高一数学上学期第一次月考试题(A卷)

合集下载

高一上学期第一次月考数学试卷(新题型:19题)(基础篇)(原卷版)

高一上学期第一次月考数学试卷(新题型:19题)(基础篇)(原卷版)

2024-2025学年高一上学期第一次月考数学试卷(基础篇)【人教A版(2019)】(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上;2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效;3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效;4.测试范围:必修第一册第一章、第二章;5.考试结束后,将本试卷和答题卡一并交回.第I卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的。

1.(5分)(24-25高一上·河北廊坊·开学考试)下列各组对象能构成集合的是()A.2023年参加“两会”的代表B.北京冬奥会上受欢迎的运动项目C.π的近似值D.我校跑步速度快的学生2.(5分)(23-24高一上·北京·期中)命题pp:∀xx>2,xx2−1>0,则¬pp是()A.∀xx>2,xx2−1≤0B.∀xx≤2,xx2−1>0C.∃xx>2,xx2−1≤0D.∃xx≤2,xx2−1≤03.(5分)(23-24高二下·福建龙岩·阶段练习)下列不等式中,可以作为xx<2的一个必要不充分条件的是()A.1<xx<3B.xx<3C.xx<1D.0<xx<14.(5分)(24-25高三上·山西晋中·阶段练习)下列关系中:①0∈{0},②∅ {0},③{0,1}⊆{(0,1)},④{(aa,bb)}= {(bb,aa)}正确的个数为()A.1 B.2 C.3 D.45.(5分)(24-25高三上·江苏南通·阶段练习)若变量x,y满足约束条件3≤2xx+yy≤9,6≤xx−yy≤9,则zz=xx+2yy的最小值为()A.-7 B.-6 C.-5 D.-46.(5分)(23-24高二下·云南曲靖·期末)已知全集UU={1,3,5,7,9},MM=�xx|xx>4且xx∈UU},NN={3,7,9},则MM∩(∁UU NN)=()A.{1,5}B.{5}C.{1,3,5}D.{3,5}7.(5分)(23-24高一上·陕西渭南·期末)已知不等式aaxx2+bbxx+2>0的解集为{xx∣xx<−2或xx>−1},则不等式2xx2+bbxx+aa<0的解集为()A.�xx�−1<xx<12�B.{xx∣xx<−1或xx>12}C.�xx�−1<xx<−12�D.{xx∣xx<−2或xx>1}8.(5分)(24-25高三上·江苏徐州·开学考试)已知aa>bb≥0且6aa+bb+2aa−bb=1,则2aa+bb的最小值为()A.12 B.8√3C.16 D.8√6二、多项选择题:本题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目的要求,全部选对的得6分,部分选对的得部分分,有选错的得0分。

新人教A版高一上学期第一次月考数学试卷集(名校)(10套试卷,附答案解析)

新人教A版高一上学期第一次月考数学试卷集(名校)(10套试卷,附答案解析)

