2016年湖南省岳阳市中考数学试卷
岳阳市2016年中考数学试卷
岳阳市2016年初中毕业学业考试数学试卷 第 1 页 (共 5 页)岳阳市2016年初中毕业学业考试试卷数 学温馨提示:1.本试卷共3道大题,24道小题,满分120分,考试时量90分钟;2.本试卷分为试题卷和答题卡两部分,所有答案都必须填涂或填写在答题卡上规定的答题区域内; 3.考试结束后,考生不得将试题卷、答题卡、草稿纸带出考场.一、选择题(本大题8道小题,每小题3分,满分24分.在每道小题给出的四个选项中,选出符合要求的一项) 1. 下列各数中为无理数的是 A. -1B. 3.14C. πD. 02. 下列运算结果正确的是 A. 235a+ B. ()326aa = C. 236a a a ⋅= D. 321a a -=3. 函数y =中自变量x 的取值范围是A. x ≥0B. x >4C. x <4D. x ≥44. 某小学校园足球队22名队员年龄情况如下:则这个队队员年龄的众数和中位数分别是 A. 11, 10 B. 11, 11C. 10, 9D. 10, 115. 如图是某几何体的三视图,则该几何体可能是A. 圆柱B. 圆锥C. 球D. 长方体6. 下列长度的三根小木棒能构成三角形的是A. 2cm , 3 cm , 5 cmB. 7cm , 4 cm , 2 cmC. 3cm , 4 cm , 8 cmD. 3cm , 3 cm , 4 cm 7. 下列说法错误..的是 A. 角平分线上的点到角的两边的距离相等 B. 直角三角形斜边上的中线等于斜边的一半 C. 菱形的对角线相等 D. 平行四边形是中心对称图形8. 对于实数a 、b ,我们定义符号max {a ,b }的意义为:当a ≥b 时,max {a ,b }=a ; 当a <b 时,max {a ,b }=b ;如:max {4,﹣2}=4,max {3,3}=3. 若关于x 的函数 为y = max {3x +,1x -+},则该函数的最小值是A. 0B. 2C. 3D. 4左视图主视图 第5题图岳阳市2016年初中毕业学业考试数学试卷 第 2 页 (共二、填空题(本大题8道小题,每小题4分,满分32分) 9. 如图所示,数轴上点A 所表示的数的相反数是. 10.因式分解:x x 362-= .11.在半径为6cm 的圆中,120°的圆心角所对的弧长是 cm .12.为加快“一极三宜”江湖名城建设,总投资124000万元的岳阳三荷机场及空港产业园预计2016年建好主体工程.将124000万元用科学记数法表示为 元. 13.如图,四边形ABCD 为⊙O 的内接四边形,已知110BCD ∠=︒,则BAD ∠= 度.14.如图,一山坡的坡度为i =1A 出发,沿山坡向上走了200米到达点B ,则小辰上升了 米.15.如图,一次函数)为常数,且、(0≠+=k b k b kx y 和反比例函数4(0)y x x=>的图象交于A 、B 两点,利用函数图象直接写出不等式4kx b x+<的解集是 .16.如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长,P 1,P 2,P 3,…, 均在格点上,其顺序按图中“→”方向排列. 如:P 1(0,0),P 2(0,1),P 3(1,1), P 4(1,﹣1),P 5(﹣1,﹣1),P 6(﹣1,2)… 根据这个规律,点P 2016的坐标为 .二、解答题(本大题共8道小题,满分64分.解答应写出文字说明、证明过程或演算步骤)17.(本题满分6分)计算:(1012tan 6023-⎛⎫︒- ⎪⎝⎭18.(本题满分6分)已知:如图,在矩形ABCD 中,点E 在边D第18题图第9题图第14题图B 第13题图岳阳市2016年初中毕业学业考试数学试卷 第 3 页 (共 5 页)AB 上,点F 在边BC 上,且BE =CF ,EF ⊥DF . 求证:BF =CD .19.(本题满分8分)已知不等式组3442+33x xx x +⎧⎪⎨⎪⎩>①≤② (1)求不等式组的解集,并写出它的所有整数解;(2)在不等式组的所有整数解中任取两个不同的整数相乘,请用画树状图或列表的方法求积为正数的概率.20.(本题满分8分)列方程或方程组解应用题:我市某学校开展“远足君山,磨砺意志,保护江豚,爱鸟护鸟”为主题的远足活动.已知学校与君山岛相距24千米,远足服务人员骑自行车,学生步行,服务人员骑自行车的平均速度是学生步行平均速度的2.5倍.服务人员与学生同时从学校出发,到达君山岛时,服务人员所花时间比学生少用3.6小时.求学生步行的平均速度是多少千米/小时.21.(本题满分8分)某学校环保志愿者协会对该市城区的空气质量进行调查,从全年365天中随机抽取了80天的空气质量指数(AQI )数据,绘制出三幅不完整的统计图表,请根据图表中提供的信息解答下列问题:AQI 指数质量等级 天数(天) 0~50 优 m51~100 良 44101~150 轻度污染 n151~200 中度污染 4 201~300 重度污染 2 300以上严重污染2(1)统计表中m = ,n = , 扇形统计图中,空气质量等级为“良”的天数占 % ;(2)补全条形统计图,并通过计算估计该市城区全年空气质量等级为“优”和“良”的天数 共多少天?(3)据调查,严重污染的2天发生在春节期间,燃放烟花爆竹成为空气污染的一个重要原 因.据此,请你提出一条合理化建议.城区空气质量等级天数统计表ACB D E F 城区空气质量等级天数扇形统计图A :优B :良C :轻度污染D :中度污染E :重度污染F :严重污染A :优B :良C :轻度污染D :中度污染E :重度污染F :严重污染空气质量等级10444 20 20 30 40 50 天数 城区空气质量等级天数条形统计图 2A B C D E F n22.(本题满分8分)已知关于x 的方程()()22110x m x m m -+++=. (1)求证:方程总有两个不相等的实数根;(2)已知方程的一个根为0x =,求代数式()()()2213375m m m m -++-+-的值(要求先化简再求值).23.(本题满分10分)数学活动——旋转变换 (1) 如图①,在△ABC 中,130ABC ∠=︒,将△ABC 绕点C 逆时针旋转50°得到△A B C '',连结BB ',求A B B ''∠的大小;(2)如图②,在△ABC 中,150ABC ∠=︒,3AB =,5BC =,将△ABC 绕点C 逆时针旋转60︒得到△A B C '',连结BB ',以A '为圆心,A B ''长为半径作圆. (Ⅰ)猜想:直线BB '与⊙A '的位置关系,并证明你的结论; (Ⅱ)连结A B ',求线段A B '的长度;(3)如图③,在△ABC 中,ABC α∠=(90︒<α<180︒),AB m =,BC n =,将△ABC绕点C 逆时针旋转2β角度(0︒<2β<180︒)得到△A B C '',连结A B '和BB ',以A '为圆心,A B ''长为半径作圆.问:角α与角β满足什么条件时,直线BB '与⊙A ' 相切,请说明理由,并求此条件下线段A B '的长度(结果用角α或角β的三角函数及字母m 、n 所组成的式子表示).24.(本题满分10分)如图①,直线443y x =+交x 轴于点A ,交y 轴于点C ,过A 、C 两点的抛物线1F 交x 轴于另一点B (1,0). (1)求抛物线1F 所表示的二次函数的表达式;(2)若点M 是抛物线1F 位于第二象限图象上的一点,设四边形MAOC 和△BOC 的面积分别为MAOC S 四边形和BOC S ∆,记BOC MAOC S S S ∆=-四边形,求S 最大时点M 的坐标及S 的最大值;(3)如图②,将抛物线1F 沿y 轴翻折并“复制”得到抛物线2F ,点A 、B 与(2)中所求的点M 的对应点分别为A '、B '、 M ',过点M '作M E x '⊥轴于点E ,交直线A C'于点D ,在x 轴上是否存在点P ,使得以A '、D 、P 为顶点的三角形与△AB C '相似;若存在,请求出点P 的坐标,若不存在,请说明理由.A B C A ' B ' A B C A ' B ' 图① 图② 图③ A B C A ' B '岳阳市2016年初中毕业学业考试数学试卷第5 页(共5 页)。
2016湖南省岳阳市中考数学试卷(含答案精校解析版)
2016年湖南省岳阳市中考数学试卷一、选择题(本大题8道小题,每小题3分,满分24分)1.(3分)(2016•岳阳)下列各数中为无理数的是()A.﹣1 B.3.14 C.π D.02.(3分)(2016•岳阳)下列运算结果正确的是()A.a235B.(a2)36C.a2•a36D.3a﹣213.(3分)(2016•岳阳)函数中自变量x的取值范围是()A.x≥0 B.x>4 C.x<4 D.x≥44.(3分)(2016•岳阳)某小学校足球队22名队员年龄情况如下:年龄(岁)12 11 10 9 人数 4 10 6 2则这个队队员年龄的众数和中位数分别是()A.11,10 B.11,11 C.10,9 D.10,115.(3分)(2016•岳阳)如图是某几何体的三视图,则该几何体可能是()A.圆柱B.圆锥C.球D.长方体6.(3分)(2016•岳阳)下列长度的三根小木棒能构成三角形的是()A.2,3,5 B.7,4,2 C.3,4,8 D.3,3,47.(3分)(2016•岳阳)下列说法错误的是()A.角平分线上的点到角的两边的距离相等B.直角三角形斜边上的中线等于斜边的一半C.菱形的对角线相等D.平行四边形是中心对称图形8.(3分)(2016•岳阳)对于实数a,b,我们定义符号{a,b}的意义为:当a≥b 时,{a,b};当a<b时,{a,b];如:{4,﹣2}=4,{3,3}=3,若关于x的函数为{3,﹣1},则该函数的最小值是()A.0 B.2 C.3 D.4二、填空题(本大题共8小题,每小题4分,满分32分)9.(4分)(2016•岳阳)如图所示,数轴上点A所表示的数的相反数是.10.(4分)(2016•岳阳)因式分解:6x2﹣3.11.(4分)(2016•岳阳)在半径为6的圆中,120°的圆心角所对的弧长为.12.(4分)(2016•岳阳)为加快“一极三宜”江湖名城建设,总投资124000万元的岳阳三荷机场及交通产业园,预计2016年建好主体工程,将124000万元用科学记数法表示为元.13.(4分)(2016•岳阳)如图,四边形为⊙O的内接四边形,已知∠110°,则∠度.14.(4分)(2016•岳阳)如图,一山坡的坡度为1:,小辰从山脚A出发,沿山坡向上走了200米到达点B,则小辰上升了米.15.(4分)(2016•岳阳)如图,一次函数(k、b为常数,且k≠0)和反比例函数(x>0)的图象交于A、B两点,利用函数图象直接写出不等式<的解集是.16.(4分)(2016•岳阳)如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长,P1,P2,P3,…,均在格点上,其顺序按图中“→”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,﹣1),P5(﹣1,﹣1),P6(﹣1,2)…根据这个规律,点P2016的坐标为.三、解答题(本大题共8道小题,满分64分)17.(8分)(2016•岳阳)计算:()﹣1﹣+260°﹣(2﹣)0.18.(6分)(2016•岳阳)已知:如图,在矩形中,点E在边上,点F在边上,且,⊥,求证:.19.(6分)(2016•岳阳)已知不等式组(1)求不等式组的解集,并写出它的所有整数解;(2)在不等式组的所有整数解中任取两个不同的整数相乘,请用画树状图或列表的方法求积为正数的概率.20.(8分)(2016•岳阳)我市某学校开展“远是君山,磨砺意志,保护江豚,爱鸟护鸟”为主题的远足活动.已知学校与君山岛相距24千米,远足服务人员骑自行车,学生步行,服务人员骑自行车的平均速度是学生步行平均速度的2.5倍,服务人员与学生同时从学校出发,到达君山岛时,服务人员所花时间比学生少用了3.6小时,求学生步行的平均速度是多少千米/小时.21.(8分)(2016•岳阳)某学校环保志愿者协会对该市城区的空气质量进行调查,从全年365天中随机抽取了80天的空气质量指数()数据,绘制出三幅不完整的统计图表.请根据图表中提供的信息解答下列问题:指数质量等级天数(天)0﹣50 优m51﹣100 良44101﹣150 轻度污染n151﹣200 中度污染 4201﹣300 重度污染 2300以上严重污染 2(1 )统计表中,.扇形统计图中,空气质量等级为“良”的天数占%;(2)补全条形统计图,并通过计算估计该市城区全年空气质量等级为“优”和“良”的天数共多少天?(3)据调查,严重污染的2天发生在春节期间,燃放烟花爆竹成为空气污染的一个重要原因,据此,请你提出一条合理化建议.22.(8分)(2016•岳阳)已知关于x的方程x2﹣(21)(1)=0.(1)求证:方程总有两个不相等的实数根;(2)已知方程的一个根为0,求代数式(2m﹣1)2+(3)(3﹣m)+7m﹣5的值(要求先化简再求值).23.(10分)(2016•岳阳)数学活动﹣旋转变换(1)如图①,在△中,∠130°,将△绕点C逆时针旋转50°得到△A′B′C,连接′,求∠A′B′B的大小;(2)如图②,在△中,∠150°,3,5,将△绕点C逆时针旋转60°得到△A′B′C,连接′,以A′为圆心,A′B′长为半径作圆.(Ⅰ)猜想:直线′与⊙A′的位置关系,并证明你的结论;(Ⅱ)连接A′B,求线段A′B的长度;(3)如图③,在△中,∠α(90°<α<180°),,,将△绕点C逆时针旋转2β角度(0°<2β<180°)得到△A′B′C,连接A′B和′,以A′为圆心,A′B′长为半径作圆,问:角α与角β满足什么条件时,直线′与⊙A′相切,请说明理由,并求此条件下线段A′B的长度(结果用角α或角β的三角函数及字母m、n所组成的式子表示)24.(10分)(2016•岳阳)如图①,直线4交于x轴于点A,交y轴于点C,过A、C两点的抛物线F1交x轴于另一点B(1,0).(1)求抛物线F1所表示的二次函数的表达式;(2)若点M是抛物线F1位于第二象限图象上的一点,设四边形和△的面积分别为S四边形和S△,记四边形﹣S△,求S最大时点M的坐标及S的最大值;(3)如图②,将抛物线F1沿y轴翻折并“复制”得到抛物线F2,点A、B与(2)中所求的点M的对应点分别为A′、B′、M′,过点M′作M′E⊥x轴于点E,交直线A′C于点D,在x轴上是否存在点P,使得以A′、D、P为顶点的三角形与△′C相似?若存在,请求出点P的坐标;若不存在,请说明理由.2016年湖南省岳阳市中考数学试卷参考答案与试题解析一、选择题(本大题8道小题,每小题3分,满分24分)1.(3分)(2016•岳阳)下列各数中为无理数的是()A.﹣1 B.3.14 C.π D.0【考点】无理数.【分析】π是圆周率,是无限不循环小数,所以π是无理数.【解答】解:∵π是无限不循环小数,∴π是无理数.故选C.【点评】此题是无理数题,主要考查了无理数的定义,了解π,解本题的关键是明白无理意义.数的2.(3分)(2016•岳阳)下列运算结果正确的是()A.a235B.(a2)36C.a2•a36D.3a﹣21【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】利用幂的有关运算性质逐一计算后即可确定正确的选项.【解答】解:A、a2与a3不是同类项,不能合并,故错误;B、(a2)36,正确,符合题意;C、a2•a35,故错误;D、3a﹣2,故错误,故选B.【点评】本题考查了幂的乘方与积的乘方、合并同类项及同底数幂的乘法的知识,解题的关键是牢记有关的幂的运算性质,难度不大.3.(3分)(2016•岳阳)函数中自变量x的取值范围是()A.x≥0 B.x>4 C.x<4 D.x≥4【考点】函数自变量的取值范围;二次根式有意义的条件.【分析】根据二次根式有意义的条件可得出x﹣4≥0,解该不等式即可得出结论.【解答】解:∵x﹣4≥0,∴x≥4.故选D.【点评】本题考查了函数自变量的取值范围以及二次根式有意义的条件,解题的关键是得出不等式x﹣4≥0.本题属于基础题,难度不大,解决该题型题目时,根据二次根式有意义的条件得出不等式是关键.4.(3分)(2016•岳阳)某小学校足球队22名队员年龄情况如下:年龄(岁)12 11 10 9 人数 4 10 6 2则这个队队员年龄的众数和中位数分别是()A.11,10 B.11,11 C.10,9 D.10,11【考点】众数;中位数.【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:年龄是11岁的人数最多,有10个人,则众数是11;把这些数从小到大排列,中位数是第11,12个数的平均数,则中位数是=11;故选B.【点评】此题考查了中位数和众数,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.5.(3分)(2016•岳阳)如图是某几何体的三视图,则该几何体可能是()A.圆柱B.圆锥C.球D.长方体【考点】由三视图判断几何体.【分析】根据一个空间几何体的主视图和俯视图都是宽度相等的长方形,可判断该几何体是柱体,进而根据左视图的形状,可判断柱体侧面形状,得到答案.【解答】解:∵几何体的主视图和俯视图都是宽度相等的长方形,∴该几何体是一个柱体,又∵俯视图是一个圆,∴该几何体是一个圆柱.故选A.【点评】本题考查的知识点是三视图,如果有两个视图为三角形,该几何体一定是锥,如果有两个矩形,该几何体一定柱,其底面由第三个视图的形状决定.6.