2016年最新人教版初二数学八年级上册《第12章全等三角形》单元测试卷含答案
最新人教版 初二上册八年级数学《第12章全等三角形》单元测试题含答案解析
《第12章全等三角形》一、填空题.1.已知:△ABC≌△A′B′C′,∠A=∠A′,∠B=∠B′,∠C=70°,AB=15cm,则∠C′=.2.如图,在△ABC中,AB=AC,AD⊥BC于D点,E、F分别为DB、DC的中点,则图中共有全等三角形对.3.已知△ABC≌△A′B′C′,若△ABC的面积为10cm2,则△A′B′C′的面积为cm2;若△A′B′C′的周长为16cm,则△ABC的周长为cm.4.如图,∠1=∠2,要使△ABD≌△ACD,需添加的一个条件是(只添一个条件即可).5.如图,点F、C在线段BE 上,且∠1=∠2,BC=EF,若要使△ABC≌△DEF,则还需补充一个条件,依据是.6.三角形两外角平分线和第三个角的内角平分线一点,且该点在三角形部.7.如图,两平面镜α、β的夹角为θ,入射光线AO平行于β入射到口上,经两次反射后的出射光线O′B 平行于α,则角θ等于度.8.如图,直线AE∥BD,点C在BD上,若AE=4,BD=8,△ABD的面积为16,则△ACE的面积为.二、选择题9.如图,AE=AF,AB=AC,EC与BF交于点O,∠A=60°,∠B=25°,则∠EOB的度数为()A.60° B.70° C.75° D.85°10.△ABC≌△DEF,且△ABC的周长为100cm,A、B分别与D、E对应,且AB=35cm,DF=30cm,则EF的长为()A.35cm B.30cm C.45cm D.55cm11.如图是一个由四根木条钉成的框架,拉动其中两根木条后,它的形状将会改变,若固定其形状,下列有四种加固木条的方法,不能固定形状的是钉在()两点上的木条.A.A、F B.C、E C.C、A D.E、F12.要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明△EDC≌△ABC,得ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC最恰当的理由是()A.边角边B.角边角C.边边边D.边边角13.如图,N,C,A三点在同一直线上,在△ABC中,∠A:∠ABC:∠ACB=3:5:10,又△MNC≌△ABC,则∠BCM:∠BCN等于()A.1:2 B.1:3 C.2:3 D.1:414.如图,P是∠AOB平分线上一点,CD⊥OP于F,并分别交OA、OB于CD,则CD()P点到∠AOB两边距离之和.A.小于 B.大于 C.等于 D.不能确定三、解答题15.(12分)如图,在△ABC中,∠ACB=90°,延长BC至B′,使C B′=BC,连接A B′.求证:△ABB′是等腰三角形.16.已知如图,AC交BD于点O,AB=DC,∠A=∠D.(1)请写出符合上述条件的五个结论(并且不再添加辅助线,对顶角除外);(2)从你写出的5个结论中,任选一个加以证明.17.如图,画出一个两条直角边相等的Rt△ABC,并过斜边BC上一点D作射线AD,再分别过B,C作射线AD的垂线BE和CF,垂足分别为E,F,量出BE,CF,EF的长,改变D的位置,再重复上面的操作,你是否发现BE,CF,EF的长度之间有某种关系?并证明你的结论.《第12章全等三角形》参考答案与试题解析一、填空题.1.已知:△ABC≌△A′B′C′,∠A=∠A′,∠B=∠B′,∠C=70°,AB=15cm,则∠C′=70°.【考点】全等三角形的性质.【分析】根据全等三角形的性质得出∠C′=∠C,代入求出即可.【解答】解:∵△ABC≌△A′B′C′,∠A=∠A′,∠B=∠B′,∠C=70°,∴∠C′=∠C=70°,故答案为:70°.【点评】本题考查了全等三角形的性质的应用,注意:全等三角形的对应角相等,对应边相等.2.如图,在△ABC中,AB=AC,AD⊥BC于D点,E、F分别为DB、DC的中点,则图中共有全等三角形 4 对.【考点】全等三角形的判定.【专题】证明题.【分析】本题重点是根据已知条件“AB=AC,AD⊥BC交D点,E、F分别是DB、DC的中点”,得出△ABD≌△ACD,然后再由结论推出AB=AC,BE=DE,CF=DF,从而根据“SSS”或“SAS”找到更多的全等三角形,要由易到难,不重不漏.【解答】解:∵AD⊥BC,AB=AC∴D是BC中点∴BD=DC,∵AD=AD,∴△ABD≌△ACD(SSS);E、F分别是DB、DC的中点∴BE=ED=DF=FC∵AD⊥BC,AD=AD,ED=DF∴△ADF≌△ADE(HL);∵∠B=∠C,BE=FC,AB=AC∴△ABE≌△ACF(SAS)∵EC=BF,AB=AC,AE=AF∴△ABF≌△ACE(SSS).∴全等三角形共4对,分别是:△ABD≌△ACD(HL),△ABE≌△ACF(SAS),△ADF≌△ADE(SSS),△ABF≌△ACE(SAS).故答案为4.【点评】本题考查了全等三角形的判定.题目是一道考试常见题,易错点是漏掉△ABE≌△ACD,此类题可以先根据直观判断得出可能全等的所有三角形,然后从已知条件入手,分析推理,对结论一个个进行论证.其中△ABE≌△ACD常被忽略.3.已知△ABC≌△A′B′C′,若△ABC的面积为10cm2,则△A′B′C′的面积为10 cm2;若△A′B′C′的周长为16cm,则△ABC的周长为16 cm.【考点】全等三角形的性质.【分析】根据全等三角形的面积相等,全等三角形的周长相等解答.【解答】解:∵△ABC≌△A′B′C′,△ABC的面积为10cm2,∴△A′B′C′的面积为10cm2;∵△ABC≌△A′B′C′,△A′B′C′的周长为16cm,∴△ABC的周长为16cm.故答案为:10,16.【点评】本题考查了全等三角形的性质,是基础题,需熟记.4.如图,∠1=∠2,要使△ABD≌△ACD,需添加的一个条件是CD=BD (只添一个条件即可).【考点】全等三角形的判定.【分析】由已知条件具备一角一边分别对应相等,还缺少一个条件,可添加DB=DC,利用SAS判定其全等.【解答】解:需添加的一个条件是:CD=BD,理由:∵∠1=∠2,∴∠ADC=∠ADB,在△ABD和△ACD中,,∴△ABD≌△ACD(SAS).故答案为:CD=BD.【点评】本题考查了三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关健.5.如图,点F、C在线段BE 上,且∠1=∠2,BC=EF,若要使△ABC≌△DEF,则还需补充一个条件AC=DF ,依据是SAS .【考点】全等三角形的判定.【专题】开放型.【分析】要使△ABC≌△DEF,已知∠1=∠2,AC=EF,添加边的话应添加对应边,符合SAS来判定.【解答】解:AC=DF.在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).故答案为:AC=DF,SAS.【点评】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6.三角形两外角平分线和第三个角的内角平分线相交于一点,且该点在三角形外部.【考点】角平分线的性质.【分析】首先根据题意作图,然后根据角平分线的性质与判定,即可得三角形两外角平分线和第三个角的内角平分线相交于一点,且该点在三角形外部.【解答】解:如图:AP与CP是△ABC两外角平分线,过点P作PE⊥AB于E,作PD⊥BC于D,PF⊥AC于F,∴PE=PF,PF=PD,∴PE=PD,∴PB是△ABC第三个角∠ABC的内角平分线.∴三角形两外角平分线和第三个角的内角平分线相交于一点,且该点在三角形外部.故答案为:相交于,外.【点评】此题考查了角平分线的性质与判定.此题难度不大,解题的关键是注意数形结合思想的应用,注意辅助线的作法.7.如图,两平面镜α、β的夹角为θ,入射光线AO平行于β入射到口上,经两次反射后的出射光线O′B 平行于α,则角θ等于60 度.【考点】镜面对称.【分析】利用反射的性质得到入射光线与水平线的夹角等于反射光线与水平线的夹角,再利用平行的性质把相应的角转移到一个三角形中求解.【解答】解:∵AO∥β,∴∠1=∠θ(两直线平行,同位角相等),∵∠1=∠COO′∴∠θ=∠COO′同理∠θ=∠CO′O,∵∠θ+∠COO′+∠CO′O=180°∴∠θ=60°.故填60.【点评】本题考查了镜面对称问题;需注意利用反射的性质、平行的性质把相应的角转移到一个三角形中求解是正确解答本题的关键.8.如图,直线AE∥BD,点C在BD上,若AE=4,BD=8,△ABD的面积为16,则△ACE的面积为8 .【考点】平行线之间的距离;三角形的面积.【专题】计算题.【分析】根据两平行线间的距离相等,可知两个三角形的高相等,所以根据△ABD的面积可求出高,然后求△ACE的面积即可.【解答】解:在△ABD中,当BD为底时,设高为h,在△AEC中,当AE为底时,设高为h′,∵AE∥BD,∴h=h′,∵△ABD的面积为16,BD=8,∴h=4.则△ACE的面积=×4×4=8.【点评】主要是根据两平行线间的距离相等求出高再求三角形的面积.二、选择题9.如图,AE=AF,AB=AC,EC与BF交于点O,∠A=60°,∠B=25°,则∠EOB的度数为()A.60° B.70° C.75° D.85°【考点】全等三角形的判定与性质;三角形内角和定理.【分析】已知可得△ABF≌△ACE,结合三角形内角和可得∠AFB=∠AEC=95°,在由外角性质可得,∠EOB=95°﹣25°=70°【解答】解:∵AE=AF,AB=AC,∠A=60°∴△ABF≌△ACE∴∠C=∠B=25°∴∠AEC=180°﹣60°﹣25°=95°,∴∠EOB=95°﹣25°=70°故选B.【点评】主要考查了三角形中内角与外角之间的关系和全等三角形的判断和性质.此题主要运用了外角等于两个不相邻的内角和、全等三角形对应角相等以及三角形内角和定理.10.△ABC≌△DEF,且△ABC的周长为100cm,A、B分别与D、E对应,且AB=35cm,DF=30cm,则EF的长为()A.35cm B.30cm C.45cm D.55cm【考点】全等三角形的性质.【分析】根据全等三角形的性质得出AC=DF=30cm,EF=BC,求出BC,即可得出答案.【解答】解:∵△ABC≌△DEF,A、B分别与D、E对应,且AB=35cm,DF=30cm,∴AC=DF=30cm,EF=BC,∵△ABC的周长为100cm,∴EF=BC=100cm﹣35cm﹣30cm=35cm,故选A.【点评】本题考查了全等三角形的性质的应用,注意:全等三角形的对应角相等,对应边相等.11.如图是一个由四根木条钉成的框架,拉动其中两根木条后,它的形状将会改变,若固定其形状,下列有四种加固木条的方法,不能固定形状的是钉在()两点上的木条.A.A、F B.C、E C.C、A D.E、F【考点】三角形的稳定性.【分析】根据三角形具有稳定性选择不能构成三角形的即可.【解答】解:A、A、F与D能够组三角形,能固定形状,故本选项错误;B、C、E与B能够组三角形,能固定形状,故本选项错误;C、C、A与B能够组三角形,能固定形状,故本选项错误;D、E、F不能与A、B、C、D中的任意点构成三角形,不能固定形状,故本选项正确.故选D.【点评】本题考查了三角形的稳定性,观察图形并熟记三角形的定义是解题的关键.12.要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明△EDC≌△ABC,得ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC最恰当的理由是()A.边角边B.角边角C.边边边D.边边角【考点】全等三角形的应用.【分析】由已知可以得到∠ABC=∠BDE,又CD=BC,∠ACB=∠DCE,由此根据角边角即可判定△EDC≌△ABC.【解答】解:∵BF⊥AB,DE⊥BD∴∠ABC=∠BDE又∵CD=BC,∠ACB=∠DCE∴△EDC≌△ABC(ASA)故选B.【点评】本题考查了全等三角形的判定方法;需注意根据垂直定义得到的条件,以及隐含的对顶角相等,观察图形,找着隐含条件是十分重要的.13.如图,N,C,A三点在同一直线上,在△ABC中,∠A:∠ABC:∠ACB=3:5:10,又△MNC≌△ABC,则∠BCM:∠BCN等于()A.1:2 B.1:3 C.2:3 D.1:4【考点】全等三角形的性质.【分析】利用三角形的三角的比,求出三角的度数,再进一步根据各角之间的关系求出∠BCM、∠BCN的度数可求出结果.【解答】解:在△ABC中,∠A:∠ABC:∠ACB=3:5:10设∠A=3x°,则∠ABC=5x°,∠ACB=10x°3x+5x+10x=180解得x=10则∠A=30°,∠ABC=50°,∠ACB=100°∴∠BCN=180°﹣100°=80°又△MNC≌△ABC∴∠ACB=∠MCN=100°∴∠BCM=∠NCM﹣∠BCN=100°﹣80°=20°∴∠BCM:∠BCN=20°:80°=1:4故选D【点评】本题考查了全等三角形的性质;利用三角形的三角的比,求得三个角的大小是很重要的方法,要注意掌握.14.如图,P是∠AOB平分线上一点,CD⊥OP于F,并分别交OA、OB于CD,则CD()P点到∠AOB两边距离之和.A.小于 B.大于 C.等于 D.不能确定【考点】角平分线的性质;垂线段最短.【分析】过P作PE⊥OA于E,PF⊥OB于F,则∠PED=∠PFD=90°,根据垂线段最短得出PC>PE,PD>PF,即可得出答案.【解答】解:过P作PE⊥OA于E,PF⊥OB于F,则∠PED=∠PFD=90°,所以PC>PE,PD>PF,∴PC+PD>PE+PF,即CD大于P点到∠AOB两边距离之和,故选B.【点评】本题考查了角平分线性质,垂线段最短的应用,解此题的关键是推出PD>PF,PC>PE.三、解答题15.(12分)(2015秋•岱岳区校级月考)如图,在△ABC中,∠ACB=90°,延长BC至B′,使C B′=BC,连接A B′.求证:△ABB′是等腰三角形.【考点】等腰三角形的判定;全等三角形的判定与性质.【专题】证明题.【分析】只要证明△ABC≌△AB′C就可以证明三角形是等腰三角形.【解答】证明:∵∠ACB=90°∴∠ACB′=90° (1分)在△ABC和△AB′C中,∴△ABC≌△AB′C (SAS)∴AB=AB′∴△ABB′是等腰三角形.(6分)【点评】本题考查了等腰三角形的判定定理和全等三角形的性质和判定定理.16.(2014秋•利通区校级期末)已知如图,AC交BD于点O,AB=DC,∠A=∠D.(1)请写出符合上述条件的五个结论(并且不再添加辅助线,对顶角除外);(2)从你写出的5个结论中,任选一个加以证明.【考点】全等三角形的判定与性质.【专题】开放型.【分析】首先证明△AOB≌△DOC,得出其对应边、对应角相等,再根据等边对等角得出∠OBC=∠OCB.【解答】解:(1)答:符合上述条件的五个结论为:△AOB≌△DOC,OA=OD,OB=OC,∠ABO=∠DCO,∠OBC=∠OCB.(2)证明如下:∵AB=DC,∠A=∠D,又有∠AOB=∠DOC∴△AOB≌△DOC∴OA=OD,OB=OC,∠ABO=∠DCO∵OB=OC∴∠OBC=∠OCB.【点评】本题主要考查了全等三角形的判定、全等三角形的性质、等腰三角形的性质,要熟练掌握并灵活应用这些知识.17.(2015秋•岱岳区校级月考)如图,画出一个两条直角边相等的Rt△ABC,并过斜边BC上一点D作射线AD,再分别过B,C作射线AD的垂线BE和CF,垂足分别为E,F,量出BE,CF,EF的长,改变D的位置,再重复上面的操作,你是否发现BE,CF,EF的长度之间有某种关系?并证明你的结论.【考点】全等三角形的判定与性质;等腰直角三角形.【专题】计算题.【分析】CF=BE+EF,理由为:由同角的余角相等得到一对角相等,再由一对直角相等,以及AB=AC,利用AAS得到三角形ABE与三角形CAF全等,利用全等三角形对应边相等得到BE=AF,AE=CF,由AE=AF+EF,等量代换即可得证.【解答】解:CF=BE+EF,理由为:证明:∵∠BAC=90°,∴∠BAE+∠CAF=90°,∵∠BAE+∠ABE=90°,∴∠CAF=∠ABE,在△ABE和△CAF中,,∴△ABE≌△CAF(AAS),∴BE=AF,AE=CF,∴CF=AE=AF+EF=BE+EF.【点评】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.。
人教版八年级数学上:第12章《全等三角形》单元测试(含答案)(含答案)
第12章全等三角形一、选择题1.如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm2.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1) B.(﹣1,) C.(,1)D.(﹣,﹣1)3.在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A 地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是()A.B.C.D.4.如图,坐标平面上,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC=5.若A点的坐标为(﹣3,1),B、C两点在方程式y=﹣3的图形上,D、E两点在y轴上,则F点到y轴的距离为何?()A.2 B.3 C.4 D.55.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110°B.125°C.130°D.155°6.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF7.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,BE=DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是()A.y=﹣B.y=﹣C.y=﹣D.y=﹣8.如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=()A.B.C.D.﹣29.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A. a2B. a2C. a2D. a2二、解答题(共21小题)10.如图,已知AB∥DE,AB=DE,AF=CD,∠CEF=90°.(1)若∠ECF=30°,CF=8,求CE的长;(2)求证:△ABF≌△DEC;(3)求证:四边形BCEF是矩形.11.已知△ABC为等边三角形,D为AB边所在的直线上的动点,连接DC,以DC为边在DC两侧作等边△DCE和等边△DCF(点E在DC的右侧或上侧,点F在DC左侧或下侧),连接AE、BF(1)如图1,若点D在AB边上,请你通过观察,测量,猜想线段AE、BF和AB有怎样的数量关系?并证明你的结论;(2)如图2,若点D在AB的延长线上,其他条件不变,线段AE、BF和AB有怎样的数量关系?请直接写出结论(不需要证明);(3)若点D在AB的反向延长线上,其他条件不变,请在图3中画出图形,探究线段AE、BF和AB 有怎样的数量关系,并直接写出结论(不需要证明)12.如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?13.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.14.如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.15.已知:如图,AD,BC相交于点O,OA=OD,AB∥CD.求证:AB=CD.16.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.17.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.18.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.19.如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.20.已知△ABC为等腰直角三角形,∠ACB=90°,点P在BC边上(P不与B、C重合)或点P在△ABC 内部,连接CP、BP,将CP绕点C逆时针旋转90°,得到线段CE;将BP绕点B顺时针旋转90°,得到线段BD,连接ED交AB于点O.(1)如图a,当点P在BC边上时,求证:OA=OB;(2)如图b,当点P在△ABC内部时,①OA=OB是否成立?请说明理由;②直接写出∠BPC为多少度时,AB=DE.21.(1)如图1,在△ABC和△DCE中,AB∥DC,AB=DC,BC=CE,且点B,C,E在一条直线上.求证:∠A=∠D.(2)如图2,在矩形ABCD中,对角线AC,BD相交于点O,AB=4,∠AOD=120°,求AC的长.22.(1)如图,AB平分∠CAD,AC=AD,求证:BC=BD;(2)列方程解应用题把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?23.已知:如图,D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.24.【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B 进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据______,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若______,则△ABC≌△DEF.25.问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是______;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.26.如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.27.如图,已知四边形ABCD是平行四边形,点E、B、D、F在同一直线上,且BE=DF.求证:AE=CF.28.(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.29.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.30.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.(1)如图①,当∠BAE=90°时,求证:CD=2AF;(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.第12章全等三角形参考答案一、选择题(共9小题)1.如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm【解答】解:∵F是高AD和BE的交点,∴∠ADC=∠ADB=∠AEF=90°,∴∠CAD+∠AFE=90°,∠DBF+∠BFD=90°,∵∠AFE=∠BFD,∴∠CAD=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABD,∴AD=BD,在△DBF和△DAC中∴△DBF≌△DAC(ASA),∴BF=AC=8cm,故选C.2.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1) B.(﹣1,) C.(,1)D.(﹣,﹣1)【解答】解:如图,过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,∵四边形OABC是正方形,∴OA=OC,∠AOC=90°,∴∠COE+∠AOD=90°,又∵∠OAD+∠AOD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴OE=AD=,CE=OD=1,∵点C在第二象限,∴点C的坐标为(﹣,1).故选:A.3.(2014•湖州)在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是()A.B.C.D.【解答】解:A、延长AC、BE交于S,∵∠CAB=∠EDB=45°,∴AS∥ED,则SC∥DE.同理SE∥CD,∴四边形SCDE是平行四边形,∴SE=CD,DE=CS,即走的路线长是:AC+CD+DE+EB=AC+CS+SE+EB=AS+BS;B、延长AF、BH交于S1,作FK∥GH与BH的延长线交于点K,∵∠SAB=∠S1AB=45°,∠SBA=∠S1BA=70°,AB=AB,∴△SAB≌△S1AB,∴AS=AS1,BS=BS1,∵∠FGH=180°﹣70°﹣43°=67°=∠GHB,∴FG∥KH,∵FK∥GH,∴四边形FGHK是平行四边形,∴FK=GH,FG=KH,∴AF+FG+GH+HB=AF+FK+KH+HB,∵FS1+S1K>FK,∴AS+BS>AF+FK+KH+HB,即AC+CD+DE+EB>AF+FG+GH+HB,C、D、同理可证得AI+IK+KM+MB<AS2+BS2<AN+NQ+QP+PB.综上所述,D选项的所走的线路最长.故选:D.4.如图,坐标平面上,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC=5.若A点的坐标为(﹣3,1),B、C两点在方程式y=﹣3的图形上,D、E两点在y轴上,则F点到y轴的距离为何?()A.2 B.3 C.4 D.5【解答】解:如图,作AH、CK、FP分别垂直BC、AB、DE于H、K、P.∴∠DPF=∠AKC=∠CHA=90°.∵AB=BC,∴∠BAC=∠BCA.在△AKC和△CHA中,∴△AKC≌△CHA(ASA),∴KC=HA.∵B、C两点在方程式y=﹣3的图形上,且A点的坐标为(﹣3,1),∴AH=4.∴KC=4.∵△ABC≌△DEF,∴∠BAC=∠EDF,AC=DF.在△AKC和△DPF中,,∴△AKC≌△DPF(AAS),∴KC=PF=4.故选:C.5.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110°B.125°C.130°D.155°【解答】解:在△ACD和△BCE中,,∴△ACD≌△BCE(SSS),∴∠A=∠B,∠BCE=∠ACD,∴∠BCA=∠ECD,∵∠ACE=55°,∠BCD=155°,∴∠BCA+∠ECD=100°,∴∠BCA=∠ECD=50°,∵∠ACE=55°,∴∠ACD=105°∴∠A+∠D=75°,∴∠B+∠D=75°,∵∠BCD=155°,∴∠BPD=360°﹣75°﹣155°=130°,故选:C.6.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF【解答】解:在△ABC和△DEB中,,∴△ABC≌△DEB (SSS),∴∠ACB=∠DBE.∵∠AFB是△BFC的外角,∴∠ACB+∠DBE=∠AFB,∠ACB=∠AFB,故选:C.7.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,BE=DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是()A.y=﹣B.y=﹣C.y=﹣D.y=﹣【解答】解:作FG⊥BC于G,∵∠DEB+∠FEC=90°,∠DEB+∠BDE=90°;∴∠BDE=∠FEG,在△DBE与△EGF中∴△DBE≌△EGF,∴EG=DB,FG=BE=x,∴EG=DB=2BE=2x,∴GC=y﹣3x,∵FG⊥BC,AB⊥BC,∴FG∥AB,CG:BC=FG:AB,即=,∴y=﹣.故选:A.8.如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=()A.B.C.D.﹣2【解答】解:∵AB=AD=6,AM:MB=AN:ND=1:2,∴AM=AN=2,BM=DN=4,连接MN,连接AC,∵AB⊥BC,AD⊥CD,∠BAD=60°在Rt△ABC与Rt△ADC中,,∴Rt△ABC≌Rt△ADC(HL)∴∠BAC=∠DAC=∠BAD=30°,MC=NC,∴BC=AC,∴AC2=BC2+AB2,即(2BC)2=BC2+AB2,3BC2=AB2,∴BC=2,在Rt△BMC中,CM===2.∵AN=AM,∠MAN=60°,∴△MAN是等边三角形,∴MN=AM=AN=2,过M点作ME⊥CN于E,设NE=x,则CE=2﹣x,∴MN2﹣NE2=MC2﹣EC2,即4﹣x2=(2)2﹣(2﹣x)2,解得:x=,∴EC=2﹣=,∴ME==,∴tan∠MCN==故选:A.9.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A. a2B. a2C. a2D. a2【解答】解:过E作EP⊥BC于点P,EQ⊥CD于点Q,∵四边形ABCD 是正方形,∴∠BCD=90°,又∵∠EPM=∠EQN=90°,∴∠PEQ=90°,∴∠PEM+∠MEQ=90°,∵三角形FEG 是直角三角形,∴∠NEF=∠NEQ+∠MEQ=90°,∴∠PEM=∠NEQ ,∵AC 是∠BCD 的角平分线,∠EPC=∠EQC=90°, ∴EP=EQ ,四边形PCQE 是正方形,在△EPM 和△EQN 中,,∴△EPM ≌△EQN (ASA )∴S △EQN =S △EPM ,∴四边形EMCN 的面积等于正方形PCQE 的面积, ∵正方形ABCD 的边长为a ,∴AC=a ,∵EC=2AE ,∴EC=a ,∴EP=PC=a ,∴正方形PCQE 的面积=a ×a=a 2, ∴四边形EMCN 的面积=a 2,故选:D.二、解答题(共21小题)10.如图,已知AB∥DE,AB=DE,AF=CD,∠CEF=90°.(1)若∠ECF=30°,CF=8,求CE的长;(2)求证:△ABF≌△DEC;(3)求证:四边形BCEF是矩形.【解答】(1)解:∵∠CEF=90°.∴cos∠ECF=.∵∠E CF=30°,CF=8.∴CF=CF•cos30°=8×=4;(2)证明:∵AB∥DE,∴∠A=∠D,∵在△ABF和△DEC中∴△ABF≌△DEC (SAS);(3)证明:由(2)可知:△ABF≌△DEC,∴BF=CE,∠AFB=∠DCE,∵∠AFB+∠BFC=180°,∠DCE+∠ECF=180°,∴∠BFC=∠ECF,∴BF∥EC,∴四边形BCEF是平行四边形,∵∠CEF=90°,∴四边形BCEF是矩形.11.已知△ABC为等边三角形,D为AB边所在的直线上的动点,连接DC,以DC为边在DC两侧作等边△DCE和等边△DCF(点E在DC的右侧或上侧,点F在DC左侧或下侧),连接AE、BF(1)如图1,若点D在AB边上,请你通过观察,测量,猜想线段AE、BF和AB有怎样的数量关系?并证明你的结论;(2)如图2,若点D在AB的延长线上,其他条件不变,线段AE、BF和AB有怎样的数量关系?请直接写出结论(不需要证明);(3)若点D在AB的反向延长线上,其他条件不变,请在图3中画出图形,探究线段AE、BF和AB 有怎样的数量关系,并直接写出结论(不需要证明)【解答】解:(1)AE+BF=AB,如图1,∵△ABC和△DCF是等边三角形,∴CA=CB,CD=CF,∠ACB=∠DCF=60°.∴∠ACD=∠BCF,在△ACD和△BCF中∴△ACD≌△BCF(SAS)∴AD=BF同理:△CBD≌△CAE(SAS)∴BD=AE∴AE+BF=BD+AD=AB;(2)BF﹣AE=AB,如图2,易证△CBF≌△CAD和△CBD≌△CAE,∴AD=BF,BD=AE,∴BF﹣AE=AD﹣BD=AB;(3)AE﹣BF=AB,如图3,易证△CBF≌△CAD和△CBD≌△CAE,∴AD=BF,BD=AE,∴BF﹣AE=AD﹣BD=AB.12.