2019新北师大数学八年级下册:分式与分式方程5.4分式方程第1课时分式方程的概念与列分式方程练习课件
北师大版八年级数学下册 第五章 分式与分式方程 5.2 分式的乘除法 教案
数学八年级下北师大版第五章第二节《分式的乘除法》教学设计一、内容分析1. 教材的地位及作用本节课为北师大版数学教材八年级下册第五章《分式与分式方程》第二节《分式的乘除法》的内容,本节课是学生初中阶段代数部分学习的一个重要内容.在知识的联系上,本节是在学习了分式基本性质、分式的约分和因式分解的基础上,进一步学习分式的乘除法;另一方面,又为学习分式加减法和分式方程等知识奠定了基础.在能力的培养上,学生的运算能力和逻辑思维能力得到了发展和提高.在数学思想方法上,本节课是培养学生类比的一个好素材,同时培养了学生的探索精神和用数学的意识.2. 学情分析(1)从心理学的分析来说,初二学生处于逻辑抽象的起点,思维发展的转折点,表现从经验型思维向理论型思维转化的特点.他们身心发展较快,对事物发展的好奇心强,有一定的求知欲,需要我们不断引导.(2)经过七年级的学习,学生已经具备了一定的知识储备知识技能和良好的数学学习习惯,并且学生已经学习分式基本性质、分式的约分和因式分解,通过与分数的乘除法类比,促进知识的正迁移.(3)八年级的学生接受能力、思维能力、自我控制能力都有很大变化和提高,自学能力较强,通过类比学习加快知识的学习.3. 教学目标(1)知识技能:理解分式的乘除运算法则;会进行简单的分式的乘除法运算.(2)数学思考:经历探索分式的乘除法法则的过程,让学生熟悉“数、式通性”“类比、转化”的数学思想方法,感知数学知识具有普遍的联系性.(3)问题解决:会用分式乘除法法则进行分式乘除法运算,并能解决简单的实际问题,增强应用意识,提高实践能力.(4)情感态度:通过师生观察、猜想、讨论、交流、归纳,培养学生合作探究的意识和能力,同时增强学生的创新意识和应用意识,使学生体验在数学学习活动中探索与创造的乐趣,了解数学的价值,同时化简分式的最简结果也让学生感受到数学的简洁美.4.教学重点难点重点:分式乘除法的法则及应用.难点:分子分母是多项式的分式的乘除法运算.二、教法学法1. 教法分析教育的本质在于引导的艺术,为了充分调动学生学习的积极性,培养学生的运算能力,使本节课教学丰富有效,本课的教法为:在教师的引导下学生经历“类比分数――观察猜想――归纳明晰――理解应用”的活动过程,体会知识的形成和应用,感受学习过程中数学方法的渗透.采用ppt辅助课堂教学,直观呈现教学素材,激发学生的学习兴趣,提高学习效率,体验在数学学习活动中探索的乐趣,体会数学的应用价值.2. 学法指导学习过程中,充分引导学生积极思维,让每个学生都动口、动手、动脑,让学生在自主探索、合作交流中加深理解分式的乘除运算,充分发挥学生学习的主动性.三、教学过程环节过程设计学生活动教师活动设计意图情境引入请你来帮忙!同学们,请你们来帮助老师算一算老师在火星上的体重是变重了还是变轻了?学生积极运算并回答.教师根据学生的回答板书算式:162738239183291=⨯⨯=⨯该问题的提出,立刻给课堂注入活力,极大的激发了学生的学习兴趣,同时引出分数的乘除法,为后面类比得到分式的乘除法做好准备,同时数学的应用价值也得以体现.探究新知1.复习分数的乘法法则162738239183291=⨯⨯=⨯叙述法则并填空:两个分数相乘, 把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;2.复习分数的除法法则学生独立运算,回忆并能够语言描述分数的乘除法法则.通过引例得到分数乘法算式,启发引导学生依据算理回顾分数乘法法则.以同样思路复习回顾分数的除法法则.分数的除法运算关键在与将除法运算转化3364823913829183291=⨯⨯=⋅=÷ 叙述法则:两个分数相除, 把除式的分子分母颠倒位置后,再与被除式相乘. 3. 类比得分式的乘法法则归纳分式的乘法法则:两个分式相乘, 把分子相乘的积作为积的分子,把分母相乘的积作为积的分母; 4. 类比得分式的除法法则归纳分式的乘法法则:两个分式相除, 把除式的分子分母颠倒位置后再与被除式相乘. 5.分式乘法拓展-分式乘方:n na ba b 与n⎪⎪⎭⎫ ⎝⎛有什么关系? 分析:教师引导提问,提示学生类比分数的乘除法运算法则.学生全面参与,独立思考,广泛交流,自主归纳出法则.学生思考并解答,教师为乘法运算,体现转化思想.类比分数的乘除法法则得到分式的乘除法则,由学生自己尝试探索猜想、归纳总结,把课堂还给学生,激发学生自主学习的积极性.探索的过程体现了从特殊到一般的思想方法,符合学生的认知规律,易于学生理解、接受,同时培养学生观察分析、猜想、归纳的能力,及有条理的思维和表达的能力.该问题是分式乘法的延伸,即分式的乘方.学生应理解其推导过程,明确算理,同时也是对乘法法则的深入理解.a b a b a b a b a b ⋅⋅⋅⋅⋅=⎪⎪⎭⎫ ⎝⎛n(乘方的意义) a a a a bb b b ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=(分式乘法法则)nn a b =(乘方的意义)强调:1. 分式乘除法运算的根据是分式乘除法法则,实质是分式约分,而分式约分的根据是分式的基本性质;2. 当分式的分子分母中有多项式时,先分解因式,再进行乘除运算;3. 分式乘除的最后结果要化成最简分式或整式. 点拨思路.应用新知典例分析 例1 计算:223a 2y 4y 3a )1(⋅ x 6y(2)3xy 22÷ 例2 计算: a 2a 12-a 2a (1)2+⋅+ 4a 1a 44a -a 1-a (2)222--÷+ 教师点拨: 1.分式乘除法运算的根据是分式乘除法法则,实质是分式约分,而分式约分的根据是分式的基本性质.2.当分式的分子分母中有多项式时,先分解因式,再进行乘除运算.3.分式乘除的最后结果要化成最简分式或整式.明确算理,准确运算,结果最简 教师示范例1第(1)题,一位学生板演第(2)题,教师巡视并及时评价. 学生完成后教师点评. 教师示范例2第(1)题,一位学生板演第(2)题,教师巡视批改,学生完成后,全班讲评,明确步骤算理.例1设计的这两道题都是分子分母为单项式的分式乘除法运算,解题过程中,使学生会根据法则,体会并理解每一步的算理,从而进行简单的分式的乘除法运算,达到突破重点的目的.