(3分)(2016•岳阳)下列长度的三根小木棒能构成三角形的是()A.2,3,5 B.7,4,2 C.3,4,8 D.3,3,4【考点】三角形三边关系.【分析】依据三角形任意两边之和大于第三边求解即可.【解答】解:A、因为2+3=5,所以不能构成三角形,故A错误;B、因为2+4<6,所以不能构成三角形,故B错误;C、因为3+4<8,所以不能构成三角形,故C错误;D、因为3+3>4,所以能构成三角形,故D正确.故选:D.【点评】本题主要考查的是三角形的三边关系,掌握三角形的三边关系是解题的关键.7.(3分)(2016•岳阳)下列说法错误的是()A.角平分线上的点到角的两边的距离相等B.直角三角形斜边上的中线等于斜边的一半C.菱形的对角线相等D.平行四边形是中心对称图形【考点】中心对称图形;角平分线的性质;直角三角形斜边上的中线;菱形的性质.【专题】推理填空题.【分析】A:根据角平分线的性质,可得角平分线上的点到角的两边的距离相等.B:根据直角三角形斜边上的中线的性质,可得直角三角形斜边上的中线等于斜边的一半.C:根据菱形的性质,菱形的对角线互相垂直,但是不一定相等.D:根据中心对称图形的性质,可得常见的中心对称图形有:平行四边形、圆形、正方形、长方形,据此判断即可.【解答】解:∵角平分线上的点到角的两边的距离相等,∴选项A正确;∵直角三角形斜边上的中线等于斜边的一半,∴选项B正确;∵菱形的对角线互相垂直,但是不一定相等,∴选项C不正确;∵平行四边形是中心对称图形,∴选项D正确.故选:C.【点评】(1)此题主要考查了角平分线的性质和应用,要熟练掌握,解答此题的关键是要明确:一个角的平分线把这个角分成两个大小相同的角.(2)此题还考查了菱形的性质和应用,要熟练掌握,解答此题的关键是要明确:①菱形具有平行四边形的一切性质;②菱形的四条边都相等;③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;④菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.(3)此题还考查了直角三角形斜边上的中线,要熟练掌握,解答此题的关键是要明确:在直角三角形中,斜边上的中线等于斜边的一半.(4)此题还考查了中心对称图形,要熟练掌握,解答此题的关键是要明确:中心对称图形和中心对称不同,中心对称是两个图形之间的关系,而中心对称图形是指一个图形自身的特点,这点应注意区分,它们性质相同,应用方法相同.8.(3分)(2016•岳阳)对于实数a,b,我们定义符号{a,b}的意义为:当a≥b 时,{a,b};当a<b时,{a,b];如:{4,﹣2}=4,{3,3}=3,若关于x的函数为{3,﹣1},则该函数的最小值是()A.0 B.2 C.3 D.4【考点】分段函数.【专题】新定义.【分析】分x≥﹣1和x<﹣1两种情况进行讨论计算,【解答】解:当3≥﹣1,即:x≥﹣1时,3,∴当﹣1时,2,当3<﹣1,即:x<﹣1时,﹣1,∵x<﹣1,∴﹣x>1,∴﹣1>2,∴y>2,∴2,故选B【点评】此题是分段函数题,主要考查了新定义,解本题的关键是分段.二、填空题(本大题共8小题,每小题4分,满分32分)9.(4分)(2016•岳阳)如图所示,数轴上点A所表示的数的相反数是2.【考点】相反数;数轴.【分析】根据相反数的定义,即可解答.【解答】解:数轴上点A所表示的数是﹣2,﹣2的相反数是2,故答案为:2.【点评】本题考查了相反数,解决本题的关键是熟记相反数的定义.10.(4分)(2016•岳阳)因式分解:6x2﹣33x(2x﹣1).【考点】因式分解-提公因式法.【分析】根据提公因式法因式分解的步骤解答即可.【解答】解:6x2﹣33x(2x﹣1),故答案为:3x(2x﹣1).【点评】本题考查的是提公因式法因式分解,提公因式法基本步骤:找出公因式;提公因式并确定另一个因式:第一步找公因式可按照确定公因式的方法先确定系数再确定字母;第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式.11.(4分)(2016•岳阳)在半径为6的圆中,120°的圆心角所对的弧长为4π.【考点】弧长的计算.【分析】直接利用弧长公式求出即可.【解答】解:半径为6的圆中,120°的圆心角所对的弧长为:=4π().故答案为:4π.【点评】此题主要考查了弧长公式的应用,正确记忆弧长公式是解题关键.12.(4分)(2016•岳阳)为加快“一极三宜”江湖名城建设,总投资124000万元的岳阳三荷机场及交通产业园,预计2016年建好主体工程,将124000万元用科学记数法表示为 1.24×109元.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:124000万=124000 0000=1.24×109,故答案为:1.24×109.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤<10,n为整数,表示时关键要正确确定a的值以及n的值.13.(4分)(2016•岳阳)如图,四边形为⊙O的内接四边形,已知∠110°,则∠70度.【考点】圆内接四边形的性质;圆周角定理.【分析】根据圆内接四边形的对角互补求∠的度数即可.【解答】解:∵四边形为⊙O的内接四边形,∴∠∠180°(圆内接四边形的对角互补);又∵∠110°,∴∠70°.故答案为:70.【点评】本题主要考查了圆内接四边形的性质.解答此题时,利用了圆内接四边形的对角互补的性质来求∠的补角即可.14.(4分)(2016•岳阳)如图,一山坡的坡度为1:,小辰从山脚A出发,沿山坡向上走了200米到达点B,则小辰上升了100米.【考点】解直角三角形的应用-坡度坡角问题.【专题】应用题.【分析】根据坡比的定义得到∠,∠30°,然后根据含30度的直角三角形三边的关系求解.【解答】解:根据题意得∠,所以∠30°,所以×200=100(m).故答案为100.【点评】本题考查了解直角三角形的应用:坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i 表示,常写成1:m的形式15.(4分)(2016•岳阳)如图,一次函数(k、b为常数,且k≠0)和反比例函数(x>0)的图象交于A、B两点,利用函数图象直接写出不等式<的解集是1<x<4.【考点】反比例函数与一次函数的交点问题.【分析】先根据图形得出A、B的坐标,根据两点的坐标和图形得出不等式的解集即可.【解答】解:∵由图象可知:A(1,4),B(4,1),x>0,∴不等式<的解集为1<x<4,故答案为:1<x<4.【点评】本题考查了反比例函数与一次函数的交点的应用,能读懂图象是解此题的关键,数形结合思想的应用.16.(4分)(2016•岳阳)如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长,P1,P2,P3,…,均在格点上,其顺序按图中“→”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,﹣1),P5(﹣1,﹣1),P6(﹣1,2)…根据这个规律,点P2016的坐标为(504,﹣504).【考点】规律型:点的坐标.【分析】根据各个点的位置关系,可得出下标为4的倍数的点在第四象限的角平分线上,被4除余1的点在第三象限的角平分线上,被4除余2的点在第二象限的角平分线上,被4除余3的点在第一象限的角平分线上,点P2016的在第四象限的角平分线上,且横纵坐标的绝对值=2016÷4,再根据第四项象限内点的符号得出答案即可.【解答】解:由规律可得,2016÷4=504,∴点P2016的在第四象限的角平分线上,∵点P4(1,﹣1),点P8(2,﹣2),点P12(3,﹣3),∴点P2016(504,﹣504),故答案为(504,﹣504).【点评】本题考查了规律型:点的坐标,是一个阅读理解,猜想规律的题目,解答此题的关键是首先确定点所在的大致位置,所在正方形,然后就可以进一步推得点的坐标.三、解答题(本大题共8道小题,满分64分)17.(8分)(2016•岳阳)计算:()﹣1﹣+260°﹣(2﹣)0.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题;实数.【分析】原式利用零指数幂、负整数指数幂法则,二次根式性质,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=3﹣2+2﹣1=2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(6分)(2016•岳阳)已知:如图,在矩形中,点E在边上,点F在边上,且,⊥,求证:.【考点】矩形的性质;全等三角形的判定与性质.【专题】证明题;图形的全等;矩形菱形正方形.【分析】由四边形为矩形,得到四个角为直角,再由与垂直,利用平角定义得到一对角互余,利用同角的余角相等得到一对角相等,利用得到三角形与三角形全等,利用全等三角形对应边相等即可得证.【解答】证明:∵四边形是矩形,∴∠∠90°,∵⊥,∴∠90°,∴∠∠90°,∵∠∠90°,∴∠∠,在△和△中,,∴△≌△(),∴.【点评】此题考查了矩形的性质,以及全等三角形的判定与性质,熟练掌握矩形的性质是解本题的关键.19.(6分)(2016•岳阳)已知不等式组(1)求不等式组的解集,并写出它的所有整数解;(2)在不等式组的所有整数解中任取两个不同的整数相乘,请用画树状图或列表的方法求积为正数的概率.【考点】列表法与树状图法;解一元一次不等式组;一元一次不等式组的整数解.【分析】(1)首先分别解不等式①②,然后求得不等式组的解集,继而求得它的所有整数解;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与积为正数的情况,再利用概率公式即可求得答案.【解答】解:(1)由①得:x>﹣2,由②得:x≤2,∴不等式组的解集为:﹣2<x≤2,∴它的所有整数解为:﹣1,0,1,2;(2)画树状图得:∵共有12种等可能的结果,积为正数的有2种情况,∴积为正数的概率为:=.【点评】此题考查了列表法或树状图法求概率以及不等式组的整数解.用到的知识点为:概率=所求情况数与总情况数之比.20.(8分)(2016•岳阳)我市某学校开展“远是君山,磨砺意志,保护江豚,爱鸟护鸟”为主题的远足活动.已知学校与君山岛相距24千米,远足服务人员骑自行车,学生步行,服务人员骑自行车的平均速度是学生步行平均速度的2.5倍,服务人员与学生同时从学校出发,到达君山岛时,服务人员所花时间比学生少用了3.6小时,求学生步行的平均速度是多少千米/小时.【考点】分式方程的应用.【分析】设学生步行的平均速度是每小时x千米,服务人员骑自行车的平均速度是每小时2.5x千米,根据学校与君山岛距离为24千米,服务人员所花时间比学生少用了3.6小时,可列方程求解.【解答】解:设学生步行的平均速度是每小时x千米.服务人员骑自行车的平均速度是每小时2.5x千米,根据题意:﹣=3.6,解得:4,经检验,3是所列方程的解,且符合题意.答:学生步行的平均速度是每小时4千米.【点评】本题考查了分式方程的应用,关键设出速度,以时间做为等量关系列方程求解.21.(8分)(2016•岳阳)某学校环保志愿者协会对该市城区的空气质量进行调查,从全年365天中随机抽取了80天的空气质量指数()数据,绘制出三幅不完整的统计图表.请根据图表中提供的信息解答下列问题:指数质量等级天数(天)0﹣50 优m51﹣100 良44101﹣150 轻度污染n151﹣200 中度污染 4201﹣300 重度污染 2300以上严重污染 2(1 )统计表中20,8.扇形统计图中,空气质量等级为“良”的天数占55%;(2)补全条形统计图,并通过计算估计该市城区全年空气质量等级为“优”和“良”的天数共多少天?(3)据调查,严重污染的2天发生在春节期间,燃放烟花爆竹成为空气污染的一个重要原因,据此,请你提出一条合理化建议.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)由A占25%,即可求得m的值,继而求得n的值,然后求得空气质量等级为“良”的天数占的百分比;(2)首先由(1)补全统计图,然后利用样本估计总体的知识求解即可求得答案;(3)提出合理建议,比如不燃放烟花爆竹或少燃放烟花爆竹等.【解答】解:(1)∵80×2520,80﹣20﹣44﹣4﹣2﹣2=8,∴空气质量等级为“良”的天数占:×10055%.故答案为:20,8,55;(2)估计该市城区全年空气质量等级为“优”和“良”的天数共:365×(2555%)=292(天),答:估计该市城区全年空气质量等级为“优”和“良”的天数共292天;补全统计图:(3)建议不要燃放烟花爆竹.【点评】此题考查了条形图与扇形图的知识.读懂统计图,从统计图中得到必要的信息是解决问题的关键.22.(8分)(2016•岳阳)已知关于x的方程x2﹣(21)(1)=0.(1)求证:方程总有两个不相等的实数根;(2)已知方程的一个根为0,求代数式(2m﹣1)2+(3)(3﹣m)+7m﹣5的值(要求先化简再求值).【考点】根的判别式;一元二次方程的解.【分析】(1)找出a,b及c,表示出根的判别式,变形后得到其值大于0,即可得证.(2)把0代入方程即可求m的值,然后化简代数式再将m的值代入所求的代数式并求值即可.【解答】解:(1)∵关于x的一元二次方程x2﹣(21)(1)=0.∴△=(21)2﹣4m(1)=1>0,∴方程总有两个不相等的实数根;(2)∵0是此方程的一个根,∴把0代入方程中得到m(1)=0,∴0或﹣1,∵(2m﹣1)2+(3)(3﹣m)+7m﹣5=4m2﹣41+9﹣m2+7m﹣5=3m2+35,把0代入3m2+35得:3m2+35=5;把﹣1代入3m2+35得:3m2+35=3×1﹣3+5=5.【点评】本题考查了根的判别式和一元二次方程的解.解题时,逆用一元二次方程解的定义易得出所求式子的值,在解题时要重视解题思路的逆向分析.23.(10分)(2016•岳阳)数学活动﹣旋转变换(1)如图①,在△中,∠130°,将△绕点C逆时针旋转50°得到△A′B′C,连接′,求∠A′B′B的大小;(2)如图②,在△中,∠150°,3,5,将△绕点C逆时针旋转60°得到△A′B′C,连接′,以A′为圆心,A′B′长为半径作圆.(Ⅰ)猜想:直线′与⊙A′的位置关系,并证明你的结论;(Ⅱ)连接A′B,求线段A′B的长度;(3)如图③,在△中,∠α(90°<α<180°),,,将△绕点C逆时针旋转2β角度(0°<2β<180°)得到△A′B′C,连接A′B和′,以A′为圆心,A′B′长为半径作圆,问:角α与角β满足什么条件时,直线′与⊙A′相切,请说明理由,并求此条件下线段A′B的长度(结果用角α或角β的三角函数及字母m、n所组成的式子表示)【考点】圆的综合题.【分析】(1)根据∠A′B′∠A′B′C﹣∠′C,只要求出∠A′B′B即可.(2)(Ⅰ)结论:直线′与⊙A′相切.只要证明∠A′B′90°即可.(Ⅱ)在△′中,利用勾股定理计算即可.(3)如图③中,当α+β=180°时,直线′与⊙A′相切.只要证明∠A′B′90°即可解决问题.在△′中求出′,再在△A′B′B中利用勾股定理即可.【解答】解;(1)如图①中,∵△A′B′C是由△旋转得到,∴∠A′B′∠130°,′,∴∠′=∠′B,∵∠′=50°,∴∠′=∠′65°,∴∠A′B′∠A′B′C﹣∠′65°.(2)(Ⅰ)结论:直线′与⊙A′相切.理由:如图②中,∵∠A′B′∠150°,′,∴∠′=∠′B,∵∠′=60°,∴∠′=∠′60°,∴∠A′B′∠A′B′C﹣∠′90°.∴′⊥′,∴直线′与⊙A′相切.(Ⅱ)∵在△′中,∵∠′90°,′5,′3,∴A′.(3)如图③中,当α+β=180°时,直线′与⊙A′相切.理由:∵∠A′B′∠α,′,∴∠′=∠′B,∵∠′=2β,∴∠′=∠′,∴∠A′B′∠A′B′C﹣∠′α﹣90°+β=180°﹣90°=90°.∴′⊥′,∴直线′与⊙A′相切.在△′中,∵′,∠′=2β,∴′=2•β,在△A′′中,A′.【点评】本题考查圆的综合题、旋转不变性、勾股定理、切线的判定、等腰三角形的性质等知识,解题的关键是熟练运用这些知识解决问题,充分利用旋转不变性,属于中考压轴题.24.(10分)(2016•岳阳)如图①,直线4交于x轴于点A,交y轴于点C,过A、C两点的抛物线F1交x轴于另一点B(1,0).(1)求抛物线F1所表示的二次函数的表达式;(2)若点M是抛物线F1位于第二象限图象上的一点,设四边形和△的面积分别为S四边形和S△,记四边形﹣S△,求S最大时点M的坐标及S的最大值;(3)如图②,将抛物线F1沿y轴翻折并“复制”得到抛物线F2,点A、B与(2)中所求的点M的对应点分别为A′、B′、M′,过点M′作M′E⊥x轴于点E,交直线A′C于点D,在x轴上是否存在点P,使得以A′、D、P为顶点的三角形与△′C相似?若存在,请求出点P的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)利用一次函数的解析式求出点A、C的坐标,然后再利用B点坐标即可求出二次函数的解析式;(2)由于M在抛物线F1上,所以可设M(a,﹣a2﹣4),然后分别计算S四边形和S△,过点M作⊥x轴于点P,则S四边形的值等于△的面积与梯形的面积之和.(3)由于没有说明点P的具体位置,所以需要将点P的位置进行分类讨论,当点P在A′的右边时,此情况是不存在;当点P在A′的左边时,此时∠′∠′,若以A′、D、P为顶点的三角形与△′C相似,则分为以下两种情况进行讨论:①=;②=.【解答】解:(1)令0代入4,∴﹣3,A(﹣3,0),令0,代入4,∴4,∴C(0,4),设抛物线F1的解析式为:(3)(x﹣1),把C(0,4)代入上式得,﹣,∴﹣x2﹣4,(2)如图①,设点M(a,﹣a2﹣4)其中﹣3<a<0∵B(1,0),C(0,4),∴1,4∴S△•2,过点M作⊥x轴于点P,∴﹣a2﹣4,3,﹣a,∴S四边形•()••••=×3(﹣a2﹣4)+×4×(﹣a)=﹣2a2﹣66∴四边形﹣S△=(﹣2a2﹣66)﹣2=﹣2a2﹣64=﹣2()2+∴当﹣时,S有最大值,最大值为此时,M(﹣,5);(3)如图②,由题意知:M′(),B′(﹣1,0),A′(3,0)∴′=2,设直线A′C的解析式为:,把A′(3,0)和C(0,4)代入,得:,∴∴﹣4,令代入﹣4,∴2∴由勾股定理分别可求得:5,′=设P(m,0)当m<3时,此时点P在A′的左边,∴∠′∠′,当=时,△′P∽△′,此时,=(3﹣m),解得:2,∴P(2,0)当=时,△′P∽△B′,此时,=(3﹣m)﹣,∴P(﹣,0)当m>3时,此时,点P在A′右边,由于∠′O≠∠′E,∴∠′C≠∠′P∴此情况,△′P与△B′不能相似,综上所述,当以A′、D、P为顶点的三角形与△′C相似时,点P的坐标为(2,0)或(﹣,0).【点评】本题是二次函数的综合问题,涉及待定系数法求解析式,二次函数最值问题,相似三角形的判定与性质等知识内容,综合程度较大,需要学生灵活运用所学知识解决问题.另外对于动点问题,通常可以用一参数m来表示该动点.。