(2013•舟山)如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?【解答】(1)证明:∵在△ABE和△DCE中∴△ABE≌△DCE(AAS);(2)解:∵△ABE≌△DCE,∴BE=EC,∴∠EBC=∠ECB,∵∠EBC+∠ECB=∠AEB=50°,∴∠EBC=25°.13.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.【解答】(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=ED,∠DEA=∠C=90°,∵在Rt△ACD和Rt△AED中∴Rt△ACD≌Rt△AED(HL);(2)解:∵DC=DE=1,DE⊥AB,∴∠DEB=90°,∵∠B=30°,∴BD=2DE=2.14.如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.【解答】证明:∵AB=AC,∴∠B=∠C,在△ABD与△ACE中,∵,∴△ABD≌△ACE(SAS),∴AD=AE.15.已知:如图,AD,BC相交于点O,OA=OD,AB∥CD.求证:AB=CD.【解答】证明:∵AB∥CD,∴∠B=∠C,∠A=∠D,∵在△AOB和△DOC中,,∴△AOB≌△DOC(AAS),∴AB=CD.16.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.【解答】(1)证明:∵在△CBF和△DBG中,,∴△CBF≌△DBG(SAS),∴CF=DG;(2)解:∵△CBF≌△DBG,∴∠BCF=∠BDG,又∵∠CFB=∠DFH,又∵△BCF中,∠CBF=180°﹣∠BCF﹣∠CFB,△DHF中,∠DHF=180°﹣∠BDG﹣∠DFH,∴∠DHF=∠CBF=60°,∴∠FHG=180°﹣∠DHF=180°﹣60°=120°.17.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.【解答】证明:∵FB=CE,∴FB+FC=CE+FC,∴BC=EF,∵AB∥ED,AC∥FD,∴∠B=∠E,∠ACB=∠DFE,∵在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AC=DF.18.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.【解答】证明:∵△ABC和△ADE都是等腰直角三角形∴AD=AE,AB=AC,又∵∠EAC=90°+∠CAD,∠DAB=90°+∠CAD,∴∠DAB=∠EAC,∵在△ADB和△AEC中∴△ADB≌△AEC(SAS),∴BD=CE.19.如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.【解答】证明:∵BE=CF,∴BC=EF.∵AB∥DE,∴∠B=∠DEF.在△ABC与△DEF中,,∴△ABC≌△DEF(AAS),∴AB=DE.20.已知△ABC为等腰直角三角形,∠ACB=90°,点P在BC边上(P不与B、C重合)或点P在△ABC 内部,连接CP、BP,将CP绕点C逆时针旋转90°,得到线段CE;将BP绕点B顺时针旋转90°,得到线段BD,连接ED交AB于点O.(1)如图a,当点P在BC边上时,求证:OA=OB;(2)如图b,当点P在△ABC内部时,①OA=OB是否成立?请说明理由;②直接写出∠BPC为多少度时,AB=DE.【解答】(1)证明:∵△ABC为等腰直角三角形,∴CA=CB,∠A=∠ABC=45°,由旋转可知:CP=CE,BP=BD,∴CA﹣CE=CB﹣CP,即AE=BP,∴AE=BD.又∵∠CBD=90°,∴∠OBD=45°,在△AEO和△BDO中,,∴△AEO≌△BDO(AAS),∴OA=OB;(2)成立,理由如下:连接AE,则△AEC≌△BCP,∴AE=BP,∠CAE=∠BPC,∵BP=BD,∴BD=AE,∵∠OAE=45°+∠CAE,∠OBD=90°﹣∠OBP=90°﹣(45°﹣∠BPC)=45°+∠PBC,∴∠OAE=∠OBD,在△AEO和△BDO中,,∴△AEO≌△BDO(AAS),∴OA=OB,②当∠BPC=135°时,AB=DE.理由如下:解法一:当AB=DE时,由①知OA=OB,∴OA=OB=OE=OD.设∠PCB=α,由旋转可知,∠ACE=α.连接OC,则OC=OA=OB,∴OC=OE,∴∠DEC=∠OCE=45°+α.设∠PBC=β,则∠ABP=45°﹣β,∠OBD=90°﹣∠ABP=45°+β.∵OB=OD,∴∠D=∠OBD=45°+β.在四边形BCED中,∠DEC+∠D+∠DBC+∠BCE=360°,即:(45°+α)+(45°+β)+(90°+β)+(90°+α)=360°,解得:α+β=45°,∴∠BPC=180°﹣(α+β)=135°.解法二(本溪赵老师提供,更为简洁):当AB=DE时,四边形AEBD为矩形则∠DBE=90°=∠DBP,∴点P落在线段BE上.∵△ECP为等腰直角三角形,∴∠EPC=45°,∴∠BPC=180°﹣∠EPC=135°.21.(1)如图1,在△ABC和△DCE中,AB∥DC,AB=DC,BC=CE,且点B,C,E在一条直线上.求证:∠A=∠D.(2)如图2,在矩形ABCD中,对角线AC,BD相交于点O,AB=4,∠AOD=120°,求AC的长.【解答】(1)证明:∵AB∥DC,∴∠B=∠DCE,在△ABC和△DCE中,∴△ABC≌△DCE(SAS),∴∠A=∠D;(2)解:∵四边形ABCD是矩形,∴AO=BO=CO=DO,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴AO=AB=4,∴AC=2AO=8.22.(1)如图,AB平分∠CAD,AC=AD,求证:BC=BD;(2)列方程解应用题把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?【解答】(1)证明:∵AB平分∠CAD,∴∠CAB=∠DAB,在△ABC和△ABD中∴△ABC≌△ABD(SAS),∴BC=BD.(2)解:设这个班有x名学生,根据题意得:3x+20=4x﹣25,解得:x=45,答:这个班有45名学生.23.已知:如图,D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.【解答】证明:∵DE∥AB,∴∠CAB=∠ADE,∵在△ABC和△DAE中,,∴△ABC≌△DAE(ASA),∴BC=AE.24.【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B 进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据HL ,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若∠B≥∠A ,则△ABC≌△DEF.【解答】(1)解:HL;(2)证明:如图,过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H,∵∠ABC=∠DEF,且∠ABC、∠DEF都是钝角,∴180°﹣∠ABC=180°﹣∠DEF,即∠CBG=∠FEH,在△CBG和△FEH中,,∴△CBG≌△FEH(AAS),∴CG=FH,在Rt△ACG和Rt△DFH中,,∴Rt△ACG≌Rt△DFH(HL),∴∠A=∠D,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS);(3)解:如图,△DEF和△ABC不全等;(4)解:若∠B≥∠A,则△ABC≌△DEF.故答案为:(1)HL;(4)∠B≥∠A.25.(2014•德州)问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是EF=BE+DF ;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.【解答】解:问题背景:EF=BE+DF;探索延伸:EF=BE+DF仍然成立.证明如下:如图,延长FD到G,使DG=BE,连接AG,∵∠B+∠ADC=180°,∠ADC+∠ADG=180°,∴∠B=∠ADG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△GAF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;实际应用:如图,连接EF,延长AE、BF相交于点C,∵∠AOB=30°+90°+(90°﹣70°)=140°,∠EOF=70°,∴∠EOF=∠AOB,又∵OA=OB,∠OAC+∠OBC=(90°﹣30°)+(70°+50°)=180°,∴符合探索延伸中的条件,∴结论EF=AE+BF成立,即EF=1.5×(60+80)=210海里.答:此时两舰艇之间的距离是210海里.26.如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.【解答】(1)证明:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠BCA=∠DCA,在△CBF和△CDF中,,∴△CBF≌△CDF(SAS),(2)解:∵△ABC≌△ADC,∴△ABC和△ADC是轴对称图形,∴OB=OD,BD⊥AC,∵OA=OC,∴四边形ABCD是菱形,∴AB=BC=CD=DA,∵AC=2,BD=2,∴OA=,OB=1,∴AB===2,∴四边形ABCD的周长=4AB=4×2=8.(3)当EB⊥CD时,即E为过B且和CD垂直时垂线的垂足,∠EFD=∠BCD,理由:∵四边形ABCD为菱形,∴BC=CD,∠BCF=∠DCF,∠BCD=∠BAD,∵△BCF≌△DCF,∴∠CBF=∠CDF,∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠BCD+∠CBF=90°,∠EFD+∠CDF=90°,∴∠EFD=∠BAD.27.如图,已知四边形ABCD是平行四边形,点E、B、D、F在同一直线上,且BE=DF.求证:AE=CF.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABD=∠CDB,∴180°﹣∠ABD=180°﹣∠CDB,即∠ABE=∠CDF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS),∴AE=CF.28.(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.【解答】(1)证明:在正方形ABCD中,∠ABE=∠ADG,AD=AB,在△ABE和△ADG中,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∴∠EAG=90°,在△FAE和△GAF中,,∴△FAE≌△GAF(SAS),∴EF=FG;(2)解:如图,过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°.∵CE⊥BC,∴∠ACE=∠B=45°.在△ABM和△ACE中,∴△ABM≌△ACE(SAS).∴AM=AE,∠BAM=∠CAE.∵∠BAC=90°,∠MAN=45°,∴∠BAM+∠CAN=45°.于是,由∠BAM=∠CAE,得∠MAN=∠EAN=45°.在△MAN和△EAN中,∴△MAN≌△EAN(SAS).∴MN=EN.在Rt△ENC中,由勾股定理,得EN2=EC2+NC2.∴MN2=BM2+NC2.∵BM=1,CN=3,∴MN2=12+32,∴MN=29.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.【解答】证明:(1)∵∠ACB=90°,CG平分∠ACB,∴∠ACG=∠BCG=45°,又∵∠ACB=90°,AC=BC,∴∠CAF=∠CBF=45°,∴∠CAF=∠BCG,在△AFC与△CGB中,,∴△AFC≌△CBG(ASA),∴AF=CG;(2)延长CG交AB于H,∵CG平分∠ACB,AC=BC,∴CH⊥AB,CH平分AB,∵AD⊥AB,∴AD∥CG,∴∠D=∠EGC,在△ADE与△CGE中,,∴△ADE≌△CGE(AAS),∴DE=GE,即DG=2DE,∵AD∥CG,CH平分AB,∴DG=BG,∵△AFC≌△CBG,∴CF=BG,∴CF=2DE.30.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.(1)如图①,当∠BAE=90°时,求证:CD=2AF;(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.【解答】(1)证明:如图①,∵∠BAC+∠EAD=180°,∠BAE=90°,∴∠DAC=90°,在△ABE与△ACD中∴△ABE≌△ACD(SAS),∴CD=BE,∵在Rt△ABE中,F为BE的中点,∴BE=2AF,∴CD=2AF.(2)成立,证明:如图②,延长EA交BC于G,在AG上截取AH=AD,∵∠BAC+∠EAD=180°,∴∠EAB+∠DAC=180°,∵∠EAB+∠BAH=180°,∴∠DAC=∠BAH,在△ABH与△ACD中,∴△ABH≌△ACD(SAS)∴BH=DC,∵AD=AE,AH=AD,∴AE=AH,∵EF=FB,∴BH=2AF,∴CD=2AF.。
第12章《全等三角形》单元测试题卷(含答案)
第12章全等三角形单元测试题一、选择题(每小题3分,共30分)1.下列说法错误的是()A.全等三角形的对应边相等B.全等三角形的对应角相等C.全等三角形的周长相等D.全等三角形的高相等2.如图,△ABC≌△CDA,并且BC=DA,那么下列结论错误的是()A.∠1=∠2 B.AC=CA C.AB=AD D.∠B=∠D第2题第3题第5题第7题3.如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是()A.AB=DE B.∠B=∠E C.EF=BC D.EF∥BC4.长为3cm,4cm,6cm,8cm的木条各两根,小明与小刚分别取了3cm和4cm的两根,要使两人所拿的三根木条组成的两个三角形全等,则他俩取的第三根木条应为()A.一个人取6cm的木条,一个人取8cm的木条B.两人都取6cm的木条C.两人都取8cm的木条D.B、C两种取法都可以5.△ABC中,AB=AC,三条高AD,BE,CF相交于O,那么图中全等的三角形有()A.5对B. 6对C. 7对D. 8对6.下列说法中,正确的有()①三角对应相等的两个三角形全等;②三边对应相等的两个三角形全等;③两角、一边相等的两个三角形全等;④两边、一角对应相等的两个三角形全等.A.1个B. 2个C. 3个D. 4个7.如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为()A.B. 4 C.D. 58.如图,ABC中,AD是它的角平分线,AB=4,AC=3,那么△ABD与△ADC的面积比是()A.1:1 B. 3:4 C. 4:3 D.不能确定第8题第9题第12题9.如图,△ABC中,∠C=90°,AC=BC,AD是∠CAB的平分线,DE⊥AB于E.已知AC=6cm,则BD+DE的和为()A.5cm B. 6cm C. 7cm D. 8cm10.已知P是∠AOB平分线上一点,CD⊥OP于F,并分别交OA、OB于CD,则CD_____P 点到∠AOB两边距离之和.( )A.小于B.大于C.等于D.不能确定二、填空题(每小题3分,共24分)11.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=.12.如图,∠1=∠2,CD=BD,可证△ABD≌△ACD,则依据是_________。
八年级数学上册《第十二章 全等三角形》单元检测卷及答案(人教版)
八年级数学上册《第十二章全等三角形》单元检测卷及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列说法正确的是( )A.全等三角形是指形状相同的两个三角形B.全等三角形的周长和面积分别相等C.全等三角形是指面积相等的两个三角形D.所有的等边三角形都是全等三角形2.到△ABC的三条边距离相等的点是△ABC的( )A.三条中线的交点B.三条边的垂直平分线的交点C.三条高的交点D.三条角平分线的交点3.如图,在△ABC中∠A=30∘,∠ABC=50∘若△EDC≌△ABC,且A,C,D在同一条直线上,则∠BCE=( )A.20∘B.30∘C.40∘D.50∘4.如图,在△ABC中∠ACB=45∘,AD⊥BC于点D,点E为AD上一点,连接CE,CE=AB,若∠ACE=20∘则∠B的度数为( )A.60∘B.65∘C.70∘D.75∘5.如图,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于点D,且AD=3,则点D到BC的距离是()A.3 B.4 C.5 D.66.如图,直线AB,CD交于点O,射线OM平分∠AOC,若∠BOD=80°,则∠BOM等于()A.40°B.100°C.140°D.144°7.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D.DE=5,AD=9,则BE的长是()A.6 B.5 C.4.5 D.48.如图,在△ABC中AB=AC,D、E分别为边AB、AC上的点,BE与CD相交于点F ∠ADC=∠AEB则下列结论:①△ABE≌△ACD;②BF=CF;③连接AF,则AF所在的直线为△ABC的对称轴:④若AD=BD,则四边形ADFE的面积与△BCF的面积相等.其中正确的是()A.①②③B.①②④C.②③④D.①②③④二、填空题9.用尺规作图作已知角∠AOB的平分线OC,其根据是构造两个三角形全等,用到的三角形全等的判定方法是.10.如图,在△ABC中,∠C=90°,AD平分∠CAB,交BC于点D,CD=5cm,AB=12cm,则△ABD的面积是cm2.11.如图,△ABC中,AD⊥BC于D,要使△ABD≌△ACD,若根据“HL”判定,还需加条件12.如图,△ABC≌△ADE,BC的延长线交DA于F,交DE于G,∠D=25°,∠E=105°∠DAC=16°,则∠DGB= .13.如图,∠1=∠2.(1)当BC=BD时,△ABC≌△ABD的依据是;(2)当∠3=∠4时,△ABC≌△ABD的依据是.三、解答题14.如图所示,要测量河两岸相对的两点A、B的距离,因无法直接量出A、B两点的距离,请你设计一种方案,求出A、B的距离,并说明理由.15.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.16.如图,已知,△ABC中,∠A=60º,BD,CE是△ABC的两条角平分线,BD,CE相交于点O,求证:BC=CD+BE.17.如图,已知AB=AD,AC=AE,∠1=∠2,求证:BC=DE.18.如图,AD=CB,AE⊥BD,CF⊥BD,E、F是垂足,AE=CF.求证:(1)AB=CD(2)AB//CD.19.已知:在△AOB和△COD中,OA=OB,OC=OD.(1)如图①,若∠AOB=∠COD=60°,求证:AC=BD.(2)如图②,若∠AOB=∠COD=α,则AC与BD间的等量关系式为,∠APB的大小为(直接写出结果,不证明)参考答案1. B2. D3. A4. B5.A6.C7.D8.B9.SSS10.3011.AB=AC12.66°13.(1)SAS(2)ASA14.解:在AB的垂线BF上取两点C,D,使CD=BC,再作出BF的垂线DE,使A,C,E在一条直线上,这时测得的DE的长就是AB的长.作出的图形如图所示:∵AB⊥BF ED⊥BF∴∠ABC=∠EDC=90°又∵CD=BC ∠ACB=∠ECD∴△ACB≌△ECD,∴AB=DE.15.证明:∵点C是AE的中点∴AC=CE在△ABC和△CDE中{AC=CE∠A=∠ECDAB=CD∴△ABC≌△CDE∴∠B=∠D.16.解:在BC上找到F使得BF=BE∵∠A=60°,BD、CE是△ABC的角平分线∴∠BOC=180°- 12(∠ABC+∠ACB)=180°- 12(180°-∠A)=120°∴∠BOE=∠COD=60°在△BOE和△BOF中∴△BOE≌△BOF,(SAS)∴∠BOF=∠BOE=60°∴∠COF=∠BOC-∠BOF=60°在△OCF和△OCD中∴△OCF≌△OCD(ASA)∴CF=CD∵BC=BF+CF∴BC=BE+CD.17.证明:∵∠1=∠2∴∠1+∠EAC=∠2+∠EAC,即∠BAC=∠DAE 在△ABC和△ADE中{AB=AD∠BAC=∠DAEAC=AE∴△ABC≌△ADE∴BC=DE.18.(1)∵AE⊥BD∴∠AEB=∠CFD=∠AED=∠CFB=90°∵AE=CF∴RtΔADE≅ΔCBF(HL)∴DE=BF∴BD−DE=BD−BF∴BE=DF∵∠AEB=∠CFD∴ΔABE≅ΔCDF(SAS)∴AB=CD(2)∵ΔABE≅ΔCDF∴∠ABE=∠CDF∴AB//CD19.(1)证明:∵∠AOB=∠COD=60°∴∠AOB+∠BOC=∠COD+∠BOC∴∠AOC=∠BOD.在△AOC和△BOD中∴△AOC≌△BOD(SAS)∴AC=BD;(2)AC=BD;α。
人教版八年级数学上册《第十二章全等三角形》单元测试卷及答案
人教版八年级数学上册《第十二章全等三角形》单元测试卷及答案学校:___________姓名:___________班级:___________题 号 一 二 三 总分 得 分评卷人 得分一 单选题(共36分) 1.(本题3分)如图,在Rt ABC 中90C ∠=︒.按以下步骤作图:①以点A 为圆心 适当长为半径画弧 分别交边,AB AC 于点,M N ①分别以点M 和点N 为圆心 以大于12MN 的长为半径画弧,两弧在ABC 内交于点P ①作射线AP 交边BC 于点Q .若5,20CQ AB ==,则ABQ 的面积是( )A .100B .50C .25D .202.(本题3分)如图,ABC DEF ≌△△ 2BE = 3CE = 则EF 的长是( )A .5B .4C .3D .23.(本题3分)如图,用尺规按如下步骤作图:①以点O 为圆心 线段m 的长为半径画弧 交OA 于点M 交OB 于点N①分别以点M N 为圆心 线段n 的长为半径画弧 两弧在AOB ∠的内部相交于点C ①画射线OC 连接MC NC 。
下列结论不一定成立的是( )A .OM ON =B .CM CN =C .OM CN =D .MCO NCO ∠=∠4.(本题3分)如图,AB AC = AD AE = BAC DAE ∠=∠ 30BAD ∠=︒ 25ACE ∠=︒ 则ADE ∠的度数为( )A .50︒B .55︒C .60︒D .65︒5.(本题3分)小华在复习用尺规作一个角等于已知角的过程中,回顾了作图的过程 并作了如下的思考:请你说明小华得到两个三角形全等的根据是( ) A .SSSB .SASC .ASAD .AAS6.(本题3分)如图,在ABC 中,AD 为角平分线 12AB = 8AC = DE AC ⊥于E 4CD = 则BD 等于( )A .5B .6C .7D .87.(本题3分)如图,90A D ∠=∠=︒ 添加下列条件中的一个后 能判定ABC 与DCB △全等的有( ) ①ABC DCB ∠=∠ ①ACB DBC ∠=∠ ①AB DC = ①AC DB =。
八年级数学上册《第十二章 全等三角形》单元测试卷及答案(人教版)
八年级数学上册《第十二章全等三角形》单元测试卷及答案(人教版)班级姓名学号一、单选题1.全等图形是指两个图形()A.大小相同B.形状相同C.能够完全重合D.相等2.如图,△ABC≌△ADE,若∠B=80°,∠C=30°,则∠EAD的度数为()A.70°B.75°C.60°D.80°3.如图,三条直线表示相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( ) .A.一处B.两处C.三处D.四处4.长为l的一根绳,恰好可围成两个全等三角形,则其中一个三角形的最长边x的取值范围为()A.16≤x<14B.18≤x<14C.16<x<14D.18<x<145.如图,在△ABC中,点D在边BC上,点E在线段AD上,AB=AC,EB=EC.则依据SSS可以判定()A.△ABD≌△ACD B.△ABE≌△ACEC.△BED≌△CED D.以上都对6.如图,在△ABC中,∠B=∠C,BF=CD,BD=CE,∠FDE=α,则下列结论正确的是()A.2α+∠A=180°B.α+∠A=90°C.2α+∠A=90°D.α+∠A=180°7.如图,点O在△ABC内,且到三边的距离相等,∠A=64°,则∠BOC的度数为()A.58°B.64°C.122°D.124°8.如图,在△ABC中,P是BC上的点,作PQ∥AC交AB于点Q,分别作PR⊥AB,PS⊥AC,垂足分别是R,S,若PR=PS,则下面三个结论:①AS=AR;②AQ=PQ;③△PQR≌△CPS;④AC﹣AQ=2SC,其中正确的是()A.②③④B.①②C.①④D.①②③④二、填空题9.已知△ABC≌△DEF,若∠B=40°,∠D=30°,则∠F=10.如图,已知B、E、F、C在同一直线上,BE=CF,AF=DE,则添加条件,可以判断△ABF≌△DCE.11.如图,△ABD≌△ACE,点B和点C是对应顶点,AB=9cm,BD=7cm,AD=4cm,则DC= cm.12.如图,在四边形ABCD中,AB=AD,CB=CD,对角线AC,BD相交于点O,下列结论中:①∠ABC=∠ADC;②AC与BD相互平分;③AC,BD分别平分四边形ABCD的两组对角;④四边形ABCD的面AC•BD.正确的是(填写所有正确结论的序号)积S= 1213.如图,在△ABC中AC=BC,∠ACB=50°,AD⊥BC于点D,MC⊥BC于点C,MC=BC点E,点F分别在线段AD,AC上CF=AE,连接MF,BF,CE.(1)图中与MF相等的线段是;(2)当BF+CE取最小值时∠AFB=°三、解答题14.将Rt△ABC的直角顶点C置于直线l上AC=BC,分别过点A、B作直线l的垂线,垂足分别为点D、E连接AE若BE=3,DE=5求△ACE的面积.15.如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.16.如图,已知AC∥BD、EA、EB分别平分∠CAB和△DBA,CD过点E,则线段AB与AC、BD有什么数量关系?请说明理由.17.如图,已知B,C,E三点在同一条直线上AC//DE,AC=CE,∠ACD=∠B .求证:△ABC≌△EDC .18.如图,点D为锐角∠ABC的平分线上一点,点M在边BA上,点N在边BC上,∠BMD+∠BND=180°.试说明:DM=DN.19.已知:AD=BC,AC=BD.(1)如图1,求证:AE=BE;(2)如图2,若AB=AC,∠D=2∠BAC,在不添加任何辅助线的情况下,请直接写出图2中四个度数为36°的角.参考答案 1.C 2.A 3.D 4.A 5.D 6.A 7.C 8.B 9.110° 10.AB=DC 11.5 12.①④ 13.(1)EC (2)9514.解:∵AD ⊥CE ,BE ⊥CE ∴∠ADC =∠CEB =90° ∵∠ACB =90°∴∠ACD =∠CBE =90°−∠ECB 在 △ACD 与 △CBE 中{∠ADC =∠CEB∠ACD =∠CBE AC =BC∴△ACD ≌△CBE (AAS) ∴CD =BE =3 AD =CE ∵CE =CD +DE =3+5=8 ∴AD =8 .S △ACE =12CE ·AD =12×8×8=32 . 15.证明:∵CE ∥DF ∴∠ACE=∠D 在△ACE 和△FDB 中{AC=FD ∠ACE=∠D EC=BD∴△ACE≌△FDB(SAS)∴AE=FB.16.解:AB=AC+BD理由是:在AB上截取AC=AF,连接EF∵AE平分∠CAB∴∠CAE=∠BAE在△CAE和△FAE中{AC=AF∠CAE=∠BAE AE=AE∴△CAE≌△FAE(SAS)∴∠C=∠AFE∵AC∥BD∴∠C+∠D=180°∴∠AFE+∠D=180°∵∠EFB+∠AFE=180°∴∠D=∠EFB∵BE平分∠ABD∴∠DBE=∠FBE在△BEF和△BED中{∠D=∠EFB∠FBE=∠DBEBE=BE∴△BEF≌△BED(AAS)∴BF=BD∵AB=AF+BF,AC=AF,BF=BD ∴AB=AC+BD.17.证明:∵AC//DE∴∠BCA =∠E ∠ACD =∠D . 又∵∠ACD =∠B ∴∠B =∠D .在 △ABC 和 △EDC 中{∠B =∠D∠BCA =∠E AC =EC∴△ABC ≌△EDC .18.解:过点D 作DE ⊥AB 于点E ,DF ⊥BC 于点F . ∴∠DEB =∠DFB =90°. 又∵BD 平分∠ABC ∴DE =DF .∵∠BMD+∠DME =180°,∠BMD+∠BND =180° ∴∠DME =∠BND . 在△EMD 和△FND 中{∠DEM =∠DFN∠EMD =∠FND DE =DF∴△EMD ≌△FND (AAS ). ∴DM =DN .19.(1)证明:在△ABD 和△BAC 中:{AB =BAAD =BC BD =AC∴△ABD ≌△BAC (SSS ) ∴∠ABD=∠BAC ∴AE=BE ;(2)∠BAC ,∠ABD ,∠DAC ,∠DBC。
新人教版八年级数学上册第12章《全等三角形》单元综合测试卷含答案