例2设计的这两道题是分子、分母为多单项式的分式乘除法则的运用,通过学生板演,和学生一起详细分析,提醒学生关注易错易漏的环节,学会解题的方法,从而使难点迎刃而解. 两个例题是将课本例题做重新整合编排,学习内容由简至难,符合学生的认知规律,根据学情合理使用教材,使例题具有针对性和有效性.反馈练习A组2abba)1(⋅1-aa)a-a((2)2÷22yx-1y1(3)÷-xxx3x4x96x-x2x(4)2222--÷++B组购买西瓜时,人们总希望西瓜瓤占整个西瓜的比例越大越好. 假如我们把西瓜都看成球形,并且西瓜瓤的分布是均匀的, 西瓜的皮厚都是d .已知球体的体积公式为334RVπ=(其中R为球的半径),那么(1) 西瓜瓤与西瓜的体积各是多少?(2) 西瓜瓤与西瓜的体积的比是多少?(3) 买大西瓜合算还是买小西瓜合算?四位学生板演,其他学生在练习本上独立完成.做完后教师讲评,同桌交换批改,举手看正答情况.教师巡视,了解学生的作答情况,及时评价.学生先猜测结果,认真审题后,结合问题完成讨论.第3小题若课堂时间不够,可留作课下思考题,下节课再讨论.A组四道题目紧扣课本,是对例题中的各个类型题目的巩固练习,第三小题改编自课本习题,遇到分式的分子或分母符号为负数时,可将负号提出后放在分式的前面,便于计算,这也是学生的易错点,则要通过练习加以巩固.四位学生板演既是对这几个学生知识掌握情况的了解,也是以此估计全班学习情况的手段,了解学生知识技能的掌握情况,检查教学目标完成效果.B组通过实例进一步丰富分式乘除运算的实际背景,增强学生的代数推理能力与应用意识.一开始设问“买大西瓜划算还是买小西瓜划算”,引起学生质疑和兴趣,引出计算体积,再与学生共同讨论分析后,根据三个问题的设问层层递进,降低问题的难度,得以顺利解决.此题一方面巩固了分式乘除法法则,应用了nnabab=⎪⎪⎭⎫⎝⎛n的关系进行讨论,培养了学生的钻研精神和发散思维,提高了学生的运算能力,培养了学生的应用意识,体现了数学的价值.小结提升 将本节课知识梳理如下:学生回答相互补充,交流,归纳.课堂小结是对整节课的完整概括,框图形成了完整的知识结构,清晰明了.布置作业1.习题 5.3:第1、2、3、4题;2.预习第三节内容.3.你还有什么问题吗?若有,课下可与同学交流.学生课后认真完成.作业的布置巩固了学生对知识的扎实掌握,训练了学生利用有关概念性质解决问题的能力;预习旨在培养了学生良好的学习习惯.提问是有意识的培养学生发现问题、提出问题的能力和创新意识.课后寄语 祝同学们 今天一路奋斗、一路付出、一路坚持;明天一份欢欣、一份成长、一份收获!给学生美好祝愿!四、板书设计5.2 分式的乘除法分式乘除法法则: 例1:(1) 例2:(1)bcad c d b a =⨯bcad c d b a b a =⨯=÷d c (2) (2)。
北师版八年级下册数学第5章 分式与分式方程 异分母分式的加减法
整1数)+,其1结+果为1__+____+_____1____. 1 3 2 4 3 5 n(n+2)
3n2+5n 4(n+1)(n+2)
知1-练
感悟新知
知识点 2 分式加减的应用及分式混合运算
知2-练
例2 小刚家和小丽家到学校的路程都是3km,其中小丽走的是 平路,骑车速度是2vkm/h.小刚需要走1km的上坡路、 2km的下坡路,在上坡路上的骑车速度为vkm/h,在下 坡路上的骑车速度为3vkm/h.那么 (1)小刚从家到学校需要多长时间? (2)小刚和小丽谁在路上花费的时间少?少用多长时间?
知1-讲
特别解读: 通分的关键是确定最简公分母,分式与分式相加减时的最简 公分母是各分母的所有因式的最高次幂的积.
感悟新知
例1 计算:
(1) (32) (3a) 15 ; a 5a
1 1; x3 x3
知1-练
2a 1
a2
4
a
. 2
解:(1) 3 a 15 15 a 15 15 a 15 a 1 ;
(2)分式加减运算的结果要约分,化为最简分式(或整式).
课堂小结
异分母分式的加减 法
某学生化简分式出1现了+错误1 ,解答过程如下:
原式
x+1 x2-1
=(x+1)1(x-1)+(x+1)2(x-1)(第一步)
=(x+1)1+(2 x-1)(第二步)
=
3 x2-1
.(第三步)
课堂小结
异分母分式的加减 法
C.D.
-x x+2
x x- 2
知1-练
感悟新知
3. 计算的结a2+果2是ab(+b2 -) b
A
a2-b2 a-b
八年级数学下册5分式与分式方程5.1认识分式
(fēnshì)
5.1 认识分式
第2课时
第一页,共七页。
1.能说出分式的基本性质. 2.能根据分式的基本性质约分. 3.知道(zhī dào)最简分式的概念,会将分式化为最简分式.
第二页,共七页。
你能说出分数的基本性质吗?我们(wǒ men)常根据分数的基本性质对 分数进行约分,那么分式是不是也可以约分呢?
第五章 分式与分式方程。1.能说出分式的基本性质.。2.能根据分式的基本性质约分.。3. 知道最简分式的概念,会将分式化为最简分式.。我们常根据分数的基本性质对分数进行约分,那 么分式是不是也可以约分呢。B。2.把分式中分子、分母的公因式约去叫约分.。3.分子和分母没 有(méi yǒu)公因式的分式叫最简分式,化简分式的结果要是最简分式或整式.
第三页,共七页。
第四页,共七页。
B
第五页,共七页。
1.分式的基本(jīběn)性质:分式的分子与分母都乘(或除以)同一 个不等于零的整式,分式的值不变.
2.把分式中分子、分母的公因式约去叫约分. 3.分子和分母没有公因式的分式叫最简分式,化简分式的结果要是最简分 式或整式.
第六页,共七页。
内容(nèiróng)总结
北师大版八年级数学下册:分式方程课件
所以,该市今年居民用水的价格为2元/m3.
四、随堂练习
1.勤洗手,戴口罩.小明第一次用120元买了若干包口罩,第二次用240元 在同一商家买同样的口罩,这次商家每包优惠4元,结果比上次多买了20包, 求第一次买了多少包口罩?若设第一次买了x包口罩,列方程正确的是( D.).
A. 240 120 4 x 20 x
3
x
11x 3
15
30 15 5. 11x x
3
30
三、典例分析
解:设该市去年居民用水的价格为x元/m3, 则今年居民
用水的价格为
1
1 3
x 元/m3.
30
根据题意,得:
1
1
x
15 x
5.