湖南岳阳市中考数学考试及答案
湖南岳阳市中考数学考试及答案————————————————————————————————作者:————————————————————————————————日期:ﻩ岳阳市2016年初中毕业学业考试数学试卷一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的.( )1.下列各数中为无理数的是A.﹣1 B.3.14 C.π D.0( )2.下列运算结果正确的是A.a2+a3=a5B.(a2)3=a6C.a2•a3=a6D.3a﹣2a=1()3.函数y=中自变量x的取值范围是A.x≥0B.x>4C.x<4 D.x≥4( )4.某小学校足球队22名队员年龄情况如下:年龄(岁) 12 11 109人数 4 10 6 2则这个队队员年龄的众数和中位数分别是A.11,10 B.11,11 C.10,9 D.10,11()5.如图是某几何体的三视图,则该几何体可能是A.圆柱 B.圆锥C.球D.长方体()6.下列长度的三根小木棒能构成三角形的是A.2cm,3cm,5cmB.7cm,4cm,2cmC.3cm,4cm,8cm D.3cm,3cm,4cm( )7.下列说法错误的是A.角平分线上的点到角的两边的距离相等B.直角三角形斜边上的中线等于斜边的一半C.菱形的对角线相等D.平行四边形是中心对称图形( )8.对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是A.0B.2 C.3D.4二、填空题(本大题共8小题,每小题4分,共32分)9.如图所示,数轴上点A所表示的数的相反数是.10.因式分解:6x2﹣3x=.11.在半径为6cm的圆中,120°的圆心角所对的弧长为cm.12.为加快“一极三宜”江湖名城建设,总投资124000万元的岳阳三荷机场及交通产业园,预计2016年建好主体工程,将124000万元用科学记数法表示为元.13.如图,四边形ABCD为⊙O的内接四边形,已知∠BCD=110°,则∠BAD=度.14.如图,一山坡的坡度为i=1:,小辰从山脚A出发,沿山坡向上走了200米到达点B,则小辰上升了米.15.如图,一次函数y=kx+b(k、b为常数,且k≠0)和反比例函数y=(x>0)的图象交于A、B两点,利用函数图象直接写出不等式<kx+b的解集是.16.如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长,P1,P2,P3,…,均在格点上,其顺序按图中“→”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,﹣1),P5(﹣1,﹣1),P6(﹣1,2)…根据这个规律,点P2016的坐标为.三、解答题(本大题共8小题,共64分)17.(6分)计算:()﹣1﹣+2tan60°﹣(2﹣)0.18.(6分)已知:如图,在矩形ABCD中,点E在边AB上,点F在边BC上,且BE=CF,EF⊥DF,求证:BF=CD.19.(8分)已知不等式组ﻩ(1)求不等式组的解集,并写出它的所有整数解;(2)在不等式组的所有整数解中任取两个不同的整数相乘,请用画树状图或列表的方法求积为正数的概率.20.(8分)我市某学校开展“远是君山,磨砺意志,保护江豚,爱鸟护鸟”为主题的远足活动.已知学校与君山岛相距24千米,远足服务人员骑自行车,学生步行,服务人员骑自行车的平均速度是学生步行平均速度的2.5倍,服务人员与学生同时从学校出发,到达君山岛时,服务人员所花时间比学生少用了 3.6小时,求学生步行的平均速度是多少千米/小时.21.(8分)某学校环保志愿者协会对该市城区的空气质量进行调查,从全年365天中随机抽取了80天的空气质量指数(AQI)数据,绘制出三幅不完整的统计图表.请根据图表中提供的信息解答下列问题:AQI指数质量等级天数(天)0﹣50优m51﹣100 良44101﹣150轻度污染n151﹣200中度污染 4201﹣300 重度污染 2300以上严重污染 2(1)统计表中m=,n=.扇形统计图中,空气质量等级为“良”的天数占%;(2)补全条形统计图,并通过计算估计该市城区全年空气质量等级为“优”和“良”的天数共多少天?(3)据调查,严重污染的2天发生在春节期间,燃放烟花爆竹成为空气污染的一个重要原因,据此,请你提出一条合理化建议.22.(8分)已知关于x的方程x2﹣(2m+1)x+m(m+1)=0.(1)求证:方程总有两个不相等的实数根;(2)已知方程的一个根为x=0,求代数式(2m﹣1)2+(3+m)(3﹣m)+7m﹣5的值(要求先化简再求值).23.(10分)数学活动﹣旋转变换(1)如图①,在△ABC中,∠ABC=130°,将△ABC绕点C逆时针旋转50°得到△A′B′C,连接BB′,求∠A′B′B的大小;(2)如图②,在△ABC中,∠ABC=150°,AB=3,BC=5,将△ABC绕点C逆时针旋转60°得到△A′B′C,连接BB′,以A′为圆心,A′B′长为半径作圆.(Ⅰ)猜想:直线BB′与⊙A′的位置关系,并证明你的结论;(Ⅱ)连接A′B,求线段A′B的长度;(3)如图③,在△ABC中,∠ABC=α(90°<α<180°),AB=m,BC=n,将△ABC绕点C逆时针旋转2β角度(0°<2β<180°)得到△A′B′C,连接A′B和BB′,以A′为圆心,A′B′长为半径作圆,问:角α与角β满足什么条件时,直线BB′与⊙A′相切,请说明理由,并求此条件下线段A′B的长度(结果用角α或角β的三角函数及字母m、n所组成的式子表示)ﻬ24.(10分)如图①,直线y=x+4交于x轴于点A,交y轴于点C,过A、C两点的抛物线F1交x轴于另一点B(1,0).(1)求抛物线F1所表示的二次函数的表达式;(2)若点M是抛物线F1位于第二象限图象上的一点,设四边形MAOC和△BOC 的面积分别为S四边形M A O C和S△BOC,记S=S四边形M A O C﹣S△B O C,求S最大时点M的坐标及S的最大值;(3)如图②,将抛物线F1沿y轴翻折并“复制”得到抛物线F2,点A、B与(2)中所求的点M的对应点分别为A′、B′、M′,过点M′作M′E⊥x轴于点E,交直线A′C于点D,在x轴上是否存在点P,使得以A′、D、P为顶点的三角形与△AB′C相似?若存在,请求出点P的坐标;若不存在,请说明理由.ﻬ参考答案一、选择题(共8个小题,每小题3分,共24分)1 2 3 4 5 6 7 8C B D B AD C B二、填空题(共8个小题,每小题4分,共32分)题号9116答案 2 3x(2x﹣1)4π1.24×109701001<x<4(504,﹣504)三、解答题(共6道小题,每小题5分,共30分)17. 解:原式=3﹣2+2﹣1=218.证明:∵四边形ABCD是矩形,∴∠B=∠C=90°,∵EF⊥DF,∴∠EFD=90°,∴∠EFB+∠CFD=90°,∵∠EFB+∠BEF=90°,∴∠BEF=∠CFD,在△BEF和△CFD中,,∴△BEF≌△CFD(ASA),∴BF=CD.19.解:(1)由①得:x>﹣2,由②得:x≤2,∴不等式组的解集为:﹣2<x≤2,∴它的所有整数解为:﹣1,0,1,2;(2)画树状图得:∵共有12种等可能的结果,积为正数的有2种情况,∴积为正数的概率为:=.20. 解:设学生步行的平均速度是每小时x千米.服务人员骑自行车的平均速度是每小时2.5x千米,根据题意:﹣=3.6,解得:x=4,经检验,x=3是所列方程的解,且符合题意.答:学生步行的平均速度是每小时4千米.21. 解:(1)20,8,55;(2)估计该市城区全年空气质量等级为“优”和“良”的天数共:365×(25%+55%)=292(天)(3)建议不要燃放烟花爆竹.22.解:(1)∵关于x的一元二次方程x2﹣(2m+1)x+m(m+1)=0.∴△=(2m+1)2﹣4m(m+1)=1>0,∴方程总有两个不相等的实数根;(2)∵x=0是此方程的一个根,∴把x=0代入方程中得到m(m+1)=0,∴m=0或m=﹣1,∵(2m﹣1)2+(3+m)(3﹣m)+7m﹣5=4m2﹣4m+1+9﹣m2+7m﹣5=3m2+3m+5,把m=0代入3m2+3m+5得:3m2+3m+5=5;把m=﹣1代入3m2+3m+5得:3m2+3m+5=3×1﹣3+5=5.23. 解:(1)如图①中,∵△A′B′C是由△ABC旋转得到,∴∠A′B′C=∠ABC=130°,CB=CB′,∴∠CBB′=∠CB′B,∵∠BCB′=50°,∴∠CBB′=∠CB′B=65°,∴∠A′B′B=∠A′B′C﹣∠BB′C=65°.(2)(Ⅰ)结论:直线BB′与⊙A′相切.理由:如图②中,∵∠A′B′C=∠ABC=150°,CB=CB′,∴∠CBB′=∠CB′B,∵∠BCB′=60°,∴∠CBB′=∠CB′B=60°,∴∠A′B′B=∠A′B′C﹣∠BB′C=90°.∴AB′⊥BB′,∴直线BB′与⊙A′相切.(Ⅱ)∵在Rt△ABB′中,∵∠AB′B=90°,BB′=BC=5,AB′=AB=3,∴A′B==.(3)如图③中,当α+β=180°时,直线BB′与⊙A′相切.理由:∵∠A′B′C=∠ABC=α,CB=CB′,∴∠CBB′=∠CB′B,∵∠BCB′=2β,∴∠CBB′=∠CB′B=,∴∠A′B′B=∠A′B′C﹣∠BB′C=α﹣90°+β=180°﹣90°=90°.∴AB′⊥BB′,∴直线BB′与⊙A′相切.在△CBB′中,∵CB=CB′=n,∠BCB′=2β,∴BB′=2•nsinβ,在Rt△A′BB′中,A′B==.24. 解:(1)令y=0代入y=x+4,∴x=﹣3,A(﹣3,0),令x=0,代入y=x+4,∴y=4,∴C(0,4),设抛物线F1的解析式为:y=a(x+3)(x﹣1),把C(0,4)代入上式得,a=﹣,∴y=﹣x2﹣x+4,(2)如图①,设点M(a,﹣a2﹣a+4)其中﹣3<a<0∵B(1,0),C(0,4),∴OB=1,OC=4 ∴S△BOC=OB•OC=2,过点M作MP⊥x轴于点P,∴MP=﹣a2﹣a+4,AP=a+3,OP=﹣a,∴S四边形M A O C=AP•MP+(MP+OC)•OP=AP•MP+OP•MP+OP•OC=+=+=×3(﹣a2﹣a+4)+×4×(﹣a)=﹣2a2﹣6a+6∴S=S四边形M A O C﹣S△B O C=(﹣2a2﹣6a+6)﹣2=﹣2a2﹣6a+4=﹣2(a+)2+此时,M(﹣,5);∴当a=﹣时,S有最大值,最大值为,(3)如图②,由题意知:M′(),B′(﹣1,0),A′(3,0)∴AB′=2,设直线A′C的解析式为:y=kx+b,把A′(3,0)和C(0,4)代入y=kx+b,得:,∴∴y=﹣x+4,令x=代入y=﹣x+4,∴y=2 ∴由勾股定理分别可求得:AC=5,DA′=设P(m,0)当m<3时,此时点P在A′的左边,∴∠DA′P=∠CAB′,当=时,△DA′P∽△CAB′,此时,=(3﹣m),解得:m=2,∴P(2,0)当=时,△DA′P∽△B′AC,此时,=(3﹣m)m=﹣,∴P(﹣,0)当m>3时,此时,点P在A′右边,由于∠CB′O≠∠DA′E,∴∠AB′C≠∠DA′P∴此情况,△DA′P与△B′AC不能相似,综上所述,当以A′、D、P为顶点的三角形与△AB′C相似时,点P的坐标为(2,0)或(﹣,0).。
历年中考数学模拟试题(含答案) (150)
2016年湖南省岳阳市中考数学试卷一、选择题(本大题8道小题,每小题3分,满分24分)1.(3分)(2016•岳阳)下列各数中为无理数的是()A.﹣1 B.3.14 C.πD.02.(3分)(2016•岳阳)下列运算结果正确的是()A.a2+a3=a5B.(a2)3=a6 C.a2•a3=a6D.3a﹣2a=13.(3分)(2016•岳阳)函数y=中自变量x的取值范围是()A.x≥0 B.x>4 C.x<4 D.x≥44.(3分)(2016•岳阳)某小学校足球队22名队员年龄情况如下:年龄(岁)12 11 10 9人数 4 10 6 2则这个队队员年龄的众数和中位数分别是()A.11,10 B.11,11 C.10,9 D.10,115.(3分)(2016•岳阳)如图是某几何体的三视图,则该几何体可能是()A.圆柱 B.圆锥 C.球D.长方体6.(3分)(2016•岳阳)下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cm B.7cm,4cm,2cm C.3cm,4cm,8cm D.3cm,3cm,4cm 7.(3分)(2016•岳阳)下列说法错误的是()A.角平分线上的点到角的两边的距离相等B.直角三角形斜边上的中线等于斜边的一半C.菱形的对角线相等D.平行四边形是中心对称图形8.(3分)(2016•岳阳)对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x 的函数为y=max{x+3,﹣x+1},则该函数的最小值是()A.0 B.2 C.3 D.4二、填空题(本大题共8小题,每小题4分,满分32分)9.(4分)(2016•岳阳)如图所示,数轴上点A所表示的数的相反数是.10.(4分)(2016•岳阳)因式分解:6x2﹣3x=.11.(4分)(2016•岳阳)在半径为6cm的圆中,120°的圆心角所对的弧长为cm.12.(4分)(2016•岳阳)为加快“一极三宜”江湖名城建设,总投资124000万元的岳阳三荷机场及交通产业园,预计2016年建好主体工程,将124000万元用科学记数法表示为元.13.(4分)(2016•岳阳)如图,四边形ABCD为⊙O的内接四边形,已知∠BCD=110°,则∠BAD=度.14.(4分)(2016•岳阳)如图,一山坡的坡度为i=1:,小辰从山脚A出发,沿山坡向上走了200米到达点B,则小辰上升了米.15.(4分)(2016•岳阳)如图,一次函数y=kx+b(k、b为常数,且k≠0)和反比例函数y=(x>0)的图象交于A、B两点,利用函数图象直接写出不等式<kx+b的解集是.16.(4分)(2016•岳阳)如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长,P1,P2,P3,…,均在格点上,其顺序按图中“→”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,﹣1),P5(﹣1,﹣1),P6(﹣1,2)…根据这个规律,点P2016的坐标为.三、解答题(本大题共8道小题,满分64分)17.(8分)(2016•岳阳)计算:()﹣1﹣+2tan60°﹣(2﹣)0.18.(6分)(2016•岳阳)已知:如图,在矩形ABCD中,点E在边AB上,点F在边BC 上,且BE=CF,EF⊥DF,求证:BF=CD.19.(6分)(2016•岳阳)已知不等式组(1)求不等式组的解集,并写出它的所有整数解;(2)在不等式组的所有整数解中任取两个不同的整数相乘,请用画树状图或列表的方法求积为正数的概率.20.(8分)(2016•岳阳)我市某学校开展“远是君山,磨砺意志,保护江豚,爱鸟护鸟”为主题的远足活动.已知学校与君山岛相距24千米,远足服务人员骑自行车,学生步行,服务人员骑自行车的平均速度是学生步行平均速度的2.5倍,服务人员与学生同时从学校出发,到达君山岛时,服务人员所花时间比学生少用了3.6小时,求学生步行的平均速度是多少千米/小时.21.(8分)(2016•岳阳)某学校环保志愿者协会对该市城区的空气质量进行调查,从全年365天中随机抽取了80天的空气质量指数(AQI)数据,绘制出三幅不完整的统计图表.请根据图表中提供的信息解答下列问题:AQI指数质量等级天数(天)0﹣50 优m51﹣100 良44101﹣150 轻度污染n151﹣200 中度污染 4201﹣300 重度污染 2300以上严重污染 2(1 )统计表中m=,n=.扇形统计图中,空气质量等级为“良”的天数占%;(2)补全条形统计图,并通过计算估计该市城区全年空气质量等级为“优”和“良”的天数共多少天?(3)据调查,严重污染的2天发生在春节期间,燃放烟花爆竹成为空气污染的一个重要原因,据此,请你提出一条合理化建议.22.(8分)(2016•岳阳)已知关于x的方程x2﹣(2m+1)x+m(m+1)=0.