第12《全等三角形》单元综合测试卷满分100分姓名:___________班级:___________考号:___________一.选择题(共10小题,满分30分,每小题3分)1.下列各组的两个图形属于全等图形的是()A.B.C.D.2.下列说法正确的是()A.两个等边三角形一定全等B.形状相同的两个三角形全等C.面积相等的两个三角形全等D.全等三角形的面积一定相等3.如图,△ABC≌△DCB,若AC=7,BE=5,则DE的长为()A.2B.3C.4D.54.如图,AE∥FD,AE=FD,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=BC B.EC=BF C.∠A=∠D D.AB=CD5.如图,点O在△ABC内,且到三边的距离相等.若∠A=40°,则∠BOC等于()A.110°B.115°C.125°D.130°6.已知如图,OP平分∠MON,P A⊥ON于点A,点Q是射线OM上的一个动点,若∠MON =60°,OP=4,则PQ的最小值是()A.2B.3C.4D.不能确定7.如图,在Rt△ABC中,∠C=90°,AD是角平分线,若BC=10cm,BD:CD=3:2,则点D到AB的距离是()A.6cm B.5cm C.4cm D.3cm8.在平面直角坐标系xOy中,点A(﹣3,0),B(2,0),C(﹣1,2),E(4,2),如果△ABC与△EFB全等,那么点F的坐标可以是()A.(6,0)B.(4,0)C.(4,﹣2)D.(4,﹣3)9.如图,AB∥CD,AD∥BC,AC与BD相交于点O,AE⊥BD,CF⊥AC,垂足分别是E,F.则图中共有()对全等三角形.A.5B.6C.7D.810.已知:如图,在△ABC与△AEF中,点F在BC上,AB=AE,BC=EF,∠B=∠E,AB交EF于点D.下列结论:①∠EAB=∠F AC;②AF=AC;③F A平分∠EFC;④∠BFE=∠F AC中,正确的有()个.A.1B.2C.3D.4二.填空题(共6小题,满分24分,每小题4分)11.能够的两个图形叫做全等图形.12.如图,黄芳不小心把一块三角形的玻璃打成三块碎片,现要带其中一块去配出与原来完全一样的玻璃,正确的办法是带来第块去配,其依据是根据定理(可以用字母简写)13.已知:△ABC≌△DEF,若∠ABC=75°,则∠DEF=.14.如图所示,已知在△ABC中,∠C=90°,AD=AC,DE⊥AB交BC于点E,若∠B=28°,则∠AEC=°.15.如图,D在BC边上,△ABC≌△ADE,∠EAC=40°,则∠B的度数为.16.如图,点I为△ABC角平分线交点,AB=8,AC=6,BC=5,将∠ACB平移使其顶点C与点I重合,则图中阴影部分的周长为.三.解答题(共7小题,满分46分)17.(5分)如图,点E,F在AB上,AD=BC,∠A=∠B,AE=BF.求证:∠C=∠D.18.(5分)如图,有一池塘,要测池塘两端A,B的距离,可先在平地上取一个点C,从点C不经过池塘可以直接到达点A和B.连接AC并延长到点D,使CD=CA.连接BC并延长到点E,使CE=CB.连接DE,那么量出DE的长就是A,B的距离.为什么?19.(6分)已知:如图,点A、D、C、B在同一条直线上,AD=BC,AE=BF,CE=DF,试说明:(1)△ACE≌△BDF.(2)AE∥BF.20.(7分)如图,三条公路OA,OB,AB两两相交于点O,点A和点B,现在建一个工厂P,使得工厂P到三条公路的距离相等(1)若P在△AOB的内部,你能确定工厂P的位置吗?说说你的想法;(2)若P为△AOB所在平面内一点,工厂P的位置又是怎样的?21.(7分)王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE 上,点A和B分别与木墙的顶端重合.(1)求证:△ADC≌△CEB;(2)求两堵木墙之间的距离.22.(7分)如图,在△ABC中,∠BAC=90°,E为边BC上的点,且AB=AE,D为线段BE的中点,过点E作EF⊥AE,过点A作AF∥BC,且AF、EF相交于点F.(1)求证:∠C=∠BAD;(2)求证:AC=EF.23.(9分)已知:点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.(1)如图1,若点O在边BC上,求证:AB=AC;(2)如图2,若点O在△ABC的内部,求证:AB=AC;(3)若点O在△ABC的外部,AB=AC成立吗?请画出图表示.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:A、两只眼睛下面的嘴巴不能完全重合,故本选项错误;B、两个正方形的边长不相等,不能完全重合,故本选项错误;C、圆内两条相交的线段不能完全重合,故本选项错误;D、两个图形能够完全重合,故本选项正确.故选:D.2.解:A、两个边长不相等的等边三角形不全等,故本选项错误;B、形状相同,边长不对应相等的两个三角形不全等,故本选项错误;C、面积相等的两个三角形不一定全等,故本选项错误;D、全等三角形的面积一定相等,故本选项正确.故选:D.3.解:∵△ABC≌△DCB,∴BD=AC=7,∵BE=5,∴DE=BD﹣BE=2,故选:A.4.解:∵AE∥FD,∴∠A=∠D,∵AB=CD,∴AC=BD,在△AEC和△DFB中,∴△EAC≌△FDB(SAS),故选:D.5.解:∵O到三角形三边距离相等,∴O是△ABC的内心,即三条角平分线交点,∴AO,BO,CO都是角平分线,∴∠CBO=∠ABO=∠ABC,∠BCO=∠ACO=∠ACB,∵∠ABC+∠ACB=180°﹣40°=140°,∴∠OBC+∠OCB=70°,∴∠BOC=180°﹣70°=110°,故选:A.6.解:作PQ′⊥OM于Q′,∵∠MON=60°,OP平分∠MON,∴∠POQ′=30°,∴PQ′=OP=2,由垂线段最短可知,PQ的最小值是2,故选:A.7.解:∵BC=10cm,BD:CD=3:2,∴CD=×10=4,∵AD是角平分线,∴点D到AB的距离等于CD,即点D到AB的距离为4cm.故选:C.8.解:如图所示:△ABC与△EFB全等,点F的坐标可以是:(4,﹣3).故选:D.9.解:∵AB∥CD,AD∥BC,∴∠ABD=∠CDB,∠ADB=∠CBD,∠BAC=∠DCA,在△ABD和△CDB中,,∴△ABD≌△CDB(ASA),同理:△ABC≌△CDA(ASA);∴AB=CD,BC=DA,在△AOB和△COD中,,∴△AOB≌△COD(AAS),同理:△AOD≌△COB(AAS);∵AE⊥BD,CF⊥BD,∴∠AEB=∠AEO=∠CFD=∠CFO=90°,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),同理:△AOE≌△COF(AAS),△ADE≌△CBF(AAS);图中共有7对全等三角形;故选:C.10.解:在△AEF和△ABC中,,∴△AEF≌△ABC(SAS),∴∠EAF=∠BAC,AF=AC,∠C=∠EF A,∴∠EAB=∠F AC,∠AFC=∠C,∴∠EF A=∠AFC,即F A平分∠EFC.又∵∠AFB=∠C+∠F AC=∠AFE+∠BFE,∴∠BFE=∠F AC.故①②③④正确.故选:D.二.填空题(共6小题,满分24分,每小题4分)11.解:能够完全重合的两个图形叫做全等图形.故答案为完全重合.12.解:因为第③块中有完整的两个角以及他们的夹边,利用ASA易证三角形全等,故应带第③块.故答案为:③;ASA.13.解:∵△ABC≌△DEF,∴∠DEF=∠ABC=75°.故答案为75°.14.解:∵DE⊥AB,∴∠ADE=90°.∵∠C=90°,∴∠C=∠ADE.在Rt△ACE和Rt△ADE中,,∴Rt△ACE≌Rt△ADE(HL).∴∠CAE=∠DAE.∵∠B=28°,∴∠BAC=62°,∴∠CAE=31°,∴∠AEC=59°故答案为:59°.15.解:∵△ABC≌△ADE,∴AB=AD,∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠EAC,∵∠EAC=40°,∴∠BAD=40°,∵AB=AD,∴∠B=∠ADB=(180°﹣∠BAD)=70°,故答案为:70°.16.解:如图,连接AI,BI,∵点I为△ABC角平分线交点,∴IA和IB分别平分∠CAB和∠CBA,∴∠CAI=∠DAI,∠CBI=∠EBI,∵将∠ACB平移,使其顶点与点I重合,∴DI∥AC,EI∥BC,∴∠CAI=∠DIA,∠CBI=∠EIB,∴∠DAI=∠DIA,∠EBI=∠EIB,∴DA=DI,EB=EI,∴DE+DI+EI=DE+DA+EB=AB=8.即图中阴影部分的周长为8.故答案为:8.三.解答题(共7小题,满分46分)17.证明:∵AE=BF,∴AE+EF=BF+EF,∴AF=BE,在△ADF与△BCE中,∴△ADF≌△BCE(SAS),∴∠C=∠D.18.解:量出DE的长就等于AB的长,理由如下:在△ABC和△DEC中,,∴△ABC≌△DEC(SAS),∴AB=DE.19.证明:(1)∵AD=BC,∴AC=BD,在△ACE与△BDF中,∴△ACE≌△BDF(SSS);(2)∵△ACE≌△BDF,∴∠A=∠B,∴AE∥BF.20.解:(1)∵到三角形三条边距离相等的点,是三角形内角平分线的交点,∴P应该在三角形内角平分线的交点上;(2)∵到三角形三条边距离相等的点,是三角形角平分线的交点,∴P应该在三角形外角平分线的交点上.21.(1)证明:由题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC在△ADC和△CEB中,∴△ADC≌△CEB(AAS);(2)解:由题意得:AD=2×3=6cm,BE=7×2=14cm,∵△ADC≌△CEB,∴EC=AD=6cm,DC=BE=14cm,∴DE=DC+CE=20(cm),答:两堵木墙之间的距离为20cm.22.证明:(1)∵AB=AE,D为线段BE的中点,∴AD⊥BC∴∠C+∠DAC=90°,∵∠BAC=90°∴∠BAD+∠DAC=90°∴∠C=∠BAD(2)∵AF∥BC∴∠F AE=∠AEB∵AB=AE∴∠B=∠AEB∴∠B=∠F AE,且∠AEF=∠BAC=90°,AB=AE∴△ABC≌△EAF(ASA)∴AC=EF23.(1)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,由题意知,在Rt△OEB和Rt△OFC中,∴Rt△OEB≌Rt△OFC(HL),∴∠ABC=∠ACB,∴AB=AC;(2)过点O分别作OE⊥AB于E,OF⊥AC于F,由题意知,OE=OF.∠BEO=∠CFO=90°,∵在Rt△OEB和Rt△OFC中,∴Rt△OEB≌Rt△OFC(HL),∴∠OBE=∠OCF,又∵OB=OC,∴∠OBC=∠OCB,∴∠ABC=∠ACB,∴AB=AC;(3)不一定成立,当∠A的平分线所在直线与边BC的垂直平分线重合时AB =AC,否则AB≠AC.(如示例图)。
人教版八年级数学上册《第十二章 全等三角形》单元测试卷-附含答案
人教版八年级数学上册《第十二章 全等三角形》单元测试卷-附含答案时间:100分钟 总分:120分一、选择题(每题3分 共24分)1.图中是全等的三角形是 ( )A .甲和乙B .乙和丁C .甲和丙D .甲和丁【解析】解:比较三角形的三边长度 发现乙和丁的长度完全一样 即为全等三角形故选:B .【点睛】本题考查全等三角形的判定SSS 三边对应相等 两三角形全等.2.如图 在△ABC 和△DEF 中 AB =DE ∠A =∠D 添加一个条件不能判定这两个三角形全等的是 ( )A .AC =DFB .∠B =∠EC .BC =EFD .∠C =∠F【解析】根据全等三角形的判定定理 结合各选项的条件进行判断即可.解:A 、添加AC =DF 满足SAS 可以判定两三角形全等;B 、添加∠B =∠E 满足ASA 可以判定两三角形全等;C 、添加BC =EF 不能判定这两个三角形全等;D 、添加∠C =∠F 满足AAS 可以判定两三角形全等;故选:C .【点睛】本题考查三角形全等的判定方法 判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等 判定两个三角形全等时 必须有边的参与 若有两边一角对应相等时 角必须是两边的夹角.3.BD 、CE 分别是△ABC 中∠ABC 、∠ACB 的平分线 且交于点O 若O 到AB 的距离为1 BC =3 则OCB S △= ( )A .12B .1C .32 D .3【解析】解:∵点O 是△ABC 中∠ABC 、∠ACB 的平分线的交点∴O 到AB 的距离与O 到BC 的距离相等∴O 到BC 的距离为1∴OCB S △ =12×3×1= 32.故选:C .【点睛】本题考查了角平分线的性质 角平分线上的点到角的两边的距离相等 熟练掌握角平分线的性质是解题的关键.4.如图 已知ABN ACM △≌△ 则下列结论不正确...的是 ( )A .BC ∠=∠ B .BAM CAN =∠∠ C .AMN ANM ∠=∠D .AMC BAN ∠=∠【解析】解:∵ABN ACM △≌△∴B C ∠=∠ A 选项正确;BAN CAM ∠=∠ AN AM = AMC ANB ∠=∠∵BAM MAN CAN MAN ∠+∠=∠+∠∴BAM CAN =∠∠ B 选项正确;∵AN AM =∴AMN ANM ∠=∠ C 选项正确;∵AMC ANB ∠=∠∴AMC BAN ∠=∠ 不一定成立 D 选项不正确.故选:D.【点睛】本题考查全等三角形的性质 解答本题的关键是找准对应边和对应角以及熟悉等腰三角形的性质.5.如图 △ABC ≌△A ′B ′C ′ 边 B ′C ′过点 A 且平分∠BAC 交 BC 于点 D ∠B =27° ∠CDB ′=98° 则∠C ′的度数为 ( )A.60°B.45°C.43°D.34°【解析】解∶∵△ABC≌△A′B′C′∴∠C′=∠C∵∠CDB′=98°∴∠ADB=98°∵∠B=27°∴∠BAD=55°∵B′C′过点A 且平分∠BAC 交BC 于点D∴∠BAC=2∠BAD=110°∴∠C=180°-∠BAD-∠B=43°即∠C′=43°.故选:C【点睛】本题主要考查了全等三角形的性质三角形的内角和定理熟练掌握全等三角形的性质三角形的内角和定理是解题的关键.6.如图为了估算河的宽度我们可以在河的对岸选定一个目标点A再在河的这一边选定点B和F使AB⊥BF并在垂线BF上取两点C、D使BC=CD再作出BF的垂线DE使点A、C、E在同一条直线上因此证得△ABC≌△EDC进而可得AB=DE即测得DE的长就是AB的长则△ABC≌△EDC的理论依据是()A.SAS B.HL C.ASA D.AAA【解析】解:∵证明在△ABC≌△EDC用到的条件是:CD=BC∠ABC=∠EDC=90°∠ACB=∠ECD∴用到的是两角及这两角的夹边对应相等即ASA这一方法故C正确.故选:C.【点睛】本题考查了全等三角形的应用判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL 做题时注意选择.注意:AAA、SSA不能判定两个三角形全等判定两个三角形全等时必须有边的参与 若有两边一角对应相等时 角必须是两边的夹角.7.如图33 的正方形网格中 ABC 的顶点都在小正方形的格点上 这样的三角形称为格点三角形 则在此网格中与ABC 全等的格点三角形(不含ABC )共有 ( )A .5个B .6个C .7个D .8个【解析】解:如图所示:与ABC 全等的三角形有DEF 、HIJ 、GMN 、IEM △、HAF △、BDG 、CJN △ 共7个故选:C .【点睛】本题考查了全等三角形的判定定理 能熟记全等三角形的判定定理是解此题的关键 注意:全等三角形的判定定理有SAS ASA AAS SSS 两直角三角形全等还有HL 等.8.如图 BC ⊥CE BC =CE AC ⊥CD AC =CD DE 交AC 的延长线于点M M 是DE 的中点 若AB =8 则CM 的长为 ( )A .3.2B .3.6C .4D .4.8【解析】解:如图 过点E 作EF ⊥AC 交AC 的延长线于点F∵ CD ⊥AC EF ⊥AC∴∠DCM =∠EFM =90°∵M 是DE 的中点∴DM =EM∵∠DMC =∠EMF∴△DCM ≌△EFM (AAS )∴CM =FM CD =FE∵BC ⊥CE EF ⊥AC∴∠BCE =90° ∠CFE =90°∴∠ACB +∠ECF =90° ∠ECF +∠FEC =90°∴∠ACB =∠FEC∵AC =CD∴AC =FE∵BC =CE∴△ABC ≌△FCE (SAS )∴FC =AB =8∵CM =FM∴M 是FC 的中点∴CM =12FC =4故选:C【点睛】本题考查了全等三角形的判定与性质 熟练掌握三角形的判定方法是基础添加辅助线构造全等三角形是关键.二、填空题(每题3分 共24分)9.如图 90B D ∠=∠=︒ AB AD = 130BAD ∠=︒ 则DCA ∠=______°.【解析】解:∵90B D ∠=∠=︒∴△ABC 和△ADC 是直角三角形∵AC =AC AB AD =∴Rt △ABC ≌Rt △ADC (HL )∴∠DAC =∠BAC∵130BAD ∠=︒∴∠DAC =12∠BAD =65°∴DCA ∠=90°-∠DAC =25°.故答案为:25.【点睛】此题考查了全等三角形的判定和性质 熟练掌握直角三角形的判定定理是解题的关键.10.如图 ,AC AD BC BD == 连结CD 交AB 于点E F 是AB 上一点 连结FC FD 则图中的全等三角形共有_________对.【解析】解:解:在△ACB 和ADB 中AC AD AB AB BC BD =⎧⎪=⎨⎪=⎩∴△ACB ≌ADB∴∠CAB =∠DAB ∠CBA =∠DBA∵AC =AD ∠CAB =∠DAB AF =AF∴△CAF ≌△DAF CF =DF∵AC =AD ∠CAB =∠DAB AE =AE∴△ACE ≌△ADE CE =DE∵BC =BD ∠CBA =∠DBA BE =BE∴△CBE ≌△DBE∵BC =BD ∠CBA =∠DBA BF =BF∴△FCB ≌△FDB∵CF =DF CE =DE EF =EF∴△CEF ≌△DEF∴图中全等的三角形有6对图中全等三角形有△ACB ≌△ADB △ACF ≌△ADF △ACE ≌△ADE △BCE ≌△BDE△BCF ≌△BDF △FCE ≌△FDE 共6对故答案为:6 .【点睛】本题考查了对全等三角形的判定定理的应用 注意:全等三角形的判定定理有SAS ASA AAS SSS .11.如图 在△ABC 中 ∠B =∠C =65° BD =CE BE =CF 则∠DEF 的度数是_____.【解析】解:在△DBE 和△ECF 中=C BD CE B BE CF =⎧⎪∠∠⎨⎪=⎩∴△DBE ≌△ECF (SAS )∴∠BDE =∠FEC∵∠DEF +∠FEC =∠B +∠BDE∴∠DEF =∠B =65°故答案为:65°.【点睛】本题考查全等三角形的判定与性质、三角形的外角性质等知识 证明△DBE ≌△ECF 是解题的关键 属于中考常考题型.12.如图 E ABC AD ≅∆∆ BC 的延长线经过点E 交AD 于F 105AED ∠=︒ 10CAD ∠=︒ 50B ∠=︒ 则EAB ∠=__︒.【解析】解:ABC ADE ∆≅∆ 50B ∠=︒ 50D B EAD CAB ∠=∠105AED ∠=︒18025EAD D AED ∴∠=︒-∠-∠=︒25CAB ∴∠=︒10CAD25102560EAB EAD DAC CAB ∴∠=∠+∠+∠=︒+︒+︒=︒.故答案为:60.【点睛】本题考查了全等三角形的性质和三角形内角和定理 能熟记全等三角形的性质的内容是解此题的关键 注意:全等三角形的对应边相等 对角角相等.13.如图 在ABC 中 AD 是它的角平分线 8cm AB = 6cm AC = 则:ABD ACD S S =△△______.【解析】解:如图 过D 作DH AB ⊥于,H 作DG AC ⊥于,G∵AD 是它的角平分线,DH DG 而8cm AB = 6cm AC =1842.1632ABDACD AB DH SAB S AC AC DG 故答案为:4∶3【点睛】本题考查的是角平分线的性质 三角形的面积的计算 证明DH DG =是解本题的关键.14.如图 ∠ACB =90° AC =BC BE ⊥CE AD ⊥CE垂足分别为E D AD =25 DE =17 则BE =_____.【解析】解:∵∠ACB =90°∴∠BCE +∠ACD =90°又∵BE ⊥CE AD ⊥CE∴∠E =∠ADC =90°∴∠BCE +∠CBE =90°∴∠CBE =∠ACD在△CBE 和△ACD 中E ADC CBE ACD BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△CBE ≌△ACD (AAS )∴BE =CD CE =AD =25∵DE =17∴CD =CE ﹣DE =AD ﹣DE =25﹣17=8∴BE =CD =8;故答案为:8.【点睛】本题主要考查全等三角形的判定和性质;证明三角形全等得出对应边相等是解决问题的关键.15.如图 在平面直角坐标系中 点A 的坐标是(4 0) 点P 的坐标是(0 3) 把线段AP 绕点P 逆时针旋转90°后得到线段PQ 则点Q 的坐标是__________.【解析】解:过Q 作QE ⊥y 轴于E 点 如下图所示:∵旋转90°∴∠1+∠2=90°∵EQ ⊥y 轴∴∠3+∠2=90°∴∠1=∠3且∠QEP =∠POA =90° PQ=PA∴△QEP ≌△POA (AAS )∴EQ=PO =3 EP=OA =4∴EO=EP+PO =4+3=7∴点Q 的坐标是(3 7)故答案为:(3 7).【点睛】本题考查三角形全等的判定和性质 坐标与图形 本题的关键过Q 作QE ⊥y 轴于E 点 证明△QEP ≌△POA .16.如图 ∠ABC =∠ACD =90° BC =2 AC =CD 则△BCD 的面积为_________.【解析】解:如图 作DE 垂直于BC 的延长线 垂足为E∵90ACB BAC ∠+∠=︒ 90ACB DCE ∠+∠=︒∴BAC DCE ∠=∠在ABC 和CED 中∵90BAC DCEABC CED AC CD∠=∠⎧⎪∠==︒⎨⎪=⎩∴()ABC CED AAS ≌∴2BC DE == ∴122BCD S BC DE =⨯⨯=故答案为:2.【点睛】本题考查了三角形全等的判定与性质.解题的关键在于证明三角形全等.三、解答题(每题8分 共72分)17.如图 在四边形ABCD 中 点E 为对角线BD 上一点 A BEC ∠=∠ ABD BCE ∠=∠ 且AD BE = 证明:AD BC ∥.【解析】证明:在ABD ∆与ECB ∆中A BEC ABD BCE AD BE ∠=∠⎧⎪∠=∠⎨⎪=⎩()ABD ECB AAS ∴∆≅∆;ADB EBC ∴∠=∠AD BC ∴;【点睛】本题主要考查了平行线的判定及全等三角形的判定及性质 熟练运用全等三角形的判定及性质是解题的关键.18.如图 点A 、D 、C 、F 在同一条直线上 ,,AD CF AB DE BC EF ===.若55A ∠=︒ 求EDF ∠的度数.【解析】∵AC =AD +DC DF =DC +CF 且AD =CF∴AC =DF在△ABC 和△DEF 中AB DE BC EF AC DF ⎧⎪⎨⎪⎩=== ∴△ABC ≌△DEF (SSS )∴∠A =∠EDF =55︒.【点睛】本题考查全等三角形的判定与性质 解答本题的关键是明确题意 利用数形结合的思想解答.19.已知:如图 AB ⊥BD ED ⊥BD C 是BD 上的一点 AC ⊥CE AB =CD 求证:BC =DE .【解析】证明:∵AB ⊥BD ED ⊥BD AC ⊥CE (已知)∴∠ACE =∠B =∠D =90°(垂直的意义)∵∠BCA +∠DCE +∠ACE =180°(平角的意义)∠ACE =90°(已证)∴∠BCA +∠DCE =90°(等式性质)∵∠BCA +∠A +∠B =180°(三角形内角和等于180°)∠B =90°(已证)∴∠BCA +∠A =90°(等式性质)∴∠DCE =∠A (同角的余角相等)在△ABC 和△CDE 中A DCE AB CD B D ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△CDE (ASA )∴BC =DE (全等三角形对应边相等)【点睛】本题考查了全等三角形的判定和性质;熟练掌握三角形全等的判定定理是解题的关键.20.如图 在ABC 中 240AB AC B ==∠=︒, 点D 在线段BC 上运动(D 不与B 、C 重合) 连接AD 作40ADE ∠=︒ DE 交线段AC 于E .(1)点D 从B 向C 运动时 BDA ∠逐渐变__________(填“大”或“小”) 但BDA ∠与EDC ∠的度数和始终是__________度.(2)当DC 的长度是多少时 ABD DCE △△≌ 并说明理由.【解析】(1)在△ABD 中 ∠B +∠BAD +∠ADB =180°设∠BAD =x ° ∠BDA =y °∴40°+x +y =180°∴y =140-x (0<x <100)当点D 从点B 向C 运动时 x 增大∴y 减小BDA ∠+EDC ∠=180°-140ADE ∠=︒故答案为:小 140;(2)当DC =2时 △ABD ≌△DCE理由:∵∠C =40°∴∠DEC +∠EDC =140°又∵∠ADE =40°∴∠ADB +∠EDC =140°∴∠ADB =∠DEC又∵AB =DC =2在△ABD 和△DCE 中===ADB DEC B CAB DC ∠∠⎧⎪∠∠⎨⎪⎩∴△ABD ≌△DCE (AAS );【点睛】此题主要考查学生对等腰三角形的判定与性质 全等三角形的判定与性质 三角形外角的性质等知识点的理解和掌握 三角形的内角和公式 解本题的关键是分类讨论.21.如图 已知ABC 中 ,90AC BC ACB =∠=︒ 点D 与点E 都在射线AP 上 且CD CE = 90DCE ∠=︒.(1)说明AD BE =的理由;(2)说明BE AE ⊥的理由.【解析】(1)解:90ACB DCE ∠=∠=︒ACD DCB BCE DCB ∴∠+∠=∠+∠ACD BCE ∠∠∴=在ACD ∆和BCE ∆中AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩()ACD BCE SAS ∴∆≅∆AD BE ∴=;(2)解:如图 设AE 和BC 交于点F∆≅∆ACD BCE∴∠=∠CAD CBEEFB FAB FBA FAB∠=∠+∠=∠+︒45EFB FBE FAB FBE∴∠+∠=∠+︒+∠45=∠+︒+∠FAB CAD45=∠+︒CAB45=︒+︒=︒454590∴∠BEF=90°BE AE∴⊥.【点睛】本题考查了全等三角形的性质和判定、外角的性质解题的关键是能证明出E∆.≅∆ACD BC 22.已知:如图在△ABC△ADE中∠BAC=∠DAE=90°AB=AC AD=AE点C D E 三点在同一直线上连接BD.求证:(1)△BAD≌△CAE;(2)试猜想BD CE有何特殊位置关系并证明.【解析】(1)证明:∠BAC=∠DAE=90°∴∠+∠=∠+∠,BAC CAD CAD DAEBAD CAE∴∠=∠,AB=AC AD=AE≌BAD CAE.BD CE BD CE理由如下:(2)解:,,BAD CAE≌,ABD ACE∴∠=∠,∠=︒90,BACABC ACB90,ABD DBC ACB90,ACE DBC ACB DBC BCD90,BDC BD CE90,.【点睛】本题考查的是三角形的内角和定理的应用全等三角形的判定与性质掌握“利用SAS证明两个三角形全等及应用全等三角形的性质”是解本题的关键.23.图已知AE⊥AB AF⊥AC.AE=AB AF=AC BF与CE相交于点M.(1)EC=BF;(2)EC⊥BF;(3)连接AM求证:AM平分∠EMF.【解析】(1)证明:∵AE⊥AB AF⊥AC∴∠BAE=∠CAF=90°∴∠BAE+∠BAC=∠CAF+∠BAC即∠EAC=∠BAF在△ABF和△AEC中∵AE ABEAC BAF AF AC=⎧⎪∠=∠⎨⎪=⎩∴△ABF≌△AEC(SAS)∴EC=BF;(2)根据(1)∵△ABF≌△AEC∴∠AEC=∠ABF∵AE⊥AB∴∠BAE=90°∴∠AEC+∠ADE=90°∵∠ADE=∠BDM(对顶角相等)∴∠ABF+∠BDM=90°在△BDM中∠BMD=180°﹣∠ABF﹣∠BDM=180°﹣90°=90°所以EC⊥BF.(3)作AP⊥CE于P AQ⊥BF于Q.如图:∵△EAC ≌△BAF∴AP =AQ (全等三角形对应边上的高相等).∵AP ⊥CE 于P AQ ⊥BF 于Q∴AM 平分∠EMF .【点睛】本题考查了全等三角形的判定与性质 根据条件找出两组对应边的夹角∠EAC =∠BAF 是证明的关键 也是解答本题的难点.24.在直线m 上依次取互不重合的三个点,,D A E 在直线m 上方有AB AC = 且满足BDA AEC BAC α∠=∠=∠=.(1)如图1 当90α=︒时 猜想线段,,DE BD CE 之间的数量关系是____________;(2)如图2 当0180α<<︒时 问题(1)中结论是否仍然成立?如成立 请你给出证明;若不成立 请说明理由;(3)应用:如图3 在ABC 中 BAC ∠是钝角 AB AC = ,BAD CAE BDA AEC BAC ∠<∠∠=∠=∠ 直线m 与CB 的延长线交于点F 若3BC FB = ABC 的面积是12 求FBD 与ACE 的面积之和.【解析】(1)解:DE =BD +CE 理由如下∵∠BDA =∠BAC =∠AEC =90°∴∠BAD +∠EAC =∠BAD +∠DBA =90°∴∠DBA =∠EAC∵AB =AC∴△DBA ≌△EAC (AAS )∴AD =CE BD =AE∴DE =AD +AE =BD +CE故答案为:DE =BD +CE .(2)DE =BD +CE 仍然成立 理由如下∵∠BDA =∠BAC =∠AEC =α∴∠BAD +∠EAC =∠BAD +∠DBA =180°﹣α∴∠DBA =∠EAC∵AB =AC∴△DBA ≌△EAC (AAS )∴BD =AE AD =CE∴DE =AD +AE =BD +CE ;(3)解:∵∠BAD <∠CAE ∠BDA =∠AEC =∠BAC∴∠CAE =∠ABD在△ABD 和△CAE 中ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△CAE (AAS )∴S △ABD =S △CAE设△ABC 的底边BC 上的高为h 则△ABF 的底边BF 上的高为h∴S △ABC =12BC •h =12 S △ABF =12BF •h∵BC =3BF∴S △ABF =4∵S △ABF =S △BDF +S △ABD =S △FBD +S △ACE =4∴△FBD 与△ACE 的面积之和为4.【点睛】本题考查了全等三角形的判定与性质、直角三角形的性质 三角形的面积 解题的关键是熟练掌握全等三角形的判定与性质.25.如图 ∠MAN 是一个钝角 AB 平分∠MAN 点C 在射线AN 上 且AB =BC BD ⊥AC 垂足为D .(1)求证:BAM BCA ∠=∠;(2)动点P Q 同时从A 点出发 其中点Q 以每秒3个单位长度的速度沿射线AN 方向匀速运动;动点P 以每秒1个单位长度的速度匀速运动.已知AC =5 设动点P Q 的运动时间为t 秒. ①如图② 当点P 在射线AM 上运动时 若点Q 在线段AC 上 且52ABP BQC S S =△△ 求此时t 的值;②如图③ 当点P 在直线AM 上运动时 点Q 在射线AN 上运动的过程中 是否存在某个时刻 使得APB 与BQC 全等?若存在 请求出t 的值;若不存在 请说出理由.【解析】(1)证明:∵BD ⊥AC∴90BDA BDC ∠=∠=︒在Rt △BDA 和Rt △BDC 中BD BD AB CB =⎧⎨=⎩, ∴Rt△BDA ≌Rt△BDC (HL )∴∠BAC =∠BCA .∵AB 平分∠MAN∴∠BAM =∠BAC∴∠BAM =∠BCA .(2)解:①如下图所示 作BH ⊥AM 垂足为M .∵BH ⊥AM BD ⊥AC∴∠AHB =∠ADB =90°在△AHB 和△ADB 中AHB ADB BAH BAD AB AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,,,∴△AHB ≌△ADB (AAS )∴BH =BD∵S △ABP =52S △BQC ∴151222AP BH CQ BD =⨯∴52AP CQ =∴5(53)2t t =-∴2517t =.②存在 理由如下:当点P 沿射线AM 方向运动 点Q 在线段AC 上时 如下图所示∵AB =BC又由(1)得∠BAM =∠BCA∴当AP =CQ 时 △APB ≌△CQB∴53t t =-∴54t =;当点P沿射线AM 反向延长线方向运动 点Q 在线段AC 延长线上时 如下图所示由(1)得∠BAM=∠BCA∴∠BAP=∠BCQ又∵AB=BC∴当AP=CQ时△APB≌△CQB ∴35t t=-∴52t=.综上所述当54t=或52t=时△APB和△CQB全等.【点睛】本题考查角平分线的定义全等三角形的判定与性质熟练掌握全等三角形的判定方法并注意分类讨论是解题的关键.第21页共21页。
全等三角形单元测试卷(含答案)