3
解得:
x3 2
经检验, x 3 是原方程的根.
2
整理
45 15 5.
2x x
3 1 1 2 元 / m3 23
所有房屋出租的租金第一年为9.6万元, 第二年为10.2万元.
第一年所有房屋出租的租金=9.6万元 第二年所有房屋出租的租金=10.2万元
1.你能找出这一情境中的等量关系吗?
找等量 关系
第二年每间房屋的租金 = 第一年每间房屋的租金+ 500.
第一年出租的房屋间数 = 第二年出租的房屋间数.
发掘隐含条件!
在“火神山”医院的建造过程中,有两个工程队共同参其中一项搬运工程,
甲队单独施工1天完成总工程的三分之一,这时增加了乙队,两队又共同工 作了半天天,总工程全部完成. 乙单独干这项工程需要多长时间?
解:设小亮每小时各加工x个,则小明每小时各加工(x+10)个.
根据题意,得:
150 120 . x 10 x
北师大版数学八年级下册《第五章 分式与分式方程 1 认识分式 第1课时 分式的概念》教学课件
第1课时 分式的概念
北师版 八年级下册
新课导入
面对日益严重的土地沙漠化问题,某县决定在
一定期限内固沙造林2400hm2,实际每月固沙造林
的面积比原计划多30hm2 ,结果提前完成原计划的
任务.如果设原计划每月固沙造林xhm2,那么
(1)原计划完成造林任务需要多少月? 2 4 0 0
b a x
上面问题中出现了代数式 2 4 0 0 , 2 4 0 0 ,
35a 45b , b
x
x + 30
,它们有什么共同特征?
ab a x
观察下列两组式子,它们都是整式吗? 它们有什么特点? (1)a,-3x2y3,5x-1,x2+xy+y2 (2) 2 ,y,a ,c
m-n x 9a-1 ab
x2
A. ±2
B.2 C. -2
D.4
分析 分式的值为零,即分子为零且分母不为零. 根据题意,得x2-4=0且x-2≠0, 解得x=-2.
3.有下列式子:①x; ②y2; ③5; ④x2 .
3 y x2
其中是分式的有( B )
A. 1个
B.2个 C. 3个
D.4个
课后小结
一般地,.只要分母不 等于零,分式就有意义;
(2)有关求分式有意义、无意义的条件的问题, 常转化为不等式的问题.
分式的值为零的条件
分式的值为零的条件:分子为零,分母不为零. 用式子表示:B A=0A=0且B0 例 当x为何值时,分式 x 2 9 的值为零.
x3
[分析] 分式的值为零 分 分子 母= 00xx239 解出x的值.
解 依题意,得
x 2 9 = 0 ①
北师大版八年级数学初二下册第5章《分式与分式方程》5.1认识分式5.2分式的乘除法优秀PPT课件
a 1 11 解:(1)当a=1时, 2. 2a 1 2 1 a 1 2 1 1. 当a=2时, 2a 1 4 1 a 1 1 1 0. 当a=-1时, 2a 1 2 1
(2)当分母的值为零时,分式没有 意义,除此以外,分式都有意义.
b by (1) (y≠0); 2 x 2 xy
〔解析〕
(2)
ax a . bx b
据分式的基本性质,分子b 也要乘y,才能得到 2 xy .(2)
b (1) 的分母2x乘y才能化为2xy,为保证分式的值不变,根 2x by
得到a,所以分母bx也需要除以x得到b.在这里,由于已知 解:(1)因为y≠0,所以
ax 的分子ax除以x bx ax
的值为0的条件是x2-1=0且x+1≠0,所以x=1.故填1.
无意义.试求m,n的值.
x m n1 4.对于分式 ,已知当x=-3时,分式的值为0;当x=2时,分式 m 2n 3m
解:∵当x=-3时,分式的值为0,
3 m n 0, m+n -3, 即 m 2n 9 0, m 2n 9.
问题2
如图(2)所示,面积为1的长方形平均分成了2份,则阴影
部分的面积是多少?
问题3 这两块阴影部分的面积相等吗?
请看下面的问题:
问题1
如图(1)所示,面积为1的长方形,长为a,那么长方形
的宽怎么表示呢? 问题2 如图(2)所示,两个图(1)中的长方形拼接在一起, 它的宽怎么表示呢? 问题3 两图中长方形的宽相等吗?
2.若分式
2x 1 有意义,则x的取值范围是 3x 5
5 3
.
5 解析:依题意得3x+5≠0,解得x≠- 5 ,因此x的取值范围是x≠5 填x≠- . 3 3
北师版八年级下册第五章分式和分式方程复习课件(28张PPT)
【 例5】2019年中国设计了第一条采用我国自主研发的 北斗卫星导航系统的智能化高速铁路﹣﹣京张高铁, 作为2022年北京冬奥会重要交通保障设施。已知北京 至张家口铁路全长约180千米.按照设计,京张高铁 列车的平均行驶速度是普通快车的1.5倍,用时比普通 快车用时少了20分钟,求高铁列车的平均行驶速度.
1
2 2x x 1
)
x2 x
x
1
x的值从﹣2<x<3的整数值中选取。
解:(x
1
2
x
2x
1
)
x2 x
x
1
(x 1)(x 1) 2 2x x 2 x
x 1
x 1 x 1
x2
1 2 2x x 1
x 1 x2 x
x 2 2x 1 x 1 x 1 x2 x
a b ab . cc c (2)异分母分式的加减法则:先通分,化为同分母的分 式,然后按照同分母分式的加减法法则进行计算。
a c ad bc ad bc . b d bd bd bd
3.分式的混合运算:
先算乘方,再算乘除,最后算加减,有括号 的先算括号里面的.
计算结果要化为最简分式或整式.
解:(x
1
2
x
2x
1
)
x2 x
x
1
(x
1)(x x 1
1)
2 2x
x
1
x2 x
x
1
x2
1 2 2x x 1
x x2
1
x
x 2 2x 1 x 1 x 1 x2 x
满足﹣2<x<3的整数有 ﹣1,0,1,2, ∵分母x≠0,x+1≠0,x﹣1≠0
北师大版八年级数学下册第五章 分式与分式方程4 第1课时 分式方程的概念及列分式方程
x x 20
1400 1400 9 1400 2.8 1400
x 2.8x
y
y9
4800 5000 x x 20
思考 由上面的问题,我们得到了三个方程,它们有 什么共同特点?
分母中都含有未知数.
知识要点
分式方程的概念 分母中含有未知数的方程叫做分式方程.
分式方程的特征 (1)是等式; (2)方程中含有分式; (3)分母中含有未知数.
归纳总结
列分式方程的步骤: (1)审清题意,适当设出未知数; (2)根据题意找等量关系,列出分式方程.