(1)求证:方程总有两个不相等的实数根;(2)已知方程的一个根为x=0,求代数式(2m﹣1)2+(3+m)(3﹣m)+7m﹣5的值(要求先化简再求值).23.(10分)(2016•岳阳)数学活动﹣旋转变换(1)如图①,在△ABC中,∠ABC=130°,将△ABC绕点C逆时针旋转50°得到△A′B′C,连接BB′,求∠A′B′B的大小;(2)如图②,在△ABC中,∠ABC=150°,AB=3,BC=5,将△ABC绕点C逆时针旋转60°得到△A′B′C,连接BB′,以A′为圆心,A′B′长为半径作圆.(Ⅰ)猜想:直线BB′与⊙A′的位置关系,并证明你的结论;(Ⅱ)连接A′B,求线段A′B的长度;(3)如图③,在△ABC中,∠ABC=α(90°<α<180°),AB=m,BC=n,将△ABC绕点C 逆时针旋转2β角度(0°<2β<180°)得到△A′B′C,连接A′B和BB′,以A′为圆心,A′B′长为半径作圆,问:角α与角β满足什么条件时,直线BB′与⊙A′相切,请说明理由,并求此条件下线段A′B的长度(结果用角α或角β的三角函数及字母m、n所组成的式子表示)24.(10分)(2016•岳阳)如图①,直线y=x+4交于x轴于点A,交y轴于点C,过A、C两点的抛物线F1交x轴于另一点B(1,0).(1)求抛物线F1所表示的二次函数的表达式;(2)若点M是抛物线F1位于第二象限图象上的一点,设四边形MAOC和△BOC的面积分别为S四边形MAOC和S△BOC,记S=S四边形MAOC﹣S△BOC,求S最大时点M的坐标及S的最大值;(3)如图②,将抛物线F1沿y轴翻折并“复制”得到抛物线F2,点A、B与(2)中所求的点M的对应点分别为A′、B′、M′,过点M′作M′E⊥x轴于点E,交直线A′C于点D,在x 轴上是否存在点P,使得以A′、D、P为顶点的三角形与△AB′C相似?若存在,请求出点P 的坐标;若不存在,请说明理由.2016年湖南省岳阳市中考数学试卷参考答案与试题解析一、选择题(本大题8道小题,每小题3分,满分24分)1.(3分)(2016•岳阳)下列各数中为无理数的是()A.﹣1 B.3.14 C.πD.0【分析】π是圆周率,是无限不循环小数,所以π是无理数.【解答】解:∵π是无限不循环小数,∴π是无理数.故选C.【点评】此题是无理数题,主要考查了无理数的定义,了解π,解本题的关键是明白无理意义.数的2.(3分)(2016•岳阳)下列运算结果正确的是()A.a2+a3=a5B.(a2)3=a6 C.a2•a3=a6D.3a﹣2a=1【分析】利用幂的有关运算性质逐一计算后即可确定正确的选项.【解答】解:A、a2与a3不是同类项,不能合并,故错误;B、(a2)3=a6,正确,符合题意;C、a2•a3=a5,故错误;D、3a﹣2a=a,故错误,故选B.【点评】本题考查了幂的乘方与积的乘方、合并同类项及同底数幂的乘法的知识,解题的关键是牢记有关的幂的运算性质,难度不大.3.(3分)(2016•岳阳)函数y=中自变量x的取值范围是()A.x≥0 B.x>4 C.x<4 D.x≥4【分析】根据二次根式有意义的条件可得出x﹣4≥0,解该不等式即可得出结论.【解答】解:∵x﹣4≥0,∴x≥4.故选D.【点评】本题考查了函数自变量的取值范围以及二次根式有意义的条件,解题的关键是得出不等式x﹣4≥0.本题属于基础题,难度不大,解决该题型题目时,根据二次根式有意义的条件得出不等式是关键.4.(3分)(2016•岳阳)某小学校足球队22名队员年龄情况如下:年龄(岁)12 11 10 9人数 4 10 6 2则这个队队员年龄的众数和中位数分别是()A.11,10 B.11,11 C.10,9 D.10,11【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:年龄是11岁的人数最多,有10个人,则众数是11;把这些数从小到大排列,中位数是第11,12个数的平均数,则中位数是=11;故选B.【点评】此题考查了中位数和众数,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.5.(3分)(2016•岳阳)如图是某几何体的三视图,则该几何体可能是()A.圆柱 B.圆锥 C.球D.长方体【分析】根据一个空间几何体的主视图和俯视图都是宽度相等的长方形,可判断该几何体是柱体,进而根据左视图的形状,可判断柱体侧面形状,得到答案.【解答】解:∵几何体的主视图和俯视图都是宽度相等的长方形,∴该几何体是一个柱体,又∵俯视图是一个圆,∴该几何体是一个圆柱.故选A.【点评】本题考查的知识点是三视图,如果有两个视图为三角形,该几何体一定是锥,如果有两个矩形,该几何体一定柱,其底面由第三个视图的形状决定.6.(3分)(2016•岳阳)下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cm B.7cm,4cm,2cm C.3cm,4cm,8cm D.3cm,3cm,4cm 【分析】依据三角形任意两边之和大于第三边求解即可.【解答】解:A、因为2+3=5,所以不能构成三角形,故A错误;B、因为2+4<6,所以不能构成三角形,故B错误;C、因为3+4<8,所以不能构成三角形,故C错误;D、因为3+3>4,所以能构成三角形,故D正确.故选:D.【点评】本题主要考查的是三角形的三边关系,掌握三角形的三边关系是解题的关键.7.(3分)(2016•岳阳)下列说法错误的是()A.角平分线上的点到角的两边的距离相等B.直角三角形斜边上的中线等于斜边的一半C.菱形的对角线相等D.平行四边形是中心对称图形【分析】A:根据角平分线的性质,可得角平分线上的点到角的两边的距离相等.B:根据直角三角形斜边上的中线的性质,可得直角三角形斜边上的中线等于斜边的一半.C:根据菱形的性质,菱形的对角线互相垂直,但是不一定相等.D:根据中心对称图形的性质,可得常见的中心对称图形有:平行四边形、圆形、正方形、长方形,据此判断即可.【解答】解:∵角平分线上的点到角的两边的距离相等,∴选项A正确;∵直角三角形斜边上的中线等于斜边的一半,∴选项B正确;∵菱形的对角线互相垂直,但是不一定相等,∴选项C不正确;∵平行四边形是中心对称图形,∴选项D正确.故选:C.【点评】(1)此题主要考查了角平分线的性质和应用,要熟练掌握,解答此题的关键是要明确:一个角的平分线把这个角分成两个大小相同的角.(2)此题还考查了菱形的性质和应用,要熟练掌握,解答此题的关键是要明确:①菱形具有平行四边形的一切性质;②菱形的四条边都相等;③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;④菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.(3)此题还考查了直角三角形斜边上的中线,要熟练掌握,解答此题的关键是要明确:在直角三角形中,斜边上的中线等于斜边的一半.(4)此题还考查了中心对称图形,要熟练掌握,解答此题的关键是要明确:中心对称图形和中心对称不同,中心对称是两个图形之间的关系,而中心对称图形是指一个图形自身的特点,这点应注意区分,它们性质相同,应用方法相同.8.(3分)(2016•岳阳)对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x 的函数为y=max{x+3,﹣x+1},则该函数的最小值是()A.0 B.2 C.3 D.4【分析】分x≥﹣1和x<﹣1两种情况进行讨论计算,【解答】解:当x+3≥﹣x+1,即:x≥﹣1时,y=x+3,∴当x=﹣1时,y min=2,当x+3<﹣x+1,即:x<﹣1时,y=﹣x+1,∵x<﹣1,∴﹣x>1,∴﹣x+1>2,∴y>2,∴y min=2,故选B【点评】此题是分段函数题,主要考查了新定义,解本题的关键是分段.二、填空题(本大题共8小题,每小题4分,满分32分)9.(4分)(2016•岳阳)如图所示,数轴上点A所表示的数的相反数是2.【分析】根据相反数的定义,即可解答.【解答】解:数轴上点A所表示的数是﹣2,﹣2的相反数是2,故答案为:2.【点评】本题考查了相反数,解决本题的关键是熟记相反数的定义.10.(4分)(2016•岳阳)因式分解:6x2﹣3x=3x(2x﹣1).【分析】根据提公因式法因式分解的步骤解答即可.【解答】解:6x2﹣3x=3x(2x﹣1),故答案为:3x(2x﹣1).【点评】本题考查的是提公因式法因式分解,提公因式法基本步骤:找出公因式;提公因式并确定另一个因式:第一步找公因式可按照确定公因式的方法先确定系数再确定字母;第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式.11.(4分)(2016•岳阳)在半径为6cm的圆中,120°的圆心角所对的弧长为4πcm.【分析】直接利用弧长公式求出即可.【解答】解:半径为6cm的圆中,120°的圆心角所对的弧长为:=4π(cm).故答案为:4π.【点评】此题主要考查了弧长公式的应用,正确记忆弧长公式是解题关键.12.(4分)(2016•岳阳)为加快“一极三宜”江湖名城建设,总投资124000万元的岳阳三荷机场及交通产业园,预计2016年建好主体工程,将124000万元用科学记数法表示为1.24×109元.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:124000万=124000 0000=1.24×109,故答案为:1.24×109.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.(4分)(2016•岳阳)如图,四边形ABCD为⊙O的内接四边形,已知∠BCD=110°,则∠BAD=70度.【分析】根据圆内接四边形的对角互补求∠BAD的度数即可.【解答】解:∵四边形ABCD为⊙O的内接四边形,∴∠BCD+∠BAD=180°(圆内接四边形的对角互补);又∵∠BCD=110°,∴∠BAD=70°.故答案为:70.【点评】本题主要考查了圆内接四边形的性质.解答此题时,利用了圆内接四边形的对角互补的性质来求∠BCD的补角即可.14.(4分)(2016•岳阳)如图,一山坡的坡度为i=1:,小辰从山脚A出发,沿山坡向上走了200米到达点B,则小辰上升了100米.【分析】根据坡比的定义得到tan∠A=,∠A=30°,然后根据含30度的直角三角形三边的关系求解.【解答】解:根据题意得tan∠A===,所以∠A=30°,所以BC=AB=×200=100(m).故答案为100.【点评】本题考查了解直角三角形的应用:坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式15.(4分)(2016•岳阳)如图,一次函数y=kx+b(k、b为常数,且k≠0)和反比例函数y=(x>0)的图象交于A、B两点,利用函数图象直接写出不等式<kx+b的解集是1<x<4.【分析】先根据图形得出A、B的坐标,根据两点的坐标和图形得出不等式的解集即可.【解答】解:∵由图象可知:A(1,4),B(4,1),x>0,∴不等式<kx+b的解集为1<x<4,故答案为:1<x<4.【点评】本题考查了反比例函数与一次函数的交点的应用,能读懂图象是解此题的关键,数形结合思想的应用.16.(4分)(2016•岳阳)如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长,P1,P2,P3,…,均在格点上,其顺序按图中“→”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,﹣1),P5(﹣1,﹣1),P6(﹣1,2)…根据这个规律,点P2016的坐标为(504,﹣504).【分析】根据各个点的位置关系,可得出下标为4的倍数的点在第四象限的角平分线上,被4除余1的点在第三象限的角平分线上,被4除余2的点在第二象限的角平分线上,被4除余3的点在第一象限的角平分线上,点P2016的在第四象限的角平分线上,且横纵坐标的绝对值=2016÷4,再根据第四项象限内点的符号得出答案即可.【解答】解:由规律可得,2016÷4=504,∴点P2016的在第四象限的角平分线上,∵点P4(1,﹣1),点P8(2,﹣2),点P12(3,﹣3),∴点P2016(504,﹣504),故答案为(504,﹣504).【点评】本题考查了规律型:点的坐标,是一个阅读理解,猜想规律的题目,解答此题的关键是首先确定点所在的大致位置,所在正方形,然后就可以进一步推得点的坐标.三、解答题(本大题共8道小题,满分64分)17.(8分)(2016•岳阳)计算:()﹣1﹣+2tan60°﹣(2﹣)0.【分析】原式利用零指数幂、负整数指数幂法则,二次根式性质,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=3﹣2+2﹣1=2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(6分)(2016•岳阳)已知:如图,在矩形ABCD中,点E在边AB上,点F在边BC 上,且BE=CF,EF⊥DF,求证:BF=CD.【分析】由四边形ABCD为矩形,得到四个角为直角,再由EF与FD垂直,利用平角定义得到一对角互余,利用同角的余角相等得到一对角相等,利用ASA得到三角形BEF与三角形CFD全等,利用全等三角形对应边相等即可得证.【解答】证明:∵四边形ABCD是矩形,∴∠B=∠C=90°,∵EF⊥DF,∴∠EFD=90°,∴∠EFB+∠CFD=90°,∵∠EFB+∠BEF=90°,∴∠BEF=∠CFD,在△BEF和△CFD中,,∴△BEF≌△CFD(ASA),∴BF=CD.【点评】此题考查了矩形的性质,以及全等三角形的判定与性质,熟练掌握矩形的性质是解本题的关键.19.(6分)(2016•岳阳)已知不等式组(1)求不等式组的解集,并写出它的所有整数解;(2)在不等式组的所有整数解中任取两个不同的整数相乘,请用画树状图或列表的方法求积为正数的概率.【分析】(1)首先分别解不等式①②,然后求得不等式组的解集,继而求得它的所有整数解;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与积为正数的情况,再利用概率公式即可求得答案.【解答】解:(1)由①得:x>﹣2,由②得:x≤2,∴不等式组的解集为:﹣2<x≤2,∴它的所有整数解为:﹣1,0,1,2;(2)画树状图得:∵共有12种等可能的结果,积为正数的有2种情况,∴积为正数的概率为:=.【点评】此题考查了列表法或树状图法求概率以及不等式组的整数解.用到的知识点为:概率=所求情况数与总情况数之比.20.(8分)(2016•岳阳)我市某学校开展“远是君山,磨砺意志,保护江豚,爱鸟护鸟”为主题的远足活动.已知学校与君山岛相距24千米,远足服务人员骑自行车,学生步行,服务人员骑自行车的平均速度是学生步行平均速度的2.5倍,服务人员与学生同时从学校出发,到达君山岛时,服务人员所花时间比学生少用了3.6小时,求学生步行的平均速度是多少千米/小时.【分析】设学生步行的平均速度是每小时x千米,服务人员骑自行车的平均速度是每小时2.5x千米,根据学校与君山岛距离为24千米,服务人员所花时间比学生少用了3.6小时,可列方程求解.【解答】解:设学生步行的平均速度是每小时x千米.服务人员骑自行车的平均速度是每小时2.5x千米,根据题意:﹣=3.6,解得:x=4,经检验,x=4是所列方程的解,且符合题意.答:学生步行的平均速度是每小时4千米.【点评】本题考查了分式方程的应用,关键设出速度,以时间做为等量关系列方程求解.21.(8分)(2016•岳阳)某学校环保志愿者协会对该市城区的空气质量进行调查,从全年365天中随机抽取了80天的空气质量指数(AQI)数据,绘制出三幅不完整的统计图表.请根据图表中提供的信息解答下列问题:AQI指数质量等级天数(天)0﹣50 优m51﹣100 良44101﹣150 轻度污染n151﹣200 中度污染 4201﹣300 重度污染 2300以上严重污染 2(1 )统计表中m=20,n=8.扇形统计图中,空气质量等级为“良”的天数占55%;(2)补全条形统计图,并通过计算估计该市城区全年空气质量等级为“优”和“良”的天数共多少天?(3)据调查,严重污染的2天发生在春节期间,燃放烟花爆竹成为空气污染的一个重要原因,据此,请你提出一条合理化建议.【分析】(1)由A占25%,即可求得m的值,继而求得n的值,然后求得空气质量等级为“良”的天数占的百分比;(2)首先由(1)补全统计图,然后利用样本估计总体的知识求解即可求得答案;(3)提出合理建议,比如不燃放烟花爆竹或少燃放烟花爆竹等.【解答】解:(1)∵m=80×25%=20,n=80﹣20﹣44﹣4﹣2﹣2=8,∴空气质量等级为“良”的天数占:×100%=55%.故答案为:20,8,55;(2)估计该市城区全年空气质量等级为“优”和“良”的天数共:365×(25%+55%)=292(天),答:估计该市城区全年空气质量等级为“优”和“良”的天数共292天;补全统计图:(3)建议不要燃放烟花爆竹.【点评】此题考查了条形图与扇形图的知识.读懂统计图,从统计图中得到必要的信息是解决问题的关键.22.(8分)(2016•岳阳)已知关于x的方程x2﹣(2m+1)x+m(m+1)=0.(1)求证:方程总有两个不相等的实数根;(2)已知方程的一个根为x=0,求代数式(2m﹣1)2+(3+m)(3﹣m)+7m﹣5的值(要求先化简再求值).【分析】(1)找出a,b及c,表示出根的判别式,变形后得到其值大于0,即可得证.(2)把x=0代入方程即可求m的值,然后化简代数式再将m的值代入所求的代数式并求值即可.