8分)。
2023年七年级下学期第6章《实数》测试卷及答案解析
位长度沿数轴向右运动,当点 A 运动到﹣6 所在的点处时,求 A,B 两点间距离.
(3)在(2)的条件下,现 A 点静止不动,B 点沿数轴向左运动时,经过多长时间 A,B
两点相距 4 个单位长度.
30.不用计算器,比较下列各个数的大小: t和 .
第 4 页 共 14 页
2023 年七年级下学期第 6 章《实数》测试卷
参考答案与试题解析
一.选择题(共 10 小题) 1.已知(a﹣3)2+|b﹣4|=0,则 的平方根是( )
A.
B.﹣2
C.
解:∵(a﹣3)2+|b﹣4|=0, 而(a﹣3)2≥0,|b﹣4|≥0 ∴(a﹣3)2=0,|b﹣4|=0,
∴a=3 且 b=4.
∴,
D.﹣4
∴ 的平方根为 ,
故选:A. 2.下列运算正确的是( )
故选:D.
3.若|3﹣a|
h 0,则 a+b 的值是( )
A.﹣9
B.﹣3
C.3
解:∵|3﹣a|
h 0,
∴3=a,b=﹣6,
则 a+b=﹣3.
故选:B.
4.下列各式中,正确的是( )
25.用计算器探索.已知按一定规律排列的一组数:1, , ,…, 中选择出若干个数,使它们的和大于 3,那么至少要选几个数?
26.已知实数 x,y 满足关系式 t |y2﹣1|=0.
, ,如果从 t
(1)求 x,y 的值;
(2)判断 t 是有理数还是无理数?并说明理由.
27.给出定义如下:若一对实数(a,b)满足 a﹣b=ab+4,则称它们为一对“相关数”,如:
t
,故 , 是一对“相关数”.
(1)数对(1,1),(﹣2,﹣6),(0,﹣4)中是“相关数”的是
人教版七年级下册第六章《实数》单元测试题及答案
第六章《实数》单元测试题一、用心填一填,一定能填对:(每空1分,共53分)1. 正数a 的平方根记作 ,正数a 的正的平方根记作 ,正数a 的负的平方根记作 .2. 如果x 2=4,则x 叫作4的 ,记作 .3。
81的平方根是 ,0。
64的算术平方根是 . 5的平方根是 ,0的平方根是 .4. 491的算术平方根的相反数是 ,平方根的倒数是 ,平方根的绝对值是 . 5。
24-的相反数的倒数是 ,这个结果的算术平方根是 。
6. 当a 时,1-a 有意义,当a 时,1-a =0。
7. 如果2x =5,则x = 。
8。
如果一个正数的一个平方根是m,那么这个数的另一个平方根是 ,这个数的算术平方根是 ,两个平方根的和是 。
9。
当x >0时,x -表示x 的 ,当x <0时,3x -表示x的 。
10。
16 的负的平方根是 ,2)5(-的平方根是 .11. 962+-x x 的平方根是 .12. 如果a x =3那么x 是a 的 ,a 是x 的 。
13。
0.064的立方根是 ,1-的立方根是 ,3的立方根是 ,0的立方根是 ,9-的立方根是 .14.35是5的 ,一个数的立方根是2-,则这个数是 。
15.=-364 ,=-327 ,=--3125 。
16.=--33)0001.0( . 17.当x 时,32-x 有意义。
18、若22)3(-=a ,则a = ,若23)3(-=a ,则a = .19.=--32)125.0( 。
20.若12-x 是225的算术平方根,则x 的立方根是 。
21。
3343的平方根是 。
22. 若x 是64125的立方根,则x 的平方根是 . 23.25-的相反数是 。
24.若1.1001.102=,则=±0201.1 。
25. 若x x -+有意义,则=+1x26. 1- ,-22 , 33 27. 数轴上离原点距离是5的点表示的数是 。
28. 无理数a 满足14-<<-a , 请写出两个你熟悉的无理数a .二、你很聪明,一定能选对:(每小题1分,共10分)1. 0.0196的算术平方根是( )A 0。
人教版七年级数第二学期第6章《实数》单元测试题及答案01
人教版七年级数第二学期第6章《实数》单元测试题及答案一.选择题(共10小题)1.若m,n满足(m﹣1)2+=0,则的平方根是()A.±4B.±2C.4D.22.下列几个数中,属于无理数的数是()A.0.1 B.C.πD.3.下列各组数中互为相反数的是()A.﹣2与B.﹣2与C.﹣2与D.2与|﹣2|4.下列计算正确的是()A.B.=﹣2C.D.(﹣2)3×(﹣3)2=725.实数a,b,c,d在数轴上对应点的位置如图所示,则正确的结论是()A.a>﹣4B.bd>0C.b+c>0D.|a|>|b|6.9的平方根是()A.B.81C.±3D.37.的算术平方根是()A.±B.C.±D.58.实数的算术平方根是()A.2B.C.±2D.±9.下列实数中,最大的是()A.﹣0.5B.﹣C.﹣1D.﹣10.估算7﹣的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间二.填空题(共8小题)11.实数a、b在数轴上的位置如图所示,则①a+b<0;②a﹣b>0;③|a|<|b|;④a2<b2;⑤ab>b2.以上说法正确的有(在横线上填写相应的序号)12.﹣1的相反数是.13.下列各数:3.146,,0.010010001,3﹣π,.其中,无理数有个.14.与最接近的整数是.15.比较大小:.16.已知2a﹣1的平方根是±3,3a﹣b﹣1的立方根是2,a+b的平方根.17.有一个数值转换器,原理如图:当输入的x=4时,输出的y等于.18.计算:=.三.解答题(共7小题)19.计算:+×﹣6+.20.求下列各式中的x.(1)3x2﹣12=0(2)(x﹣1)3=﹣6421.若5x﹣19的算术平方根是4,求3x+9的平方根.22.已知2b+1的平方根为±3,3a+2b﹣1的算术平方根为4,求3a﹣2b的立方根.23.实数a,b,c在数轴上的位置如图,化简|b+c|﹣|b+a|+|a﹣c|.24.天气晴朗时,一个人能看到大海的最远距离S(单位:km)可用公式S2=1.7h米估计,其中h(单位:m)是眼睛离海平面的高度.(1)如果一个人站在岸边观察,当眼睛离海平面的高度是1.7m时,能看到多远?(2)若登上一个观望台,使看到的最远距离是(1)中的3倍,已知眼睛到脚底的高度为1.7m,求观望台离海平面的高度?25.已知5+和5﹣的小数部分分别为a,b,试求代数式ab﹣a+4b﹣3的值.参考答案与试题解析一.选择题(共10小题)1.若m,n满足(m﹣1)2+=0,则的平方根是()A.±4B.±2C.4D.2【分析】根据非负数的性质列式求出m、n,根据平方根的概念计算即可.【解答】解:由题意得,m﹣1=0,n﹣15=0,解得,m=1,n=15,则=4,4的平方根的±2,故选:B.【点评】本题考查的是非负数的性质、平方根的概念,掌握非负数之和等于0时,各项都等于0是解题的关键.2.下列几个数中,属于无理数的数是()A.0.1 B.C.πD.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此解答即可.【解答】解:A.0.1是有限小数,属于有理数,故本选项不合题意;B.,是整数,属于有理数,故本选项不合题意;C.π是无理数,故本选项符合题意;D.是分数,属于有理数,故本选项不合题意.故选:C.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.下列各组数中互为相反数的是()A.﹣2与B.﹣2与C.﹣2与D.2与|﹣2|【分析】根据只有符号不同的两个数叫做互为相反数对各选项分析判断后利用排除法求解.【解答】解:A、=2,﹣2与是互为相反数,故本选项正确;B、=﹣2,﹣2与相等,不是互为相反数,故本选项错误;C、﹣2与﹣是互为倒数,不是互为相反数,故本选项错误;D、|﹣2|=2,2与|﹣2|相等,不是互为相反数,故本选项错误.故选:A.【点评】本题考查了实数的性质,对各项准确计算是解题的关键.4.下列计算正确的是()A.B.=﹣2C.D.(﹣2)3×(﹣3)2=72【分析】A、根据算术平方根的定义即可判定;B、根据立方根的定义即可判定;C、根据立方根的定义即可判定;D、根据乘方运算法则计算即可判定.【解答】解:A、=3,故选项A错误;B、=﹣2,故选项B正确;C、=,故选项C错误;D、(﹣2)3×(﹣3)2=﹣8×9=﹣72,故选项D错误.故选:B.【点评】本题主要考查实数的运算能力,解决此类题目的关键是熟记二次根式、三次根式和立方、平方的运算法则.开平方和开立方分别和平方和立方互为逆运算.立方根的性质:任何数都有立方根,①正数的立方根是正数,②负数的立方根是负数,③0的立方根是0.5.实数a,b,c,d在数轴上对应点的位置如图所示,则正确的结论是()A.a>﹣4B.bd>0C.b+c>0D.|a|>|b|【分析】观察数轴,找出a、b、c、d四个数的大概范围,再逐一分析四个选项的正误,即可得出结论.【解答】解:A、∵a<﹣4,∴结论A错误;B、∵b<﹣1,d=4,∴bd<0,结论B错误;C、∵﹣2<b<﹣1,0<c<1,∴b+c<0,结论C错误;D、∵a<﹣4,b>﹣2,∴|a|>|b|,结论D正确.故选:D.【点评】本题考查了实数与数轴以及绝对值,观察数轴,逐一分析四个选项的正误是解题的关键.6.9的平方根是()A.B.81C.±3D.3【分析】根据平方根的定义即可解答.【解答】解:9的平方根是±3,故选:C.【点评】此题主要考查了平方根.