概念
分母中含有未知数的方程叫做分式 方程
分式 方程
列方程 步骤
1. 审清题意,适当设出未知数; 2. 根据题意找等量关系,列出分式 方程
1. 下列属于分式方程的是( A )
A. 1 3 x2 x
___x ___x__3__.
3. 某市为处理污水,需要铺设一条长为 5000 m 的管 道,为了尽量减少施工对交通所造成的影响,实际
施工时每天比原计划多铺设 20 m,结果提前 15 天 完成任务.设原计划每天铺设管道 x m,则可得方 程 5000 5000 15
____x____x___2_0______.
y9
1400 1400
关系式 高铁列车平均速度 = 2.8×特快列车平均速度
做一做 为了帮助遭受自然灾害的地区重建家园,某校 团总支号召同学们自愿捐款.已知第一次捐款总额为 4800元,第二次捐款总额为 5000 元,第二次捐款人数 比第一次多 20 人,而且两次人均捐款额恰好相等. 如果 设第一次捐款人数为 x 人, 那么 x 应满足怎样的方程?
典例精析
例1 下列式子中,哪些是分式方程?哪些整式方程?
北师大版八年级数学下册 第五章 分式与分式方程 5.2 分式的乘除法 教案
数学八年级下北师大版第五章第二节《分式的乘除法》教学设计一、内容分析1. 教材的地位及作用本节课为北师大版数学教材八年级下册第五章《分式与分式方程》第二节《分式的乘除法》的内容,本节课是学生初中阶段代数部分学习的一个重要内容.在知识的联系上,本节是在学习了分式基本性质、分式的约分和因式分解的基础上,进一步学习分式的乘除法;另一方面,又为学习分式加减法和分式方程等知识奠定了基础.在能力的培养上,学生的运算能力和逻辑思维能力得到了发展和提高.在数学思想方法上,本节课是培养学生类比的一个好素材,同时培养了学生的探索精神和用数学的意识.2. 学情分析(1)从心理学的分析来说,初二学生处于逻辑抽象的起点,思维发展的转折点,表现从经验型思维向理论型思维转化的特点.他们身心发展较快,对事物发展的好奇心强,有一定的求知欲,需要我们不断引导.(2)经过七年级的学习,学生已经具备了一定的知识储备知识技能和良好的数学学习习惯,并且学生已经学习分式基本性质、分式的约分和因式分解,通过与分数的乘除法类比,促进知识的正迁移.(3)八年级的学生接受能力、思维能力、自我控制能力都有很大变化和提高,自学能力较强,通过类比学习加快知识的学习.3. 教学目标(1)知识技能:理解分式的乘除运算法则;会进行简单的分式的乘除法运算.(2)数学思考:经历探索分式的乘除法法则的过程,让学生熟悉“数、式通性”“类比、转化”的数学思想方法,感知数学知识具有普遍的联系性.(3)问题解决:会用分式乘除法法则进行分式乘除法运算,并能解决简单的实际问题,增强应用意识,提高实践能力.(4)情感态度:通过师生观察、猜想、讨论、交流、归纳,培养学生合作探究的意识和能力,同时增强学生的创新意识和应用意识,使学生体验在数学学习活动中探索与创造的乐趣,了解数学的价值,同时化简分式的最简结果也让学生感受到数学的简洁美.4.教学重点难点重点:分式乘除法的法则及应用.难点:分子分母是多项式的分式的乘除法运算.二、教法学法1. 教法分析教育的本质在于引导的艺术,为了充分调动学生学习的积极性,培养学生的运算能力,使本节课教学丰富有效,本课的教法为:在教师的引导下学生经历“类比分数――观察猜想――归纳明晰――理解应用”的活动过程,体会知识的形成和应用,感受学习过程中数学方法的渗透.采用ppt辅助课堂教学,直观呈现教学素材,激发学生的学习兴趣,提高学习效率,体验在数学学习活动中探索的乐趣,体会数学的应用价值.2. 学法指导学习过程中,充分引导学生积极思维,让每个学生都动口、动手、动脑,让学生在自主探索、合作交流中加深理解分式的乘除运算,充分发挥学生学习的主动性.三、教学过程归纳分式的乘法法则:两个分式相乘, 把分子相乘的积作为积归纳分式的乘法法则:两个分式相除, 把除式的分子分母颠倒位置后再与被除式相乘.四、板书设计。
北师大版八年级数学下册5.4分式方程第1课时 认识分式方程课件(共35张PPT)
1.关于x的方程 2 1 的解是( B )
x 1
A.x=4
B.x=3
C.x=2
D.x=1
2.分式方程
5 3 x2 x
的解为 ( C
)
A.x=1
B.x=2
C.x=3
D.x=4
3.方程
2 x
3 x 1
的根是
x=2
.
检测反馈
1.你能找出这一情境中的等量关系吗?
等量关系有下面一些:
第二年每间房屋租金=第一年每间房屋租金+500元
第一年出租的房屋间数=第二年出租的房屋间数
出租的房屋间数=所有出租房屋的租金÷ 每间房屋的租金
2.根据这一情境你能提出哪些问题?
答:(1)求出租的房屋总间数; (2)分别求两年每间房屋的租金.
做一做:某单位将沿街的一部分房屋出租,每间房屋 的租金第二年比第一年多500元,所有房屋的租金第 一年为9.6万元,第二年为10.2万元。 (1)求出租的房屋总间数;
5
x
(C ) 7 - 2 x = 1
3
5
(D)
3
=
4
5x + 1
x+ 5
随堂练习T1 答案校对:
(1-12%)=950
X 950 12%
X
X 950 % 112
练一练
某商场有管理人员40人,销售人员80人, 为了提高服务水平和销售量,商场决定从管理人 员中抽调一部分人充实销售部分,使管理人员与 销售人员的人数比为1:4,那么应抽调的管理人 员数x,满足怎样的方程?