新人教版八年级数学上册《第12章全等三角形》2016年单元测试卷(4)一、选择题(每小题5分,共30分)1.(5分)已知图中的两个三角形全等,则∠α的度数是()A.72°B.60°C.58°D.50°2.(5分)如图,聪聪书上的三角形被墨迹污染了一部分,他根据所学知识很快就画了一个与书本上完全一样的三角形,那么聪聪画图的依据是()A.SSS B.SAS C.ASA D.AAS3.(5分)下列说法正确的是()A.全等三角形是指形状相同的两个三角形B.全等三角形的周长和面积分别相等C.全等三角形是指面积相等的两个三角形D.所有的等边三角形都是全等三角形4.(5分)如图,Rt△ABC中,AD是∠BAC的平分线,DE⊥AB,垂足为E,若AB=10cm,AC=6cm,则BE的长度为()A.10cm B.6cm C.4cm D.2cm5.(5分)如图,AE∥FD,AE=FD,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=BC B.EC=BF C.∠A=∠D D.AB=CD6.(5分)点P在∠AOB的平分线上,点P到OA边的距离等于5,点Q是OB 边上的任意一点,下列选项正确的是()A.PQ≥5 B.PQ>5 C.PQ<5 D.PQ≤5二、填空题(每小题5分,共20分)7.(5分)如图,△ABC≌△DCB,∠DBC=40°,则∠AOB=°.8.(5分)如图,锐角△ABC和锐角△A′B′C′中,AD,A′D′分别是BC,B′C′上的高,且AB=A′B′,AD=A′D′.要使△ABC≌△A′B′C′,则应补充的条件是(填写一个即可).9.(5分)如图,点O在△ABC内,且到三边的距离相等,若∠A=60°,则∠BOC=.10.(5分)如图,BE⊥AC,垂足为D,且AD=CD,BD=ED,若∠ABC=54°,则∠E=°.三、解答题(第11题14分,第12,13题18分,共50分)11.(14分)如图,已知∠1=∠2,AB=AC.求证:BD=CD.(要求:写出证明过程中的重要依据)12.(18分)如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.试探索CF与DE的位置关系,并说明理由.13.(18分)如图,点B在线段AC上,点E在线段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M、N分别是AE、CD的中点,判断BM与BN的关系,并说明理由.新人教版八年级数学上册《第12章全等三角形》2016年单元测试卷(4)参考答案与试题解析一、选择题(每小题5分,共30分)1.(5分)已知图中的两个三角形全等,则∠α的度数是()A.72°B.60°C.58°D.50°【分析】要根据已知的对应边去找对应角,并运用“全等三角形对应角相等”即可得答案.【解答】解:∵图中的两个三角形全等a与a,c与c分别是对应边,那么它们的夹角就是对应角∴∠α=50°故选:D.【点评】本题考查全等三角形的知识.解题时要认准对应关系,如果把对应角搞错了,就会导致错选A或C.2.(5分)如图,聪聪书上的三角形被墨迹污染了一部分,他根据所学知识很快就画了一个与书本上完全一样的三角形,那么聪聪画图的依据是()A.SSS B.SAS C.ASA D.AAS【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出.【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选:C.【点评】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理并灵活运用是解题的关键.3.(5分)下列说法正确的是()A.全等三角形是指形状相同的两个三角形B.全等三角形的周长和面积分别相等C.全等三角形是指面积相等的两个三角形D.所有的等边三角形都是全等三角形【分析】依据全等三角形的定义:能够完全重合的两个三角形.即可求解.【解答】解:A、全等三角形的形状相同,但形状相同的两个三角形不一定是全等三角形.故该选项错误;B、全等三角形是指能够完全重合的两个三角形,则全等三角形的周长和面积一定相等,故B正确;C、全等三角形面积相等,但面积相等的两个三角形不一定是全等三角形.故该选项错误;D、两个等边三角形,形状相同,但不一定能完全重合,不一定全等.故错误.故选:B.【点评】本题主要考查全等三角形的定义,全等是指形状相同,大小相同,两个方面必须同时满足.4.(5分)如图,Rt△ABC中,AD是∠BAC的平分线,DE⊥AB,垂足为E,若AB=10cm,AC=6cm,则BE的长度为()A.10cm B.6cm C.4cm D.2cm【分析】首先根据角平分线的性质可得CD=DE,然后证明Rt△ACD≌Rt△AED (HL),可得AE=AC,进而得到EB的长.【解答】解:∵AD是∠BAC的平分线,∴CD=DE,在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AE=AC=6cm,∵AB=10cm,∴EB=4cm.故选:C.【点评】此题主要考查了全等三角形的判定与性质,以及角平分线的性质,关键是掌握角平分线的性质:角的平分线上的点到角的两边的距离相等.5.(5分)如图,AE∥FD,AE=FD,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=BC B.EC=BF C.∠A=∠D D.AB=CD【分析】添加条件AB=CD可证明AC=BD,然后再根据AE∥FD,可得∠A=∠D,再利用SAS定理证明△EAC≌△FDB即可.【解答】解:∵AE∥FD,∴∠A=∠D,∵AB=CD,∴AC=BD,在△AEC和△DFB中,∴△EAC≌△FDB(SAS),故选:D.【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6.(5分)点P在∠AOB的平分线上,点P到OA边的距离等于5,点Q是OB 边上的任意一点,下列选项正确的是()A.PQ≥5 B.PQ>5 C.PQ<5 D.PQ≤5【分析】根据角平分线上的点到角的两边距离相等可得点P到OB的距离为5,再根据垂线段最短解答.【解答】解:∵点P在∠AOB的平分线上,点P到OA边的距离等于5,∴点P到OB的距离为5,∵点Q是OB边上的任意一点,∴PQ≥5.故选:A.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解题的关键.二、填空题(每小题5分,共20分)7.(5分)如图,△ABC≌△DCB,∠DBC=40°,则∠AOB=80°.【分析】根据全等三角形对应角相等可得∠ACB=∠DBC,再利用三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:∵△ABC≌△DCB,∠DBC=40°,∴∠ACB=∠DBC=40°,∴∠AOB=∠ACB+∠DBC=40°+40°=80°.故答案为:80.【点评】本题考查了全等三角形对应角相等的性质,三角形的一个外角等于与它不相邻的两个内角的和,熟记性质是解题的关键.8.(5分)如图,锐角△ABC和锐角△A′B′C′中,AD,A′D′分别是BC,B′C′上的高,且AB=A′B′,AD=A′D′.要使△ABC≌△A′B′C′,则应补充的条件是CD=C′D′(或AC=A′C′,或∠C=∠C′或∠CAD=∠C′A′D′)答案不唯一(填写一个即可).【分析】根据判定方法,结合图形和已知条件,寻找添加条件.【解答】解:我们可以先利用HL判定△ABD≌△A′B′D′得出对应边相等,对应角相等.此时若添加CD=C´D´,可以利用SAS来判定其全等;添加∠C=∠C´,可以利用AAS判定其全等;还可添加AC=A′C′,∠CAD=∠C′A′D′等.故答案为CD=C′D′(或AC=A′C′,或∠C=∠C′或∠CAD=∠C′A′D′)答案不唯一.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.9.(5分)如图,点O在△ABC内,且到三边的距离相等,若∠A=60°,则∠BOC= 120°.【分析】根据角平分线上的点到角的两边距离相等判断出点O是三个角的平分线的交点,再根据三角形的内角和定理和角平分线的定义求出∠OBC+∠OCB,然后利用三角形的内角和定理列式计算即可得解.【解答】解:∵点O在△ABC内,且到三边的距离相等,∴点O是三个角的平分线的交点,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣∠A)=(180°﹣60°)=60°,在△BCO中,∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣60°=120°.故答案为:120°.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的内角和定理,角平分线的定义,熟记性质并判断出点O是三个角的平分线的交点是解题的关键.10.(5分)如图,BE⊥AC,垂足为D,且AD=CD,BD=ED,若∠ABC=54°,则∠E=27°.【分析】由BE垂直于AC,且AD=CD,利用线段垂直平分线定理得到AB=CB,即三角形ABC为等腰三角形,利用三线合一得到BE为角平分线,求出∠ABE度数,利用SAS得到三角形ABD与三角形CED全等,利用全等三角形对应角相等即可求出∠E的度数.【解答】解:∵BE⊥AC,AD=CD,∴AB=CB,即△ABC为等腰三角形,∴BD平分∠ABC,即∠ABE=∠CBE=∠ABC=27°,在△ABD和△CED中,,∴△ABD≌△CED(SAS),∴∠E=∠ABE=27°,故答案为:27【点评】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.三、解答题(第11题14分,第12,13题18分,共50分)11.(14分)如图,已知∠1=∠2,AB=AC.求证:BD=CD.(要求:写出证明过程中的重要依据)【分析】利用SAS判定三角形全等,得出对应边相等.【解答】证明:在△ABD和△ACD中,∴△ABD≌△ACD(SAS).∴BD=CD(全等三角形对应边相等).【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.12.(18分)如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.试探索CF与DE的位置关系,并说明理由.【分析】根据平行线性质得出∠A=∠B,根据SAS证△ACD≌△BEC,推出DC=CE,根据等腰三角形的三线合一定理推出即可.【解答】解:CF⊥DE,CF平分DE,理由是:∵AD∥BE,∴∠A=∠B,在△ACD和△BEC中,∴△ACD≌△BEC(SAS),∴DC=CE,∵CF平分∠DCE,∴CF⊥DE.【点评】本题考查了全等三角形的性质和判定,平行线的性质,等腰三角形的性质等知识点,关键是求出DC=CE,主要考查了学生运用定理进行推理的能力.13.(18分)如图,点B在线段AC上,点E在线段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M、N分别是AE、CD的中点,判断BM与BN的关系,并说明理由.【分析】根据SAS推出△ABE≌△DBC,推出AE=DC,∠EAB=∠BDC,∠AEB=∠DCB,求出∠ABD=∠DBC=90°,BM=AM=EM=AE,BN=CN=DN=CD,推出∠ABM=∠DBN,∠EBM=∠NBC即可.【解答】解:BM=BN,BM⊥BN,理由是:在△ABE和△DBC中,,∴△ABE≌△DBC(SAS),∴AE=DC,∠EAB=∠BDC,∠AEB=∠DCB,∵∠ABD=∠DBC,∠ABD+∠DBC=180°,∴∠ABD=∠DBC=90°,∵M为AE的中点,N为CD的中点,∴BM=AM=EM=AE,BN=CN=DN=CD,∴BM=BN,∠EAB=∠MBA,∠CDB=∠DBN,∠AEB=∠EBM,∠NCB=∠NBC,∵∠EAB=∠BDC,∠AEB=∠DCB,∴∠ABM=∠DBN,∠EBM=∠NBC,∴∠ABC=2∠DBN+2∠EBM=180°,∴∠EBN+∠EBM=90°,∴BM⊥BN.【点评】本题考查了全等三角形的性质和判定,直角三角形斜边上中线性质,等腰三角形的性质的应用,主要考查学生的推理能力.。
《第十二章全等三角形》单元测试卷含答案(共6套)
《第⼗⼆章全等三⾓形》单元测试卷含答案(共6套)《第⼗⼆章全等三⾓形》单元测试卷(⼀)时间:120分钟满分:120分⼀、选择题(本⼤题共6⼩题,每⼩题3分,共18分.每⼩题只有⼀个正确选项) 1.若△MNP≌△MNQ,且MN=8,NP=7,PM=6,则MQ的长为( )A.8 B.7 C.6 D.52.下列条件中,能判定△ABC≌△DEF的是( )A.AB=DE,BC=EF,∠A=∠DB.∠A=∠D,∠C=∠F,AC=EFC.∠B=∠E,∠A=∠D,AC=EFD.∠B=∠E,∠A=∠D,AB=DE3.如图,⼀块三⾓形玻璃碎成了4块,现在要到玻璃店去配⼀块与原来的三⾓形玻璃完全⼀样的玻璃,则最省事的办法是带( ) A.① B.② C.③ D.④第3题图第4题图4.如图,AC=CE,∠ACE=90°,AB⊥BD,ED⊥BD,AB=6cm,DE=2cm,则BD 等于( )A.6cm B.8cm C.10cm D.4cm=15,DE=3,AB=6,5.如图,在△ABC中,AD平分∠BAC,DE⊥AB于E,S△ABC则AC的长是( )A.7 B.6 C.5 D.4第5题图第6题图6.如图,OP平分∠AOB,PA⊥OA,PB⊥OB,C是射线OA上不与点A重合的⼀点,D是射线OB上不与点B重合的⼀点,且AC=BD,下列结论:①PA=PB; ②PO平分∠APB;③OC=OD; ④△PAC≌△PBD.其中成⽴的是( )A.①②③ B.②③④ C.①②④ D.①②③④⼆、填空题(本⼤题共6⼩题,每⼩题3分,共18分)7.已知图中的两个三⾓形全等,则∠1的度数是________.8.如图,在△ABC中,AB=AC,BE、CF是△ABC的中线,则由________可得△AFC≌△AEB.第7题图第8题图第9题图9.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D.若CD=4,则点D到斜边AB的距离为________.10.如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB,则图中共有________对全等三⾓形.第10题图第11题图11.如图,AC=BC,DC=EC,∠ACB=∠ECD=90°,且∠EBD=42°,则∠AEB =________.12.在平⾯直⾓坐标系中,点A(1,0),B(3,0),C(4,2),当△ABD和△ABC 全等时,则点D的坐标可以是________________.三、(本⼤题共5⼩题,每⼩题6分,共30分)13.如图所⽰,在△ABC中,∠A=90°,DE⊥BC,BD平分∠ABC,AD=6cm,BC =15cm,求△BDC的⾯积.14.如图,点B,D,C,F在⼀条直线上,BC=FD,AB=EF,且AB∥EF.求证:AC∥ED.15.如图,已知F是DE的中点,∠D=∠E,∠DFN=∠EFM.求证:DM=EN.16.如图,点D在BC上,∠1=∠2,AE=AC,下⾯三个条件:①AB=AD;②BC =DE;③∠E=∠C,请你从所给条件①②③中选⼀个条件,使△ABC≌△ADE,并证明.17.如图,在∠AOB的两边OA,OB上分别取OM=ON,OD=OE,请⽤⽆刻度的直尺作出∠AOB的平分线.四、(本⼤题共3⼩题,每⼩题8分,共24分)18.如图,已知△ABC,按如下步骤作图:①以A为圆⼼,AB长为半径画弧;②以C为圆⼼,CB长为半径画弧,两弧相交于点D;③连接BD,与AC交于点E,连接AD,CD.(1)求证:△ABC≌△ADC;(2)试猜想AC与BD的位置关系,并说明理由.19.如图,AD是△ABC的中线,BE⊥AD于点E,CF⊥AD交AD的延长线于点F.求证:AE+AF=2AD.20.如图,点E,F分别在OA,OB上,DE=DF,∠OED+∠OFD=180°.(1)请作出点D到OA,OB的距离,标明垂⾜;(2)求证:OD平分∠AOB.五、(本⼤题共2⼩题,每⼩题9分,共18分)21.如图,在△ABC中,BE,CF分别是边AC,AB上的⾼,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD,AG,则AG与AD有何关系?请说明理由.22.如图,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为(-2,0),点A 的坐标为(-6,3),求点B的坐标.六、(本⼤题共12分)23.(1)阅读理解:如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以⽤如下⽅法:延长AD到点E使DE=AD,再连接BE(或将△ACD 绕着点D逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,利⽤三⾓形三边的关系即可判断.中线AD的取值范围是____________;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF 交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C 为顶点作⼀个70°⾓,⾓的两边分别交AB,AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.参考答案与解析1.C 2.D 3.D 4.B 5.D6.C 解析:∵OP平分∠AOB,∴∠POA=∠POB.∵PA⊥OA,PB⊥OB,∴∠OAP=∠OBP=90°.在△OPA 和△OPB 中,∠OAP=∠OBP,∠POA=∠POB,OP =OP ,∴△OPA≌△OPB(AAS),∴AO =BO ,PA =PB ,∠OPA=∠OPB,∴PO 平分∠APB,故①②正确;在△PAC 和△PBD中,PA =PB ,∠A=∠PBD,AC =BD ,∴△PAC≌△PBD(SAS),故④正确,由△PAC≌△PBD 得AC =BD ,∴OC=OA -AC =OB -BD =OD -2BD ,∴OC≠OD,故③错误,故答案为C. 7.58° 8.SAS 9.4 10.311.132° 解析:∵∠ACB=∠ECD=90°,∴∠ACB-∠BCE=∠ECD-∠BCE,即∠ACE=∠BCD.在△ACE 和△BCD 中,AC =BC ,∠ACE=∠BCD,EC =DC ,∴△ACE≌△BCD,∴∠CAE=∠CBD,∴∠CAE+∠CBE=∠CBD+∠CBE=∠EBD=42°.在△ABC 中,∠EAB+∠EBA=180°-(∠ACB+∠CAE+∠C BE)=180°-(90°+42°)=48°,在△ABE 中,∠AEB=180°-(∠EAB+∠EBA)=180°-48°=132°. 12.(0,2)或(4,-2)或(0,-2)13.解:∵BD 平分∠ABC,∠A=90°,DE⊥BC,∴DE=AD =6cm ,(3分)∴△BDC 的⾯积为12BC·DE=12×15×6=45(cm 2).(6分)14.证明:∵AB∥EF,∴∠B=∠F.(1分)在△ABC 和△EFD 中,AB =EF ,∠B=∠F,BC =FD ,∴△ABC≌△EFD(SAS),(4分)∴∠ACB=∠EDF,∴AC∥DE.(6分)15.证明:∵点F 是DE 的中点,∴DF=EF.(1分)∵∠DFN=∠EFM,∴∠DFN+∠MFN=∠EFM+∠MFN,即∠DFM=∠EFN. (2分)在△DFM 和△EFN 中,∠D=∠E,DF =EF ,∠DFM=∠EFN,∴△DFM≌△EFN(ASA),(4分)∴DM=EN.(6分)16.解:选②BC=DE.证明如下:如图,∵∠1=∠2,∠3=∠4,∴∠E=∠C.(2分)在△ABC 和△ADE 中,AC =AE ,∠C=∠E,BC =DE ,∴△ABC≌△ADE(SAS).(6分)17.解:如图所⽰,OC 即为所求.(6分)18.(1)证明:在△ABC 与△ADC 中,AB =AD ,BC =DC ,AC =AC ,∴△ABC≌△ADC(SSS).(4分)(2)解:AC⊥DB.(5分)理由如下:由(1)知△ABC≌△ADC,∴∠BAE=∠DAE.∵AB =AD ,∠BAE=∠DAE,AE =AE,∴△ABE≌△ADE(SAS),∴∠AEB=∠AED.⼜∵∠AEB +∠AED=180°,∴∠AEB=∠AED=90°,∴AC⊥BD.(8分) 19.证明:∵AD 是△ABC 的中线,∴BD=CD.(2分)∵BE⊥AD,CF⊥AD,∴∠BED=∠CFD=90°.在△BDE 和△CDF 中,∠BED=∠CFD,∠BDE=∠CDF,BD =CD ,∴△BDE≌△CDF(AAS),∴DE=DF.(6分)∵AE=AD -DE ,AF =AD +DF ,∴AE+AF =AD -DE +AD +DF =2AD.(8分)20.(1)解:如图,分别过点D 作DM⊥OA,DN⊥OB,则DM ,DN 分别为点D 到OA ,OB 的距离,垂⾜分别为M ,N.(3分) (2)证明:∵∠OED+∠OFD=180°,∠OED+∠MED=180°,∴∠MED=∠NFD.∵DM⊥OA,DN⊥OB,∴∠DME=∠DNF=90°.在△DME 和△DNF 中,∠DME=∠DNF,∠MED=∠NFD,DE =DF ,∴△DME≌△DNF(AAS),(6分)∴DM=DN ,∴OD 平分∠AOB.(8分)21.解:AG =AD ,AG⊥AD.(2分)理由如下:设CG 分别交AD ,BE 于O ,P ,如图所⽰.∵在△ABC 中,BE ,CF 分别是边AC ,AB 上的⾼,∴∠BFP=∠CEP=∠AFO =90°,∴∠ABD+∠FPB=90°,∠ACG+∠EPC=90°.∵∠FPB=∠EPC,∴∠ABD=∠ACG.在△ABD 和△GCA 中,AB =GC ,∠ABD=∠GCA,BD =CA ,∴△ABD≌△GCA(SAS),∴AG=AD ,∠AGC=∠BAD.(6分)∵∠AFO=90°,∴∠BAD+∠AOF=90°,∴∠AGC+∠AOF=90°,∴∠GAD=180°-90°=90°,∴AG⊥AD.(9分)22.解:如图,过点A 和B 分别作AD⊥x 轴于D ,BE⊥x 轴于E ,(1分)∴∠ADC =∠CEB=90°,∴∠ACD+∠CAD=90°.∵∠ACB=90°,∴∠ACD+∠BCE=90°,∴∠CAD=∠BCE.在△ADC 和△CEB 中,∠ADC=∠CEB,∠CAD=∠BCE,AC =BC ,∴△ADC≌△CEB(AAS),∴CD=BE ,AD =CE.(5分)∵点C 的坐标为(-2,0),点A 的坐标为(-6,3),∴OC=2,CE =AD =3,OD =6,∴CD=OD -OC =4,OE =CE -OC =3-2=1,∴BE=4,∴点B 的坐标是(1,4).(9分)23.(1)解:2<AD <8(3分)(2)证明:延长FD ⾄点M ,使DM =DF ,连接BM 、EM ,如图②所⽰.(4分)∵D 是BC 的中点,∴CD=BD.在△BMD 和△CFD 中,BD =CD ,∠BDM=∠CDF,DM =DF ,∴△BMD≌△CFD(SAS),∴BM=CF.(5分)∵DE=DE ,∠EDF=∠EDM =90°,DF =DM ,∴△DEF≌△DEM(SAS),∴EM=EF.在△BME 中,由三⾓形的三边关系得BE +BM >EM ,∴BE+CF >EF.(7分)(3)解:BE +DF =EF.(8分)理由如下:延长AB ⾄点N ,使BN =DF ,连接CN ,如图③所⽰.∵∠ABC+∠D=180°,∠NBC+∠ABC=180°,∴∠NBC=∠D.在△NBC和△FDC 中,BN =DF ,∠NBC=∠D,BC =DC ,∴△NBC≌△FDC(SAS),∴CN=CF ,∠NCB=∠FCD.∵∠BCD=140°,∠ECF=70°,∴∠BCE+∠FCD=70°,∴∠ECN=70°=∠ECF.(10分)在△NCE 和△FCE 中,CN =CF ,∠ECN=∠ECF,CE =CE ,∴△NCE≌△FCE(SAS),∴EN=EF.∵BE+BN =EN ,∴BE+DF =EF.(12分)《第⼗⼆章全等三⾓形》单元测试卷(⼆)时间:120分钟满分:120分⼀、选择题(每⼩题3分,共30分)1.在下列每组图形中,是全等形的是( )2.如图,△AOC≌△BOD,点A 与点B 是对应点,则下列结论中错误的是( ) A .∠A=∠B B.AO =BO C .AB =CD D .AC =BD3.如图,已知AB=AC,BD=CD,则可推出( )A.△ABD≌△BCD B.△ABD≌△ACDC.△ACD≌△BCD D.△ACE≌△BDE4.在△ABC和△A′B′C′中,AB=A′B′,∠A=∠A′,若要证△ABC≌△A′B′C′,则还需从下列条件中补选⼀个,错误的选法是( ) A.∠B=∠B′ B.∠C=∠C′C.BC=B′C′ D.AC=A′C′5.已知∠AOB的平分线上⼀点P到OA的距离为5,Q是OB上任意⼀点,则( ) A.PQ>5 B.PQ≥5 C.PQ<5 D.PQ≤5 6.如图,点A、D、C、E在同⼀条直线上,AB∥EF,AB=EF,∠B=∠F,AE=12,AC=8,则CD的长为( )A.5.5 B.4 C.4.5 D.37.如图,MP⊥NP,MQ为∠PMN的平分线,MT=MP,连接TQ,则下列结论中不正确的是( )A.TQ=PQ B.∠MQT=∠MQPC.∠QTN=90° D.∠NQT=∠MQT8.如图,BE⊥AC于点D,且AD=CD,BD=ED.若∠ABC=54°,则∠E的度数为( ) A.25° B.27° C.30° D.45°9.如图,已知AB∥CD,AD∥BC,AD=BC,AC与BD交于点O,AE⊥BD于点E,CF⊥BD 于点F,则图中的全等三⾓形有( ) A.5对 B.6对 C.7对 D.8对10.如图,点P为定⾓∠AOB的平分线上的⼀个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:①PM=PN恒成⽴;②OM+ON的值不变;③四边形PMON的⾯积不变;④MN 的长不变.其中正确的个数为( )A.4 B.3 C.2 D.1⼆、填空题(每⼩题3分,共24分)11.如图,在△ABC与△ADC中,已知AD=AB,在不添加任何辅助线的前提下,要使△ABC≌△ADC,只需再添加的⼀个条件可以是__________.12.如图,在直⾓△ABC中,∠C=90°,AD平分∠BAC交BC于点D.若CD=4,则点D到斜边AB的距离为________.13.如图,若△AOB≌△A′OB′,∠B=30°,∠AOA′=52°,OB与A′B′交于点C,则∠A′CO的度数是________.14.如图,OP平分∠MON,PE⊥OM于E,P F⊥ON于F,OA=OB,则图中有________对全等三⾓形.15.如图,已知AB∥CF,E为AC的中点,若FC=6cm,DB=3cm,则AB=________cm.16.如图,已知AD=AE,BE=CD,∠1=∠2=110°,∠BAC=80°,则∠CAE的度数是________.17.我们知道:“两边及其中⼀边的对⾓分别相等的两个三⾓形不⼀定全等”.但是,⼩亮发现:当这两个三⾓形都是锐⾓三⾓形时,它们会全等,除⼩亮的发现之外,当这两个三⾓形都是__________时,它们也会全等;当这两个三⾓形中的⼀个是锐⾓三⾓形,另⼀个是__________时,它们⼀定不全等.18.如图,在平⾯直⾓坐标系中,已知点A(0,3),B(9,0),且∠ACB=90°,CA=CB,则点C的坐标为________.三、解答题(共66分)19.(8分)如图,点C是AE的中点,∠A=∠ECD,AB=CD.求证:∠B=∠D.20.(8分)如图,点D在BC上,∠1=∠2,AE=AC,下⾯有三个条件:①AB=AD;②BC=DE;③∠E=∠C.请你从所给条件①②③中选⼀个条件,使△ABC≌△ADE,并证明两三⾓形全等.21.(8分)如图,在Rt△ABC中,∠ACB=90°,CA=CB,D是AC上⼀点,E在BC的延长线上,且AE=BD,BD的延长线与AE交于点F.试通过观察、测量、猜想等⽅法来探索BF与AE有何特殊的位置关系,并证明你的猜想.22.(10分)如图,在△ABC中,点O是∠ABC、∠ACB的平分线的交点,AB+BC +AC=12,过O作OD⊥BC于D点,且OD=2,求△ABC的⾯积.23.(10分)如图,B、C、E三点在同⼀条直线上,AC∥DE,AC=CE,∠ACD=∠B.(1)求证:BC=DE;(2)若∠A=40°,求∠BCD的度数.24.(10分)如图,在△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.(1)求证:BE=CF;(2)若AB=8,AC=6,求AE,BE的长.25.(12分)在解决线段数量关系的问题时,如果条件中有⾓平分线,经常采⽤下⾯构造全等三⾓形的解题思路,如:在图①中,若C是∠MON的平分线OP上⼀点,点A在OM上,此时,在ON上截取OB=OA,连接BC,根据三⾓形全等判定(SAS),容易构造出全等三⾓形△OBC和△OAC,参考上⾯的⽅法,解答下列问题:如图②,在⾮等边△ABC 中,∠B=60°,AD ,CE 分别是∠BAC,∠BCA 的平分线,且AD ,CE 交于点F.求证:AC =AE +CD.参考答案与解析1.C 2.C 3.B 4.C 5.B 6.B 7.D 8.B 9.C10.B 解析:如图,作PE⊥OA 于E ,PF⊥OB 于F ,则∠PEO=∠PFO=90°,∴∠EPF +∠AOB=180°.∵∠MPN+∠AOB =180°,∴∠EPF=∠MPN,∴∠EPM=∠FPN.∵OP 平分∠AOB,∴∠POE=∠POF.在△POE 和△POF 中,∠POE=∠POF,∠PEO=∠PFO,PO =PO ,∴△POE≌△POF,∴PE=PF ,OE =OF.在△PEM 和△PFN 中,∠MPE=∠NPF ,PE =PF ,∠PEM=∠PFN,∴△PEM≌△PFN,∴EM=NF ,PM =PN ,故①正确.∴S △PEM=S △PFN ,∴S 四边形PMON =S 四边形PEOF =定值,故③正确.∵OM+ON =OE +ME +OF -NF =2OE =定值,故②正确.MN 的长度是变化的,故④错误.故选B.11.DC =BC(或∠DAC=∠BAC) 12.4 13.82° 14.3 15.9 16.20°17.钝⾓三⾓形或直⾓三⾓形钝⾓三⾓形18.(6,6) 解析:如图,过点C 作CE⊥OA,CF⊥OB,垂⾜分别为E ,F.则∠OEC =∠OFC=90°.∵∠AOB=90°,∴∠ECF =90°.∵∠ACB=90°,∴∠ACE=∠BCF.在△ACE 和△BCF 中,∠AEC=∠BFC,∠ACE=∠BCF,AC =BC ,∴△ACE≌△BCF(AAS),∴AE=BF ,CE =CF ,∴点C 的横、纵坐标相等,∴OE=OF.∵AE=OE -OA =OE -3,BF =OB -OF =9-OF ,∴OE=OF =6,∴点C 的坐标为(6,6).19.证明:∵点C 是AE 的中点,∴AC=CE.(2分)在△ABC 和△CDE 中,AC =CE ,∠A=∠ECD,AB =CD ,∴△ABC≌△CDE(SAS),(7分)∴∠B=∠D.(8分)20.解:选②BC=DE.(1分)如图,∵∠1=∠2,∠3=∠4,∴∠E=∠C.(3分)在△ADE 和△ABC 中,AE =AC ,∠E=∠C,DE =BC ,∴△ADE≌△ABC(SAS).(8分)21.解:猜想BF⊥AE.(2分)理由如下:∵∠ACB=90°,∴∠ACE=∠BCD=90°.⼜BC =AC ,BD =AE,∴Rt△BDC≌Rt△AEC(HL).∴∠CBD=∠CAE.(5分)⼜∵∠CAE +∠E=90°,∴∠EBF+∠E=90°.∴∠BFE=90°,即BF⊥AE.(8分)22.解:如图,过点O 作OE⊥AB 于E ,OF⊥AC 于F ,连接OA.(2分)∵点O 是∠ABC,∠ACB 的平分线的交点,∴OE=OD ,OF =OD ,即OE =OF =OD =2.(5分)∴S △ABC =S △ABO +S △BCO +S △ACO =12AB·OE+12BC·OD+12AC·OF =12×2·(AB+BC +AC)=12×2×12=12.(10分)23.(1)证明:∵AC∥DE,∴∠ACB=∠E,∠ACD=∠D.∵∠ACD=∠B.∴∠D=∠B.(2分)在△ABC 和△CDE 中,∠ACB=∠E,∠B=∠D,AC =CE ,∴△ABC≌△CDE(AAS),∴BC=DE.(5分)(2)解:由(1)知△ABC≌△CDE,∴∠DCE=∠A=40°,∴∠BCD=180°-40°=140°.(10分)24.(1)证明:如图,连接DB ,DC.∵DG⊥BC 且平分BC ,∴∠DGB=∠DGC =90°,BG =CG.⼜DG =DG,∴△DGB≌△DGC,∴DB=DC.∵AD 为∠BAC 的平分线,DE⊥AB,DF⊥AC,∴DE=DF ,∠DAE=∠DAF,∠BED=∠AED=∠DFC=90°.(3分)在Rt△DBE 和Rt△DCF 中,DB =DC ,DE =DF ,∴Rt△DBE≌Rt△DCF(HL),∴BE=CF.(5分)(2)解:在△ADE 和△ADF 中,∠DAE=∠DAF,∠AED=∠AFD,AD =AD ,∴△ADE≌△ADF,∴AE=AF.(7分)∵AC+CF =AF ,AE =AB -BE ,∴AC+CF =AB -BE ,即6+BE =8-BE ,∴BE=1,∴AE=8-1=7.(10分)25.证明:如图,在AC 上截取AG =AE ,连接FG.(1分)∵AD 是∠BAC 的平分线,CE 是∠BCA 的平分线,∴∠1=∠2,∠3=∠4.(2分)在△AEF 和△AGF 中,AE =AG ,∠1=∠2,AF =AF ,∴△AEF≌△AGF(SAS),∴∠AFE=∠AFG.(6分)∵∠B=60°,∴∠BAC+∠ACB=120°,∴∠2+∠3=12(∠BAC+∠ACB)=60°.∵∠AFE=∠2+∠3,∴∠AFE=∠CFD=∠AFG=60°,∴∠CFG=180°-∠CFD-∠AFG=60°,∴∠CFD=∠CFG.(9分)在△CFG 和△CFD 中,∠CFG=∠CFD,FC =FC ,∠3=∠4,∴△CFG≌△CFD(ASA),∴CG=CD.∴AC=AG +CG =AE +CD.(12分)《第⼗⼆章全等三⾓形》单元测试卷(三)(考试时间为90分钟,满分100分)⼀.填空题:(每题3分,共30分)1.如图1,若△ABC ≌△ADE ,∠EAC=35°,则∠BAD=_________度.2.如图2,沿AM 折叠,使D 点落在BC 上的N 点处,如果AD=7cm ,DM=5cm ,∠DAM=300,则AN= cm ,NM= cm,∠NAM= .3.如图3,△ABC ≌△AED ,∠C=85°,∠B=30°,则∠EAD= .4.已知:如图4,∠ABC =∠DEF ,AB =DE ,要说明△ABC ≌△DEF ,(1)若以“SAS ”为依据,还须添加的⼀个条件为________________. (2)若以“ASA ”为依据,还须添加的⼀个条件为________________.ABCDE图1ABCDMN 图2AB CEFA BCDFEO图 5(3)若以“AAS”为依据,还须添加的⼀个条件为________________.5.如图5,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,则△______≌△_______. .8. 如图8,在中,AB=AC,BE、CF是中线,则由可得.F,若,EO=10,则∠DBC= ,FO= .10. 如图10,△DEF≌△ABC,且AC>BC>AB则在△DEF中,______< ______< _____.图 10=∠60ADBACDEF。