新人教A 版高一上学期摸底试卷数 学 试 卷 (一)A 卷考生注意: 1.本试卷分第Ⅰ卷(选择题)和第二卷(非选择题)两部分,共150分,考试时间120分钟.2.请将各题答案填写在答题卡上.第Ⅰ卷(选择题 共60分)一、单项选择题(每小题5分,共40分) 1. 已知集合{}022>--=x x x A ,则C R =A【 】(A ){}21<<-x x (B ){}21≤≤-x x (C ){}21>-<x x x 或 (D ){}21≥-≤x x x 或2. 已知集合{}1,1-=A ,{}01=+=ax x B ,若A B ⊆,则实数a 的所有取值的集合为 【 】 (A ){}1- (B ){}1 (C ){}1,1- (D ){}1,0,1-3. 下列各式中,正确的个数是 【 】 (1){}0=∅; (2){}0⊆∅; (3){}0∈∅; (4){}00=; (5){}00∈; (6){}{}3,2,11∈; (7){}{}3,2,12,1⊆; (8){}{}a b b a ,,⊆. (A )1 (B )2 (C )3 (D )44. 已知{}0232=+-=x x x A ,{}02=-=ax x B ,若B B A = ,则实数a 的值为 【 】 (A )0或1或2 (B )1或2 (C )0 (D )0或15. 已知∈x R ,则“1-<x ”是“0122>-+x x ”的 【 】 (A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件6. 已知集合{}5,4,3,2,1=A ,(){}A y x A y A x y x B ∈-∈∈=,,,,则集合B 中则所含元素的个数为 【 】 (A )3 (B )6 (C )8 (D )107. 若不等式022>++bx ax 的解集为{}21<<-x x ,则b a +的值是 【 】 (A )0 (B )1- (C )1 (D )28. 已知y x ,均为正数,且02=-+xy y x ,若m m y x 222+>+恒成立,则实数m 的取值范围是 【 】 (A ){}42≥-≤m m m 或 (B ){}24≥-≤m m m 或 (C ){}42<<-m m (D ){}24<<-m m二、多项选择题(每小题5分,共20分.在每小题给出的选项中,有多个选项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分)9. 下列命题的否定中,是全称量词命题且为真命题的是 【 】 (A )∈∃x R ,0412<+-x x (B )所有的正方形都是矩形 (C )∈∃x R ,222++x x ≤0 (D )至少有一个实数x ,使013=+x10. 设非空集合Q P ,满足Q Q P = ,且Q P ≠,则下列选项中错误的是 【 】 (A )Q x ∈∀,有P x ∈ (B )P x ∈∃,使得Q x ∉ (C )Q x ∈∃,使得P x ∉ (D )Q x ∉∀,有P x ∉ 11. 给出下列四个命题:①若b a >且b a 11>,则0>ab ; ②若0>>>b ac ,则bc ba c a ->-; ③若0>>>c b a ,则ca cb a b ++<; ④若1=+b a ,则b a 11+≥4其中正确的命题是 【 】 (A )① (B )② (C )③ (D )④12. 下列结论正确的是 【 】 (A )当0>x 时,xx 1+≥2(B )当2>x 时,xx 1+的最小值是2 (C )当45<x 时,54124-+-x x 的最小值是5(D )设0,0>>y x ,且2=+y x ,则y x 41+的最小值是29第Ⅱ卷 非选择题(共90分)三、填空题(每小题5分,共20分)13. 命题“∈∃x R ,0122<++x x ”的否定是______________________. 14. 已知43,26πβππαπ<<-<<,则βα-的取值范围是_____________.15. 已知命题44:+<<-a x a p ,命题()()032:>--x x q .若q 是p 的充分不必要条件,则实数a 的取值范围是_____________.16. 关于x 的方程()0212=++-x m mx 的所有实数根的和为2的充要条件是___________. 四、解答题(共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分10分)已知集合{}a x a x A +≤≤-=22,{}0452≥+-=x x x B . (1)当3=a 时,求B A , A (C R B ); (2)若∅=B A ,求实数a 的取值范围.18.(本题满分12分)若集合{}0652=-+=x x x A ,(){}031222=-+++=m x m x x B . (1)若0=m ,写出B A 的子集; (2)若B B A = ,求实数m 的取值范围.(1)已知0>x ,求xx 42--的最大值; (2)已知2>x ,求21-+x x 的最小值; (3)已知210<<x ,求()x x 2121-的最大值;(4)求182-+x x (1>x )的最小值.20.(本题满分12分)已知集合⎭⎬⎫⎩⎨⎧>+-=013x x x A ,集合(){}021222<-+++-=m m x m x x B .命题A x p ∈:,命题B x q ∈:,若p 是q 的必要不充分条件,求实数m 的取值范围.围建一个面积为360 m 2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽为2 m 的进出口,如图所示.已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x (单位: m ),修建此矩形场地围墙的总费用为y (单位: 元). (1)将y 表示为x 的函数;(2)试确定x ,使修建此矩形场地围墙的总费用最小,并求出最小总费用.22.(本题满分12分)已知函数()()422++-=x a x x f (∈a R ). (1)解关于x 的不等式()x f ≤a 24-;(2)若对任意的1≤x ≤4,()1++a x f ≥0恒成立,求实数a 的取值范围.新人教A 版高一上学期摸底试卷数 学 试 卷 (一)A 卷答案解析考生注意: 1.本试卷分第Ⅰ卷(选择题)和第二卷(非选择题)两部分,共150分,考试时间120分钟.2.请将各题答案填写在答题卡上.第Ⅰ卷(选择题 共60分)一、单项选择题(每小题5分,共40分) 1. 已知集合{}022>--=x x x A ,则C R =A【 】(A ){}21<<-x x (B ){}21≤≤-x x (C ){}21>-<x x x 或 (D ){}21≥-≤x x x 或 答案 【 B 】解析 本题考查一元二次不等式的解法及补集运算. 解不等式022>--x x 得:2>x 或1-<x . ∴{}12-<>=x x x A 或. ∴C R =A {}21≤≤-x x . ∴选择答案【 B 】.2. 已知集合{}1,1-=A ,{}01=+=ax x B ,若A B ⊆,则实数a 的所有取值的集合为 【 】 (A ){}1- (B ){}1 (C ){}1,1- (D ){}1,0,1- 答案 【 D 】解析 本题考查根据集合之间的基本关系确定参数的值或取值范围,注意不要忘记对空集的讨论.当0=a 时,∅=B ,满足A B ⊆;当0≠a 时,⎭⎬⎫⎩⎨⎧-==a x x B 1,∵A B ⊆,∴{}1-=B 或{}1=B .∴11-=-a 或11=-a,解之得:1=a 或1-=a .∴实数a 的所有取值的集合为{}1,0,1-. ∴选择答案【 D 】.3. 下列各式中,正确的个数是 【 】 (1){}0=∅; (2){}0⊆∅; (3){}0∈∅; (4){}00=; (5){}00∈; (6){}{}3,2,11∈; (7){}{}3,2,12,1⊆; (8){}{}a b b a ,,⊆. (A )1 (B )2 (C )3 (D )4 答案 【 D 】解析 本题考查集合与元素、集合与集合之间的基本关系以及空集的性质. 正确的结论是(2)、(5)、(7)和(8),共4个. ∴选择答案【 D 】.4. 已知{}0232=+-=x x x A ,{}02=-=ax x B ,若B B A = ,则实数a 的值为 【 】 (A )0或1或2 (B )1或2 (C )0 (D )0或1 答案 【 A 】解析 本题考查交集的运算性质.{}{}2,10232==+-=x x x A∵B B A = ,∴A B ⊆. 当∅=B 时,0=a ,符合题意;当∅≠B 时,即0≠a ,则有⎭⎬⎫⎩⎨⎧==a x x B 2.若{}1=B ,则12=a ,解之得:2=a ; 若{}2=B ,则22=a,解之得:1=a .综上所述,实数a 的值为0或1或2. ∴选择答案【 A 】.5. 已知∈x R ,则“1-<x ”是“0122>-+x x ”的 【 】 (A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件 答案 【 A 】解析 本题考查充分必要条件的判断.解不等式0122>-+x x 得:1-<x 或21>x . 设{}1-<=x x A ,⎭⎬⎫⎩⎨⎧>-<=211x x x B 或,则B A ≠⊂. ∴“1-<x ”是“0122>-+x x ”的充分不必要条件. ∴选择答案【 A 】.6. 已知集合{}5,4,3,2,1=A ,(){}A y x A y A x y x B ∈-∈∈=,,,,则集合B 中则所含元素的个数为 【 】 (A )3 (B )6 (C )8 (D )10 答案 【 D 】解析 本题考查列举法表示集合.由集合B 的代表元素的特征可知,集合B 表示一个点集. 由题意可知:()()()()()()()()()(){}1,5,2,5,3,5,4,5,1,4,2,4,3,4,1,3,2,3,1,2=B ,共有10个元素. ∴选择答案【 D 】.7. 若不等式022>++bx ax 的解集为{}21<<-x x ,则b a +的值是 【 】 (A )0 (B )1- (C )1 (D )2 答案 【 A 】解析 本题考查一元二次不等式与对应一元二次方程的关系,涉及到根与系数的关系定理. ∵不等式022>++bx ax 的解集为{}21<<-x x ∴0<a ,方程022=++bx ax 的两个实数根分别为1-和2. 由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯-=+-=-21221aab ,解之得:⎩⎨⎧=-=11b a . ∴011=+-=+b a . ∴选择答案【 A 】.8. 已知y x ,均为正数,且02=-+xy y x ,若m m y x 222+>+恒成立,则实数m 的取值范围是 【 】 (A ){}42≥-≤m m m 或 (B ){}24≥-≤m m m 或(C ){}42<<-m m (D ){}24<<-m m 答案 【 D 】解析 本题考查利用基本不等式求最值以及一元二次不等式的解法. ∵02=-+xy y x ,∴xy y x =+2. ∵y x ,均为正数 ∴1212=+=+xy xy y x ∴()x y y x y x y x y x 441222++=⎪⎭⎫⎝⎛++=+≥8424=⋅+x y y x . 当且仅当xyy x 4=,即2,4==y x 时,等号成立. ∴()82min =+y x .∵m m y x 222+>+恒成立,∴()822min 2=+<+y x m m . ∴0822<-+m m ,解之得:24<<-m . ∴实数m 的取值范围是{}24<<-m m . ∴选择答案【 D 】.二、多项选择题(每小题5分,共20分.在每小题给出的选项中,有多个选项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分)9. 下列命题的否定中,是全称量词命题且为真命题的是 【 】 (A )∈∃x R ,0412<+-x x (B )所有的正方形都是矩形 (C )∈∃x R ,222++x x ≤0 (D )至少有一个实数x ,使013=+x 答案 【 AC 】解析 本题考查全称量词命题与存在量词命题的否定以及真假命题的判断.一个命题和它的否定命题只能是一真一假,不能同真同假.这启示我们在判断一个命题的否定的真假时,只需判断该命题的真假即可.注意全称量词命题的否定为存在量词命题,存在量词命题的否定是全称量词命题.对于(B ),为全称量词命题,其否定为存在量词命题,不符合题意,故排除(B )选项;对于(A ),∵222141⎪⎭⎫⎝⎛-=+-x x x ≥0,∴(A )为假命题,∴其否定为真命题,故(A )符合题意;对于(C ),∵()0112222>++=++x x x ,∴(C )为假命题,∴其否定为真命题,故(C )符合题意;对于(D ),当1-=x 时,013=+x ,∴(D )为真命题,∴其否定为假命题,故(D )不符合题意. ∴选择答案【 AC 】.总结 含有1个量词的命题的否定方法:改变量词,否定结论.10. 设非空集合Q P ,满足Q Q P = ,且Q P ≠,则下列选项中错误的是 【 】 (A )Q x ∈∀,有P x ∈ (B )P x ∈∃,使得Q x ∉ (C )Q x ∈∃,使得P x ∉ (D )Q x ∉∀,有P x ∉ 答案 【 CD 】解析 本题考查用量词符号来描述元素与集合之间的关系. ∵非空集合Q P ,满足Q Q P = ,Q P ≠ ∴P Q ≠⊂.∴Q x ∈∀,有P x ∈,P x ∈∃,使得Q x ∉.即(A )、(B )正确. ∴选择答案【 CD 】. 11. 给出下列四个命题:①若b a >且b a 11>,则0>ab ; ②若0>>>b ac ,则bc ba c a ->-; ③若0>>>c b a ,则ca cb a b ++<; ④若1=+b a ,则b a 11+≥4其中正确的命题是 【 】 (A )① (B )② (C )③ (D )④ 答案 【 BC 】解析 本题考查不等式的基本性质.对于①,011>-=-abab b a ,∵b a >,∴0<-a b ,∴0<ab .故①错误; 对于②,∵0>>>b ac ,∴0,0>->-b c a c ,0>-b a ,∴()()()0>---=---b c a c b a c b c b a c a .故②正确;对于③,∵0>>>c b a ,∴0<-a b ,∴()()0<+-=++-c a a a b c c a c b a b ,故③正确; 对于④,注意利用基本不等式求最值时必须满足三个条件:一正、二定、三相等.当0,0>>b a ,且1=+b a 时,()a b b a b a b a b a ++=⎪⎭⎫ ⎝⎛++=+21111≥422=⋅+a b b a ,当且仅当21==b a 时等号成立.故④错误. ∴正确的命题是②③. ∴选择答案【 BC 】.12. 下列结论正确的是 【 】 (A )当0>x 时,xx 1+≥2(B )当2>x 时,xx 1+的最小值是2 (C )当45<x 时,54124-+-x x 的最小值是5(D )设0,0>>y x ,且2=+y x ,则y x 41+的最小值是29答案 【 AD 】解析 本题考查利用基本不等式求最值,注意等号成立的条件,即取得最值的条件是否满足. 对于(A ),当0>x 时,0>x ,∴xx 1+≥212=⋅xx ,当且仅当xx 1=,即1=x 时,等号成立.故(A )正确; 对于(B ),设()x x x f 1+=,∵()x f 在[)+∞,1上单调递增,∴当2>x 时,()⎪⎭⎫ ⎝⎛+∞∈,25x f ,无最小值.故(B )错误; 对于(C ),当45<x 时,054<-x . ∴34514535415454124+⎪⎭⎫⎝⎛-+--=+-+-=-+-x x x x x x ≤()3451452+-⋅--x x 1=,当且仅当xx 45145-=-,即1=x 时,等号成立,∴54124-+-x x 的最大值是1,无最小值.故(C )错误;对于(D ),∵0,0>>y x ,2=+y x∴()⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛++=+x y yx y x y x y x 42125412141≥29225422125=+=⋅⨯+x y y x . 当且仅当x y y x =4,即34,32==y x 时,等号成立. ∴y x 41+的最小值是29.故(D )正确. ∴选择答案【 AD 】.第Ⅱ卷 非选择题(共90分)三、填空题(每小题5分,共20分)13. 命题“∈∃x R ,0122<++x x ”的否定是______________________. 答案 ∈∀x R ,122++x x ≥0解析 本题考查存在量词命题的否定.存在量词命题的否定为全称量词命题(仍是一个命题). 含有1个量词的命题的否定方法:改变量词,否定结论. 该命题的否定:∈∀x R ,122++x x ≥0. 14. 已知43,26πβππαπ<<-<<,则βα-的取值范围是_____________.答案 ⎭⎬⎫⎩⎨⎧<-<--6512πβαπβα解析 本题考查不等式的基本性质. ∵43πβπ<<-,∴34πβπ<-<-.∵26παπ<<∴3246ππβαππ+<-<-,即6512πβαπ<-<-.∴βα-的取值范围是⎭⎬⎫⎩⎨⎧<-<--6512πβαπβα.15. 已知命题44:+<<-a x a p ,命题()()032:>--x x q .若q 是p 的充分不必要条件,则实数a 的取值范围是_____________. 答案 []6,1-解析 本题考查从集合的角度理解充分必要条件.不等式()()032>--x x 同解于()()032<--x x ,解之得:32<<x .设{}44+<<-=a x a x A ,{}32<<=x x B . ∵q 是p 的充分不必要条件∴A B ≠⊂,则有⎩⎨⎧≥+≤-3424a a ,解之得:1-≤a ≤6. ∴实数a 的取值范围是[]6,1-.16. 关于x 的方程()0212=++-x m mx 的所有实数根的和为2的充要条件是___________. 答案 0=m解析 本题考查充要条件的确定.当0=m 时,02=+-x ,解之得:2=x ,符合题意;当0≠m 时,则有()[]()⎪⎩⎪⎨⎧=+--≥-+-=∆210812mm m m ,解之得:无解.综上所述,符合题意的充要条件是0=m .四、解答题(共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分10分)已知集合{}a x a x A +≤≤-=22,{}0452≥+-=x x x B . (1)当3=a 时,求B A , A (C R B ); (2)若∅=B A ,求实数a 的取值范围. 解:(1)当3=a 时,{}51≤≤-=x x A . 解不等式452+-x x ≥0得:x ≥4或x ≤1. ∴{}14≤≥=x x x B 或.∴[][]5,41,1 -=B A ,C R B {}41<<=x x . ∴ A (C R B )[]5,1-=; (2)∵∅=B A∴⎩⎨⎧<+>-4212a a ,解之得:1<a . ∴实数a 的取值范围是()1,∞-.18.(本题满分12分)若集合{}0652=-+=x x x A ,(){}031222=-+++=m x m x x B . (1)若0=m ,写出B A 的子集; (2)若B B A = ,求实数m 的取值范围.解:(1)当0=m 时,{}{}1,30322-==-+=x x x B . ∵{}{}1,60652-==-+=x x x A ∴{}1,1,6--=B A .∴其子集为:{}{}{}{}{}{}{}1,1,6,1,1,1,6,1,6,1,1,6,--------∅,共8个(823=); (2)∵B B A = ,∴A B ⊆. 分为两种情况:当∅=B 时,符合题意,此时()[]()0341222<--+=∆m m ,解之得:2-<m ;当∅≠B 时,则{}6-=B 或{}1=B 或{}1,6-=B :若{}6-=B 或{}1=B ,则()[]()0341222=--+=∆m m ,解之得:2-=m ,此时{}1=B ,符合题意;若{}1,6-=B ,则有()[]()()⎪⎩⎪⎨⎧⨯-=-+-=+->--+=∆163161203412222m m m m ,解之得:无解.综上所述,实数m 的取值范围为(]2,-∞-. 19.(本题满分12分) (1)已知0>x ,求xx 42--的最大值; (2)已知2>x ,求21-+x x 的最小值; (3)已知210<<x ,求()x x 2121-的最大值;(4)求182-+x x (1>x )的最小值.解:(1)∵0>x ∴⎪⎭⎫⎝⎛+-=--x x x x 4242≤2422-=⋅-x x .当且仅当xx 4=,即2=x 时,等号成立. ∴xx 42--的最大值为2-; (2)∵2>x ,∴02>-x∴221221+-+-=-+x x x x ≥()422122=+-⋅-x x . 当且仅当212-=-x x ,即3=x 时,等号成立.∴21-+x x 的最小值为4;(3)∵210<<x ,∴021>-x .∴()()x x x x 212412121-=-≤16141412212412=⨯=⎪⎭⎫ ⎝⎛-+⨯x x .当且仅当x x 212-=,即41=x 时,等号成立. ∴()x x 2121-的最大值为161; 另解: 设()()1614121212122+⎪⎭⎫ ⎝⎛--=+-=-=x x x x x x f .∵210<<x ∴当41=x 时,()161max =x f ,即()x x 2121-的最大值为161.(4)∵1>x ,∴01>-x .∴()()2191191211822+-+-=-+-+-=-+x x x x x x x ≥()821912=+-⋅-x x .当且仅当191-=-x x ,即4=x 时,等号成立.∴182-+x x (1>x )的最小值为8.20.(本题满分12分)已知集合⎭⎬⎫⎩⎨⎧>+-=013x x x A ,集合(){}021222<-+++-=m m x m x x B .命题A x p ∈:,命题B x q ∈:,若p 是q 的必要不充分条件,求实数m 的取值范围.解: 解分式不等式013>+-x x得:31<<-x . ∴{}31<<-=x x A .∵p 是q 的必要不充分条件,∴A B ≠⊂.解方程()021222=-+++-m m x m x 得:1,221-=+=m x m x . ∴()[]()[]{}{}21021+<<-=<+---=m x m x m x m x x B . ∵{}31<<-=x x A ,A B ≠⊂∴⎩⎨⎧≤+-≥-3211m m ,解之得:0≤m ≤1.∴实数m 的取值范围为[]1,0. 21.(本题满分12分)围建一个面积为360 m 2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽为2 m 的进出口,如图所示.已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x (单位: m ),修建此矩形场地围墙的总费用为y (单位: 元). (1)将y 表示为x 的函数;(2)试确定x ,使修建此矩形场地围墙的总费用最小,并求出最小总费用.解:(1)由题意可得:36036022518023602452-+=⨯⎪⎭⎫ ⎝⎛-+⨯+=x x x x x y ; (2)∵3603602252-+=xx y ≥=-⨯⨯=-⋅36036015236036022522x x 10440. 当且仅当xx 2360225=,即24=x 时,等号成立.∴当24=x 时,10440min =y (元).答:当24=x m 时,修建此矩形场地围墙的总费用最小,最小费用为10440元. 22.(本题满分12分)已知函数()()422++-=x a x x f (∈a R ). (1)解关于x 的不等式()x f ≤a 24-;(2)若对任意的1≤x ≤4,()1++a x f ≥0恒成立,求实数a 的取值范围. 解:(1)()x f ≤a 24-,即()422++-x a x ≤a 24-. ∴()()()a x x a x a x --=++-2222≤0. 当2<a 时,原不等式的解集为{}2≤≤x a x ;当2=a 时,()22-x ≤0,原不等式的解集为{}2=x x ; 当2>a 时,原不等式的解集为{}a x x ≤≤2.综上所述,当2<a 时,原不等式的解集为{}2≤≤x a x ;当2=a 时,原不等式的解集为{}2=x x ;当2>a 时,原不等式的解集为{}a x x ≤≤2. (2)()1++a x f ≥0,即()522+++-a x a x ≥0. ∴()1-x a ≤()415222+-=+-x x x . ∵1≤x ≤4,()0412>+-x∴当1=x 时,0≤()412+-x 恒成立,此时∈a R ;当x <1≤4时,则有a ≤()1411412-+-=-+-x x x x .只需a ≤min 141⎪⎭⎫ ⎝⎛-+-x x 即可. ∵141-+-x x ≥()41412=-⋅-x x ,当且仅当141-=-x x ,即3=x 时取等号 ∴4141min =⎪⎭⎫ ⎝⎛-+-x x . ∴a ≤4.综上所述,实数a 的取值范围是(]4,∞-.新人教A 版高一上学期摸底试卷数 学 试 卷 (一)B 卷考生注意: 1.本试卷分第Ⅰ卷(选择题)和第二卷(非选择题)两部分,共150分,考试时间120分钟.2.请将各题答案填写在答题卡上.第Ⅰ卷(选择题 共60分)一、单项选择题(每小题5分,共40分)1. 已知全集{}4,3,2,1,0=U ,{}2,1,0=M ,{}3,2=N ,则(C U M )=N 【 】 (A ){}4,3,2 (B ){}3 (C ){}2 (D ){}4,3,2,1,02. 设()y x P ,,则“2=x 且1-=y ”是“点P 在一次函数1+-=x y 的图象上”的 【 】 (A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件3. 设d c b a >>,,则下列不等式中一定成立的是 【 】 (A )d b c a ->- (B )bd ac > (C )d b c a +>+ (D )c b d a +>+4. 已知集合⎭⎬⎫⎩⎨⎧∈<--=Z x x x x A ,014,{}8,2,m B =,若B B A = ,则=m 【 】(A )1 (B )2 (C )3 (D )55. 若不等式042<++ax x 的解集为∅,则实数a 的取值范围是 【 】 (A )[]4,4- (B )()4,4-(C )(][)+∞-∞-,44, (D )()()+∞-∞-,44, 6. 已知2>x ,则函数x x y 424+-=的最小值是 【 】(A )6 (B )8 (C )12 (D )167. 设全集=U R ,{}22>-<=x x x M 或,{}31≤≤=x x N .如图所示,则阴影部分表示的集合为 【 】 (A ){}12<≤-x x (B ){}32≤≤-x x (C ){}32>≤x x x 或 (D ){}22≤≤-x x8. 