解:设第一年每间房屋的租金为x元,则第二年每间 房屋的租金为(x+500)元,根据题意,得
北师大版初二数学下册知识点归纳
【导语】学会整合知识点。
把需要学习的信息、掌握的知识分类,做成思维导图或知识点卡⽚,会让你的⼤脑、思维条理清醒,⽅便记忆、温习、掌握。
同时,要学会把新知识和已学知识联系起来,不断糅合、完善你的知识体系。
这样能够促进理解,加深记忆。
下⾯是为您整理的《北师⼤版初⼆数学下册知识点归纳》,仅供⼤家参考。
北师⼤版初⼆数学下册知识点归纳篇⼀ 第⼀章分式 1分式及其基本性质分式的分⼦和分母同时乘以(或除以)⼀个不等于零的整式,分式的只不变 2分式的运算 (1)分式的乘除乘法法则:分式乘以分式,⽤分⼦的积作为积的分⼦,分母的积作为积的分母除法法则:分式除以分式,把除式的分⼦、分母颠倒位置后,与被除式相乘。
(2)分式的加减加减法法则:同分母分式相加减,分母不变,把分⼦相加减;异分母分式相加减,先通分,变为同分母的分式,再加减 3整数指数幂的加减乘除法 4分式⽅程及其解法 第⼆章反⽐例函数 1反⽐例函数的表达式、图像、性质 图像:双曲线 表达式:y=k/x(k不为0) 性质:两⽀的增减性相同; 2反⽐例函数在实际问题中的应⽤ 第三章勾股定理 1勾股定理:直⾓三⾓形的两个直⾓边的平⽅和等于斜边的平⽅ 2勾股定理的逆定理:如果⼀个三⾓形中,有两个边的平⽅和等于第三条边的平⽅,那么这个三⾓形是直⾓三⾓形。
第四章四边形 1平⾏四边形 性质:对边相等;对⾓相等;对⾓线互相平分。
判定:两组对边分别相等的四边形是平⾏四边形; 两组对⾓分别相等的四边形是平⾏四边形; 对⾓线互相平分的四边形是平⾏四边形; ⼀组对边平⾏⽽且相等的四边形是平⾏四边形。
推论:三⾓形的中位线平⾏第三边,并且等于第三边的⼀半。
2特殊的平⾏四边形:矩形、菱形、正⽅形 (1)矩形 性质:矩形的四个⾓都是直⾓; 矩形的对⾓线相等; 矩形具有平⾏四边形的所有性质 判定:有⼀个⾓是直⾓的平⾏四边形是矩形;对⾓线相等的平⾏四边形是矩形; 推论:直⾓三⾓形斜边的中线等于斜边的⼀半。
八年级数学下册第5章分式与分式方程分式方程第2课时分式方程的解法课件(新版)北师大版
A.2(x-8)+5x=16(x-7) B.2(x-8)+5x=8
C.2(x-8)-5x=16(x-7)
D.2(x-8)-5x=8
2.若关于x的分式方程
的值为 ( D )
A.-1,5
B.1
C.-1.5或2 D.-0.5或-1.5
无解,则m
3.解方程
2 3. x3 x
解: 方程两边乘x(x-3),得
第五章 分 式
5.4 分式方程
第2课时 分式方程的解法
学习目标
1.掌握可化为一元一次方程的分式方程的解法; (重点)
2.理解分式方程产生增根的原因,掌握分式方程验 根的方法.(难点)
导入新课
复习引入
1. 解一元一次方程的步骤: 移项,合并同类项,未知数系数化为1. 2. 解一元一次方程 x x 1 1.
②
去分母后所得整式方程的解却不是
原分式方程的解呢?
我们再来视察去分母的过程:
90 60 30+x 30 x
两边同乘(30+x)(30-x) ① 当x=6时,(30+x)(30-x)≠090(30-x)=60(30+x)
真相揭秘: 分式两边同乘了不为0的式子,所得整式方 程的解与分式方程的解相同.
x 1
∴-a-1>0且-a-1≠1,解得a<-1且a≠-2,
∴a的取值范围是a<-1且a≠-2.
方法总结:求出方程的解(用未知字母表示), 然后根据解的正负性,列关于未知字母的不 等式求解,特别注意分母不能为0.
例3 若关于x的分式方程 求m的值.
无解,
解析:先把分式方程化为整式方程,再分 两种情况讨论求解:一元一次方程无解与分 式方程有增根.
八年级数学下册 第五章 分式与分式方程 4 分式方程教案 (新版)北师大版
4 分式方程第1课时一、教学目标 1.知识与技能(1)理解分式方程的概念;(2)能够根据实际问题建立分式方程的数学模型,并能归纳出分式方程的描述性定义. 2.过程与方法体会到分式方程作为实际问题的模型,能够根据实际问题建立分式方程的数学模型,并能归纳出分式方程的描述性定义. 3.情感态度及价值观在建立分式方程的数学模型的过程中培养能力和克服困难的勇气,并从中获得成就感,提高解决问题的能力. 二、教学重点、难点重点:能根据实际问题的数量关系列出分式方程,归纳出分式方程的定义. 难点:能根据实际问题中的等量关系列出分式方程. 三、教具准备 课件. 四、教学过程(一)创设情境,引入新课[师]在这一章的第一节《认识分式》中,我们曾研究过一个“固沙造林,绿化家园”的问题.当时,我们设原计划每月固沙造林x 公顷,那么原计划完成一期工程需要x2400个月,实际完成一期工程用了302400+x 个月.根据题意,可得方程x 2400-302400+x =4.(1)我们说x 2400,302400+x 分母中含有字母,我们现在知道它们是不同于整式的代数式——分式.可是,我们也是第一次遇到这样的方程,它和我们学过的一元一次方程一样能刻画现实世界,是一种反映现实世界的数学模型. 接下来,我们再来看几个这样的例子. (二)讲授新课列出刻画现实世界的数学模型——方程.(多媒体出示) 1.[小麦实验田问题]有两块面积相同的小麦试验田,第一块使用原品种,第二块使用新品种,分别收获小麦 9 000 kg 和15000 kg .已知第一块试验田每公顷的产量比第二块少3 000 kg ,分别求这两块试验田每公顷的产量.你能找出这一问题中所有的等量关系吗?如果设第一块试验田每公顷的产量为x kg ,那么,第二块试验田每公顷的产量是____________kg .根据题意,可得方程_________ ___.[师]在这个问题中涉及到了哪几个基本量?它们的关系如何?[生1]涉及到三个基本量:总产量,每公顷试验田的产量,试验田的面积.其中总产量=每公顷试验田的产量×试验田的面积. [师]你能找出这一问题的所有等量关系吗?[生2]第一块试验田的面积=第二块试验田的面积.(a ) [生3]还有一个等量关系是:第一块试验田每公顷的产量+3000 kg=第二块试验田每公顷的产量(b )[师]我们接着回答下面的问题:如果设第一块试验田每公顷的产量为x kg ,那么第二块试验田每公倾的产量是多少千克呢?[生]根据等量关系(b ),可知第二块试验田每公顷的产量是(x +3000)kg . [生]根据题意,利用等量关系(a ),可得方程:x 9000=300015000+x .(2) [师]x 9000,300015000+x 的实际意义是什么呢? [生]它们分别表示第一块试验田和第二块试验田的面积.[师]有没有别的方法列出方程呢?同学们可以以小组为单位讨论,交流,我们看哪一个组思维最敏捷.