八年级数学上册人教版试题 第12章 全等三角形单元测试卷(含答案)
第12章 全等三角形单元测试卷一.选择题(共12小题,每小题4分,共48分)1.下列各图形中,不是全等形的是( )A .B .C .D .2.下列说法正确的是( )A .所有的等边三角形都是全等三角形B .全等三角形是指面积相等的三角形C .周长相等的三角形是全等三角形D .全等三角形是指形状相同大小相等的三角形3.如图,AB 与CD 交于点O ,已知△AOD ≌△COB ,∠A =40°,∠COB =115°,则∠B 的度数为( )A .25°B .30°C .35°D .40°4.已知△ABC 的六个元素如图所示,则甲、乙、丙三个三角形中与△ABC 全等的是( )A .甲、乙B .乙、丙C .只有乙D .只有丙5.如图,已知MB =ND ,∠MBA =∠NDC ,下列条件中不能判定△ABM ≌△CDN 的是( )A .∠M =∠NB .AB =CDC .AM =CND .AM ∥CN6.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带( )去.A .第1块B .第2块C .第3块D .第4块7.如图是一个平分角的仪器,其中AB =AD ,BC =DC ,将点A 放在角的顶点,AB 和AD 沿着角的两边放下,沿AC 画一条射线,这条射线就是角的平分线,在这个操作过程中,运用了三角形全等的判定方法是( )第3图第5图第6图第7图A .SSSB .SASC .ASAD .AAS8.如图,点A 、D 、C 、E 在同一条直线上,AB ∥EF ,AB =EF ,∠B =∠F ,AE =10,AC =7,则CD 的长为( )A .5.5B .4C .4.5D .39.如图,∠B =∠C =90°,M 是BC 的中点,DM 平分∠ADC ,且∠ADC =110°,则∠MAB =( )A .30°B .35°C .45°D .60°10.如图,AB =AD ,AE 平分∠BAD ,点C 在AE 上,则图中全等三角形有( )A .2对B .3对C .4对D .5对11.如图,直线l 1、l 2、l 3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )A .一处B .二处C .三处D .四处12.如图,AD 是△ABC 的角平分线,DF ⊥AB ,垂足为F ,DE =DG ,△ADG和△AED 的面积分别为60和35,则△EDF 的面积为( )A .25B .5.5C .7.5D .12.5二.填空题(共4小题,每小题4分,共16分)13.已知△ABC ≌△DEF ,∠A =60°,∠F =50°,点B 的对应顶点是点E ,则∠B 的度数是 .14.如图,BD =CF ,FD ⊥BC 于点D ,DE ⊥AB 于点E ,BE =CD ,若∠AFD =145°,则∠EDF = .15.如图,△ABC 中,∠C =90°,AD 平分∠BAC ,AB =5,CD =2,则△ABD 的面积是 .16.如图,四边形ABCD 中,AB =AD ,AC =5,∠DAB =∠DCB =90°,则四边形ABCD 的面积为 .三.解答题(共8小题,共86分)第8图第9图第10图第11图第12图第14图第15图第16图17.如图所示,△ABE≌△ACD,∠B=70°,∠AEB=75°,求∠CAE的度数.18.如图,已知∠1=∠2,∠3=∠4,求证:BC=BD.19.如图,AB=AD,AC=AE,∠CAE=∠BAD.求证:∠B=∠D.20.如图,点B、F、C、E在直线l上(F、C之间不能直接测量),点A、D在l异侧,测得AB=DE,AB∥DE,∠A=∠D.(1)求证:△ABC≌△DEF;(2)若BE=10m,BF=3m,求FC的长度.21.某段河流的两岸是平行的,数学兴趣小组在老师带领下不用涉水过河就测得河的宽度,他们是这样做的:①在河流的一条岸边B点,选对岸正对的一棵树A;②沿河岸直走20m有一树C,继续前行20m到达D处;③从D处沿河岸垂直的方向行走,当到达A树正好被C树遮挡住的E处停止行走;④测得DE的长为5米.求:(1)河的宽度是多少米?(2)请你证明他们做法的正确性.22.如图,AD为△ABC的高,E为AC上一点,BE交AD于F,且有BF=AC,FD=CD.求证:(1)△BFD≌△ACD;(2)BE⊥AC.23.如图①,点A,E,F,C在同一条直线上,且AE=CF,过点E,F分别作DE⊥AC,BF⊥AC,垂足分别为E,F,AB=CD.(1)若EF与BD相交于点G,则EG与FG相等吗?请说明理由;(2)若将图①中△DEC沿AC移动到如图②所示的位置,其余条件不变,则(1)中的结论是否仍成立?不必说明理由.24.【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,请根据小明的方法思考:(1)由已知和作图能得到△ADC≌△EDB的理由是 A.SSS B.SAS C.AAS D.HL(2)求得AD的取值范围是 A.6<AD<8 B.6≤AD≤8 C.1<AD<7 D.1≤AD≤7【方法感悟】解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图2,已知:CD=AB,∠BDA=∠BAD,AE是△ABD的中线,求证:∠C=∠BAE.答案一.选择题A.D.A.B.C.B.A.B.B.B.D.D.二.填空题13.70°.14.55°.15.5.16.18.三.解答题17.解:∵△ABE≌△ACD,∴∠C=∠B=70°,∴∠CAE=∠AEB﹣∠C=5°.18.证明:∵∠ABD+∠4=180°∠ABC+∠3=180°,且∠3=∠4,∴∠ABD=∠ABC在△ADB和△ACB中,,∴△ADB≌△ACB(ASA),∴BD=BC.19.证明:∵∠CAE=∠BAD,∴∠CAE+∠EAB=∠BAD+∠EAB,∴∠BAC=∠DAE,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),∴∠B=∠D.20.(1)证明:∵AB∥DE,∴∠ABC=∠DEF,在△ABC与△DEF中∴△ABC≌△DEF;(2)∵△ABC≌△DEF,∴BC=EF,∴BF+FC=EC+FC,∴BF=EC,∵BE=10m,BF=3m,∴FC=10﹣3﹣3=4m.21.(1)解:河的宽度是5m;(2)证明:由作法知,BC=DC,∠ABC=∠EDC=90°,在Rt△ABC和Rt△EDC中,,∴Rt△ABC≌Rt△EDC(ASA),∴AB=ED,即他们的做法是正确的.22.证明:(1)∵AD为△ABC的边BC上的高,∴△BDF和△ADC为直角三角形.∴∠BDF=∠ADC=90°.在Rt△BFD和Rt△ACD中,,∴Rt△△BFD≌Rt△ACD(HL);(2)∵△BDF≌△ADC,∴∠DBF=∠DAC.∵∠AFE与∠BFD是对顶角,∴∠BDF=∠AEF=90°,∴BE⊥AC.23.解:(1)EG=FG,理由如下:∵AE=CF,∴AE+EF=CF+EF,即AF=CE,∵DE⊥AC,BF⊥AC,∴∠AFB=∠CED=90°,在Rt△ABF和Rt△CDE中,,∴Rt△ABF≌Rt△CDE(HL),∴BF=DE,在△DEG和△BFG中,,∴△DEG≌△BFG(AAS),∴EG=FG;(2)(1)中的结论仍成立,理由如下:同(1)得:Rt△ABF≌Rt△CDE(HL),∴BF=DE,在△DEG和△BFG中,,∴△DEG≌△BFG(AAS),∴EG=FG.24.(1)解:∵在△ADC和△EDB中,,∴△ADC≌△EDB(SAS),故答案为:B;(2)解:∵由(1)知:△ADC≌△EDB,∴BE=AC=6,AE=2AD,∵在△ABE中,AB=8,由三角形三边关系定理得:8﹣6<2AD<8+6,∴1<AD<7,故答案为:C.(3)证明:如图,延长AE到F,使EF=AE,连接DF,∵AE是△ABD的中线∴BE=ED,在△ABE与△FDE中,,∴△ABE≌△FDE(SAS),∴AB=DF,∠BAE=∠EFD,∵∠ADB是△ADC的外角,∴∠DAC+∠ACD=∠ADB=∠BAD,∴∠BAE+∠EAD=∠BAD,∠BAE=∠EFD,∴∠EFD+∠EAD=∠DAC+∠ACD,∴∠ADF=∠ADC,∵AB=DC,∴DF=DC,在△ADF与△ADC中,,∴△ADF≌△ADC(SAS)∴∠C=∠AFD=∠BAE.。
人教版八年级数学上册试题 第12章 全等三角形 单元测试卷 (含解析)
第12章《全等三角形》单元测试卷一、单选题(本大题共10小题,每小题3分,共30分)1.老师布置了一份家庭作业:用三根小木棍首尾相连拼出一个三角形,三根小木棍的长度分别为5、9、10.5,并且只能对10.5的小木棍进行裁切(裁切后,参与拼图的小木棍的长度为整数),则同学们最多能拼出不同的三角形的个数为( )A .4B .5C .6D .72.如图,点B ,F ,C ,E 在同一条直线上,点A ,D 在直线BE 的两侧,AB ∥DE ,BF =CE ,添加一个适当的条件后,仍不能使得△ABC ≌△DEF ( )A .AC =DFB .AC ∥DF C .∠A =∠D D .AB =DE3.如图,的两条中线AD 、BE 交于点F ,若四边形CDFE 的面积为17,则的面积是( )A .54B .51C .42D .414.已知中,是边上的高,平分.若,,,则的度数等于( )A.B .C .D .5.如图,在四边形中,平分,,,,则面积的最大值为( )cm cm cm cm ABC ABC ABC CD AB CE ACB ∠A m ∠=︒B n ∠=︒m n ≠DCE ∠12m ︒12n ︒()12m n ︒-︒12m n ︒-︒ABDC AD BAC ∠AD DC ⊥2AC AB -=8BC =BDCA .B .C .D .6.如图,,,则下列结论错误的是( )A .≌B .≌C .D .7.如图,在正方形中,对角线相交于点O .E 、F 分别为上一点,且,连接.若,则的度数为( )A .B .C .D .8.如图,在△ABC 中,AB=BC ,,点D 是BC 的中点,BF ⊥AD ,垂足为E ,BF 交AC 于点F ,连接DF.下列结论正确的是()A .∠1=∠3B .∠2=∠3C .∠3=∠4D .∠4=∠59.如图,在四边形ABCD 中,AB =AD ,∠B +∠ADC =180°,E 、F 分别是边BC 、CD 延长线上的点,∠EAF=∠BAD ,若DF =1,BE =5,则线段EF 的长为( )6834BE CD =B D ∠=∠∆BEF DCF∆ABC ∆ADE ∆AB AD =DF AC=ABCD AC BD 、AC BD 、OE OF =AF BE EF ,,25AFE ∠=︒CBE ∠55︒65︒45︒70︒90ABC ∠=︒12A .3B .4C .5D .610.如图,∠DAC 与∠ACE 的平分线相交于点P ,且PC =AB +AC ,若,则∠B 的度数是( )A .100°B .105°C .110°D .120°二、填空题(本大题共8小题,每小题4分,共32分)11.已知三角形的两边的长分别为2cm 和8cm ,设第三边中线的长为cm ,则的取值范围是12.如图,在中,的平分线与的外角平分线交于点.(1)当与满足 的关系时,;(2)当时, .13.我们把两个不全等但面积相等的三角形叫做一对偏等积三角形.已知与是一对面积都等于的偏等积三角形,且,,那么的长等于 (结果用含和的代数式表示).14.如图,在中,,以为斜边作,,E 为上一点,连接、,且满足,若,,则 的长为.60PAD ∠=︒x x ABC ABC ∠ACB ∠P A ∠ABC ∠PC AB ∥72A ∠=︒P ∠=ABC DEF S AB AC DE DF ===BC a =EF a S ABC AB AC =AB Rt ADB 90ADB ∠=︒BD AE CE 2BAC DAE ∠=∠17CE =10BE =DE15.如图,和都为等腰直角三角形,,五边形面积为,求 .16.如图,已知等边△ABC ,AB=6,点D 在AB 上,点F 在AC 的延长线上,BD=CF ,DF 交BC 于点P ,作DE ⊥BC 与点E ,则EP 的长是 .17.如图,等腰中,,,为内一点,且,,则 .18.如图,在,中,,,,C ,D ,E 三点在同一直线上,连接,以下四个结论ABC AED △90ABC AED ∠=∠=︒ABCDE S 2BE S =ABC AB AC =70BAC ∠=︒O ABC 5OCB ∠=︒25ABO ∠=︒OAC ∠=ABC ADE V 90BAC DAE ∠=∠=︒AB AC =AD AE =BD BE ,①;②; ③; ④.其中结论正确的是 .(把正确结论的序号填在横线上).三、解答题(本大题共6小题,共58分)19.(8分)已知:,求作一个,使,且.20.(8分)如图,在Rt ∆ABC 中,∠BAC =90°,∠ABC =60°,AD ,CE 分别平分∠BAC ,∠ACB .(1) 求∠AOE 得度数; (2) 求证:AC=AE +CD .BD CE =90ACE DBC ∠+∠=︒BD CE ⊥180BAE DAC ∠+∠=︒ABC BCD △BCD ABC S S =V V AD AB =21.(10分)在四边形中,,,是上一点,是延长线上一点,且.(1)试说明:;(2)在图中,若,,在上且,试猜想、、之间的数量关系并证明所归纳结论;(3)若,,G 在上,满足什么条件时,(2)中结论仍然成立?(只写结果不要证明).22.(10分)已知线段直线于点,点在直线上,分别以,为边作等边和△ADE ,直线交直线于点.(1)当点F 在线段上时,如图1,试说明:(ⅰ).ABDC DC DB =180C ABD ∠+∠=︒E AC F AB CE BF =DE DF =60CAB ∠=︒120CDB ∠=︒G AB 60EDG ∠=︒CE EG BG CAB α∠=180CDB α∠=︒-AB EDG ∠AB ⊥l B D l AB AD ABC CE l F BD BD CE =(ⅱ).(2)当点F 在线段延长线上时,如图2,请写出线段,,之间的关系,并说明理由.23.(10分)在中,,分别过点A 、B 两点作过点C 的直线m 的垂线,垂足分别为点D 、E .(1)如图1,当,点A 、B 在直线m 的同侧时,求证:;(2)如图2,当,点A 、B 在直线m 的异侧时,请问(1)中有关于线段、和三条线段的数量关系的结论还成立吗?若成立,请你给出证明;若不成立,请给出正确结论,并说明理由;(3)如图3,当,,点A 、B 在直线m 的同侧时,一动点M 以每秒的速度从A 点出发沿A →C →B 路径向终点B 运动,同时另一动点N 以每秒的速度从B点出发DF CE CF =-BD DF CE CF ABC 90ACB ∠=︒AC CB =DE AD BE =+AC CB =DE AD BE 16cm AC =30cm CB =2cm 3cm沿B →C →A 路径向终点A 运动,两点都要到达相应的终点时才能停止运动.在运动过程中,分别过点M 和点N 作于P ,于Q .设运动时间为t 秒,当t 为何值时,与全等?24.(12分)在等边的顶点,处各有一只蜗牛,它们同时出发,分别以相同的速度由向和由向爬行,经过分钟后,它们分别爬行到,处,请问:MP m ⊥NQ m ⊥MPC NQC ABC A C A B C A t D E(1)如图1,爬行过程中,和的数量关系是________;(2)如图2,当蜗牛们分别爬行到线段,的延长线上的,处时,若的延长线与交于点,其他条件不变,蜗牛爬行过程中的大小将会保持不变,请你证明:;(3)如图3,如果将原题中“由向爬行”改为“沿着线段的延长线爬行,连接交于”,其他条件不变,求证:.CD BE AB CA D E EB CD Q CQE ∠60CQE ∠=︒C A BC DE AC F DF EF =答案:一、单选题1.C【分析】根据三角形的三边关系列出不等式组求解即可.【详解】解:设从10.5的小木棍上裁剪的线段长度为x ,则,即,∴整数x 的值为5、6 、7 、8、9、10,∴同学们最多能做出6个不同的三角形木架.故选:C .2.A【分析】根据AB ∥DE 证得∠B =∠E ,又已知BF =CE 证得BC =EF ,即已具备两个条件:一边一角,再依次添加选项中的条件即可判断.【详解】∵AB ∥DE ,∴∠B =∠E ,∵BF =CE ,∴BF +FC =CE +FC ,∴BC =EF ,若添加AC =DF ,则不能判定△ABC ≌△DEF ,故选项A 符合题意;若添加AC ∥DF ,则∠ACB =∠DFE ,可以判断△ABC ≌△DEF (ASA ),故选项B 不符合题意;若添加∠A =∠D ,可以判断△ABC ≌△DEF (AAS ),故选项C 不符合题意;若添加AB =DE ,可以判断△ABC ≌△DEF (SAS ),故选项D 不符合题意;故选:A .3.B【分析】连接CF ,依据中线的性质,推理可得 ,进而得出 ,据此可得结论.cm cm 9595x -<<+414x <<cm cm cm cm cm cm BCF BAF ACF S S S == 3ABC BAF S S =【详解】解:如图所示,连接CF ,∵△ABC 的两条中线AD 、BE 交于点F ,∴,∴,∵BE 是△ABC 的中线,FE 是△ACF 的中线,∴,,∴,同理可得,,∴,∴,故选:B .4.D【分析】题目由于在三角形中未确定大小,所以需要进行分类讨论:(1),作出符合题意的相应图形,由图可得:,根据角平分线的性质得:,在中,,故可得;(2)时,由图可得:,,在中,,故可得;综上可得:.【详解】解:(1)如图1所示:时,图1BCE ABD S S = 17ABF CDFE S S == 四边形BCE ABE S S = FCE FAE S S = 17BCF BAF S S == 17ACF BAF S S == 17BCF BAF ACF S S S === 331751ABC BAF S S ==⨯= A B ∠∠、A B ∠<∠DCE BCE BCD ∠=∠-∠()18022m n ACB BCE ︒-︒+︒∠∠==Rt BCD ∆9090BCD B n ∠=︒-∠=︒-︒()12DCE n m ∠=︒-︒A B ∠>∠DCE ACE ACD ∠=∠-∠()18022m n ACB ACE ︒-︒+︒∠∠==Rt ACD ∆9090ACD A m ∠=︒-∠=︒-︒()12DCE m n ∠=︒-︒12DCE m n ∠=︒-︒A B ∠<∠∵CD 是AB 边上的高,∴,,∵,,∴,∵CE 平分,∴,在中,,∴;(2)如图2所示:时,图2∵CD 是AB 边上的高,∴,,∵,,∴,∵CE 平分,∴,在中,,CD AB ⊥90CDB ∠=︒A m ∠=︒B n ∠=︒()180ACB m n ∠=︒-︒+︒ACB ∠()18022m n ACB ACE BCE ︒-︒+︒∠∠=∠==Rt BCD ∆9090BCD B n ∠=︒-∠=︒-︒()()()18019022m n DCE BCE BCD n n m ︒-︒+︒∠=∠-∠=-︒-︒=︒-︒A B ∠>∠CD AB ⊥90CDB ∠=︒A m ∠=︒B n ∠=︒()180ACB m n ∠=︒-︒+︒ACB ∠()18022m n ACB ACE BCE ︒-︒+︒∠∠=∠==Rt ACD ∆9090ACD A m ∠=︒-∠=︒-︒∴;综合(1)(2)两种情况可得:.故选:D .5.D【分析】本题考查了全等三角形的判定和性质,垂线段最短,分别延长与交于点,作交延长线于点,可证明,得到,求面积最大值转化成求线段的最大值即可,解题的关键是作出辅助线,构造出全等三角形.【详解】分别延长与 交于点, 作交 延长线于点 ,∵平分, ,∴,,又∵,∴,∴,,∵,∴,∴,∵,∴当点重合时,最大,最大值为,∴,故选:.6.D【分析】利用全等三角形的判定和性质逐一选项判断即可.【详解】解:在和中,()()()18019022m n DCE ACE ACD m m n ︒-︒+︒∠=∠-∠=-︒-︒=︒-︒12DCE m n ∠=︒-︒CD AB G GH CB ⊥CB H ()ASA ADG ADC ≌2BG =GH CD AB G GH CB ⊥CB H AD BAC ∠AD DC ⊥GAD CAD ∠=∠90ADG ADC ∠==︒AD AD =()ASA ADG ADC ≌AC AG =CD GD =2AC AB -=2BG =111·2222BDC BCG S S BC GH GH ==⨯= GH BC ⊥B H 、GH 224BDC S GH == D ∆BEF DCF ∆,∴≌(),故选项A 正确,不合题意;连接,∵≌(),∴,∴,∵,∴,∴,故选项C 正确,不合题意;∵,证不出,∴选项D 错误,符合题意;在和中,∴≌(),故选项B 正确,不合题意;故选:D7.B【分析】利用正方形的对角线互相垂直平分且相等,等腰直角三角形的性质,三角形的内角和定理和全等三角形的判定与性质解答即可.【详解】解:∵四边形是正方形,∴.∵,B D BFE DFC BE CD ∠=∠⎧⎪∠=∠⎨⎪=⎩∆BEF DCF ∆AAS BD ∆BEF DCF ∆AAS BF DF =FBD FDB ∠=∠ABC ADE ∠=∠ABD ADB ∠=∠AB AD =BF DF =DF AC =ABC ∆ADE ∆ABC ADE AB ADA A ∠=∠⎧⎪=⎨⎪∠=∠⎩ABC ∆ADE ∆ASA ABCD 90AOB AOD OA OB OD OC ∠=∠=︒===,OE OF =∴为等腰直角三角形,∴,∵,∴,∴.在和中,∴(SAS ).∴,∵,∴是等腰直角三角形,∴,∴.故选:B .8.A【分析】如图,过点C 作BC 的垂线,交BF 的延长线于点G ,则,先根据直角三角形两锐角互余可得,再根据三角形全等的判定定理与性质推出,又根据三角形全等的判定定理与性质推出,由此即可得出答案.【详解】如图,过点C 作BC 的垂线,交BF 的延长线于点G ,则,即在和中,OEF 45OEF OFE ∠=∠=︒25AFE ∠=︒70AFO AFE OFE ∠=∠+∠=︒20FAO ∠=︒AOF BOE △90OA OB AOF BOE OF OE =⎧⎪∠=∠=︒⎨⎪=⎩AOF BOE ≌△△20FAO EBO ∠=∠=︒OB OC =OBC △45OBC OCB ∠=∠=︒65CBE EBO OBC ∠=∠+∠=︒CG BC ⊥BAD CBG ∠=∠1G ∠=∠3G ∠=∠CG BC ⊥90BCG ∠=︒,90AB BC ABC =∠=︒45BAC ACB ∠∴∠==︒904545GCF BCG ACB ∴∠=∠-∠=︒-︒=︒BF AD⊥ 1190BAD CBG ∴∠+∠=∠+∠=︒BAD CBG∴∠=∠BAD ∆CBG ∆90BAD CBG AB BCABD BCG ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩点D 是BC 的中点在和中,故选:A .9.B【分析】在BE 上截取BG =DF ,先证△ADF ≌△ABG ,再证△AEG ≌△AEF 即可解答.【详解】在BE 上截取BG =DF ,∵∠B +∠ADC =180°,∠ADC +∠ADF =180°,∴∠B =∠ADF ,在△ADF 与△ABG 中,()BAD CBG ASA ∴∆≅∆,1BD CG G∴=∠=∠ CD BD CG∴==CDF ∆CGF ∆45CD CG DCF GCF CF CF =⎧⎪∠=∠=︒⎨⎪=⎩()CDF CGF SAS ∴∆≅∆3G∴∠=∠13∠∠∴=AB AD B ADF BG DF =⎧⎪∠=∠⎨⎪=⎩∴△ADF ≌△ABG (SAS ),∴AG =AF ,∠FAD =∠GAB ,∵∠EAF =∠BAD ,∴∠FAE =∠GAE ,在△AEG 与△AEF 中,∴△AEG ≌△AEF (SAS )∴EF =EG =BE ﹣BG =BE ﹣DF =4.故选:B .10.A【分析】在射线AD 上截取,连接PM ,证明,可得,,然后证明,利用相似三角形的性质进行求解可得到结论.【详解】解:如下图,在射线A D 上截取,连接PM ,∵PA 平分,∴ ,在和中,,∴,∴,.∵,∴,∴.∵PC 平分,∴.12AG AF FAE GAE AE AE =⎧⎪∠=∠⎨⎪=⎩AM AC =PAM PAC ≌PM PC =PMA PCA ∠=∠BC PM AM AC =DAC ∠60PAM PAC ∠=∠=︒PAM △PAC △PA PA PAM PAC AM AC =⎧⎪∠=∠⎨⎪=⎩PAM PAC SAS ≌()PM PC =PMA PCA ∠=∠PC AB AC =+PC AB MA MB =+=PC PM BM ==ACE ∠PCA PCE ∠=∠如下图,延长MB ,PC 交于点G ,∵,∴.∵,∴,∴,∴,∴,∴,∴,∴,∴.∵,,,∴,∴,∴,∴,∴,∴,∴,∴.GCB PCE ∠=∠PMA GCB ∠=∠BGC PGM ∠=∠BGC PGM ∽GB GC GP GM=··GB GM GC GP =GB GB BM GC GC CP ⋅+=⋅+()()22GB GB BM GC GC CP +⋅=+⋅220GB GC GB BM GC CP -+⋅-⋅=()()()0GB GC GB GC PC GB GC +-+-=()()0GB GC GB GC PC -++=)0GB >0GC >0PC >0GB GC PC ++>0GB GC -=GB GC =∠=∠GBC GCB GBC BMP ∠=∠BC PM 180BMP B ∠+∠=︒180180ABC BMP PCA ∠=︒-∠=︒-∠∵,∴.∵,∴180°-∠PCA=2∠PCA-60°,∴,∴.故选:A .二、填空题11.3<x <5【分析】延长AD 至M 使DM=AD ,连接CM ,先说明△ABD ≌△CDM ,得到CM=AB=8,再求出2AD 的范围,最后求出AD 的范围.【详解】解:如图:AB=8,AC=2,延长AD 至M 使DM=AD ,连接CM在△ABD 和△CDM 中,∴△ABD ≌△MCD (SAS ),∴CM=AB=8.在△ACM 中:8-2<2x <8+2,解得:3<x <5.故答案为3<x <5.12.60PAM PAC ∠=∠=︒60BAC ∠=︒260ABC ACE BAC PCA ∠=∠-∠=∠-︒80PCA ∠=︒180********ABC PAC ∠=︒-∠=︒-︒=∠︒AD MD ADB MDCBD CD =⎧⎪∠=∠⎨⎪=⎩A ABC ∠=∠36︒【分析】(1)根据角平分线的性质平分,可得,再由两直线平行线同位角相等,内错角相等可得即可解答;(2)利用角平分线的性质和三角形的外角定理即可求解【详解】(1)解:平分,,,当时,,故答案为:;(2)解:平分,平分,,又,当时,,故答案为:13.【分析】本题考查全等三角形的判定和性质、等腰三角形的性质、三角形的面积等知识,由面积相等可得相应等式,作出三角形的高,作出辅助线构造三角形全等,证明三角形全等是是解题的关键.【详解】解:如图:,过作于,过作 交延长线于,延长到使,PC ACM ∠ACP PCM ∠=∠ABC PCM A ACP ∠=∠∠=∠,PC ACM ∠ACP PCM ∴∠=∠ PC AB ∥ABC PCM A ACP∴∠=∠∠=∠,ABC A∠=∠∴∴ABC A ∠=∠PC AB ∥ABC A ∠=∠ BP ABC ∠PC ACM ∠12ABP PBC ABC ∴∠=∠=∠,12ACP PCM ACM ∠=∠=∠ACM ABC A ∠=∠+∠ ,22PCM PBC A∴∠=∠+∠ PCM PBC P ∠=∠+∠222PBC P PBC A∴∠+∠=∠+∠2P A ∴∠=∠72A ∠=︒36P ∴∠=︒36︒4saAB AC DE DF ===C C M A B ⊥M F FN ED ⊥ED N BA K AK AB=12ABC S AB CM S == 12DEF S DE FN S ==,,,.故答案为:.14.【分析】延长至O 点,使得,连接,先证明,再证明CM FN∴=AC DF= Rt Rt (HL)AMC DNF ∴≌ MAC NDF∴∠=∠180CAK MAC ︒∠=-∠ 180EDF NDF︒∠=-∠CAK EDF∴∠=∠AK AC DE DF=== (SAS)ACK DFE ∴≌ EF CK ∴=2KBC S S= AK AC DE DF=== ABC ACB ∴∠=∠K ACK∠=∠1180902ACB ACK ABC K ︒︒∴∠+∠=∠+∠=⨯=90BCK ︒∴∠=122KBC S BC CK S ∴== BC a= 4S CK a ∴=4S EF a∴=4S a72ED OD DE =AO ≌ADO ADE V V,问题随之得解.【详解】延长至O 点,使得,连接,如图,∵,∴,∵,,∴△ADO ≌△ADE ,∴,,∴,∵,∴,∴,∵,,∴,∴,∵,,∴,∴,∵,∴,故答案为:.15.