年中考数学第一轮总复习教案 课时
2021九年级数学中考一轮复习教学案课时22图形的对称、平移与旋转
课时22.图形的对称、平移与旋转【课前热身】1.某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是()A.甲种方案所用铁丝最长B.乙种方案所用铁丝最长C.丙种方案所用铁丝最长D.三种方案所用铁丝一样长2.如图,将△PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P平移后的坐标是()A.(﹣2,﹣4)B.(﹣2,4)C.(2,﹣3)D.(﹣1,﹣3)3.如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C 落在线段AB上的点E处,点B落在点D处,则B、D两点间的距离为()A.B.2C.3 D.24.把一副三角板按如图放置,其中∠ABC=∠DEB=90°,∠A=45°,∠D=30°,斜边AC=BD =10,若将三角板DEB绕点B逆时针旋转45°得到△D′E′B,则点A在△D′E′B 的()A.内部B.外部C.边上D.以上都有可能【知识梳理】1.轴对称(1)轴对称和轴对称图形:①轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴.②轴对称:对于两个图形,如果沿一条直线对折后,它们能完全重合,那么称这两个图形成轴对称,这条直线就是对称轴,折叠后重合的点是对应点,叫做对称称点.(2)轴对称的性质①对应线段__ ___,对应角__ ___.②对应点所连的线段被对称轴___ ______.③两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上.2.中心对称(1)中心对称与中心对称图形①中心对称:在平面内,一个图形绕某一个点旋转180°后能与另一个图形重合,则这两个图形关于这个点成中心对称,这个点叫做这两个图形的对称中心.②中心对称图形:在平面内,一个图形绕某个点旋转 __ ___,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心.(2)中心对称图形的性质中心对称图形上的每一对对应点所连成的线段都被对称中心平分.3.图形的平移(1)定义:在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动称为平移.(2)平移的性质①平移不改变图形的____________,即平移前后两图形是全等的.②经过平移,对应线段____________,对应角相等,对应点所连接的线段____________.③平移的条件:平移的方向、平移的距离.4.图形的旋转(1)定义:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为_________,转动的角称为_______.(2)旋转的性质①旋转不改变图形的____________,即平移前后两图形是全等的.②经过旋转,图形上的每一点都绕__________沿相同方向转动了____________.任意一对对应点与旋转中心的连线所成的角都是_______,对应点到旋转中心的距离_____.③旋转的三要素:旋转中心、旋转方向、旋转角度.【例题讲解】例1 如图,方格纸中有三个点A、B、C,要求作一个四边形使这三个点在这个四边形的边(包括顶点)上,且四边形的顶点在方格的顶点上.(1)在图甲中作出的四边形是中心对称图形但不是轴对称图形;(2)在图乙中作出的四边形是轴对称图形但不是中心对称图形;(3)在图丙中作出的四边形既是轴对称图形又是中心对称图形.例2如图,在直角坐标系中,A(-l,5),B(-3,0),C(-4,3).(1)在直角坐标系中作出△ABC关于y轴对称的△A′B′C′,并相应写出△A′B′C′三个顶点的坐标.(2)在直角坐标系中作出△ABC关于原点对称的△DEF,并相应写出△DEF三个顶点的坐标.(3)如果△ABC中任意一点M的坐标为(x,y),那么它在△A′B′C′的对应点M′的坐标是________;在△DEF的对应点N的坐标是________.例3如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC = a,将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.(1)求证:△COD是等边三角形;(2)当a =150°时,试判断△AOD的形状,并说明理由;(3)探究:当a为多少度时,△AOD是等腰三角形?【中考演练】1.如图,半圆A和半圆B均与y轴相切于点O,其直径CD、EF均和x轴垂直,以O为顶点的两条抛物线分别经过点C、E和点D、F,则图中阴影部分的面积是____.2.如图,梯形纸片ABCD,∠B=60°,AD∥BC,AB=AD=2,BC=6.将纸片折叠,使点B与点D 重合,折痕为AE,则CE=__ __.第1题第2题第4题3.如图是三种化合物的结构式及分子式,则按其规律第5个化合物的分子式为___ ___.4.如图是4×4正方形网络,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色的图形成为轴对称图形,这样的白色小方格有_ ___个.5.如图,在平面直角坐标系中,对△ABC进行循环反复的轴对称或中心对称变换,若原来点A坐标是(a,b),则经过第2020次变换后所得的A点坐标是____ ___.6.将正六边形绕其对称中心旋转后,恰好能与原来的正六边形重合,那么旋转的角度至少是_ ____.7.如图所示是重叠的两个直角三角形.将其中一个直角三角形沿BC方向平移得到△DEF.如果AB=8cm,BE=4cm,DH=3cm,则图中阴影部分面积为_ ___cm2.8.如图,阴影部分为2m宽的道路,则余下的部分面积为__ __m2.第7题第8题9.如图,两个全等的正六边形ABCDEF,PQRSTU,其中点P位于正六边形ABCDEF的中心,如果它们的面积均为3,那么阴影部分的面积是__ __.10.如图,当半径为30cm的转动轮转过120°角时,传送带上的物体A平移的距离为____cm. 11.如图,将正方形ABCD中的△ABP绕点B顺时针旋转90°,使得AB与CB重合,若BP=4,则点P所走过的路径长为__ __.第9题第10题第11题12.下列图形中既是轴对称图形又是中心对称图形的是( )13.如图,在△ABC中,AB=AC=5,BC=6,点E,F是中线AD上的两点,则图中阴影部分的面积是( )A.6B.12C.24D.3014.如图所示,将矩形纸片先沿虚线AB按箭头方向向右对折,接着将对折后的纸片沿虚线CD向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是( )15.下列图案中,不能由一个图形通过旋转而构成的是( )16.如图,在平行四边形ABCD中,AE⊥BC,垂足是E,现将△ABE进行平移,平移方向为射线AD的方向,平移的距离为线段BC的长,则平移后得到的图形为( )17.如图所示,在7×6的正方形网格中,选取14个格点,以其中三个格点为顶点画出△ABC,请你以选取的格点为顶点再画出一个三角形,且分别满足下列条件:(1)图①中所画的三角形与△ABC组成的图形是轴对称图形;(2)图②中所画的三角形与△ABC组成的图形是中心对称图形;(3)图③中所画的三角形与△ABC的面积相等,但不全等.18.△ABC在平面直角坐标系中的位置如图所示.(1)将△ABC向右平移6个单位得到△A1B1C1,请画出△A1B1C1,并写出点C1的坐标;(2)将△ABC绕点C顺时针旋转90°得到△A2B2C,请画出△A2B2C,并写出点A2的坐标.。
中考数学第一轮总复习教案(26-32课时)
第六章 三角形课时26.几何初步及平行线、相交线【课前热身】1. 如图,延长线段AB 到C ,使4BC =, 若8AB =,则线段AC 是BC的 倍.2.如图,已知直线a b ∥,135=∠,则2∠的度数是 .3.如图,在不等边ABC △中,DE BC ∥,60ADE =∠,图中等于60的角还有______________.4.经过任意三点中的两点共可以画出的直线条数是( )A .一条或三条B .三条C .两条D .一条 5.如图,直线a b ∥,则A ∠的度数是( )A .28B .31C .39D .42【考点链接】1. 两点确定一条直线,两点之间线段最短._______________叫两点间距离.2. 1周角=__________平角=_____________直角=____________.3. 如果两个角的和等于90度,就说这两个角互余,同角或等角的余角相等;如果_____________________互为补角,__________________的补角相等.4. ___________________________________叫对顶角,对顶角___________.5. 过直线外一点心___________条直线与这条直线平行.6. 平行线的性质:两直线平行,_________相等,________相等,________互补.7. 平行线的判定:________相等,或______相等,或______互补,两直线平行.8. 平面内,过一点有且只有_____条直线与已知直线垂直.【典例精析】例1 如图:AB ∥CD ,直线EF 分别交AB 、CD 于E 、F ,EG 平分∠BEF ,若∠1=720,则∠2等于多少度?(第1题)E A B(第3题)1 2 (第2题)(第4题)图70°31°例2 如图,ABC △中,B C ∠∠,的平分线相交于点O ,过O 作DE BC ∥,若5BD EC +=,则DE 等于多少?【中考演练】1.(08永州) 如图,直线a 、b 被直线c 所截,若要a ∥ b ,需增加条件 _____________.(填一个即可) 2.(08义乌) 如图直线l 1//l 2,AB ⊥CD ,∠1=34°,那么∠2的度数是 . 3.(08河南) 如图, 已知直线25,115,//=∠=∠A C CD AB , 则=∠E ( ) A.70 B. 80 C. 90 D. 100( 第1题) ( 第2题) (第3题) 4.(08益阳) 如图,在△ABC 中,AB =BC =12cm ,∠ABC =80°,BD 是∠ABC 的平分线,DE ∥BC .(1) 求∠EDB 的度数;(2) 求DE 的长.21D CBAl 2l 1ABCD E5. (08宁夏)如图,AB ∥CD , AC ⊥BC ,∠BAC =65°,求∠BCD 度数.﹡6. (08东莞) 如图,在ΔABC 中,AB =AC =10,BC =8.用尺规作图作BC 边上的中线AD (保留作图痕迹,不要求写作法、证明),并求AD 的长.课时27.三角形的有关概念【课前热身】1. 如图,在△ABC 中,∠A =70°,∠B =60°,点D 在BC 的延长线上,则∠ACD = 度.2. ABC△中,D E ,分别是AB AC ,的 中点,当10cm BC =时,DE = cm . (第1题) 3. 如图在△ABC 中,AD 是高线,AE 是角平分线,AF 中线.(1) ∠ADC = =90°; (2) ∠CAE = =12 ;(3) CF = =12; (4) S △ABC = .C DB7060A A B CE DC BAF(第3题) (第4题)4. 如图,⊿ABC 中,∠A = 40°,∠B = 72°,CE 平分∠ACB ,CD ⊥AB 于D ,DF ⊥CE ,则∠CDF = 度. 5. 如果两条平行直线被第三条直线所截,一对同旁内角的度数之比为3:6,那么这两个角分别等于 °和 °.【考点链接】一、三角形的分类:1.三角形按角分为______________,______________,_____________. 2.三角形按边分为_______________,__________________. 二、三角形的性质:1.三角形中任意两边之和____第三边,两边之差_____第三边2.三角形的内角和为_______,外角与内角的关系:__________________. 三、三角形中的主要线段:1.___________________________________叫三角形的中位线.2.中位线的性质:____________________________________________. 3.三角形的中线、高线、角平分线都是____________.(线段、射线、直线)【典例精析】例1 如图,在△ABC 中,D 是BC 边上一点,∠1=∠2,∠3=∠4,∠BAC=63°. 求∠DAC 的度数.例2 如图,已知D 、E 分别是△ABC 的边BC 和边AC 的中点,连接DE 、AD ,若S ABC △=24cm 2,求△DEC 的面积.4321D CB A例3 如图,在等腰三角形ACB 中,5AC BC ==,8AB =,D 为底边AB 上一动点(不与点A B ,重合),DE AC ⊥,DF BC ⊥,垂足分别为E F ,,求DE DF +的长.【中考演练】1.在△ABC 中,若∠A =∠C=13∠B ,则∠A=,∠B = ,这个三角形是 .2. (07深圳)已知三角形的三边长分别为3、8、x ,若x 的值为偶数,则x 的值有( )A. 6个B. 5个C. 4 个D. 3个 3.(07济南)已知一个三角形三个内角度数的比是1:5:6,则其最大内角度数为( )A.60°B.75°C.90°D.120°4.如图,AB ∥CD ,AE 平分∠BAC ,CE 平分∠ACD ,求∠E 的度数.5. 如图,已知DE ∥BC ,CD 是∠ACB 的平分线,∠B =70°,∠ACB =50°, 求∠EDC 和∠BDC 的度数.﹡6. △ABC 中,AD 是高,AE 、BF 是角角平分线相交于点O ,∠BAC=50°,∠C=70°,EDCBAAB CD E求∠DAC,∠BOA的度数.课时28.等腰三角形与直角三角形【课前热身】1.等腰三角形的一个角为50°,那么它的一个底角为______.2. 在△ABC中,AB=AC,∠A=50°,BD为∠ABC的平分线,则∠BDC=_____°.3.在△ABC中,AB=AC,D为AC边上一点,且BD=BC=AD. 则∠A等于()A.30° B.36° C.45° D.72°(第2题)(第3题)(第4题)4.(07南充)一艘轮船由海平面上A地出发向南偏西40º的方向行驶40海里到达B地,再由B地向北偏西10º的方向行驶40海里到达C地,则A、C两地相距()A.30海里 B.40海里 C.50海里 D.60海里【考点链接】一.等腰三角形的性质与判定:1. 等腰三角形的两底角__________;2. 