[生]根据等量关系(a ),我们可以设两块试验田的面积都为x 公顷,那么x9000表示第一块试验田每公顷的产量,x15000表示第二块试验田每公顷的产量,根据等量关系(b )可列出方程:x 9000+3000=x15000.(3) [师]接下来,我们再来看一个问题.(多媒体出示) 2.[电脑网络培训问题]王军同学准备在课外活动时间组织部分同学参加电脑网络培训,按原定的人数估计共需费用300元.后因人数增加到原定人数的2倍,费用享受了优惠,一共只需要480元,参加活动的每个同学平均分摊的费用比原计划少4元.原定的人数是多少? 这一问题中有哪些等量关系?如果设原定是x 人,那么每人平均分摊____________元;人数增加到原定人数的2倍后,每人平均分摊____________元. 根据题意,可得方程____________. [师]我们先来审题,找到题中的等量关系. [生]由题意,可知:实际参加活动的人数=原定人数×2倍.(c ) [生]还有一个等量关系为:原计划每个同学平均分摊的费用=实际每个同学平均分摊的费用+4元.(d ) [师]同学们已经过审题,找到了题中的等量关系,接下来该干什么呢? [生]设出未知数,列出方程,将具体实际的问题转化为数学模型.[师]很好!下面同学们就分组来完成刚才这位同学所说的,你有几种列方程的方法呢? 讨论后,各小组可选代表回答上面的问题.[生]我代表第一小组回答.我们设未知数的方法采用中方法: 设原定是x 人,那么每人平均分摊x 300元;人数增加到原来人数的2倍后,每人平均分摊x2480元,根据题意,利用等量关系(d ),得方程x 300-4=x2480.(4) [生]我们组没有按照投影片上的设法,而是设原定每人平摊y 元,那么原定人数为y300;实际参加活动的每个同学平摊(y -4)元,那么实际参加活动的人数为4480-y ,根据题意,利用等量关系(c ),得方程2×y 300=4480-y .(5) [师]上面两个组的回答都很精彩,鼓励一下他们.(鼓掌)从同学们的表现不难看出,用方程这样的数学模型刻画现实世界的情境,同学们掌握得很好. 观察方程:x 2400-302400+x =4 (1) x 9000=300015000+x (2) x 9000+3000=x15000 (3) x 300-4=x2480 (4) 2×y 300=4480-y (5) 上面所得到的方程有什么共同特点?[生]方程中的未知数都含在分母中,不是一元一次方程.[师]是的.这就是我们今天要认识的一种新的方程——分式方程即分母中含有未知数的方程.(三)随堂练习1.已知鱼塘中有x 千克鱼,每千克鱼的捕捞费用是x+102000元.现从鱼塘中捕捞101千克鱼花了捕捞费用200元,求x 满足的方程.分析:题中的等量关系是:101千克鱼×每千克鱼的捕捞费用=200元. 解:x 满足的方程是101×x+102000=200.2.某商场有管理人员40人,销售人员80人,为了提高服务水平和销售量,商场决定从管理人员中抽调一部分人充实销售部分,使管理人员与销售人员的人数比为1∶4,那么应抽调的管理人员数x 满足怎样的方程?解:抽调管理人员x 人后,管理人员有(40-x )人,销售人员有(80+x )人,根据题意得x x +-8040=41.(四)课堂小结这节课我们从现实情境问题中建立方程这一重要的数学模型,认识了一种新的方程——分式方程. (五)教学反思第2课时教学目标 1.知识与技能(1)掌握解分式方程的一般步骤; (2)理解检验分式方程的根的必要性. 2.过程与方法(1)通过具体例子,让学生独立探索方程的解法,经历和体会解分式方程的必要步骤; (2)使学生进一步了解数学思想中的“转化”思想,认识到能将分式方程转化为整式方程,从而找到解分式方程的途径. 3.情感态度及价值观(1)培养学生自觉反思求解过程和自觉检验的良好习惯,培养严谨的治学态度; (2)运用“转化”的思想,将分式方程转化为整式方程,从而获得一种成就感和学习数学的自信.二、教学重点、难点重点:(1)解分式方程的一般步骤; (2)检验分式方程的根的必要性. 难点:明确解分式方程验根的必要性. 三、教具准备 课件. 四、教学过程(一)提出问题,引入新课[师]在上节课的几个问题,我们根据题意将具体实际的情境,转化成了数学模型——分式方程.但要使问题得到真正的解决,则必须设法解出所列的分式方程.这节课,我们就来学习分式方程的解法.我们不妨先来回忆一下我们曾学过的一元一次方程的解法,也许你会从中得到启示,寻找到解分式方程的方法. 解方程:213-x +325+x =2-624-x[师生共解]解:去分母,方程两边同乘分母的最小公倍数6,得 3(3x -1)+2(5x +2)=6×2-(4x -2), 去括号,得9x -3+10x +4=12-4x +2, 移项,得9x +10x +4x =12+2+3-4, 合并同类项,得23x =13, 系数化为1,得x =2313. (二)讲解新课,探索分式方程的解法[师]刚才我们一同回忆了解一元一次方程的步骤.下面我们来看一个分式方程. [例1]解方程:21-x =x3. (1) [师]解这个方程,能不能也像解含有分母的一元一次方程一样去分母呢? [生]可以.[师]同学们可以接着讨论,方程两边同乘什么样的整式(或数),可以去掉分母呢? [生]乘分式方程中所有分母的公分母.[生]解一元一次方程,去分母时,方程两边同乘分母的最小公倍数,比较简单.解分式方程时,我认为方程两边同乘分母的最简公分母,去分母也比较简单.[师]我觉得这两位同学的想法都非常好.那么这个分式方程的最简公分母是什么呢? [生]x (x -2).[师生共析]方程两边同乘x (x -2),得x (x -2)·21-x =x (x -2)·x3, 整理,得x =3(x -2). (2)[师]我们可以发现,采用去分母的方法把分式方程转化为了整式方程,而且是我们曾学过的一元一次方程.再往下解,我们就可以像解一元一次方程一样,解出x .即去括号,得x =3x -6.移项、合并同类项,得2x =6.系数化为1,得x =3.[师]x =3是方程(2)的解吗?是方程(1)的解吗?为什么?同学们可以在小组内讨论. (教师可参与到学生的讨论中,倾听学生的说法)[师]x =3是由一元一次方程x =3(x -2)(2)解出来的,x =3一定是方程(2)的解.但是不是原分式方程(1)的解,需要检验.把x =3代入方程(1)的左边=231-=1,右边=33=1,左边=右边,所以x =3是方程(1)的解. [师]请同学们用同样的方法完成例2的解答. [例2]解方程:x 300-x2480=4. (由学生在练习本上试着完成,然后师生共同解答). 解:方程两边同乘2x ,得600-480=8x. 解这个方程,得x =15.检验:将x =15代入原方程,得左边=4,右边=4,左边=右边, 所以x =15是原方程的根.[师]很好!同学们现在不仅解出了分式方程的解,还有了检验结果的好习惯.