解题的关键是掌握平方根的定义,注意一个正数的平方根有两个,且互为相反数.7.的算术平方根是()A.±B.C.±D.5【分析】直接根据算术平方根的定义计算即可.【解答】解:因为=5,所以的算术平方根是,故选:B.【点评】此题主要考查了算术平方根,关键是掌握算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.8.实数的算术平方根是()A.2B.C.±2D.±【分析】首先得出=4,进而利用算术平方根的定义得出答案.【解答】解:∵=4,∴的算术平方根是:2.故选:A.【点评】此题主要考查了立方根和算术平方根的定义,正确理解算术平方根与立方根的定义是解题关键.9.下列实数中,最大的是()A.﹣0.5B.﹣C.﹣1D.﹣【分析】根据实数的比较大小即可求出答案.【解答】解:由于﹣0.5>﹣1>>﹣,故选:A.【点评】本题考查实数,解题的关键是熟练运用实数比较的方法,本题属于基础题型.10.估算7﹣的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【分析】先估算出的范围,再估算出7﹣的范围即可.【解答】解:∵4<<5,∴7﹣的值在2和3之间;故选:A.【点评】此题主要考查了估计无理数,得出的取值范围是解题关键.二.填空题(共8小题)11.实数a、b在数轴上的位置如图所示,则①a+b<0;②a﹣b>0;③|a|<|b|;④a2<b2;⑤ab>b2.以上说法正确的有①⑤(在横线上填写相应的序号)【分析】根据图示,可得a<b<0,﹣a<﹣b,据此逐项判断即可.【解答】解:∵a<b<0,∴a+b<0,∴选项①正确;∵a<b<0,∴a﹣b<0,∴选项②错误;∵a<b<0,∴|a|>|b|;∴选项③错误;∵a<b<0,﹣a>﹣b,∴a2>b2,∴选项④错误;∵a<b<0,﹣a>﹣b,∴ab>b2,∴选项⑤正确,∴正确的结论有3个:①、⑤.故答案为:①⑤.【点评】此题主要考查了有理数大小比较的方法,以及数轴的特征和应用,要熟练掌握.12.﹣1的相反数是1﹣.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣1的相反数是1﹣,故答案为:1﹣.【点评】本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数.13.下列各数:3.146,,0.010010001,3﹣π,.其中,无理数有1个.【分析】无理数常见的三种类型(1)开不尽的数;(2)特定结构的无限不循环小数;(3)含有π的绝大部分数.【解答】解:3.146是有限小数,属于有理数;是分数,属于有理数;0.010010001是有限小数,属于有理数;是循环小数,属于有理数.∴无理数有3﹣π共1个.故答案为:1【点评】本题主要考查的是无理数的认识,掌握无理数的常见类型是解题的关键.14.与最接近的整数是2.【分析】直接利用的取值范围进而得出答案.【解答】解:∵<<,∴1<<2,∴与最接近的整数是:2.故答案为:2.【点评】此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键.15.比较大小:<.【分析】首先分别求出+、的平方的值各是倒数;然后比较出它们的大小关系,再根据:两个正数,平方大的,原来的数也大,判断出原来的两个数的大小关系即可.【解答】解:=11+2=22∵11+2<11+2×5.5=22,∴<,∴<.故答案为:<.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:两个正数,平方大的,原来的数也大.16.已知2a﹣1的平方根是±3,3a﹣b﹣1的立方根是2,a+b的平方根±.【分析】先根据平方根、立方根的定义得到关于a、b的二元一次方程组,解方程组即可求出a、b的值,进而得到2﹣b的平方根.【解答】解:由题意,有,解得.则a+b=5+6=11,所以a+b的平方根±.故答案为:±.【点评】本题考查了平方根、立方根的定义.解题的关键是掌握平方根、立方根的定义.如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.如果一个数x的立方等于a,那么这个数x就叫做a的立方根.17.有一个数值转换器,原理如图:当输入的x=4时,输出的y等于.【分析】根据转换程序把4代入求值即可.【解答】解:4的算术平方根为:=2,则2的算术平方根为:.故答案为:.【点评】此题主要考查了算术平方根,正确把握运算规律是解题关键.18.计算:=6.【分析】根据算术平方根和立方根的定义计算可得.【解答】解:原式=9﹣3=6,故答案为:6.【点评】本题主要考查实数的运算,解题的关键是熟练掌握平方根和立方根的定义.三.解答题(共7小题)19.计算:+×﹣6+.【分析】直接利用二次根式的性质和立方根的性质分别化简得出答案.【解答】解:原式===.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.求下列各式中的x.(1)3x2﹣12=0(2)(x﹣1)3=﹣64【分析】(1)根据平方根定义开方,再求出方程的解即可;(2)根据立方根定义开方,再求出方程的解即可.【解答】解:(1)3x2﹣12=0,3x2=12,x2=4,x=±2;(2)(x﹣1)3=﹣64,x﹣1=﹣4,x=﹣3.【点评】本题考查了立方根和平方根定义的运用,解此题的关键是能根据平方根和立方根定义得出一元一次方程.21.若5x﹣19的算术平方根是4,求3x+9的平方根.【分析】由题意得4的平方是16,那么5x﹣19=16,即可求得x,进而求得3x+9的平方根.【解答】解:∵5x﹣19的算术平方根是4∴5x﹣19=16∴x=7∴3x+9=30,其平方根为±.【点评】此题主要考查了算术平方根、平方根的定义,注意:被开方数应等于它的算术平方根的平方.一个正数的平方根有2个.22.已知2b+1的平方根为±3,3a+2b﹣1的算术平方根为4,求3a﹣2b的立方根.【分析】分别根据2a﹣1的平方根是±3,3a+2b﹣1的算术平方根是4,求出a、b的值,再求出3a﹣2b的值,求出其立方根即可.【解答】解:∵2b﹣1的平方根是±3,∴2b+1=(±3)2,解得b=4;∵3a+2b﹣1的算术平方根是4,∴3a+2b﹣1=16,把b=4代入得,3a+2×4﹣1=16,解得a=3,∴3a﹣2b=3×3﹣2×4=1.∵13=1,∴3a﹣2b的立方根是1.【点评】本题考查的是立方根、平方根及算术平方根的定义,根据题意列出关于a、b的方程,求出a、b的值是解答此题的关键.23.实数a,b,c在数轴上的位置如图,化简|b+c|﹣|b+a|+|a﹣c|.【分析】观察数轴,可得出b<c<0<a<﹣b,进而可得出b+c<0,b+a<0,a﹣c>0,再结合绝对值的定义即可求出结论.【解答】解:观察数轴,可知:b<c<0<a<﹣b,∴b+c<0,b+a<0,a﹣c>0,∴原式=﹣b﹣c+b+a+a﹣c=2a﹣2c.【点评】本题考查了实数与数轴以及绝对值,观察数轴找出b+c,b+a,a﹣c的正负是解题的关键.24.天气晴朗时,一个人能看到大海的最远距离S(单位:km)可用公式S2=1.7h米估计,其中h(单位:m)是眼睛离海平面的高度.(1)如果一个人站在岸边观察,当眼睛离海平面的高度是1.7m时,能看到多远?(2)若登上一个观望台,使看到的最远距离是(1)中的3倍,已知眼睛到脚底的高度为1.7m,求观望台离海平面的高度?【分析】(1)求出h=1.7时S的值即可得;(2)求出S=1.7×3=5.1时h的值,再减去1.7米即可得答案.【解答】解:(1)当h=1.7时,S2=1.7×1.7,∴S=﹣1.7(舍)或S=1.7,答:当眼睛离海平面的高度是1.7m时,能看到1.7m远;(2)当S=1.7×3=5.1时,可得5.12=1.7h,解得h=15.3,15.3﹣1.7=13.6(米),答:观望台离海平面的高度为13.6米.【点评】本题主要考查的是算术平方根.解题的关键是掌握算术平方根的定义.25.已知5+和5﹣的小数部分分别为a,b,试求代数式ab﹣a+4b﹣3的值.【分析】先估算出的大小,然后求得a、b的值,最后利用二次根式的乘法法则进行计算即可.【解答】解:∵1<3<4,∴1<<2,∴,,∴a=5+﹣6=,b==,∴ab﹣a+4b﹣3===1﹣.【点评】本题主要考查的是估算无理数的大小、二次根式的混合运算,求得a、b的值是解题的关键.。
八年级数学上册第二章《实数》单元测试卷-北师大版(含答案)