等腰三角形底边上的______,底边上的________,顶角的_______,三线合一;3. 有两个角相等的三角形是_________.二.等边三角形的性质与判定:1. 等边三角形每个角都等于_______,同样具有“三线合一”的性质;2. 三个角相等的三角形是________,三边相等的三角形是_______,一个角等于60°的_______三角形是等边三角形.三.直角三角形的性质与判定:1. 直角三角形两锐角________.2. 直角三角形中30°所对的直角边等于斜边的________.3. 直角三角形中,斜边的中线等于斜边的______.;4. 勾股定理:_________________________________________.5. 勾股定理的逆定理:_________________________________________________.【典例精析】例1 如图,等腰三角形ABC中,AB=AC,一腰上的中线BD 将这个等腰三角形周长分成15和6两部分,求这个三角形的腰长及底边长.例2 (06包头)《中华人民共和国道路交通管理条例》规定:“小汽车在城市街道上的行驶速度不得超过70千米/时”. 一辆小汽车在一条城市街道上由西向东行驶(如图所示),在距离路边25米处有“车速检测仪O”, 测得该车从北偏西60°的A点行驶到北偏西30°的B点,所用时间为1.5秒.(1)试求该车从A点到B的平均速度;(2)试说明该车是否超过限速.【中考演练】1.(08湖州)已知等腰三角形的一个底角为70,则它的顶角为____________.度.2.(08白银)已知等腰三角形的一条腰长是5,底边长是6,则它底边上的高为____. 3. (08武汉) 如图,小雅家(图中点O处)门前 有一条东西走向的公路,经测得有一水塔(图中点A处)在她家北偏东60度500m 处,那么水塔 所在的位置到公路的距离AB 是____________.(第3题)4.如图,已知在直角三角形中,∠C=90°,BD 平分∠ABC 且交AC 于D . ⑴ 若∠BAC=30°,求证:AD=BD ;⑵ 若AP 平分∠BAC 且交BD 于P ,求∠BPA 的度数.5.(08义乌) 如图,小明用一块有一个锐角为30的直角三角板测量树高,已知小明离 树的距离为4米,DE 为1.68米,那么这棵树大约有多高?(精确到0.1米)P D C B AA O B东北课时29.全等三角形【课前热身】1.如图1所示,若△OAD≌△OBC,且∠O=65°,∠C=20°,则∠OAD=____.ACFEDB(第1题)(第2题)(第3题)2.如图2,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去B.带②去C.带③去D.带①和②去3.如图,已知AE∥BF, ∠E=∠F,要使△ADE≌△BCF,可添加的条件是________.4. 在⊿ABC和⊿A/B/C/中,AB=A/B/,∠A=∠A/,若证⊿ABC≌⊿A/B/C/还要从下列条件中补选一个,错误的选法是()A. ∠B=∠B/B. ∠C=∠C/C. BC=B/C/,D. AC=A/C/,【考点链接】1.全等三角形:____________、______________的三角形叫全等三角形.2. 三角形全等的判定方法有:_______、______、_______、______.直角三角形全等的判定除以上的方法还有________.3. 全等三角形的性质:全等三角形___________,____________.4. 全等三角形的面积_______、周长_____、对应高、______、_______相等.【典例精析】例1 已知:在梯形ABCD中,AB//CD,E是BC的中点,直线AE与DC的延长线交于点F. 求证:AB=CF.例2 (06重庆)如图所示,A、D、F、B在同一直线上,AD=BF,AE=BC,且AE BC.求证:(1) AEF BCD;(2)EF CD.【中考演练】1.(08遵义)如图,OA OB =,OC OD =,50O ∠=,35D ∠=,则AEC ∠等于( )A .60B .50C .45D .302. ( 08双柏) 如图,点P 在AOB ∠的平分线上,AOP BOP △≌△,则需添加的一个条件是 (只写一个即可,不添加辅助线):(第1题) (第2题) (第3题)3. ( 08郴州) 如图,D 是AB 边上的中点,将ABC ∆沿过D 的直线折叠,使点A 落在BC上F 处,若50B ∠=︒,则BDF ∠= __________度.4. (08荆州)如图,矩形ABCD 中,点E 是BC 上一点,AE =AD ,DF ⊥AE 于F ,连结DE ,求证:DF =DC .5. 如图,AB=AD ,BC=DC ,AC 与BD 交于点E ,由这些条件你能推出哪些结论?(不再添加辅助线,不再标注其它字母,不写推理过程,只要求写出四个你认为正确的结论即可)F E DC B AEDO E AB D CA B C D F﹡6. (08东莞) 如图,点O 是线段AD 的中点,分别以AO 和DO 为边在线段AD 的同侧作等边三角形OAB 和等边三角形OCD ,连结AC 和BD ,相交于点E ,连结BC .求∠AEB 的大小.课时30.相似三角形【课前热身】1.两个相似三角形对应边上中线的比等于3:2,则对应边上的高的比为______,周长之比为________,面积之比为_________.2.若两个相似三角形的周长的比为4:5,且周长之和为45,则这两个三角形的周长分别为__________.C B ODA E3.如图,在△ABC 中,已知∠ADE=∠B ,则下列等式成立的是( )A.AD AE AB AC = B .AE ADBC BD =C .DE AE BC AB =D .DE ADBC AC=4.在△ABC 与△A′B ′C ′中,有下列条件: (1)''''AB BC A B B C =;(2)''''BC ACB C A C =;(3)∠A=∠A′;(4)∠C=∠C′. 如果从中任取两个条件组成一组,那么能判断△ABC ∽△A′B ′C ′的共有多少组( ) A .1 B .2 C .3 D .4【考点链接】一、相似三角形的定义三边对应成_________,三个角对应________的两个三角形叫做相似三角形. 二、相似三角形的判定方法1. 若DE ∥BC (A 型和X 型)则______________.2. 射影定理:若CD 为Rt △ABC 斜边上的高(双直角图形)则Rt △ABC ∽Rt △ACD ∽Rt △CBD 且AC 2=________,CD 2=_______,BC 2=__ ____.3. 两个角对应相等的两个三角形__________.4. 两边对应成_________且夹角相等的两个三角形相似.5. 三边对应成比例的两个三角形___________. 三、相似三角形的性质1. 相似三角形的对应边_________,对应角________.2. 相似三角形的对应边的比叫做________,一般用k 表示.3. 相似三角形的对应角平分线,对应边的________线,对应边上的_______•线的比等于_______比,周长之比也等于________比,面积比等于_________.【典例精析】例1 在△ABC 和△DEF 中,已知∠A=∠D ,AB=4,AC=3,DE=1,当DF 等于多少时,这两个三角形相似.E A D CBEADCBA D CB例2 如图,△ABC 是一块锐角三角形余料,边BC=120mm ,高AD=80mm , 要把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在AB 、AC 上, 这个正方形零件的边长是多少?例3 一般的室外放映的电影胶片上每一个图片的规格为:3.5cm ×3.5cm ,放映的荧屏的规格为2m ×2m ,若放映机的光源距胶片20cm 时,问荧屏应拉在离镜头多远的地方,放映的图象刚好布满整个荧屏?【中考演练】1.(08大连)如图,若△ABC ∽△DEF ,则∠D 的度数为______________.2. (08杭州) 在中, 为直角, 于点,,写出其中的一对相似三角形是 _ 和 _;并写出它的面积比_____.(第1题) (第2题) (第3题) 3.( 08常州) 如图,在△ABC 中,若DE ∥BC,=,DE =4cm,则BC 的长为 ( ) A.8cm B.12cm C.11cm D.10cmRt ABC ∆C ∠AB CD ⊥D 5,3==AB BC AD DB 12B(0,-4)A(3,0)xy4. (08无锡) 如图,已知是矩形的边上一点,于,试证明.课时31.锐角三角函数【课前热身】1.(06黑龙江)在△ABC 中,∠C =90°,BC =2,sinA =23,则AC 的长是( ) A .5 B .3 C .45D .13 2.Rt ∆ABC 中,∠C=︒90,∠A ∶∠B=1∶2,则sinA 的值( )A .21B .22C .23D .13.如图,在平面直角坐标系中,已知点A (3,0), 点B (0,-4),则cos OAB ∠ 等于_______.4.︒+︒30sin 130cos =____________.【考点链接】1.sin α,cos α,tan α定义sin α=____,cos α=_______,tan α=______ . 2.特殊角三角函数值E ABCD CD BF AE ⊥F ABF EAD △∽△α bc【典例精析】例1 在Rt △ABC 中,a =5,c =13,求sinA ,cosA ,tanA .例2 计算:4sin 302cos 453tan 60︒-︒+︒.例3 等腰△ABC 中,AB =AC =5,BC =8,求底角∠B 的四个三角函数值.【中考演练】1.(08威海) 在△ABC 中,∠C = 90°,tan A =13,则sin B =( ) A .10 B .23 C .34D .310 2.若3cos 4A =,则下列结论正确的为( ) 30° 45° 60° sin α cos α tan αA . 0°< ∠A < 30°B .30°< ∠A < 45°C . 45°< ∠A < 60°D .60°< ∠A < 90° 3. (08连云港) 在Rt ABC △中,90C ∠=,5AC =,4BC =,则tan A = .4.(07济宁) 计算45tan 30cos 60sin -的值是 . 5. 已知3tan 30 A -=∠A =则 .6.△ABC 中,若(sinA -12)2+|32-cosB|=0,求∠C 的大小.﹡7.(07长春)图中有两个正方形,A ,C 两点在大正方形的对角线上,△HAC 是等边三角形,若AB=2,求EF 的长.﹡8. 矩形ABCD 中AB =10,BC =8, E 为AD 边上一点,沿BE 将△BDE 对折,点D 正好落在AB 边上,求 tan ∠AFE ._ E_ A_ F_ D_ C _ B_ O _ H_ G FA BC DE课时32.解直角三角形及其应用【课前热身】1.如图,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,这时测得大树在地面上的影子约为10米,则大树的高约为________米.(结果保留根号)(第1题) 2. 某坡面的坡度为1:3,则坡角是_______度.3.(07山东)王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地 ( )A .150mB .350mC .100 mD .3100m【考点链接】1.解直角三角形的概念:在直角三角形中已知一些_____________叫做解直角三角形. 2.解直角三角形的类型:已知____________;已知___________________. 3.如图(1)解直角三角形的公式:(1)三边关系:__________________.(2)角关系:∠A+∠B =_____,(3)边角关系:sinA=___,sinB=____,cosA=_______.cosB=____,tanA=_____ ,tanB=_____. 4.如图(2)仰角是____________,俯角是____________. 5.如图(3)方向角:OA :_____,OB :_______,OC :_______,OD :________. 6.如图(4)坡度:AB 的坡度i AB =_______,∠α叫_____,tanα=i =____.(图2) (图3) (图4)αA C B45︒南北西东60︒A D C B 70︒O O A B Cc ba A C B【典例精析】例1 Rt ABC ∆的斜边AB =5, 3cos 5A =,求ABC ∆中的其他量.例2 (08十堰) 海中有一个小岛P ,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A 测得小岛P 在北偏东60°方向上,航行12海里到达B 点,这时测得小岛P 在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由.例3(07辽宁)为了农田灌溉的需要,某乡利用一土堤修筑一条渠道,在堤中间挖出深为1.2米,下底宽为2米,坡度为1:0.8的渠道(其横断面为等腰梯形),并把挖出来的土堆在两旁,使土堤高度比原来增加了0.6米.(如图所示) 求:(1)渠面宽EF ;(2)修200米长的渠道需挖的土方数.【中考演练】1.在Rt ABC ∆中,090C ∠=,AB =5,AC =4,则 sinA 的值是_________.2.(07乌兰察布)升国旗时,某同学站在离旗杆24m 处行注目礼,当国旗升至旗杆顶端时,该同学视线的仰角恰为30°,若两眼距离地面 1.2m,则旗杆高度约为_______.(取 ,结果精确到0.1m)3 1.733.(07云南)已知:如图,在△ABC中,∠B = 45°,∠C = 60°,AB = 6.求BC的长. (结果保留根号)﹡4.(06哈尔滨)如图,在测量塔高AB时,选择与塔底在同一水平面的同一直线上的C、D两点,用测角仪器测得塔顶A的仰角分别是30°和60°.已知测角仪器高CE=1.5米,CD=30米,求塔高AB.(保留根号)。
九年级中考数学一轮复习教案:反比例函数复习精选全文