【解答】解:(1)∵关于x的一元二次方程x2﹣(2m+1)x+m(m+1)=0.∴△=(2m+1)2﹣4m(m+1)=1>0,∴方程总有两个不相等的实数根;(2)∵x=0是此方程的一个根,∴把x=0代入方程中得到m(m+1)=0,∴m=0或m=﹣1,∵(2m﹣1)2+(3+m)(3﹣m)+7m﹣5=4m2﹣4m+1+9﹣m2+7m﹣5=3m2+3m+5,把m=0代入3m2+3m+5得:3m2+3m+5=5;把m=﹣1代入3m2+3m+5得:3m2+3m+5=3×1﹣3+5=5.【点评】本题考查了根的判别式和一元二次方程的解.解题时,逆用一元二次方程解的定义易得出所求式子的值,在解题时要重视解题思路的逆向分析.23.(10分)(2016•岳阳)数学活动﹣旋转变换(1)如图①,在△ABC中,∠ABC=130°,将△ABC绕点C逆时针旋转50°得到△A′B′C,连接BB′,求∠A′B′B的大小;(2)如图②,在△ABC中,∠ABC=150°,AB=3,BC=5,将△ABC绕点C逆时针旋转60°得到△A′B′C,连接BB′,以A′为圆心,A′B′长为半径作圆.(Ⅰ)猜想:直线BB′与⊙A′的位置关系,并证明你的结论;(Ⅱ)连接A′B,求线段A′B的长度;(3)如图③,在△ABC中,∠ABC=α(90°<α<180°),AB=m,BC=n,将△ABC绕点C 逆时针旋转2β角度(0°<2β<180°)得到△A′B′C,连接A′B和BB′,以A′为圆心,A′B′长为半径作圆,问:角α与角β满足什么条件时,直线BB′与⊙A′相切,请说明理由,并求此条件下线段A′B的长度(结果用角α或角β的三角函数及字母m、n所组成的式子表示)【分析】(1)根据∠A′B′B=∠A′B′C﹣∠BB′C,只要求出∠A′B′B即可.(2)(Ⅰ)结论:直线BB′与⊙A′相切.只要证明∠A′B′B=90°即可.(Ⅱ)在Rt△ABB′中,利用勾股定理计算即可.(3)如图③中,当α+β=180°时,直线BB′与⊙A′相切.只要证明∠A′B′B=90°即可解决问题.在△CBB′中求出BB′,再在Rt△A′B′B中利用勾股定理即可.【解答】解;(1)如图①中,∵△A′B′C是由△ABC旋转得到,∴∠A′B′C=∠ABC=130°,CB=CB′,∴∠CBB′=∠CB′B,∵∠BC B′=50°,∴∠CBB′=∠CB′B=65°,∴∠A′B′B=∠A′B′C﹣∠BB′C=65°.(2)(Ⅰ)结论:直线BB′与⊙A′相切.理由:如图②中,∵∠A′B′C=∠ABC=150°,CB=CB′,∴∠CBB′=∠CB′B,∵∠BCB′=60°,∴∠CBB′=∠CB′B=60°,∴∠A′B′B=∠A′B′C﹣∠BB′C=90°.∴AB′⊥BB′,∴直线BB′与⊙A′相切.(Ⅱ)∵在Rt△ABB′中,∵∠AB′B=90°,BB′=BC=5,AB′=AB=3,∴A′B==.(3)如图③中,当α+β=180°时,直线BB′与⊙A′相切.理由:∵∠A′B′C=∠ABC=α,CB=CB′,∴∠CBB′=∠CB′B,∵∠BCB′=2β,∴∠CBB′=∠CB′B=,∴∠A′B′B=∠A′B′C﹣∠BB′C=α﹣90°+β=180°﹣90°=90°.∴AB′⊥BB′,∴直线BB′与⊙A′相切.在△CBB′中,∵CB=CB′=n,∠BCB′=2β,∴BB′=2•nsinβ,在Rt△A′BB′中,A′B==.【点评】本题考查圆的综合题、旋转不变性、勾股定理、切线的判定、等腰三角形的性质等知识,解题的关键是熟练运用这些知识解决问题,充分利用旋转不变性,属于中考压轴题.24.(10分)(2016•岳阳)如图①,直线y=x+4交于x轴于点A,交y轴于点C,过A、C两点的抛物线F1交x轴于另一点B(1,0).(1)求抛物线F1所表示的二次函数的表达式;(2)若点M是抛物线F1位于第二象限图象上的一点,设四边形MAOC和△BOC的面积分别为S四边形MAOC和S△BOC,记S=S四边形MAOC﹣S△BOC,求S最大时点M的坐标及S的最大值;(3)如图②,将抛物线F1沿y轴翻折并“复制”得到抛物线F2,点A、B与(2)中所求的点M的对应点分别为A′、B′、M′,过点M′作M′E⊥x轴于点E,交直线A′C于点D,在x 轴上是否存在点P,使得以A′、D、P为顶点的三角形与△AB′C相似?若存在,请求出点P 的坐标;若不存在,请说明理由.【分析】(1)利用一次函数的解析式求出点A、C的坐标,然后再利用B点坐标即可求出二次函数的解析式;(2)由于M在抛物线F1上,所以可设M(a,﹣a2﹣a+4),然后分别计算S四边形MAOC 和S△BOC,过点M作MP⊥x轴于点P,则S四边形MAOC的值等于△APM的面积与梯形POCM 的面积之和.(3)由于没有说明点P的具体位置,所以需要将点P的位置进行分类讨论,当点P在A′的右边时,此情况是不存在;当点P在A′的左边时,此时∠DA′P=∠CAB′,若以A′、D、P为顶点的三角形与△AB′C相似,则分为以下两种情况进行讨论:①=;②=.【解答】解:(1)令y=0代入y=x+4,∴x=﹣3,A(﹣3,0),令x=0,代入y=x+4,∴y=4,∴C(0,4),设抛物线F1的解析式为:y=a(x+3)(x﹣1),把C(0,4)代入上式得,a=﹣,∴y=﹣x2﹣x+4,(2)如图①,设点M(a,﹣a2﹣a+4)其中﹣3<a<0∵B(1,0),C(0,4),∴OB=1,OC=4∴S△BOC=OB•OC=2,过点M作MP⊥x轴于点P,∴MP=﹣a2﹣a+4,AP=a+3,OP=﹣a,∴S四边形MAOC=AP•MP+(MP+OC)•OP=AP•MP+OP•MP+OP•OC=+=+=×3(﹣a2﹣a+4)+×4×(﹣a)=﹣2a2﹣6a+6∴S=S四边形MAOC﹣S△BOC=(﹣2a2﹣6a+6)﹣2=﹣2a2﹣6a+4=﹣2(a+)2+∴当a=﹣时,S有最大值,最大值为此时,M(﹣,5);(3)如图②,由题意知:M′(),B′(﹣1,0),A′(3,0)∴AB′=2,设直线A′C的解析式为:y=kx+b,把A′(3,0)和C(0,4)代入y=kx+b,得:,∴∴y=﹣x+4,令x=代入y=﹣x+4,∴y=2∴由勾股定理分别可求得:AC=5,DA′=设P(m,0)当m<3时,此时点P在A′的左边,∴∠DA′P=∠CAB′,当=时,△DA′P∽△CAB′,此时,=(3﹣m),解得:m=2,∴P(2,0)当=时,△DA′P∽△B′AC,此时,=(3﹣m)m=﹣,∴P(﹣,0)当m>3时,此时,点P在A′右边,由于∠CB′O≠∠DA′E,∴∠AB′C≠∠DA′P∴此情况,△DA′P与△B′AC不能相似,综上所述,当以A′、D、P为顶点的三角形与△AB′C相似时,点P的坐标为(2,0)或(﹣,0).【点评】本题是二次函数的综合问题,涉及待定系数法求解析式,二次函数最值问题,相似三角形的判定与性质等知识内容,综合程度较大,需要学生灵活运用所学知识解决问题.另外对于动点问题,通常可以用一参数m来表示该动点.。
2016年湖南省岳阳市中考数学试卷及答案
岳阳市2016年初中毕业学业考试数学试卷一、选择题(本题共 分,每小题 分)下面各题均有四个选项,其中只有一个..是符合题意的.( ) .下列各数中为无理数的是.﹣ . . .( ) .下列运算结果正确的是. .( ) . . ﹣ ( ) .函数 中自变量 的取值范围是. . > . < . ( ) .某小学校足球队 名队员年龄情况如下:年龄(岁)人数则这个队队员年龄的众数和中位数分别是. , . , . , . ,( ) .如图是某几何体的三视图,则该几何体可能是.圆柱 .圆锥 .球 .长方体 ( ) .下列长度的三根小木棒能构成三角形的是. , , . , ,. , , . , ,( ) .下列说法错误的是.角平分线上的点到角的两边的距离相等.直角三角形斜边上的中线等于斜边的一半.菱形的对角线相等.平行四边形是中心对称图形( ) .对于实数 , ,我们定义符号 , 的意义为:当 时, , ;当 < 时, , ;如: ,﹣ , , ,若关于 的函数为 ,﹣ ,则该函数的最小值是. . . .二、填空题(本大题共 小题,每小题 分,共 分).如图所示,数轴上点 所表示的数的相反数是..因式分解: ﹣ ..在半径为 的圆中, 的圆心角所对的弧长为..为加快 一极三宜 江湖名城建设,总投资 万元的岳阳三荷机场及交通产业园,预计 年建好主体工程,将 万元用科学记数法表示为元..如图,四边形 为 的内接四边形,已知 ,则 度..如图,一山坡的坡度为 :,小辰从山脚 出发,沿山坡向上走了 米到达点 ,则小辰上升了米..如图,一次函数 ( 、 为常数,且 )和反比例函数 ( > )的图象交于 、 两点,利用函数图象直接写出不等式< 的解集是..如图,在平面直角坐标系中,每个最小方格的边长均为 个单位长, , , , ,均在格点上,其顺序按图中 方向排列,如: ( , ), ( , ), ( , ), ( ,﹣ ), (﹣ ,﹣ ), (﹣ , ) 根据这个规律,点 的坐标为 .三、解答题(本大题共 小题,共 分).( 分)计算:()﹣ ﹣ ﹣( ﹣) ..( 分)已知:如图,在矩形 中,点 在边 上,点 在边 上,且 , ,求证: ..( 分)已知不等式组( )求不等式组的解集,并写出它的所有整数解;( )在不等式组的所有整数解中任取两个不同的整数相乘,请用画树状图或列表的方法求积为正数的概率..( 分)我市某学校开展 远是君山,磨砺意志,保护江豚,爱鸟护鸟 为主题的远足活动.已知学校与君山岛相距 千米,远足服务人员骑自行车,学生步行,服务人员骑自行车的平均速度是学生步行平均速度的 倍,服务人员与学生同时从学校出发,到达君山岛时,服务人员所花时间比学生少用了 小时,求学生步行的平均速度是多少千米 小时..( 分)某学校环保志愿者协会对该市城区的空气质量进行调查,从全年 天中随机抽取了 天的空气质量指数( )数据,绘制出三幅不完整的统计图表.请根据图表中提供的信息解答下列问题:指质量等级天数(天)数﹣ 优﹣良﹣轻度污染﹣中度污染﹣重度污染以严重污染上( )统计表中 , .扇形统计图中,空气质量等级为 良 的天数占 ;( )补全条形统计图,并通过计算估计该市城区全年空气质量等级为 优 和 良 的天数共多少天?( )据调查,严重污染的 天发生在春节期间,燃放烟花爆竹成为空气污染的一个重要原因,据此,请你提出一条合理化建议..( 分)已知关于 的方程 ﹣( ) ( ) .( )求证:方程总有两个不相等的实数根;( )已知方程的一个根为 ,求代数式( ﹣ ) ( )( ﹣ ) ﹣ 的值(要求先化简再求值)..( 分)数学活动﹣旋转变换( )如图 ,在 中, ,将 绕点 逆时针旋转 得到 ,连接 ,求 的大小;( )如图 ,在 中, , , ,将 绕点 逆时针旋转 得到 ,连接 ,以 为圆心, 长为半径作圆.( )猜想:直线 与 的位置关系,并证明你的结论;( )连接 ,求线段 的长度;( )如图 ,在 中, ( < < ), , ,将 绕点 逆时针旋转 角度( < < )得到,连接 和 ,以 为圆心, 长为半径作圆,问:角 与角 满足什么条件时,直线 与 相切,请说明理由,并求此条件下线段 的长度(结果用角 或角 的三角函数及字母 、 所组成的式子表示).( 分)如图 ,直线 交于 轴于点 ,交 轴于点 ,过 、 两点的抛物线 交 轴于另一点 ( , ).( )求抛物线 所表示的二次函数的表达式;( )若点 是抛物线 位于第二象限图象上的一点,设四边形 和的面积分别为 四边形 和 ,记 四边形 ﹣ ,求 最大时点 的坐标及 的最大值;( )如图 ,将抛物线 沿 轴翻折并 复制 得到抛物线 ,点 、 与( )中所求的点 的对应点分别为 、 、 ,过点 作 轴于点 ,交直线 于点 ,在 轴上是否存在点 ,使得以 、 、 为顶点的三角形与相似?若存在,请求出点 的坐标;若不存在,请说明理由.参考答案一、选择题(共 个小题,每小题 分,共 分)二、填空题(共 个小题,每小题 分,共 分)题 号答 案(﹣ )<<( ,﹣)三、解答题(共 道小题,每小题 分,共 分)解:原式 ﹣ ﹣证明: 四边形 是矩形,,, ,,,,在 和 中,,( ), . 解:( ) 由 得: >﹣ ,由 得: ,不等式组的解集为:﹣ < ,它的所有整数解为:﹣ , , , ;( )画树状图得:共有 种等可能的结果,积为正数的有 种情况,积为正数的概率为: .解: 设学生步行的平均速度是每小时 千米.服务人员骑自行车的平均速度是每小时 千米,根据题意:﹣ ,解得: ,经检验, 是所列方程的解,且符合题意.答:学生步行的平均速度是每小时 千米.解:( ) , , ;( )估计该市城区全年空气质量等级为 优 和 良 的天数共:( ) (天)( )建议不要燃放烟花爆竹.解:( ) 关于 的一元二次方程 ﹣( ) ( ) . ( ) ﹣ ( ) > ,方程总有两个不相等的实数根;( ) 是此方程的一个根,把 代入方程中得到 ( ) , 或 ﹣ ,( ﹣ ) ( )( ﹣ ) ﹣ ﹣ ﹣ ﹣ ,把 代入 得: ;把 ﹣ 代入 得: ﹣ .解:( )如图 中, 是由 旋转得到,, ,, ,,﹣ .( )( )结论:直线 与 相切.理由:如图 中, , , , ,,﹣ ., 直线 与 相切.( ) 在 中, , ,,.( )如图 中,当 时,直线 与 相切. 理由: , ,, ,,﹣ ﹣ ﹣ ., 直线 与 相切.在 中, , ,,在 中, . 解:( )令 代入 , ﹣ , (﹣ , ),令 ,代入 , , ( , ),设抛物线 的解析式为: ( )( ﹣ ),把 ( , )代入上式得, ﹣, ﹣ ﹣ ,( )如图 ,设点 ( ,﹣ ﹣ )其中﹣ < <( , ), ( , ), ,,过点 作 轴于点 ,﹣ ﹣ , , ﹣ ,四边形 ( )(﹣ ﹣ ) (﹣ ) ﹣ ﹣ 四边形 ﹣ (﹣ ﹣ )﹣ ﹣ ﹣﹣ ( )此时, (﹣, );当 ﹣时, 有最大值,最大值为,( )如图 ,由题意知: (), (﹣ , ), ( , ) , 设直线 的解析式为: ,把 ( , )和 ( , )代入 ,﹣ ,得:,令 代入 ﹣ ,由勾股定理分别可求得: ,设 ( , )当 < 时,此时点 在 的左边, , 当 时, ,此时, ( ﹣ ),解得: , ( , )当 时, ,此时, ( ﹣ ) ﹣, (﹣, )当 > 时,此时,点 在 右边,由于 ,此情况, 与 不能相似,综上所述,当以 、 、 为顶点的三角形与相似时,点 的坐标为( , )或(﹣, ).。
历年中考数学模拟试题(含答案) (150)
2016年湖南省岳阳市中考数学试卷一、选择题(本大题8道小题,每小题3分,满分24分)1.(3分)(2016•岳阳)下列各数中为无理数的是()A.﹣1 B.3.14 C.πD.02.(3分)(2016•岳阳)下列运算结果正确的是()A.a2+a3=a5B.(a2)3=a6 C.a2•a3=a6D.3a﹣2a=13.(3分)(2016•岳阳)函数y=中自变量x的取值范围是()A.x≥0 B.x>4 C.x<4 D.x≥44.(3分)(2016•岳阳)某小学校足球队22名队员年龄情况如下:年龄(岁)12 11 10 9人数 4 10 6 2则这个队队员年龄的众数和中位数分别是()A.11,10 B.11,11 C.10,9 D.10,115.(3分)(2016•岳阳)如图是某几何体的三视图,则该几何体可能是()A.圆柱 B.圆锥 C.球D.长方体6.(3分)(2016•岳阳)下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cm B.7cm,4cm,2cm C.3cm,4cm,8cm D.3cm,3cm,4cm 7.(3分)(2016•岳阳)下列说法错误的是()A.角平分线上的点到角的两边的距离相等B.直角三角形斜边上的中线等于斜边的一半C.菱形的对角线相等D.平行四边形是中心对称图形8.(3分)(2016•岳阳)对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x 的函数为y=max{x+3,﹣x+1},则该函数的最小值是()A.0 B.2 C.3 D.4二、填空题(本大题共8小题,每小题4分,满分32分)9.(4分)(2016•岳阳)如图所示,数轴上点A所表示的数的相反数是.10.(4分)(2016•岳阳)因式分解:6x2﹣3x=.11.(4分)(2016•岳阳)在半径为6cm的圆中,120°的圆心角所对的弧长为cm.12.(4分)(2016•岳阳)为加快“一极三宜”江湖名城建设,总投资124000万元的岳阳三荷机场及交通产业园,预计2016年建好主体工程,将124000万元用科学记数法表示为元.13.(4分)(2016•岳阳)如图,四边形ABCD为⊙O的内接四边形,已知∠BCD=110°,则∠BAD=度.14.(4分)(2016•岳阳)如图,一山坡的坡度为i=1:,小辰从山脚A出发,沿山坡向上走了200米到达点B,则小辰上升了米.15.(4分)(2016•岳阳)如图,一次函数y=kx+b(k、b为常数,且k≠0)和反比例函数y=(x>0)的图象交于A、B两点,利用函数图象直接写出不等式<kx+b的解集是.16.(4分)(2016•岳阳)如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长,P1,P2,P3,…,均在格点上,其顺序按图中“→”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,﹣1),P5(﹣1,﹣1),P6(﹣1,2)…根据这个规律,点P2016的坐标为.三、解答题(本大题共8道小题,满分64分)17.