八年级数学上册第二章《实数》单元测试卷-北师大版(含答案)班级:姓名:座号:成绩:一、选择题(30 分)1. 16 的平方根是( )A.4B. ±42.下列各式正确的是( )A.√16 =±4B.±√16 =43. 下列各数中,为无理数的是( )22A. π B 一.74. 下列各数中的无理数是( )1A .0B .25. 下列说法正确的是( )A.所有无限小数都是无理数C.有理数都是有限小数6. 实数9 的算术平方根为( )A.3 B.士37. 下列根式中不是最简二次根式的是(A. √10B. √88. 下列变形正确的是( )C.8D. ±8 C.√(−4)2 =-4 D.3√−27 =-3C. 0D. -2 C. D.B.所有无理数都是无限小数D.不是有限小数就不是有理数C.士 3 D.士3)C.√6D.√2A.√(−16)(−25)= √−16 × √−25B.√161 = √16 × √1 =4×14 4 2C.√(−1) 2 =1D.√252 − 242 =25-24=13 39. 若最简二次根式√2x + 1和√4x − 3能合并,则x 的值为( )A.0.5B.1C.2D.2.510.若将−√2,√6,−√3,√11 四个无理数表示在数轴上,其中能被如图所示的墨迹覆盖的数是( )A . −√2B . √6C . −√3D . √113 8 5二、填空题(28 分)11. 16 的算术平方根是12. 比较大小: 4 3 713. 若已知 a 一3 + (b 一5)2 = 0 ,那么以a ,b 为边长的直角三角形的第三边长为.14. 请写出一个大于1且小于2的无理数:.15.若= 1 + 7 ,则的整数部分是,小数部分是.16. 计算: ( 4) 2-20220 =.17.如图,,,,是数轴上的四个点,这四个点中最适合表示7 的点是 .三、解答题18.计算:(4×4=16分)(1) ﹣2 (2) 8 + 32 一 2(3) (3 + 5)(2 一 5 )(4) (5 一3)219.再计算:(4×4=16分)(1)(2)27 一一2 3 一 3 x(2 一π)0+(一1)20222 3 (4) .20.还是计算:(4×4=16分)1 1(1) 20×(-3 48)÷ 2 (2) 12( 75+33- 48)(3) 27 ×3-182+8(4)√ ( − 3)2-(-1)2023 -(π-1)0+(|(21-121. 阅读下列材料:(6 分)∵√4< √7< √9,即 2 < √7 < 3 ,∴√7请你观察上述的规律后试解下面的问题:的整数部分为2,小数部分为√7 − 2 .如果√5 的小数部分为ᵄ, √13 的小数部分为ᵄ,求ᵄ + ᵄ−√5 的值.(3)22. 阅读理解:1已知a = ,求 2a 2 一 8a +1的值.2 一 3常a 一 2 = 3 .常 一 =,即 a 2 一 4a + 4 = 3 .常a 2 一 4a = 一1 .常2a 2 一 8a +1 = 2(a 2 一 4a) +1 = 2 x (一1) +1 = 一1 .请根据以上解答过程,解决如下问题:(8 分) 1 = .2 +11 3+2 3 (2 (1)计算:(2)计算:(a 2)2 3 1100 + 2 3 ;99 4 + 3 2 3 2 +1+…+ 2+ +11 ,1 +a = = = + 一一 3)(2 + 3)参考答案6 A11. 212. <13. 5 或 714. 2 ( 3 答案不唯一)15. 3 , 7 216. 317. P18. (1)1 (2) 5 2 (3)1 5 (4)28 10 319. (1)2 3 (2) 1 (3)1+ 2 2 (4)10 + 6 220. (1) 2 10 (2)12 (3)4 (4)521. 13 522. (1) 2 1(2) 910B3A 2D4C 7B5B8C9C1B。
第13章《实数》单元水平测试(含答案)
2 248 1426 48 88?第13章 实数整章水平测试题一、选择题:1、在实数70107.081221.03、、、、- 。
π中,其中无理数的个数为( ) A 、1 B 、2 C 、3 D 、4 2、16的算术平方根为( )A 、4B 、4±C 、2D 、2±3、下列语句中,正确的是( )A 、无理数都是无限小数B 、无限小数都是无理数C 、带根号的数都是无理数D 、不带根号的数都是无理数 4、若a 为实数,则下列式子中一定是负数的是( )A 、2a - B 、2)1(+-a C 、2a - D 、)1(+--a 5、下列说法中,正确的个数是( )(1)-64的立方根是-4; (2)49的算术平方根是7±; (3)271的立方根为31; (4)41是161的平方根。
A 、1 B 、2 C 、3 D 、4 6.估算728-的值在A. 7和8之间B. 6和7之间C. 3和4之间D. 2和3之间 7、下列说法中正确的是( )A 、若a 为实数,则0≥aB 、若a 为实数,则a 的倒数为a1 C 、若y x 、为实数,且y x =,则y x =D 、若a 为实数,则02≥a8、若10<<x ,则x xx x 、、、12中,最小的数是( )A 、xB 、x1 C 、x D 、2x 9、下列各组数中,不能作为一个三角形的三边长的是( )A 、1、1000、1000B 、2、3、5C 、222543、、 D 、33364278、、10. (南宁课改)观察图8寻找规律,在“?”处填上的数字是()(A)128 (B)136 (C)162 (D)188二、填空题:1. 和数轴上的点一一对应.2.若实数a b ,满足0a b a b +=,则________ab ab=. 3、如果2a =,3b =,那么2a b 的值等于 . 4.有若干个数,依次记为123n a a a a ,,,,若112a =-,从第2个数起,每个数都等于1与它前面的那个数的差的倒数,则2005a = . 5.比较大小:23- 0.02-;6. 如图,数轴上的两个点A B ,所表示的数分别是a b ,,在a b +,a b -,ab ,a b -中,是正数的有 个.7.若3+x 是4的平方根,则=x ______,若-8的立方根为1-y ,则y=________. 8、计算:2)4(3-+-ππ的结果是______。
第3章 实数 单元测试 2022—2023学年湘教版八年级数学上册
湘教版八年级数学(上)第三章《实数》检测二满分:130分,时量:120分钟一、选择题(每小题3分,共30分)1. 下列各式化简结果为无理数的是( )A. B. 01)- C. D. 2. 下列各数中最大的数是( ).A. 5B.C. πD. -83. 若x 是9的算术平方根,则x 是( )A. 3B. -3C. 9D. 814. 下列说法不正确的是( )A. 125的平方根是15± B. -9是81的一个平方根C. 0.2的算术平方根是0.04D. -27的立方根是-35.如图,数轴上A ,B 两点表示的数分别为-1和B 关于点A 的对称点为C ,则点C 所表示的数为( )A. 2-B. 1--C. 2-+D. 1+6. 27-的立方根与81的平方根的和是( )A. 6B. 0C. 6或12-D. 0或67. 若()2m =-,则有( )A. 0<m <1B. -1<m <0C. -2<m <-1D. -3<m <-28. 有理数a 在数轴上对应的点如图,则a ,a -,1-的大小关系是( )A. 1a a -<<-B. 1a a -<-<C. 1a a <-<-D. 1a a <-<-9. 一个边长为cm a 的正方形,它的面积与长为8cm 、宽为5cm 的长方形面积相等,则a 的值( )A. 在3与4之间B. 在4与5之间C. 在5与6之间D. 在6与7之间10. 的点可能是( )A. 点MB. 点NC. 点PD. 点Q二、填空题(每小题3分,共24分)11.___________.12. 计算:12--=_____.13. 某数的两个不同的平方根是21a -和2a -+,则这个数是_______.14. 若一个数的算术平方根是它本身,则这个数为_______.15. 的相反数是_______2-的绝对值是________.16. 比较大小:_________0.5.17. 一个等腰三角形的两边长分别为2,那么这个等腰三角形的周长是______.18. 的整数部分是a ,小数部分为b ,则a b -=_________.三、解答题(76分)19. 把下列各数填入相应的横线上:121005 3.14 5.200.10100100013π----⋯,,,,,,正有理数集合:整数集合:负分数集合:无理数集合:20. 计算:(1)01+--(221. 求下列各式中的x ,(1)24250x -=(2)()327364x -=-22. 已知21a +的平方根是3±,522a b +-的算术平方根是4,求34a b -的平方根.23.互为相反数,求()2022x y +的平方根.24. 国际比赛的足球场地是在100米到110米之间,宽是在64米到75米之间,现有一个长方形的足球场,其长是宽的1.5倍,面积是7560平方米,那么这个足球场86.9570.99≈≈)25. 阅读材料,回答问题:对于实数a()()()0000a a a a a ⎧>⎪==⎨⎪-<⎩3=,0=()3=--问题:实数a 、b在数轴上的位置如图,化简:b a -+26. 写出所有符合下列条件的数:(1)大于的整数;(2).27. 阅读下面的文字,解答问题:的小数部分我们不可全解写出来,而12,1-的小数那分.(1)ab ,求a b +-的值;(2)已知100x y =+,其中x 是整数,且910y <<,求19x y -的算术平方根.湘教版八年级数学(上)第三章《实数》检测二满分:130分,时量:120分钟一、选择题(每小题3分,共30分)【1题答案】【答案】C【解析】【分析】将各选项化简,然后再判断即可.【详解】解:A=﹣3,是有理数,不符合题意;B、)01-=1,是有理数,不符合题意;C=,是无理数,符合题意;D2=,是有理数,不符合题意.故选C.【点睛】题目主要考查二次根式的化简及零次幂的计算,熟练掌握二次根式的化简是解题关键.【2题答案】【答案】A【解析】【分析】根据实数的大小比较方法进行解答,即可求解.,π≈3.14,∴,最大是5,故选A.