精选全文完整版(可编辑修改)《反比例函数》复习课简案【教学目标】1.熟练掌握反比例函数的定义,能应用其图像与性质解决相关问题,会用待定系数法求一次函数的表达式;2. 通过反比例函数知识的整理、归纳,感受数学思考过程的条理性,发展学生的收集、整理、小结、概括、运用的能力;3. 通过学生自主设计问题、教师引导的方式,提高学生自主分析问题、解决问题的能力,培养学生独立思考、合作交流的意识,提升学生学习数学的基本素养.【教学重难点】教学重点:能用反比例函数的图像与性质解决问题,会用待定系数法求反比例函数的表达式; 教学难点:能用反比例函数的知识解决综合问题,提高学生分析问题、解决问题的能力.【教学过程】一、 自主建构,梳理知识1、 反比例函数的定义:2、 反比例函数的图像:3、 反比例函数的图像特征:二、 自主设计,合作交流问题一:已知反比例函数的图像经过3(,4)2Q --(1)写出这个函数表达式;(2)若点Q (-1,m )在这个图像上,写出m 的值;(3)若P (-2,y 1) ,Q (3,y 2) 在这个图像上,你能比较y 1 ,y 2 的大小吗?(4)若P (x 1,y 1) , Q (x 2,y 2) 在这个图像上,且120x x <<,你还能比较y 1、y 2的大小吗?(5)如图,点P 是这个图像上任意一点,PA ⊥x 轴于点A ,PB ⊥y 轴于点B ,你能求出矩形OAPB 的面积吗?在第(5)问的基础上你还能提出哪些问题?一轮复习研讨课三、 变题研究,提高能力 变式1:如图,A 、B 两点在双曲线6y x =上,分别经过A 、B 两点向坐标轴作垂线段,已知S 阴影=1,则S 1+S 2= .变式2:如图,过点P (4,5)分别作PC ⊥x 轴于点C ,PD ⊥y 轴 于点D ,PC 、PD 分别交反比例函数6y x =(x >0)的图象于点 A 、B ,则四边形BOAP 的面积为 .变式3:如图,A 、B 是双曲线6y x=上的两点,过A 点作 AC⊥x 轴,交OB 于D 点,垂足为C.若D 为OB 的中点,则△ADO 的面积为 .四、总结反思,提升素养问题二:1、如图,直线y kx =与反比例函数6y x =的图像交于P 、Q 两点. (1)若P(1,6),你能说出点Q 的坐标吗?(2)在(1)的条件下,结合图像,你能写出方程6kx x =的解吗? 你能写出不等式6kx x >中x 的取值范围吗?2、已知A (3,2)、B (-2,﹣3)两点是一次函数y kx b =+ 和反比例函数m y x =图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)求△AOB 的面积;(3)观察图象,直接写出不等式0m kx b x+->的解集.在这一学年中,不仅在业务能力上,还是在教育教学上都有了一定的提高。
中考数学一轮总复习 第1课时 实数(无答案) 苏科版
第1课时:实数【课前预习】 (一)知识梳理1、实数的概念:⎪⎪⎩⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧数无理数:无限不循环小数有限小数或无限循环小分数整数有理数 ⎪⎩⎪⎨⎧负数正数实数02、相关概念:数轴、相反数、绝对值、倒数.3、实数的大小比较.⎩⎨⎧作差法利用数轴进行比较4、实数的运算:运算法则、运算律、运算顺序、零指数幂和负整数指数幂、科学计数法、近似数. (二)课前练习1、-5的绝对值是 ,相反数是 ,倒数是 ,绝对值小于3的整数有 .2、数轴上点A 表示-5,点B 表示2,则A 、B 两点之间的距离是 .3、在实数-23,0-3.14,2π-0.1010010001…(每两个1之间依次多1个0),tan60°. 这8个实数中,无理数有 . 4、下列各式正确的是( )A .33--=B .326-=-C .(3)3--=D .0(π2)0-=5、某市在一次扶贫助残活动中,共捐款25.8万元.将25.8万元用科学记数法表示为 .6、若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则100!98!的值为 . 【解题指导】例1 下列各数中:-1,0,169,2π,1.101001…,0.6.,12-, 45cos ,- 60cos ,722,2,π-722.有理数集合{ …}; 正数集合{ …}; 整数集合{ …}; 自然数集合{ …}; 分数集合{ …}; 无理数集合{ …}; 绝对值最小的数的集合{ …};例2 (1)已知a 、b 互为相反数,c 、d 互为倒数,e(a+b )+12cd -2e °的值;(2)实数a 、b 、c 在数轴上的对应点如图所示,化简c a例3 计算:(-1)2009+ 3(tan 60︒)-1-︱1-3︱+(3.14-π)0.例4 已知(x-2)2=0,求xyz 的值.例5 用“☆”定义新运算: 对于任意实数a 、b , 都有a ☆b =b 2+1. 例如7☆4=42+1=17,那么-5☆3= ;当m 为实数时,m ☆(m ☆2)=【巩固练习】1、2的相反数是_____,1的绝对值是______,-23的倒数为_______= .2、绝对值大于1不大于4的所有整数的和为 .3、已知数2a -与23a -,若这两数的绝对值相等,则a 的倒数是 .4、下列各数中:-30,2,0.31,227,2π,2.161161161,(-2 005)0是无理数的5B 关于 点A 的对称点为C ,则点C 表示的数是 .6、实数a 、b 在数轴上的位置如图所示:化简2a +∣a -b ∣= .7、计算 03π316(2)20073⎛⎫-+÷-+- ⎪⎝⎭【课后作业】 姓名 一、必做题:1、32-= ;213-的倒数是 ;0(=_________;14-的相反数是_________.2、若()2240a c --=,则=+-c b a .3、绝对值最小的数是______;若 |a |<2,则a 的整数解为_______;已知|a +3|=1 ,那么a =______.4、计算:312-=_________,22131-⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛=__________.5、定义2*a b a b =-,则(12)3**=______.6、地球上陆地面积约为149 100 000 km 2,用科学记数法可以表示为____________km 2(保留三个有效数字)7、国家体育场“鸟巢”建筑面积达25.8万平方米,将25.8万平方米用科学记数法(四舍五入保留2个有效数字)表示约为( )A .42610⨯平方米 B .42.610⨯平方米 C .52.610⨯平方米 D .62.610⨯平方米8、在数轴上表示2-的点离开原点的距离等于( )A .2B .2-C .2±D .49、如果a <0,b >0,a +b <0,那么下列关系式中正确的是( ).A .a >b >-b >-aB .a >-a >b >-bC .b >a >-b >-aD .-a >b >-b >a 10、若a,b 均为实数,下列说法正确的是( ). A .若a +b =0,则a 、b 互为相反数 B.a 的倒数是a1 C.a a =2D. b 2是一个正数 11、已知:3,2xy ==,且0xy <,则x y +的值等于( ). A.5或-5 B.1或-1 C.3或1 D.-5或-1 12、已知a 、b 互为相反数,c 、d 互为倒数,m 的绝对值等于2,求)21()(2122m m cd b a +-÷+--的值.13、计算:①︒-+--⎪⎭⎫ ⎝⎛--45sin )32(2102②||4+⎝ ⎛⎭⎪⎫12-1-(3-1)0-8cos45°.二、选做题1、在实数范围内定义运算“⊕”,其法则为:22a b ab ⊕=-,求方程(4⊕3)⊕24x =的解.2、我们常用的数是十进制数,如32104657410610510710=⨯+⨯+⨯+⨯,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中210110121202=⨯+⨯+⨯等于十进制的数6,543210110101121202120212=⨯+⨯+⨯+⨯+⨯+⨯等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?3、将一根绳子对折1次从中间剪断,绳子变成3段;将一根绳子对折2次,从中间剪断,绳子变成5段;依此类推,将一根绳子对折n 次,从中间剪一刀全部剪断后,绳子变成 段.4、罗马数字共有7个:I (表示1),V (表示5),X (表示10),L (表示50),C (表示100),D (表示500),M (表示1000),这些数字不论位置怎样变化,所表示的数目都是不变的,其计数方法是用“累积符号”和“前减后加”的原则来计数的:如:IX=10-1=9,VI=5+1=6,CD=500-100=400,则XL= ,XI= .5、如图所示是标出长度单位和正方向的数轴,若点A 对应于实数a ,点B 对应于实数b ;a ,b 是整数,且2b a -=7,则图中数轴上的原点应是点,的算术平方根是 .6、设,a b为非零实数,则a a ).A. ±2B.±1或0C.±2或0D.±2或±1 7、计算:12345314,3110,3128,3182,31244,+=+=+=+=+=…归纳计算结果中的个位数字的规律,猜测200931+的个位数字是( )A. 0B. 2C. 4D. 8 8、已知:C 23=3×21×2=3,C 35=5×4×31×2×3=10,C 46=6×5×4×31×2×3×4=15,….观察上面的计算过程,寻找规律并计算C 610=____________.........A B C D。
中考数学总复习的教案5篇
中考数学总复习的教案5篇中考数学总复习的教案篇1一、第一轮复习【3月初—4月中旬】1、第一轮复习的形式:“梳理知识脉络,构建知识体系”————理解为主,做题为辅(1)目的:过三关①过记忆关必须做到:在准确理解的基础上,牢记所有的基本概念(定义)、公式、定理,推论(性质,法则)等。
②过基本方法关需要做到:以基本题型为纲,理解并掌握中学数学中的基本解题方法,例如:配方法,因式分解法,整体法,待定系数法,构造法,反证法等。
③过基本技能关应该做到:无论是对典型题、基本题,还是对综合题,应该很清楚地知道该题目所要考查的知识点,并能找到相应的解题方法。
(2)宗旨:知识系统化在这一阶段的教学把书中的内容进行归纳整理、组块,使之形成结构。
①数与代数分为3个大单元:数与式、方程与不等式、函数。
②空间和图形分为5个大单元:几何基本概念(线与角)与三角形,四边形,圆与视图,相似与解直角三角形,图形的变换。
③统计与概率分为2个大单元:统计与概率。
(3)配套练习以《中考精英》为主,复习完每个单元进行一次单元测试,重视补缺工作。
2、第一轮复习应注意的问题(1)必须扎扎实实夯实基础中考试题按难:中:易=1:2:7的比例,基础分占总分的70%,因此必须对基础数学知识做到“准确理解”和“熟练掌握”,在应用基础知识时能做到熟练、正确和迅速。
(2)必须深钻教材,不能脱离课本。
(3)掌握基础知识,一定要从理解角度出发。
数学知识的学习,必须要建立逻辑思维能力,基础知识只有理解透了,才可以举一反三、触类旁通。
相对而言,“题海战术”在这个阶段是不适用的。
(5)定期检查学生完成的作业,及时反馈对于作业、练习、测验中的问题,将问题渗透在以后的教学过程中,进行反馈、矫正和强化。
二、第二轮复习【4月中旬—5月初】1、第二轮复习的形式第一阶段是总复习的基础,侧重双基训练,第二阶段是第一阶段复习的延伸和提高,侧重培养学生的数学能力。
第二轮复习时间相对集中,在第一轮复习的基础上,进行拔高,适当增加难度;主要集中在热点、难点、重点内容上,特别是重点;注意数学思想的形成和数学方法的掌握,这就需要充分发挥教师的主导作用。
中考数学总复习教案
中考数学总复习教案一、教学目标1、知识目标:通过对初中数学知识的系统复习,使学生掌握初中数学的基础知识、基本技能和数学思想方法,提高学生的数学素养。
2、能力目标:通过解决实际问题,提高学生的解题能力、思维能力和创新能力。
3、情感态度与价值观:通过对数学知识的应用,增强学生的数学应用意识,培养学生的数学兴趣和自信心。
二、教学内容与安排1、教学内容:涵盖初中数学的所有知识点,包括数与式、方程与不等式、函数与图像、图形与几何、统计与概率等。
2、安排:按照中考数学考试大纲的要求,对每个知识点进行系统梳理,使学生对初中数学知识有一个全面的了解。
同时,结合历年中考真题进行讲解和练习,提高学生的应试能力。
三、教学方法与手段1、教学方法:采用讲解、讨论、练习等多种教学方法,使学生能够深入理解数学知识,掌握解题技巧。
2、教学手段:利用多媒体技术辅助教学,提高教学效果。
同时,组织学生进行小组讨论和交流,培养学生的合作精神。
四、教学过程与评价1、教学过程:按照复习导入、精讲精练、归纳总结、拓展延伸等环节进行。
每个环节注重学生的参与和互动,使学生能够积极思考、主动学习。
2、评价:采用形成性评价和终结性评价相结合的方式,对学生的学习成果进行全面评估。
同时,根据学生的反馈及时调整教学策略,提高教学效果。
五、教学资源与布置1、教学资源:选用优秀的数学教材、参考书籍和网络资源,使学生能够获得丰富的学习资料。
同时,邀请优秀的数学教师进行授课,提高教学质量。
2、布置:根据学生的实际情况和学习需求,布置适量的作业和练习题,使学生能够巩固所学知识,提高解题能力。
同时,鼓励学生参加各种数学竞赛和活动,拓展数学视野。
六、总结与反思通过中考数学总复习教案的实施,我们取得了显著的教学效果。
学生的数学成绩有了明显的提高,同时他们的数学素养、解题能力和思维能力也得到了很好的培养。
然而,我们也发现了一些不足之处。
例如,有些学生对数学知识的掌握还不够扎实;有些学生的解题思路还不够开阔;有些学生的数学应用能力还有待提高等。
初三中考第一轮复习全等三角形(一对一教案)
初三中考第⼀轮复习全等三⾓形(⼀对⼀教案)学科教师辅导讲义学员编号:年级:课时数:学员姓名:辅导科⽬:学科教师:授课类型T全等三⾓形判定 C 全等三⾓形的判定特点T 中考题型分析授课⽇期及时段教学内容⼀、同步知识梳理1.判定和性质⼀般三⾓形直⾓三⾓形判定边⾓边(SAS)、⾓边⾓(ASA)⾓⾓边(AAS)、边边边(SSS)具备⼀般三⾓形的判定⽅法斜边和⼀条直⾓边对应相等(HL)性质对应边相等,对应⾓相等对应中线相等,对应⾼相等,对应⾓平分线相等注:①判定两个三⾓形全等必须有⼀组边对应相等;②全等三⾓形⾯积相等.2.证题的思路:)找任意⼀边()找两⾓的夹边(已知两⾓)找夹已知边的另⼀⾓()找已知边的对⾓(找已知⾓的另⼀边(边为⾓的邻边)任意⾓(若边为⾓的对边,则找已知⼀边⼀⾓)找第三边()找直⾓()找夹⾓(已知两边AASASAASAAASSASAASSSSHLSAS⼆、同步题型分析题型1:边边边(SSS)的证明(.★.)例..1.:.已知:如图1,AD=BC.AC=BD.试证明:∠CAD=∠DBC.图1提⽰:证明△ABD≌△BAC,得到∠BAD=∠ABC,∠DBA=∠CAB,通过∠BAD—∠CAB=∠ABC—∠DBA,证明∠CAD=∠DBC。