定义一个集合A 的所有子集组成的集合叫做集合A 的幂集,记为()A P ,用()A n 表示有限集A 的元素个数,给出下列命题:①对于任意集合A ,都有()A P A ⊆;②存在集合A ,()[]3=A P n ;③若∅=B A ,则()()∅=B P A P ;④若B A ⊆,则()()B P A P ⊆;⑤若()()1=-B n A n ,则()[]()[]B P n A P n ⨯=2.其中正确的命题个数为 【 】 (A )5 (B )4 (C )3 (D )2二、多项选择题(每小题5分,共20分.在每小题给出的选项中,有多个选项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分)9. 下列命题中是真命题的是 【 】 (A )∈∀x R ,04322>+-x x (B ){}0,1,1-∈∀x ,012>+x (C )∈∃x N ,使得x ≤x (D )∈∃x N*,使x 为29的约数10. 已知06:2=-+x x p ,01:=+ax q .若p 是q 的必要不充分条件,则a 的值可以是 【 】 (A )2- (B )21-(C )31 (D )31-11. 已知函数b ax x y ++=2(0>a )有且只有一个零点,则 【 】 (A )22b a -≤4 (B )ba 12+≥4 (C )若不等式02<-+b ax x 的解集为()21,x x ,则021>x x(D )若不等式c b ax x <++2的解集为()21,x x ,且421=-x x ,则4=c12. 下列求最值的运算中,错误的是 【 】 (A )当0<x 时,()⎥⎦⎤⎢⎣⎡-+--=+x x x x 11≤()212-=-⋅--x x ,当且仅当1-=x 时,x x 1+取得最大值,最大值为2-(B )当1>x 时,12-+x x ≥122-⋅x x ,当且仅当12-=x x 时取等号,解得1-=x 或2=x ,又1>x ,所以2=x ,故当1>x 时,12-+x x 的最小值为41222=-+ (C )由于4494492222-+++=++x x x x ≥()24494222=-+⋅+x x ,故4922++x x 的最小值是2(D )已知0,0>>y x ,且24=+y x .∵y x 42+=≥xy y x 442=⋅,∴xy ≤21,又因为y x 11+≥xyy x 2112=⋅≥4212=,∴当0,0>>y x ,且24=+y x 时,y x 11+的最小值为4 第Ⅱ卷 非选择题(共90分)三、填空题(每小题5分,共20分)13. 已知集合{}01582=+-=x x x A ,{}02=+-=b ax x x B ,若{}5,3,2=B A ,{}3=B A ,则=ab __________.14. 若关于x 的不等式0>+b ax 的解集为()+∞,1,则11+-b a 的最小值为__________. 15. 若不等式021<-+-mx m x 成立的一个充分不必要条件是2131<<x ,则实数m 的取值范围是________________.16. 已知正实数y x ,满足14522=-+y xy x ,则22812y xy x -+的最小值为__________. 四、解答题(共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分10分) (1)计算:21432540625.0833425-⎪⎭⎫⎝⎛++-; (2)解不等式:x 26-≤1832<-x x .18.(本题满分12分)若21,x x 分别是函数3422-+=x x y 的两个零点. (1)求21x x -的值;(2)求3231x x +的值.19.(本题满分12分)设集合{}21≤≤-=x x A ,非空集合{}12<<=x m x B .(1)若“A x ∈”是“B x ∈”成立的必要条件,求实数m 的取值范围; (2)若 B (C R A )的元素中只有两个整数,求实数m 的取值范围.20.(本题满分12分)精准扶贫是巩固温饱成果、加快脱贫致富、实现中华民族伟大“中国梦”的重要保障.某地政府在对某乡镇企业实施精准扶贫的工作中,准备投入资金将当地农产品进行二次加工后进行推广促销,预计该产品销售量w 万件(生产量与销售量相等)与推广促销费x 万元之间的函数关系为23+=x w (其中推广促销费不能超过5万元).已知加工此农产品还要投入成本3⎪⎭⎫ ⎝⎛+w w 3万元(不包括推广促销费用),加工后的每件成品的销售价格定为⎪⎭⎫ ⎝⎛+w 304元/件. (1)试将该批产品的利润y 万元表示为推广促销费x 万元的函数;(利润=销售额-成本-推广促销费)(2)当推广促销费投入多少万元时,此产品的利润最大?最大利润为多少?21.(本题满分12分) 已知()12632+-+-=x a a x y .(1)若不等式b y >的解集为()3,0,求实数b a ,的值;(2)若3=a 时,对于任意实数x ,都有y ≤m m x 6932-+,求m 的取值范围.22.(本题满分12分)设函数b x ax y -+=2(∈a R ,∈b R ). (1)若45-=a b ,且集合{}0=y x 中有且只有一个元素,求实数a 的取值组合; (2)求不等式()222--+<b x a y 的解集;(3)当1,0>>b a 时,记不等式y ≥0的解集为P ,集合{}t x t x Q +-<<--=22.若对于任意正数t ,∅≠Q P ,求ba 11-的最大值.新人教A 版高一上学期摸底试卷数 学 试 卷 (一)B 卷 答 案 解 析考生注意: 1.本试卷分第Ⅰ卷(选择题)和第二卷(非选择题)两部分,共150分,考试时间120分钟.2.请将各题答案填写在答题卡上.第Ⅰ卷(选择题 共60分)一、单项选择题(每小题5分,共40分)1. 已知全集{}4,3,2,1,0=U ,{}2,1,0=M ,{}3,2=N ,则(C U M )=N 【 】 (A ){}4,3,2 (B ){}3 (C ){}2 (D ){}4,3,2,1,0 答案 【 B 】解析 本题考查集合的基本运算——补集运算和交集运算.注意集合元素的三个性质. ∵{}4,3,2,1,0=U ,{}2,1,0=M ∴C U M {}4,3=. ∴(C U M )=N {}3. ∴选择答案【 B 】.2. 设()y x P ,,则“2=x 且1-=y ”是“点P 在一次函数1+-=x y 的图象上”的 【 】 (A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件 答案 【 A 】解析 本题考查充分必要条件的判断. 判断充分必要条件的基本思路是: (1)首先确定条件是什么,结论是什么;(2)尝试用条件推结论,或由结论推条件(必要时举出反例); (3)指出条件是结论的什么条件.显然,由“2=x 且1-=y ”可以推出“点P 在一次函数1+-=x y 的图象上”,但是后者不能推出前者.∴“2=x 且1-=y ”是“点P 在一次函数1+-=x y 的图象上”的充分不必要条件. ∴选择答案【 A 】.3. 设d c b a >>,,则下列不等式中一定成立的是 【 】 (A )d b c a ->- (B )bd ac > (C )d b c a +>+ (D )c b d a +>+ 答案 【 C 】解析 本题考查不等式的基本性质.对于(A ),不等式没有同向可减性,故(A )错误;对于(B ),不等式具有同向同正可乘性:若0,0>>>>d c b a ,则bd ac >.故(B )错误; 对于(C ),不等式具有同向可加性.故(C )正确; 对于(D ),不符合不等式的基本性质,故(D )错误. ∴选择答案【 C 】.4. 已知集合⎭⎬⎫⎩⎨⎧∈<--=Z x x x x A ,014,{}8,2,m B =,若B B A = ,则=m 【 】(A )1 (B )2 (C )3 (D )5 答案 【 C 】解析 本题考查分式不等式的解法以及并集运算.解分式不等式的基本思路是把分式不等式转化为同解的整式不等式.两个集合的并集是一种运算,其结果仍是一个集合,它是由两个集合中的所有元素组成的集合,注意集合元素的互异性. 分式不等式014<--x x 同解于()()041<--x x ,解之得:41<<x . ∴{}{}3,2,41=∈<<=Z x x x A . ∵B B A = ,∴B A ⊆. ∴{}{}8,2,3,2m ⊆,∴3=m . ∴选择答案【 C 】.5. 若不等式042<++ax x 的解集为∅,则实数a 的取值范围是 【 】(A )[]4,4- (B )()4,4-(C )(][)+∞-∞-,44, (D )()()+∞-∞-,44, 答案 【 A 】解析 本题考查一元二次不等式与一元二次函数、一元二次方程之间的关系. ∵042<++ax x 的解集为∅ ∴162-=∆a ≤0,解之得:4-≤a ≤4. ∴实数a 的取值范围是[]4,4-. ∴选择答案【 A 】. 6. 已知2>x ,则函数x x y 424+-=的最小值是 【 】(A )6 (B )8 (C )12 (D )16 答案 【 D 】解析 本题考查利用基本不等式求最值. ∵2>x ,∴02>-x .∴()82424424+-+-=+-=x x x x y ≥()16824242=+-⋅-x x . 当且仅当()2424-=-x x ,即3=x 时,等号成立.∴函数x x y 424+-=的最小值是16.∴选择答案【 D 】.7. 设全集=U R ,{}22>-<=x x x M 或,{}31≤≤=x x N .如图所示,则阴影部分表示的集合为 【 】 (A ){}12<≤-x x (B ){}32≤≤-x x (C ){}32>≤x x x 或 (D ){}22≤≤-x x答案 【 A 】解析 本题考查德·摩根定律. C U (B A )(C U A ) (C U B ).图中阴影部分表示的集合为: C U (N M ). ∵{}22>-<=x x x M 或,{}31≤≤=x x N ∴{}12≥-<=x x x N M 或 . ∴C U (N M ){}12<≤-=x x . ∴选择答案【 A 】.8. 定义一个集合A 的所有子集组成的集合叫做集合A 的幂集,记为()A P ,用()A n 表示有限集A 的元素个数,给出下列命题:①对于任意集合A ,都有()A P A ⊆;②存在集合A ,()[]3=A P n ;③若∅=B A ,则()()∅=B P A P ;④若B A ⊆,则()()B P A P ⊆;⑤若()()1=-B n A n ,则()[]()[]B P n A P n ⨯=2.其中正确的命题个数为 【 】 (A )5 (B )4 (C )3 (D )2 答案 【 A 】解析 本题考查集合的新定义.对于①,集合与元素之间的关系为从属关系,根据题意可得:()A P A ∈,故①错误;对于②,设集合A 含有m (∈m N )个元素,则集合A 的子集个数为m 2,集合()A P 的元素个数为m 2.若()[]3=A P n ,则32=m ,显然无解,所以不存在这样的集合A ,使()[]3=A P n .故②错误; 对于③,若∅=B A ,则()(){}∅=B P A P .故③错误; 对于④,若B A ⊆,则()()B P A P ⊆.故④正确;对于⑤,若()()1=-B n A n ,设()m B n =,则()1+=m A n ,∴()[]12+=m A P n ,()[]m B P n 2=. ∴()[]()[]B P n A P n m m 22221=⨯==+.故⑤正确. ∴正确的命题个数为2. ∴选择答案【 D 】.二、多项选择题(每小题5分,共20分.在每小题给出的选项中,有多个选项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分)9. 下列命题中是真命题的是 【 】(A )∈∀x R ,04322>+-x x (B ){}0,1,1-∈∀x ,012>+x (C )∈∃x N ,使得x ≤x (D )∈∃x N*,使x 为29的约数 答案 【 ACD 】解析 本题考查判断含有一个量词(全称量词或存在量词)的命题的真假. 对于(A ),∈∀x R ,082343243222>+⎪⎭⎫ ⎝⎛-=+-x x x .故(A )是真命题; 对于(B ),显然,当1-=x 时,011212<-=+-=+x .故(B )是假命题; 对于(C ),当{}[)+∞∈,10 x 时,x ≤x 成立.故(C )是真命题; 对于(D ),当1=x 和29=x 时,x 为29的约数.故(D )是真命题. ∴选择答案【 ACD 】.10. 已知06:2=-+x x p ,01:=+ax q .若p 是q 的必要不充分条件,则a 的值可以是 【 】 (A )2- (B )21- (C )31 (D )31-答案 【 BC 】解析 本题考查根据充分必要性确定参数的值或取值范围. 设{}{}2,3062-==-+=x x x A ,{}01=+=ax x B . ∵p 是q 的必要不充分条件 ∴A B ≠⊂.当0=a 时,∅=B ,符合题意;当0≠a 时,{}31-=⎭⎬⎫⎩⎨⎧-==a x x B 或{}2=B :若{}3-=B ,则31-=-a ,解之得:31=a ; 若{}2=B ,则21=-a ,解之得:21-=a .综上所述,实数a 的取值集合为⎭⎬⎫⎩⎨⎧-31,0,21. ∴选择答案【 BC 】.11. 已知函数b ax x y ++=2(0>a )有且只有一个零点,则 【 】 (A )22b a -≤4(B )ba 12+≥4 (C )若不等式02<-+b ax x 的解集为()21,x x ,则021>x x(D )若不等式c b ax x <++2的解集为()21,x x ,且421=-x x ,则4=c 答案 【 ABD 】解析 本题考查一元二次函数与一元二次不等式的关系. ∵函数b ax x y ++=2(0>a )有且只有一个零点 ∴方程02=++b ax x 有两个相等的实数根. ∴042=-=∆b a ,∴0412>=a b (0>a ). 对于(A ),()4242222+--=-=-b b b b a ≤4.故(A )正确; 对于(B ),b b b a 1412+=+≥4142=⋅b b ,当且仅当b b 14=,即2,21==a b 时,等号成立.∴ba 12+≥4.故(B )正确; 对于(C ),由根与系数的关系定理可得:021<-=b x x (0>b ).故(C )错误;对于(D ),若不等式c b ax x <++2的解集为()21,x x ,则方程02=-++c b ax x 的两个实数根分别为21,x x ,由根与系数的关系定理可得:c b x x a x x -=-=+2121,. ∵421=-x x ∴()()()()4444442221221221==+-=---=-+=-c c b a c b a x x x x x x .解之得:4=c . 故(D )正确.∴选择答案【 ABD 】.12. 下列求最值的运算中,错误的是 【 】 (A )当0<x 时,()⎥⎦⎤⎢⎣⎡-+--=+x x x x 11≤()212-=-⋅--x x ,当且仅当1-=x 时,x x 1+取得最大值,最大值为2- (B )当1>x 时,12-+x x ≥122-⋅x x ,当且仅当12-=x x 时取等号,解得1-=x 或2=x ,又1>x ,所以2=x ,故当1>x 时,12-+x x 的最小值为41222=-+(C )由于4494492222-+++=++x x x x ≥()24494222=-+⋅+x x ,故4922++x x 的最小值是2(D )已知0,0>>y x ,且24=+y x .∵y x 42+=≥xy y x 442=⋅,∴xy ≤21,又因为y x 11+≥xyy x 2112=⋅≥4212=,∴当0,0>>y x ,且24=+y x 时,y x 11+的最小值为4 答案 【 BCD 】解析 本题考查利用基本不等式求最值.注意必须满足的三个条件:一正、二定、三相等. 对于(A ),显然正确;对于(B ),当1>x 时,01>-x ,∴112112+-+-=-+x x x x ≥()12211212+=+-⋅-x x . 当且仅当121-=-x x ,即12+=x 时,等号成立. ∴当1>x 时,12-+x x 的最小值为122+.故(B )错误;对于(C ),等号成立的条件是49422+=+x x ,得到12-=x ,无解,∴4922++x x 的最小值不是2.故(C )错误;实际上,设42+=x t ,则[)+∞∈,4t ,494922-+=++=tt x x y . ∵函数49-+=tt y 在[)+∞,3上为增函数 ∴当4=t ,即0=x 时,494494min =-+=y ,即4922++x x 的最小值是49.对于(D ),当连续两次使用基本不等式求最值时,要保证两个等号成立的条件一致.由此可以确定(D )错误. ∴选择答案【 BCD 】.第Ⅱ卷 非选择题(共90分)三、填空题(每小题5分,共20分)13. 已知集合{}01582=+-=x x x A ,{}02=+-=b ax x x B ,若{}5,3,2=B A ,{}3=B A ,则=ab __________. 答案 30解析 本题考查根与系数的关系定理.{}{}5,301582==+-=x x x A .∵{}5,3,2=B A ,{}3=B A∴{}3,2=B .由根与系数的关系定理可得:⎩⎨⎧=⨯==+=632532b a ,∴3065=⨯=ab . 14. 若关于x 的不等式0>+b ax 的解集为()+∞,1,则11+-b a 的最小值为__________. 答案 3解析 本题考查利用基本不等式求最值.由题意可知:0>a .解不等式0>+b ax 得:a b x ->. ∴1=-ab ,∴a b -=. ∴1111++=+-aa b a ≥3112=+⋅a a (注意0>a ). 当且仅当aa 1=,即1=a 时,等号成立. ∴11+-ba 的最小值为3. 点评 注意本题中一元一次不等式的解集的形式与a 的符号有关,根据不等式的可乘性得出了0>a 的结论.15. 若不等式021<-+-mx m x 成立的一个充分不必要条件是2131<<x ,则实数m 的取值范围是________________.答案 ⎥⎦⎤⎢⎣⎡34,41 解析 本题考查含参分式不等式的解法以及从集合的角度理解充分必要性. 不等式021<-+-mx m x 同解于()()012<+--m x m x . 解方程()()012=+--m x m x 得:1,221-==m x m x .当12-<m m ,即1-<m 时,原不等式的解集为{}12-<<m x m x ;当12-=m m ,即1-=m 时,()022<-m x ,原不等式的解集为∅,不符合题意;当12->m m ,即1->m 时,原不等式的解集为{}m x m x 21<<-.综上所述,当1-<m 时,原不等式的解集为{}12-<<m x m x ;当1->m 时,原不等式的解集为{}m x m x 21<<-.设原不等式的解集为A ,由题意可知:⎥⎦⎤⎢⎣⎡21,31A ≠⊂. 若()1,2-=m m A ,则有⎪⎪⎩⎪⎪⎨⎧≥-≤211312m m ,解之得:无解; 若()m m A 2,1-=,则有⎪⎪⎩⎪⎪⎨⎧≥≤-212311m m ,解之得:41≤m ≤34. 综上所述,实数m 的取值范围是⎥⎦⎤⎢⎣⎡34,41. 16. 已知正实数y x ,满足14522=-+y xy x ,则22812y xy x -+的最小值为__________. 答案 37 解析 本题考查利用重要不等式求最值.∵14522=-+y xy x ,∴()()15=-+y x y x .设⎩⎨⎧=-=+b y x a y x 5,则⎪⎪⎩⎪⎪⎨⎧-=+=656b a y ba x ,1=ab . ∴2222656568612812⎪⎭⎫ ⎝⎛---⋅+⨯+⎪⎭⎫ ⎝⎛+⨯=-+b a b a b a b a y xy x 1222922b ab a ++=≥371228122812226===+ab ab ab . 当且仅当b a =3,即3,33==b a 时,等号成立,此时93,932==y x . ∴22812y xy x -+的最小值为37. 四、解答题(共70分,解答应写出文字说明,证明过程或演算步骤)17.(本题满分10分)(1)计算:21432540625.0833425-⎪⎭⎫ ⎝⎛++-; (2)解不等式:x 26-≤1832<-x x .解:(1)原式42523521212325=+=++-=; (2)原不等式同解于⎩⎨⎧<--≥-18326322x x x x x ,解之得:x <-3≤2-或3≤6<x . ∴原不等式的解集为(][)6,32,3 --.18.(本题满分12分)若21,x x 分别是函数3422-+=x x y 的两个零点.(1)求21x x -的值;(2)求3231x x +的值.解:(1)∵21,x x 分别是函数3422-+=x x y 的两个零点∴21,x x 分别是方程03422=-+x x 的两个实数根.由根与系数的关系定理可得:23,2242121-=-=-=+x x x x . ∴()()()102342422122122121=⎪⎭⎫ ⎝⎛-⨯--=-+=-=-x x x x x x x x ; 另解: ()1024023244221==-⨯⨯-=∆=-a x x . (2)()()()()[]21221212221212132313x x x x x x x x x x x x x x -++=+-+=+ ()17233222-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-⨯--⨯-=. 19.(本题满分12分)设集合{}21≤≤-=x x A ,非空集合{}12<<=x m x B .(1)若“A x ∈”是“B x ∈”成立的必要条件,求实数m 的取值范围;(2)若 B (C R A )的元素中只有两个整数,求实数m 的取值范围.解:(1)∵“A x ∈”是“B x ∈”成立的必要条件∴A B ⊆.∵集合B 为非空集合∴⎩⎨⎧-≥<1212m m ,解之得:21-≤21<m . ∴实数m 的取值范围是⎪⎭⎫⎢⎣⎡-21,21; (2)∵{}21≤≤-=x x A ,∴C R A {{}21>-<=x x x 或.∵ B (C R A )的元素中只有两个整数,{}12<<=x m x B∴这两个整数为3,2--,则有:⎪⎩⎪⎨⎧-≥-<<423212m m m ,解之得:2-≤23-<m . ∴实数m 的取值范围为⎪⎭⎫⎢⎣⎡--23,2. 20.(本题满分12分)精准扶贫是巩固温饱成果、加快脱贫致富、实现中华民族伟大“中国梦”的重要保障.某地政府在对某乡镇企业实施精准扶贫的工作中,准备投入资金将当地农产品进行二次加工后进行推广促销,预计该产品销售量w 万件(生产量与销售量相等)与推广促销费x 万元之间的函数关系为23+=x w (其中推广促销费不能超过5万元).已知加工此农产品还要投入成本3⎪⎭⎫ ⎝⎛+w w 3万元(不包括推广促销费用),加工后的每件成品的销售价格定为⎪⎭⎫ ⎝⎛+w 304元/件. (1)试将该批产品的利润y 万元表示为推广促销费x 万元的函数;(利润=销售额-成本-推广促销费)(2)当推广促销费投入多少万元时,此产品的利润最大?最大利润为多少?解:(1)由题意可得:x w w x w w w w y -+-=-⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+=30933304 ∵23+=x w ∴263318213023923++--=-++-+=x x x x x y (x <0≤5);(2)33336321263333632126333621+⎪⎭⎫ ⎝⎛+++-=+⎪⎭⎫ ⎝⎛-+++-=+⎪⎭⎫ ⎝⎛++-=x x x x x x y ≤()27333363221=++⋅+⨯-x x . 当且仅当3363+=+x x ,即3=x 时,等号成立. ∴27max =y (万元).答:当推广促销费投入3万元时,此批产品的利润最大,最大利润为27万元.21.(本题满分12分)已知()12632+-+-=x a a x y .(1)若不等式b y >的解集为()3,0,求实数b a ,的值;(2)若3=a 时,对于任意实数x ,都有y ≤m m x 6932-+,求m 的取值范围.解:(1)b y >即()b x a a x >+-+-12632的解集为()3,0.∴()012632<-+-+b x a a x 的解集为()3,0.∴方程()012632=-+-+b x a a x 的两个实数根分别为0和3.由根与系数的关系定理可得:()⎪⎪⎩⎪⎪⎨⎧⨯=-+=--303123036b a a ,解之得:⎩⎨⎧==123b a ; (2)当3=a 时,12932++-=x x y .∵y ≤m m x 6932-+∴12932++-x x ≤m m x 6932-+.整理得:12632++-x x ≤m m 692-对任意实数x 都成立.∴m m 692-≥()max 21263++-x x .∵()1513126322+--=++-x x x∴()151263max 2=++-x x∴m m 692-≥15,解之得:m ≥35或m ≤1-.∴m 的取值范围为(]⎪⎭⎫⎢⎣⎡+∞-∞-,351, . 22.(本题满分12分)设函数b x ax y -+=2(∈a R ,∈b R ).(1)若45-=a b ,且集合{}0=y x 中有且只有一个元素,求实数a 的取值组合; (2)求不等式()222--+<b x a y 的解集;(3)当1,0>>b a 时,记不等式y ≥0的解集为P ,集合{}t x t x Q +-<<--=22.若对于任意正数t ,∅≠Q P ,求ba 11-的最大值. 解:(1)当0=a 时,45-=b ,此时045=+x ,解之得:45-=x ,符合题意; 当0≠a 时,则方程04522=+-+=-+a x ax b x ax 有两个相等的实数根. ∴04541=⎪⎭⎫ ⎝⎛+--=∆a a ,整理得:01542=+-a a ,解之得:41,121==a a . 综上所述,实数a 的取值组合为⎭⎬⎫⎩⎨⎧1,41,0; (2)()222--+<b x a y 即()2222--+<-+b x a b x ax .∴()02122<++-x a ax .当0=a 时,02<+-x ,解之得:2>x ,∴原不等式的解集为{}2>x x ;当0≠a 时,原不等式可化为()012<⎪⎭⎫ ⎝⎛--a x x a . 当0<a 时,原不等式同解于()012>⎪⎭⎫ ⎝⎛--a x x ,且21<a ,解之得:⎭⎬⎫⎩⎨⎧<>a x x x 12或; 当0>a 时,原不等式同解于()012<⎪⎭⎫ ⎝⎛--a x x : 若210<<a ,则21>a ,原不等式的解集为⎭⎬⎫⎩⎨⎧<<a x x 12; 若21=a ,则()022<-x ,原不等式的解集为∅; 若21>a ,则21<a ,原不等式的解集为⎭⎬⎫⎩⎨⎧<<21x a x . 综上所述,当0=a 时,原不等式的解集为{}2>x x ;当0<a 时,原不等式的解集为⎭⎬⎫⎩⎨⎧<>a x x x 12或;。