视频【点睛】本题主要考查了实数的大小比较,熟练掌握实数的大小比较方法是解题的关键.【3题答案】【答案】A【分析】根据算数平方根的定义进行求解即可.【详解】解:∵x是9的算术平方根,∴=x3x=,故选:A.【点睛】本题考查算术平方根,熟练掌握算术平方根的定义是解题的关键.【4题答案】【答案】C【解析】【分析】根据平方根的意义、算术平方根的意义、立方根的意义,判断即可.【详解】A. 125的平方根是15±,选项正确;B. -9是81的一个平方根,选项正确;C. 0.04的算术平方根是0.2,选项错误;D. -27的立方根是-3,选项正确;故选:C.【点睛】本题主要考查的是平方根、算术平方根的性质,熟练掌握平方根、算术平方根的性质是解题的关键.【5题答案】【答案】A【解析】【分析】由题意可知A、B两点之间的距离是1+C在原点的左侧,进而求出C的坐标.【详解】A、B两点之间的距离是1+,所以C点表示(112--+=-故选:A.【点睛】本题考查了求数轴上两点之间的距离,同时也利用对称点的性质.【6题答案】【答案】C【分析】先列式,再根据立方根、平方根的定义进行计算,然后根据实数的运算法则求得计算结果.+=-±39结果为6或12-故选:C.【点睛】本题考查了实数的运算,熟练掌握平方根、立方根的求法,是基础知识比较简单.【7题答案】【答案】C【解析】【详解】根据二次根式的意义,化简得:,因为1<2<4,所以<2.∴-2<-<-1.故选C考点:实数运算与估算大小【8题答案】【答案】D【解析】【分析】根据数轴表示数的方法得到a<﹣1,然后根据相反数的定义易得a<﹣1<﹣a.【详解】解:∵a<﹣1,∴﹣a>1>﹣1,∴a<﹣1<﹣a.故选:D.【点睛】本题考查了数轴、有理数大小的比较,解题的关键是掌握有理数大小的比较方法:正数大于0,负数小于0;负数的绝对值越大,这个数越小.【9题答案】【答案】D【解析】【分析】根据题意求得a ,进而根据无理数的大小比较即可求解.【详解】解:258a =⨯ ,0a >a ∴=67<< a ∴的值在6与7之间故选D【点睛】本题考查了求一个数的算术平方根,无理数的大小比较,根据题意求得a 的值是解题的关键.【10题答案】【答案】C【解析】是在哪两个相邻的整数之间,然后确定对应的点即可解决问题.【详解】解:∵12.25<14<16,∴3.5<4,的点可能是点P .故选:C .【点睛】本题考查实数与数轴上的点的对应关系,应先看这个无理数在哪两个有理数之间,进而求解.二、填空题(每小题3分,共24分)【11题答案】【答案】2【解析】8,根据立方根的定义即可求解.8=,8的立方根是2,故答案为:2.【点睛】本题考查算术平方根和立方根的定义,明确算术平方根和立方根的定义是解题的关键.【12题答案】【答案】0【解析】【分析】先计算负整数指数幂及开立方,然后计算加减法即可.【详解】解:12-=11022-=,故答案为0.视频【点睛】题目主要考查实数的运算及负整数指数幂,熟练掌握运算法则是解题关键.【13题答案】【答案】9【解析】【分析】根据一个正数的两个平方根互为相反数得到()2120a a -+-+=,求出a 的值即可得到答案.【详解】解:∵某数的两个不同的平方根是21a -和2a -+,∴()2120a a -+-+=,解得1a =-,∴()()2221219a -=--=,∴这个数是9,故答案为:9.【点睛】本题主要考查了平方根的概念,熟知一个正数的平方根有两个,这两个平方根互为相反数是解题的关键.【14题答案】【答案】0或1【解析】【分析】根据算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,那么一个数的算术平方根是它本身,可以知道这个数是0和1.【详解】解:根据算术平方根的定义,这个数是0或1.故选答案为: 0或1.【点睛】此题主要考查了算术平方根的定义,分清算术平方根的概念易与平方根的概念是解决此题关键.【15题答案】【答案】①. 2 ②. 2【解析】【分析】先求出立方根,再求相反数,再利用绝对值的性质计算可得.2=-,2,2-22-=,故答案为:2,2【点睛】本题考查了实数的性质,立方根,相反数,绝对值,解题的关键是掌握相应的概念和求法.【16题答案】【答案】①. < ②. >【解析】【分析】①利用根据二次根式的性质得到=,=即可解答;②利0>即可解答.【详解】解:①∵=,=,<∴<,10.52-=-=,2>,0>0.5>,故答案为:<,>.【点睛】本题考查了实数的大小比较,选择合适的方法进行实数的大小比较是解题的关键.【17题答案】【答案】或4【解析】【分析】当以2为腰时,求出答案;再以2为底边,求出周长即可.【详解】当以2为腰时,三边长2,2224++=+;当以2为底边时,三边长2周长为.故答案为:或4+.【点睛】本题主要考查了实数的运算,根据等腰三角形的性质讨论是解题的关键.【18题答案】【答案】10-【解析】【分析】根据算术平方根的定义由252936<<得到56,则5a =,5b =-,然后计算a b -.【详解】∵252936<<∴56∴5a =,5b =-∴)5510a b -=--=-故答案为:10-.【点睛】本题考查了算术平方根,估算无理数的大小,利用完全平方数和算术平方根对无理数的大小进行估算.三、解答题(76分)【19题答案】【答案】见解析【解析】【分析】根据实数的分类进行判断即可.=, 5.2= 5.2---,=7-,正有理数集合:3.14⋯⋯;整数集合:2-、0、⋯⋯;负分数集合:153-、 5.2--⋯⋯;无理数集合:100π、0.1010010001⋯;故答案为:3.14⋯⋯;2-、0、⋯⋯;153-、 5.2--⋯⋯;100π0.1010010001⋯.【点睛】本题考查实数的分类,熟练掌握实数的相关概念是解题的关键.【20题答案】【答案】(1)2(2)74-【解析】【分析】(1)先根据算术平方根和立方根的定义、零指数幂的运算法则计算,再进行加减计算即可;(2)利用算术平方根和立方根的定义进行计算.【小问1详解】解:原式()=3311-+--+2=;【小问2详解】解:原式111=20224---++74=-.【点睛】本题考查实数的混合运算,熟练掌握算术平方根和立方根的定义是解题的关键.【21题答案】【答案】(1)52x =± (2)53x =【解析】【分析】(1)方程两边同时除以4,再开方,降次为一元一次方程即可解答;(2)方程两边同时除以27,再开三次方,降次一元一次方程即可解答.【小问1详解】解:24250x -=,方程两边同时除以4,移项得,2254x =,即x =,∴52x =±;【小问2详解】解:()327364x -=-,方程两边同时除以27,得,()364327x -=-,∴433x -==-,∴53x =.【点睛】本题考查了平方根和立方根,掌握平方根和立方根的定义是解题的关键.【22题答案】【答案】4±【解析】【分析】根据平方根和算术平方根的定义即可求出21a +和522a b +-的值,进而求出a 和b 的值,将a 和b 的值代入34a b -即可求解.【详解】解:∵21a +的平方根是3±,522a b +-的算术平方根是4,∴21a +=9,522a b +-=16,∴a =4,b =-1把a =4,b =-1代入34a b -得:3×4-4×(-1)=16,∴34a b -的平方根为:4=±.【点睛】本题主要考查了算术平方根和平方根,熟练掌握算术平方根和平方根的定义是解题的关键.注意:一个正数有两个平方根,它们互为相反数.【23题答案】【答案】()2022x y +的平方根是1±【解析】【分析】根据相反数的性质列出算式,再根据非负数的性质列出二元一次方程组,解方程组求出x 、y 的值,根据平方根的概念解答即可.0=,∴3020x y x y --=⎧⎨+=⎩,解得:21x y =-⎧⎨=⎩,∴211x y +=-+=-,则()20221x y +=,1的平方根是1±.【点睛】本题考查了非负数的性质、平方根的定义和解二元一次方程组,根据非负数的性质求出x 和y 的值是解题的关键.【24题答案】【答案】这个足球场可以用作国际比赛【解析】【分析】设足球场的的宽为x 米,则长为1.5x 米,根据题意列出方程,求出x 的值,再计算出足球场的长,即可作出判断.【详解】设足球场的的宽为x 米,则长为1.5x 米,由题意得:1.57560x x = ,25040x =,即x =,70.99≈,所以长为1.5106.49x =米,∵6470.9975<<,100106.49110<<,∴这个足球场可以用作国际比赛.【点睛】本题考查了算术平方根的应用,根据题意列出方程是解题的关键.【25题答案】【答案】2b-【解析】【分析】根据数轴上点a b 、的位置得到0b a -<,0a b +<,再根据二次根式的性质与绝对值的性质即可解答.【详解】解:∵0b a <<,b a >,∴0b a -<,0a b +<,∴b -()()a b a b =--⎡⎤⎣⎦++a b a b=---2b =-.【点睛】本题考查了二次根式的性质,绝对值的性质,整式的加减,掌握二次根式的性质及绝对值的性质是解题的关键.【26题答案】【答案】(1)-2,-1,0,1,2,3,4,5;(2)-3,-2,-1,0,1,2,3.【解析】【详解】试题分析:(1)因为≈-2.445≈5.313,所以在-2.445~5.313间的整数有-2,-1,0,1,2,3,4,5;(2≈3.606,所以只要找绝对值小于3.606的整数即可.试题解析:(1)大于的整数有:-2,-1,0,1,2,3,4,5;(2的整数有:-3,-2,-1,0,1,2,3.【27题答案】【答案】(1)1;(2)11.【解析】【分析】(1))小数部分a 的整数部分b ,最后将a 、b 的值代入求解即可;(2)先判断小数部分为1010,再由100x y =+,x 是整数,且910y <<,求得x=101,1,把x 、y 的值代入求得19x y ,++-求得代数式的值,再根据算术平方根的定义求解即可.【详解】(1)∵2334,,2-3,∴a 2=-,b=3,∴a b +-2-+3;(2)∵1011,10-10,∵100x y +=+,x 是整数,且910y <<,∴x=101,10-1,∴19x y ++-1)1+=121,∵121的算术平方根为11,∴19x y ++-的算术平方根为11.【点睛】本题主要考查了估算无理数的大小,“夹逼法”是估算的一般方法;解此类问题时应估算无理数的值,再根据题意具体解决.。