题型2:边⾓边(SAS)的证明(.★.)例..1.:.已知:如图2,AB=AC,BE=CD.求证:∠B=∠C.图2提⽰:由....AB=AC,BE=CD,得到AD=AE,证明△ABD≌△ACE,得到∠B=∠C(.★.)例..2.:.已知:如图3,AB=AD,AC=AE,∠1=∠2.求证:BC=DE.图3提⽰:由....∠1=∠2,得到∠BAC=∠DAE,证明△BAC≌△DAE,得到BC=DE(.★★..3.:.如图4,将两个⼀⼤、⼀⼩的等腰直⾓三⾓尺拼接(A、B、D三点共线,AB=CB,EB=DB,..)例∠ABC=∠EBD=90°),连接AE、CD,试确定AE与CD的位置与数量关系,并证明你的结论.图4提⽰:延长..AB=CB,EB=DB,∠ABE=∠CBD=90°,证明△ABE≌△CBD,得到..F.,由.....AE..交.CD..于点AE=CD,∠EAB=∠DCB,再由∠CDB+∠DCB=90o,得到∠CEF+∠ECF=90°,证明AE⊥CD 题型3:⾓边⾓(ASA)、⾓⾓边(AAS)的证明(.★.)例..1.:.已知:如图5,AB ⊥AE ,AD ⊥AC ,∠E =∠B ,DE =CB .求证:AD =AC .图5提⽰:由....AB ⊥AE ,AD ⊥AC ,得到∠CAB =∠DAE ,根据∠E =∠B ,DE =CB ,证明△C AB≌△DAE ,得到AD =AC(.★★..)例..2.:.已知:如图6,在△MPN 中,H 是⾼MQ 和NR 的交点,且MQ =NQ .求证:HN =PM .图6提⽰:由....MQ 和NR 是△MPN 的⾼,得到∠MQP =∠NRP =90°,继⽽得到∠PMQ =∠PNR ,结合MQ =NQ ,证明△PMQ ≌△HNQ ,得到HN =PM(.★★..)例..3.:.阅读下题及⼀位同学的解答过程:如图7,AB 和CD 相交于点O ,且OA =OB ,∠A =∠C .那么△AOD 与△COB 全等吗?若全等,试写出证明过程;若不全等,请说明理由.答:△AOD ≌△COB .证明:在△AOD 和△COB 中,∠=∠=∠=∠),(),(),(对顶⾓相等已知已知COB AOD OB OA C A∴△AOD ≌△COB (ASA ).图7问:这位同学的回答及证明过程正确吗?为什么?提⽰:⼀定要找准对应边和对应⾓题型4、斜边和⼀条直⾓边对应相等(HL )(.★★..).已知:如图7,AC =BD ,AD ⊥AC ,BC ⊥BD .求证:AD =BC ;图7提.⽰:连接....DC ..,即可证明.....△ADC ≌△BCD三、课堂达标检测(★)检测题1:如图(1),点P 是AB 上任意⼀点,ABC ABD ∠=∠,还应补充⼀个条件,才能推出APC APD △≌△.从下列条件中补充⼀个条件,不⼀定能....推出APC APD △≌△的是()A .BC BD =B .AC AD = C .ACB ADB ∠=∠D .CAB DAB ∠=∠答案:B(★)检测题2:如图2,已知AD AB =,DAC BAE ∠=∠,要使 ABC △≌ADE △,可补充的条件是(写出⼀个即可).答案:AE=AC(★★)检测题3:如图,在△ABE 中,AB =AE,AD =AC,∠BAD =∠EAC, BC 、DE 交于点O.求证:(1) △ABC ≌△AED ; (2) OB =OE .图(3)CADP B图(1)A CEBD(2)BDA⼀、专题精讲(★★)题型⼀:全等三⾓形证明等量例1:2010四川宜宾,13(3),5分)如图,分别过点C、B作△ABC的BC边上的中线AD及其延长线的垂线,垂⾜分别为E、F.求证:BF=CE.提⽰:证明△CED≌△BFD题型⼆:全等三⾓形证明位置关系(★★)例2:如图所⽰,已知,AD为△ABC的⾼,E为AC上⼀点,BE交AD于F ,且有BF=AC,FD=CD.求证:BE⊥AC提⽰:证明△BDF≌△ADC题型三、构造全等证明结论(★★)例3:如图,已知E是正⽅形ABCD的边CD 的中点,点F在BC上,且∠DAE=∠FAE.求证:AF=AD+CFABDCEF提⽰:证明△DBA ≌△ECA(★★★)检测题2:△DAC, △EBC 均是等边三⾓形,AE,BD 分别与CD,CE 交于点M,N,求证:(1)AE=BD (2)CM=CN (3) △CMN 为等边三⾓形(4)MN ∥BC提⽰:(1)证明△ACE ≌△DCB (2)△ACM ≌△DCN 或△EMC ≌△BNC(★★★)检测题3:如图甲,在△ABC 中,∠ACB 为锐⾓.点D 为射线BC 上⼀动点,连接AD ,以AD 为⼀边且在AD 的右侧作正⽅形ADEF .解答下列问题:(1)如果AB=AC ,∠BAC=90o.①当点D 在线段BC 上时(与点B 不重合),如图⼄,线段CF 、BD 之间的位置关系为,数量关系为.②当点D 在线段BC 的延长线上时,如图丙,①中的结论是否仍然成⽴,为什么?D AMEAFFEAFA(2)如果AB≠AC,∠BAC≠90o,点D在线段BC上运动.试探究:当△ABC满⾜⼀个什么条件时,CF⊥BC(点C、F重合除外)?画出相应图形,并说明理由.(画图不写作法)提⽰:证明△ABD≌△ACF即可三、学法提炼1、专题特点:主要是了解全等三⾓形的运⽤特点,全等三⾓形的构造⽅法2、解题⽅法:主要是从全等三⾓形的四⼤条件⼊⼿(公共边、公共⾓、重合边、重合⾓),运⽤已知条件,达到全等证明3、注意事项:在条件运⽤中,⼀定要清楚条件所适⽤的判定,不能张冠李戴。
中考数学一轮复习教案全套
第一篇 数与式专题一 实数一、中考要求:1.在经历数系扩张、探求实数性质及其运算规律的过程;从事借助计算器探索数学规律的活动中,发展同学们的抽象概括能力,并在活动中进一步发展独立思考、合作交流的意识和能力.2.结合具体情境,理解估算的意义,掌握估算的方法,发展数感和估算能力.3.了解平方根、立方根、实数及其相关概念;会用根号表示并会求数的平方根、立方根;能进行有关实数的简单四则运算.4.能运用实数的运算解决简单的实际问题,提高应用意识,发展解决问题的能力,从中体会数学的应用价值.二、中考热点:本章多考查平方根、立方根、二次根式的有关运算以及实数的有关概念,另外还有一类新情境下的探索性、开放性问题也是本章的热点考题.三、考点扫描1、实数的分类:实数0⎧⎧⎪⎨⎨⎩⎪⎩正实数有理数或无理数负实数2、实数和数轴上的点是一一对应的.3、相反数:只有符号不同的两个数互为相反数. 若a 、b 互为相反数,则a+b=0, 1-=ab(a 、b ≠0)4、绝对值:从数轴上看,一个数的绝对值就是表示这个数的点与原点的距离⎪⎩⎪⎨⎧<-=>=)0()0(0)0(||a a a a a a 5、近似数和有效数字;6、科学记数法;7、整指数幂的运算:()()mm mmnnm nm n m ba ab a aaa a ⋅===⋅+,, (a ≠0) 负整指数幂的性质:pp pa a a⎪⎭⎫ ⎝⎛==-11 零整指数幂的性质: (a ≠0)10=a 8、实数的开方运算:()aa a a a =≥=22;0)(9、实数的混合运算顺序*10、无理数的错误认识:⑴无限小数就是无理数如1.414141···(41 无限循环);(2)带根号的3)两个无理数的和、是无理数,但它们的积却是有理数;(4)无理数是无限不循环小数,所以无法在数轴上表示出来,这种说法错误,每一个无理数在数轴上都有一个唯轴上把它找出来,其他的无理数也是如此.*11、实数的大小比较: (1).数形结合法(2).作差法比较(3).作商法比较(4).倒数法: 如6756--与(5).平方法四、考点训练1、(2005、杭州,3分)有下列说法:①有理数和数轴上的点—一对应;②不带根号的数一定是有理数;③负数没有立方根;④-是17的平方根,其中17正确的有( ) A .0个B .1个C .2个D .3个2那么x 取值范围是() A 、x ≤2 B. x <2 C. x ≥2D. x>23、-8 )A .2B .0C .2或一4D .0或-44、若2m -4与3m -1是同一个数的平方根,则m 为( )A .-3B .1C .-3或1D .-15、若实数a 和 b 满足 b=+,则ab 的值a +5-a -5等于_______6、在-的相反数是________,绝对值是______.327、的平方根是( )81 A .9B .C .±9D .±398、若实数满足|x|+x=0, 则x 是( )A .零或负数B .非负数C .非零实数D.负数五、例题剖析1、设a=-,b=2-,c =-1,则a 、b 、c 的3235大小关系是()A .a >b >c B 、a >c >b C .c >b >a D .b >c >a 2、若化简|1-x|,则2x-5x 的取值范围是() A .X 为任意实数 B .1≤X ≤4C .x ≥1D .x <43、阅读下面的文字后,回答问题:小明和小芳解答题目:“先化简下式,再求值:其中a=9时”,得出了不同的答案 ,小明的解答:原式= a+(1-a)=1,小芳的解答:原式=a+(a -1)=2a-1=2×9-1=17⑴___________是错误的;⑵错误的解答错在未能正确运用二次根式的性质:________4、计算:200120025、我国1990年的人口出生数为23784659人。
中考数学一轮复习教案(完整版)
3.零是(
)
(A) 最小的有理数(B)绝对值最小的实数
(C)最小的自然数 (D)最小的整数 4.如果 a 是实数,下列四种说法:(1)a2 和|a|都是正数,
(2)|a|=-a,那么a一定是负数,(3)a的倒数是1a ,(4)a和-a的两个分别在
原点的两侧,其中正确的是( )
(A)0 (B)1 (C)2
2.考查实数的运算;
3.计算器的使用。
实数的运算
(1)加法
同号两数相加,取原来的符号,并把绝对值相加;
异号两数相加。取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;
任何数与零相加等于原数。
(2)减法
a-b=a+(-b)
(3)乘法
两数相乘,同号得正,异号得负,并把绝对值相乘;零乘以任何数都得零.即
2.考查实数的运算;
3.计算器的使用。
实数的运算
(1)加法
同号两数相加,取原来的符号,并把绝对值相加;
异号两数相加。取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;
任何数与零相加等于原数。
(2)减法
a-b=a+(-b)
(3)乘法
两数相乘,同号得正,异号得负,并把绝对值相乘;零乘以任何数都得零.即
效数字、计算器功能鍵及应用。
大纲要求:
1.了解有理数的加、减、乘、除的意义,理解乘方、幂的有关概念、掌握有理数运算法则、
运算委和运算顺序,能熟练地进行有理数加、减、乘、除、乘方和简单的混合运算。
2.了解有理数的运算率和运算法则在实数运算中同样适用,复习巩固有理数的运算法则,灵
活运用运算律简化运算能正确进行实数的加、减、乘、除、乘方运算。
3 / 122
【鲁教版】中考数学一轮分类复习六《因式分解》教案
【鲁教版】中考数学一轮分类复习六《因式分解》教案一. 教材分析《因式分解》是初中数学的重要内容,也是中考的热点考点。
鲁教版教材在这一部分主要让学生掌握因式分解的基本方法,包括提公因式法、公式法、分组分解法等。
通过这些方法的学习,让学生能够熟练地对多项式进行因式分解,从而解决实际问题。
二. 学情分析学生在学习因式分解之前,已经掌握了整式的运算、方程的解法等基础知识。
但因式分解作为一种解决问题的方法,对学生来说是全新的,需要一定的抽象思维能力。
因此,在教学过程中,要关注学生的学习兴趣,激发他们的探究欲望,引导学生逐步理解和掌握因式分解的方法。
三. 教学目标1.知识与技能:让学生掌握因式分解的基本方法,能对多项式进行因式分解。
2.过程与方法:培养学生运用因式分解解决实际问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养他们的抽象思维能力。
四. 教学重难点1.重点:因式分解的基本方法。
2.难点:因式分解过程中的策略选择和运用。
五. 教学方法1.情境教学法:通过生活实例,引导学生理解因式分解的意义。
2.启发式教学法:引导学生主动探究,发现因式分解的方法。
3.小组合作学习:让学生在讨论中互相启发,共同提高。
六. 教学准备1.教具:多媒体课件、黑板、粉笔。
2.学具:学生用书、练习本、文具。
七. 教学过程1.导入(5分钟)利用生活实例,如分配律的应用,引导学生思考如何将一个多项式分解成几个整式的乘积。
让学生感受到因式分解的实际意义和作用。
2.呈现(10分钟)展示因式分解的定义和基本方法,如提公因式法、公式法、分组分解法等。
通过示例,让学生初步了解因式分解的方法和步骤。
3.操练(10分钟)让学生独立完成教材中的练习题,教师巡回指导。
学生在实践中运用因式分解的方法,解决实际问题。
4.巩固(10分钟)选取一些典型的练习题,让学生分组讨论,共同探究解题策略。
教师引导学生总结因式分解的方法和技巧。
5.拓展(10分钟)让学生思考如何将因式分解的方法应用到其他数学领域,如解方程、求最值等。
2024年广东省深圳市九年级中考数学一轮教材梳理复习课件+第20讲+等腰三角形
∘ − ,
∠ = ∠ − ∠ = − ∘ ,
∴ ∠ = ∘ − ∠ − ∠ = ∘ − ∘ − − − ∘ = ∘ .
①当∠ = ∠时,∘ − = − ∘ ,∴ = ∘ .
◁上一页
下一页▷
【方法总结】1.当等腰三角形的腰和底、顶角、底角不明确时,需分类讨论.
2.等腰三角形的性质“等边对等角”,是三角形中边与角关系转化的纽带.当利
用方程思想求角度时,等腰三角形的性质在用含未知数的代数式表示角时起到
关键作用.
3.等腰三角形常常与线段垂直平分线的性质定理结合运用,在证明线段或角相
在 △ 中,∵ ∠ = ∘ , = ,∠ = ∘ ,
∴ = = ,∴ = − = .
中考总复习·数学
◁上一页
下一页▷
1.(2021·广州)如图,在△ ABC中,AC = BC,∠B = 38∘ ,D
是AB边上一点,点B关于直线CD的对称点为B′,当
切性质,包括具有“三线合一”的性质,等边三角形也是轴对称图形,并且有3条
对称轴.
2.等边三角形有一个特殊的角60∘ ,所以当等边三角形出现高时,往往会结合直
角三角形30∘ 角的性质.
3.等边三角形判断方法的选择
(1)若已知三边关系,则考虑运用等边三角形的定义进行判定;
(2)若已知三角关系,则根据“三个角都相等的三角形是等边三角形”进行
∠ = ∠,
在△ 和△ 中, ∠ = ∠,
= ,
∴△ ≌△ ,∴ = , = ,
∴ ∠ = ∠,∴ ∠ = ∠,∴ = ,即△ 是等
腰三角形.
中考总复习·数学
◁上一页
下一页▷
∠AQC = 3∠B,求∠B的度数.