(8分)(2016•岳阳)计算:()﹣1﹣+2tan60°﹣(2﹣)0.18.(6分)(2016•岳阳)已知:如图,在矩形ABCD中,点E在边AB上,点F在边BC 上,且BE=CF,EF⊥DF,求证:BF=CD.19.(6分)(2016•岳阳)已知不等式组(1)求不等式组的解集,并写出它的所有整数解;(2)在不等式组的所有整数解中任取两个不同的整数相乘,请用画树状图或列表的方法求积为正数的概率.20.(8分)(2016•岳阳)我市某学校开展“远是君山,磨砺意志,保护江豚,爱鸟护鸟”为主题的远足活动.已知学校与君山岛相距24千米,远足服务人员骑自行车,学生步行,服务人员骑自行车的平均速度是学生步行平均速度的2.5倍,服务人员与学生同时从学校出发,到达君山岛时,服务人员所花时间比学生少用了3.6小时,求学生步行的平均速度是多少千米/小时.21.(8分)(2016•岳阳)某学校环保志愿者协会对该市城区的空气质量进行调查,从全年365天中随机抽取了80天的空气质量指数(AQI)数据,绘制出三幅不完整的统计图表.请根据图表中提供的信息解答下列问题:AQI指数质量等级天数(天)0﹣50 优m51﹣100 良44101﹣150 轻度污染n151﹣200 中度污染 4201﹣300 重度污染 2300以上严重污染 2(1 )统计表中m=,n=.扇形统计图中,空气质量等级为“良”的天数占%;(2)补全条形统计图,并通过计算估计该市城区全年空气质量等级为“优”和“良”的天数共多少天?(3)据调查,严重污染的2天发生在春节期间,燃放烟花爆竹成为空气污染的一个重要原因,据此,请你提出一条合理化建议.22.(8分)(2016•岳阳)已知关于x的方程x2﹣(2m+1)x+m(m+1)=0.(1)求证:方程总有两个不相等的实数根;(2)已知方程的一个根为x=0,求代数式(2m﹣1)2+(3+m)(3﹣m)+7m﹣5的值(要求先化简再求值).23.(10分)(2016•岳阳)数学活动﹣旋转变换(1)如图①,在△ABC中,∠ABC=130°,将△ABC绕点C逆时针旋转50°得到△A′B′C,连接BB′,求∠A′B′B的大小;(2)如图②,在△ABC中,∠ABC=150°,AB=3,BC=5,将△ABC绕点C逆时针旋转60°得到△A′B′C,连接BB′,以A′为圆心,A′B′长为半径作圆.(Ⅰ)猜想:直线BB′与⊙A′的位置关系,并证明你的结论;(Ⅱ)连接A′B,求线段A′B的长度;(3)如图③,在△ABC中,∠ABC=α(90°<α<180°),AB=m,BC=n,将△ABC绕点C 逆时针旋转2β角度(0°<2β<180°)得到△A′B′C,连接A′B和BB′,以A′为圆心,A′B′长为半径作圆,问:角α与角β满足什么条件时,直线BB′与⊙A′相切,请说明理由,并求此条件下线段A′B的长度(结果用角α或角β的三角函数及字母m、n所组成的式子表示)24.(10分)(2016•岳阳)如图①,直线y=x+4交于x轴于点A,交y轴于点C,过A、C两点的抛物线F1交x轴于另一点B(1,0).(1)求抛物线F1所表示的二次函数的表达式;(2)若点M是抛物线F1位于第二象限图象上的一点,设四边形MAOC和△BOC的面积分别为S四边形MAOC和S△BOC,记S=S四边形MAOC﹣S△BOC,求S最大时点M的坐标及S的最大值;(3)如图②,将抛物线F1沿y轴翻折并“复制”得到抛物线F2,点A、B与(2)中所求的点M的对应点分别为A′、B′、M′,过点M′作M′E⊥x轴于点E,交直线A′C于点D,在x 轴上是否存在点P,使得以A′、D、P为顶点的三角形与△AB′C相似?若存在,请求出点P 的坐标;若不存在,请说明理由.2016年湖南省岳阳市中考数学试卷参考答案与试题解析一、选择题(本大题8道小题,每小题3分,满分24分)1.(3分)(2016•岳阳)下列各数中为无理数的是()A.﹣1 B.3.14 C.πD.0【分析】π是圆周率,是无限不循环小数,所以π是无理数.【解答】解:∵π是无限不循环小数,∴π是无理数.故选C.【点评】此题是无理数题,主要考查了无理数的定义,了解π,解本题的关键是明白无理意义.数的2.(3分)(2016•岳阳)下列运算结果正确的是()A.a2+a3=a5B.(a2)3=a6 C.a2•a3=a6D.3a﹣2a=1【分析】利用幂的有关运算性质逐一计算后即可确定正确的选项.【解答】解:A、a2与a3不是同类项,不能合并,故错误;B、(a2)3=a6,正确,符合题意;C、a2•a3=a5,故错误;D、3a﹣2a=a,故错误,故选B.【点评】本题考查了幂的乘方与积的乘方、合并同类项及同底数幂的乘法的知识,解题的关键是牢记有关的幂的运算性质,难度不大.3.(3分)(2016•岳阳)函数y=中自变量x的取值范围是()A.x≥0 B.x>4 C.x<4 D.x≥4【分析】根据二次根式有意义的条件可得出x﹣4≥0,解该不等式即可得出结论.【解答】解:∵x﹣4≥0,∴x≥4.故选D.【点评】本题考查了函数自变量的取值范围以及二次根式有意义的条件,解题的关键是得出不等式x﹣4≥0.本题属于基础题,难度不大,解决该题型题目时,根据二次根式有意义的条件得出不等式是关键.4.(3分)(2016•岳阳)某小学校足球队22名队员年龄情况如下:年龄(岁)12 11 10 9人数 4 10 6 2则这个队队员年龄的众数和中位数分别是()A.11,10 B.11,11 C.10,9 D.10,11【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:年龄是11岁的人数最多,有10个人,则众数是11;把这些数从小到大排列,中位数是第11,12个数的平均数,则中位数是=11;故选B.【点评】此题考查了中位数和众数,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.5.(3分)(2016•岳阳)如图是某几何体的三视图,则该几何体可能是()A.圆柱 B.圆锥 C.球D.长方体【分析】根据一个空间几何体的主视图和俯视图都是宽度相等的长方形,可判断该几何体是柱体,进而根据左视图的形状,可判断柱体侧面形状,得到答案.【解答】解:∵几何体的主视图和俯视图都是宽度相等的长方形,∴该几何体是一个柱体,又∵俯视图是一个圆,∴该几何体是一个圆柱.故选A.【点评】本题考查的知识点是三视图,如果有两个视图为三角形,该几何体一定是锥,如果有两个矩形,该几何体一定柱,其底面由第三个视图的形状决定.6.(3分)(2016•岳阳)下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cm B.7cm,4cm,2cm C.3cm,4cm,8cm D.3cm,3cm,4cm 【分析】依据三角形任意两边之和大于第三边求解即可.【解答】解:A、因为2+3=5,所以不能构成三角形,故A错误;B、因为2+4<6,所以不能构成三角形,故B错误;C、因为3+4<8,所以不能构成三角形,故C错误;D、因为3+3>4,所以能构成三角形,故D正确.故选:D.【点评】本题主要考查的是三角形的三边关系,掌握三角形的三边关系是解题的关键.7.(3分)(2016•岳阳)下列说法错误的是()A.角平分线上的点到角的两边的距离相等B.直角三角形斜边上的中线等于斜边的一半C.菱形的对角线相等D.平行四边形是中心对称图形【分析】A:根据角平分线的性质,可得角平分线上的点到角的两边的距离相等.B:根据直角三角形斜边上的中线的性质,可得直角三角形斜边上的中线等于斜边的一半.C:根据菱形的性质,菱形的对角线互相垂直,但是不一定相等.D:根据中心对称图形的性质,可得常见的中心对称图形有:平行四边形、圆形、正方形、长方形,据此判断即可.【解答】解:∵角平分线上的点到角的两边的距离相等,∴选项A正确;∵直角三角形斜边上的中线等于斜边的一半,∴选项B正确;∵菱形的对角线互相垂直,但是不一定相等,∴选项C不正确;∵平行四边形是中心对称图形,∴选项D正确.故选:C.【点评】(1)此题主要考查了角平分线的性质和应用,要熟练掌握,解答此题的关键是要明确:一个角的平分线把这个角分成两个大小相同的角.(2)此题还考查了菱形的性质和应用,要熟练掌握,解答此题的关键是要明确:①菱形具有平行四边形的一切性质;②菱形的四条边都相等;③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;④菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.(3)此题还考查了直角三角形斜边上的中线,要熟练掌握,解答此题的关键是要明确:在直角三角形中,斜边上的中线等于斜边的一半.(4)此题还考查了中心对称图形,要熟练掌握,解答此题的关键是要明确:中心对称图形和中心对称不同,中心对称是两个图形之间的关系,而中心对称图形是指一个图形自身的特点,这点应注意区分,它们性质相同,应用方法相同.8.(3分)(2016•岳阳)对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x 的函数为y=max{x+3,﹣x+1},则该函数的最小值是()A.0 B.2 C.3 D.4【分析】分x≥﹣1和x<﹣1两种情况进行讨论计算,【解答】解:当x+3≥﹣x+1,即:x≥﹣1时,y=x+3,∴当x=﹣1时,y min=2,当x+3<﹣x+1,即:x<﹣1时,y=﹣x+1,∵x<﹣1,∴﹣x>1,∴﹣x+1>2,∴y>2,∴y min=2,故选B【点评】此题是分段函数题,主要考查了新定义,解本题的关键是分段.二、填空题(本大题共8小题,每小题4分,满分32分)9.(4分)(2016•岳阳)如图所示,数轴上点A所表示的数的相反数是2.【分析】根据相反数的定义,即可解答.【解答】解:数轴上点A所表示的数是﹣2,﹣2的相反数是2,故答案为:2.【点评】本题考查了相反数,解决本题的关键是熟记相反数的定义.10.(4分)(2016•岳阳)因式分解:6x2﹣3x=3x(2x﹣1).【分析】根据提公因式法因式分解的步骤解答即可.【解答】解:6x2﹣3x=3x(2x﹣1),故答案为:3x(2x﹣1).【点评】本题考查的是提公因式法因式分解,提公因式法基本步骤:找出公因式;提公因式并确定另一个因式:第一步找公因式可按照确定公因式的方法先确定系数再确定字母;第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式.11.(4分)(2016•岳阳)在半径为6cm的圆中,120°的圆心角所对的弧长为4πcm.【分析】直接利用弧长公式求出即可.【解答】解:半径为6cm的圆中,120°的圆心角所对的弧长为:=4π(cm).故答案为:4π.【点评】此题主要考查了弧长公式的应用,正确记忆弧长公式是解题关键.12.(4分)(2016•岳阳)为加快“一极三宜”江湖名城建设,总投资124000万元的岳阳三荷机场及交通产业园,预计2016年建好主体工程,将124000万元用科学记数法表示为1.24×109元.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:124000万=124000 0000=1.24×109,故答案为:1.24×109.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.(4分)(2016•岳阳)如图,四边形ABCD为⊙O的内接四边形,已知∠BCD=110°,则∠BAD=70度.【分析】根据圆内接四边形的对角互补求∠BAD的度数即可.【解答】解:∵四边形ABCD为⊙O的内接四边形,∴∠BCD+∠BAD=180°(圆内接四边形的对角互补);又∵∠BCD=110°,∴∠BAD=70°.故答案为:70.【点评】本题主要考查了圆内接四边形的性质.解答此题时,利用了圆内接四边形的对角互补的性质来求∠BCD的补角即可.14.(4分)(2016•岳阳)如图,一山坡的坡度为i=1:,小辰从山脚A出发,沿山坡向上走了200米到达点B,则小辰上升了100米.【分析】根据坡比的定义得到tan∠A=,∠A=30°,然后根据含30度的直角三角形三边的关系求解.【解答】解:根据题意得tan∠A===,所以∠A=30°,所以BC=AB=×200=100(m).故答案为100.【点评】本题考查了解直角三角形的应用:坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式15.(4分)(2016•岳阳)如图,一次函数y=kx+b(k、b为常数,且k≠0)和反比例函数y=(x>0)的图象交于A、B两点,利用函数图象直接写出不等式<kx+b的解集是1<x<4.【分析】先根据图形得出A、B的坐标,根据两点的坐标和图形得出不等式的解集即可.【解答】解:∵由图象可知:A(1,4),B(4,1),x>0,∴不等式<kx+b的解集为1<x<4,故答案为:1<x<4.【点评】本题考查了反比例函数与一次函数的交点的应用,能读懂图象是解此题的关键,数形结合思想的应用.16.(4分)(2016•岳阳)如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长,P1,P2,P3,…,均在格点上,其顺序按图中“→”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,﹣1),P5(﹣1,﹣1),P6(﹣1,2)…根据这个规律,点P2016的坐标为(504,﹣504).【分析】根据各个点的位置关系,可得出下标为4的倍数的点在第四象限的角平分线上,被4除余1的点在第三象限的角平分线上,被4除余2的点在第二象限的角平分线上,被4除余3的点在第一象限的角平分线上,点P2016的在第四象限的角平分线上,且横纵坐标的绝对值=2016÷4,再根据第四项象限内点的符号得出答案即可.【解答】解:由规律可得,2016÷4=504,∴点P2016的在第四象限的角平分线上,∵点P4(1,﹣1),点P8(2,﹣2),点P12(3,﹣3),∴点P2016(504,﹣504),故答案为(504,﹣504).【点评】本题考查了规律型:点的坐标,是一个阅读理解,猜想规律的题目,解答此题的关键是首先确定点所在的大致位置,所在正方形,然后就可以进一步推得点的坐标.三、解答题(本大题共8道小题,满分64分)17.(8分)(2016•岳阳)计算:()﹣1﹣+2tan60°﹣(2﹣)0.【分析】原式利用零指数幂、负整数指数幂法则,二次根式性质,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=3﹣2+2﹣1=2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(6分)(2016•岳阳)已知:如图,在矩形ABCD中,点E在边AB上,点F在边BC 上,且BE=CF,EF⊥DF,求证:BF=CD.【分析】由四边形ABCD为矩形,得到四个角为直角,再由EF与FD垂直,利用平角定义得到一对角互余,利用同角的余角相等得到一对角相等,利用ASA得到三角形BEF与三角形CFD全等,利用全等三角形对应边相等即可得证.【解答】证明:∵四边形ABCD是矩形,∴∠B=∠C=90°,∵EF⊥DF,∴∠EFD=90°,∴∠EFB+∠CFD=90°,∵∠EFB+∠BEF=90°,∴∠BEF=∠CFD,在△BEF和△CFD中,,∴△BEF≌△CFD(ASA),∴BF=CD.【点评】此题考查了矩形的性质,以及全等三角形的判定与性质,熟练掌握矩形的性质是解本题的关键.19.(6分)(2016•岳阳)已知不等式组(1)求不等式组的解集,并写出它的所有整数解;(2)在不等式组的所有整数解中任取两个不同的整数相乘,请用画树状图或列表的方法求积为正数的概率.【分析】(1)首先分别解不等式①②,然后求得不等式组的解集,继而求得它的所有整数解;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与积为正数的情况,再利用概率公式即可求得答案.【解答】解:(1)由①得:x>﹣2,由②得:x≤2,∴不等式组的解集为:﹣2<x≤2,∴它的所有整数解为:﹣1,0,1,2;(2)画树状图得:∵共有12种等可能的结果,积为正数的有2种情况,∴积为正数的概率为:=.【点评】此题考查了列表法或树状图法求概率以及不等式组的整数解.用到的知识点为:概率=所求情况数与总情况数之比.20.(8分)(2016•岳阳)我市某学校开展“远是君山,磨砺意志,保护江豚,爱鸟护鸟”为主题的远足活动.已知学校与君山岛相距24千米,远足服务人员骑自行车,学生步行,服务人员骑自行车的平均速度是学生步行平均速度的2.5倍,服务人员与学生同时从学校出发,到达君山岛时,服务人员所花时间比学生少用了3.6小时,求学生步行的平均速度是多少千米/小时.【分析】设学生步行的平均速度是每小时x千米,服务人员骑自行车的平均速度是每小时2.5x千米,根据学校与君山岛距离为24千米,服务人员所花时间比学生少用了3.6小时,可列方程求解.【解答】解:设学生步行的平均速度是每小时x千米.服务人员骑自行车的平均速度是每小时2.5x千米,根据题意:﹣=3.6,解得:x=4,经检验,x=4是所列方程的解,且符合题意.答:学生步行的平均速度是每小时4千米.【点评】本题考查了分式方程的应用,关键设出速度,以时间做为等量关系列方程求解.21.(8分)(2016•岳阳)某学校环保志愿者协会对该市城区的空气质量进行调查,从全年365天中随机抽取了80天的空气质量指数(AQI)数据,绘制出三幅不完整的统计图表.