北师大版八年级数学上册第二章《实数》测试题及答案
八年级上学期第二章《实数》单元测试及答案一、选择(每小题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的.把所选项前的字母代号填在题后的括号内. 相信你一定会选对!)1.下列说法中正确的是().(A)4是8的算术平方根(B)16的平方根是4(C)是6的平方根(D)没有平方根2.下列各式中错误的是().(A)(B)(C)(D)3.若,则().(A)-0。
7 (B)±0.7 (C)0.7 (D)0。
494.的立方根是().(A)-4 (B)±4 (C)±2 (D)-25.,则的值是().(A)(B)(C)(D)6.下列四种说法中:(1)负数没有立方根;(2)1的立方根与平方根都是1;(3)的平方根是;(4).共有()个是错误的.(A)1 (B)2 (C)3 (D)4+的值为()7.x是9的平方根,y是64的立方根,则x yA.3 B.7 C.3,7 D.1,7-=+-)82x1x1x1A. x ≥1B. x ≥—1C.—1≤x ≤1 D 。
x ≥1或x ≤—19. 计算515202145+-所得的和结果是( ) A .0 B .5- C .5 D .5310. x --23 (x ≤2)的最大值是( )A .6B .5C .4D .3二、填空(每小题3分,共30分.请把结果直接填在题中的横线上.只要你理解概念,仔细运算,积极思考,相信你一定会填对的) 1.若,则是的__________,是的___________.2.9的算术平方根是__________,的平方根是___________. 3.下列各数:①3。
141、②0.33333……、③75-、④π、⑤252.±、⑥32-、⑦0。
3030003000003……(相邻两个3之间0的个数逐次增加2)、⑧))((2727+-中.其中是有理数的有_______;是无理数的有_______.(填序号)4.的立方根是__________,125的立方根是___________.5.若某数的立方等于-0。
第六章《实数 》测试题练习题常考题试卷及答案
第六章实数一、单选题(共12题;共24分)1.估算√5的值在()A. 0和1之间B. 1和2之间C. 2和3之间D. 3和4之间2.实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A. a>bB. a=b>0C. ac>0D. |a|>|c|3.下列实数中不是无理数的是()A. ﹣πB. √7C. √2019D. √44.在 3.14,−√7,π,13,−0.23,√1253,1.131331333133331⋯(每两个1之间依次多一个3 )中,无理数的个数是()A. 1个B. 2个C. 3个D. 4个5.实数16的算术平方根是()A. 2B. 4C. ±4D. ±26.下列正确是()A. √4=±2B. √2⋅√2=4C. 4.3<√20<4.5D. |1−√2|=1−√27.在下列实数中,无理数是()A. 73B. √5C. 0D. 98.在数字227,3.33,π2,−212,0,√1273,−√0.9,2.121121112…(相邻两个2之间1的个数逐次多1)中,无理数的个数是()A. 2个B. 3个C. 4个D. 5个9.下列说法,正确的有()个①m是一个实数,m2的算术平方根是m;②m是一个实数,则﹣m没有平方根;③带根号的数是无理数;④无理数是无限小数.A. 0B. 1C. 2D. 310.x 是(−√9)2的平方根,y 是64的立方根,则x+y=( )A. 3B. 7C. 3,7D. 1,711.下列式子正确的是( )A.± √49 =7B.√−73 =﹣ √73C.√25 =±5D.√(−3)2 =﹣312.五个数中:﹣227 , ﹣1,0,12 , √2 , 是无理数的有( )A. 0个B. 1个C. 2个D. 3个二、填空题(共12题;共15分)13.化简: √4 =________.14.比较大小: −√3 ________ −√515.比较大小: 2√11 ________ 3√5 .16.√8116 的平方根是________; √(−81)2 的算术平方根是________; 127 的立方根是________17.16的平方根是________.18.一个正数x 的平方根分别是2a ﹣3与5﹣a ,则x 等于________. 19.√80 ________ 9, √-603 ________ -4.(填“>”“<”或“=”)20.已知 a 、 b 为有理数, m 、 n 分别表示 5−√7 的整数部分和小数部分,且 am +bn =10 ,则 a −b = ________.21.用计算器计算:√13-3.142≈________ (结果保留三个有效数字).22.计算:20150﹣|2|=________ .23.在-2,2, √2 这三个实数中,最小的是________。
人教版数学七年级下册-第六章《实数》单元测试(含答案)
第六章《实数》单元测试姓名:班级:座号:一、单选题(共8题;共32分)1. 9的算术平方根是()A. 81B. ±81C. 3D. ±32. -8的立方根是()A. B. C.D.3.在,1.01001000100001,2 ,3.1415,- ,,0,,这些数中,无理数共有()A. 2个B. 3个C. 4个D. 5个4.下列说法中错误的是( )A. 0的算术平方根是0B. 36的平方根为±6C.D. -4的算术平方根是-25.已知a2=25, =7,且|a+b|=a+b,则a﹣b的值为()A. 2或12B. 2或﹣12C. ﹣2或12D. ﹣2或﹣126.,则a与b的关系是()A. B. a与b相等 C. a与b互为相反数 D. 无法判定7.下列计算或说法:①±3都是27的立方根;②=a;③的立方根是2;④=±4,其中正确的个数是()A. 1个B. 2个C. 3个 D. 4个8.下列六种说法正确的个数是()①无限小数都是无理数;②正数、负数统称实数;③无理数的相反数还是无理数;④无理数与无理数的和一定还是无理数;⑤无理数与有理数的和一定是无理数;⑥无理数与有理数的积一定仍是无理数.A. 1B. 2C. 3 D . 4二、填空题(共24分)1.算术平方根等于本身的实数是________.2.﹣125的立方根是________.3.比较大小:﹣π________﹣3.14(选填“>”、“=”、“<”).4.某正数的平方根是n+l和n﹣5,则这个数为________.5.已知一个正数的两个平方根是x﹣7和3x﹣1,则x的值是________.6.方程(x﹣1)3﹣8=0的根是 ________7.若=2﹣x,则x的取值范围是________;若3+ 的小数部分是m,3﹣的小数部分是n,则m+n=________.三、求下列各式中x的值(共10分)(1)(2x﹣1)2=9 (2)2x3﹣6=四、解答题(共10分)1.已知某数的平方根是a+3和2a﹣15,求1﹣7a的立方根。
七年级数学(下)第六章《实数》单元测试题含答案
12.比较大小: (填“>”“<”“=”).
13.已知 + ,那么 .
14.在 中,________是无理数.
15. 的立方根的平方是________.
16.若 的平方根为 ,则 .
17._____和_______统称为实数.
18.若 、 互为相反数, 、 互为负倒数,则 =_______.
因为 ,所以 的算术平方根为
因为 所以 平方根为
因为 ,所以 的算术平方根为
23.解:因为 ,所以 的立方根是 .
因为 所以 的立方根是 .
因为 ,所以 的立方根是 .
因为 ,所以 的立方根是 .
24.解:因为 ,所以源自,即 ,所以 .故 ,
从而 ,所以 ,
所以 .
25.解:可知 ,由于 ,
所以 .
C.如果一个数有立方根,则它必有平方根
D.不为0的任何数的立方根,都与这个数本身的符号同号
8.下列各式成立的是( )
A. B. C. D.
9.在实数 , , , , 中,无理数有( )
A.1个 B.2个 C.3个 D.4个
10.在-3,- ,-1,0这四个实数中,最大的是()
A. B. C. D.
二、填空题(每小题3分,共24分)
4.当 时, 的值为( )