中考数学总复习几何部分教案教案
中考数学总复习几何部分教案一、教学目标1. 知识与技能:使学生掌握初中数学几何部分的基本概念、性质、定理和公式,提高学生的空间想象能力和逻辑思维能力。
2. 过程与方法:通过复习,使学生能够熟练运用几何知识解决实际问题,培养学生的数学应用能力和解决问题的能力。
3. 情感态度与价值观:激发学生学习几何的兴趣,培养学生勇于探索、积极思考的科学精神,提高学生对数学美的鉴赏能力。
二、教学内容1. 第一章:平面几何基本概念1.1 点、线、面的位置关系1.2 平行线、相交线1.3 三角形、四边形、五边形等基本图形的性质2. 第二章:三角形2.1 三角形的性质2.2 三角形的判定2.3 三角形的证明方法3. 第三章:四边形3.1 四边形的性质3.2 特殊四边形的性质及判定3.3 四边形的不等式4. 第四章:圆4.1 圆的定义及性质4.2 圆的方程4.3 圆与直线、圆与圆的位置关系5. 第五章:几何变换5.1 平移、旋转的性质5.2 相似三角形的性质及判定5.3 位似与坐标变换三、教学方法1. 采用讲解、示范、练习、讨论等多种教学方法,引导学生主动参与、积极思考。
2. 利用多媒体教学手段,直观展示几何图形的性质和变换过程,提高学生的空间想象能力。
3. 注重个体差异,针对不同学生进行分层教学,使每位学生都能在复习过程中得到提高。
四、教学评价1. 定期进行课堂检测,了解学生掌握几何知识的情况。
2. 组织中考模拟试题训练,检验学生的应用能力和解题水平。
3. 关注学生在复习过程中的学习态度、方法及合作精神,进行全面评价。
五、教学计划1. 课时安排:每个章节安排4课时,共20课时。
2. 教学进度:按照章节顺序进行复习,每个章节安排一周时间。
3. 复习方法:先梳理每个章节的基本概念、性质、定理和公式,进行典型例题分析,进行课堂练习和总结。
4. 课外作业:每章节安排2-3道课后习题,巩固所学知识。
5. 课后辅导:针对学生疑难问题进行解答,提供个性化的学习指导。
中考数学一轮总复习 第3课时 因式分解(无答案) 苏科版
第3课时:因式分解【课前预习】 (一)知识梳理 1、因式分解的概念:2、因式分解的常用方法:①提公因式法;②公式法;③十字相乘法.3、配方的思想方法. (二)课前练习1.下列从左到右的变形,属于因式分解的是( )A.2(2)(3)56x x x x ++=++ B.1()1ax ay a x y -+=-+ C.2323824a b a b =⋅ D.24(2)(2)x x x -=+-2.分解因式:① ab a 222-= ;② 442++a a = ;③ 4x 2-25= ;④ =+-342a a ;⑤ =--4432x x .3.在多项式142+x 中,添加一个单项式使其成为一个完全平方式,则添加的单项式可以是___________. 4.若x 是实数,说明代数式3x 2-6x+9的值大于0. 【解题指导】例1 把下列各式分解因式:①29xy x -; ②21222m m -+; ③24212x x --; ④625a b a b -; ⑤3216x -例2 把下列各式分解因式:① ()()23a b c c b -+-; ② ()()269a b a b -+-+; ③ 22216)4(x x -+;④ ()()2223234x x x x +-++; ⑤ y x y x 2222-+-; ⑥ 22944x y x y -+-.例3:已知2y x -=,31x y -=-,求2243x xy y -+的值.例4:(1)若a ,b ,c 是三角形三边的长,则代数式2222a b c ab +--的值( ) A. 大于零 B. 小于零 C. 大于或等于零 D. 小于或等于零(2)已知m m Q m P 158,11572-=-=(m 为任意实数),则P 、Q 的大小关系为( ) A.Q P > B. Q P = C. Q P < D.不能确定【巩固练习】1.把下列各式分解因式:(1)4x 2-16= ;(2)2x 2+4x +2= ;(3)x 2-6x -7= ; 2.若3=+y x ,1=xy ,则=+22y x ___ ___. 3、若622=-n m ,且3=-n m ,则=+n m .4、若代数式26x x b -+可化为 2()1x a --,则b a -的值是 . 5、下列因式分解错误的是()A .22()()x y x y x y -=+- B .2269(3)x x x ++=+ C .2()x xy x x y +=+D .222()x y x y +=+6、下列多项式为5x 2+17x -12的因式的是( )A . 1x +B .1x -C .4x +D .4x - 7、把下列各式因式分解:(1)34x x -; (2)22310x xy y --; (3)4254x x -+; (4)()()2710a b a b -+-+;☆(5))()()(y x c x y b y x a -+---;☆(6)321a a a -+-; ☆(7) 2244x y x --+☆8、已知5,3a b ab -==,求代数式32232a b a b ab -+的值.【课后作业】 班级 姓名一、必做题:1、把3222x x y xy -+分解因式,结果正确的是( )A.()()x x y x y +-B.()222x x xy y -+ C.()2x x y + D.()2x x y -2、列因式分解错误的是() A .22()()x y x y x y -=+- B .2269(3)x x x ++=+ C .2()x xy x x y +=+D .222()x y x y +=+3、把多项式2288x x -+分解因式,结果正确的是( )A .()224x -B .()224x -C .()222x -D .()222x +4、分解因式:① 328x x -=__________;② _____________223=---x x x ; ④ 2221a b b ---= ;⑤ =+-+)(3)(2y x y x .5、如果214x ax -+是完全平方式,则a = . 6、如果()()2222x mxy ny x y x y ++=+-,那么m = ,n = .7、把下列各式因式分解:①22242x xy y -+; ②22253x xy y +-; ③ 2224)1(x x -+;④ ()()21236a b a b +-++8、利用因式分解计算:①2991981++; ②⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-222411311211…⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-2210119119、给出三个多项式:21212x x +-,21412x x ++,2122x x -.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.10、已知:3a b +=,2ab =,求下列各式的值: (1)22a b ab +; (2)22a b +.二.选做题:1、在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b )(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( )A .2222)(b ab a b a ++=+ B .2222)(b ab a b a +-=- C .))((22b a b a b a -+=- D .222))(2(b ab a b a b a -+=-+2、已知二次三项式215x kx --能分解成系数为整数的两个一次因式的积,则整数k 可以为 .3、对于任意自然数n ,(n +11)2-n 2是否能被11整除?为什么?4、已知2222450243.a a b b a b ++-+=+-,求的值5、已知a ,b ,c 为△ABC 的三边长,且满足a 2c 2-b 2c 2=a 4-b 4,试判断△ABC 的形状.b图甲 图乙。
2023年安徽省中考数学一轮复习讲义第9讲二次函数实际应用(中)(教案)
二次函数实际应用二次函数应用题型有哪些?知识点1:用函数解决抛物线形问题1.在实际问题中求抛物线的解析式时,为使问题简单,通常以抛物线的顶点为________建立直角坐标系.2.用__________求出抛物线的解析式.3.用二次函数的__________去分析、解决问题.类型:1、抛物线形状:隧道类、拱桥类2、运动轨迹抛物线形:球类、喷泉【例1】如图所示,一场篮球赛中,队员甲跳起投篮,已知球出手时离地面米,与篮圈中心的水平距离为7米,当球出手的水平距离4米时到达最大高度4米,设篮球运行轨迹为抛物线,篮圈距地面3米.(1)请根据图中所给的平面直角坐标系,求出篮球运行轨迹的抛物线解析式;(2)问此篮球能否投中?(3)此时,若对方队员乙上前盖帽,已知乙最大摸高3.19米,他如何做才有可能获得成功?(说明在球出手后,未达到最高点时,被防守队员拦截下来,称为盖帽,但球到达最高点后,处于下落过程时,防守队员再出手拦截,属于犯规,判进攻方得2分.)【考点】二次函数的应用.【解答】解:(1)由题意得,、O(0,0)、B(3,﹣1),设函数关系式为y=ax2,代入A点坐标解得a=﹣,∴二次函数的关系式为;(2)把x=3代入得y=﹣1,即C点在抛物线上,所以一定能投中;(3)由题意得y=﹣4+3.19=﹣0.81,将y,解得xx=2.7(舍),4﹣2.7=1.3,所以只能距甲身前1.3米以内盖帽才能成功.【例2】2022年北京冬奥会即将召开,激起了人们对冰雪运动的极大热情.如图是某跳台滑雪训练场的横截面示意图,取某一位置的水平线为x轴,过跳台终点A作水平线的垂线为y轴,建立平面直角坐标系,图中的抛物线C1:y=﹣x2+x+1近似表示滑雪场地上的一座小山坡,某运动员从点O正上方4米处的A点滑出,滑出后沿一段抛物线C2:y=﹣x2+bx+c运动.(1)当运动员运动到离A处的水平距离为4米时,离水平线的高度为8米,求抛物线C2的函数解析式(不要求写出自变量x的取值范围);(2)在(1)的条件下,当运动员运动的水平距离为多少米时,运动员与小山坡的竖直距离为1米?(3)当运动员运动到坡顶正上方,且与坡顶距离超过3米时,求b的取值范围.【考点】二次函数的应用.【解答】解:(1)由题意可知抛物线C2:y=﹣x2+bx+c过点(0,4)和(4,8),将其代入得:,解得:,∴抛物线C2的函数解析式为:y=﹣x2+x+4;(2)设运动员运动的水平距离为m米时,运动员与小山坡的竖直距离为1米,依题意得:﹣m2+m+4﹣(﹣m2+m+1)=1,整理得:(m﹣12)(m+4)=0,解得:m1=12,m2=﹣4(舍去),故运动员运动的水平距离为12米时,运动员与小山坡的竖直距离为1米;(3)C1:y=﹣x2+x+1=﹣(x﹣7)2+,当x=7时,运动员到达坡顶,即﹣×72+7b+4>3+,解得:b>.【变式训练1】如图是抛物线型拱桥,当拱顶离水面8米时,水面宽AB为12米.当水面上升6米时达到警戒水位,此时拱桥内的水面宽度是多少米?下面是两个兴趣小组解决这个问题的两种方法,请补充完整:方法一:如图1,以点A为原点,AB所在直线为x轴,建立平面直角坐标系xOy,此时点B的坐标为,抛物线的顶点坐标为,可求这条抛物线的解析式为.当y=6时,求出此时自变量x的取值,即可解决这个问题.方法二:如图2,以抛物线顶点为原点,对称轴为y轴,建立平面直角坐标系xOy,这时这条抛物线所表示的二次函数的解析式为.当取y=时,即可求出此时拱桥内的水面宽度为,解决了这个问题.【考点】二次函数的应用.【解答】解:方法一:B(12,0),O(6,8),设二次函数的解析式为y=a(x﹣6)2+8,把B点的坐标代入得,a=﹣,∴二次函数的解析式为y=﹣x2+x;方法二:设二次函数的解析式为y=ax2,把B(6,﹣8)代入得,a=﹣,∴二次函数的解析式为y=﹣x2;y=﹣2时,求出此时自变量x的取值为±3,即可求出此时拱桥内的水面宽度为6,故答案为:(12,0);(6,8);;;﹣2;6.【变式训练2】如今我国的大棚(如图1)种植技术已十分成熟.小明家的菜地上有一个长为16米的蔬菜大棚,其横截面顶部为抛物线型,大棚的一端固定在离地面高1米的墙体A处,另一端固定在离地面高2米的墙体B 处,现对其横截面建立如图2所示的平面直角坐标系.已知大棚上某处离地面的高度y(米)与其离墙体A的水平距离x(米)之间的关系满足y=﹣x2+bx+c,现测得A,B两墙体之间的水平距离为6米.(1)直接写出b,c的值;(2)求大棚的最高处到地面的距离;(3)小明的爸爸欲在大棚内种植黄瓜,需搭建高为米的竹竿支架若干,已知大棚内可以搭建支架的土地平均每平方米需要4根竹竿,则共需要准备多少根竹竿?【考点】二次函数的应用.【解答】解:(1)b=,c=1.(2)由y==,可知当x =时,y 有最大值, 故大棚最高处到地面的距离为米; (3)令y =,则有=, 解得x 1=,x 2=, 又∵0≤x ≤6,∴大棚内可以搭建支架的土地的宽为6﹣=(米), 又大棚的长为16米,∴需要搭建支架部分的土地面积为16×=88(平方米),故共需要88×4=352(根)竹竿,答:共需要准备352根竹竿.知识点2:利用二次函数求最大面积1.二次函数在自变量x 取任意实数时的最值情况:当0a >时,函数在ab 2x -=处取得最小值a 442b ac -,无最大值;当0a <时,函数在ab 2x -=取得最大值a b ac 442-,无最小值. 2.二次函数在自变量x 的给定范围内,对应的图象是抛物线上的一段.那么最高点的纵坐标即为函数的最大值,最低点的纵坐标即为函数的最小值【例1】如图,某小区有一块靠墙(墙的长度不限)的矩形ABCD,为美化环境,用总长为90m的篱笆围成四块矩形,其中S1=S2=S3=S4(靠墙一侧不用篱笆,篱笆的厚度不计).(1)若AE=a,用含有a的式子表示BE的长,并直接写出a的取值范围;(2)求矩形ABCD的面积y关于a的解析式,并求出面积的最大值.【考点】二次函数的应用.【解答】解:(1)∵,∴NC=2BH=2NN,设EG=b,则EF=4b,∵S2=S1,∴BE•b=a•4b,∴BE=4a(0<a<5);(2)由(1)知,AB+GH+MN+CD=5a+4a+4a+5a=18a,∴BC==45﹣9a,∴y=5a(45﹣9a)=﹣45a2+225a=﹣45,∵﹣45<0,∴当a=时,y有最大值,此时最大值为m2.【例2】如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了200米木栏.(1)若a=30,所围成的矩形菜园的面积为1800平方米,求所利用旧墙AD的长;(2)求矩形菜园ABCD面积的最大值.【考点】一元二次方程的应用;二次函数的应用.【解答】解:(1)设AB=xm,则BC=(200﹣2x)m,根据题意得:x(200﹣2x)=1800,解得x1=10,x2=90,当x=10时,200﹣2x=180>30,不符合题意舍去,当x=90时,200﹣2x=20,答:AD的长为20m;(2)设AD=nm,∴S=n(200﹣n)=﹣(n﹣100)2+5000,当a≥100时,则n=100时,S的最大值为5000,当0<a<100时,则当0<n≤a时,S随n的增大而增大,∴当n=a时,S的最大值为100n﹣a2,【变式训练1】如图,在边长为120cm的正方形铁皮ABCD上,剪去图中阴影部分的四个全等的等腰直角三角形,再沿图中的虚线折起,折成一个长方体工艺盒(A,B,C,D四个顶点正好重合于上底面一点).已知点M,N在CD边上,且是被剪去的一个等腰直角三角形斜边的两个端点,设CM=DN=x(cm).(1)若折成的包装盒恰好是个正方体,求这个工艺盒的体积;(2)当x取何值时,工艺盒的四个侧面面积和S最大,最大值为多少?【考点】二次函数的应用;展开图折叠成几何体.【解答】解:(1)根据题意,设CM=DN=x(cm),折成的工艺盒恰好是个正方体,知这个正方体的底面边长FG=MH=x,则GM=GN=x,故MN=GM=2x,∵正方形纸片ABCD边长为120cm,∴x+2x+x=120,解得:x=30,则正方体的底面边长a=30,∴V=a3==5400(cm3);答:这个工艺盒的体积是5400cm3;(2)设工艺盒的底面边长为acm,高为hcm,则a=x,h==(60﹣x),∴S=4ah=4x•(60﹣x)=﹣8x2+480x=﹣8(x﹣30)2+7200,∵0<x<60,∴当x=30时,S最大,最大值为7200cm2.