2024-2025学年上海市西中学高一上学期数学月考试卷及答案(2024.09)

2024-2025学年上海市西中学高一上学期数学月考试卷及答案(2024.09)

1市西中学2024学年第一学期高一年级数学月考2024.09一、填空题(本大题满分36分)只要求直接填写结果,每题填对得3分,否则一律得零分. 1.已知集合{}1,a 与{}2,b 相等,则a b += .2.设全集U R =,集合{}|02A x x x ≤>或,则用区间表示A ,结果是 . 3.设x ,y R ∈,用列举法表示x y xy+所有可能取值组成的集合,结果是 .4.已知集合{}(,)|210A x y x y =+=,{}(,)|35B x y x y =−=,则A B = .5.已知α:素数都是奇数,则α的否定形式是 .6.设x ,y R ∈,已知33:x y β<,则β的一个充分必要条件是 . 7.设U 为全集,A ,B ,C U ⊆,用含有A 、B 、C 的运算式子表示如图的阴影部分,结果是 . 8.已知集合{}|A x y x Z ==∈,{}2|1,B y y x x A ==+∈,则AB = .9.设集合{},,,,,,A a b c d e f g =,{},B a c =,集合M 满足AM B M =,则这样的集合M 共有 个. 10.设集合(,0)(1,)A =−∞+∞,{}|(25)()0B x x x a =+−<,若{}2,1ABZ =−−,则实数a 的取值范围是 .11.设k R ∈,已知集合{}22|(1)(4)x x x k −−=恰有四个非零元素,且它们在数轴上等距排列,则k =________.12.若两个正整数的正公因数只有1,则称这两个正整数互素.将与105互素的所有正整数组成集合{}123,,,,,n a a a a ,且123n a a a a <<<<,则100a = .2二、选择题(本大题满分12分)本大题共4题,每题3分. 13.设x R ∈,则“1x ≠”是“2320x x −+≠”的( ) A .充分非必要条件 B .必要非充分条件C .充要条件D .既非充分又非必要条件14.已知抛物线2y ax =与直线1x =、2x =、1y =、2y =围成的正方形有公共点,那么实数a 的取值范围是( ) A .1,14⎡⎤⎢⎥⎣⎦B .1,24⎡⎤⎢⎥⎣⎦C .1,12⎡⎤⎢⎥⎣⎦D .1,22⎡⎤⎢⎥⎣⎦15.已知非空集合{}|135A x a x a =+≤≤−,{}|116B x x =≤≤,则使得()A A B ⊆成立的实数a 的所有取值组成的集合是( ) A .{}|07a a ≤≤ B .{}|37a a ≤≤C .{}|7a a ≤D .∅16.定义集合运算{}|,A B x x A x B −=∈∉,将()()A B A B B A ∆=−−称为集合A 与B的对称差.命题甲:()()()A B C AB AC ∆=∆;命题乙:()()AB C AB ∆=∆()AC .则下列说法正确的是( )A .甲、乙都是真命题B .只有甲是真命题C .只有乙是真命题D .甲、乙都不是真命题三、解答题(本大题满分52分).17.(本题满分8分)已知集合{}2|8160,,A x kx x k R x R =−+=∈∈只有一个元素,求k 的值并用列举法表示集合A .318.(本题满分10分,第1小题满分5分,第2小题满分5分) 设a R ∈,已知集合{}|12A x x =−<<,{}22|20B x x ax a =−−=. (1)若{}1A B =,求a 的值;(2)若A B A =,求a 的取值范围.19.(本题满分10分,第1小题满分5分,第2小题满分5分)如图,在直角坐标系xOy 中,过点(0,1)F 的直线与抛物线24x y =相交于点11(,)M x y 、22(,)N x y 自M 、N 引直线l :1y =−的垂线,垂足分别为1M 、1N .(1)用1y 分别表示线段1MM 、MF 的长; (2)证明:11M F N F ⊥.420.(本题满分12分,第1小题满分6分,第2小题满分6分)设a R ∈,已知α:关于x 的一元二次方程220ax x a ++=有两个相异正根;β:对任意实数x ,不等式2(1)(1)10a x a x −−−−<恒成立. (1)若α为真命题,求实数a 的取值范围;(2)判断α⇒β、β⇒α是否成立?给出你的结论,并说明理由.21.(本题满分12分,第1小题满分6分,第2小题满分6分) 己知实数1x ,2x ,3x ,4x ,5x ,满足123455x x x x x ++++=. (1)证明:1x ,2x ,3x ,4x ,5x 中至少有一个不小于1;(2)设1x ,2x ,3x ,4x ,5x 两两互不相等,集合{}12345,,,,A x x x x x =,B 是A 的非空子集,记()M B 是B 中所有元素之和,对所有的B ,求()M B 的平均值.5参考答案一、填空题1.3;2.(](),02,−∞⋃+∞;3.{}2,0,2−;4.(){}3,4;5.存在一个素数不是奇数;6.x y <;7.A C B ⋂⋂;8.{}1,0,1,2−;9.32; 10.(]1,2−; 11.7412.202 11.设k R ∈,已知集合{}22|(1)(4)x x x k −−=恰有四个非零元素,且它们在数轴上等距排列,则k =________. 【答案】74【解析】设2x y =,原方程变为()2540y y k −+−=,设此方程有实根,(0)αβ<α<β,则原方程的四个实根为,(=即9β=α,又5,4k α+β=αβ=−, 由此求得74k =且满足254160Δk =+−>,7.4k ∴=故答案为:74.二、选择题13.B 14.B 15.C 16.B15.已知非空集合{}|135A x a x a =+≤≤−,{}|116B x x =≤≤,则使得()A A B ⊆成立的实数a 的所有取值组成的集合是( ) A .{}|07a a ≤≤ B .{}|37a a ≤≤ C .{}|7a a ≤ D .∅【答案】C【解析】由集合{}|135A x a x a =+≤≤−,{}116B x =≤≤当A =∅时,A B ⋂=∅,满足条件A A B ⊆⋂,此时135a a +>−,即26a <,解得3a <; 当A ≠∅时,若A A B ⊆⋂,则135113516a a a a +≤−⎧⎪+≥⎨⎪−≤⎩,等价于260321a a a ≥⎧⎪≥⎨⎪≤⎩,即30,7a a a ≥⎧⎪≥⎨⎪≤⎩解得37a ≤≤;6故a 的取值范围是{}|7a a ≤,综上所述,答案选择:C16.定义集合运算{}|,A B x x A x B −=∈∉,将()()A B A B B A ∆=−−称为集合A 与B的对称差.命题甲:()()()A B C AB AC ∆=∆;命题乙:()()AB C AB ∆=∆()AC .则下列说法正确的是( )A .甲、乙都是真命题B .只有甲是真命题C .只有乙是真命题D .甲、乙都不是真命题【答案】B【解析】对于甲:()()A B C A B C B C A ⋂∆=⋂⋃−⋂=⋂()()B C A B C ⋃−⋂⋂()()A B A C =⋂⋃⋂()()()()A B A C A B A C −⋂⋂⋂=⋂∆⋂,故甲是真命题;对于乙,如下图所示:所以,()()()A B C A B A C ⋃∆≠⋃∆⋃,故乙是假命题;.故选:B. 三.解答题17.当0k =时,{}2A =; 当1k =时,{}4A =; 18.(1)1a =−(2)1,12⎛⎫− ⎪⎝⎭19.(1)1MM =11MF y =+ (2)略 20.(1)()1,0− (2)α⇒β21.(本题满分12分,第1小题满分6分,第2小题满分6分) 己知实数1x ,2x ,3x ,4x ,5x ,满足123455x x x x x ++++=.7(1)证明:1x ,2x ,3x ,4x ,5x 中至少有一个不小于1;(2)设1x ,2x ,3x ,4x ,5x 两两互不相等,集合{}12345,,,,A x x x x x =,B 是A 的非空子集,记()M B 是B 中所有元素之和,对所有的B ,求()M B 的平均值. 【答案】(1)见解析 (2)8031【解析】(1)证明:12245,,,,x x x x x 中的每一个数都小于1, 可得122455x x x x x ++++<,这与123455x x x x x ++++=矛盾, 故12245,,,,x x x x x 中至少有一个实数不小于1;(2)集合{}12345A x ,x ,x ,x ,x =的非空子集个数为32131−=,由于()M B 是B 中所有元素之和,可得()()1234516165M B x x x x x =++++=⨯80= 则()M B 的平均值为8031.。

人教A版数学必修一湖南省岳阳市湘阴一中高一上学期第一次月考试题(解析版)

人教A版数学必修一湖南省岳阳市湘阴一中高一上学期第一次月考试题(解析版)

高中数学学习材料金戈铁骑整理制作2015-2016学年湖南省岳阳市湘阴一中高一(上)第一次月考数学试卷一、选择题:本大题共12个小题,每小题4分,共48分,在每小题给出的四个选项中有且只有一项是符合题目要求的.1.已知集合M={1,2,3},N={2,3,4},则()A.M⊆N B.N⊆M C.M∩N={2,3} D.M∪N={1,4}2.设全集U={1,2,3,4,5},集合M={1,4},N={1,3,5},则N∩(∁U M)=()A.{1,3} B.{1,5} C.{3,5} D.{4,5}3.已知:a∈R,b∈R,若集合{a,,1}={a2,a+b,0},则a2015+b2015的值为()A.﹣2 B.﹣1 C.1 D.24.下列从集合A到集合B的对应f是映射的是()A.A=R,B={x|x是正实数},f:A中的数的绝对值B.A={0,1},B={﹣1,0,1},f:A中的数的开方C.A=Z,B=Q,f:A中的数的倒数D.A={﹣1,0,1},B={﹣1,0,1},f:A中的数的平方5.化简:=()A.4 B.2π﹣4 C.2π﹣4或4 D.4﹣2π6.函数的定义域为()A.(﹣∞,0)∪(0,1]B.(0,1]C.(﹣∞,1]D.(﹣∞,0)∪(0,1)7.(4分)(2013秋九龙坡区校级期中)已知函数f(x)=x2+ax是偶函数,则当x∈[﹣1,2]时,f (x)的值域是()A.[1,4]B.[0,4]C.[﹣4,4]D.[0,2]8.已知函数,若f(x)=5,则x的值是()A.﹣2 B.2或C.2或﹣2 D.2或﹣2或9.(4分)(2014博山区校级模拟)函数的图象关于()A.y轴对称B.直线y=﹣x对称C.坐标原点对称D.直线y=x对称10.(4分)(2015秋保定期末)函数的图象是()A. B.C.D.11.已知函数f(x)=,在(﹣∞,+∞)上是减函数,则实数a的取值范围为()A.(2,3)B.[2,3)C.(1,3)D.[1,3]12.已知偶函数f(x)在[0,+∞)上是增函数,且f(2)=0,则不等式f(x+1)<0的解集是()A.[0,2)B.(﹣2,2)C.(﹣1,3)D.(﹣3,1)二、填空题:本大题共4个小题,每小题4分,共16分,将答案填写在题中的横线上.13.设函数,若f(a﹣1)=2,则实数a=.14.若函数f(x)的定义域是(1,3),则函数f(2x﹣1)的定义域是.15.(4分)(2012秋思明区校级期中)计算:=.16.函数f(x)=|x+2|的单调递增区间是.三、解答题:本大题共6个小题,共56分,解答应写出文字说明,证明过程或演算步骤.17.(8分)(2015秋岳阳校级月考)已知全集U=R,集合A={x|1<x<3},集合B={x|x>a}(a∈R).(1)若a=2,求A∩(∁U B);(2)若A∩B=∅,求a的取值范围.18.(8分)(2013春平邑县校级期中)已知集合A={x|x2﹣3x+2=0},B={x|ax﹣2=0},若A∪B=A,求实数a的值所组成的集合.19.(8分)(2015秋岳阳校级月考)已知函数.(1)用定义证明:f(x)在(﹣3,+∞)上是减函数;(2)求f(x)在[﹣1,2]上的最大值.20.(10分)(2001北京)某摩托车生产企业,上年度生产摩托车的投入成本为1万元/辆,出厂价为1.2万元/辆,年销售量为1000辆.本年度为适应市场需求,计划提高产品档次,适度增加投入成本.若每辆车投入成本增加的比例为x(0<x<1),则出厂价相应的提高比例为0.75x,同时预计年销售量增加的比例为0.6x.已知年利润=(出厂价﹣投入成本)×年销售量.(1)写出本年度预计的年利润y与投入成本增加的比例x的关系式;(2)为使本年度的年利润比上年有所增加,问投入成本增加的比例x应在什么范围内?21.(10分)(2015秋岳阳校级月考)已知函数y=x+有如下性质:如果常数a>0,那么该函数在上是减函数,在上是增函数.(1)如果函数y=x+(x>0)在(0,3]上是减函数,在[3,+∞)上是增函数,求b的值;(2)设常数c∈[1,4],求函数f(x)=x+(1≤x≤2)的最大值和最小值.22.(12分)(2011秋罗定市期中)二次函数f(x)=ax2+bx+c(a,b∈R,a≠0)满足条件:①当x∈R时,f(x)的图象关于直线x=﹣1对称;②f(1)=1;③f(x)在R上的最小值为0;(1)求函数f(x)的解析式;(2)求最大的m(m>1),使得存在t∈R,只要x∈[1,m],就有f(x+t)≤x.2015-2016学年湖南省岳阳市湘阴一中高一(上)第一次月考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题4分,共48分,在每小题给出的四个选项中有且只有一项是符合题目要求的.1.已知集合M={1,2,3},N={2,3,4},则()A.M⊆N B.N⊆M C.M∩N={2,3} D.M∪N={1,4}【分析】利用直接法求解,分别求出两个集合的交集与并集,观察两个集合的包含关系即可.【解答】解:M∩N={1,2,3}∩{2,3,4}={2,3}故选C.【点评】本题主要考查了集合的交集与子集的运算,属于容易题.2.设全集U={1,2,3,4,5},集合M={1,4},N={1,3,5},则N∩(∁U M)=()A.{1,3} B.{1,5} C.{3,5} D.{4,5}【分析】根据补集意义先求C U M,再根据交集的意义求N∩(C U M).【解答】解:(C U M)={2,3,5},N={1,3,5},则N∩(C U M)={1,3,5}∩{2,3,5}={3,5}.故选C【点评】本小题主要考查集合的概念、集合运算等集合有关知识,属容易题.3.已知:a∈R,b∈R,若集合{a,,1}={a2,a+b,0},则a2015+b2015的值为()A.﹣2 B.﹣1 C.1 D.2【分析】根据两集合相等,对应元素相同,列出方程,求出a与b的值即可.【解答】解:∵a∈R,b∈R,且{a,,1}={a2,a+b,0},∴分母a≠0,∴b=0,a2=1,且a2≠a+b,解得a=﹣1;∴a2015+b2015=﹣1.故选:B.【点评】本题考查了集合相等的应用问题,也考查了解方程的应用问题,是基础题目.4.下列从集合A到集合B的对应f是映射的是()A.A=R,B={x|x是正实数},f:A中的数的绝对值B.A={0,1},B={﹣1,0,1},f:A中的数的开方C.A=Z,B=Q,f:A中的数的倒数D.A={﹣1,0,1},B={﹣1,0,1},f:A中的数的平方【分析】利用映射概念逐一核对四个命题得答案.【解答】解:对于A,集合A中的元素0取绝对值在B中没有对应元素,故A不是映射;对于B,集合A中的元素1开方后在B中对应元素不唯一,故B不是映射;对于C,集合A中的元素0取倒数在B中没有对应元素,故C不是映射;对于D,集合A中的元素﹣1,1的平方都是1,0的平方为0,符合映射概念.故选:D.【点评】本题考查映射概念,是基础题.5.化简:=()A.4 B.2π﹣4 C.2π﹣4或4 D.4﹣2π【分析】由π<4,得,由此能求出原式的值.【解答】解:=4﹣π+π=4.故选:A.【点评】本题考查根式的化简运算,解题时要注意被开方数的符号,合理地选取公式.6.函数的定义域为()A.(﹣∞,0)∪(0,1]B.(0,1]C.(﹣∞,1]D.(﹣∞,0)∪(0,1)【分析】根据函数y的解析式,列出使解析式有意义的不等式组,求出解集即可.【解答】解:∵函数,∴,解得x≤1且x≠0;∴函数y的定义域为(﹣∞,0)∪(0,1].故选:A.【点评】本题考查了根据函数的解析式求定义域的应用问题,是基础题目.7.(4分)(2013秋九龙坡区校级期中)已知函数f(x)=x2+ax是偶函数,则当x∈[﹣1,2]时,f (x)的值域是()A.[1,4]B.[0,4]C.[﹣4,4]D.[0,2]【分析】首先根据函数是偶函数,求出a的值,得到函数f(x)的解析式,借助于图象可求得f(x)的值域.【解答】解:因为函数f(x)=x2+ax是偶函数,所以有f(﹣x)=f(x),即(﹣x)2+a(﹣x)=x2+ax,所以2ax=0对任意实数恒成立,所以a=0,则f(x)=x2,当x∈[﹣1,2]时,f(x)的值域是[0,4].故选B.【点评】本题考查了函数的奇偶性质与函数值域的求法,考查了数形结合的解题思想,解答此题的关键是运用奇偶性求a的值,是常规题型.8.已知函数,若f(x)=5,则x的值是()A.﹣2 B.2或C.2或﹣2 D.2或﹣2或【分析】分别令x2+1=5,或﹣2x=5,解出即可.【解答】解:若x2+1=5,解得:x=﹣2或x=2(舍),若﹣2x=5,解得:x=﹣(舍),故选:A.【点评】本题考察了求函数值问题,考察分段函数,是一道基础题.9.(4分)(2014博山区校级模拟)函数的图象关于()A.y轴对称B.直线y=﹣x对称C.坐标原点对称D.直线y=x对称【分析】根据函数f(x)的奇偶性即可得到答案.【解答】解:∵f(﹣x)=﹣+x=﹣f(x)∴是奇函数,所以f(x)的图象关于原点对称故选C.【点评】本题主要考查函数奇偶性的性质,是高考必考题型.10.(4分)(2015秋保定期末)函数的图象是()A. B.C.D.【分析】本题考查的知识点是分段函数图象的性质,及函数图象的作法,由绝对值的含义化简原函数式,再分段画出函数的图象即得.【解答】解:函数可化为:当x>0时,y=1+x;它的图象是一条过点(0,1)的射线;当x<0时,y=﹣1+x.它的图象是一条过点(0,﹣1)的射线;对照选项,故选D.【点评】本小题主要考查函数、函数的图象、绝对值的概念等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.11.已知函数f(x)=,在(﹣∞,+∞)上是减函数,则实数a的取值范围为()A.(2,3)B.[2,3)C.(1,3)D.[1,3]【分析】由一次函数与二次函数的单调性可得:,解出即可得出.【解答】解:∵函数f(x)=,在(﹣∞,+∞)上是减函数,∴,解得2≤a<3.∴实数a的取值范围为[2,3).故选:B.【点评】本题考查了一次函数与二次函数的单调性、分段函数的性质,考查了推理能力与计算能力,属于中档题.12.已知偶函数f(x)在[0,+∞)上是增函数,且f(2)=0,则不等式f(x+1)<0的解集是()A.[0,2)B.(﹣2,2)C.(﹣1,3)D.(﹣3,1)【分析】利用偶函数的定义可得f(﹣x)=f(x)=f(|x|),及f(x)在[0,+∞)上是增函数,对数运算性质即可得出.【解答】解:∵f(2)=0,∴不等式f(x+1)<0可化为f(x+1)<f(2),又∵定义域为R的偶函数f(x),∴可得f(|x+1|)<f(2),∵f(x)在[0,+∞)上是增函数,∴|x+1|<2,解得﹣3<x<1.故选:D.【点评】熟练掌握函数的奇偶性、单调性及对数运算性质是解题的关键.二、填空题:本大题共4个小题,每小题4分,共16分,将答案填写在题中的横线上.13.设函数,若f(a﹣1)=2,则实数a=.【分析】由f(a﹣1)=2,得=2,解出即可.【解答】解:∵函数,若f(a﹣1)=2,则=2,解得:a=,故答案为:.【点评】本题考察了求函数值问题,是一道基础题.14.若函数f(x)的定义域是(1,3),则函数f(2x﹣1)的定义域是(1,2).【分析】问题转化为解不等式1<2x﹣1<3,解出即可.【解答】解:由题意得:1<2x﹣1<3,解得:1<x<2,故答案为:(1,2).【点评】本题考察了求函数的定义域问题,是一道基础题.15.(4分)(2012秋思明区校级期中)计算:=10.【分析】利用分数指数幂的运算性质进行运算.【解答】解:原式=═.故答案为:10.【点评】本题主要考查指数幂的运算,要求熟练掌握指数幂的运算公式.16.函数f(x)=|x+2|的单调递增区间是[﹣2,+∞).【分析】去绝对值号得到,根据一次函数的单调性便可看出f(x)的单调递增区间为[﹣2,+∞).【解答】解:;∴x≥﹣2时,f(x)=x+2单调递增;∴f(x)的单调递增区间为[﹣2,+∞).故答案为:[﹣2,+∞).【点评】考查含绝对值函数的处理方法:去绝对值号,以及一次函数的单调性,分段函数的单调性.三、解答题:本大题共6个小题,共56分,解答应写出文字说明,证明过程或演算步骤.17.(8分)(2015秋岳阳校级月考)已知全集U=R,集合A={x|1<x<3},集合B={x|x>a}(a∈R).(1)若a=2,求A∩(∁U B);(2)若A∩B=∅,求a的取值范围.【分析】(1)利用补集的定义求出C U B,再利用两个集合的交集的定义,求出A∩(C U B).(2)利用A∩B=∅,即可求a的取值范围.【解答】解:(1)∵全集U=R,集合B={x|x>2},∴C U B={x|x≤2},∴A∩(C U B)={x|1<x<3}∩{x|x≤2}={x|1<x≤2}.(2)∵集合A={x|1<x<3},集合B={x|x>a},A∩B=∅,∴借助数轴得a≥3.【点评】本题考查的知识点是集合的交、并、补集的混合运算,其中根据已知条件求出C U B是解答的关键.18.(8分)(2013春平邑县校级期中)已知集合A={x|x2﹣3x+2=0},B={x|ax﹣2=0},若A∪B=A,求实数a的值所组成的集合.【分析】由条件可得B⊆A,分a=0和a≠0,分别求出B,再由B⊆A,求得a的值,即可得到实数a 的值所组成的集合.【解答】解:A={1,2},由A∪B=A得:B⊆A.﹣﹣﹣﹣(3分)①若a=0,则B=∅,满足题意.﹣﹣﹣﹣(6分)②若a≠0,则,由B⊆A得:,∴a=1或a=2,﹣﹣﹣﹣﹣﹣(11分)∴a的值所组成的集合为{0,1,2}.﹣﹣﹣﹣﹣﹣﹣﹣(12分)【点评】本题主要考查集合关系中参数的取值范围问题,体现了分类讨论的数学思想,属于基础题.19.(8分)(2015秋岳阳校级月考)已知函数.(1)用定义证明:f(x)在(﹣3,+∞)上是减函数;(2)求f(x)在[﹣1,2]上的最大值.【分析】(1)按取值,作差,化简,判号,下结论五步骤证明;(2)可判断函数在[﹣1,2]上单调递减,从而求最大值.【解答】解:(1)证明:任取x1,x2∈(﹣3,+∞),且x1<x2,f(x1)﹣f(x2)=﹣=,∵x1,x2∈(﹣3,+∞),且x1<x2,∴x2﹣x1>0,x1+3>0,x2+3>0,∴>0,故f(x1)>f(x2),故f(x)在(﹣3,+∞)上是减函数;(2)易知函数在[﹣1,2]上单调递减,故.【点评】本题考查了函数的单调性的证明与函数的最值的求法与应用.20.(10分)(2001北京)某摩托车生产企业,上年度生产摩托车的投入成本为1万元/辆,出厂价为1.2万元/辆,年销售量为1000辆.本年度为适应市场需求,计划提高产品档次,适度增加投入成本.若每辆车投入成本增加的比例为x(0<x<1),则出厂价相应的提高比例为0.75x,同时预计年销售量增加的比例为0.6x.已知年利润=(出厂价﹣投入成本)×年销售量.(1)写出本年度预计的年利润y与投入成本增加的比例x的关系式;(2)为使本年度的年利润比上年有所增加,问投入成本增加的比例x应在什么范围内?【分析】(1)根据若每辆车投入成本增加的比例为x(0<x<1),则出厂价相应的提高比例为0.75x,同时预计年销售量增加的比例为0.6x和年利润=(出厂价﹣投入成本)×年销售量.建立利润模型,要注意定义域.(2)要保证本年度的利润比上年度有所增加,只需今年的利润减去的利润大于零即可,解不等式可求得结果,要注意比例的范围.【解答】解:(1)由题意得y=[1.2×(1+0.75x)﹣1×(1+x)]×1000×(1+0.6x)(0<x<1)(4分)整理得y=﹣60x2+20x+200(0<x<1).(6分)(2)要保证本年度的利润比上年度有所增加,当且仅当即(9分)解不等式得.答:为保证本年度的年利润比上年度有所增加,投入成本增加的比例x应满足0<x<0.33.(12分)【点评】本小题主要考查建立函数关系、不等式的性质和解法等内容,考查运用数学知识解决实际问题的能力.21.(10分)(2015秋岳阳校级月考)已知函数y=x+有如下性质:如果常数a>0,那么该函数在上是减函数,在上是增函数.(1)如果函数y=x+(x>0)在(0,3]上是减函数,在[3,+∞)上是增函数,求b的值;(2)设常数c∈[1,4],求函数f(x)=x+(1≤x≤2)的最大值和最小值.【分析】(1)根据所给函数性质得=3;(2)判断f(x)在[1,2]上的单调性,利用单调性得出最值.【解答】解:(1)由已知得,∴b=2.(2)∵c∈[1,4],∴∈[1,2],∴f(x)在[1,]上是减函数,在[,2]上是增函数.∴当时,函数f(x)取得最小值f()=2.又,当1≤c≤2时,函数f(x)的最大值是;当2<c≤4时,函数f(x)的最大值是f(1)=1+c.【点评】本题考查了函数单调性的应用,属于基础题.22.(12分)(2011秋罗定市期中)二次函数f(x)=ax2+bx+c(a,b∈R,a≠0)满足条件:①当x∈R时,f(x)的图象关于直线x=﹣1对称;②f(1)=1;③f(x)在R上的最小值为0;(1)求函数f(x)的解析式;(2)求最大的m(m>1),使得存在t∈R,只要x∈[1,m],就有f(x+t)≤x.【分析】(1)利用条件①②③,可确定解析式中的参数,从而可得函数f(x)的解析式;(2)y=f(x+t)的图象是由y=f(x)平移t个单位得到,要x∈[1,m]时,f(x+t)≤x即y=f(x+t)的图象在y=x的图象的下方,且m最大.【解答】解:(1)∵f(x)的对称轴为x=﹣1,∴=﹣1,即b=2a…(1分)又f(1)=1,即a+b+c=1…(2分)由条件③知:a>0,且,即b2=4ac…(3分)由上可求得…(4分)∴…(5分)(2)由(1)知:,图象开口向上.而y=f(x+t)的图象是由y=f(x)平移t个单位得到,要x∈[1,m]时,f(x+t)≤x即y=f(x+t)的图象在y=x的图象的下方,且m最大.…(7分)∴1,m应该是y=f(x+t)与y=x的交点横坐标,…(8分)即1,m是的两根,…(9分)由1是的一个根,得(t+2)2=4,解得t=0,或t=﹣4…(11分)把t=0代入原方程得x1=x2=1(这与m>1矛盾)…(12分)把t=﹣4代入原方程得x2﹣10x+9=0,解得x1=1,x2=9∴m=9…(13分)综上知:m的最大值为9.…(14分)【点评】本题考查待定系数法求函数的解析式,考查函数的最值问题,将问题转化为y=f(x+t)的图象在y=x的图象的下方,且m最大是关键,属于中档题.。