请根据图表中提供的信息解答下列问题:AQI指数质量等级天数(天)0﹣50 优m51﹣100 良44101﹣150 轻度污染n151﹣200 中度污染 4201﹣300 重度污染 2300以上严重污染 2(1 )统计表中m=20,n=8.扇形统计图中,空气质量等级为“良”的天数占55%;(2)补全条形统计图,并通过计算估计该市城区全年空气质量等级为“优”和“良”的天数共多少天?(3)据调查,严重污染的2天发生在春节期间,燃放烟花爆竹成为空气污染的一个重要原因,据此,请你提出一条合理化建议.【分析】(1)由A占25%,即可求得m的值,继而求得n的值,然后求得空气质量等级为“良”的天数占的百分比;(2)首先由(1)补全统计图,然后利用样本估计总体的知识求解即可求得答案;(3)提出合理建议,比如不燃放烟花爆竹或少燃放烟花爆竹等.【解答】解:(1)∵m=80×25%=20,n=80﹣20﹣44﹣4﹣2﹣2=8,∴空气质量等级为“良”的天数占:×100%=55%.故答案为:20,8,55;(2)估计该市城区全年空气质量等级为“优”和“良”的天数共:365×(25%+55%)=292(天),答:估计该市城区全年空气质量等级为“优”和“良”的天数共292天;补全统计图:(3)建议不要燃放烟花爆竹.【点评】此题考查了条形图与扇形图的知识.读懂统计图,从统计图中得到必要的信息是解决问题的关键.22.(8分)(2016•岳阳)已知关于x的方程x2﹣(2m+1)x+m(m+1)=0.(1)求证:方程总有两个不相等的实数根;(2)已知方程的一个根为x=0,求代数式(2m﹣1)2+(3+m)(3﹣m)+7m﹣5的值(要求先化简再求值).【分析】(1)找出a,b及c,表示出根的判别式,变形后得到其值大于0,即可得证.(2)把x=0代入方程即可求m的值,然后化简代数式再将m的值代入所求的代数式并求值即可.【解答】解:(1)∵关于x的一元二次方程x2﹣(2m+1)x+m(m+1)=0.∴△=(2m+1)2﹣4m(m+1)=1>0,∴方程总有两个不相等的实数根;(2)∵x=0是此方程的一个根,∴把x=0代入方程中得到m(m+1)=0,∴m=0或m=﹣1,∵(2m﹣1)2+(3+m)(3﹣m)+7m﹣5=4m2﹣4m+1+9﹣m2+7m﹣5=3m2+3m+5,把m=0代入3m2+3m+5得:3m2+3m+5=5;把m=﹣1代入3m2+3m+5得:3m2+3m+5=3×1﹣3+5=5.【点评】本题考查了根的判别式和一元二次方程的解.解题时,逆用一元二次方程解的定义易得出所求式子的值,在解题时要重视解题思路的逆向分析.23.(10分)(2016•岳阳)数学活动﹣旋转变换(1)如图①,在△ABC中,∠ABC=130°,将△ABC绕点C逆时针旋转50°得到△A′B′C,连接BB′,求∠A′B′B的大小;(2)如图②,在△ABC中,∠ABC=150°,AB=3,BC=5,将△ABC绕点C逆时针旋转60°得到△A′B′C,连接BB′,以A′为圆心,A′B′长为半径作圆.(Ⅰ)猜想:直线BB′与⊙A′的位置关系,并证明你的结论;(Ⅱ)连接A′B,求线段A′B的长度;(3)如图③,在△ABC中,∠ABC=α(90°<α<180°),AB=m,BC=n,将△ABC绕点C 逆时针旋转2β角度(0°<2β<180°)得到△A′B′C,连接A′B和BB′,以A′为圆心,A′B′长为半径作圆,问:角α与角β满足什么条件时,直线BB′与⊙A′相切,请说明理由,并求此条件下线段A′B的长度(结果用角α或角β的三角函数及字母m、n所组成的式子表示)【分析】(1)根据∠A′B′B=∠A′B′C﹣∠BB′C,只要求出∠A′B′B即可.(2)(Ⅰ)结论:直线BB′与⊙A′相切.只要证明∠A′B′B=90°即可.(Ⅱ)在Rt△ABB′中,利用勾股定理计算即可.(3)如图③中,当α+β=180°时,直线BB′与⊙A′相切.只要证明∠A′B′B=90°即可解决问题.在△CBB′中求出BB′,再在Rt△A′B′B中利用勾股定理即可.【解答】解;(1)如图①中,∵△A′B′C是由△ABC旋转得到,∴∠A′B′C=∠ABC=130°,CB=CB′,∴∠CBB′=∠CB′B,∵∠BC B′=50°,∴∠CBB′=∠CB′B=65°,∴∠A′B′B=∠A′B′C﹣∠BB′C=65°.(2)(Ⅰ)结论:直线BB′与⊙A′相切.理由:如图②中,∵∠A′B′C=∠ABC=150°,CB=CB′,∴∠CBB′=∠CB′B,∵∠BCB′=60°,∴∠CBB′=∠CB′B=60°,∴∠A′B′B=∠A′B′C﹣∠BB′C=90°.∴AB′⊥BB′,∴直线BB′与⊙A′相切.(Ⅱ)∵在Rt△ABB′中,∵∠AB′B=90°,BB′=BC=5,AB′=AB=3,∴A′B==.(3)如图③中,当α+β=180°时,直线BB′与⊙A′相切.理由:∵∠A′B′C=∠ABC=α,CB=CB′,∴∠CBB′=∠CB′B,∵∠BCB′=2β,∴∠CBB′=∠CB′B=,∴∠A′B′B=∠A′B′C﹣∠BB′C=α﹣90°+β=180°﹣90°=90°.∴AB′⊥BB′,∴直线BB′与⊙A′相切.在△CBB′中,∵CB=CB′=n,∠BCB′=2β,∴BB′=2•nsinβ,在Rt△A′BB′中,A′B==.【点评】本题考查圆的综合题、旋转不变性、勾股定理、切线的判定、等腰三角形的性质等知识,解题的关键是熟练运用这些知识解决问题,充分利用旋转不变性,属于中考压轴题.24.(10分)(2016•岳阳)如图①,直线y=x+4交于x轴于点A,交y轴于点C,过A、C两点的抛物线F1交x轴于另一点B(1,0).(1)求抛物线F1所表示的二次函数的表达式;(2)若点M是抛物线F1位于第二象限图象上的一点,设四边形MAOC和△BOC的面积分别为S四边形MAOC和S△BOC,记S=S四边形MAOC﹣S△BOC,求S最大时点M的坐标及S的最大值;(3)如图②,将抛物线F1沿y轴翻折并“复制”得到抛物线F2,点A、B与(2)中所求的点M的对应点分别为A′、B′、M′,过点M′作M′E⊥x轴于点E,交直线A′C于点D,在x 轴上是否存在点P,使得以A′、D、P为顶点的三角形与△AB′C相似?若存在,请求出点P 的坐标;若不存在,请说明理由.【分析】(1)利用一次函数的解析式求出点A、C的坐标,然后再利用B点坐标即可求出二次函数的解析式;(2)由于M在抛物线F1上,所以可设M(a,﹣a2﹣a+4),然后分别计算S四边形MAOC 和S△BOC,过点M作MP⊥x轴于点P,则S四边形MAOC的值等于△APM的面积与梯形POCM 的面积之和.(3)由于没有说明点P的具体位置,所以需要将点P的位置进行分类讨论,当点P在A′的右边时,此情况是不存在;当点P在A′的左边时,此时∠DA′P=∠CAB′,若以A′、D、P为顶点的三角形与△AB′C相似,则分为以下两种情况进行讨论:①=;②=.【解答】解:(1)令y=0代入y=x+4,∴x=﹣3,A(﹣3,0),令x=0,代入y=x+4,∴y=4,∴C(0,4),设抛物线F1的解析式为:y=a(x+3)(x﹣1),把C(0,4)代入上式得,a=﹣,∴y=﹣x2﹣x+4,(2)如图①,设点M(a,﹣a2﹣a+4)其中﹣3<a<0∵B(1,0),C(0,4),∴OB=1,OC=4∴S△BOC=OB•OC=2,过点M作MP⊥x轴于点P,∴MP=﹣a2﹣a+4,AP=a+3,OP=﹣a,∴S四边形MAOC=AP•MP+(MP+OC)•OP=AP•MP+OP•MP+OP•OC=+=+=×3(﹣a2﹣a+4)+×4×(﹣a)=﹣2a2﹣6a+6∴S=S四边形MAOC﹣S△BOC=(﹣2a2﹣6a+6)﹣2=﹣2a2﹣6a+4=﹣2(a+)2+∴当a=﹣时,S有最大值,最大值为此时,M(﹣,5);(3)如图②,由题意知:M′(),B′(﹣1,0),A′(3,0)∴AB′=2,设直线A′C的解析式为:y=kx+b,把A′(3,0)和C(0,4)代入y=kx+b,得:,∴∴y=﹣x+4,令x=代入y=﹣x+4,∴y=2∴由勾股定理分别可求得:AC=5,DA′=设P(m,0)当m<3时,此时点P在A′的左边,∴∠DA′P=∠CAB′,当=时,△DA′P∽△CAB′,此时,=(3﹣m),解得:m=2,∴P(2,0)当=时,△DA′P∽△B′AC,此时,=(3﹣m)m=﹣,∴P(﹣,0)当m>3时,此时,点P在A′右边,由于∠CB′O≠∠DA′E,∴∠AB′C≠∠DA′P∴此情况,△DA′P与△B′AC不能相似,综上所述,当以A′、D、P为顶点的三角形与△AB′C相似时,点P的坐标为(2,0)或(﹣,0).【点评】本题是二次函数的综合问题,涉及待定系数法求解析式,二次函数最值问题,相似三角形的判定与性质等知识内容,综合程度较大,需要学生灵活运用所学知识解决问题.另外对于动点问题,通常可以用一参数m来表示该动点.。
2016年湖南省岳阳市中考数学试卷及答案
岳阳市2016年初中毕业学业考试数学试卷一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的.()1.下列各数中为无理数的是A.﹣1 B.3.14 C.π D.0()2.下列运算结果正确的是A.a2+a3=a5B.(a2)3=a6C.a2•a3=a6D.3a﹣2a=1()3.函数y=中自变量x的取值范围是A.x≥0 B.x>4 C.x<4 D.x≥4()4.某小学校足球队22名队员年龄情况如下:年龄1211109(岁)人数41062则这个队队员年龄的众数和中位数分别是A.11,10 B.11,11 C.10,9 D.10,11()5.如图是某几何体的三视图,则该几何体可能是A.圆柱B.圆锥C.球D.长方体()6.下列长度的三根小木棒能构成三角形的是A.2cm,3cm,5cm B.7cm,4cm,2cmC.3cm,4cm,8cm D.3cm,3cm,4cm()7.下列说法错误的是A.角平分线上的点到角的两边的距离相等B.直角三角形斜边上的中线等于斜边的一半C.菱形的对角线相等D.平行四边形是中心对称图形()8.对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是A.0 B.2 C.3 D.4二、填空题(本大题共8小题,每小题4分,共32分)9.如图所示,数轴上点A所表示的数的相反数是.10.因式分解:6x2﹣3x=.11.在半径为6cm的圆中,120°的圆心角所对的弧长为cm.12.为加快“一极三宜”江湖名城建设,总投资124000万元的岳阳三荷机场及交通产业园,预计2016年建好主体工程,将124000万元用科学记数法表示为元.13.如图,四边形ABCD为⊙O的内接四边形,已知∠BCD=110°,则∠BAD=度.14.如图,一山坡的坡度为i=1:,小辰从山脚A出发,沿山坡向上走了200米到达点B,则小辰上升了米.15.如图,一次函数y=kx+b(k、b为常数,且k≠0)和反比例函数y=(x >0)的图象交于A、B两点,利用函数图象直接写出不等式<kx+b的解集是.16.如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长,P1,P2,P3,…,均在格点上,其顺序按图中“→”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,﹣1),P5(﹣1,﹣1),P6(﹣1,2)…根据这个规律,点P2016的坐标为.三、解答题(本大题共8小题,共64分)17.(6分)计算:()﹣1﹣+2tan60°﹣(2﹣)0.18.(6分)已知:如图,在矩形ABCD中,点E在边AB上,点F在边BC上,且BE=CF,EF⊥DF,求证:BF=CD.19.(8分)已知不等式组(1)求不等式组的解集,并写出它的所有整数解;(2)在不等式组的所有整数解中任取两个不同的整数相乘,请用画树状图或列表的方法求积为正数的概率.20.(8分)我市某学校开展“远是君山,磨砺意志,保护江豚,爱鸟护鸟”为主题的远足活动.已知学校与君山岛相距24千米,远足服务人员骑自行车,学生步行,服务人员骑自行车的平均速度是学生步行平均速度的 2.5倍,服务人员与学生同时从学校出发,到达君山岛时,服务人员所花时间比学生少用了 3.6小时,求学生步行的平均速度是多少千米/小时.21.(8分)某学校环保志愿者协会对该市城区的空气质量进行调查,从全年365天中随机抽取了80天的空气质量指数(AQI)数据,绘制出三幅不完整的统计图表.请根据图表中提供的信息解答下列问题:AQI指数质量等级天数(天)0﹣50优m51﹣100良44101﹣150轻度污染n151﹣200中度污染4201﹣300重度污染2300以上严重污染2(1)统计表中m=,n=.扇形统计图中,空气质量等级为“良”的天数占%;(2)补全条形统计图,并通过计算估计该市城区全年空气质量等级为“优”和“良”的天数共多少天?(3)据调查,严重污染的2天发生在春节期间,燃放烟花爆竹成为空气污染的一个重要原因,据此,请你提出一条合理化建议.22.(8分)已知关于x的方程x2﹣(2m+1)x+m(m+1)=0.(1)求证:方程总有两个不相等的实数根;(2)已知方程的一个根为x=0,求代数式(2m﹣1)2+(3+m)(3﹣m)+7m﹣5的值(要求先化简再求值).23.(10分)数学活动﹣旋转变换(1)如图①,在△ABC中,∠ABC=130°,将△ABC绕点C逆时针旋转50°得到△A′B′C,连接BB′,求∠A′B′B的大小;(2)如图②,在△ABC中,∠ABC=150°,AB=3,BC=5,将△ABC绕点C逆时针旋转60°得到△A′B′C,连接BB′,以A′为圆心,A′B′长为半径作圆.(Ⅰ)猜想:直线BB′与⊙A′的位置关系,并证明你的结论;(Ⅱ)连接A′B,求线段A′B的长度;(3)如图③,在△ABC中,∠ABC=α(90°<α<180°),AB=m,BC=n,将△ABC 绕点C逆时针旋转2β角度(0°<2β<180°)得到△A′B′C,连接A′B和BB′,以A′为圆心,A′B′长为半径作圆,问:角α与角β满足什么条件时,直线BB′与⊙A′相切,请说明理由,并求此条件下线段A′B的长度(结果用角α或角β的三角函数及字母m、n所组成的式子表示)24.(10分)如图①,直线y=x+4交于x轴于点A,交y轴于点C,过A、C 两点的抛物线F1交x轴于另一点B(1,0).(1)求抛物线F1所表示的二次函数的表达式;(2)若点M是抛物线F1位于第二象限图象上的一点,设四边形MAOC和△BOC 的面积分别为S四边形M A O C和S△B O C,记S=S四边形M A O C﹣S△B O C,求S最大时点M的坐标及S 的最大值;(3)如图②,将抛物线F1沿y轴翻折并“复制”得到抛物线F2,点A、B与(2)中所求的点M的对应点分别为A′、B′、M′,过点M′作M′E⊥x轴于点E,交直线A′C于点D,在x轴上是否存在点P,使得以A′、D、P为顶点的三角形与△AB′C 相似?若存在,请求出点P的坐标;若不存在,请说明理由.参考答案一、选择题(共8个小题,每小题3分,共24分)12345678C BD B A D C B二、填空题(共8个小题,每小题4分,共32分)题号910111213141516答案23x(2x﹣1)4π1.24×10971001<x<4(504,﹣504)三、解答题(共6道小题,每小题5分,共30分)17. 解:原式=3﹣2+2﹣1=218.证明:∵四边形ABCD是矩形,∴∠B=∠C=90°,∵EF⊥DF,∴∠EFD=90°,∴∠EFB+∠CFD=90°,∵∠EFB+∠BEF=90°,∴∠BEF=∠CFD,在△BEF和△CFD中,,∴△BEF≌△CFD(ASA),∴BF=CD.19. 解:(1)由①得:x>﹣2,由②得:x≤2,∴不等式组的解集为:﹣2<x≤2,∴它的所有整数解为:﹣1,0,1,2;(2)画树状图得:∵共有12种等可能的结果,积为正数的有2种情况,∴积为正数的概率为:=.20. 解:设学生步行的平均速度是每小时x千米.服务人员骑自行车的平均速度是每小时2.5x千米,根据题意:﹣=3.6,解得:x=4,经检验,x=3是所列方程的解,且符合题意.答:学生步行的平均速度是每小时4千米.21. 解:(1)20,8,55;(2)估计该市城区全年空气质量等级为“优”和“良”的天数共:365×(25%+55%)=292(天)(3)建议不要燃放烟花爆竹.22. 解:(1)∵关于x的一元二次方程x2﹣(2m+1)x+m(m+1)=0.∴△=(2m+1)2﹣4m(m+1)=1>0,∴方程总有两个不相等的实数根;(2)∵x=0是此方程的一个根,∴把x=0代入方程中得到m(m+1)=0,∴m=0或m=﹣1,∵(2m﹣1)2+(3+m)(3﹣m)+7m﹣5=4m2﹣4m+1+9﹣m2+7m﹣5=3m2+3m+5,把m=0代入3m2+3m+5得:3m2+3m+5=5;把m=﹣1代入3m2+3m+5得:3m2+3m+5=3×1﹣3+5=5.23. 解:(1)如图①中,∵△A′B′C是由△ABC旋转得到,∴∠A′B′C=∠ABC=130°,CB=CB′,∴∠CBB′=∠CB′B,∵∠BCB′=50°,∴∠CBB′=∠CB′B=65°,∴∠A′B′B=∠A′B′C﹣∠BB′C=65°.(2)(Ⅰ)结论:直线BB′与⊙A′相切.理由:如图②中,∵∠A′B′C=∠ABC=150°,CB=CB′,∴∠CBB′=∠CB′B,∵∠BCB′=60°,∴∠CBB′=∠CB′B=60°,∴∠A′B′B=∠A′B′C﹣∠BB′C=90°.∴AB′⊥BB′,∴直线BB′与⊙A′相切.(Ⅱ)∵在Rt△ABB′中,∵∠AB′B=90°,BB′=BC=5,AB′=AB=3,∴A′B==.(3)如图③中,当α+β=180°时,直线BB′与⊙A′相切.理由:∵∠A′B′C=∠ABC=α,CB=CB′,∴∠CBB′=∠CB′B,∵∠BCB′=2β,∴∠CBB′=∠CB′B=,∴∠A′B′B=∠A′B′C﹣∠BB′C=α﹣90°+β=180°﹣90°=90°.∴AB′⊥BB′,∴直线BB′与⊙A′相切.在△CBB′中,∵CB=CB′=n,∠BCB′=2β,∴BB′=2•nsinβ,在Rt△A′BB′中,A′B==.24. 解:(1)令y=0代入y=x+4,∴x=﹣3,A(﹣3,0),令x=0,代入y=x+4,∴y=4,∴C(0,4),设抛物线F1的解析式为:y=a(x+3)(x﹣1),把C(0,4)代入上式得,a=﹣,∴y=﹣x2﹣x+4,(2)如图①,设点M(a,﹣a2﹣a+4)其中﹣3<a<0∵B(1,0),C(0,4),∴OB=1,OC=4 ∴S△B O C=Ob•OC=2,过点M作MP⊥x轴于点P,∴MP=﹣a2﹣a+4,AP=a+3,OP=﹣a,∴S四边形M A O C=aP•MP+(MP+OC)•OP=aP•MP+OP•MP+OP•OC=+=+=×3(﹣a2﹣a+4)+×4×(﹣a)=﹣2a2﹣6a+6∴S=S四边形M A O C﹣S△B O C=(﹣2a2﹣6a+6)﹣2=﹣2a2﹣6a+4=﹣2(a+)2+∴当a=﹣时,S有最大值,最大值为此时,M(﹣,5);,(3)如图②,由题意知:M′(),B′(﹣1,0),A′(3,0)∴AB′=2,设直线A′C的解析式为:y=kx+b,把A′(3,0)和C(0,4)代入y=kx+b,得:,∴∴y=﹣x+4,令x=代入y=﹣x+4,∴y=2 ∴由勾股定理分别可求得:AC=5,DA′=设P(m,0)当m<3时,此时点P在A′的左边,∴∠DA′P=∠CAB′,当=时,△DA′P∽△CAB′,此时,=(3﹣m),解得:m=2,∴P(2,0)当=时,△DA′P∽△B′AC,此时,=(3﹣m)m=﹣,∴P(﹣,0)当m>3时,此时,点P在A′右边,由于∠CB′O≠∠DA′E,∴∠AB′C≠∠DA′P∴此情况,△DA′P与△B′AC不能相似,2016年湖北省黄冈市中考数学试卷.11 综上所述,当以A ′、D 、P 为顶点的三角形与△AB ′C 相似时,点P 的坐标为(2,0)或(﹣,0).。