【分析】过点作,且,连接、,交于点,则是等腰直角三角形,证明,则,,则,根据EAC OAB ≌△△ED OD DE =AO 90ADB ∠=︒18090ADO ADB ∠=︒-∠=︒AD AD =OD DE =OAD EAD ∠=∠OA AE =2OAE EAD ∠=∠2BAC DAE ∠=∠BAC OAE ∠=∠EAC OAB ∠=∠OA AE =AB AC =EAC OAB ≌△△OB EC =17CE =10BE =17OB EC ==7OE OB EB =-=OD DE =1722DE OE ==722B BF BE ⊥BF BE =CF EF ,EF CD G BFE △ABE CBF △≌△ABE CBF S S =△△CGF DGE ≌CGF DGE S S =,即可求解.【详解】解:如图所示,过点作,且,连接、,交于点,则是等腰直角三角形,∵和都为等腰直角三角形,,∴∵,∴∴∴∴,则∴,∴,∵∴又∴∴∴五边形面积∴故答案为:2.212BEF S S BE == B BF BE ⊥BF BE =CF EF ,EF CD G BFE △ABC AED △90ABC AED ∠=∠=︒,BA BC AE AD==BF BE ⊥90FBE ∠=︒ABE EBC FBC EBC∠+∠=∠+∠ABE CBF∠=∠ABE CBF △≌△ABE CBFS S =△△AE CF =AEB CFB∠=∠DE CF =45,45AEB GED CFB CFG∠=︒-∠∠=︒-∠CFG DEG∠=∠CGF DGE∠=∠CGF DGE≌CGF DGES S = ABCDE 212BEF S S BE == 2BE S =216.3【详解】如图,过点D 作DH ∥AC 交BC 于H ,∵△ABC 是等边三角形,∴△BDH 也是等边三角形,∴BD=HD ,∵BD=CF ,∴HD=CF ,∵DH ∥AC ,∴∠PCF=∠PHD ,在△PCF 和△PHD 中,∴△PCF ≌△PHD (AAS ),∴PC=PH ,∵△BDH 是等边三角形,DE ⊥BC ,∴BE=EH ,∴EP=EH+HP= BC ,∵等边△ABC ,AB=6,∴EP=╳6=3.故答案是:3.17.【分析】此题考查了全等三角形的判定与性质、等腰三角形的性质,延长交 的角平PCF PHD CPF HPD HD CF ∠∠⎧⎪∠∠⎨⎪⎩===121265︒BO BAC ∠分线于点,连结,根据等腰三角形的性质及角平分线定义求出,,进而得出,利用证明,根据全等三角形的性质求出,,根据角的和差及三角形内角和定理求出,结合平角定义求出,利用证明,根据全等三角形的性质得出,再根据等腰三角形的性质及角的和差求解即可.【详解】如图,延长交 的角平分线于点,连接.平分,,,,,,,,在和中,,,,,,,,,,,在和中,P CP 55ABC ACB ∠=∠=︒35BAP CAP ∠=∠=︒30OBC ∠=︒SAS APB ACP ≌△△25ABP ACP ∠=∠=︒APB APC ∠=∠120BPC ∠=︒120APC BPC ∠=︒=∠ASA APC OPC ≌△△AP OP =BO BAC ∠P CP AP BAC ∠70BAC ∠=︒35BAP CAP ∴∠=∠=︒AB AC = 70BAC ∠=︒55ABC ACB ∴∠=∠=︒25ABO ∠=︒ 30OBC ABC ABO ∴∠=∠-∠=︒APB △ACP △AB AC BAP CAP AP AP =⎧⎪∠=∠⎨⎪=⎩(SAS)APB ACP ∴ ≌25ABP ACP ∴∠=∠=︒APB APC ∠=∠30BCP ACB ACP ∴∠=∠-∠=︒180120BPC PBC BCP ∴∠=︒-∠-∠=︒360120240APB APC ∴∠+∠=︒-︒=︒120APB APC BPC ∴∠=∠=︒=∠5OCB ∠=︒ 25OCP BCP OCB ACP ∴∠=∠-∠=︒=∠APC △OPC,,,,,故答案为:.18.①③④【分析】由 ,利用等式的性质得到夹角相等,从而得出三角形 与三角形全等,由全等三角形的对应边相等得到,本选项正确;由三角形与三角形全等,得到一对角相等,由等腰直角三角形的性质得到,进而得到 ,本选项不正确;再利用等腰直角三角形的性质及等量代换得到,本选项正确;利用周角减去两个直角可得答案;【详解】解: ,即:在 和 中,本选项正确;为等腰直角三角形,,本选项不正确;ACP OCP CP CPAPC OPC ∠=∠⎧⎪=⎨⎪∠=∠⎩(ASA)APC OPC ∴ ≌AP OP ∴=1(180)302OAP AOP APO ∴∠=∠=⨯︒-∠=︒65OAC OAP CAP ∴∠=∠+∠=︒65︒①AB AC =AD AE =ABD ACE BD CE =②ABD ACE 45ABD DBC ∠+∠=︒45ACE DBC ∠+∠=︒③BD CE ⊥④90BAC DAE ∠=∠=︒① BAC CAD DAE CAD∴∠+∠=∠+∠BAD CAE∠=∠BAD CAE V AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩()SAS BAD CAE ∴≌ BD CE ∴=ABC ②45ABC ACB ∴∠=∠=︒45ABD DBC ∴∠+∠=︒BAD CAE ≌ ABD ACE ∴∠=∠45ACE DBC ∴∠+∠=︒即,∴,本选项正确;,本此选项正确;故答案为:①③④.三、解答题19.解:如图过点A 作BC 的平行线AE ,再在AE 上截取,交AE 于点D ,连接BD ,CD 即可得到△BCD .20.(1)解:∵,∴,∵平分,平分,∴,,∵是的外角,∴;(2)证明:在上截取,连接,45ABD DBC ∠+∠=︒③ 45ACE DBC ∴∠+∠=︒90DBC DCB DBC ACE ACB ∴∠+∠=∠+∠+∠=︒90BDC ∠=︒BD CE ⊥90BAC DAE ∠=∠=︒④ 3609090180BAE DAC ∴∠+∠=︒-︒-︒=︒AD AB =9060BAC ABC ∠=︒∠=︒,30ACB ∠=︒AD BAC ∠CE BAC ∠CAD ∠=1245BAC ∠=︒ACE ∠=1215ACB ∠=︒AOE ∠AOC 60AOE CAD ACE ∠=∠+∠=︒AC CF CD =OF∵平分,∴,在和中,,∴ ,∴,∵,∴,∴,∴,∵平分,∴,在和中, ∴ ,∴,∵,∴.21.(1),,(2)猜想:CE ACB ∠DCO FCO ∠=∠DCO FCO CD CF DCO FCO OC OC =⎧⎪∠=∠⎨⎪=⎩()DCO FCO SAS ≌COD COF ∠=∠60AOE =︒∠60COD COF ∠=∠=︒18060AOF AOE COF ∠=︒-∠-∠==︒AOE AOF ∠=∠AD BAC ∠EAO FAO ∠=∠EAO FAO EAO FAO AO AOAOE AOF ∠=∠⎧⎪=⎨⎪∠=∠⎩()EAO FAO ASA ≌AE AF =AC AF CF =+=+AC AE CD 180ABD DBF ∠+∠= 180C ABD ∠+∠= C DBF∴∠=∠CE BF = DC DB=CED BFD∴ ≌DE DF∴=CE BG EG+=由(1)可知,,,,得证;(3)当成立由(1)可知,,,,得证.22.(1)(ⅰ)证明:和都是等边三角形,,,,CED BFD≌CDE BDF ∴∠=∠ED FD =CE BF=120CDB ∠= 60EDG ∠=1206060CED BDG CDB EDG ∴∠+∠=∠-∠=-=60BDG BDF ∴∠+∠=60GDF EDG∴∠==∠ DG DG= EDG FDG∴ ≌EG GF∴=GF BG BF=+ EG BG CE∴=+1902EDG α∠=- CED BFD≌CDE BDF ∴∠=∠ED FD =CE BF=180CDB α∠=- 90EDG α∠=-o 11(180)(90)9022CED BDG CDB EDG ααα∴∠+∠=∠-∠=---=- 1902BDG BDF α∴∠+∠=- 1902GDF EDG α∴∠=-=∠ DG DG= EDG FDG∴ ≌EG GF∴=GF BG BF=+ EG BG CE∴=+ABC ADE V AB AC ∴=AD AE =60BAC DAE ACB ABC ∠=∠=∠=∠=︒.在和中,,.(ⅱ),,.直线,,,.点,,在一条线上,,,,.,,即;(2)解:同理证明,,,,,,,即.23.(1)证明:∵,∴,∵于D ,于E ,∴,,∴,在和中,BAD CAE ∴∠=∠ABD △ACE △,,,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩ABD ACE ∴ ≌BD CE ∴=ABD ACE ≌BD CE ∴=ABD ACE ∠=∠AB ⊥Q l 90ABD ∴∠=︒90ACE ∠=︒30CBF ∠=︒ E C F 60ACB ∠=︒30BCF ∴∠=︒CBF BCF ∴∠=∠BF CF ∴=BD DF BF =+ BD DF CF CE ∴=+=DF CE CF=-ABD ACE ≌△△90ABD ACE ∴∠=∠=︒30FBC FCB ∠=∠=︒BD CE =BF CF ∴=BF BD DF ∴=+CF BD DF ∴=+DF CF CE =-90ACB ∠=︒90ACD BCE ∠∠+=︒AD m ⊥BE m ⊥90ADC CEB ∠∠==︒90BCE CBE ∠∠+=︒ACD CBE ∠∠=ADC CEB,∴,∴,,∴;(2)解:结论:;理由:∵,,∴,∵,∴,∴,在和中,,∴,∴,,∴;(3)解:①当时,点M 在上,点N 在上,如图,∵,∴,解得:,不合题意;②当时,点M 在上,点N 也在上,如图,ADC CEB ACD CBE AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS ADC CEB ≌AD CE =DC BE =DE DC CE BE AD =+=+DE AD BE =-AD m ⊥BE m ⊥90ADC CEB ∠∠==︒90ACB ∠=︒90ACD CAD ACD BCE ∠∠∠∠+=+=︒CAD BCE ∠∠=ACD CBE ADC CEB CAD BCE AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS ACD CBE ≌AD CE =CD BE =DE CE CD AD BE =-=-08t ≤<AC BC MC NC =162303t t -=-14t =810t ≤<BC BC∵,∴点M 与点N 重合,∴,解得:;③当时,点M 在上,点N 在上,如图,∵,∴,解得:;④当时,点N 停在点A 处,点M 在上,如图,∵,∴,解得:;综上所述:当或14或16秒时,与全等.24.(1)解:,理由如下:为等边三角形,MC NC =216303t t =﹣﹣9.2t =46103t ≤<BC AC MC NC =216330t t -=-14t =46233t ≤<BC MC NC =21616t -=16t =9.2t =MPC NQC CD BE = ABC,,由题意得:,在和中,,,;(2)证明如下:由(1)可知,,,,;(3)证明:过点作交于,,为等边三角形,为等边三角形,,,,在和中,,,.∴60A ACB ∠=∠=︒AC BC =AD CE =ADC △CEB AD CE A ACB AC CB =⎧⎪∠=∠⎨⎪=⎩∴()SAS ADC CEB ≌∴CD BE =()SAS ADC CEB ≌∴ADC E ∠=∠ 60E ABE BAC ∠+∠=∠=︒DBQ ABE ∠=∠∴60CQE ADC DBQ ∠=∠+∠=︒D DH BC ∥AC H ∴HDF CEF ∠=∠ ABC ∴ADH ∴HD AD = AD CE =∴DH CE =DFH EFC HDF CEF DFH EFC DH CE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AAS DFH EFC ≌∴DF EF =。
人教版数学八年级上册 第十二章 全等三角形单元测试(含答案)
人教版数学八年级上册第十二章全等三角形一、单选题(每题3分,共30分)1.已知△ABC≌△DEF,则下列说法错误的是()A.∠A=∠D B.AC=DF C.AB=EF D.∠B=∠E2.如图,工人师傅设计了一种测零件内径AB的卡钳,卡钳交叉点O为AA′、BB′的中点,只要量出A′B′的长度,就可以知道该零件内径AB的长度.依据的数学基本事实是()A.两角和它们的夹边分别相等的两个三角形全等B.两边和它们的夹角分别相等的两个三角形全等C.三边分别相等的两个三角形全等D.两点之间线段最短3.如图,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=()A.40°B.60°C.46°D.50°4.根据下列已知条件,能画出唯一△ABC的是( )A.AB=3,BC=4,AC=8B.∠A=100°,∠B=45°,AB=5C.AB=3,BC=5,∠A=75°D.∠C=90°,∠A=30°,∠B=60°5.如图,△ABC≌△A′B′C′,边B′C′过点A且平分∠BAC交BC于点D,∠B=24°,∠CDB′=96°,则∠C′的度数为()A.24 °B.36 °C.45 °D.60 °6.如图,为了促进当地旅游发展,某地要在三条公路旁边的平地上修建一个游客中心,要使这个游客中心到三条公路的距离相等,游客中心可以选择的位置有()种A.一B.二C.三D.四7.用直尺和圆规作一个角等于已知角的示意图,如图所示,则说明∠A′O′B′=∠AOB是因为图中的两个三角形△COD≌△C′O′D′,那么判定这两个三角形全等的依据是( )A.SAS B.SSS C.ASA D.AAS8.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,AB=10,S△ABD=20,则CD的长为( )A.3B.4C.5D.69.如图,有两个长度相同的滑梯靠在一面竖直墙上.已知左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,若DF=6m,DE=8m,AD=4m,则BF等于()A.10m B.12m C.16m D.18m10.如图,任意画一个∠BAC=60°的△ABC,再分别作△ABC的两角的角平分线BE和CD,BE、CD相交于点P,连接AP,有以下结论:①∠BPC=120°;②AP平分∠BAC;③AD=AE;④PD=PE;⑤BD+CE=BC,其中正确的结论有( )A.2个B.3个C.4个D.5个二、填空题(每题3分,共24分)11.如图,若AB=DE,BE=CF,要证△ABF≌△DEC需补充一个条件.(任填一个).12.如图,亮亮书上的三角形被墨迹污染了一部分,借助剩余的图形,他很快就画出一个三角形与书上的三角形全等,这两个三角形全等的依据是.13.一个三角形的三边为3、5、x,另一个三角形的三边为y、3、6,若这两个三角形全等,则x +y = .14.如图,已知AB=AC,D为∠BAC的角平分线上的一点,连接BD,CD;如图2,已知AB=AC,D、E为∠BAC的角平分线上的两点,连接BD,CD,BE,CE;如图3,已知AB=AC,D、E、F为∠BAC的角平分线上的三点,连接BD,CD,BE,CE,BF,CF;…,依次规律,第5个图形中有全等三角形的对数是.15.已知:点A的坐标为(1,−1),点B的坐标为(1,5),点C的坐标为(4,3),如果要使△ABD与△ABC全等,且C、D不重合,那么点D的坐标是.16.如图,已知O是△ABC的两条角平分线BO,CO的交点,过点O作OD⊥BC于点D,且OD=3,若△ABC的周长是24,则△ABC的面积是.17.在△ABC中,已知AB=6,AC=5,AD是BC边上的中线,则AD取值范围是.18.如图所示,锐角△ABC中,D,E分别是AB,AC边上的点,连结BE、CD交于点F.将△ADC和△AEB分别绕着边AB、AC翻折得到△ADC'和△AEB',且EB'∥DC'∥BC,若∠BAC=42°,则∠BFC的大小是.三、解答题(共46分)19.如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,AB=6,FC=4,求线段DB的长.20.如图,△ABC的一个顶点A在△DEC的边DE上,AB交CD于点F,且AC=EC,∠1=∠2=∠3.试说明AB与DE的大小关系.21.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为点D,E.(1)求证:△ACD≌△CBE;(2)若BE=5,AD=12,求DE的长.22.如图,CA=CB,CD=CE,∠ACB=∠DCE,AD,BE交于点H,连接CH.求证:(1)△ACD≌△BCE;(2)HC平分∠AHE.23.已知,如图,AD∥BC,AE平分∠BAD,点E是CD的中点.(1)求证:AB=AD+BC(2)求证:AE⊥BE参考答案:1.C2.B3.D4.B5.B6.D7.B8.B9.D10.C11.AF=DC(答案不唯一)12.ASA13.1114.1515.(4,1)或(−2,3)或(−2,1)16.3617.0.5<AD<5.518.96°19.∵CF∥AB,∴∠A=∠FCE,∠ADE=∠F,在△ADE和△FCE中{∠A=∠FCE∠ADE=∠FDE=FE∴△ADE≌△CFE(AAS),∴AD=CF=4,∵AB=6,∴DB=AB−AD=6−4=2.20.∵∠1=∠2,∠AFD=∠BFC,∴∠B=∠D,又∵∠2=∠3,∴∠2+∠ACD=∠3+∠ACD,即∠BCA=∠DCE,在△ABC和△EDC中,{∠B=∠D∠BCA=∠DCEAB=ED∴△ABC≌△EDC (AAS),∴AB=ED.21.(1)证明:∵AD⊥CE,BE⊥CE,∴∠ADC=∠E=90°∴∠A+∠DCA=90°,∵∠ACB=∠DCA+∠BCE=90°,∴∠A=∠BCE,在△ACD和△CBE中,{∠ADC=∠E∠A=∠BCE,AC=BC∴△ACD≌△CBE(AAS);(2)由(1)得:△ACD≌△CBE,∴CE=AD=12,BE=CD=5,∴DE=CE﹣CD=12﹣5=7.22.(1)证明:∵∠ACB=∠DCE,∴∠ACD=∠BCE在△ACD和△BCE中,{CA=CB,∠ACD=∠BCE,CD=CE,∴△ACD≌△BCE(SAS)(2)证明:如图:过点C作CM⊥AD于点M,CN⊥BE于点N∵△ACD≌△BCE∴∠CAM =∠CBN ,在△ACM 和△BCN 中,{∠CAM =∠CBN,∠AMC =∠BNC =90°,AC =BC,∴△ACM≌△BCN ,∴CM =CN又CM ⊥AH ,CN ⊥HE ,∴HC 平分∠AHE23.解:如图:延长AE 交BC 的延长线于点F ,∵AE 平分∠BAD∴∠BAF =∠DAE∵E 是DC 中点∴DE=CE∵AD ∥BC∴∠DAE =∠F∴∠BAF =∠F∴AB=BF又∵在△FCE 和△ADE 中,{∠DAE =∠F∠DEA =∠CEF DE =CE∴△FCE≌△ADE,∴AD=CF∴AB=BF=BC+CF=BC+AD 即AB=AD+BC。
《第十二章 全等三角形》单元测试卷及答案(共六套)
《第十二章 全等三角形》单元测试卷(一)答题时间:120 满分:150分一、选择题 (每题3分,共30分。
每题只有一个正确答案,请将正确答案的代号填在下面的表格中)题号 1 2 3 4 5 6 7 8 9 10 答案1.下列判断中错误..的是( ) A .有两角和一边对应相等的两个三角形全等 B .有两边和一角对应相等的两个三角形全等C .有两边和其中一边上的中线对应相等的两个三角形全等D .有一边对应相等的两个等边三角形全等2.如图,和均是等边三角形,分别与交于点,有如下结论:①;②;③. 其中,正确结论的个数是( ) A .3个B .2个C .1个D .0个3.某同学把一块三角形的玻璃打碎了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是( ) A .带①去 B .带②去 C .带③去 D .带①②③去4.△ABC ≌△DEF ,AB=2,AC =4,若△DEF 的周长为偶数, 则EF 的取值为( )A .3B .4C .5D .3或4或55.如图,已知,△ABC 的三个元素,则甲、乙、丙三个三角形中,和△ABC 全等的图形是( ) A .甲和乙 B .乙和丙DAC △EBC △AE BD ,CD CE ,M N ,ACE DCB △≌△CM CN =AC DN =(第3题)BECD ANM (第2题)(第5题)C .只有乙D .只有丙6.三角形ABC 的三条内角平分线为AE 、BF 、CG 、下面的说法中正确的个数有( ) ①△ABC 的内角平分线上的点到三边距离相等 ②三角形的三条内角平分线交于一点 ③三角形的内角平分线位于三角形的内部④三角形的任一内角平分线将三角形分成面积相等的两部分 A .1个 B .2个 C .3个 D .4个7.如图,长方形ABCD 沿AE 折叠,使D 点落在BC 边上的F 点处,∠BAF =600,那么∠DAE 等于( ) A .150 B .300 C .450 D .6008.如图所示,△ABE 和△ADC 是△ABC 分别沿着AB ,AC 边翻折180°形成的,若∠1∶∠2∶∠3=28∶5∶3,则∠α的度数为( ) A .80° B .100° C .60° D .45°9.在△ABC 和△A B C '''中,已知A A '∠=∠,AB A B ''=,在下面判断中错误的是( )A.若添加条件AC A C ''=,则△ABC ≌△A B C '''B.若添加条件BC B C ''=,则△ABC ≌△A B C '''C.若添加条件B B '∠=∠,则△ABC ≌△A B C '''D.若添加条件C C '∠=∠,则△ABC ≌△A B C '''10.如图,在△ABC 中,∠C =90,AD 平分∠BAC ,DE ⊥AB 于E , 则下列结论:①AD 平分∠CDE ;②∠BAC =∠BDE ; ③DE 平分∠ADB ;④BE +AC =AB .其中正确的有( ) A.1个 B.2个C.3个D.4个二、填空题(每题3分,共30)11.如图,AB ,CD 相交于点O ,AD =CB ,请你补充一个条件,使得△AOD ≌△COB .你补充的条件是______________________________.(第7题)(第8题) 第10题12.如图,AC ,BD 相交于点O ,AC =BD ,AB =CD ,写出图中两对相等的角______. 13.如图,△ABC 中,∠C =90°,AD 平分∠BAC ,AB =5,CD =2,则△ABD 的面积是______.14.如图,直线AE ∥BD ,点C 在BD 上,若AE =4,BD =8,△ABD 的面积为16,则 的面积为______.15.在△ABC 中,∠C =90°,BC =4CM ,∠BAC 的平分线交BC 于D ,且BD :DC =5:3,则D 到AB 的距离为_____________.16.如图,△ABC 是不等边三角形,DE =BC ,以D ,E 为两个顶点作位置不同的三角形,使所作的三角形与△ABC 全等,这样的三角形最多可以画出_____个.17.如图,分别是锐角三角形和锐角三角形中边上的高,且.若使,请你补充条件___________.(填写一个你认为适当的条件即可)18.如图,如果两个三角形的两条边和其中一条边上的高对应相等,那么这两个三角形的第三边所对的角的关系是__________.ACE △AD A D '',ABC A B C ''',BC B C ''AB A B AD A D ''''==,ABC A B C '''△≌△(第11题)AD OC B (第12题)ADOC B(第13题)ADCBAD CBE(第14题)(第16题)BDEABC D'A 'B'D'C (第17、18题) (第19题)19.如图,已知在中,平分,于,若,则的周长为 .20.在数学活动课上,小明提出这样一个问题:∠B =∠C =90,E 是BC 的中点,DE 平分∠ADC ,∠CED =35,如图16,则∠EAB 是多少度?大家一起热烈地讨论交流,小英第一个得出正确答案,是______.三、解答题(每题9分,共36分)21.如图,O 为码头,A ,B 两个灯塔与码头的距离相等,OA ,OB 为海岸线,一轮船从码头开出,计划沿∠AOB 的平分线航行,航行途中,测得轮船与灯塔A ,B 的距离相等,此时轮船有没有偏离航线?画出图形并说明你的理由.22.如图,在△ABC 中,BD =DC ,∠1=∠2,求证:AD ⊥BC .23.如图,OM 平分∠POQ ,MA ⊥OP ,MB ⊥OQ ,A 、B 为垂足,AB 交OM 于点N . 求证:∠OAB =∠OBAABC ∆90,,A AB AC CD ∠=︒=ACB ∠DE BC ⊥E 15cm BC =DEB △cm 00 ABO24.如图,已知AD ∥BC ,∠PAB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求证:AD +BC =AB .四、解答题(每题10分,共30分)25.如图,△ABC 中,AD 是∠CAB 的平分线,且AB =AC +CD ,求证:∠C =2∠B26.如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E ,BF ⊥AC 于F ,若AB =CD ,AF =CE ,BD 交AC 于点M . (1)求证:MB =MD ,ME =MF(2)当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.27.已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点, (1)求证:△AED ≌△EBC .PEDCBA DCBA(2)观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明):五、(每题12分,共24分)28.如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F . 求证:BD =2CE .29.已知:在△ABC 中,∠BAC =90,AB =AC ,AE 是过点A 的一条直线,且BD ⊥AE 于D ,CE ⊥AE 于E .(1)当直线AE 处于如图①的位置时,有BD =DE +CE ,请说明理由;(2)当直线AE 处于如图②的位置时,则BD 、DE 、CE 的关系如何?请说明理由; (3)归纳(1)、(2),请用简洁的语言表达BD 、DE 、CE 之间的关系.OEDCBAFE D CBA参考答案一、选择题1.B 2.B 3.C 4.B 5.B 6.B 7.A 8.A 9.B 10. C二、填空题11.∠A=∠C或∠ADO=∠CBO等(答案不唯一) 1 2.∠A=∠D或∠ABC=∠DCB 等(答案不唯一) 13.5 14.8 1 5.1.5cm 16.4 17.BD=B’D’或∠B=∠B’等(答案不唯一) 18.互补或相等 19.15 20.35三、解答题21.此时轮船没有偏离航线.画图及说理略22.证明:延长AD至H交BC于H;BD=DC;所以:∠DBC=∠角DCB;∠1=∠2;∠DBC+∠1=∠角DCB+∠2;∠ABC=∠ACB;所以:AB=AC;三角形ABD全等于三角形ACD;∠BAD=∠CAD;AD是等腰三角形的顶角平分线所以:AD垂直BC23.证明:因为AOM与MOB都为直角三角形、共用OM,且∠MOA=∠MOB所以MA=MB所以∠MAB=∠MBA因为∠OAM=∠OBM=90度所以∠OAB=90-∠MAB ∠OBA=90-∠MBA所以∠OAB=∠OBA24.证明:做BE的延长线,与AP相交于F点,∵PA//BC∴∠PAB+∠CBA=180°,又∵,AE,BE均为∠PAB和∠CBA的角平分线∴∠EAB+∠EBA=90°∴∠AEB=90°,EAB为直角三角形在三角形ABF中,AE⊥BF,且AE为∠FAB的角平分线∴三角形FAB为等腰三角形,AB=AF,BE=EF在三角形DEF与三角形BEC中,∠EBC=∠DFE,且BE=EF,∠DEF=∠CEB,∴三角形DEF与三角形BEC为全等三角形,∴DF=BC∴AB=AF=AD+DF=AD+BC四、25.证明:延长AC至E,使CE=CD,连接ED∵AB=AC+CD∴AE=AB∵AD平分∠CAB∴∠EAD=∠BAD∴AE=AB∠EAD=∠BADAD=AD∴△ADE≌△ADB∴∠E=∠B且∠ACD=∠E+∠CDE,CE=CD∴∠ACD=∠E+∠CDE=2∠E=2∠B即∠C=2∠B26.分析:通过证明两个直角三角形全等,即Rt△DEC≌Rt△BFA以及垂线的性质得出四边形BEDF是平行四边形.再根据平行四边形的性质得出结论.解答:解:(1)连接BE,DF.∵DE⊥AC于E,BF⊥AC于F,,∴∠DEC=∠BFA=90°,DE∥BF,在Rt△DEC和Rt△BFA中,∵AF=CE,AB=CD,∴Rt△DEC≌Rt△BFA,∴DE=BF.∴四边形BEDF是平行四边形.∴MB=MD,ME=MF;(2)连接BE,DF.∵DE⊥AC于E,BF⊥AC于F,,∴∠DEC=∠BFA=90°,DE∥BF,在Rt△DEC和Rt△BFA中,∵AF=CE,AB=CD,∴Rt△DEC≌Rt△BFA,∴DE=BF.∴四边形BEDF是平行四边形.∴MB=MD,ME=MF.(2)成立27.(1)证明:∵DC=1/2 AB,E为AB的中点,∴CD=BE=AE.又∵DC∥AB,∴四边形ADCE是平行四边形.∴CE=AD,CE∥AD.∴∠BEC=∠BAD.∴△BEC≌△EAD(2)△AEC,△CDA,△CDE五、 28.证明:因为∠CEB=∠CAB=90°所以:ABCE四点共元又因为:∠AB E=∠CB E所以:AE=CE所以:∠ECA=∠EAC取线段BD的中点G,连接AG,则:AG=BG=DG所以:∠GAB=∠ABG而:∠ECA=∠GBA (同弧上的圆周角相等)所以:∠ECA=∠EAC=∠GBA=∠GAB而:AC=AB所以:△AEC≌△AGB所以:EC=BG=DG所以:BD=2CE29解:(1)在△ABC中,∠BAC=90°,∴∠BAD=90°-∠EAC。
八年级数学上册《第12章 全等三角形》单元测试卷和答案详解