重庆市中学2024~2025学年高一上学期第一次月考数学试题含答案

重庆市中学2024~2025学年高一上学期第一次月考数学试题含答案

重庆市2024~2025学年高一上学期第一次月考数学试题(命题人:)(答案在最后)考试说明:1.考试时间120分钟2.试题总分150分3.试卷页数2页一、单项选择题:(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U =R ,3{|ln}3x M x y x -==+,}2{|2,1xx y y N =≤≤=,如图阴影部分所表示的集合为()A.{}23x x ≤< B.{}34x x <≤C.{|2x x ≤或3}x > D.{}33x x -≤≤【答案】B 【解析】【分析】由题意知,阴影部分表示的为M N ⋂,算出集合,M N 表示的范围,根据集合的交集的运算,即可得到本题答案.【详解】全集U =R ,集合M 中函数满足303x x ->+,解得3x <-或3x >,M ={|3x x <-或3}x >,集合N 中指数函数2x y =在上单调递增,则24222=x ≤≤,}|24{y N y =≤≤,由图可得阴影部分所表示的集合为{|34}M N x x ⋂=<≤,故选:B.2.若函数()y f x =的一个正零点用二分法计算,零点附近函数值的参考数据如下:(1)2f =-,(1.25)0.984f =-,(1.375)0.260f =-,(1.40625)0.054f =-,(1.4375)0.162f =,(1.6)0.625f =,那么方程()0f x =的一个近似根(精确度0.1)为()A.1.2 B.1.3C.1.4D.1.5【答案】C【解析】【分析】由参考数据可得(1.4375)(1.375)0f f <,区间(1.375,1.4375)满足题干要求精确到0.1,结合选项可得答案.【详解】因为1.6 1.43750.16250.1-=>,所以不必考虑端点1.6;因为1.40625 1.250.156250.1-=>,所以不必考虑端点1.25和1;因为(1.4375)0f >,(1.375)0f <,所以(1.4375)(1.375)0f f <,所以函数()f x 在(1.375,1.4375)内有零点,因为1.4375 1.3750.06250.1-=<,所以满足精确度0.1;所以方程()0f x =的一个近似根(精确度0.1)是区间(1.375,1.4375)内的任意一个值(包括端点值),根据四个选项可知:1.4[1.375,1.4375]∈.故选:C.3.“1sin 2x =”是“2()6x k k Z ππ=+∈”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B 【解析】【分析】首先根据1sin 2x =可得:2()6x k k Z ππ=+∈或52()6x k k Z ππ=+∈,再判断即可得到答案.【详解】由1sin 2x =可得:2()6x k k Z ππ=+∈或52()6x k k Z ππ=+∈,即2()6x k k Z ππ=+∈能推出1sin 2x =,但1sin 2x =推不出2()6x k k Z ππ=+∈“1sin 2x =”是“2()6x k k Z ππ=+∈”的必要不充分条件故选:B【点睛】本题主要考查必要不充分条件的判断,同时考查根据三角函数值求角,属于简单题.4.函数21π()sin 212x xf x x -⎛⎫=⋅+ ⎪+⎝⎭在区间ππ,22⎡⎤-⎢⎥⎣⎦上的图象大致为()A.B.C.D.【答案】D 【解析】【分析】先得到函数的奇偶性,再计算出当π0,2x ⎛⎫∈ ⎪⎝⎭时,()0f x >,判断出答案.【详解】化简函数()f x 解析式可得21()cos 21x x f x x -=⋅+,定义域为R ,112121212()()cos cos()cos cos 121212112xxxx x x x x f x f x x x x x------+-=⋅+-=⋅+⋅++++ 01212cos 11cos 22x x x x x x -=⋅+⋅+=+-,()f x ∴为奇函数,AC 错误;又因为当π0,2x ⎛⎫∈ ⎪⎝⎭时,21()cos 021x x f x x -=⋅>+,B 错误,D 正确.故选:D.5.已知π0,4α⎛⎫∈ ⎪⎝⎭,π,02β⎛⎫∈- ⎪⎝⎭,πsin 43α⎛⎫+= ⎪⎝⎭,πsin 423β⎛⎫-= ⎪⎝⎭,则sin 2βα⎛⎫+ ⎪⎝⎭的值为()A.9 B.69-C.9D.9【答案】A 【解析】【分析】先根据已知条件及同角三角函数基本关系求出π1cos 43α⎛⎫+= ⎪⎝⎭,π3cos 423β⎛⎫-= ⎪⎝⎭;再利用已知角π4α+和π42β-来配凑2βα+;最后利用两角差的正弦公式即可求解.【详解】π0,4α⎛⎫∈ ⎪⎝⎭ ,π,02β⎛⎫∈- ⎪⎝⎭,πππ,442α⎛⎫∴+∈ ⎪⎝⎭,πππ,4242β⎛⎫-∈ ⎪⎝⎭,πsin 43α⎛⎫+=⎪⎝⎭,πsin 423β⎛⎫-= ⎪⎝⎭,π1cos 43α⎛⎫∴+= ⎪⎝⎭,πcos 423β⎛⎫-= ⎪⎝⎭.ππsin sin 2442ββαα⎡⎤⎛⎫⎛⎫⎛⎫∴+=+-- ⎪ ⎪ ⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ππππsin cos cos sin 442442ββαα⎛⎫⎛⎫⎛⎫⎛⎫=+--+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭13333=⨯-⨯9=.故选:A.6.酒驾是严重危害交通安全的违法行为,为了保障安全,根据国家规定,驾驶人员每100毫升血液酒精含量大于或等于20毫克,并每100毫升血液酒精含量小于80毫克为饮酒后驾车;每100毫升血液酒精含量大于或等于80毫克为醉酒驾车.某驾驶员喝了一定量的酒后,其血液中酒精含量上升到了每毫升血液含酒精0.8毫克,如果停止饮酒后,他的血液中的酒精会以每小时25%的速度减少,那么他想要驾车至少要经过(参考数据:lg 20.301≈,lg 30.477≈)()A.3hB.4hC.5hD.7h【答案】C 【解析】【分析】先根据题意表示出经过t 小时后,该驾驶员体内的酒精含量;再列出不等式求解即可.【详解】经过t 小时后,该驾驶员体内的酒精含量为:30.8mg /ml 4t⎛⎫⨯ ⎪⎝⎭.只需30.80.24t⎛⎫⨯< ⎪⎝⎭,即3144t⎛⎫< ⎪⎝⎭,341log 43344t ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭.因为函数34x y ⎛⎫= ⎪⎝⎭在R 上为减函数,所以341lg 42lg 20.602log 4.8164lg 4lg 32lg 2lg 30.6020.477t >==≈=---,故他至少要经过5个小时后才能驾车.故选:C.7.定义在R 上的奇函数()f x 满足,当(0,2)x ∈时,()cos((1))2f x x π=-,且2x ≥时,有1()(2)2f x f x =-,则函数2()()F x x f x x =-在[2,5]-上的零点个数为A.9B.8C.7D.6【答案】B 【解析】【分析】先由奇函数性质求出函数()f x 在[]2,2-上的解析式,再利用1()(2)2f x f x =-.得到[2,5]-的图象,2()()F x x f x x =-的零点个数,等价于求1()f x x =的解的个数.根据两函数交点个数即可求解.【详解】当(0,2)x ∈时,()cos((1))cos(sin()2222f x x x x ππππ=-=-=,()f x 是奇函数,()00f ∴=,当2x ≥时,有1()(2)2f x f x =-,()()12002f f ∴==,()()14202f f ==,若()2,0x ∈-,则()0,2x -∈,则()sin()(in ()22)s x f x f x x ππ-=-=-=-,即()sin()2f x x π=,()2,0x ∈-即当22x -≤≤时,()sin()2f x x π=,当24x ≤≤时,022x ≤-≤,此时1111()(2)sin[(2)]sin()sin()2222222f x f x x x x ππππ=-=-=-=-,当45x ≤≤时,223x ≤-≤,此时1111()(2)sin[(2)]sin()sin(44)24222f x f x x x x ππππ=-=--=--=,由2()()0F x x f x x =-=,得:当0x =时,由(0)0F =,即0x =是()F x 的一个零点,当0x ≠时,由2()0f x xx -=得1()xf x =,即1()f x x=,作出函数()f x 与1()g x x=在,[2,5]-上的图象如图:由图象知两个函数在[2,5]-上共有7个交点,加上一个0x =,故函数2()()F x x f x x =-在[2,5]-上的零点个数为8个,故选:B.【点睛】本题主要考查函数与方程的应用.判断函数零点个数的方法:直接法:即直接求零点,令()0f x =,如果能求出解,则有几个不同的解就有几个零点定理法:即利用零点存在性定理,不仅要求函数的图象在区间[]a b ,上是连续不断的曲线,且()()0f a f b < ,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点图象法:即利用图象交点的个数,画出函数()f x 的图象,函数()f x 的图象与x 轴交点的个数就是函数()f x 的零点个数;将函数()f x 拆成两个函数()h x 和()g x 的差,根据()0()()f x h x g x Û==,则函数f(x)的零点个数就是函数()y h x =和()y g x =的图象的交点个数性质法:即利用函数性质,若能确定函数的单调性,则其零点个数不难得到;若所考查的函数是周期函数,则只需解决在一个周期内的零点的个数.8.已知()f x 是定义在R 上的奇函数,若对任意120x x <<,均有()()2112120x f x x f x x x ->-且(3)3f =,则不等式()0f x x ->的解集为()A.(3,0)(3,)-⋃+∞B.()3,3-C.(,3)(3,)-∞-⋃+∞D.(3,0)(0,3)-⋃【答案】A 【解析】【分析】先变形得到()()1212f x f x x x <,令()()f x g x x =,得到()()f x g x x=在(0,)+∞上单调递增,结合(3)(3)13f g ==,得到3x >,再结合函数的奇偶性和单调性得到30x -<<,从而求出答案.【详解】因为120x x <<,所以()()21120x f x x f x -<,所以()()1212f x f x x x <.设函数()()f x g x x =,则函数()()f x g x x =在(0,)+∞上单调递增,且(3)(3)13f g ==.当0x >时,不等式()0f x x ->等价于()f x x >,即()1f x x>,即()(3)g x g >,解得3x >,又因为()f x 是定义在上的奇函数,所以(0)0f =,所以,当0x =时,不等式()0f x x ->无解.因为()f x 是定义在上的奇函数,所以−=−,()()f x g x x=的定义域为()(),00,∞∞-⋃+,又()()()()()f x f x f x g x g x x x x---====--,故()()f x g x x=为偶函数,且在(,0)-∞单调递减,当0x <时,不等式()0f x x ->等价于()f x x >,即()1f x x<,因为(3)(3)13f g --==-,故()(3)g x g <-,解得30x -<<,综上,不等式()0f x x ->的解集为(3,0)(3,)-⋃+∞.故选:A.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.对于实数a ,b ,c ,下列说法正确的是()A.若1a b <<,则11b a< B.若22ac bc >,则a b>C.若0a b >>,0c >,则b b c a a c+<+ D.若c a b >>,a b c a c b<--【答案】ABC 【解析】【分析】AB 选项,可利用不等式性质进行判断;CD 选项,利用作差法比较出大小.【详解】A 选项,若1a b <<,则0ab >,不等式两边同除以ab 得11b a<,A 正确;B 选项,若22ac bc >,则0c ≠,故20c >,不等式两边同除以2c 得a b >,B 正确;C 选项,()()()b a cb bc ab bc ab ac a a c a a c a a c -++---==+++,因为0a b >>,0c >,所以0,0b a a c -<+>,故()()0b a c b b c a a c a a c -+-=<++,所以b b ca a c+<+,C 正确;D 选项,()()()a b c a b c a c b c a c b --=----,因为c a b >>,所以0c a ->,0c b ->,0a b ->,但c 的正负不确定,故无法判断()()()c a b c a c b ---的正负,从而无法判断a c a -与bc b-的大小关系,D 错误.故选:ABC.10.已知函数()sin()f x x ωϕ=+(0ω>,π2ϕ<)的最小正周期为π,将该函数的图象向左平移π3个单位后,得到的图象对应的函数为偶函数,则下列说法正确的是()A.函数()y f x =的图象关于直线π6x =对称B.函数()y f x =在区间5π4π,63⎛⎫⎪⎝⎭上单调递增C.1(0)2f =-D.函数()y f x =的图象关于点π,012⎛⎫⎪⎝⎭对称【答案】BCD 【解析】【分析】由三角函数的周期性与奇偶性,结合三角函数图象平移法则求得,ωϕ,再利用代入检验法与整体代入法逐一分析各选项即可得解.【详解】因为函数()sin()f x x ωϕ=+的最小正周期为2ππω=,则2ω=,故()sin(2)f x x ϕ=+,将该函数的图象向左平移π3个单位后,得到2πsin 23y x ϕ⎛⎫=++ ⎪⎝⎭的图象,因为得到的图象对应的函数2πsin 23y x ϕ⎛⎫=++ ⎪⎝⎭为偶函数,所以2πππ(Z)32k k ϕ+=+∈,即ππ(Z)6k k ϕ=-+∈,因为π2ϕ<,所以π6ϕ=-,故π()sin 26f x x ⎛⎫=- ⎪⎝⎭,对于A ,当π6x =时,则πππ1sin 6362f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,故A 错误;对于B ,令πππ2π22π262k x k -+<-<+,Z k ∈,得ππππ(Z)63k x k k -+<<+∈,当1k =时,()y f x =在区间5π4π,63⎛⎫⎪⎝⎭上单调递增,故B 正确;对于C ,π1(0)sin 62f ⎛⎫=-=- ⎪⎝⎭,故C 正确;对于D ,πππsin 01266f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,故D 正确.故选:BCD.11.设函数()()12,1log 1,1x x f x x x ⎧≤⎪=⎨->⎪⎩,若()()()()1234f x f x f x f x ===,且1234x x x x <<<,则()1243412x x x x ++++的值可以是()A.4B.5C.163D.6【答案】AB 【解析】【分析】画出函数图象,数形结合得到120x x +=,3322x ≤<,423x <≤,结合交点关系得到()12344444222111x x x x x x +++=++++-,构造函数42()2(23)11g x x x x =++<≤+-,根据函数单调性得到取值范围,求出答案.【详解】函数()f x的图象如图所示,设()()()()1234f x f x f x f x t ====,由图可知,当01t <≤时,直线y t =与函数()f x 的图象有四个交点,交点的横坐标分别为1234,,,x x x x ,且1234x x x x <<<,1x >时,令12()log (1)1f x x =-=,解得32x =或3x =.由图可知,120x x +=,3322x ≤<,423x <≤,由()()34f x f x =,可得34111x x -=-,则有34111x x =+-,所以()1233444444422221111x x x x x x x x +++=+=+++++-.令42()2(23)11g x x x x =++<≤+-,易知()g x 在(2,3]上为减函数,且16(2)3g =,(3)4g =,故()12344164213x x x x ≤+++<+,且1644,3⎡⎫∈⎪⎢⎣⎭,1654,3⎡⎫∈⎪⎢⎣⎭,AB 正确;又1616164,,64,333⎡⎫⎡⎫∉∉⎪⎪⎢⎢⎣⎭⎣⎭,CD 错误.故选:AB.【点睛】将函数零点问题或方程解的问题转化为两函数的图象交点问题,将代数问题几何化,借助图象分析,大大简化了思维难度,首先要熟悉常见的函数图象,包括指数函数,对数函数,幂函数,三角函数等,还要熟练掌握函数图象的变换,包括平移,伸缩,对称和翻折等,涉及零点之和问题,通常考虑图象的对称性进行解决.三、填空题:本题共3小题,每小题5分,共15分.12.