我这里还有一个题,我们再来一起解决一下.(多媒体出示,先隐藏小亮的解法) 议一议: 解方程:32--x x =x-31-2. (可让学生在练习本上完成,发现有和小亮同样解法的同学,可用实物投影仪显示他的解法,并共同分析)[师]我们来看小亮同学的解法:32--x x =x-31-2. 解:方程两边同乘(x -3),得2-x =-1-2(x -3) 解这个方程,得x =3.[生]小亮解完没检验x =3是不是原方程的解. [师]检验的结果如何呢?[生]把x =3代入原方程中,使方程的分母x -3和3-x 都为零,即x =3时,方程中的分式无意义,因此x =3不是原方程的根. [师]它是去分母后得到的整式方程的根吗? [生]x =3是去分母后的整式方程的根.[师]为什么x =3是整式方程的根,它使得最简公分母为零,而不是原分式方程的根呢?同学们可在小组内讨论.(教师可参与到学生的讨论中,倾听同学们的想法)[生]在解分式方程时,我们在分式方程两边都乘最简公分母才得到整式方程.如果整式方程的根使得最简公分母的值为零,那么它就相当于分式方程两边都乘零,不符合等式变形时的两个基本性质,得到的整式方程的解必将使分式方程中有的分式分母为零,也就不适合原方程了.[师]很好!分析得很透彻,我们把这样的不适合原方程的整式方程的根,叫原方程的增根. 在把分式方程转化为整式方程的过程中会产生增根,那么是不是就不要这样解?或采用什么方法补救?[生]还是要把分式方程转化成整式方程来解.解出整式方程的解后可用检验的方法看是不是原方程的解.[师]怎样检验较简单呢?还需要将整式方程的根分别代入原方程的左、右两边吗? 学生先思考,教师再讲解.[师]产生增根的原因是这个根使去分母时的最简公分母为零造成的.因此最简单的检验方法是:把整式方程的根代入最简公分母.若使最简公分母为零,则是原方程的增根;若使最简公分母不为零,则是原方程的根.是增根,必舍去.在解一元一次方程时每一步的变形都符合等式的性质,解出的根都应是原方程的根.但在解分式方程时,解出的整式方程的根一定要代入最简公分母检验.小亮就犯了没有检验的错误. (三)应用,升华 1.解方程:(1)13-x =x 4;(2)1210-x +x215-=2. 2.回顾,总结想一想:解分式方程一般需要经过哪几个步骤? [师]同学们可根据例题和练习题的步骤,讨论总结.[生]解分式方程分三大步骤:(1)方程两边都乘最简公分母,约去分母,化分式方程为整式方程;(2)解这个整式方程;(3)把整式方程的根代入最简公分母,看结果是否为零,使最简公分母为零的根是原方程的增根,应舍去.使最简公分母不为零的根才是原方程的根. 3.解分式方程: (1)x 9000=300015000+x ; (2)x h 2=xa a -(a ,h 常数).(四)课堂小结[师]同学们这节课的表现很活跃,一定收获不小.[生]我们学会了解分式方程,明白了解分式方程的三个步骤缺一不可.[生]我明白了分式方程转化为整式方程为什么会产生增根.[生]我又一次体验到了“转化”在学习数学中的重要作用,但又进一步认识到每一步转化并不一定都那么“完美”,必须经过检验,反思“转化”过程.(五)教学反思第3课时一、教学目标1.知识与技能会利用分式方程的数学模型反映、解决现实情境中的实际问题.2.过程与方法经历运用分式方程解决实际问题的过程,发展抽象概括、分析问题和解决问题的能力;3.情感态度及价值观(1)经历建立分式方程模型解决实际问题的过程,体会数学模型的应用价值,从而提高学习数学的兴趣;(2)培养学生的创新精神,从中获得成功的体验.二、教学重点、难点重点:(1)审明题意,寻找等量关系,将实际问题转化成分式方程的数学模型.(2)根据实际意义检验解的合理性.难点:寻求实际问题中的等量关系.三、教具准备课件.四、教学过程(一)提出问题,引入新课[师]前两节课,我们认识了分式方程这样的数学模型,并且学会了解分式方程.接下来,我们就用分式方程解决生活中实际问题.(二)讲授新课做一做(多媒体出示)某单位将沿街的一部分房屋出租.每间房屋的租金第二年比第一年多500元,所有房屋出租的租金第一年为9.6万元,第二年为10.2万元.(1)你能找出这一情境的等量关系吗?(2)根据这一情境,你能提出哪些问题?[师]现在我们一起来寻求这一情境中的等量关系.[生]第二年每间房屋的租金=第一年每间房屋的租金+500元.(1) [生]还有一个等量关系:第一年租出的房屋间数=第二年租出的房屋的间数.[师]根据“做一做”的情境,你能提出哪些问题呢?在我们的数学学习中,提出问题比解决问题更重要.同学们尽管提出符合情境的问题.[生]问题可以是:每年各有多少间房屋出租? [生]问题也可以是:这两年每年房屋的租金各是多少?[师]很好,下面我们就来先解决第一个问题:每年各有多少间房屋出租? [师生共析]解:设每年各有x 间房屋出租,那么第一年每间房屋的租金为x96000元,第二年每间房屋的租金为x 102000元.根据题意,得x 102000=x96000+500. 解这个方程,得x =12.经检验x =12是原方程的解,也符合题意. 所以每年各有12间房屋出租.[师]我们接着再来解决第二个问题:这两年每间房屋的租金各是多少? [生]根据第一问的答案可计算,得 第一年每间房屋的租金为1296000=8 000(元), 第二年每间房屋的租金为12102000=8 500(元). [师]如果没有第一问,该如何解答第二问?[生]解:设第一年每间房屋的租金为x 元,第二年每间房屋的租金为(x +500)元.第一年租出的房间为x 96000间,第二年租出的房间为500102000+x 间,根据题意,得 x 96000= 500102000+x . 解得x = 8000.x +500=8 500(元).经检验,x =8 000是原分式方程的解,也符合题意. 所以这两年每间房屋的租金分别为8 000元,8 500元.[师]我们利用分式方程解决了实际问题.现在我们再来看一个例题,我们可以从中感受到节约用水是每个公民应该关心的事情.[例]某自来水公司水费计算办法如下:若每户每月用水不超过5 m 3,则每立方米收费1.5元;若每户每月用水超过5 m 3,则超出部分每立方米收取较高的定额费用.1月份,张家用水量是李家用水量的32,张家当月水费是17.5元,李家当月水费是27.5元.超出5 m 3的部分每立方米收费多少元?[师]解决实际情境问题,最关键的是什么呢? [生]审清题意,找出题中的等量关系.[师]很好.某自来水公司水费计算办法可用表格表示出来(如下表).[生]此题主要的等量关系是:1月份张家用水量是李家用水量的32. [师]怎样表示出张家1月份的用水量和李家1月份的用水量呢?[生]根据自来水公司水费计算的办法,用水量可以用水费除以单价得出,但计算时要将水费分成两部分:5 m 3的水费与超出5 m 3部分的水费. [师]下面我们就来用等量关系列出方程.