【变式训练2】如图,要建一个矩形仓库ABCD,一边靠墙(墙长22m),并在BC边上开一道2m宽的门,现在可用的材料为38m长的木板.(1)若仓库的面积为150平米,求AB.(2)当仓库的面积最大时,求AB,并指出仓库的最大面积.【考点】一元二次方程的应用;二次函数的应用.【解答】解:(1)设AB的长为xm,则AD=(38+2﹣2x)m,根据题意得,x(38+2﹣2x)=150,解得:x1=15,x2=5,当x1=15时,AD=10,当x2=5时,AD=30>22(不合题意舍去),∴AB=15;(2)设仓库的最大面积为y平方米,根据题意得,y=x(38+2﹣2x)=﹣2x2+40x=﹣2(x﹣10)2+200,∵a=﹣2<0,38+2﹣2×10=20<22,∴当x=10时,y最大值=200,答:当AB=10时,仓库的最大面积为200平方米.知识点3:利用二次函数求最大利润1.利用二次函数求最大利润(或收益)的步骤:(1)引入自变量;(2)用含自变量的_______分别表示销售单价或销售收入及销售量;(3)用含自变量的_______表示销售的商品的单件利润;(4)用函数及含自变量的_______分别表示销售利润即可得到函数关系式;(5)根据函数关系式求出_______及取得_______时自变量的值.2. 等量关系利润=总售价总成本利润=单件利润×销售量=(售价成本)×销售量利润利润率=%100成本【例1】为了推进乡村振兴战略,提升茶叶的品牌竞争力,某地政府在新茶上市30天内,帮助茶农集中销售.设第x天(x为整数)的售价为y(元/斤),日销售额为w(元).据销售记录知:销量:第1天销量为42斤,以后每天比前一天多销售2斤;价格:前12天的价格一直为500元/斤,从第13天开始价格每天比前一天少10元.请根据以上信息,解决问题:(1)当13≤x≤30时,写出y关于x的函数表达式;(2)当x为何值时日销售额w最大,最大为多少?(3)若要保证第13天到第22天的日销售额w随x增大而增大,则价格需要在当天的售价基础上上涨m元/斤,则整数m的最小值为.(直接写出结果)【考点】二次函数的应用.【解答】解:(1)由题意得y=500﹣10(x﹣12)=﹣10x+620(13≤x≤30);(2)由题意得,销售量为42+2(x﹣1)=2x+40,当1≤x≤12时,则w=500(2x+40)=1000x+20000,当x=12时,w取最大值为1000×12+20000=32000,当13≤x≤30时,则w=y(2x+40)=(﹣10x+620)(2x+40)=﹣20(x﹣21)2+33620,∵﹣20<0,∴当x=21时,w取最大值为33620,∵33620>32000,∴当x=21时,w取最大值为33620,答:当x为第21天时日销售额w最大,最大为33620元;(3)依题意w=(y+m)⋅(2x+40)=(﹣10x+620+m)(2x十40)=﹣20x2+2(m+420)x+40(m+620),∵第13天到第22天的日销售额w随x增大而增大,∵对称轴,得m≥20,故m的最小值为20,故答案为:20.【例2】科研公司向市场推出了一款创新产品,该产品的成本价格是40元/件,销售价格y(元/件)与销售量x(件)之间满足函数关系y=﹣x+80.(1)求销售利润w(元)关于x的函数表达式;当销售量为多少时,销售利润最大?最大利润是多少?(2)该科研公司不断创新,降低产品成本价格,预估当销售量在120件以上时,销售利润达到最大,此时该产品的成本价格应低于多少?【考点】二次函数的应用.【解答】解:(1)由题意得:w=(y﹣40)x=(﹣x+80)x=﹣+40x=﹣(x﹣100)2+2000,∵﹣<0,∴当x=100时,利润最大,最大利润为2000元,∴销售利润w关于x的函数表达式w=﹣x2+40x,当销售量为100件时,销售利润最大,最大利润是2000元;(2)设该产品成本为m元时销售量在120件以上,销售利润最大,由题意得:w=(y﹣m)x=(﹣x+80﹣m)x=﹣x2+(80﹣m)x,∵﹣<0,∴w在对称轴处取得最大值,∴对称轴直线为x=﹣=﹣>120,解得:m<32,∴该产品的成本价格应低于32元.【变式训练1】砀山酥梨是安徽名优特产,为铺开销售渠道,当地政府引导果农进行网络销售.在试销售期间发现,该梨的月销售量y(千克)与销售单价x(元)成一次函数关系,图象如图所示,已知该梨的销售成本为5元/千克.(1)求y与x的函数关系式(不需写出自变量的取值范围);(2)求销售该梨每月可获得的最大利润;(3)在销售后期,该梨每千克的保鲜成本增加了1元,若月销售量y(千克)与销售单价x(元)保持(1)中的函数关系不变,当该梨的月销售利润是105000元时,在最大限度减少库存的条件下,求x的值.【考点】一元二次方程的应用;二次函数的应用.【解答】解:(1)设y与x的函数关系式为y=kx+b,由题意得,,解得,即y与x的函数解析式是y=﹣20000x+220000;(2)由题意可得,W=(x﹣5)(﹣20000x+220000)=﹣20000x2+3200000x﹣1100000=﹣2(x﹣8)2+180000,∵﹣20000<0,∴当x=8时,W最大是180000,∴最大利润是180000元;(3)由题意得,(x﹣5﹣1)(﹣20000x+220000)=105000,解得x1=7.5,x2=9.5.∵单价最低销量最大,∴在最大限度减少库存的条件下,x=7.5.【变式训练2】某公司计划组织员工去武夷山风景区三日游,人数估计在25~45人.已知某旅行社的收费方案为:如果人数超过20人且不超过30人,人均收费为1000元;如果超过30人且不超过50人,则每增加1人,人均收费降低10元.设该公司旅游人数为x(人),人均收费为y(元).(1)求y与x之间的关系式;(2)若旅行社此次带团的导游工资和车辆等固定成本为6000元,游客的吃住和门票等其他成本为600元/人.请你分析:旅行社带团接待旅游人数多少人时,旅行社所获利润w(元)最大,最大利润是多少?(利润=总收费﹣固定成本﹣其他成本)【考点】一次函数的应用;二次函数的应用.【解答】解:(1)由题意可得,当25≤x≤30时,y=1000,当30<x≤45时,y=1000﹣(x﹣30)×10=﹣10x+1300,由上可得,y与x的函数关系式为y=;(2)由题意可得,当25≤x≤30时,w=1000x﹣6000﹣600x=400x﹣6000,∵k=400>0,∴w随x的增大而增大,∴当x=30时,w取得最大值,此时w=400×30﹣6000=6000;当30<x≤45时,w=(﹣10x+1300)x﹣6000﹣600x=﹣10x2+700x﹣6000=﹣10(x﹣35)2+6250,∴当x=35时,w取得最大值,此时W=6250;由上可得,旅行社带团接待旅游人数35人时,旅行社所获利润w(元)最大,最大利润是6250元.1.A、B两地果园分别有橘子40吨和60吨,C、D两地分别需要橘子30吨和70吨;已知从A、B到C、D的运价如表:到C地到D地A果园每吨15元每吨12元B果园每吨10元每吨9元(1)若从A果园运到C地的橘子为x吨,则从A果园运到D地的橘子为吨,从A果园将橘子运往D地的运输费用为元;(2)设总运费为y元,请你求出y关于x的函数关系式;(3)求总运输费用的最大值和最小值;(4)若这批橘子在C地和D地进行再加工,经测算,全部橘子加工完毕后总成本为w元,且w=﹣(x﹣25)2+4360.则当x=时,w有最值(填“大”或“小”).这个值是.【考点】二次函数的应用.【解答】解:(1)因为从A果园运到C地的橘子是x吨,那么从A果园运到D地的橘子为(40﹣x)吨,从A运到D地的运费是12元每吨,所以A果园将橘子运往D地的运输费用为12(40﹣x)吨.故答案为:(40﹣x),12(40﹣x);(2)从A果园运到C地x吨,运费为每吨15元;从A果园运到D地的橘子为(40﹣x)吨,运费为每吨12元;从B果园运到C地(30﹣x)吨,运费为每吨10元;从B果园运到D地(30+x)吨,运费为每吨9元;则y=15x+12(40﹣x)+10(30﹣x)+9(30+x)=2x+1050;故y关于x的函数关系式为y=2x+1050;(3)因为总运费y=2x+1050,当x=30时,有最大值2×30+1050=1110元;当x=0时,有最小值2×0+1050=1050元;(4)w=﹣(x﹣25)2+4360,因为二次项系数﹣1<0,所以抛物线开口向下,当x=25时,w有最大值.最大值时4360.故答案为:25,大,4360.2.已知二次函数y=ax2﹣bx﹣3的图象经过点(﹣1,0)(3,0).(1)求a,b的值;(2)求当﹣3≤x≤2时,y的最大值与最小值的差;(3)一次函数y=(m﹣2)x+m﹣2的图象与二次函数y=ax2﹣bx﹣3的图象的交点坐标是(x1,y1),(x2,y2)且x1<0<x2时,求函数w=y1﹣y2的最大值.【考点】二次函数综合题.【解答】解:(1)将(﹣1,0)(3,0)代入y=ax2﹣bx﹣3得:,解得.(2)由(1)得y=x2﹣2x﹣3=(x﹣1)2﹣4,∴当x<1时y随x增大而减小,当x>1时y随x增大而增大,∵1﹣(﹣3)>2﹣1,∴当x=1时,y取最小值﹣4,当x=﹣3时,y取最大值12,∴y的最大值与最小值的差为12﹣(﹣4)=16.(3)当x=﹣1时y=﹣(m﹣2)+m﹣2=0,∴直线y=(m﹣2)x+m﹣2经过定点(﹣1,0),∵x1<0<x2,∴x1=﹣1,y1=0,∵抛物线顶点坐标为(1,﹣4),∴y2≥﹣4,∴y1﹣y2≤0﹣(﹣4)=4,∴w=y1﹣y2的最大值为4.3.某水果批发商销售热带水果,其进价为8元/千克,当销售单价定为10元时,每天可售出300千克.根据市场行情,现决定增加销售价格.市场调查反映:销售单价每增加2元,则每天少售出100千克,若该热带水果的销售单价为x(元),每天的销售量为y(千克).(1)求每天的销售量y(千克)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,每天销售这种热带水果的利润最大,最大利润为多少元?【考点】二次函数的应用.【解答】解:(1)=﹣50x+800,∴每天的销售量y与销售单价x之间的函数关系式y=﹣50x+800;(2)设每天的销售利润为w元,则w=(x﹣8)(﹣50x+800)=﹣50x2+1200x﹣6400=﹣50(x﹣12)2+800,∵a=﹣50<0,∴二次函数开口向下,∴w有最大值,∴x=12时,w最大,此时w最大=800元,答:当销售单价为12元时,每天的销售利润最大,最大利润为800元.4.某商场销售一种小商品,进货价为8元/件.当售价为10元/件时,每天的销售量为100件.在销售过程中发现:y=80﹣(x﹣24)×5=﹣5x+200,∵物价部门规定,售价不得低于进价且不得高于进价的150%,∴20≤x≤20×150%,即20≤x≤30,答:超市销售该品牌猪肉y(斤)和每天售价x(元)之间的函数关系式是y=﹣5x+200(20≤x≤30);(2)设利润为w元,由题意可得,w=(x﹣20﹣a)(﹣5x+200)=﹣5x2+5(60+a)x﹣4000﹣200a,∴该函数的对称轴为直线x=﹣=30+,∵a>0,∴30+>30,∵﹣5<0,∴该函数图象开口向下,在对称轴左侧y随x的增大而增大,∵20≤x≤30,销售该品牌猪肉平均需要缴纳卫生检疫费a元/斤,最终每天最大利润可达400元,∴当x=30时,w=400,即400=﹣5×302+5(60+a)×30﹣4000﹣200a,解得a=2,即a的值是2.6.把一个足球垂直地面向上踢,t(秒)后该足球的高度h(米)适用公式h=20t﹣5t2.(1)分别计算当t=1,t=3时,足球的高度;(2)当足球回到地面时;①直接写出此时h的值;②计算此时t的值.【考点】二次函数的应用.【解答】解:(1)当t=1时,h=20﹣5=15,当t=3时,h=20×3﹣5×32=60﹣45=15;答:当t=1和t=3时,足球的高度都是15米;(2)①当足球回到地面时,h=0;②当h=0时,20t﹣5t2=0,解得:t1=0(舍),t2=4.7.某商家正在热销一种商品,其成本为30元/件,在销售过程中发现随着售价增加,销售量在减少.商家决定当售价为60元/件时,改变销售策略,此时售价每增加1元需支付由此产生的额外费用150元.该商品销售量y (件)与售价x(元/件)满足如图所示的函数关系(其中40≤x≤70,且x为整数).(1)直接写出y与x的函数关系式;(2)当售价为多少时,商家所获利润最大,最大利润是多少?【考点】二次函数的应用.【解答】解:(1)设线段AB的表达式为:y=kx+b(40≤x≤60),将点(40,300)、(60,100)代入上式得:,解得:,∴函数的表达式为:y=﹣10x+700(40≤x≤60),设线段BC的表达式为:y=mx+n(60<x≤70),将点(60,100)、(70,150)代入上式得:,解得:,∴函数的表达式为:y=5x﹣200(60<x≤70),∴y与x的函数关系式为:y=;(2)设获得的利润为w元,①当40≤x≤60时,w=(x﹣30)(﹣10x+700)=﹣10(x﹣50)2+4000,∵﹣10<0,∴当x=50时,w有最大值,最大值为4000元;②当60<x≤70时,w=(x﹣30)(5x﹣200)﹣150(x﹣60)=5(x﹣50)2+2500,∵5>0,∴当60<x≤70时,w随x的增大而增大,∴当x=70时,w有最大,最大值为:5(70﹣50)2+2500=4500(元),综上,当售价为70元时,该商家获得的利润最大,最大利润为4500元.8.如图,某小区有一块靠墙(墙的长度不限)的矩形空地ABCD,为美化环境,用总长为100m的篱笆围成四块矩形花圃(靠墙一侧不用篱笆,篱笆的厚度不计).(1)若四块矩形花圃的面积相等,求证:AE=3BE;(2)在(1)的条件下,设BC的长度为xm,矩形区域ABCD的面积为ym2,求y与x之间的函数关系式,并写出自变量x的取值范围.【考点】二次函数的应用.【解答】解:(1)证明:∵矩形MEFN与矩形EBCF面积相等,∴ME=BE,AM=GH.∵四块矩形花圃的面积相等,即S矩形AMND=2S矩形MEFN,∴AM=2ME,∴AE=3BE;(2)∵篱笆总长为100m,∴2AB+GH+3BC=100,即,∴.设BC的长度为xm,矩形区域ABCD的面积为ym2,则,∵,∴BE=10﹣x>0,解得x<,∴(0<x<).9.有一块矩形地块ABCD,AB=20米,BC=30米.为美观,拟种植不同的花卉,如图所示,将矩形ABCD分割成四个等腰梯形及一个矩形,其中梯形的高相等,均为x米.现决定在等腰梯形AEHD和BCGF中种植甲种花卉;在等腰梯形ABFE和CDHG中种植乙种花卉;在矩形EFGH中种植丙种花卉.甲、乙、丙三种花卉的种植成本分别为20元/米2、60元/米2、40元/米2,设三种花卉的种植总成本为y元.(1)当x=5时,求种植总成本y;(2)求种植总成本y与x的函数表达式,并写出自变量x的取值范围;(3)若甲、乙两种花卉的种植面积之差不超过120平方米,求三种花卉的最低种植总成本.【考点】二次函数的应用.【解答】解:(1)当x=5时,EF=20﹣2x=10,EH=30﹣2x=20,y=2×(EH+AD)×20x+2×(GH+CD)×x×60+EF•EH×40=(20+30)×5×20+(10+20)×5×60+20×10×40=22000;(2)EF=(20﹣2x)米,EH=(30﹣2x)米,参考(1),由题意得:y=(30+30﹣2x)•x•20+(20+20﹣2x)•x•60+(30﹣2x)(20﹣2x)•40=﹣400x+24000(0<x<10);(3)S甲=2×(EH+AD)×x=(30﹣2x+30)x=﹣2x2+60x,同理S乙=﹣2x2+40x,∵甲、乙两种花卉的种植面积之差不超过120米2,∴﹣2x2+60x﹣(﹣2x2+40x)≤120,解得:x≤6,故0<x≤6,而y=﹣400x+24000随x的增大而减小,故当x=6时,y的最小值为21600,即三种花卉的最低种植总成本为21600元.10.如图1,排球场长为18m,宽为9mm,队员站在底线O点处发球,球从点Om的C点发出,运动路线是抛物线的一部分,当球运动到最高点Am,即BAm,这时水平距离OB=7m,以直线OB为x轴,直线OC为y轴,建立平面直角坐标系,如图2.(1)若球向正前方运动(即x轴垂直于底线),求球运动的高度y(m)与水平距离x(m)之间的函数关系式(不必写出x取值范围).并判断这次发球能否过网?是否出界?说明理由.(2)若球过网后的落点是对方场地①号位内的点P(如图1,点P距底线1mm),问发球点O在底线上的哪个位置?(参考数据:取1.4)【考点】二次函数的应用.【解答】解:(1)设抛物线的表达式为:y=a(x﹣7)2+2.88,将x=0,y=1.9代入上式并解得:a=﹣,故抛物线的表达式为:y=﹣(x﹣7)2+2.88;当x=9时,y=﹣(x﹣7)2+2.88=2.8>2.24,当x=18时,y=﹣(x﹣7)2+2.88=0.46>0,故这次发球过网,但是出界了;(2)如图,分别过点O,P作边线的平行线交于点Q,在Rt△OPQ中,OQ=18﹣1=17,当y=0时,﹣(x﹣7)2+2.88=0,解得:x=19或﹣5(舍去﹣5),∴OP=19,而OQ=17,故PQ=6=8.4,∵9﹣8.4﹣0.5=0.1,∴发球点O在底线上且距右边线0.1米处.11.某游乐场的圆形喷水池中心O有一雕塑OA,从A点向四周喷水,喷出的水柱为抛物线,且形状相同.如图,以水平方向为x轴,点O为原点建立直角坐标系,点A在y轴上,x轴上的点C,D为水柱的落水点,水柱所在抛物线(第一象限部分)的函数表达式为y=﹣(x﹣5)2+6.(1)求雕塑高OA.(2)求落水点C,D之间的距离.(3)若需要在OD上的点E处竖立雕塑EF,OE=10m,EFm,EF⊥OD.问:顶部F是否会碰到水柱?请通过计算说明.【考点】二次函数的应用.【解答】解:(1)当x=0时,y=﹣(0﹣5)2+6=,∴点A的坐标为(0,),∴雕塑高m.(2)当y=0时,﹣(x﹣5)2+6=0,解得:x1=﹣1(舍去),x2=11,∴点D的坐标为(11,0),∴OD=11m.∵从A点向四周喷水,喷出的水柱为抛物线,且形状相同,∴OC=OD=11m,∴CD=OC+OD=22m.(3)当x=10时,y=﹣(10﹣5)2+6=,∴点(10,)在抛物线y=﹣(x﹣5)2+6上.又∵≈1.83>1.8,∴顶部F不会碰到水柱.一、这节课我们学了哪些知识?二、本节课我做的比较好的地方是:三、本节课我还需要努力的地方是:。