若1()2xf x ⎛⎫= ⎪⎝⎭的反函数为1()f x -,且11()()4f a f b --+=-,则11a b +的最小值为__________.【答案】12【解析】【分析】先利用指、对数式的互化得到函数1()2xf x ⎛⎫= ⎪⎝⎭的反函数,再利用对数的运算性质化简11()()4f a f b --+=-,最后由基本不等式求得最值即可.【详解】因为x y a =和log a y x =(0a >,1a ≠)互为反函数,若1()2xf x ⎛⎫= ⎪⎝⎭,则112()log f x x -=,又因为11()()4f a f b --+=-,所以111222log log log ()4a b ab +==-,所以16ab =,且0a >,0b >,又11116162a b a b a b ab +++==≥=,当且仅当4a b ==时等号成立,所以11a b +的最小值为12.故答案为:12.13.如果函数()f x 的图象可以通过()g x 的图象平移得到,则称函数()f x 为函数()g x 的“同形函数”,下面几对函数是“同形函数”的是__________.(填上正确选项的序号即可)①()sin f x x =,()cos g x x =;②()2sin cos f x x x =,()cos 2g x x =;③44()sin cos f x x x =-,()cos 2g x x =;④()sin 2tan f x x x =⋅,()cos 2g x x =.【答案】①②③【解析】【分析】①②③,结合三角恒等变换及平移变换法则求出答案;④由两函数定义域不同,故④错误.【详解】①()cos g x x =的图象向右平移π2个单位得到()sin f x x =的图象,①正确;②π()2sin cos sin 2cos 22f x x x x x ⎛⎫===-⎪⎝⎭,故()f x 的图象可由()cos 2g x x =的图象向右平移π4个单位得到,故②正确;③()()44222222()sin cos sin cos sincos sin cos f x x x x xx x x x =-=-+=-cos 2cos(2π)x x =-=+,故()f x 的图象可由()cos 2g x x =的图象向左平移π2个单位得到,故③正确;④2sin ()sin 2tan 2sin cos 2sin 1cos 2cos(2)1co πs xf x x x x x x x x x=⋅=⋅==-=++,因为()sin 2tan f x x x =⋅的定义域不是,而()cos 2g x x =的定义域是,所以不可能由()cos 2g x x =的图象平移得到()sin 2tan 2f x x x =⋅的图象,故④错误.故答案为:①②③14.定义域为R 的函数()f x 的图象关于直线1x =对称,当[0,1]x ∈时,()f x x =,且对任意x ∈R ,有(2)()f x f x +=-,2024(),0()log (),0f x xg x x x ≥⎧=⎨--<⎩,则方程()()0g x g x --=实数根的个数为__________.【答案】2027【解析】【分析】由于题意可得函数()f x 以4为周期,分0x >,0x <,0x =三种情况讨论,把问题转化函数图象交点个数问题,作出函数图象,结合函数的周期性即可得解.【详解】对任意∈有(2)()f x f x +=-,得(4)(2)()f x f x f x +=-+=,则函数()f x 以4为周期,由于函数()f x 的图象关于直线1x =对称,则()(2)f x f x =-,又(2)()f x f x +=-,所以(2)(2)0f x f x ++-=,则函数()f x 的图象关于(2,0)对称.当0x >时,0x -<,由()()0g x g x --=得()()g x g x =-,则2024()log f x x =-,作出()y f x =与2024log y x =-的大致图象如图,令2024log 1x -=-,则2024x =,而20244506=⨯,由图可知,在第一个周期内有三个交点,后面每个周期内有两个交点,所以()y f x =与2024log y x =-的图象在(0,)+∞上有350521013+⨯=个交点;当0x <时,0x ->,由()()g x g x =-得:2024log ()()x f x --=-,令x t -=,0t >,得2024()log f t t =-,由上述可知,()y f t =与2024log y t =-的图象在(0,)+∞上有1013个交点,故()y f x =-与2024log ()y x =--的图象在(,0)-∞上有1013个交点,又0x =时,()()0g x g x --=成立,所以方程()()0g x g x --=实数根的个数为2101312027⨯+=.故答案为:2027.【点睛】思路点睛:由题分析可得函数()f x 以4为周期,图象关于(2,0)中心对称,把问题转化函数图象交点个数问题,数形结合可得解.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.设集合{}11ee x A x -=≤≤,若关于x 的不等式20x mx n ++≤的解集为A .(1)求函数()2f x x mx n =++的解析式;(2)求关于x 的不等式()()2322f x x λλ+>-+的解集,其中λ∈R .【答案】(1)详见解析;(2){|x x λ<-或}3x λ>-.【解析】【分析】(1)先化简集合A ,再根据关于x 的不等式20x mx n ++≤的解集为A ,利用根与系数的关系求解;(2)由(1)化简不等式为()()30x x λλ++->求解.【小问1详解】解:集合{}11ee x A x -=≤≤{}|12x x =≤≤,因为关于x 的不等式20x mx n ++≤的解集为A ,所以3,2m n =-=,则()232f x x x =-+;【小问2详解】由(1)知:关于x 的不等式()()2322f x x λλ+>-+即为:()2232322x x x λλ-++>-+,即为()222330x x λλλ+-+->,即为()()30x x λλ++->,解得:3x λ>-或x λ<-,所以不等式的解集为:{|x x λ<-或}3x λ>-.16.若函数()y f x =对任意实数x ,y 都有()()()f xy f x f y =,则称其为“保积函数”.现有一“保积函数”()f x 满足(1)1f -=-,且当01x <<时,()(0,1)f x ∈.(1)判断“保积函数”()f x 的奇偶性;(2)若“保积函数”()f x 在区间(0,)+∞上总有()0f x >成立,试证明()f x 在区间(0,)+∞上单调递增;(3)在(2)成立的条件下,若(2)2f =,求()211log sin 2f x +≤,[0,2π]x ∈的解集.【答案】(1)()f x 为奇函数(2)证明见解析(3)π3π0,,π44⎛⎤⎡⎫⎪⎥⎢⎝⎦⎣⎭【解析】【分析】(1)赋值,结合(1)1f -=-,进而得到()f x 为奇函数;(2)()f x 在(0,)+∞上单调递增,利用定义法得到函数的单调性;(3)赋值法得到1122f ⎛⎫=⎪⎝⎭,结合函数单调性得到211log sin 2x +≤,[0,2π]x ∈,数形结合,结合定义域,得到不等式,求出解集.【小问1详解】()f x 为奇函数,理由如下:根据题意,令1y =-,得()()(1)f x f x f -=-,因为(1)1f -=-,所以()()f x f x -=-,故结合定义域可知,()f x 为奇函数.【小问2详解】证明:任取1x ∀,2(0,)x ∈+∞,且12x x >,则2101x x <<,因此()()()()()2212111111x x f x f x f x f x f x f x f x x ⎛⎫⎛⎫-=-⋅=- ⎪ ⎪⎝⎭⎝⎭()2111x f x f x ⎛⎫⎛⎫=-⎪ ⎪ ⎪⎝⎭⎝⎭,因为2101x x <<,且当01x <<时,()(0,1)f x ∈,所以2110x f x ⎛⎫-> ⎪⎝⎭,因为(0,)∀∈+∞x ,()0f x >恒成立,所以()10f x >,所以()()()2121110x f x f x f x f x ⎛⎫⎛⎫-=-> ⎪ ⎪⎪⎝⎭⎝⎭,即()()12f x f x >,又因为120x x >>,所以()f x 在(0,)+∞上单调递增;【小问3详解】(1)1f -=-Q ,又()f x 为奇函数,(1)(1)1f f ∴=--=,()()()f xy f x f y = ,112(2)22f f f⎛⎫⎛⎫∴⨯= ⎪ ⎪⎝⎭⎝⎭,(2)2f = ,1122f ⎛⎫∴= ⎪⎝⎭,故原不等式等价于()211log sin 2f x f ⎛⎫+≤⎪⎝⎭,[0,2π]x ∈,()f x 在(0,)+∞上单调递增且(0,)∀∈+∞x ,()0f x >恒成立,又()f x 为奇函数,()f x ∴在上单调递增,故211log sin 2x +≤,[0,2π]x ∈,则221log sin log 22x ≤-=,[0,2π]x ∈,∴sin 0sin 2x x >⎧⎪⎨≤⎪⎩,解得π04x <≤或3ππ4x ≤<,综上,()211log sin 2f x +≤,[0,2π]x ∈的解集为π3π0,,π44⎛⎤⎡⎫⋃ ⎪⎥⎢⎝⎦⎣⎭.17.已知函数())f x x =ω+ϕ(0ω>,ππ22ϕ-≤≤)的图象关于直线π3x =对称,且图象上相邻两个最高点的距离为π.(1)求ω和ϕ的值;(2)当π0,2⎡⎤∈⎢⎥⎣⎦x 时,求函数()y f x =的最大值和最小值;(3)设()()(0)g x f cx c =>,若()g x 图象的任意一条对称轴与x 轴的交点的横坐标不属于区间(π,2π),求c 的取值范围.【答案】(1)2ω=,π6ϕ=-(22-(3)1150,,6312⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦【解析】【分析】(1)根据最小正周期求出ω,再根据对称轴求出ϕ;(2)由(1)可得()f x 解析式,再由x 的取值范围求出π26x -的范围,最后由正弦函数的性质计算可得;(3)首先得到()g x 的解析式,由12ππ22c⨯≥求出c 的大致范围,再求出()g x 图象的某一条对称轴与x 轴的交点的横坐标属于区间(π,2π)时c 的取值范围,即可得解.【小问1详解】因为()f x 的图象上相邻两个最高点的距离为π,所以()f x 的最小正周期πT =,所以2π2Tω==,又因为()f x 的图象关于直线π3x =对称,所以232ππkπϕ⨯+=+,k ∈Z ,所以ππ6k ϕ=-,k ∈Z ,又ππ22ϕ-≤≤,所以π6ϕ=-,综上可得2ω=,π6ϕ=-.【小问2详解】由(1)知π()26f x x ⎛⎫=- ⎪⎝⎭,当π0,2⎡⎤∈⎢⎥⎣⎦x 时,ππ5π2666x -≤-≤,所以当ππ262x -=(即π3x =)时,max ()f x =当ππ266x -=-(即0x =)时,min 3()2f x =-,所以函数()y f x =在π0,2⎡⎤∈⎢⎣⎦x 2-.【小问3详解】由题意π()()26g x f cx cx ⎛⎫==- ⎪⎝⎭()0c >,()g x 图象的任意一条对称轴与x 轴的交点的横坐标都不属于区间(π,2π),12ππ22c ∴⨯≥且0c >,解得102c <≤,令ππ2π62cx k -=+,k ∈Z ,解得ππ23k x c c=+,k ∈Z ,若()g x 图象的某一条对称轴与x 轴的交点的横坐标属于区间(π,2π),则πππ2π23k c c <+<,解得114623k k c +<<+,当1k =-时,112c -<且16c <-(矛盾),故解集为空集;当0k =时,1163c <<;当1k =时,55126c <<,故c 的取值范围为1150,,6312⎛⎤⎡⎤⋃ ⎥⎢⎥⎝⎦⎣⎦.18.已知函数2()43f x x x =-+,()(4)3g x a x =+-,a ∈R .(1)若[1,0]x ∃∈-,使得方程()20m f x -=有解,求实数m 的取值范围;(2)若对任意的1[1,5]x ∈-,总存在2[1,5]x ∈-,使得()()12f x g x ≤,求实数a 的取值范围;(3)设()()()h x f x g x =+,记()M a 为函数()h x 在[0,1]上的最大值,求()M a 的最小值.【答案】(1)[]2log 3,3(2){15a a ≤-或9}5a ≥-(3)3-【解析】【分析】(1)根据二次函数的单调性,结合存在性的定义、对数的单调性进行求解即可;(2)根据存在性和任意性的定义,结合函数的对称性分类讨论进行求解即可;(3)根据函数的对称性、单调性分类讨论进行求解即可.【小问1详解】[1,0]x ∃∈-,2()20243m m f x x x -=⇔=-+,因为函数2()43f x x x =-+的图象的对称轴是直线2x =,所以()y f x =在[1,0]-上为减函数,max ()(1)8f x f =-=,min ()(0)3f x f ==,故2[3,8]m ∈,所以m 的取值范围为[]2log 3,3.【小问2详解】对任意的1[1,5]x ∈-,总存在2[1,5]x ∈-,使得()()12f x g x ≤,∴即在区间[1,5]-上,()()12max max f x g x ≤,函数2()43f x x x =-+图象的对称轴是直线2x =,又[1,5]x ∈-,∴当5x =时,函数()f x 有最大值为2(5)54538f =-⨯+=,①当4a =-时,()3g x =-,不符合题意,舍去;②当4a >-时,()g x 在[1,5]-上的值域为[7,517]a a --+,5178a ∴+≥,得95a ≥-;③当4a <-时,()g x 在[1,5]-上的值域为[517,7]a a +--,78a ∴--≥,得15a ≤-,综上,a 的取值范围为{15a a ≤-或9}5a ≥-;【小问3详解】函数2()h x x ax =+图象的对称轴为2a x =-,①当2a ≤-或0a ≥时,()h x 在[0,1]上单调递增,则()(1)|1|M a f a ==+;②当20a -<<时,2()max ,(1)max ,124a a M a ff a ⎧⎫⎧⎫⎛⎫=-=+⎨⎬⎨⎬ ⎪⎝⎭⎩⎭⎩⎭,解不等式组22014a a a -<<⎧⎪⎨>+⎪⎩,得(221a -<<-,故当20a -<<,()((2,22141,210a a M a a a ⎧-<<-⎪=⎨⎪+-≤<⎩,综上,()((2,22141,221a a M a a a a ⎧-<<-⎪=⎨⎪+≤-≥-⎩或,()M a ∴在((),21∞--上单调递减,在()21,∞⎡+⎣上单调递增,(21a ∴=-时,()M a取最小值为(2113+=-.【点睛】关键点睛:本题的关键是根据函数的对称轴与所给区间的相位位置进行分类讨论.19.已知()()()sin22sin cos 8f m θθθθ=---+.(1)当1m =时,求π12f ⎛⎫⎪⎝⎭的值;(2)若()fθ的最小值为7-,求实数m 的值;(3)对任意的π,π4θ⎛⎫∈⎪⎝⎭,不等式()816sin cos m f θθθ->-恒成立.求m 的取值范围.【答案】(1)172+(2)5m =或1m =-(3)722,6⎛⎫++∞ ⎪ ⎪⎝⎭【解析】【分析】(1)利用辅助角公式,化简函数,再代入求π12f ⎛⎫⎪⎝⎭;(2)首先设sin cos t θθ=-,利用三角恒等变换,将函数表示成关于t 的二次函数,讨论对称轴,结合定义域求函数的最小值,列式求解m ;(3)根据(2)的结果,不等式参变分离为128m t t t->+-,在(t ∈恒成立,转化为判断函数的单调性,求函数的最值,即可求解m 的取值范围.【小问1详解】()()())πsin22sin cos 8sin22sin 84f m m θθθθθθ⎛⎫=---+=--+ ⎪⎝⎭,当1m =时,ππππ1ππsin 881261242124f ⎛⎫⎛⎫⎛⎫=-+=--+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1178262π+=+=;【小问2详解】设πsin cos 4t θθθ⎛⎫=-=- ⎪⎝⎭,则t ⎡∈⎣,22sin cos 1=-+t θθ,()()()229,f Q t t m t t θ⎡==---+∈⎣,其对称轴为12m t =-+,当102m-+≥,即2m ≥时,()f θ的最小值为(77Q =+=-,则5m =;当102m-+<,即2m <时,()f θ的最小值为77Q =-=-1m =-;综上,5m =或1m =-;【小问3详解】由()816sin cos m f θθθ->-,对所有π,π4θ⎛⎫∈ ⎪⎝⎭都成立.设πsin cos 4t θθθ⎛⎫=-=- ⎪⎝⎭,则(t ∈,()281629m t m t t-∴>---+,(t ∈恒成立,280t -> ,128m t t t∴-+->,在(t ∈恒成立,当(t ∈时,8t t -递减,则18t t t+-在(递增,t ∴=时18t t t +-取得最大值726得2m ->2∴>m 所以存在符合条件的实数m ,且m的取值范围为2,6∞⎛⎫++ ⎪ ⎪⎝⎭.【点睛】关键点点睛:本题的关键利用公式()22sin cos 1sin cos θθθθ=--,从而利用换元法转化为关于t 的函数问题.。