人教新版八年级上册《第12章全等三角形》单元测试卷(1)一.选择题(共10小题)1.已知图中的两个三角形全等,则∠1等于()A.72°B.60°C.50°D.58°2.如图,直线l、l′、l″表示三条相互交叉的公路,现计划建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有()A.一处B.二处C.三处D.四处3.如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是()A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF4.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD5.一块三角形玻璃样板不慎被小强同学碰破,成了四片完整四碎片(如图所示),聪明的小强经过仔细的考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板.你认为下列四个答案中考虑最全面的是()A.带其中的任意两块去都可以B.带1、2或2、3去就可以了C.带1、4或3、4去就可以了D.带1、4或2、4或3、4去均可6.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD =8,则点P到BC的距离是()A.8B.6C.4D.27.如图:若△ABE≌△ACF,且AB=5,AE=2,则EC的长为()A.2B.2.5C.3D.58.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE9.如图,AB⊥CD,且AB=CD.E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF =b,EF=c,则AD的长为()A.a+c B.b+c C.a﹣b+c D.a+b﹣c 10.如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是()A.50B.62C.65D.68二.填空题(共6小题)11.如图,点B、A、D、E在同一直线上,BD=AE,BC∥EF,要使△ABC≌△DEF,则只需添加一个适当的条件是.(只填一个即可)12.如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=.13.如图,AB=12m,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动分钟后,△CAP与△PQB全等.14.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为.15.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=°.16.如图,四边形ABCD的对角线AC、BD相交于点O,△ABO≌△ADO.下列结论:①AC⊥BD;②CB=CD;③△ABC≌△ADC;④DA=DC.其中所有正确结论的序号是.三.解答题(共9小题)17.计算:﹣(﹣2)﹣2×+.18.解不等式组,并把它的解集在数轴上表示出来.19.如图,在直线MN上求作一点P,使点P到射线OA和OB的距离相等.(要求用尺规作图,保留作图痕迹,不必写作法和证明过程)20.如图,在△ABC和△DEF中,点B、F、C、E在同一直线上BF=CE,AC∥DF且AC =DF.求证:AB∥DE.21.如图,点E,F在BC上,BE=CF,AB=DC,AF=DE,AF与DE相交于点G,求证:GE=GF.22.如图,△ADE的顶点D在△ABC的BC边上,且∠ABD=∠ADB,∠BAD=∠CAE,AC=AE.求证:BC=DE.23.如图,CD⊥AB,BE⊥AC,垂足分别为D,E,BE和CD相交于点O,OB=OC,连AO,求证:(1)△ODB≌△OEC;(2)∠1=∠2.24.如图,在△ABC中,AD为BC边上的中线,E为AC上一点,BE与AD交于点F,若∠FAE=∠AFE.求证:AC=BF.25.如图,将两个全等的直角三角形△ABD、△ACE拼在一起(图1),△ABD不动.(1)若将△ACE绕点A逆时针旋转,连接DE,M是DE的中点,连接MB、MC(图2),证明:MB=MC.(2)若将图1中的CE向上平移,∠CAE不变,连接DE,M是DE的中点,连接MB、MC(图3),判断并直接写出MB、MC的数量关系.(3)在(2)中,若∠CAE的大小改变(图4),其他条件不变,则(2)中的MB、MC 的数量关系还成立吗?说明理由.人教新版八年级上册《第12章全等三角形》单元测试卷(1)参考答案与试题解析一.选择题(共10小题)1.已知图中的两个三角形全等,则∠1等于()A.72°B.60°C.50°D.58°【考点】全等三角形的性质.【分析】根据三角形内角和定理求得∠2=58°;然后由全等三角形是性质得到∠1=∠2=58°.【解答】解:如图,由三角形内角和定理得到:∠2=180°﹣50°﹣72°=58°.∵图中的两个三角形全等,∴∠1=∠2=58°.故选:D.2.如图,直线l、l′、l″表示三条相互交叉的公路,现计划建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有()A.一处B.二处C.三处D.四处【考点】角平分线的性质.【分析】根据角平分线上的点到角的两边的距离相等作出图形即可得解.【解答】解:如图所示,加油站站的地址有四处.故选:D.3.如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是()A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF【考点】全等三角形的判定.【分析】根据全等三角形的判定,利用ASA、SAS、AAS即可得答案.【解答】解:∵∠B=∠DEF,AB=DE,∴添加∠A=∠D,利用ASA可得△ABC≌△DEF;∴添加BC=EF,利用SAS可得△ABC≌△DEF;∴添加∠ACB=∠F,利用AAS可得△ABC≌△DEF;故选:D.4.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD【考点】全等三角形的判定.【分析】欲使△ABE≌△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA添加条件,逐一证明即可.【解答】解:∵AB=AC,∠A为公共角,A、如添加∠B=∠C,利用ASA即可证明△ABE≌△ACD;B、如添AD=AE,利用SAS即可证明△ABE≌△ACD;C、如添BD=CE,等量关系可得AD=AE,利用SAS即可证明△ABE≌△ACD;D、如添BE=CD,因为SSA,不能证明△ABE≌△ACD,所以此选项不能作为添加的条件.故选:D.5.一块三角形玻璃样板不慎被小强同学碰破,成了四片完整四碎片(如图所示),聪明的小强经过仔细的考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板.你认为下列四个答案中考虑最全面的是()A.带其中的任意两块去都可以B.带1、2或2、3去就可以了C.带1、4或3、4去就可以了D.带1、4或2、4或3、4去均可【考点】全等三角形的应用.【分析】②④虽没有原三角形完整的边,又没有角,但延长可得出原三角形的形状;带①、④可以用“角边角”确定三角形;带③、④也可以用“角边角”确定三角形.【解答】解:带③、④可以用“角边角”确定三角形,带①、④可以用“角边角”确定三角形,带②④可以延长还原出原三角形,故选:D.6.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD =8,则点P到BC的距离是()A.8B.6C.4D.2【考点】角平分线的性质.【分析】过点P作PE⊥BC于E,根据角平分线上的点到角的两边的距离相等可得PA=PE,PD=PE,那么PE=PA=PD,又AD=8,进而求出PE=4.【解答】解:过点P作PE⊥BC于E,∵AB∥CD,PA⊥AB,∴PD⊥CD,∵BP和CP分别平分∠ABC和∠DCB,∴PA=PE,PD=PE,∴PE=PA=PD,∵PA+PD=AD=8,∴PA=PD=4,∴PE=4.故选:C.7.如图:若△ABE≌△ACF,且AB=5,AE=2,则EC的长为()A.2B.2.5C.3D.5【考点】全等三角形的性质.【分析】根据全等三角形性质求出AC,即可求出答案.【解答】解:∵△ABE≌△ACF,AB=5,∴AC=AB=5,∵AE=2,∴EC=AC﹣AE=5﹣2=3,故选:C.8.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE【考点】全等三角形的性质.【分析】根据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断.【解答】解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选:D.9.如图,AB⊥CD,且AB=CD.E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF =b,EF=c,则AD的长为()A.a+c B.b+c C.a﹣b+c D.a+b﹣c【考点】全等三角形的判定与性质.【分析】只要证明△ABF≌△CDE,可得AF=CE=a,BF=DE=b,推出AD=AF+DF =a+(b﹣c)=a+b﹣c;【解答】解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE,∴AF=CE=a,BF=DE=b,∵EF=c,∴AD=AF+DF=a+(b﹣c)=a+b﹣c,故选:D.10.如图,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是()A.50B.62C.65D.68【考点】全等三角形的判定与性质.【分析】由AE⊥AB,EF⊥FH,BG⊥AG,可以得到∠EAF=∠ABG,而AE=AB,∠EFA =∠AGB,由此可以证明△EFA≌△ABG,所以AF=BG,AG=EF;同理证得△BGC≌△DHC,GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16,然后利用面积的割补法和面积公式即可求出图形的面积.【解答】解:∵AE⊥AB且AE=AB,EF⊥FH,BG⊥FH,∴∠EAB=∠EFA=∠BGA=90°,∵∠EAF+∠BAG=90°,∠ABG+∠BAG=90°,∴∠EAF=∠ABG,∴AE=AB,∠EFA=∠AGB,∠EAF=∠ABG,∴△EFA≌△AGB,∴AF=BG,AG=EF.同理证得△BGC≌△CHD得GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16故S=(6+4)×16﹣3×4﹣6×3=50.故选:A.二.填空题(共6小题)11.如图,点B、A、D、E在同一直线上,BD=AE,BC∥EF,要使△ABC≌△DEF,则只需添加一个适当的条件是BC=EF或∠BAC=∠EDF或∠C=∠F.(只填一个即可)【考点】全等三角形的判定.【分析】BC=EF或∠BAC=∠EDF,若BC=EF,根据条件利用SAS即可得证;若∠BAC =∠EDF,根据条件利用ASA即可得证;若添加∠C=∠F,根据条件利用AAS即可得证.【解答】解:若添加BC=EF,∵BC∥EF,∴∠B=∠E,∵BD=AE,∴BD﹣AD=AE﹣AD,即BA=ED,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);若添加∠BAC=∠EDF,∵BC∥EF,∴∠B=∠E,∵BD=AE,∴BD﹣AD=AE﹣AD,即BA=ED,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),若添加∠C=∠F,∵BC∥EF,∴∠B=∠E,∵BD=AE,∴BD﹣AD=AE﹣AD,即BA=ED,在△ABC和△DEF中,,∴△ABC≌△DEF(AAA).故答案为:BC=EF或∠BAC=∠EDF或∠C=∠F.12.如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=120°.【考点】全等三角形的性质.【分析】根据全等三角形的性质求出∠C的度数,根据三角形内角和定理计算即可.【解答】解:∵△ABC≌△A′B′C′,∴∠C=∠C′=24°,∴∠B=180°﹣∠A﹣∠C=120°,故答案为:120°.13.如图,AB=12m,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动4分钟后,△CAP与△PQB全等.【考点】直角三角形全等的判定.【分析】设运动x分钟后△CAP与△PQB全等;则BP=xm,BQ=2xm,则AP=(12﹣x)m,分两种情况:①若BP=AC,则x=4,此时AP=BQ,△CAP≌△PBQ;②若BP=AP,则12﹣x=x,得出x=6,BQ=12(m)≠AC,即可得出结果.【解答】解:∵CA⊥AB于A,DB⊥AB于B,∴∠A=∠B=90°,设运动x分钟后△CAP与△PQB全等;则BP=xm,BQ=2xm,则AP=(12﹣x)m,分两种情况:①若BP=AC,则x=4,AP=12﹣4=8,BQ=8,AP=BQ,∴△CAP≌△PBQ;②若BP=AP,则12﹣x=x,解得:x=6,BQ=12(m)≠AC,此时△CAP与△PQB不全等;综上所述:运动4分钟后△CAP与△PQB全等;故答案为:4.14.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为4.【考点】全等三角形的性质.【分析】根据△ABC≌△ADE,得到AE=AC,由AB=7,AC=3,根据BE=AB﹣AE即可解答.【解答】解:∵△ABC≌△ADE,∴AE=AC,∵AB=7,AC=3,∴BE=AB﹣AE=AB﹣AC=7﹣3=4.故答案为:4.15.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=135°.【考点】全等三角形的判定与性质.【分析】观察图形可知∠1与∠3互余,∠2是直角的一半,利用这些关系可解此题.【解答】解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.故答案为:135.16.如图,四边形ABCD的对角线AC、BD相交于点O,△ABO≌△ADO.下列结论:①AC⊥BD;②CB=CD;③△ABC≌△ADC;④DA=DC.其中所有正确结论的序号是①②③.【考点】全等三角形的判定与性质.【分析】根据全等三角形的性质得出AB=AD,∠BAO=∠DAO,∠AOB=∠AOD=90°,OB=OD,再根据全等三角形的判定定理得出△ABC≌△ADC,进而得出其它结论.【解答】解:∵△ABO≌△ADO,∴AB=AD,∠BAO=∠DAO,∠AOB=∠AOD=90°,OB=OD,∴AC⊥BD,故①正确;∵四边形ABCD的对角线AC、BD相交于点O,∴∠COB=∠COD=90°,在△ABC和△ADC中,,∴△ABC≌△ADC(SAS),故③正确;∴BC=DC,故②正确.故答案为:①②③.三.解答题(共9小题)17.计算:﹣(﹣2)﹣2×+.【考点】实数的运算.【分析】原式利用平方根及立方根定义计算即可得到结果.【解答】解:原式=﹣﹣×4﹣2=﹣3.18.解不等式组,并把它的解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:解①得x≥﹣,解②得x<.则不等式组的解集是﹣≤x<.19.如图,在直线MN上求作一点P,使点P到射线OA和OB的距离相等.(要求用尺规作图,保留作图痕迹,不必写作法和证明过程)【考点】角平分线的性质;作图—基本作图.【分析】作∠AOB的平分线交MN于P点,则P点满足条件.【解答】解:如图,点P为所作.20.如图,在△ABC和△DEF中,点B、F、C、E在同一直线上BF=CE,AC∥DF且AC =DF.求证:AB∥DE.【考点】全等三角形的判定与性质.【分析】依据全等三角形的性质可得到∠B=∠E,最后依据内错角相等两直线平行进行证明即可.【解答】证明:∵AC∥DF,∴∠ACB=∠DFE.∵BF=CE,∴BF+FC=CE+FC,即BC=EF.在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).∴∠B=∠E.∴AB∥DE.21.如图,点E,F在BC上,BE=CF,AB=DC,AF=DE,AF与DE相交于点G,求证:GE=GF.【考点】全等三角形的判定与性质.【分析】由“SSS”可证△ABF≌△DCE,可得∠AFB=∠DEC,即可得GE=GF.【解答】证明:∵BE=CF,∴BF=CE,且AB=CD,AF=DE,∴△ABF≌△DCE(SSS)∴∠AFB=∠DEC∴GE=GF22.如图,△ADE的顶点D在△ABC的BC边上,且∠ABD=∠ADB,∠BAD=∠CAE,AC=AE.求证:BC=DE.【考点】全等三角形的判定与性质.【分析】求出AB=AD,∠BAC=∠DAE,根据SAS证△ABC≌△ADE,推出BC=DE 即可.【解答】证明:∵∠ABD=∠ADB,∴AB=AD,∵∠BAD=∠CAE,∴∠BAD+∠DAC=∠CAE+∠DAC,即∠BAC=∠DAE,∵在△ABC和△ADE中,.∴△ABC≌△ADE(SAS),∴BC=DE.23.如图,CD⊥AB,BE⊥AC,垂足分别为D,E,BE和CD相交于点O,OB=OC,连AO,求证:(1)△ODB≌△OEC;(2)∠1=∠2.【考点】全等三角形的判定与性质.【分析】(1)根据AAS证明△ODB≌△OEC即可;(2)利用角平分线的判定定理证明即可;【解答】证明:(1)∵CD⊥AB,BE⊥AC,∴∠ODB=∠OEC=90°,在△ODB和△OEC中,,∴△ODB≌△OEC(AAS).(2)∵△ODB≌△OEC,∴OD=OE,∵OD⊥AB,OE⊥AC,∴∠1=∠2.24.如图,在△ABC中,AD为BC边上的中线,E为AC上一点,BE与AD交于点F,若∠FAE=∠AFE.求证:AC=BF.【考点】全等三角形的判定与性质.【分析】延长AD至G,使DG=AD,连接BG,可证明△BDG≌△CDA(SAS),则BG =AC,∠CAD=∠G,根据AE=EF,得∠CAD=∠AFE,可证出∠G=∠BFG,即得出AC=BF.【解答】证明:延长AD至G,使DG=AD,连接BG,在△BDG和△CDA中,∵,∴△BDG≌△CDA(SAS),∴BG=AC,∠CAD=∠G.又∵AE=EF,∴∠CAD=∠AFE.又∵∠BFG=∠AFE,∴∠CAD=∠BFG,∴∠G=∠BFG,∴BG=BF,∴AC=BF.25.如图,将两个全等的直角三角形△ABD、△ACE拼在一起(图1),△ABD不动.(1)若将△ACE绕点A逆时针旋转,连接DE,M是DE的中点,连接MB、MC(图2),证明:MB=MC.(2)若将图1中的CE向上平移,∠CAE不变,连接DE,M是DE的中点,连接MB、MC(图3),判断并直接写出MB、MC的数量关系.(3)在(2)中,若∠CAE的大小改变(图4),其他条件不变,则(2)中的MB、MC 的数量关系还成立吗?说明理由.【考点】全等三角形的判定与性质.【分析】(1)连接AM,根据全等三角形的对应边相等可得AD=AE,AB=AC,全等三角形对应角相等可得∠BAD=∠CAE,再根据等腰三角形三线合一的性质得到∠MAD=∠MAE,然后利用“边角边”证明△ABM和△ACM全等,根据全等三角形对应边相等即可得证;(2)延长DB、AE相交于E′,延长EC交AD于F,根据等腰三角形三线合一的性质得到BD=BE′,然后求出MB∥AE′,再根据两直线平行,内错角相等求出∠MBC=∠CAE,同理求出MC∥AD,根据两直线平行,同位角相等求出∠BCM=∠BAD,然后求出∠MBC=∠BCM,再根据等角对等边即可得证;(3)延长BM交CE于F,根据两直线平行,内错角相等可得∠MDB=∠MEF,∠MBD =∠MFE,然后利用“角角边”证明△MDB和△MEF全等,根据全等三角形对应边相等可得MB=MF,然后根据直角三角形斜边上的中线等于斜边的一半证明即可.【解答】证明:(1)如图2,连接AM,由已知得△ABD≌△ACE,∴AD=AE,AB=AC,∠BAD=∠CAE,∵MD=ME,∴∠MAD=∠MAE,∴∠MAD﹣∠BAD=∠MAE﹣∠CAE,即∠BAM=∠CAM,在△ABM和△ACM中,,∴△ABM≌△ACM(SAS),∴MB=MC;(2)MB=MC.理由如下:如图3,延长DB、AE相交于E′,延长EC交AD于F,∴BD=BE′,CE=CF,∵M是ED的中点,B是DE′的中点,∴MB∥AE′,∴∠MBC=∠CAE,同理:MC∥AD,∴∠BCM=∠BAD,∵∠BAD=∠CAE,∴∠MBC=∠BCM,∴MB=MC;解法二:如图3中,延长CM交BD于点T.∵EC∥DT,∴∠CEM=∠TDM,在△ECM和△DTM中,,∴△ECM≌△DTM(ASA),∴CM=MT,∵∠CBT=90°,∴BM=CM=MT.(3)MB=MC还成立.如图4,延长BM交CE于F,∵CE∥BD,∴∠MDB=∠MEF,∠MBD=∠MFE,又∵M是DE的中点,∴MD=ME,在△MDB和△MEF中,,∴△MDB≌△MEF(AAS),∴MB=MF,∵∠ACE=90°,∴∠BCF=90°,∴MB=MC.。
人教版八年级数学上册《第十二章 全等三角形》单元测试卷(附答案)
人教版八年级数学上册《第十二章全等三角形》单元测试卷(附答案)一、选择题1.下列说法正确的是( )A. 两个等边三角形一定全等B. 形状相同的两个三角形全等C. 面积相等的两个三角形全等D. 全等三角形的面积一定相等2.根据下列已知条件,能唯一画出△ABC的是( )A. AB=5,BC=3,AC=8B. AB=4,BC=3C. ∠C=90°,AB=6D. ∠A=60°,∠B=45°3.如图,已知∠C=∠D=90°,AC=AD那么△ABC与△ABD全等的理由是( )A. HLB. SASC. ASAD. AAS4.如图∠CAB=∠DBA,再添加一个条件,不一定能判定△ABC≌△BAD的是( )A. AC=BDB. ∠1=∠2C. AD=BCD. ∠C=∠D5.如图,若△ABC≌△ADE,则下列结论中一定成立的是( )A. AC=DEB. ∠BAD=∠CAEC. AB=AED. ∠ABC=∠AED6.在△ABC中AC=6则BC边上的中线AD的取值范围是( )A. 3<AD<11B. 3<AD<9C. 1<AD<7D. 5<AD<117.如图,AD是△ABC中∠BAC的平分线,DE⊥AB交AB于点E,DF⊥AC交AC于点F,若S△ABC=7,DE= 2,AB=4则AC的长为( )A. 3B. 4C. 5D. 68.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE= 55°,∠BCD=155°,则∠BPD的度数为( )A. 130°B. 155°C. 125°D. 110°9.在△ABC中AC=6则BC边上的中线AD的取值范围是( )A. 6<AD<8B. 2<AD<14C. 1<AD<7D. 无法确定10.如图AC=CE,∠ACE=90°,AB⊥BD,ED⊥BD,AB=5cm,DE=3cm,则BD等于( )A. 6cmB. 8cmC. 10cmD. 4cm二、填空题11.一个三角形的三边为3、5、x,另一个三角形的三边为y、3、6,若这两个三角形全等,则x−y=__________.12.如图为6个边长相等的正方形的组合图形,则∠1+∠3=______ .13.如图△ABC≌△A′B′C′,其中∠C′=24°则∠B=°.14.如图,已知△ABC≌△ADE,若AB=7,AC=3则BE的值为_____.15.如图,已知在△ABC和△DEF中BF=CE点B、F、C、E在同一条直线上,若使△ABC≌△DEF,则还需添加的一个条件是(只填一个即可).16.如图△ABC中AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC=_______度.17.如图△ABC≌△DCB,若AC=7,BE=5则DE的长为.18.如图,Rt△ABC中AD为的∠BAC角平分线,与BC相交于点D,若CD=3,AB=10则△ABD的面积是______.19.如图,在△ABC中∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=8cm,则△BED的周长是______.20.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF//AC交ED的延长线于点F,若BC恰好平分∠ABF,AE=2BF给出下列四个结论:①DE=DF②DB=DC③AD⊥BC④AC=3BF其中正确的结论是______ .三、解答题21.如图,在直线MN上求作一点P,使点P到射线OA和OB的距离相等.(要求用尺规作图,保留作图痕迹,不必写作法和证明过程)22.如图AB//CD,AB=CD,CE=BF请写出DF与AE的数量关系,并证明你的结论.23.已知:如图AB//DE,点C、F在AD上AF=DC,AB=DE.求证:△ABC≌△DEF.24.如图,点A,E,F,B在直线l上AE=BF,AC//BD且AC=BD,求证:CF=DE.25.如图,在△ABC中∠C=90∘,AD平分∠BAC,DE⊥AB于点E,点F在AC上,且BD=DF.(1)求证:CF=EB;(2)请你判断AE、AF与BE之间的数量关系,并说明理由.答案和解析1.【答案】D【解析】【分析】本题考查的是全等图形,熟知全等三角形的判定与性质是解答此题的关键,根据全等图形的性质对各选项进行逐一分析即可.【解答】解:A.两个边长不相等的等边三角形不全等,故本选项错误;B.形状相同,边长不对应相等的两个三角形不全等,故本选项错误;C.面积相等的两个三角形不一定全等,故本选项错误;D.全等三角形的面积一定相等,故本选项正确.故选D.2.【答案】D【解析】【分析】本题考查了三角形的三边关系定理和全等三角形的判定定理,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,HL.根据三角形的三边关系定理,先看看能否组成三角形,再根据全等三角形的判定定理判断即可.【解答】解:A∵3+5=8∴根据三角形三边关系AB=5BC=3AC=8不能画出三角形故本选项错误;B已知AB BC和BC的对角AB=4BC=3∠A=30°不能画出唯一三角形故本选项错误;C根据∠C=90°AB=6已知一个角和一条边不能画出唯一三角形故本选项错误;D根据∠A=60°∠B=45°AB=4已知两角和夹边符合全等三角形的判定定理ASA即能画出唯一三角形故本选项正确;故选D.3.【答案】A【解析】【分析】本题考查全等三角形的判定解题的关键是注意AB是两个三角形的公共边本题属于基础题型.已知∠C=∠D=90°AC=AD且公共边AB=AB故△ABC与△ABD全等.【解答】解:在Rt△ABC与Rt△ABD中{AB=ABAC=AD∴Rt△ABC≌Rt△ABD(HL)故选A.4.【答案】C【解析】【分析】本题主要考查全等三角形的判定.熟记5种判定并灵活运用是解决本题的关键.【解答】解:A.添加AC=BD则可以通过(SAS)判定△ABC≌△BAD故本选项不符合题意;B.添加∠1=∠2则可以通过(ASA)判定△ABC≌△BAD故本选项不符合题意;C.添加AD=BC不能判定△ABC≌△BAD故本选项符合题意;D.添加∠C=∠D则可以通过(AAS)判定△ABC≌△BAD故本选项不符合题意;故选C.5.【答案】B【解析】【分析】本题考查了全等三角形的性质熟练掌握全等三角形的性质是解题的关键.根据全等三角形的性质即可得到结论.【解答】解:∵△ABC≌△ADE∴AC=AE AB=AD∠ABC=∠ADE∠BAC=∠DAE∴∠BAC−∠DAC=∠DAE−∠DAC即∠BAD=∠CAE.故A C D选项错误B选项正确故选:B.6.【答案】C【解析】【分析】这是一道考查全等三角形的判定和三角形的三边关系的题目解题关键在于构造三角形延长AD至E使DE=AD连接CE证明△ABD≌△ECD再利用三边关系即可得到答案.【解答】解:延长AD至E使DE=AD连接CE在△ABD和△ECD中{AD=ED∠ADB=∠EDC DB=DC,∴△ABD≌△ECD∴CE=AB=8在△ACE中CE−AC<AE<CE+AC即2<2AD<14故1<AD<7故选C.7.【答案】A【解析】【分析】本题主要考查了角平分线的性质;利用三角形的面积求线段的大小是一种很好的方法要注意掌握应用.先由角平分线的性质可知DF=DE=2然后由S△ABC=S△ABD+S△ACD及三角形的面积公式得出结果.【解答】解:∵AD是△ABC中∠BAC的平分线DE⊥AB于点E DF⊥AC交AC于点F∴DF=DE=2又∵S△ABC=S△ABD+S△ACD AB=4∴7=12×4×2+12·AC·2∴AC=3.故选A.8.【答案】A【解析】【分析】本题考查了全等三角形的判定和性质三角形的内角和定理以及四边形的内角和定理易证△ACD≌△BCE由全等三角形的性质可知:∠A=∠B再根据已知条件和四边形的内角和为360°即可求出∠BPD的度数.【解答】解:在△ACD 和△BCE 中{AC =BC CD =CE AD =BE∴△ACD≌△BCE(SSS)∴∠A =∠B ∠BCE =∠ACD∴∠BCA =∠ECD∵∠ACE =55° ∠BCD =155°∴∠BCA +∠ECD =100°∴∠BCA =∠ECD =50°∵∠ACE =55°∴∠ACD =105°∴∠A +∠D =75°∴∠B +∠D =75°∵∠BCD =155°∴∠BPD =360°−75°−155°=130°.故选A .9.【答案】C【解析】【分析】此题主要考查了全等三角形的判定和性质 三角形的三边关系.注意:倍长中线是常见的辅助线之一. 延长AD 至E 使DE =AD 连接CE.根据SAS 证明△ABD≌△ECD 得CE =AB 再根据三角形的三边关系即可求解.【解答】解:延长AD 至E 使DE =AD 连接CE .在△ABD和△ECD中{DE=AD∠ADB=∠CDE DB=DC∴△ABD≌△ECD(SAS)∴CE=AB.在△ACE中CE−AC<AE<CE+AC即2<2AD<141<AD<7.故选:C.10.【答案】B【解析】【分析】由题意可证△ABC≌△CDE即可得CD=AB=5cm DE=BC=3cm进而可求BD的长。
八年级数学上册《第十二章 全等三角形》单元测试卷含答案(人教版)