A. B. C. D.
5.下列关于数的说法正确的是()
A.有理数都是有限小数
B.无限小数都是无理数
C.无理数都是无限小数
D.有限小数是无理数
6.与数轴上的点具有一一对应关系的数是()
A.实数B.有理数C.无理数D.整数
7.下列说法正确的是( )
A.负数没有立方根
完整版实数测试题及答案解析
(人教版•第6章•实数.2分)1 . 8的平方根是()c. 2/2考点:平方根.分析:直接根据平方根的定义进行解答即可解决问题.解答:•8的平方根是±3\伍.故选:D.点评:本题考查了平方根.的定义.注意一个正数有两个平方根,它们互为相反数;0 的平方根是0;负数没有平方根.(人教版•第6章•实数.2分)2.阿的平方根是()考点:平方根;算术平方根.分析:根据平方运算,可得平方根、算术平方根.解答:解:.顶=9,9的平方根是七,故选:A.点评:本题考查了算术平方根,平方运算是求平方根的关键.(人教版.第6章.实数.2分)3.已知边长为a的正方形的面积为8,则下列说法中,错误的是()A . a是无理数B . a是方程X2- 8=0的一个解C . a是8的算术平方根D . a满足不等式组已-a-4<0考点:算术平方根;无理数;解一元二次方程-直接开平方法_;解一元一次不等式组.专题:数与式 分析:首先根据正方形的面积公式求得 a 的值,然后根据算术平方根以及方程的解的定义即可作出判断.解答:解:a=4l =2忑,则a 是无理数,a 是方程x 2-8=0的一个解,是8的算术平方根 都正确;故选:D .点评:此题主要考查了算术平方根的定义,方程的解的定义,以及无理数估计大小的 方法.(人教版•第6章•实数.2分)4.化简丽得(考点:算术平方根.分析:运用算术平方根的求法化简.解答:解:血而=10, 故答案为:B .点评:本题主要考查算术平方根用二次根式的性质和化简的知识点,本题是基础题,比较简单.若实数X 、y 满足血- 1+2 (/- 1 ) 2=0,则x+y 的值 等于( )C .解不等式组[::4<0 ,得:3Vav4,而2血<3,故错误.A . 100B . 10 ±0(人教版•第6章•实数.2分)5.专题:分类讨论.分析:根据非负数的性质列式求出X、y的值,然后代入代数式进行计算即可得解.解答:解:由题意得,2x- 1=0, y-1=0,解得X二舟,y=1,所以,x+y=2+1二卫.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.(人教版•第6章•实数.2分)6.下列实数中是无理数的是(A .晋B. 2—2 C. 5-15sin45专题: 常规题型.分析: 根据无理数是无限不循环小数,可得答案.解答: 解:A、是有理数,故A选项错误;B、是有理数,故B选项错误;C、是有理数,故C选项错误;D、是无限不循环小数,是无理数,故D选项正确;故选:D.点评:本题考查了无理数,无理数是无限不循环小数.(人教版•第6章•实数.2分)7 .下列各数: 隔,cos60° 0,庶,其中无理数的个数是()C. 3个考点:无理数.考点:非负数的性质:算术平方根; 非负数的性质:偶次方.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环力、数是无理数.由此即可判定选择项.解答:解:据无理数定义得有,n和^是无理数.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:n, 2n等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.(人教版.第6章.实数.2分)8 4的平方根是翌考点:平方根.分析:根据平方根的定义,求数a的平方根,也就是求一个数X,使得x2=a,则x就是a的平方根,由此即可解决问题.解答:解:•••(翌)2=4,•4的平方根是翌.故答案为:翌.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.(人教版.第6章.实数.2分)9.计算:如二」考点:算术平方根.分析:根据算术平方根的定义计算即可.解答:解:.32=9,師=3.故答案为:3.点评:本题较简单,主要考查了学生开平方的运算能力(人教版•第6章•实数.2分)10. 的算术平方根为M_.考点:算术平方根.专题:计算题.分析:首先根据算术平方根的定义计算先丽=2,再求2的算术平方根即可.解答:解:.V4=2, •阪的算术平方根为VI 故答案为:VL 点评:此题考查了算术平方根的定义,解题的关键是知道V4=2,实际上这个题是求2的算术平方根.注意这里的双重概念.。
精选人教版初中数学七年级下册第六章《实数》单元测试及答案
精选⼈教版初中数学七年级下册第六章《实数》单元测试及答案⼈教版七年级数学下册第六章实数复习检测试题⼀、选择题(每⼩题3分,共30分)1.下列各数中最⼤的数是( )A.3 C.π D.-32.下列说法正确的是()A.任何数都有算术平⽅根B.只有正数有算术平⽅根C.0和正数都有算术平⽅根D.负数有算术平⽅根3.下列语句中,正确的是( )A.⽆理数都是⽆限⼩数B.⽆限⼩数都是⽆理数C.带根号的数都是⽆理数D.不带根号的数都是⽆理数4.的⽴⽅根是( )A.-1B.OC.1D. ±15.在-1.732,π,3.,2,3.212 212 221…(每相邻两个1之间依次多⼀个2),3.14这些数中,⽆理数的个数为( )A.5个B.2个C.3个D.4个6.有下列说法:①实数和数轴上的点⼀⼀对应;②不含根号的数⼀定是有理数;③负数没有平⽅根;④是17的平⽅根.其中正确的有()A.3个B.2个C.1个D.0个7.下列说法中正确的是( )A.若a为实数,则a≥0B.若a为实数,则a的倒数为1 aC.若x,y为实数,且x=yD.若a为实数,则a2≥08.若a2=4,b2=9,且ab<0,则a﹣b的值为()A.﹣2B.±5C.5D.﹣59.实数a,b在数轴上的位置如图所⽰,则|a|-|b|可化简为( )A.a-bB.b-aC.a+bD.-a-b10.如图,数轴上的点A,B,C,D分别表⽰数﹣1,1,2,3,则表⽰2﹣的点P应在()A.线段AO上B.线段OB上C.线段BC上D.线段CD上⼆、填空题(每⼩题3分,共24分)1.按键顺序是“,,则计算器上显⽰的数是.2.⼀个数的平⽅根和它的⽴⽅根相等,则这个数是.3.计算:-2+-|-2|=.4.若某数的平⽅根为a+3和2a-15,则这个数是.5.⽐较⼤⼩:-23-0.02;3.6.定义运算“@”的运算法则为:x@y=xy﹣1,下⾯给出关于这种运算的⼏种结论:①(2@3)@(4)=19;②x@y=y@x;③若x@x=0,则x﹣1=0;④若x@y=0,则(xy)@(xy)=0.其中正确结论的序号是.7.计算:|3-π|+-的结果是.三、解答题(共46分)1.计算(6分)(1)|1-|+||+|-2|+|2-|;(2) (-2)3×---.2.(6分)求未知数的值:(1)(2y﹣3)2﹣64=0;(2)64(x+1)3=27.3.(8分)已知=0,求实数a,b的值,并求出的整数部分和⼩数部分.4.(8分)设a.b为实数,且=0,求a2﹣的值.5. (10分)王⽼师给同学们布置了这样⼀道习题:⼀个数的算术平⽅根为2m-6,它的平⽅根为±(m-2),求这个数.⼩张的解法如下:依题意可知,2m-6是(m-2),-(m-2)两数中的⼀个.(1)当2m-6=m-2时,解得m=4.(2)所以这个数为2m-6=2×4-6=2.(3)当2m-6=-(m-2)时,解得m=83.(4)所以这个数为2m-6=2×83-6=-23.(5)综上可得,这个数为2或-23.(6)王⽼师看后说,⼩张的解法是错误的.你知道⼩张错在哪⾥吗?为什么?请予以改正.6.(8分)设的整数部分和⼩数部分分别是x,y,试求x,y的值与x﹣1的算术平⽅根.参考答案与解析⼀、选择题1.B2. C3.A4.C5.D6.A7.D8.B9.C 10. A A⼆、填空题11.4 12.0 13.1 14. 49 15.<> 16. ①②④17.1三、解答题1. 解:(1)原式1221-+=-.(2)原式=-8×4-4×14-3=-32-1-3=-36. 2 ⼈教版初中数学七年级下册第六章《实数》检测卷含答案⼀、选择题(每⼩题3分,共30分) 1. 916的平⽅根是( )A. C. 34 D. ±342. ,227,π-20.121 221 222 1…(相邻两个“1”之间依次多⼀个“2”)中,有理数有( )A. 1个B. 2个C. 3个D. 4个3. 若x 2=16,则5-x 的算术平⽅根是( )A. ± 1B. ±4C. 1或9D. 1或34. 下列说法中,不正确的是( )A. 0.027的⽴⽅根是0.3B. -8的⽴⽅根是-2C. 0的⽴⽅根是0D. 125的⽴⽅根是±55. 的值在( )A. 4和5之间B. 5和6之间C. 6和7之间D. 7和8之间6. ⼀个⾃然数的算术平⽅根是a ,则下⼀个⾃然数的算术平⽅根是( )A. B. +1C. a+1D.7. 如图,数轴上A,B和5.1,则A,B两点之间表⽰整数的点共有( )A. 6个B. 5个C. 4个D. 3个8. ≈0.793 7≈1.710 0,那么下列各式正确的是( )A. B. ≈7.937C. D. ≈79.379. 0,则a与b的关系是( )A. a=b=0B. a与b相等C. a与b互为相反数D. a=1 b10. 若a2=(-5)2,b3=(-5)3,则a+b的值为( )A. 0B. ±10C. 0或10D. 0或-10⼆、填空题(每⼩题3分,共24分)11. ⽐较⼤⼩:-5 -26(填“>”“=”或“<”).12. 3-11的相反数是,绝对值是.13. =3,则2x+5的平⽅根是.14. ⼩成编写了⼀个程序:输⼊x→x2→⽴⽅根→倒数→算术平⽅根→12,则x为.15. 若数m,n满⾜(m-1)20,则(m+n)5=.16. 已知36=x3,z是16的算术平⽅根,则2x+y-5z的值为.17. 点A在数轴上和原点相距3个单位长度,点B在数轴上和原点相距5个单位长度,则A,B两点之间的距离是.18. 对于任意不相等的两个数a,b,定义⼀种运算※如下:a※b,如3※2= 5.那么12※4=.三、解答题(共66分)19. (8分)计算:1-3;(1)3+1+3+||(2)25+144.20. (8分)求下列各式中的x的值:(1)25(x-1)2=49;(2)64(x-2)3-1=0.21. (9分)已知2a-1的平⽅根是±3,3a+b-1的平⽅根是±4,求a+2b的平⽅根.22. (9分)已知某正数的两个平⽅根分别是a +3和2a -15,b 的⽴⽅根是-2,求3a +b 的算术平⽅根.23.⼈教版七年级数学下册第六章实数单元综合能⼒提升测试卷⼀、选择题(每⼩题3分,共30分)1.下列选项中正确的是()A .27的⽴⽅根是±3B .16 的平⽅根是±4C .9的算术平⽅根是3D .⽴⽅根等于平⽅根的数是1 2.在实数﹣0.8,2015,﹣,四个数中,是⽆理数的是() A .﹣0.8 B .2015 C .﹣D . 3.(-)2的平⽅根是() A . B .- C . D .± 4.下列四个数中的负数是()A .﹣22B .C .(﹣2)2D . |﹣2|5.|的值为()A.5 B .5-2 C .1D .2-16.在下列各式中正确的是()A .=-2B .=3C .=8D .=2 7.⼀个⾃然数a 的算术平⽅根为x ,则a+1的⽴⽅根是()A B C D8.下列结论中正确的个数为() 72233722331512512515152)1(-662)2(-1622(1)零是绝对值最⼩的实数;(2)数轴上所有的点都表⽰实数;(3)⽆理数就是带根号的数;(4)-的⽴⽅根为±; A .1个 B .2个 C .3个 D .4个9=3,则(x+3)2的值是()A.81 B .27C .9 D.310.若有理数a 和b 在数轴上所表⽰的点分别在原点的右边和左边,则-︱a -b ︱等于()A .aB .-aC .2b +aD .2b -a⼆、填空题(每⼩题3分,共30分)11.在下列各数中⽆理数有个。