中考数学第一轮复习教案9篇
中考数学第一轮复习教案9篇中考数学第一轮复习教案9篇数学教案对于老师是很重要的。
教案是老师在进行教学的重要参考材料,对教学进度和节奏的把控有重要的作用,可以提高教学效率。
下面小编给大家带来关于中考数学第一轮复习教案,希望会对大家的工作与学习有所帮助。
中考数学第一轮复习教案(篇1)本学期是初中学习的关键时期,教学任务非常艰巨。
因此,要完成教学任务,必须紧扣教学大纲,结合教学内容和学生实际,把握好重点、难点,努力把本学期的任务圆满完成。
九年级毕业班总复习教学时间紧,任务重,要求高,如何提高数学总复习的质量和效益,是每位毕业班数学教师必须面对的问题。
下面特制定以下教学复习计划。
一、学情分析经过前面五个学期的数学教学,本班学生的数学基础和学习态度已经明晰可见。
通过上个学期多次摸底测试及期末检测发现,本班的特点是两极分化现象极为严重。
虽然涌现了一批学习刻苦,成绩优异的优秀学生,但后进学生因数学成绩十分低下,厌学情绪非常严重,基本放弃对数学的学习了。
其次是部分中等学生对前面所学的一些基础知识记忆不清,掌握不牢。
二、指导思想坚持贯彻党的__大教育方针,继续深入开展新课程教学改革。
立足中考,把握新课程改革下的中考命题方向,以课堂教学为中心,针对近年来中考命题的变化和趋势进行研究,积极探索高效的复习途径,夯实学生数学基础,提高学生做题解题的能力,和解答的准确性,以期在中考中取得优异的数学成绩。
并通过本学期的课堂教学,完成九年级下册数学教学任务及整个初中阶段的数学复习教学。
三、教学内容分析本学期,除了要完成规定的所学内容,就将开始进入初中数学总复习,将九年制义务教育数学课本教学内容分成代数、几何两大部分,其中初中数学教学中的六大版块即:“实数与统计”、“方程与函数”、“解直角三角形”、“三角形”、“四边形”、“圆”是学业考试考中的重点内容。
在《课标》要求下,培养学生创新精神和实践能力是当前课堂教学的目标。
在近几年的中考试卷中逐渐出现了一些新颖的题目,如探索开放性问题,阅读理解问题,以及与生活实际相联系的应用问题。
中考数学第一轮复习教案(实数、整式、分式、根式)
中考总习1 实数1、平方根定义1:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根。
a 的算术平方根记作a ,读作“根号a ”,a 叫做被开方数。
即a x =。
规定:0的算术平方根是0。
定义2:一般地,如果一个数的平方等于a ,那么这个数叫做a 的平方根或二次方根。
即如果x 2=a ,那么x 叫做a 的平方根。
即a x ±=。
定义3:求一个数a 的平方根的运算,叫做开平方。
因为一个非零实数的平分肯定是正数,所以,正数有两个平方根,它们互为相反数;例如:4的平分根为±2,是互为相反数的;0的平方根是0;负数没有平方根。
2、立方根定义:一般地,如果一个数的立方等于a ,那么这个数叫做a 的立方根或三次方根。
即如果x 3=a ,那么x 叫做a 的立方根,记作3a 。
即3a x =。
求一个数的立方根的运算,叫做开立方。
正数的立方根是正数;负数的立方根是负数;0的立方根是0。
3、无理数无限不循环小数又叫做无理数。
初中常见的无理数有:带有根号开不出来的式子,例如:、、等等;带有的式子,例如: ,等等;无限不循环小数,例如:1.325…,-0.2587…等等4、实数有理数和无理数统称实数。
即实数包括有理数和无理数。
备注:最小的正整数是1,最大的负整数是-1,绝对值最小的数是0。
有理数关于相反数和绝对值的意义同样适合于实数。
例如:3-的相反数为3,倒数为3331-=-,3-的绝对值为。
5、实数的分类分法一:负有理数 0 无理数 实数有理数正有理数负无理数 正无理数 有限小数或 无限循环小数无限不循环小数 知识要点分法二:实数 0由上可知,一个数要是分数,前提必须是有理数,所以,不是所有的a/b 这样的数,都是分数。
例如:不是分数,是无理数。
6、实数的比较大小有理数的比较大小的法则在实数范围内同样适用。
备注:遇到有理数和带根号的无理数比较大小时,让“数全部回到根号下”,再比较大小。
中考数学第一轮复习《方程与不等式的综合应用》教案
方程与不等式的综合运用学习目标:1.进一步加强方程(组)与不等式(组)的之间的联系;2.会运用方程(组)或不等式(组)模型解决实际问题, .在问题解决的过程中理解数学思想方法.学习重点:方程(组)或不等式(组)的综合运用学习难点:方程(组)或不等式(组)的综合运用课前准备:下列问题你能不能不用老师点拨就把别人讲懂?请先尝试看,看自己有无“漏洞”.问题1:若不等式组2x x a<⎧⎨≥⎩ 无解,那么a 的取值范围是 问题2:如果关于x 的方程3211ax x x =-++ 无解,则a 的值为判断方程ax bx c ++=0(a ≠0,a,b,c 为常数)一个解x 的范围是( )A 、 3<x<3.23B 、 3.23<x<3.24C 、 3.24<x<3.25D 、 3.25<x<3.26问题4:甲、乙两人完成一项工作,甲先做了3天,然后乙加入合作,完成剩下的工作,设工作总量为1,A.9 B.10 C.11 D.12问题5:某商场计划拨款9万元从厂家购进50台电视机。
已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元。
(1)商场同时购进其中两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案;(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元,在同时购进两种不同型号的电视机的方案中,为使销售时获利最多,你选择哪种进货方案?(3)若商场准备用9万元同时购进三种不同型号的电视机50台,请你设计进货方案。
教学过程(一)与大家交流你的“课前准备”是否有“漏洞”?你能以知识点或题型给它们分类吗?解决这些问题后,你发现了哪些解题规律或数学思想方法?(二)变一变,你还认识下列问题吗?请运用发现的规律或方法挑战下列问题,试试你的能力吧!问题1:若关于x 的不等式组3155x a x a≥-⎧⎨≤-⎩无解,则二次函数21(2)4y a x x =--+的图象与x 轴( )A. 没有交点 B. 相交于一点 C .相交于两点 D. 相交于一点或没有交点问题2:已知不等式组 111x x x k >-⎧⎪<⎨⎪<-⎩(1)当12k =时,不等式组的解集是 ; 当3=k 时,不等式组的解集是 ;当2-=k 时,不等式组的解集是 ;(2)由(1)知不等式组的解集随实数k的变化而变化,当k 为任意实数时,写出不等式组的解集。
中考数学总复习教学计划范文(5篇)
中考数学总复习教学计划范文一、学情分析:新学期,根据九年级合班的实际,首先是先摸清底子,稳住学生,然后根据学生学情分布情况,重新划分学习小组,对新来的学生,做好各方面的工作,使他们迅速适应新环境,然后,尽快帮他们找到新的学习榜样和新学伴,帮他们树立竞争意识和发展意识以及创新意识,鼓励大家在新学期,获得更大的进步,取得更大的发展。
二、教学内容本学期所教九年级数学包括第二十一章《二次根式》,第二十二章《一元二次方程》,第二十三章《旋转》,第二十四章《圆》。
第二十五章《概率初步》。
代数三章,几何两章。
而且本学期要授完下册第二十七章内容。
三、教学目标:本学期的主要教学任务目标:(1)根据学情,调整好教学进度,优化学习方法,激活知识积累。
(2)形成知识网络,解决实际问题。
(3)强化规范训练,提高应考能力。
(4)关注学生特长需求,做好学生心理疏导。
具体的说,教育学生掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算,逐步学会观察分析、综合、抽象、概括。
会用归纳演绎、类比进行简单的推理。
使学生懂得数学来源与实践又反过来作用于实践。
提高学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态度。
顽强的学习毅力和独立思考、探索的新思想。
培养学生应用数学知识解决问题的能力。
知识技能目标:掌握二次根式的概念、性质及计算;会解一元二次方程;理解旋转的基本性质;掌握圆及与圆有关的概念、性质;理解概率在生活中的应用。
过程方法目标:培养学生的观察、探究、推理、归纳的能力,发展学生合情推理能力、逻辑推理能力和推理认证表达能力,提高知识综合应用能力。
态度情感目标:进一步感受数学与日常生活密不可分的联系,同时对学生进行辩证唯物主义世界观教育。
第一学期九年级数学教学进度表周次时间教学内容备注第一周____月____日-____月____日第二十一章二次根式21.1第二周____月____日-____月____日21.221.3第三周____月____日-____月____日21.3数学活动小结第四周____月____日-____月____日第二十二章一元一次方程22.122.2第五周____月____日-____月____日____月____日-____日放假第六周____月____日-____月____日22.3第七周____月____日-____月____日第二十三章旋转23.123.2第八周____月____日-____月____日23.3课题学习数学活动小结第九周____月____日-____月____日第二十四章圆24.____日重阳节第十周____月____日-____月____日24.324.4数学活动小结第十一周____月____日-____月____日期中质量检测第十一周____月____日-____月____日试卷讲评第十二周____月____日-____月____日第二十五章概率初步25.1第十三周____月____日-____月____日25.2第十七周____月____日-____月____日____月____日-____日放假第十八周____月____日-____月____日第二十七章相似27.127.2第十九周____月____日-____日27.227.3第二十周____月____日-____月____日期末复习第二十一周____月____日-____月____日期末质量检测中考数学总复习教学计划范文(二)一、学生基本情况分析我是这个学校的新教师,本学期所带班级为九年级一班学生,化学虽然是一门新增的课程,但是对于成绩差的学生还是不感兴趣,上课注意力不集中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 三角形课时26.几何初步及平行线、相交线【课前热身】1. 如图,延长线段AB 到C ,使4BC =,若8AB =,则线段AC 是BC 的 倍. 2.如图,已知直线a b ∥,135=o ∠,则2∠的度数是 .3.如图,在不等边ABC △中,DE BC ∥,60ADE =o ∠,图中等于60o 的角还有______________. 4.经过任意三点中的两点共可以画出的直线条数是( ) A .一条或三条 B .三条C .两条D .一条5.如图,直线a b ∥,则A ∠的度数是( )A .28oB .31oC .39oD .42o【考点链接】1. 两点确定一条直线,两点之间线段最短._______________叫两点间距离.2. 1周角=__________平角=_____________直角=____________.3. 如果两个角的和等于90度,就说这两个角互余,同角或等角的余角相等;如果_____________________互为补角,__________________的补角相等.4. ___________________________________叫对顶角,对顶角___________.5. 过直线外一点心___________条直线与这条直线平行.6. 平行线的性质:两直线平行,_________相等,________相等,________互补.7. 平行线的判定:________相等,或______相等,或______互补,两直线平行.8. 平面内,过一点有且只有_____条直线与已知直线垂直.(第1题)(第31 2 (第2题) (第47031AB C【典例精析】例1 如图:AB ∥CD ,直线EF 分别交AB 、CD 于BEF ,若∠1=720,则∠2等于多少度? 例2 如图,ABC △中,B C ∠∠,DE BC ∥, 若5BD EC +=,则DE 等于多少?【中考演练】1.(08永州) 如图,直线a 、b 被直线c 所截,若要a ∥ b ,需增加条件_____________.(填一个即可)2.(08义乌) 如图直线l 1//l 2,AB ⊥CD ,∠1=34°,那么∠2的度数是 .3.(08河南) 如图, 已知直线οο25,115,//=∠=∠A C CD AB , 则=∠E ( ) A.ο70B. ο80C. ο90D.ο100( 第1题) ( 第2题) (第3题)4.(08益阳) 如图,在△ABC 中,AB =BC =12cm ,∠ABC =80°,BD 是∠ABC 的平分线,DE ∥BC .(1) 求∠EDB 的度数;(2) 求DE 的长.5. (08宁夏)如图,AB ∥CD , AC ⊥BC ,∠BAC =65°,求∠BCD 度数. ﹡6. (08东莞) 如图,在ΔABC 中,AB =AC =10,BC =8.用尺规作图作BC 边上的中线AD (保留作图痕迹,不要求写作法、证明),并求AD 的长.课时27.三角形的有关概念【课前热身】 1. 如图,在△ABC 中,∠A =70°,∠B =60°,点D 在BC 的延长线上,则∠ACD = 度.2. ABC △中,D E ,分别是AB AC ,的 D B A B CD E C DB 7060A中点,当10cmBC=时,DE= cm.(第1题)3.如图在△ABC中,AD是高线,AE是角平分线,AF中线.(1) ∠ADC==90°; (2) ∠CAE==12;(3) CF==12; (4) S△ABC=.(第3题)(第4题)4.如图,⊿ABC中,∠A = 40°,∠B = 72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF = 度.5.如果两条平行直线被第三条直线所截,一对同旁内角的度数之比为3:6,那么这两个角分别等于°和°.【考点链接】一、三角形的分类:1.三角形按角分为______________,______________,_____________.2.三角形按边分为_______________,__________________.二、三角形的性质:1.三角形中任意两边之和____第三边,两边之差_____第三边2.三角形的内角和为_______,外角与内角的关系:__________________.三、三角形中的主要线段:1.___________________________________叫三角形的中位线.2.