河南高一上学期第一次月考数学试题(解析版)

河南高一上学期第一次月考数学试题(解析版)

一、单选题1.已知集合,,则( ) {}13A x x =-<<{}1,1,2=-B A B = A . B . C . D .{}1,2{}1,1,2-{}0,1,2{}1,0,1,2,3-【答案】A【分析】根据交集定义计算. 【详解】由题意. {1,2}A B = 故选:A .2.已知集合,,若,则( ){}0,1,2A ={}240B x x x m =-+=1A B ∈ A B ⋃=A . B . C . D .{}1,2,3{}1,2,3,4{}0,1,2{}0,1,2,3【答案】D【分析】由题意得,求得后,确定集合中元素,由并集定义计算. 1B ∈m B 【详解】,则,,,1A B ∈ 1B ∈140m -+=3m =,2{|430}{1,3}B x x x =-+==. 0,1,3}2,{A B = 故选:D .3.已知集合,,则集合( ){}1A x y x ==+{}21B y y x ==+A B = A . B .C .D .{}0,1()(){}0,1,1,2{}1,2{}1x x ≥【答案】D【分析】由题意可得=,=,再由交集的定义求解即可.A {|R}x x ∈B {|1}y y ≥【详解】解:因为=,=,{}1A x y x ==+{|R}x x ∈{}21B y y x ==+{|1}y y ≥所以. A B = {|1}x x ≥故选:D.4.已知,,则( ) 22t a b =+221s a b =++A . B . C . D .t s >t s ≥t s ≤t s <【答案】C【分析】作差法即可比较大小.【详解】,()()()22222110t s a b a b a -=+-++=--≤故,当时,. t s ≤1a =t s =故选:C.5.王昌龄是盛唐著名的边塞诗人,被誉为“七绝圣手”,其《从军行》传诵至今,“青海长云暗雪山,孤城遥望玉门关. 黄沙百战穿金甲,不破楼兰终不还”,由此推断,其中最后一句“攻破楼兰”是“返回家乡”的( ) A .必要条件 B .充分条件C .充要条件D .既不充分又不必要条件【答案】A【分析】利用充分必要条件判断即可得解.【详解】由题意可知:“返回家乡”则可推出“攻破楼兰”, 故“攻破楼兰”是“返回家乡”必要条件, 故选:.A 6.已知全集,集合则下图中阴影部分所表示的集U R =12345{}{|}2AB x R x ∈>=,,,,,=,合为( )A .B .C .D .{0,1}{}1{1,2}{0,1,2}【答案】C【分析】根据题意,结合Venn 图与集合间的基本运算,即可求解. 【详解】根据题意,易知图中阴影部分所表示. (){}1,2U B A = ð故选:C.7.设,命题“存在,使方程有实根”的否定是( ) m ∈R 0m >20x x m +-=A .对,方程无实根 B .对,方程有实根 0m ∀>20x x m +-=0m ∀>20x x m +-=C .对,方程无实根 D .对,方程有实根0m ∀<20x x m +-=0m ∀<20x x m +-=【答案】A【分析】只需将“存在”改成“任意”,有实根改成无实根即可.【详解】由特称命题的否定是全称命题,知“存在,使方程有实根”0m >20x x m +-=的否定是对,方程无实根 0m ∀>20x x m +-=故选:A8.某小型服装厂生产一种风衣,日销售量x (件)与单价P (元)之间的关系为,生产x 件所需成本为C (元),其中,若要求每天获利不少1602P x =-50030C x =+于1300元,则日销量x 的取值范围是( )A .,B ., 2030x ≤≤x *∈N 2045x ≤≤x *∈NC .,D .,1530x ≤≤x *∈N 1545x ≤≤x *∈N 【答案】B【分析】由题意求得利润函数,然后解不等式即可得. 221300500y x x =-+-1300y ≥【详解】由题意日销量x 件时,利润是2(1602)(50030)2130500y x x x x x =--+=-+-,,,.221305001300x x -+-≥(20)(45)0x x --≤2045x ≤≤故选:B .二、多选题9.已知集合,,则下列结论错误的是( ) {}1,2,3A =-{}13B x x =-≤<A . B .C .D .A B A = A B B ⋃=3B ⊆R ð()A B =∅R ð【答案】ABCD【分析】根据集合的运算求得集合的交并补后判断. 【详解】由题意,A 错, {}1,2A B A ⋂=-≠,B 错,{|13}A B x x B ⋃=-≤≤≠或,C 错, {|1R B x x =<-ð3}3R x B ≥∈,ð,D 错,(){}3R A B ⋂=≠∅ð故选:ABCD .10.下列各组中的两个集合和,表示同一集合的是( ) M N A ., {}M π={}3.14159N =B .,{}2,3M =(){}2,3N =C .,{}*11,M x x x N =-<≤∈{}1N =D .,{}M π={N π=【答案】CD【分析】根据相同集合的定义,依次判断即可【详解】选项A 中两个集合中的元素互不相等,不正确; 选项B 中两个集合,一个是数集,一个是点集,不正确;选项C 中集合,正确; {}1M N ==选项D 中集合,正确. {}=M N π=所以选项CD 是正确的. 故选:CD11.设集合,若,则实数a 的值可{}2|8150,{|10}A x x x B x ax =-+==-=A B B = 以为( )A .B .0C .3D .1513【答案】ABD【分析】先求出集A ,B ,再由得,然后分和两种情况求A B B = B A ⊆B =∅B ≠∅解即可【详解】解:, {3,5},{|1}===A B x ax ∵,∴, A B B = B A ⊆∴①时,;B =∅0a =②时,或,∴或.B ≠∅13a =15a =13a =15综上,或,或0a =13a =15a =故选:ABD.12.已知关于的方程,则下列结论中正确的是( )x ()230x m x m +-+=A .方程有一个正根一个负根的充要条件是 {}0m m m ∈<B .方程有两个正根的充要条件是 {}01m m m ∈<≤C .方程无实数根的必要条件是 {}1m m m ∈>D .当时,方程的两个实数根之和为0 3m =【答案】ABC【分析】根据一元二次方程根与系数的关系,结合根的分布情况、对应二次函数的性质判断各选项的正误即可.【详解】A 选项中,方程有一个正根一个负根则即;()()2340{00m m f ∆=--><0m <同时时方程有一个正根一个负根;是方程有一个正根一个负根的充要条件.0m <0m <B 选项中,方程有两个正根则即; ()()23403{02200m m b ma f ∆=--≥--=>>01m <≤同时时方程有两个正根;是方程有两个正根的充要条件. 01m <≤01m <≤C 选项中,方程无实数根则即;2(3)40m m ∆=--<19m <<而时方程可能无实根也可能有实根;故是方程无实数根的必要条件. 1m >1m >D 选项中,时知方程无实根; 3m =230x +=故选:ABC【点睛】本题考查了一元二次方程根与系数关系,结合二次函数的性质判断方程的根不同分布情况下的充要条件.三、填空题13.若命题“,”是假命题,则实数a 的取值范围是______. x ∃∈R 2210x ax -+≤【答案】.11a -<<【分析】由原命题的否定是真命题,结合一元二次不等式恒成立可得.【详解】命题“,”是假命题,则其否定,是x ∃∈R 2210x ax -+≤x ∀∈R 2210x ax -+>真命题,所以,解得. 2440a ∆=-<11a -<<故答案为:.11a -<<14.若,,则的取值范围为______. 13a ≤≤11b -≤<ab 【答案】.[3,3)-【分析】结合不等式的性质,按的正负分类讨论. b 【详解】, 13a ≤≤若,则,01b ≤<03ab ≤<若,则,,所以, 10b -≤<01b <-≤03ab <-≤30ab -≤<综上. 33ab -≤<故答案为:.[3,3)-15.如果集合中只有一个元素,则a 的值是______.{}2410A x ax x =++=【答案】,40【分析】分情况讨论:当时和当时两种情况,当时由即可求出答0a =0a ≠0a ≠0∆=案,从而求得结果.【详解】若,则集合,符合题意;0a =1{|410}4A x x ⎧⎫=+==-⎨⎬⎩⎭若,则,解得. 0a ≠1640a ∆=-=4a =故答案为:.0,416.设为全集,对集合、,定义运算“”,.对于集合U X Y ()U X Y X Y *=I ð,,,,则{}1,2,3,4,5,6,7,8U ={}1,2,3X ={}3,4,5Y ={}2,4,7Z =()X Y Z **=___________. 【答案】.{}1,3,5,6,8【分析】根据定义求出集合,再次利用定义得出()U X Y X Y *=I ð.()()U U X Y Z X Y Z **=⎡⎤⎣⎦I I ðð【详解】由于,,,,则{}1,2,3,4,5,6,7,8U ={}1,2,3X ={}3,4,5Y ={}2,4,7Z =,{}3X Y =I 由题中定义可得,则, (){}1,2,4,5,6,7,8U X Y X Y *==I ð(){}2,4,7U X Y Z =I I ð因此,,故答案为.()(){}1,3,5,6,8U U X Y Z X Y Z **==⎡⎤⎣⎦I I ðð{}1,3,5,6,8【点睛】本题考查集合的计算,涉及新定义,解题的关键在于利用题中的新定义进行计算,考查运算能力,属于中等题.四、解答题17.求下列不等式的解集: (1) 23710x x -≤(2) 23540x x -+->【答案】(1). 10{|1}3x x -≤≤(2). ∅【分析】(1)不等式移项,化二次项系数为正,因式分解后,结合一元二次方程的根可得解集;(2)化二次项系数为正,然后由判别式判断可得.【详解】(1)原不等式化为,即,所以, 237100x x --≤(1)(310)0x x +-≤1013x -≤≤原不等式解集为. 10{|1}3x x -≤≤(2)原不等式化为,又, 23540x x -+<2(5)434230∆=--⨯⨯=-<所以原不等式无解,解集为.∅18.已知集合,. {|121}P x a x a =+≤≤+2{|3100}Q x x x =--≤(1)若,求;2a =()R P Q ðI (2)命题:“,使得”是真命题,求实数的取值范围. q x P ∀∈x Q ∈a 【答案】(1);{|23}x x -<<(2). (]2-∞,【分析】(1)将代入直接求解;2a =(2)由“,使得”是真命题可得,再分和讨论; x P ∀∈x Q ∈P Q ⊆P =∅P ≠∅【详解】(1); 2{|3100}{|25}Q x x x x x =--≤=-≤≤ 当时,,2a ={|35}P x x =≤≤或,{|3R P x x ∴=<ð5}x >;(){|23}R P Q x x ∴⋂=-≤<ð(2)“,使得”是真命题, x P ∀∈x Q ∈,P Q ∴⊆当时,,解得; P =∅121a a +>+0a <当时,P ≠∅,解得, 012215a a a ≥⎧⎪+≥-⎨⎪+≤⎩02a ≤≤综上当“,使得”是真命题时的取值范围是. x P ∀∈x Q ∈a (]2-∞,19.已知集合,,求,.(){}2330A x x a x a =-++={}2540B x x x =-+=A B A B 【答案】答案见解析【分析】解一元二次方程求出集合,分、、、且且,A B 3a =4a =1a =1a ≠4a ≠3a ≠讨论,根据集合的交集、并集的运算可得答案.【详解】,{}{}25401,4B x x x =-+==当时,,,;3a =(){}{}233903A x x x =-++=={}1,3,4A B = A B =∅ 当时,,4a =(){}()(){}{}2431204304,3A x x x x x x =-++==--==所以,;{}1,3,4A B = {}4A B ⋂=当时,,1a =(){}()(){}{}213301301,3A x x x x x x =-++==--==所以,;{}1,3,4A B = {}1A B ⋂=当且且时,,1a ≠4a ≠3a ≠(){}()(){}{}233030,3A x x a x a x x a x a =-++==--==所以,. {},1,3,4= A B a A B =∅ 综上所述,当时,,; 3a ={}1,3,4A B = A B =∅ 当时,,; 4a ={}1,3,4A B = {}4A B ⋂=当时,,;1a ={}1,3,4A B = {}1A B ⋂=当且且时,,.1a ≠4a ≠3a ≠{},1,3,4= A B a A B =∅ 20.已知命题p :任意,,命题q :存在,[]1,2x ∈20x a -≥x ∈R 2220x ax a ++-=.(1)若命题p 与q 有且只有一个是真命题,求实数a 的取值范围. (2)若命题p 与q 至少有一个是真命题,求实数a 的取值范围. 【答案】(1) (2,1)(1,)-+∞ (2)R【分析】(1)先假设命题p ,命题q 为真命题,解得a 的取值范围为集合A ,B ,再根据问题命题p 与q 有且只有一个是真命题,即p 真q 假(取A 集合与B 的补集的交集),或p 假q 真(取A 的补集与B 集合的交集)取上述两个范围的并集即可.(2)命题p 与q 至少有一个是真命题的反面是p 假q 假,取A 集合补集与B 的补集的交集,再取上述范围的补集.【详解】(1)若命题p 为真命题,则,记为集合,2min ()1a x ≤=(,1]A ∞=-若命题q 为真命题,则,即或,记为集合2Δ44(2)0a a =--≥2a ≤-1a ≥(,2][1,)B ∞∞=--⋃+∵命题p 与q 有且只有一个是真命题,即p 真q 假,或p 假q 真 当p 真q 假,; ()R (2,1)a A B ∈⋂=-ð当p 假q 真,; ()R (1,)a B A ∞∈⋂=+ð∴实数a 的取值范围为.(2,1)(1,)-+∞ (2)∵命题p 与q 至少有一个是真命题的反面是p 假q 假, 当p 假q 假时, ()()R R a A B ∈⋂=∅ðð∴实数a 的取值范围为R .21.解关于x 的不等式.()()22210x a x a a +-->∈R 【答案】答案见解析【分析】将分解因式得,再讨论与()()22210x a x a a +-->∈R ()()210x x a -+>a 12-的大小求解集.【详解】因为,()()22210x a x a a +-->∈R 所以,()()210x x a -+>则当时,解集为;12a <-1{|}2x x x a <>-或当时,解集为;12a =-1{|}2x x ≠-当时,解集为.12a >-1{|}2x x a x <->或22.已知三个集合A ={x |x 2-3x +2=0},B ={x |x 2-ax +a -1=0},C ={x |x 2-bx +2=0},同时满足,C ⊆A 的实数a ,b 是否存在?若存在,求出a ,b 的所有值;若B A Ü不存在,请说明理由.【答案】存在a =2,b =3或满足要求.b -<<【解析】先解出集合A ,由且,可得B 集合中只有一个元素1,即可求出a B A Ü1B ∈的值;由C ⊆A ,可得或{1}或{2}或{1,2},分别检验C 集合的取值,即可得答C =∅案.【详解】A ={x |x 2-3x +2=0}={1,2},∵B ={x |x 2-ax +a -1=0}={x |(x -1)[x -(a -1)]=0}, ∴.1B ∈又,∴a -1=1,即a =2. B A Ü∵C ={x |x 2-bx +2=0},且C ⊆A , ∴或{1}或{2}或{1,2}.C =∅当C ={1,2}时,b =3;当C ={1}或{2}时,Δ=b 2-8=0,即x =,与C ={1}或{2}矛盾,b =±故舍去;当时,Δ=b 2-8<0,即C =∅b -<<综上可知,存在a =2,b =3或满足要求.b -<<【点睛】本题考查集合的包含关系,易错点为:当C ⊆A ,且C 集合带参数,需讨论C 集合是否为空集,考查分析计算的能力,分类讨论的思想,属中档题.。