八年级数学上册《第十二章 全等三角形》单元测试卷含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.角平分线的性质:角平分线上的点到这个角的两边距离相等,其理论依据是全等三角形判定定理( )A .SASB .HLC .AASD .ASA2.如图,Rt ABC 沿直角边BC 所在的直线向右平移得到DEF ,下列结论中错误的是( )A .ΔABC ≌ΔDEFB .90DEF ∠=︒C .AC DF =D .EC CF =3.如图:EA ∥DF ,AE=DF ,要使△AEC ≌△DBF ,则只要( )A .AB=CDB .EC=BFC .∠A=∠D D .AB=BC4.如图,ABC A B C '''≌,其中3624A C ∠=︒∠='︒,,则B ∠的度数为( )A .150︒B .120︒C .100︒D .60︒5.如图,在△ABC 中,CD 、BE 分别是AB 、AC 边上的高,F 是CD 与BE 的交点.若AD =FD ,∠ABE =26°,则∠ACB 的度数为( )A .76°B .71°C .81°D .86°6.如图,在ABC 中,108AB AC O ==,,为ABC 角平分线的交点,若ABO 的面积为30,则ACO 的面积为( )A .18B .20C .22D .247.如图,△ABC 中,AB =4,BC =6,BD 是△ABC 的角平分线,DE ⊥AB 于点E ,AF ⊥BC 于点F ,若DE =2,则AF 的长为( )A .3B .103C .72D .1548.如图,AD 是△ABC 的中线,E ,F 分别是AD 和AD 延长线上的点,且DE=DF ,连结BF ,CE.下列说法:①△ABD 和△ACD 面积相等;②∠BAD=∠CAD ;③△BDF ≌△CDE ;④BF ∥CE ;⑤CE=AE.其中正确的有( )A .1个B .2个C .3个D .4个二、填空题9.如图,已知 ABC 中,点D ,E 分别在边AC ,AB 上,连接BD ,DE 和 180C AED ∠+∠=︒ 请你添加一个条件,使 BDE BDC ≌ ,你所添加的条件是 .(只填一个条件即可)10.如图,在△ABC 中,已知∠1=∠2,BE=CD ,AB=7,AE=3,则CE= .11.如图所示,点O 在一块直角三角板ABC 上(其中30ABC ∠=︒),OM AB ⊥于点M ,ON BC∠=度.=,则ABO⊥于点N,若OM ON--路径运动,终12.如图,ABC中,∠ACB=90°,AC=6cm,BC=8cm,点P从A点出发沿A C B--路径运动,终点为A点.点P和点Q分别以1cm/s和点为B点;点Q从B点出发沿B C A⊥3cm/s的速度同时开始运动,两点到达相应的终点时分别停止运动.若分别过点P和Q作PE l ⊥于F.当PEC与QFC全等时,点P的运动时间t为.于E,QF l13.如图,AD是ABC的角平分线,DF⊥AB,垂足为F,DE=DG,ADG和AED的面积分别为27和14,则EDF的面积为.三、解答题14.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,求AC长.∠,交AC边于点E,连接DE.求15.如图,在ABC中,D是BC边上的一点,AB=DB,BE平分ABC≌;证:ABE DBE16.如图,AD,BC相交于点O,且AB CD,OA=OD.=;(1)求证:OB OC=,求证:BE CF.(2)若在直线AD上截取AE DF17.已知:如图,△ABC中,∠ACB=45°,AD⊥BC于D,CF交AD于点F,连接BF并延长交AC于点E,∠BAD=∠FCD.求证:(1)△ABD≌△CFD;(2)BE⊥AC.cm的18.如图,在ABC中,∠BAD=∠DAC,DF⊥AB,DM⊥AC,AF=10cm,AC=14cm,动点E以2/scm的速度从C点向A点运动,当一个点到达终点时,另一个速度从A点向F点运动,动点G以1/s点随之停止运动,设运动时间为t.=;(1)求证:AF AM(2)当t取何值时,DFE与DMG全等参考答案:1.C 2.D 3.A 4.B 5.B 6.D 7.B 8.C9.答案不唯一,如∠CBD=∠EBD 等10.411.1512.1或72或12 13.6514.解:过D 作DF ⊥AC 于F∵AD 是△ABC 中∠BAC 的角平分线,DE ⊥AB 于点E ,DE=2∴DE=DF=2∵S △ABC =7∴S △ADB +S △ADC =7 ∴1122AB DE AC DF ⨯⨯+⨯⨯ =7 ∴1142222AC ⨯⨯+⨯⨯ =7解得:AC=3.15.证明:∵BE 平分 ABC ∠ ∴ABE DBE ∠=∠在 ABE 和 DBE 中∵AB DB ABE DBE BE BE =⎧⎪∠=∠⎨⎪=⎩∴()ABE DBE SAS ≌ ;16.(1)证明:∵AB CD∴OAB ODC ∠=∠∵OA OD = AOB DOC ∠=∠∴()ASA OAB ODC ≌.∴OB OC =;(2)证明:∵OA OD = AE DF =∴OA AE OD DF +=+即OE OF =.∵EOB FOC ∠=∠,且在(1)中,有OB OC =∴()SAS BOE COF ≌∴E F ∠=∠.∴BE CF .17.(1)证明:∵AD ⊥BC,∴∠ADC=∠ADB=90°又∵∠ACB=45°∴∠DAC=45°,∴∠ACB=∠DAC∴AD=CD在△ABD 和△CFD 中,∠BAD=∠FCD, AD=CD ∠ADB=∠FDC∴△ABD ≌△CFD;(2)证明:∵△ABD ≌△CFD,∴BD=FD∴∠1=∠2又∵∠FDB=90°,∴∠1=∠2=45°又∵∠ACD=45°∴△BEC 中,∠BEC=90°,∴BE ⊥AC.18.(1)证明:∵BAD DAC DF AB DM AC ∠=∠⊥⊥,,,∴DF DM =,在Rt AFD ∆和Rt ΔAMD 中DF DM AD AD =⎧⎨=⎩∴()Rt ΔRt ΔHL AFD AMD ≌;∴AF AM =;(2)解:若DFE 与DMG 全等,且90DF DM EFD GMD =∠=∠=︒, ∴EF MG =∵10AM AF ==∴14104CM AC AM =-=-=①当04t <<时,点G 在线段CM 上,点E 在线段AF 上∴1024EF t MG CM CG t =-=-=-,∴1024t t -=-∴6t =(不合题意,舍去);②当45t ≤<时,点G 在线段AM 上,点E 在线段AF 上1024EF t MG CG CM t =-=-=-,∴1024t t -=- ∴143t =综上所述,当14s 3t 时,DFE 与DMG 全等。
人教版八年级数学上册《第十二章全等三角形》单元测试卷(含答案)
人教版八年级数学上册《第十二章全等三角形》单元测试卷(含答案)一、选择题1.如图ABC ADE ≌,若80B ∠=︒,70DAE ∠=︒则E ∠的度数为( )A .30︒B .35︒C .70︒D .80︒2.关于全等图形的描述,下列说法正确的是( )A .形状相同的图形B .面积相等的图形C .能够完全重合的图形D .周长相等的图形3.如图是某纸伞截面示意图,伞柄AP 平分两条伞骨所成的角∠BAC .若支杆DF 需要更换,则所换长度应与哪一段长度相等( )A .BEB .AEC .DED .DP4.如图,是尺规作图中“画一个角等于已知角”的示意图,该作法运用了“全等三角形的对应角相等”这一性质,则判定图中两三角形全等的条件是( )A .SASB .ASAC .AASD .SSS5.如图,OP 平分∠AOB ,点E 为OA 上一点,OE =4,点P 到OB 的距离是2,则∠POE 的面积为( )A .4B .5C .6D .76.已知ABC 的三边长为357,,,DEF 的三边长为33221x x --,,,若ABC 与DEF 全等,则x 等于( )A .73B .4C .3D .3或737.如图,∠ABC∠∠A'B'C ,其中∠A=36°,∠C=24°,则∠B'=( )A .60°B .100C .120D .135°8.如图,已知12∠=∠,要说明ABD ACD ≌,需从下列条件中选一个,错误的是( )A .ADB ADC ∠=∠ B .B C ∠=∠ C .DB DC =D .AB AC =9.如图,在ABC 中D ,E 是BC 边上的两点,1211060AD AE BE CD BAE ==∠=∠=︒∠=︒,,,,则BAC ∠的度数为( )A .90°B .80°C .70°D .60°10.如图,在ΔABC 中90C ∠=︒,AD 平分CAB ∠,若10AB =,CD=3,则ABD 的面积是( )A .9B .12C .15D .24二、填空题11.如图,射线OC 是AOB ∠的角平分线,D 是射线OC 上一点,DP OA ⊥于点P ,DP=5,若点Q 是射线OB 上一点,OQ=4,则ODQ 的面积是 .12.在平面直角坐标系中点()10A ,,()02B ,作BOC ,使BOC 与ABO 全等(点C 与点A 不重合),则点C 坐标为 .13.如图,四边形ABCD 中AB=BC ,90ABC ∠=︒对角线BD CD ⊥,若14BD =,则ABD 的面积为 .14.如图,BO 平分ABC ∠,OD BC ⊥于点D ,点E 为射线BA 上一动点,若6OD =则OE 的最小值为 .三、解答题15.如图,已知ABC BAE ≌,=60ABE ∠︒和=92E ∠︒,求ABC ∠的度数.16.如图,AD∠AB ,CB∠AB ,垂足分别为A ,B ,AC =BD ,AC 与BD 相交于点E ,求证:DE=CE.17.如图是一个工业开发区局部的设计图,河的同一侧有两个工厂A 和B ,AD BC 、的长表示两个工厂到河岸的距离,其中E 是进水口,D 、C 为污水净化后的出口.已知90150AE BE AEB AD ∠︒=,=,=米,350BC =米,求两个排污口之间的水平距离DC .18.如图,在ABC 中D 是BC 的中点DE AB ⊥,DF AC ⊥垂足分别是E ,F .(∠)若BE CF =,求证:AD 是ABC 的角平分线;(∠)若AD 是ABC 的角平分线,求证:BE CF =.四、综合题19.如图,A ,D ,E 三点在同一直线上,且∠BAD∠∠ACE ,试说明:(1)BD=DE+CE ;(2)∠ABD 满足什么条件时,BD∠CE .20.王强同学用10块高度都是 2cm 的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板( 90AC BC ACB =∠=︒, ),点 C 在 DE 上,点 A 和 B 分别与木墙的顶端重合.(1)求证: ADC CEB ∆≅∆ ;(2)求两堵木墙之间的距离.21.如图,在四边形ABCD 中P 为CD 边上的一点BC AD AP 、BP 分别是BAD ∠、ABC ∠的角平分线.(1)若70BAD ∠=︒,则ABP ∠的度数为 ,APB ∠的度数为 ;(2)求证:AB BC AD =+;(3)设3BP a =,4AP a =过点P 作一条直线,分别与AD ,BC 所在直线交于点E 、F ,若AB EF =,直接写出AE 的长(用含a 的代数式表示)答案解析部分1.【答案】A【解析】【解答】解:∵ABC ADE ≌∴∠D=∠B=80°∵70DAE ∠=︒∴∠E=180°-∠D-∠DAE=30°故答案为:A【分析】根据全等三角形的性质及三角形内角和定理即可求出答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第12章全等三角形一、选择题(共9小题)1.如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有()A.1对B.2对C.3对D.4对2.如图所示,点E是矩形ABCD的边AD延长线上的一点,且AD=DE,连结BE交CD于点O,连结AO,下列结论不正确的是()A.△AOB≌△BOC B.△BOC≌△EOD C.△AOD≌△EOD D.△AOD≌△BOC3.使两个直角三角形全等的条件是()A.一个锐角对应相等 B.两个锐角对应相等C.一条边对应相等D.两条边对应相等4.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DC C.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D5.如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是()A .∠A=∠CB .AD=CBC .BE=DFD .AD ∥BC6.如图,AB=AC ,D ,E 分别是AB ,AC 上的点,下列条件中不能证明△ABE ≌△ACD 的是( )A .AD=AEB .BD=CEC .BE=CD D .∠B=∠C7.附图为八个全等的正六边形紧密排列在同一平面上的情形.根据图中标示的各点位置,判断△ACD 与下列哪一个三角形全等?( )A .△ACFB .△ADEC .△ABCD .△BCF8.如图,AB ∥DE ,AC ∥DF ,AC=DF ,下列条件中不能判断△ABC ≌△DEF 的是( )A .AB=DEB .∠B=∠EC .EF=BCD .EF ∥BC9.已知△A 1B 1C 1,△A 2B 2C 2的周长相等,现有两个判断:①若A 1B 1=A 2B 2,A 1C 1=A 2C 2,则△A 1B 1C 1≌△A 2B 2C 2;②若∠A 1=∠A 2,∠B 1=∠B 2,则△A 1B 1C 1≌△A 2B 2C 2,对于上述的两个判断,下列说法正确的是( )A .①正确,②错误B .①错误,②正确C .①,②都错误D .①,②都正确二、填空题(共10小题)10.如图,已知BC=EC,∠BCE=∠ACD,要使△ABC≌△DEC,则应添加的一个条件为.(答案不唯一,只需填一个)11.如图,在△ABC和△DEF中,点B、F、C、E在同一直线上,BF=CE,AC∥DF,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是.(只需写一个,不添加辅助线)12.如图,点D、E分别在线段AB,AC上,AE=AD,不添加新的线段和字母,要使△ABE≌△ACD,需添加的一个条件是(只写一个条件即可).13.如图,已知∠B=∠C,添加一个条件使△ABD≌△ACE(不标注新的字母,不添加新的线段),你添加的条件是.14.如图,已知点B、C、F、E在同一直线上,∠1=∠2,BC=EF,要使△ABC≌△DEF,还需添加一个条件,这个条件可以是.(只需写出一个)15.如图,已知∠1=∠2,AC=AD,请增加一个条件,使△ABC≌△AED,你添加的条件是.16.如图,BC=EC,∠1=∠2,添加一个适当的条件使△ABC≌△DEC,则需添加的条件是(不添加任何辅助线).17.如图,AB=AC,要使△ABE≌△ACD,应添加的条件是(添加一个条件即可).18.如图,A,B,C三点在同一条直线上,∠A=∠C=90°,AB=CD,请添加一个适当的条件,使得△EAB≌△BCD.19.如图,AF=DC,BC∥EF,只需补充一个条件,就得△ABC≌△DEF.三、解答题(共11小题)20.如图,AC=AE,∠1=∠2,AB=AD.求证:BC=DE.21.如图,△ABC是直角三角形,且∠ABC=90°,四边形BCDE是平行四边形,E为AC中点,BD平分∠ABC,点F在AB上,且BF=BC.求证:(1)DF=AE;(2)DF⊥AC.22.已知:如图,在△ABC中,AB=AC,AD是BC边上的中线,AE∥BC,CE⊥AE,垂足为E.(1)求证:△ABD≌△CAE;(2)连接DE,线段DE与AB之间有怎样的位置和数量关系?请证明你的结论.23.如图,AB=AE,∠1=∠2,∠C=∠D.求证:△ABC≌△AED.第12章全等三角形参考答案与试题解析一、选择题(共9小题)1.如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有()A.1对B.2对C.3对D.4对【考点】全等三角形的判定.【分析】首先证明△ABC≌△ADC,根据全等三角形的性质可得∠BAC=∠DAC,∠BCA=∠DCA,再证明△ABO≌△ADO,△BOC≌△DOC.【解答】解:∵在△ABC和△ADC中,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC,∠BCA=∠DCA,∵在△ABO和△ADO中,∴△ABO≌△ADO(SAS),∵在△BOC和△DOC中,∴△BOC≌△DOC(SAS),故选:C.【点评】考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.2.如图所示,点E是矩形ABCD的边AD延长线上的一点,且AD=DE,连结BE交CD于点O,连结AO,下列结论不正确的是()A.△AOB≌△BOC B.△BOC≌△EOD C.△AOD≌△EOD D.△AOD≌△BOC【考点】全等三角形的判定;矩形的性质.【专题】压轴题.【分析】根据AD=DE,OD=OD,∠ADO=∠EDO=90°,可证明△AOD≌△EOD,OD为△ABE的中位线,OD=OC,然后根据矩形的性质和全等三角形的性质找出全等三角形即可.【解答】解:∵AD=DE,DO∥AB,∴OD为△ABE的中位线,∴OD=OC,∵在△AOD和△EOD中,,∴△AOD≌△EOD(SAS);∵在△AOD和△BOC中,,∴△AOD≌△BOC(SAS);∵△AOD≌△EOD,∴△BOC≌△EOD;故B、C、D均正确.故选A.【点评】本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.3.使两个直角三角形全等的条件是()A.一个锐角对应相等 B.两个锐角对应相等C.一条边对应相等D.两条边对应相等【考点】直角三角形全等的判定.【专题】压轴题.【分析】利用全等三角形的判定来确定.做题时,要结合已知条件与三角形全等的判定方法逐个验证.【解答】解:A、一个锐角对应相等,利用已知的直角相等,可得出另一组锐角相等,但不能证明两三角形全等,故A选项错误;B、两个锐角相等,那么也就是三个对应角相等,但不能证明两三角形全等,故B选项错误;C、一条边对应相等,再加一组直角相等,不能得出两三角形全等,故C选项错误;D、两条边对应相等,若是两条直角边相等,可利用SAS证全等;若一直角边对应相等,一斜边对应相等,也可证全等,故D选项正确.故选:D.【点评】本题考查了直角三角形全等的判定方法;三角形全等的判定有ASA、SAS、AAS、SSS、HL,可以发现至少得有一组对应边相等,才有可能全等.4.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DC C.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D【考点】全等三角形的判定.【分析】根据全等三角形的判定方法分别进行判定即可.【解答】解:A、已知AB=DE,再加上条件BC=EC,∠B=∠E可利用SAS证明△ABC≌△DEC,故此选项不合题意;B、已知AB=DE,再加上条件BC=EC,AC=DC可利用SSS证明△ABC≌△DEC,故此选项不合题意;C、已知AB=DE,再加上条件BC=DC,∠A=∠D不能证明△ABC≌△DEC,故此选项符合题意;D、已知AB=DE,再加上条件∠B=∠E,∠A=∠D可利用ASA证明△ABC≌△DEC,故此选项不合题意;故选:C.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是()A.∠A=∠C B.AD=CB C.BE=DF D.AD∥BC【考点】全等三角形的判定.【分析】求出AF=CE,再根据全等三角形的判定定理判断即可.【解答】解:∵AE=CF,∴AE+EF=CF+EF,∴AF=CE,A、∵在△ADF和△CBE中∴△ADF≌△CBE(ASA),正确,故本选项错误;B、根据AD=CB,AF=CE,∠AFD=∠CEB不能推出△ADF≌△CBE,错误,故本选项正确;C、∵在△ADF和△CBE中∴△ADF≌△CBE(SAS),正确,故本选项错误;D、∵AD∥BC,∴∠A=∠C,∵在△ADF和△CBE中∴△ADF≌△CBE(ASA),正确,故本选项错误;故选B.【点评】本题考查了平行线性质,全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.6.如图,AB=AC,D,E分别是AB,AC上的点,下列条件中不能证明△ABE≌△ACD的是()A.AD=AE B.BD=CE C.BE=CD D.∠B=∠C【考点】全等三角形的判定.【分析】欲使△ABE≌△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA添加条件,逐一证明即可.【解答】解:∵AB=AC,∠A为公共角,A、如添加AE=AD,利用SAS即可证明△ABE≌△ACD;B、如添BD=CE,可证明AD=AE,利用SAS即可证明△ABE≌△ACD;C、如添BE=CD,因为SSA,不能证明△ABE≌△ACD,所以此选项不能作为添加的条件;D、如添∠B=∠C,利用ASA即可证明△ABE≌△ACD;故选C.【点评】此题主要考查学生对全等三角形判定定理的理解和掌握,此类添加条件题,要求学生应熟练掌握全等三角形的判定定理:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.附图为八个全等的正六边形紧密排列在同一平面上的情形.根据图中标示的各点位置,判断△ACD 与下列哪一个三角形全等?()A.△ACF B.△ADE C.△ABC D.△BCF【考点】全等三角形的判定.【分析】根据全等三角形的判定定理(SAS,ASA,AAS,SSS)结合图形进行判断即可.【解答】解:根据图象可知△ACD和△ADE全等,理由是:∵根据图形可知AD=AD,AE=AC,DE=DC,∴△ACD≌△AED,即△ACD和△ADE全等,故选B.【点评】本题考查了全等三角形的判定的应用,主要考查学生的观察图形的能力和推理能力,注意:全等三角形的判定定理有:SAS,ASA,AAS,SSS.8.如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是()A.AB=DE B.∠B=∠E C.EF=BC D.EF∥BC【考点】全等三角形的判定.【分析】本题可以假设A、B、C、D选项成立,分别证明△ABC≌△DEF,即可解题.【解答】解:∵AB ∥DE ,AC ∥DF ,∴∠A=∠D ,(1)AB=DE ,则△ABC 和△DEF 中,,∴△ABC ≌△DEF ,故A 选项错误;(2)∠B=∠E ,则△ABC 和△DEF 中,,∴△ABC ≌△DEF ,故B 选项错误;(3)EF=BC ,无法证明△ABC ≌△DEF (ASS );故C 选项正确;(4)∵EF ∥BC ,AB ∥DE ,∴∠B=∠E ,则△ABC 和△DEF 中,,∴△ABC ≌△DEF ,故D 选项错误;故选:C .【点评】本题考查了全等三角形的不同方法的判定,注意题干中“不能”是解题的关键.9.已知△A 1B 1C 1,△A 2B 2C 2的周长相等,现有两个判断:①若A 1B 1=A 2B 2,A 1C 1=A 2C 2,则△A 1B 1C 1≌△A 2B 2C 2;②若∠A 1=∠A 2,∠B 1=∠B 2,则△A 1B 1C 1≌△A 2B 2C 2,对于上述的两个判断,下列说法正确的是( )A .①正确,②错误B .①错误,②正确C .①,②都错误D .①,②都正确【考点】全等三角形的判定.【专题】压轴题.【分析】根据SSS 即可推出△A 1B 1C 1≌△A 2B 2C 2,判断①正确;根据“两角法”推知两个三角形相似,然后结合两个三角形的周长相等推出两三角形全等,即可判断②.【解答】解:∵△A 1B 1C 1,△A 2B 2C 2的周长相等,A 1B 1=A 2B 2,A 1C 1=A 2C 2,∴B 1C 1=B 2C 2,∴△A 1B 1C 1≌△A 2B 2C 2(SSS ),∴①正确;∵∠A 1=∠A 2,∠B 1=∠B 2,∴△A 1B 1C 1∽△A 2B 2C 2∵△A 1B 1C 1,△A 2B 2C 2的周长相等,∴△A 1B 1C 1≌△A 2B 2C 2∴②正确;故选:D .【点评】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,而AAA和SSA不能判断两三角形全等.二、填空题10.如图,已知BC=EC,∠BCE=∠ACD,要使△ABC≌△DEC,则应添加的一个条件为AC=CD .(答案不唯一,只需填一个)【考点】全等三角形的判定.【专题】开放型.【分析】可以添加条件AC=CD,再由条件∠BCE=∠ACD,可得∠ACB=∠DCE,再加上条件CB=EC,可根据SAS定理证明△ABC≌△DEC.【解答】解:添加条件:AC=CD,∵∠BCE=∠ACD,∴∠ACB=∠DCE,在△ABC和△DEC中,∴△ABC≌△DEC(SAS),故答案为:AC=CD(答案不唯一).【点评】此题主要考查了考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.11.如图,在△ABC和△DEF中,点B、F、C、E在同一直线上,BF=CE,AC∥DF,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是AC=DF .(只需写一个,不添加辅助线)【考点】全等三角形的判定.【专题】开放型.【分析】求出BC=EF,∠ACB=∠DFE,根据SAS推出两三角形全等即可.【解答】解:AC=DF,理由是:∵BF=CE,∴BF+FC=CE+FC,∴BC=EF,∵AC∥DF,∴∠ACB=∠DFE,在△ABC和△DEF中∴△ABC≌△DEF(SAS),故答案为:AC=DF.【点评】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,答案不唯一.12.如图,点D、E分别在线段AB,AC上,AE=AD,不添加新的线段和字母,要使△ABE≌△ACD,需添加的一个条件是∠B=∠C(答案不唯一)(只写一个条件即可).【考点】全等三角形的判定.【专题】开放型.【分析】由题意得,AE=AD,∠A=∠A(公共角),可选择利用AAS、SAS进行全等的判定,答案不唯一.【解答】解:添加∠B=∠C.在△ABE和△ACD中,∵,∴△ABE≌△ACD(AAS).故答案可为:∠B=∠C.【点评】本题考查了全等三角形的判定,属于开放型题目,解答本题需要同学们熟练掌握三角形全等的几种判定定理.13.如图,已知∠B=∠C,添加一个条件使△ABD≌△ACE(不标注新的字母,不添加新的线段),你添加的条件是AC=AB .【考点】全等三角形的判定.【专题】开放型.【分析】添加条件:AB=AC,再加上∠A=∠A,∠B=∠C可利用ASA证明△ABD≌△ACE.【解答】解:添加条件:AB=AC,∵在△ABD和△ACE中,,∴△ABD≌△ACE(ASA),故答案为:AB=AC.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.14.如图,已知点B、C、F、E在同一直线上,∠1=∠2,BC=EF,要使△ABC≌△DEF,还需添加一个条件,这个条件可以是CA=FD .(只需写出一个)【考点】全等三角形的判定.【专题】开放型.【分析】可选择添加条件后,能用SAS进行全等的判定,也可以选择AAS进行添加.【解答】解:添加CA=FD,可利用SAS判断△ABC≌△DEF.故答案可为CA=FD.【点评】本题考查了全等三角形的判定,解答本题关键是掌握全等三角形的判定定理,本题答案不唯一.15.如图,已知∠1=∠2,AC=AD,请增加一个条件,使△ABC≌△AED,你添加的条件是AE=AB .【考点】全等三角形的判定.【专题】开放型.【分析】添加条件AE=AB,根据等式的性质可得∠BAC=∠EAD,然后再用SAS证明△BAC≌△EAD.【解答】解:添加条件AE=AB,∵∠1=∠2,∴∠1+∠EAB=∠2+∠EAB,∴∠BAC=∠EAD,在△BCA和△EDA中,,∴△BAC≌△EAD(SAS).故答案为:AE=AB.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.16.如图,BC=EC,∠1=∠2,添加一个适当的条件使△ABC≌△DEC,则需添加的条件是∠A=∠D (不添加任何辅助线).【考点】全等三角形的判定.【专题】开放型.【分析】先求出∠ACB=∠DCE,再添加∠A=∠D,由已知条件BC=EC,即可证明△ABC≌△DEC.【解答】解:添加条件:∠A=∠D;∵∠1=∠2,∴∠1+∠ECA=∠2+∠ECA,即∠ACB=∠DCE,在△ABC和△DEC中,∴△ABC≌△DEC(AAS).【点评】本题考查了全等三角形的判定;熟练掌握全等三角形的判定方法是解题的关键.17.如图,AB=AC,要使△ABE≌△ACD,应添加的条件是∠B=∠C或AE=AD (添加一个条件即可).【考点】全等三角形的判定.【专题】开放型.【分析】要使△ABE≌△ACD,已知AB=AC,∠A=∠A,则可以添加一个边从而利用SAS来判定其全等,或添加一个角从而利用AAS来判定其全等.【解答】解:添加∠B=∠C或AE=AD后可分别根据ASA、SAS判定△ABE≌△ACD.故答案为:∠B=∠C或AE=AD.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.18.(2013•绥化)如图,A,B,C三点在同一条直线上,∠A=∠C=90°,AB=CD,请添加一个适当的条件AE=CB ,使得△EAB≌△BCD.【考点】全等三角形的判定.【专题】开放型.【分析】可以根据全等三角形的不同的判定方法添加不同的条件.【解答】解:∵∠A=∠C=90°,AB=CD,∴若利用“SAS”,可添加AE=CB,若利用“HL”,可添加EB=BD,若利用“ASA”或“AAS”,可添加∠EBD=90°,若添加∠E=∠DBC,可利用“AAS”证明.综上所述,可添加的条件为AE=CB(或EB=BD或∠EBD=90°或∠E=∠DBC等).故答案为:AE=CB.【点评】本题主要考查了全等三角形的判定,开放型题目,根据不同的三角形全等的判定方法可以选择添加的条件也不相同.19.如图,AF=DC,BC∥EF,只需补充一个条件BC=EF ,就得△ABC≌△DEF.【考点】全等三角形的判定.【专题】开放型.【分析】补充条件BC=EF,首先根据AF=DC可得AC=DF,再根据BC∥EF可得∠EFC=∠BCF,然后再加上条件CB=EF可利用SAS定理证明△ABC≌△DEF.【解答】解:补充条件BC=EF,∵AF=DC,∴AF+FC=CD+FC,即AC=DF,∵BC∥EF,∴∠EFC=∠BCF,∵在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).故答案为:BC=EF.【点评】此题主要考查了全等三角形的判定,关键是掌握判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.三、解答题20.如图,AC=AE,∠1=∠2,AB=AD.求证:BC=DE.【考点】全等三角形的判定与性质.【专题】证明题.【分析】先证出∠CAB=∠DAE,再由SAS证明△BAC≌△DAE,得出对应边相等即可.【解答】证明:∵∠1=∠2,∴∠CAB=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS),∴BC=DE.【点评】本题考查了全等三角形的判定与性质;熟练掌握全等三角形的判定方法,证明三角形全等是解决问题的关键.21.如图,△ABC是直角三角形,且∠ABC=90°,四边形BCDE是平行四边形,E为AC中点,BD平分∠ABC,点F在AB上,且BF=BC.求证:(1)DF=AE;(2)DF⊥AC.【考点】全等三角形的判定与性质;平行四边形的性质.【专题】证明题.【分析】(1)延长DE交AB于点G,连接AD.构建全等三角形△AED≌△DFB(SAS),则由该全等三角形的对应边相等证得结论;(2)设AC与FD交于点O.利用(1)中全等三角形的对应角相等,等角的补角相等以及三角形内角和定理得到∠EOD=90°,即DF⊥AC.【解答】证明:(1)延长DE交AB于点G,连接AD.∵四边形BCDE是平行四边形,∴ED∥BC,ED=BC.∵点E是AC的中点,∠ABC=90°,∴AG=BG,DG⊥AB.∴AD=BD,∴∠BAD=∠ABD.∵BD平分∠ABC,∴∠ABD=∠BAD=45°,即∠BDE=∠ADE=45°.又BF=BC,∴BF=DE.∴在△AED与△DFB中,,∴△AED≌△DFB(SAS),∴AE=DF,即DF=AE;(2)设AC与FD交于点O.∵由(1)知,△AED≌△DFB,∴∠AED=∠DFB,∴∠DEO=∠DFG.∵∠DFG+∠FDG=90°,∴∠DEO+∠EDO=90°,∴∠EOD=90°,即DF⊥AC.【点评】本题考查了平行四边形的性质,全等三角形的判定与性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.22.已知:如图,在△ABC中,AB=AC,AD是BC边上的中线,AE∥BC,CE⊥AE,垂足为E.(1)求证:△ABD≌△CAE;(2)连接DE,线段DE与AB之间有怎样的位置和数量关系?请证明你的结论.【考点】全等三角形的判定与性质;等腰三角形的性质;平行四边形的判定与性质.【专题】证明题.【分析】(1)运用AAS证明△ABD≌△CAE;(2)易证四边形ADCE是矩形,所以AC=DE=AB,也可证四边形ABDE是平行四边形得到AB=DE.【解答】证明:(1)∵AB=AC,∴∠B=∠ACD,∵AE∥BC,∴∠EAC=∠ACD,∴∠B=∠EAC,∵AD是BC边上的中线,∴AD⊥BC,∵CE⊥AE,∴∠ADC=∠CEA=90°在△ABD和△CAE中∴△ABD≌△CAE(AAS);(2)AB=DE,AB∥DE,如右图所示,∵AD⊥BC,AE∥BC,∴AD⊥AE,又∵CE⊥AE,∴四边形ADCE是矩形,∴AC=DE,∵AB=AC,∴AB=DE.∵AB=AC,∴BD=DC,∵四边形ADCE是矩形,∴AE∥CD,AE=DC,∴AE∥BD,AE=BD,∴四边形ABDE是平行四边形,∴AB∥DE且AB=DE.【点评】本题主要考查了三角形全等的判定与性质,矩形的判定与性质以及平行四边形的判定与性质,难度不大,比较灵活.23.如图,AB=AE,∠1=∠2,∠C=∠D.求证:△ABC≌△AED.【考点】全等三角形的判定.【专题】证明题.【分析】首先根据∠1=∠2可得∠BAC=∠EAD,再加上条件AB=AE,∠C=∠D可证明△ABC≌△AED.【解答】证明:∵∠1=∠2,∴∠1+∠EAC=∠2+∠EAC,即∠BAC=∠EAD,∵在△ABC和△AED中,,∴△ABC≌△AED(AAS).【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.。