[师生共析]设超出5 m 3部分的水每立方米收费为x 元,则1月份张家超出5 m 3的部分水费为(17.5-1.5×5)元,超出 5 m 3的用水量为x55.15.17⨯- m 3,总用水量为5+x55.15.17⨯- m 3;李家超出5 m 3部分的水费为(27.5-1.5×5)元,超出5 m 3的用水量为x55.15.27⨯- m 3,总用水量为(5+x55.15.27⨯-)m 3.根据等量关系,得x 55.15.17⨯-+5=(x55.15.27⨯-+5)×32.解这个方程,得x =2. 经检验x =2是所列方程的根.所以超出5 m 3部分的水每立方米收费2元. (三)随堂练习小芳带了15元钱去商店买笔记本.如果买一种软皮本,正好需付15元钱.但售货员建议她买一种质量好的硬皮本,这种本子的价格比软皮本高出一半,因此她只能少买一本笔记本.这种软皮本和硬皮本每本的价格各是多少?[师]我们先来找到题中的等量关系.[生]题中的等量关系有两个:15元钱买的软皮本的本数=15元钱买的硬皮本的本数+1本;硬皮本的价格=软皮本的价格×(1+21). [师]我们找到了等量关系,接下来请同学们在练习本上完成第1题. [生]解:设软皮本每本的价格为x 元,则硬皮本每本的价格为(1+21)x 元,那么15元钱可买软皮本x 15本,硬皮本x )211(15+本.根据题意,得,x 15=x )211(15++1 解得x =5.经检验x =5是原方程的根,也符合题意.所以(1+21)x =23×5=7.5(元). 答:软皮本每本的价格为5元,硬皮本每本的价格为7.5元.(四)课堂小结列方程解决实际情境中的具体问题,是数学实用性最直接的体现,而解决这一问题是如何将实际问题建立方程这样的数学模型,关键则在于审清题意,找出题中的等量关系,找到它就为列方程指明了方向.(五)教学反思。
八年级数学下册第五章4分式方程第1课时分式方程的概念及解法作业课件北师大版.ppt
4.甲、乙工程队分别承接了160米、200米的管道铺设任务, 已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同, 问甲每天铺设多少米? 设甲每天铺设x米,根据题意可列出方程:___1_x6_0_=__x_2+_0_05___.
5.(荆州中考)解分式方程x-1 2-3=2-4 x时,去分母可得( B ) A.1-3(x-2)=4 B.1-3(x-2)=-4 C.-1-3(2-x)=-4 D.1-3(2-x)=4 6.(哈尔滨中考)方程21x=x+2 3的解为( D ) A.x=-1 B.x=0 C.x=35 D.x=1
(3)xx-+23-x-3 3=1. 解:去分母,得 x2-5x+6-3x-9=x2-9.解得 x=34. 检验:当 x=34时,(x+3)(x-3)≠0,∴原方程的解为 x=34
14.当 x 为何值时,分式32--xx的值比分式x-1 2的值大 3? 解:列方程得32- -xx-x-1 2=3.解得 x=1.经检验,x=1 是原方程的根. 所以 x 的值为 1
3.(阜新中考)甲、乙两地相距 600 km,乘高铁列车从甲地到乙地比乘 特快列车少用 4 h,已知高铁列车的平均行驶速度是特快列车的 3 倍, 设特快列车的平均行驶速度为 x km/h,根据题意可列方程为( C ) A.60x0+630x0=4 B.630x0-60x0=4 C.60x0-630x0=4 D.6x00-630x0=4×2
16.先阅读下面的材料,然后解答问题:通过观察,发现方程: x+1x=2+12的解为 x1=2,x2=12; x+1x=3+13的解为 x1=3,x2=13; x+1x=4+14的解为 x1=4,x2=14;…
第五章 分式与分式方程
5.4 分式方程
第1课时 分式方程的概念及解法
北师大版八年级数学下册第五章分式与分式方程课件
X=-3
(4) X2 -1 X2 +2x+1 X=1
6.当x为何值时,分式 2x (x-2) 5x (x+2)
(1) 有意义
(2) 值为 0
X≠0且x≠-2
X=2
7.要使分式 -2 的值为正数,则x的取值范围是 X>1 1-x
8.当x <-2 时,分式 X2+1 的值是负数. X+2
9.当x ≥7
依题意得:
180
240
=
x
x5
请完成下面的过程
甲:15 乙:20
1
x2
的值.
变:已知 x+ 1 =3 ,求
x
x2 x4+x2+1
的值.
两个分式相乘,把分子相乘的积作为积的分子, 把分母相乘的积作为积的分母。
用符号语言表达:
两个分式相除,把除式的分子和分母颠倒位置
后再与被除式相乘。
用符号语言表达:
(1)
4 3
x y
y 2x
3
ab3 5a2b2 (பைடு நூலகம்) 2c2 4cd
4
2
2
x
1
解:原方程可化为 1 4x 2 1
NNoox 2 (x 2)(x 2) x 2
两边都乘以 (x 2)(x 2) ,并整理得;
IImmaaggee x2 3x2 0 解得 x1 1, x2 2
检验:x=1是原方程的根,x=2是增根
∴原方程的根是x=1
例2
已知
x3 (x 2)2
1.约分: 把分子、分母的最大公因式(数)约去。 2.通分:
把分母不相同的几个分式化成分母相同的分式。
北师大版八年级数学下册第五章分式与分式方程章末复习课件(共53张)
章末复习
第五章 分式与分式方程
章末复习
知识框架 归纳整合 素养提升 中考链接
章末复习
知识框架
分母不为零
分式有意义 的条件
分子为零, 且 分式的值为
分母不为零
零的条件
分式的 基本性 质
分式的约分
分式的通分
分式的 概念
分式的 性质
分式 的运 算
分式的乘 法运算
分式的除 法运算
分式的乘 方
章末复习
素养提升
专题 运用“整体思想”求分式的值
【要点指点】 当题目按常规解法不易求解或不能求解时 , 可以利 用整体代入法解题 , 也就是说先把条件和待求的式子进行整理 , 寻求两者相同的部分 ,代入求值. 在求分式的值时 , 可以恰当运用整体思想 , 把复杂问题简单化 .
有意义.
要使分式
无意义 , 则应满足 ( x + 3)( x - 4) = 0 , 解
得 x=- 3且 x = 4 .所以当 x =- 3 且 x = 4 时 , 分式 无意义.
章末复习
相关题1 (1)在分式
中 , 当 x =- m时 , ( C ) .
A .分式的值为零
B .分式无意义
C .且 m ≠ 时 , 分式的值为零
章末复习
分析 设(1) 设乙队单独完成此项任务需 x 天 , 则甲队单独完成此项任务需
( x + 10) 天 , 所以乙队的工作效率为 , 单独施工 30 天的工作量为 , 甲
队的工作效率为
, 单独施工 45 天的工作量
, 根据等量关系构
造方程求解. (2) 根据题意有不等关系:甲队的工作量 ≥ 乙队的工作量