中位线的性质:____________________________________________.3.三角形的中线、高线、角平分线都是____________.(线段、射线、直线)【典例精析】例1如图,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°.求∠DAC的度数.例2 如图,已知D 、E 分别是△ABC 的边BC 和边AC 的中点,连接DE 、AD ,若S ABC △=24cm 2,求△DEC 的面积. 例3 如图,在等腰三角形ACB 中,5AC BC ==,8AB =,D 为底边AB 上一动点(不与点A B ,重合),DE AC ⊥,DF BC ⊥,垂足分别为E F ,,求DE DF +的长. 【中考演练】1.在△ABC 中,若∠A =∠C =13∠B ,则∠A = ,∠B = ,这个三角形是 .2. (07深圳)已知三角形的三边长分别为3、8、x ,若x 的值为偶数,则x 的值有( )A. 6个B. 5个C. 4 个D. 3个3.(07济南)已知一个三角形三个内角度数的比是1:5:6,则其最大内角度数为( )A.60° B .75° C.90° D .120°4.如图,AB ∥CD ,AE 平分∠BAC ,CE 平分∠ACD ,求∠E 的度数. 5. 如图,已知DE ∥BC ,CD 是∠ACB 的平分线,∠B =70°,∠ACB =50°,求∠EDC 和∠BDC 的度数.﹡6. △ABC 中,AD 是高,AE 、BF 是角角平分线相交于点O ,∠BAC=50°,∠C=70°,求∠DAC ,∠BOA 的度数.课时28.等腰三角形与直角三角形【课前热身】1.等腰三角形的一个角为50°,那么它的一个底角为______.2. 在△ABC 中,AB =AC ,∠A =50°,BD 为∠ABC 的平分线,则∠BDC =_____°.3.在△ABC 中,AB =AC ,D 为AC 边上一点,且BD =BC =AD .•则∠A 等于( )A .30°B .36°C .45°D .72°(第2题) (第3题) (第4题)E DC B AADC B E4.(07南充)一艘轮船由海平面上A地出发向南偏西40o的方向行驶40海里到达B地,再由B地向北偏西10o的方向行驶40海里到达C地,则A、C两地相距()A.30海里 B.40海里 C.50海里 D.60海里【考点链接】一.等腰三角形的性质与判定:1. 等腰三角形的两底角__________;2. 等腰三角形底边上的______,底边上的________,顶角的_______,三线合一;3. 有两个角相等的三角形是_________.二.等边三角形的性质与判定:1. 等边三角形每个角都等于_______,同样具有“三线合一”的性质;2. 三个角相等的三角形是________,三边相等的三角形是_______,一个角等于60°的_______三角形是等边三角形.三.直角三角形的性质与判定:1. 直角三角形两锐角________.2. 直角三角形中30°所对的直角边等于斜边的________.3. 直角三角形中,斜边的中线等于斜边的______.;4. 勾股定理:_________________________________________.5. 勾股定理的逆定理:_________________________________________________.【典例精析】例1 如图,等腰三角形ABC中,AB=AC,一腰上的中线BD•将这个等腰三角形周长分成15和6两部分,求这个三角形的腰长及底边长.例2 (06包头)《中华人民共和国道路交通管理条例》规定:“小汽车在城市街道上的行驶速度不得超过70千米/时”.•一辆小汽车在一条城市街道上由西向东行驶(如图所示),在距离路边25米处有“车速检测仪O”,•测得该车从P D C B A 北偏西60°的A 点行驶到北偏西30°的B 点,所用时间为1.5秒.(1)试求该车从A 点到B 的平均速度;(2)试说明该车是否超过限速.【中考演练】1.(08湖州)已知等腰三角形的一个底角为70o ,则它的顶角为____________.度. 2.(08白银)已知等腰三角形的一条腰长是5,底边长是6,则它底边上的高为____.3. (08武汉) 如图,小雅家(图中点O处)门前有一条东西走向的公路,经测得有一水塔(图中点A处)在她家北偏东60度500m 处,那么水塔所在的位置到公路的距离AB 是____________. (第3题)4.如图,已知在直角三角形中,∠C=90°,BD 平分∠ABC 且交AC 于D .⑴ 若∠BAC=30°,求证:AD=BD ;⑵ 若AP 平分∠BAC 且交BD 于P ,求∠BPA 的度数.5.(08义乌) 如图,小明用一块有一个锐角为30o 的直角三角板测量树高,已知小明离树的距离为4米,DE 为1.68米,那么这棵树大约有多高?(精确到0.1米) 课时29.全等三角形【课前热身】1.如图1所示,若△OAD ≌△OBC ,且∠O=65°,∠C=20°,则∠OAD=____. AO B 东 北 B AEFCD(第1题) (第2题) (第3题)2.如图2,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( )A.带①去B.带②去C.带③去D.带①和②去3.如图,已知AE ∥BF, ∠E=∠F,要使△ADE ≌△BCF,可添加的条件是________.4. 在⊿ABC 和⊿A /B /C /中,AB=A /B /,∠A=∠A /,若证⊿ABC ≌⊿A /B /C /还要从下列条件中补选一个,错误的选法是( )A. ∠B=∠B /B. ∠C=∠C /C. BC=B /C /,D. AC=A /C /,【考点链接】1.全等三角形:____________、______________的三角形叫全等三角形.2. 三角形全等的判定方法有:_______、______、_______、______.直角三角形全等的判定除以上的方法还有________.3. 全等三角形的性质:全等三角形___________,____________.4. 全等三角形的面积_______、周长_____、对应高、______、_______相等.【典例精析】例1 已知:在梯形ABCD 中,AB//CD ,E 是BC 的中点,直线AE 与DC 的延长线交于点F. 求证:AB=CF.例2 (06重庆)如图所示,A 、D 、F 、B 在同一直线上,AD=BF ,AE=BC ,且AE ∥BC .求证:(1)△AEF ≌△BCD ;(2)EF ∥CD .【中考演练】1.(08遵义)如图,OA OB =,OC OD =,50O ∠=o ,35D ∠=o ,则AEC ∠等于( )A .60oB .50oC .45oD .30o2. ( 08双柏) 如图,点P 在AOB ∠的平分线上,AOP BOP △≌△,则需添加的一个条件是 (只写一个即可,不添加辅助线):(第1题) (第2题) (第3题) 3. ( 08郴州) 如图,D 是AB 边上的中点,将ABC ∆沿过D 的直线折叠,使点A 落在BC 上F 处,若50B ∠=︒,则BDF ∠= __________度.4. (08荆州)如图,矩形ABCD 中,点E 是BC 上一点,AE =AD ,DF ⊥AE 于F ,连结DE ,求证:DF=DC . 5. 如图,AB=AD ,BC=DC ,AC 与BD 交于点E ,由这些条件你能推出哪些结论?(不再添加辅助线,不再标注其它字母,不写推理过程,只要求写出四个你认为正确的结论即可)﹡6. (08东莞) 如图,点O 是线段AD 的中点,分别以AO 和DO 为边在线段AD 的同侧作等边三角形OAB 和等边三角形OCD ,连结AC 和BD ,相交于点E ,连结BC .求∠AEB 的大小. 课时30.相似三角形【课前热身】 1.两个相似三角形对应边上中线的比等于3:2,则对应边上的高的比为______,周长之比为________,面积之比为_________.2.若两个相似三角形的周长的比为4:5,且周长之和为45,则这两个三角形的周长分别为__________.3.如图,在△ABC 中,已知∠ADE=∠B ,则下列等式成立的是E D CB AC BO AE E BC D A OE A BD C A BC D F E( )A .AD AE ABAC = B .AE AD BC BD = C .DE AE BC AB = D .DE AD BC AC= 4.在△ABC 与△A ′B ′C ′中,有下列条件:(1)''''AB BC A B B C =;(2)''''BC AC B C A C =;(3)∠A=∠A ′;(4)∠C=∠C ′. 如果从中任取两个条件组成一组,那么能判断△ABC ∽△A ′B ′C ′的共有多少组( ) A .1 B .2 C .3 D .4【考点链接】一、相似三角形的定义三边对应成_________,三个角对应________的两个三角形叫做相似三角形.二、相似三角形的判定方法1. 若DE ∥BC (A 型和X 型)则______________.2. 射影定理:若CD 为Rt △ABC 斜边上的高(双直角图形)则Rt △ABC ∽Rt △ACD ∽Rt △CBD 且AC 2=________,CD 2=_______,BC 2=__ ____.3. 两个角对应相等的两个三角形__________.4. 两边对应成_________且夹角相等的两个三角形相似.5. 三边对应成比例的两个三角形___________.三、相似三角形的性质1. 相似三角形的对应边_________,对应角________.2. 相似三角形的对应边的比叫做________,一般用k 表示.3. 相似三角形的对应角平分线,对应边的________线,对应边上的_______•线的比等于_______比,周长之比也等于________比,面积比等于_________.【典例精析】例1 在△ABC 和△DEF 中,已知∠A=∠D ,AB=4,AC=3,DE=1,当DF 等于多少时,A(3,0) 0 x y 这两个三角形相似. 例2 如图,△ABC 是一块锐角三角形余料,边BC=120mm ,高AD=80mm ,•要把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在AB 、AC 上,•这个正方形零件的边长是多少?例3 一般的室外放映的电影胶片上每一个图片的规格为:3.5cm ×3.5cm ,放映的荧屏的规格为2m ×2m ,若放映机的光源距胶片20cm 时,问荧屏应拉在离镜头多远的地方,放映的图象刚好布满整个荧屏?【中考演练】1.(08大连)如图,若△ABC ∽△DEF ,则∠D 的度数为______________.2. (08杭州) 在Rt ABC ∆中, C ∠为直角, AB CD ⊥于点D ,5,3==AB BC ,写出其中的一对相似三角形是 _ 和 _ ; 并写出它的面积比_____. (第1题) (第2题) (第3题)3.( 08常州) 如图,在△ABC 中,若DE ∥BC,AD DB =12,DE =4cm,则BC 的长为 ( ) A.8cm B.12cm C.11cm D.10cm4. (08无锡) 如图,已知E 是矩形ABCD 的边CD 上一点,BF AE ⊥于F ,试证明ABF EAD △∽△.课时31.锐角三角函数【课前热身】1.(06黑龙江)在△ABC 中,∠C =90°,BC=2,sinA =23,则AC 的长是( )A .5B .3C .45D .132.Rt ∆ABC 中,∠C=︒90,∠A ∶∠B=1∶2,则sinA 的值( )A .21B .22C .23D .13.如图,在平面直角坐标系中,已知点A (3,0),点B (0,-4),则cos OAB ∠ 等于_______.4.︒+︒30sin 130cos =____________.【考点链接】1.sin α,cos α,tan α定义sin α=____,cos α=_______,tan α=______ . 2.特殊角三角函数值 【典例精析】例1 在Rt △ABC 中,a =5,c =13,求sinA ,cosA ,tanA . 例2计算:4sin 304560︒︒+︒.例3 等腰△ABC 中,AB =AC =5,BC =8,求底角∠B 的四个三角函数值.【中考演练】1.(08威海) 在△ABC 中,∠C = 90°,tan A =13,则sin B =( )A .B .23C .34D 2.若3cos 4A =,则下列结论正确的为( )A . 0°< ∠A < 30°B .30°< ∠A < 45°C . 45°< ∠A < 60°D .60°< ∠A < 90°3. (08连云港) 在Rt ABC △中,90C ∠=o ,5AC =,4BC =,则tan A = .4.(07济宁) 计算οοο45tan 30cos 60sin -的值是 . 5. 已知3tan 0 A =∠A =则 . 6.△ABC 中,若(sinA -12)2+|2-cosB|=0,求∠C 的大小. ﹡7.(07长春)图中有两个正方形,A ,C 两点在大正方形的对角线上,△HAC•是αab c等边三角形,若AB=2,求EF 的长.﹡8. 矩形ABCD 中AB =10,BC =8, E 为AD 边上一点,沿BE 将△BDE 对折,点D 正好落在AB 边上,求 tan ∠AFE .课时32.解直角三角形及其应用【课前热身】1.如图,太阳光线与地面成60°角,一棵倾斜的大树与地面成30°角,这时测得大树在地面上的影子约为10米,则大树的高约为________米.(结果保留根号)(第1题) 2. 某坡面的坡度为13_______度.3.(07山东)王英同学从A 地沿北偏西60o 方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地 ( )A .150mB .350mC .100 mD .3100m【考点链接】1.解直角三角形的概念:在直角三角形中已一些_____________叫做解直角三角形. 2.解直角三角形的类型:已知____________;已知___________________.3.如图(1)解直角三角形的公式:(1)三边关系:__________________. (2)角关系:∠A+∠B =_____,_E _ A _F _ D_ C _ B _O _ H _ G F A DE(3)边角关系:sinA=___,sinB=____,cosA=_______.cosB=____,tanA=_____ ,tanB=_____.4.如图(2)仰角是____________,俯角是____________.5.如图(3)方向角:OA :_____,OB :_______,OC :_______,OD :________. 6.如图(4)坡度:AB 的坡度i AB =_______,∠α叫_____,tanα=i =____.(图2)(图3) (图4)【典例精析】 例1 Rt ABC ∆的斜边AB =5, 3cos 5A =,求ABC ∆中的其他量.例2 (08十堰) 海中有一个小岛P ,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A 测得小岛P 在北偏东60°方向上,航行12海里到达B 点,这时测得小岛P 在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由.例3(07辽宁)为了农田灌溉的需要,某乡利用一土堤修筑一条渠道,在堤中间挖出深为1.2米,下底宽为2米,坡度为1:0.8的渠道(其横断面为等腰梯形),并把挖出来的土堆在两旁,使土堤高度比原来增加了0.6米.(如图所示) 求:(1)渠面宽EF ;(2)修200米长的渠道需挖的土方数.【中考演练】1.在Rt ABC ∆中,090C ∠=,AB =5,AC =4,则 sinA 的值是_________. 2.(07乌兰察布)升国旗时,某同学站在离旗杆24m 处行注目礼,当国旗升至旗杆O A BC顶端时,该同学视线的仰角恰为30°,若两眼距离地面1.2m,则旗杆高度约为_______.,结果精确到0.1m)1.733.(07云南)已知:如图,在△ABC中,∠B = 45°,∠C = 60°,AB = 6.求BC 的长. (结果保留根号)﹡4.(06哈尔滨)如图,在测量塔高AB时,选择与塔底在同一水平面的同一直线上的C、D两点,用测角仪器测得塔顶A的仰角分别是30°和60°.已知测角仪器高CE=1.5米,CD=30米,求塔高AB.(保留根号)。