新初中数学七年级下册第六章《实数》单元测试题(含答案)(1)
人教版七年级数学下册第六章实数能力检测卷一.选择题(共10小题)1.16的平方根是()A.4 B.-4 C.16或-16 D.4或-4 2.下列各等式中计算正确的是()A±4 B C=-3 D= 3 23.若方程2(4)x-=19的两根为a和b,且a>b,则下列结论中正确的是()A.a是19的算术平方根B.b是19的平方根C.a-4是19的算术平方根D.b+4是19的平方根4.给出下列说法:①-2是49;③;④2的平)A.0个B.1个C.2个D.3个5.如果-b是a的立方根,则下列结论正确的是()A.3b-=a B.-b=3a C.b=3a D.3b=a6.已知一个正数的两个平方根分别为3a-1和-5-a,则这个正数的立方根是()A.-2 B.2 C.3 D.47.若一个正方形的面积为7,它的周长介于两个相邻整数之间,这两个相邻整数是()A.9,10 B.10,11 C.11,12 D.12,138)A.线段AB上B.线段BC上C.线段CD上D.线段DE上9.已知a、b均为正整数,且a>,b>,则a+b的最小值为( )A.6 B.7 C.8 D.910.在实数,3.1415926,π2,,,,,0.1010010001…(相邻两个1中间一次多1个0)中,无理数有( )A.2个B.3个C.4个D.5个二.填空题(共6小题)11.4的平方根是; 的立方根是.12.非零整数x、y+0,请写出一对符合条件的x、y的值:.13.一个正方体,它的体积是棱长为2cm的正方体的体积的8倍,则这个正方体的棱长是cm.14.5x+9的立方根是4,则2x+3的平方根是.15小的无理数.16.数轴上从左到右依次有A、B、C三点表示的数分别为a、b其中b为整数,且满足|a+3|+|b-2|=b-2,则b-a= .三.解答题(共7小题)17.求出下列x的值.(1)16x2-49=0;(2)24(x-1)3+3=0.18.计算++-|1|19.已知|a|=5,b2=4,c3=-8.(1)若a<b,求a+b的值;(2)若abc>0,求a-3b-2c的值.20.已知a+1的算术平方根是1,-27的立方根是b-12,c-3的平方根是±2,求a+b+c的平方根.21.阅读材料:我们定义:如果两个实数的差等于这两个实数的商,那么这两个实数就叫做“差商等数对”.即:如果a-b=a÷b,那么a与b就叫做“差商等数对”,记为(a,b).例如:4-2=4÷2;932-=9÷3;21(1)2⎛⎫--- ⎪⎝⎭=1÷(1);2⎛⎫-- ⎪⎝⎭则称数对91(4,2),,3,,122⎛⎫⎛⎫--⎪ ⎪⎝⎭⎝⎭是“差商等数对”.根据上述材料,解决下列问题: (1)下列数对中,“差商等数对”是______(填序号);①(-8.1,-9),②11,,22⎛⎫⎪⎝⎭③+ (2)如果(x,4)是“差商等数对”,请求出x 的值;22.对于实数a ,我们规定:用符号的最大整数,称为a 的根整数,例如:=3,=3.(1)仿照以上方法计算:==.(2)若=1,写出满足题意的x 的整数值人教版数学 七年级下册期末复习 第6章《实数》 同步测试卷一.选择题(共10小题,3*10=30) 1.3的相反数是( ) A .- 3 B . 3 C .12D .2 2.81的平方根是( ) A .3 B .-3 C .±3D .±93.下列实数中,无理数是( ) A .-2 B .0 C .πD . 44.下列各式中正确的是( )A .16=±4B .3-27=-9 C .-32=-3 D .214=1125.下列说法中:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④-17是17的相反数.正确的有( )A .0个B .1个C .2个D .3个6.若一个数的算术平方根和立方根都等于它本身,则这个数一定是( ) A .0或1 B .1或-1 C .0或±1D .07.如图,数轴上点P 表示的数可能是( )A . 2B . 5C .10D .158.一个正方形的面积为2,则它的边长是( ) A .4B .±2C .- 2D . 29.在实数 -13, -2, 0, 3 中,最小的实数是( )A .-2B .0C .-13D . 310.已知35.28=1.738,3a =0.173 8,则a 的值为( ) A .0.528B .0.052 8C .0.005 28D .0.000 528 二.填空题(共6小题,3*6=18) 11.化简:|3—2|=________. 12.比较大小:-6 ________-35.13.在数轴上到原点的距离是5的点表示的数是________.14.一个正数x 的两个平方根分别是a +2和a -4,则a =________. 15.已知a 、b 为两个连续的整数,且a <11<b ,则a +b = ________. 16.已知x -1+|2y -2|=0,则x -y =________. 三.解答题(共9小题,72分)17.(7分)计算:(-3)2+||3-2-2(3-1).18.(7分)解方程:3(x -2)2=27.19.(8分)解方程:2(x -1)3+16=0.20.(8分)20.某居民生活小区需要建一个大型的球形储水罐,需储水13.5立方米,那么这个球罐的半径r 为多少米(球的体积V =43πr 3,π取3.14,结果精确到0.1米)?21.(8分)实数a ,b ,c 在数轴上的对应点如图所示,化简:3a 3+||a +b -c 2-||b -c .22.(8分)已知实数2a-1的平方根是±3,2b+3人教版数学七下第六章实数能力水平检测卷一.选择题(共10小题)1.下列选项中的数,小于4且为有理数的为()A.πB.16 C.D.92.已知|a|=5, =7,且|a+b|=a+b,则a-b的值为()A.2或12 B.2或-12 C.-2或12 D.-2或-123.若实数a,b是同一个数的两个不同的平方根,则()A.a-b=0 B.a+b=0 C.a-b=1 D.a+b=14.用计算器求25的值时,按键的顺序是()A.5、x y、2、= B.2、x y、5、= C.5、2、x y、= D.2、3、x y、=5.如果x2=2,有x=±当x3=3时,有x想一想,从下列各式中,能得出x=±的是()A.2x=±20 B.20x=20 D.3x=±20x=2 C.±206.下列选项中正确的是()A.27的立方根是±3B的平方根是±4C.9的算术平方根是3D.立方根等于平方根的数是17.在四个实数、3、-1.4中,大小在-1和2之间的数是()A.B.3 C D.-1.481-的相反数是()A.1-B1+-D1-C.19a,小数部分为b,则a-b的值为()A.- 13 B.6-C.8-D6-10.下列说法:①-1是1的平方根;②如果两条直线都垂直于同一直线,那么这两条直线平行;在两个连续整数a 和b 之间,那么a+b=7;④所有的有理数都可以用数轴上的点表示,反过来,数轴上的所有点都表示有理数;⑤无理数就是开放开不尽的数;正确的个数为( ) A .1个B .2个C .3个D .4个二.填空题(共6小题)11.已知a 的平方根是±8,则它的立方根是 ;36的算术平方根是 .122(3)b ++=0= .13A 的算术平方根为B ,则A+B= .14.若45,<<则满足条件的整数a 有 个.15.如图,M 、N 、P 、R 分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1,数a 对应的点在M 与N 之间,数b 对应的点在P 与R 之间,若|a|+|b|=3,则原点是 (M 、N 、P 、R 中选).16.=5,付老师又用计算器求得:=55=555, =5555,个3,2016个4)= . 三.解答题(共7小题) 17.求出下列x 的值 (1)4(x-1)2-36=0(2)27(x+1)3=-6418.计算:(1)|2||1|--(2--++19.学校计划围一个面积为50m2的长方形场地,一边靠旧墙(墙长为10m),另外三边用篱笆围成,并且它的长与宽之比为5:2.讨论方案时,小马说:“我们不可能围成满足要求的长方形场地”小牛说:“面积和长宽比例是确定的,肯定可以围得出来.”请你判断谁的说法正确,为什么?20.已知5a+2的立方根是3,3a+b-1的算术平方根是4,c(1)求a,b,c的值;(2)求3a-b+c的平方根.21.如果一个正数的两个平方根是a+1和2a-22,求出这个正数的立方根.22-的小数部分,此1事实上,小明的表示方法是有道理的,1,将这个数减去其整数部分,222<<<<即23,23,。
《实数》测试卷及答案