2016年湖南省岳阳市中考数学试卷及答案
岳阳市2016年初中毕业学业考试数学试卷一、选择题(本题共 分,每小题 分)下面各题均有四个选项,其中只有一个..是符合题意的.( ) .下列各数中为无理数的是.﹣ . . .( ) .下列运算结果正确的是. .( ) . . ﹣( ) .函数 中自变量 的取值范围是 . . > . < .( ) .某小学校足球队 名队员年龄情况如下:年龄(岁)人数 则这个队队员年龄的众数和中位数分别是. , . , . , . ,( ) .如图是某几何体的三视图,则该几何体可能是.圆柱 .圆锥 .球 .长方体( ) .下列长度的三根小木棒能构成三角形的是. , , . , ,. , , . , ,( ) .下列说法错误的是.角平分线上的点到角的两边的距离相等.直角三角形斜边上的中线等于斜边的一半.菱形的对角线相等.平行四边形是中心对称图形( ) .对于实数 , ,我们定义符号 , 的意义为:当 时, , ;当 < 时, , ;如:,﹣ , , ,若关于 的函数为,﹣ ,则该函数的最小值是. . . .二、填空题(本大题共 小题,每小题 分,共 分).如图所示,数轴上点 所表示的数的相反数是..因式分解: ﹣ ..在半径为 的圆中, 的圆心角所对的弧长为 ..为加快 一极三宜 江湖名城建设,总投资 万元的岳阳三荷机场及交通产业园,预计 年建好主体工程,将 万元用科学记数法表示为元..如图,四边形 为 的内接四边形,已知 ,则 度..如图,一山坡的坡度为 :,小辰从山脚 出发,沿山坡向上走了 米到达点 ,则小辰上升了米..如图,一次函数 ( 、 为常数,且 )和反比例函数 ( > )的图象交于 、 两点,利用函数图象直接写出不等式< 的解集是..如图,在平面直角坐标系中,每个最小方格的边长均为 个单位长, , , , ,均在格点上,其顺序按图中 方向排列,如: ( , ),( , ),( , ),( ,﹣ ),(﹣ ,﹣ ),(﹣ , )根据这个规律,点的坐标为 .三、解答题(本大题共 小题,共 分).( 分)计算:()﹣ ﹣ ﹣( ﹣) ..( 分)已知:如图,在矩形 中,点 在边 上,点 在边 上,且 , ,求证: ..( 分)已知不等式组( )求不等式组的解集,并写出它的所有整数解;( )在不等式组的所有整数解中任取两个不同的整数相乘,请用画树状图或列表的方法求积为正数的概率..( 分)我市某学校开展 远是君山,磨砺意志,保护江豚,爱鸟护鸟 为主题的远足活动.已知学校与君山岛相距 千米,远足服务人员骑自行车,学生步行,服务人员骑自行车的平均速度是学生步行平均速度的 倍,服务人员与学生同时从学校出发,到达君山岛时,服务人员所花时间比学生少用了 小时,求学生步行的平均速度是多少千米 小时..( 分)某学校环保志愿者协会对该市城区的空气质量进行调查,从全年 天中随机抽取了 天的空气质量指数( )数据,绘制出三幅不完整的统计图表.请根据图表中提供的信息解答下列问题:指数质量等级天数(天)﹣ 优﹣良﹣轻度污染﹣中度污染﹣重度污染以严重污染上( )统计表中 , .扇形统计图中,空气质量等级为 良 的天数占 ;( )补全条形统计图,并通过计算估计该市城区全年空气质量等级为 优 和 良 的天数共多少天?( )据调查,严重污染的 天发生在春节期间,燃放烟花爆竹成为空气污染的一个重要原因,据此,请你提出一条合理化建议..( 分)已知关于 的方程 ﹣( ) ( ) .( )求证:方程总有两个不相等的实数根;( )已知方程的一个根为 ,求代数式( ﹣ ) ( )( ﹣ ) ﹣ 的值(要求先化简再求值)..( 分)数学活动﹣旋转变换( )如图 ,在 中, ,将 绕点 逆时针旋转 得到 ,连接 ,求 的大小;( )如图 ,在 中, , , ,将 绕点 逆时针旋转 得到 ,连接 ,以 为圆心, 长为半径作圆.( )猜想:直线 与 的位置关系,并证明你的结论;( )连接 ,求线段 的长度;( )如图 ,在 中, ( < < ), , ,将 绕点 逆时针旋转 角度( < < )得到 ,连接 和 ,以 为圆心, 长为半径作圆,问:角 与角 满足什么条件时,直线 与 相切,请说明理由,并求此条件下线段 的长度(结果用角 或角 的三角函数及字母 、 所组成的式子表示).( 分)如图 ,直线 交于 轴于点 ,交 轴于点 ,过 、 两点的抛物线交 轴于另一点 ( , ).( )求抛物线所表示的二次函数的表达式;( )若点 是抛物线位于第二象限图象上的一点,设四边形 和 的面积分别为 四边形和,记 四边形﹣,求 最大时点 的坐标及的最大值;( )如图 ,将抛物线沿 轴翻折并 复制 得到抛物线,点 、 与( )中所求的点 的对应点分别为 、 、 ,过点 作 轴于点 ,交直线 于点 ,在 轴上是否存在点 ,使得以 、 、 为顶点的三角形与 相似?若存在,请求出点 的坐标;若不存在,请说明理由.参考答案一、选择题(共 个小题,每小题 分,共 分)二、填空题(共 个小题,每小题 分,共 分)题号答案( ﹣)<<( ,﹣ )三、解答题(共 道小题,每小题 分,共 分)解:原式 ﹣ ﹣证明: 四边形 是矩形,,, ,,,,在 和 中,,( ), .解:( ) 由 得: >﹣ ,由 得: ,不等式组的解集为:﹣ < ,它的所有整数解为:﹣ , , , ;( )画树状图得:共有 种等可能的结果,积为正数的有 种情况,积为正数的概率为: .解: 设学生步行的平均速度是每小时 千米.服务人员骑自行车的平均速度是每小时 千米,根据题意:﹣ ,解得: ,经检验, 是所列方程的解,且符合题意.答:学生步行的平均速度是每小时 千米.解:( ) , , ;( )估计该市城区全年空气质量等级为 优 和 良 的天数共:( ) (天)( )建议不要燃放烟花爆竹.解:( ) 关于 的一元二次方程 ﹣( ) ( ) .( ) ﹣ ( ) > ,方程总有两个不相等的实数根;( ) 是此方程的一个根,把 代入方程中得到 ( ) , 或 ﹣ ,( ﹣ ) ( )( ﹣ ) ﹣ ﹣ ﹣ ﹣,把 代入 得: ;把 ﹣ 代入 得: ﹣ .解:( )如图 中, 是由 旋转得到,, ,, ,,﹣ .( )( )结论:直线 与 相切.理由:如图 中, , ,, , ,﹣ ., 直线 与 相切.( ) 在 中, , , ,.( )如图 中,当 时,直线 与 相切.理由: , ,, ,,﹣ ﹣ ﹣ . , 直线 与 相切.在 中, , , , 在 中, .解:( )令 代入 , ﹣ , (﹣ , ),令 ,代入 , , ( , ),设抛物线 的解析式为: ( )( ﹣ ),把 ( , )代入上式得, ﹣, ﹣ ﹣ ,( )如图 ,设点 ( ,﹣ ﹣ )其中﹣ < <( , ), ( , ), , , 过点 作 轴于点 ,﹣ ﹣ , , ﹣ ,四边形 ( )(﹣ ﹣ ) (﹣ ) ﹣ ﹣四边形 ﹣ (﹣ ﹣ )﹣ ﹣ ﹣ ﹣ ( )当 ﹣时, 有最大值,最大值为此时, (﹣, );,( )如图 ,由题意知: (), (﹣ , ), ( , ) , 设直线 的解析式为: ,把 ( , )和 ( , )代入 ,﹣ ,得:,令 代入 ﹣ ,由勾股定理分别可求得: ,设 ( , )当 < 时,此时点 在 的左边, ,当 时, ,此时, ( ﹣ ),解得: , ( , )当 时, ,此时, ( ﹣ )﹣, (﹣, )当 > 时,此时,点 在 右边,由于 , 此情况, 与 不能相似,综上所述,当以 、 、 为顶点的三角形与相似时,点 的坐标为( , )或(﹣, ).。
2016年岳阳市数学中考真题卷
2016年岳阳市数学中考真题卷适用年级:九年级建议时长:0分钟试卷总分:100.0分一、选择题。
1.(2016•岳阳)下列各数中为无理数的是()(2.0分)(单选)A. ﹣1B. 3.14C. πD. 02.(2016•岳阳)下列运算结果正确的是()(2.0分)(单选)A. a2+a3=a5B. (a2)3=a6C. a2•a3=a6D. 3a﹣2a=13.(2016•岳阳)函数y=中自变量x的取值范围是()(2.0分)(单选)A. x≥0B. x>4C. x<4D. x≥44.(2016•岳阳)某小学校足球队22名队员年龄情况如下:年龄(岁)12 11 10 9人数 4 10 6 2则这个队队员年龄的众数和中位数分别是()(2.0分)(单选)A. 11,10B. 11,11C. 10,9D. 10,115.(2016•岳阳)如图是某几何体的三视图,则该几何体可能是()(2.0分)(单选)A. 圆柱B. 圆锥C. 球D. 长方体6.(2016•岳阳)下列长度的三根小木棒能构成三角形的是()(2.0分)(单选)A. 2cm,3cm,5cmB. 7cm,4cm,2cmC. 3cm,4cm,8cmD. 3cm,3cm,4cm7.(2016•岳阳)下列说法错误的是()(2.0分)(单选)A. 角平分线上的点到角的两边的距离相等B. 直角三角形斜边上的中线等于斜边的一半C. 菱形的对角线相等D. 平行四边形是中心对称图形8.(2016•岳阳)对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是()(2.0分)(单选)A. 0B. 2C. 3D. 4二、填空题。
1.(2016•岳阳)如图所示,数轴上点A所表示的数的相反数是____。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年湖南省岳阳市中考数学试卷
一、选择题(本大题8道小题,每小题3分,满分24分)
1.下列各数中为无理数的是()
A.﹣1B.3.14C.πD.0
2.下列运算结果正确的是()
A.a2+a3=a5B.(a2)3=a6C.a2•a3=a6D.3a﹣2a=1
3.函数y=中自变量x的取值范围是()
A.x≥0B.x>4C.x<4D.x≥4
4.某小学校足球队22名队员年龄情况如下:
年龄(岁)1211109
人数41062
则这个队队员年龄的众数和中位数分别是()
A.11,10B.11,11C.10,9D.10,11
5.如图是某几何体的三视图,则该几何体可能是()
A.圆柱B.圆锥C.球D.长方体
6.下列长度的三根小木棒能构成三角形的是()
A.2cm,3cm,5cm B.7cm,4cm,2cm C.3cm,4cm,8cm D.3cm,3cm,4cm 7.下列说法错误的是()
A.角平分线上的点到角的两边的距离相等
B.直角三角形斜边上的中线等于斜边的一半
C.菱形的对角线相等
D.平行四边形是中心对称图形
8.对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是()
A.0B.2C.3D.4
二、填空题(本大题共8小题,每小题4分,满分32分)
9.如图所示,数轴上点A所表示的数的相反数是.
10.因式分解:6x2﹣3x=.
11.在半径为6cm的圆中,120°的圆心角所对的弧长为cm.12.为加快“一极三宜”江湖名城建设,总投资124000万元的岳阳三荷机场及交通产业园,预计2016年建好主体工程,将124000万元用科学记数法表示为元.
13.如图,四边形ABCD 为⊙O 的内接四边形,已知∠BCD=110°,则∠BAD=度.
14.如图,一山坡的坡度为i=1:
,小辰从山脚A 出发,沿山坡向上走了200米到达点B,则小辰上升了米.
15.如图,一次函数y=kx+b(k、b 为常数,且k≠0)和反比例函数y=(x>0)的图象交于A、B 两点,利用函数图象直接写出不等式<kx+b 的解集是.
16.如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长,P 1,P 2,P 3,…,均在格点上,其顺序按图中“→”方向排列,如:P 1(0,0),P 2(0,1),P 3(1,1),P 4(1,﹣1),P 5(﹣1,﹣1),P 6(﹣1,2)…根据这个规律,点P 2016的坐标为.
三、解答题(本大题共8道小题,满分64分)
17.计算:()﹣1﹣+2tan60°﹣(2﹣)0.
18.已知:如图,在矩形ABCD中,点E在边AB上,点F在边BC上,且BE=CF,EF⊥DF,求证:BF=CD.
19.已知不等式组
(1)求不等式组的解集,并写出它的所有整数解;
(2)在不等式组的所有整数解中任取两个不同的整数相乘,请用画树状图或列表的方法求积为正数的概率.
20.我市某学校开展“远是君山,磨砺意志,保护江豚,爱鸟护鸟”为主题的远足活动.已知学校与君山岛相距24千米,远足服务人员骑自行车,学生步行,服务人员骑自行车的平均速度是学生步行平均速度的2.5倍,服务人员与学生同时从学校出发,到达君山岛时,服务人员所花时间比学生少用了3.6小时,求学生步行的平均速度是多少千米/小时.
21.某学校环保志愿者协会对该市城区的空气质量进行调查,从全年365天中随机抽取了80天的空气质量指数(AQI)数据,绘制出三幅不完整的统计图表.请根据图表中提供的信息解答下列问题:
AQI指数质量等级天数(天)
0﹣50优m
51﹣100良44
101﹣150轻度污染n
151﹣200中度污染4
201﹣300重度污染2
300以上严重污染2
(1)统计表中m=,n=.扇形统计图中,空气质量等级为“良”的天数占%;
(2)补全条形统计图,并通过计算估计该市城区全年空气质量等级为“优”和“良”的天数共多少天?
(3)据调查,严重污染的2天发生在春节期间,燃放烟花爆竹成为空气污染的一个重要原因,据此,请你提出一条合理化建议.
22.已知关于x的方程x2﹣(2m+1)x+m(m+1)=0.
(1)求证:方程总有两个不相等的实数根;
(2)已知方程的一个根为x=0,求代数式(2m﹣1)2+(3+m)(3﹣m)+7m﹣5的值(要求先化简再求值).
23.数学活动﹣旋转变换
(1)如图①,在△ABC中,∠ABC=130°,将△ABC绕点C逆时针旋转50°得到△A′B′C,连接BB′,求∠A′B′B的大小;
(2)如图②,在△ABC中,∠ABC=150°,AB=3,BC=5,将△ABC绕点C逆时针旋转60°得到△A′B′C,连接BB′,以A′为圆心,A′B′长为半径作圆.(Ⅰ)猜想:直线BB′与⊙A′的位置关系,并证明你的结论;
(Ⅱ)连接A′B,求线段A′B的长度;
(3)如图③,在△ABC中,∠ABC=α(90°<α<180°),AB=m,BC=n,将△ABC绕点C逆时针旋转2β角度(0°<2β<180°)得到△A′B′C,连接A′B 和BB′,以A′为圆心,A′B′长为半径作圆,问:角α与角β满足什么条件时,直线BB′与⊙A′相切,请说明理由,并求此条件下线段A′B的长度(结果用角α或角β的三角函数及字母m、n所组成的式子表示)
24.如图①,直线y=x+4交于x轴于点A,交y轴于点C,过A、C两点的抛物
线F
1
交x轴于另一点B(1,0).
(1)求抛物线F
1
所表示的二次函数的表达式;
(2)若点M是抛物线F
1
位于第二象限图象上的一点,设四边形MAOC和△BOC的
面积分别为S
四边形MAOC 和S
△BOC
,记S=S
四边形MAOC
﹣S
△BOC
,求S最大时点M的坐标及S
的最大值;
(3)如图②,将抛物线F
1沿y轴翻折并“复制”得到抛物线F
2
,点A、B与(2)
中所求的点M的对应点分别为A′、B′、M′,过点M′作M′E⊥x轴于点E,交直线A′C于点D,在x轴上是否存在点P,使得以A′、D、P为顶点的三角形与△AB′C相似?若存在,请求出点P的坐标;若不存在,请说明理由.。