人教版七年级数学第六章《实数》测试卷一、选择题〔每题3分,共30分〕1、假设x 是9的算术平方根,则x 是〔 〕A 、3B 、-3C 、9D 、81 2、以下说法不正确的选项是〔 〕A 、251的平方根是15± B 、-9是81的一个平方根C 、0.2的算术平方根是0.04D 、-27的立方根是-3 3、假设a 的算术平方根有意义,则a 的取值范围是〔 〕 A 、一切数 B 、正数 C 、非负数 D 、非零数 4、在以下各式中正确的选项是〔 〕A 、2)2(-=-2 B、=3 C 、16=8 D 、22=25、估量76的值在哪两个整数之间〔 〕A 、75和77B 、6和7C 、7和8D 、8和96、以下各组数中,互为相反数的组是〔 〕A 、-2与2)2(- B 、-2和38- C 、-21与2 D 、︱-2︱和27、在-2,4,2,3.14,327-,5π,这6个数中,无理数共有( )A 、4个B 、3个C 、2个D 、1个 8、以下说法正确的选项是〔 〕A 、数轴上的点与有理数一一对应B 、数轴上的点与无理数一一对应C 、数轴上的点与整数一一对应D 、数轴上的点与实数一一对应 9.8-的立方根与4的算术平方根的和是 ( )A.0B.4C.2±D.4± 10、 -27的立方根为 〔 〕A.±3B. 3C.-3D.没有立方根二、填空题〔每题3分,共18分〕11、81的平方根是__________,1.44的算术平方根是__________。
12、一个数的算术平方根等于它本身,则这个数应是__________。
13、38-的绝对值是__________。
14、比拟大小:27____42。
15、假设36.25=5.036,6.253=15.906,则253600=__________。
16、假设10的整数局部为a ,小数局部为b ,则a =________,b =_______。
实数章节测试题
实数测试题一、选择题(本题共10小题,每题4分,共40分)1.下列方程中,是二元一次方程的是( )A .3x -2y=4zB .6xy+9=0C .1x +4y=6 .D .4x=24y - 2.二元一次方程5a -11b=21 ( )A .有且只有一解B .有无数解C .无解D .有且只有两解3.下列实数2π,722,0.1414,39 ,21中,无理数的个数是( ) A.2个B.3个C.4个D.5个4. ) A. 94± B. 94 C. 32± D. 325.下列语句中准确的是( )A.带根号的数是无理数B.不带根号的数一定是有理数C.无理数一定是无限不循环的小数D.无限小数都是无理数6.下列叙述准确的是( )A.有理数和数轴上点是一一对应的B.最大的实数和最小的实数都是存有的C.最小的实数是0D.任意一个实数都能够用数轴上的一个点来表示 7.2)25(-的平方根是 ( )A.25B.5C.±5D.±258.-27的立方根与4的平方根的和是( )A.-1B.-5 C .-1或-5 D.±5或±19.已知平面直角坐标系中,点A 的坐标是(2,-3),将点A 向右平移3个单位长度,然后向上平移33个单位长度后得到B 点,则点B 的坐标是( ) A.(33,23) B.(32,32+) C.(34,32--) D.(3,33).10.某商店有两进价不同的耳机都卖64元,其中一个盈利60%,另一个亏本20%,在这次买卖中,这家商店( )A.赔8元B.赚32元C.不赔不赚D.赚8元二、填空题(本题共5小题,每题4分,共20分)11.一个的算术平方根是8,则这个的立方根的相反数是 .12.若x 3m -3-2y n -1=5是二元一次方程,则m=_____,n=______.13. 若9的平方根是a,43=b ,则a+b 的值为______. 14.若y=,122--+-x x 则y x =___________15.写出-3和2之间的所有整数为______________.三、解答题(本题共40分)16.(8分)已知,m n 为实数,且0m =,求n m17.(10分)求下列各式中的x 的值:(1)(1-x)2=64. (2)(2x-1)3=8.18.(10分) 解下列二元一次方程组(1)523,611;x y x y -=⎧⎨+=⎩ (2)32522(32)28x y x x y x +=+⎧⎨+=+⎩19.(12分)已知x 、y 为实数,且499+---=x x y .求y x +的值.。
九年级数学 实数全章测试题含答案
全章测试题一.填空题(每小题4分,共32分)1.★ 济南火车站为了解“10.1黄金周”每天上午乘车人数,抽查了其中5天的每天上午的乘车人数.所抽查的这5天中的每天上午乘车人数是这个问题的 ( )A.总体B.个体C.样本D.样本容量2.★ 为了解我校毕业班300名学生体育测试的情况,从中抽取了50名学生的体育成绩进行统计.下列判断:①这种调查方式是抽样调查;②300名学生是总体;③每名学生的体育成绩是个体;④50名学生是总体的一个样本;⑤50名学生是样本容量. 其中正确的判断有 ( )A.1个B.2个C.3个D.4个3.★ 为了判断甲、乙两个小组学生英语口语测验成绩哪一组比较整齐,通常需要知道两组成绩的 ( )A.方差B.平均数C.众数D.频率分布4.★ 一组数据的最大值与最小值之差为100,若取组距为10,则分成的组数应是 ( )A.7B.8C.9D.105.★ 某校初中三年级共有学生400人,为了解这些学生的视力情况,抽查了20名学生的视力,对所得数据进行整理.在得到的频数分布表中,若数据在0.95~1.15这一小组频率为0.3,则可估计该校初中三年级学生视力在0.95~1.15范围内的人数约为 ( )A.6人B.30人C.60人D.120人6.★★ 若一组数据a 1,a 2,…,a n 的方差是5,则新数据2a 1,2a 2,…,2a n 的方差是( )A.5B.10C.20D.507.★ A 、B 两班各选5名同学,在同一次体育测验中,两班成绩的平均数___x 相等,但方差不等,已知.32s 1.2,22==B As则这次测验成绩比较整齐的是 ( )A .A 班 B.A 、B 两班一样 C.B 班 D.无法确定8.★★ 下列调查的样本缺乏代表性的是 ( ) A.为了解植物园一年中游客的人数,张明利用“十一黄金周”作了5天的进园人数调查 B.从饲养场中随机抽取肉鸡10只,来估计这批肉鸡体重的平均值C.从全校所有七年级学生中选取学号为3的倍数的学生,以了解七年级学生期中考试数学考试的情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 实数 测试题
班级 姓名 成绩
一、选择题(每小题3分,共33分)
1、64的平方根是( )
A 、8
B 、-8
C 、±8
D 、±4
2.立方根等于3的数是( )
A 、9
B 、9±
C 、27
D 、27±
3、有下列说法:①45
±; ②不带根号的数一定是有理数; ③负数没有立方根; ④17-是17的平方根。
其中正确的有( )
A 0个
B 1个
C 2个
D 3个
4、()20.7-的平方根是( )
A .0.7-
B .0.7±
C .0.7
D .0.49
5、下列各式中,正确的是( ) A. 2)2(2-=- B.332=- C. 393-=- D. 39±=±
6、估计76 的大小应在( )
A.7~8之间
B.8.0~8.5之间
C. 8.5~9.0之间
D. 9.0~9.5之间
7、算术平方根等于它本身的数是( )
A .1和0
B .0
C . 1
D . 1±和0
8、若实数x 满足|x |+x=0,则x 是( )。
A. 零或负数
B. 非负数
C. 非零实数
D.负数.
9. 若=,则a 的值是( ) A .78 B .78- C .78± D .343512
- 10. 某位老师在讲“实数”时,画了一个图(如图1),即“以数轴的单位线段为边做一个正方形,然后以O 为圆心,正方形的对角线长为半径画弧交x 轴上于一点A”。
则OA 的长就
是 )
A.数轴上的点和有理数一一对应
B.数轴上的点和无理数一一对应
C.数轴上的点和实数一一对应
D.不能说明什么
11、已知738.128.53=,1738.03=a ,则a 的值为( )
A 0.528
B 0.0528
C 0.00528
D 0.000528
二、填空题(每小题3分,共33分)
12、 12-的相反数是 ;2-3的绝对值是 ;-121
81的倒数是 。
13.若33-x =-2,则x 的值是
14、如果3+a =3,那么(a+3)2的值为
15、(1)若12+x 有意义,则x 的取值范围是_ ___
(2)若x -2有意义,则x 的取值范围是_ __
(3)若321a -有意义,则a 的取值范围是
16、绝对值小于7的整数有____________.
17、写出大于的所有整数
18、在数轴上与1距离是2的点,表示的实数为______.
19、一个正数x 的平方根是2a -3与5-a ,则a 的值为____________.
20、已知,0|133|22=--+-y x x 则x +y=
21、若1<x <4,则化简()()2214---x x = ; 22、观察下列式子,根据你得到的规律回答:=3;= 33;
=333;…….请你说出的值是 .
三、解答题(共34分)
23、把下列各数的序号填入相应的集合内(本题4分)
1
2,0.32,-π,3.14 ,-7220.01020304 (327)
(1)有理数集合:( )
(2)无理数集合:( )
(3)正实数集合:( )
(4)负实数集合:( )
24、求下列各式的值(每小题1分,共3分)
(1)49±; (2)
256121; (3)-09.0
25、求下列各式中的x (本题4分,每小题2分)
(1)2x 2-8=0 (2)1+27x 3=0
26、计算: (本题12分,每小题2分) (1)2232+-
(2) 4
1083++ (3) 3231)3(27---+-
(4) 2336)48(1÷--- (5)10033)1(412)2(-+÷-- (6) 23
)451(12726-+-
1
27、(本题4分)已知n m m n A -+-=
3是n -m +3的算术平方根,322n m B n m +=+-是m +2n 的立方根,求B -A 的平方根.
28、(本题4分)已知其中x是整数,且0<y<1,求x-y的相反数
29、(本题3分)观察
====
===即=
计算验证你的猜想。
答案:
一、选择题
CCBBD CAABCC
二、填空题
12、1 13、 14、119
-; 15、(1)x 为任意实数(2)x 2≤(3)a 为任意实
数; 16、-2、-1、0、1、2 ;17、-4,-3,-2,-1,0,1,2,3;18、119、-2;
20、-1; 21、5-2x ; 22、33…3(共n 个3)。
三、解答题
23、(1)有理数集合:( 1
2 , 0.32, 3.14 , -722
, 327- )
(2)无理数集合:( -π,0.01020304… )
(3)正实数集合:( 1
2 , 0.32, 3.14 ,0.01020304… )
(4)负实数集合:( -π,-722
, 327- )
24、(1)7±(2)11
16(3)-0.3
25、(1)2±(2)1
3-
26、(1)(2)5
2 (3)1 (4)23- (5)73(6)1
12-
27、1±
28、12
29、猜想:265。
验证2652526125⨯==5265。