高一数学上学期第一次月考试题含解析

高一数学上学期第一次月考试题含解析

智才艺州攀枝花市创界学校内蒙古锡林郭勒盟第HY 学二零二零—二零二壹高一数学上学期第一次月考试题〔含解析〕一、单项选择题〔本大题一一共12小题,每一小题5分,一共60分〕 1.集合2{|}A x x x ==,{1,,2}B m =,假设A B ⊆,那么实数m 的值是〔〕A.2B.0C.0或者2D.1【答案】B 【解析】 【分析】 求得集合{0,1}A =,根据A B ⊆,即可求解,得到答案.【详解】由题意,集合2{|}{0,1}A x x x ===,因为A B ⊆,所以0m =,应选B.【点睛】此题主要考察了集合交集运算,其中解答中熟记集合的包含关系的运算是解答的关键,着重考察了运算与求解才能,属于根底题.2.在区间(0,+∞)上不是增函数的函数是〔〕 A.21y x =+B.231y x =+C.2y x=D.221y x x =++【答案】C 【解析】 【详解】A 选项在R 上是增函数;B选项在(],0-∞是减函数,在[)0,+∞是增函数;C选项在(),0,(0,)-∞+∞是减函数;D选项221721248y x x x ⎛⎫=++=++ ⎪⎝⎭在1,4⎛⎤-∞- ⎥⎝⎦是减函数,在1,4⎡⎫-+∞⎪⎢⎣⎭是增函数;应选C. 【点睛】对于二次函数断定单调区间通常要先化成2()(0)y a x m n a =-+≠形式再断定.当0a >时,单调递减区间是(],m -∞,单调递减区间是[),m +∞;0a <时,单调递减区间是[),m +∞,单调递减区间是(],m -∞.3.以下哪一组函数相等〔〕A.()f x x =与()2x g x x=B.()2f x x =与()4g x =C.()f x x =与()2g x =D.()2f x x =与()g x =【答案】D 【解析】 【分析】根据相等函数的要求依次判断两个函数的定义域和解析式是否一样,从而可求得结果. 【详解】A 选项:()f x 定义域为R ;()g x 定义域为:{}0x x ≠∴两函数不相等B 选项:()f x 定义域为R ;()g x 定义域为:{}0x x ≥∴两函数不相等C 选项:()f x 定义域为R ;()g x 定义域为:{}0x x ≥∴两函数不相等D 选项:()f x 与()g x 定义域均为R ,且()()2g x x f x ===∴两函数相等此题正确选项:D【点睛】此题考察相等函数的判断,关键是明确两函数相等要求定义域和解析式都一样,属于根底题. 4.集合{}2|3280Mx x x =--≤,{}2|60N x xx =-->,那么M N ⋂为〔〕A.{|42x x -≤<-或者37}x <≤B.{|42x x -<≤-或者37}x ≤<C.{|2x x ≤-或者3}x >D.{|2x x <-或者3}x ≥【答案】A 【解析】 【分析】利用一元二次不等式的解法化简集合{}2|3280M x x x =--≤,{}2|60N x xx =-->,根据集合交集的定义求解即可. 【详解】∵由{}2|3280Mx x x =--≤,所以{}|47M x x =-≤≤, 因为{}2|60N x x x =-->,所以{|2N x x =<-或者3}x >,∴{}|47{|2MN x x x x ⋂=-≤≤⋂<-或者3}x >{|42x x =-≤<-或者37}x <≤.应选A .点睛:研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,此题本质求满足属于集合M 且属于集合N 的元素的集合.5.2,0()(1),0x x f x f x x >⎧=⎨+≤⎩,那么44()()33f f +-的值等于〔〕A.2-B.4C.2D.4-【答案】B 【解析】【详解】2,0()(1),0x x f x f x x >⎧=⎨+≤⎩,448()2333f ∴=⨯=,44112()(1)()(1)()33333f f f f f ∴-=-+=-=-+=24233=⨯=,4484()()43333f f ∴+-=+=,应选B.考点:分段函数.6.()f x =A.3(,]2-∞ B.3[,)2+∞ C.(,1]-∞ D.[2,)+∞【答案】D 【解析】 【分析】先求解定义域,然后结合二次函数的对称轴判断增区间. 【详解】因为2320x x -+≥,所以(][),12,x ∈-∞+∞;又因为232y x x =-+的对称轴为:32x =,且322<,所以增区间为[)2,+∞, 应选:D.【点睛】此题考察复合函数的单调性,难度一般.对于复合函数的单调性问题,在利用“同増异减〞的方法判断的同时也要注意到定义域问题. 7.以下对应关系是A 到B 的函数的是()A.A=R,B={x|x>0}.f:x y=|x|→B.2,,:A Z B N f x y x +==→=C.A=Z,B=Z,f:x y →=D.[]{}1,1,0,:0A B f x y =-=→=【答案】D 【解析】 【分析】根据函数的定义,即可得出结论.【详解】对于A 选项:A =R ,B ={x |x >0},按对应关系f :x →y =|x |,A 中的元素0在B 中无像,∴f :x →y =|x |不是从A 到B 的函数;对于B 选项:A =Z ,B N +=,f :x →y =x 2,A 中的元素0在B 中无像,∴f :x →y =|x |不是从A 到B 的函数;对于C 选项:A =Z ,B =Z ,f :x →y =f :x →y =A 到B 的函数;对于D 选项:A =[﹣1,1],B ={0},f :x →y =0,A 中的任意元素在B 中有唯一元素对应,∴f :x →y =0是从A 到B 的函数. 应选D.【点睛】此题考察函数的定义,考察学生分析解决问题的才能,正确理解函数的定义是关键.8.函数()212f x x =+,那么f 〔x 〕的值域是 A.1{|}2y y ≤ B.1{|}2y y ≥C.1{|0}2y y <≤D.{|0}y y >【答案】C 【解析】 【分析】根据不等式的性质,求得函数的值域.【详解】由于220,22xx ≥+≥,故211022x <≤+,故函数的值域为1|02y y ⎧⎫<≤⎨⎬⎩⎭,应选C. 【点睛】本小题主要考察函数值域的求法,考察不等式的性质,属于根底题. 9.函数(1)f x +的定义域为[2,3]-,那么(21)f x -的定义域为〔〕A.[]-1,4B.5[0,]2C.[5,5]-D.[3,7]-【答案】B 【解析】 【分析】 由函数(1)f x +的定义域为[2,3]-,得到1[1,4]x +∈-,令1214x -≤-≤,即可求解函数(21)f x -的定义域,得到答案.【详解】由题意,函数(1)f x +的定义域为[2,3]-,即[2,3]x ∈-,那么1[1,4]x +∈-,令1214x -≤-≤,解得502x ≤≤,即函数(21)f x -的定义域为5[0,]2,应选B.【点睛】此题主要考察了抽象函数的定义域的计算,其中解答中熟记抽象函数的定义域的求解方法是解答的关键,着重考察了推理与运算才能,属于根底题. 10.不等式20ax x c -+>的解集为{}21,x x -<<那么函数2y ax x c =++的图像大致为〔〕A. B.C. D.【答案】C 【解析】 【分析】利用根与系数的关系x 1+x 2=−b a ,x 1•x 2=c a结合二次函数的图象可得结果【详解】由题知-2和1是ax 2-x+c=0的两根, 由根与系数的关系知-2+1=1a ,,−2×1=c a,∴a=-1,c=2, ∴2y ax x c =++=-x 2+x+2=-〔x-12〕2+94,应选C【点睛】此题考察了一元二次不等式的解法和二次函数的图象,以及一元二次方程根与系数的关系.一元二次不等式,一元二次方程,与一元二次函数的问题之间可互相转化,也表达了数形结合的思想方法. 11.函数2228(0)y x ax a a =-->,记0y ≤的解集为A ,假设()1,1A -⊆,那么a 的取值范围〔〕A.1,2⎡⎫+∞⎪⎢⎣⎭ B.1,4⎡⎫+∞⎪⎢⎣⎭C.11,42⎛⎫⎪⎝⎭D.11,42⎡⎤⎢⎥⎣⎦【答案】A 【解析】 【分析】因为2228(2)(4)--=+-x ax a x a x a ,且24a a -<,所以解集[]2,4A a a =-;然后根据()1,1A -⊆,得不等式组2141a a -≤-⎧⎨≥⎩,可得a 的取值范围。

高一数学上学期第一次月考试题含解析 22

高一数学上学期第一次月考试题含解析 22

卜人入州八九几市潮王学校第三二零二零—二零二壹高一数学上学期第一次月考试题〔含解析〕一、选择题(本大题一一共12小题,每一小题5分,一共60分) 1.以下说法正确的有〔〕①NBA 联盟中所有优秀的篮球运发动可以构成集合; ②*0N ∈; ③集合{}2| 1y y x=-与集合(){}2,| 1x y y x=-是同一个集合;④空集是任何集合的真子集. A.0个 B.1个 C.2个 D.3个【答案】A 【解析】 【分析】【详解】对于①,优秀的篮球队员概念不明确,不能构成集合,错误; 对于②,元素与集合的关系应为属于或者不属于,即0∉N *,错误; 对于③,集合{}2|1{|1}y y x y y =-=≥-是数集,集合{〔x ,y 〕|y=x 2-1}表示的是满足等式的所有点,不是同一个集合,错误;对于④,空集是任何非空集合的真子集,错误; 应选:A .【点睛】此题考察集合确实定性,元素与集合的关系,列举法和描绘法表示集合以及空集的有关性质,属于根底题.{{},0,1,2,3,4A x y B ===,那么A B =〔〕A.φB.{}0,1,2C.{}0,1,2,3D.(]{},34-∞【答案】C 【解析】 【分析】首先求得集合A ,然后进展交集运算即可.【详解】求解函数=y {}|3A x x =≤,结合交集的定义有:{}0,1,2,3A B ⋂=.此题选择C 选项.【点睛】此题主要考察集合的表示方法,交集的定义等知识,意在考察学生的转化才能和计算求解才能. 3.以下各组函数中,表示同一函数的是〔〕A.1y =,x y x=B.y =,y =C.||y x =,2y =D.y x =,y =【答案】D 【解析】【分析】逐一分析各个选项里面的两个函数的定义域、值域、对应关系是否完全一样,只有两个函数的定义域、值域、对应关系完全一样,这两个函数才是同一个函数. 【详解】A 中,1y =与xy x=定义域不同,故不是同一个函数;B 中,y =与y =C 中,y x=与2y =定义域不同,故不是同一个函数;D 中,y x =,y =的两个函数定义域、值域、对应关系完全一样,故是同一个函数,应选 D.此题考察构成函数的三要素,只有两个函数的定义域、值域、对应关系完全一样,这两个函数才是同一个函数.4.以下运算结果中,一定正确的选项是〔〕A.347a a a =B.236()a a -= C.01)1=D.2332()()aa -=-【答案】A 【解析】 【分析】根据指数幂的运算性质,可直接得出结果. 【详解】由指数幂的运算性质,可得:347a a a =,A 正确;236()a a -=-,B 错误;1a =时,001)0=无意义,C 错误;2332()()-=-a a ,D 错误;应选A【点睛】此题主要考察指数幂的运算,熟记指数幂运算的性质即可,属于常考题型. 5.以下函数中,既是奇函数又是减函数的是() A.1y x =+ B.3y x =-C.1y x=D.y x x =【答案】B 【解析】 【分析】根据函数奇偶性,先排除A ;再逐项判断函数单调性,即可得出结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
17.(10分)设全集U=R,集合A={x|y= },B={x|x2-x-6=0}.
(1)若a=-1,求A∩B;
(2)若( A)∩B=∅,求实数a的取值范围.
18.(10分)已知函数f(x)=
(1)求f(f(-2));
(2)画出函数的图象并求出函数f(x)在区间(-2,2)上的值域.
19.(12分)函数f(x)是定义在[-1,0)∪(0,1]上的奇函数,当x∈[-1,0)时,f(x)=2x+ (x∈R).
(1)当x∈(0,1]时,求f(x)的解析式.
(2)判断f(x)在(0,1]上的单调性,并证明你的结论.
20.(12分)如图所示,为了保护环境,实现城市绿化,某房地产公司要在拆迁地长方形ABCD处规划一块长方形地面HPGC,建造住宅小区公园,但不能越过文物保护区三角形AEF的边线EF.已知AB=CD=200 m,BC=AD=160 m,AF=40 m,AE=60 m,问如何设计才能使公园占地面积最大,求出最大面积.
高一数学试题(A卷)参考答案
一、选择题(本大题共12题,每题4分,共48分)
ADDAC BCDAB DC
二、填空题(本大题共4小题,每小题4分,共16分)
13.—12;14. 15. 16.{x|x<0}
17.(10分)设全集U=R,集合A={x|y= },B={x|x2-x-6=0}.
(1)若a=-1,求A∩B;
A.2B.3C.4D.5
5.函数y= + 的定义域是()
A.(-∞,-1)∪(1,+∞)B.(-1,1)
C.(-∞,-1)∪(-1,1]D.(-∞,-1)∪(-1,1)
6.已知f(x)=2x+3,g(x+2)=f(x),则g(x)的解析式为()
A.g(x)=2x+1B.g(x)=2x-1C.g(x)=2x-3D.g(x)=2x+3
(1)当x∈(0,1]时,求f(x)的解析式.
(2)判断f(x)在(0,1]上的单调性,并证明你的结论.
解:(1)当0<x≤1时,-1≤-x<0,
f(-x)=-2x+ ,因为f(x)为奇函数,f(-x)=-f(x)∴f(x)]D.[1,+∞]
10.定义在R上的偶函数在[0,7]上是增函数,在[7,+∞)上是减函数,又f(7)=6,则f(x)()
A.在[-7,0]上是增函数,且最大值是6
B.在[-7,0]上是减函数,且最大值是6
C.在[-7,0]上是增函数,且最小值是6
D.在[-7,0]上是减函数,且最小值是6
A.(-1,+∞) B.(-∞,-1) C.(1,+∞) D.(-∞,1)
二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.
13.已知函数f(x)= 若f(a)+f(3)=0,则实数a=________.
14.设A={x|x≤1或x≥3},B={x|a≤x≤a+1},A∩B=∅,则a的取值范围是________.
21.(12分)已知a,b为常数,且a≠0,f(x)=ax2+bx,f(2)=0,方程f(x)=x有两个相等实数根.
(1)求函数f(x)的解析式;
(2)当x∈[1,2]时,求f(x)的值域;
(3)若F(x)=f(x)-f(-x) ,试判断F(x)的奇偶性,并说明理由.
张家口一中西校区、万全中学2016年第一学期第一次月考
C.y=x2与y=2x2D.y=x2-4x+6与y=(x-2)2+2
3.设全集U={1,2,3,4,5},A∩B={1,2},( A)∩B={3},A∩( B)={5},则A∪B是()
A.{1,2,3}B.{1,2,5}C.{1,2,3,4}D.{1,2,3,5}
4.已知f(x)= 则f(3)等于()
张家口一中西校区、万全中学2016年第一学期第一次月考
高一数学试题(A卷)
一、选择题:本大题共12题,每题4分,共48分.在下列各题的四个选项中,只有一个选项是符合题目要求的.
1.下列各图中,可表示函数y=f(x)的图象的只可能是()
2.下列函数中图象相同的是()
A.y=x与y= B.y=x-1与y=
(2)若( A)∩B=∅,求实数a的取值范围.
解:(1)∵x2-x-6=0,∴x1=3或x2=-2∴B={-2,3}
∵a-x>0∴x<a∴A=(-∞,a)
∵a=-1,∴A=(-∞,-1)∴A∩B={-2}
(2)∵ A=[a,+∞),B={-2,3},( A)∩B=∅∴a>3,即a∈(3,+∞).
18.(12分)已知函数f(x)=
7.已知集合M满足{1,2}⊆M {1,2,3,4,5},那么这样的集合M的个数为()
A.5B.6C.7D.8
8.函数f(x)=x3+x2的定义域是x∈{-2,-1,0,1,2},则该函数的值域为()
A.{-4,-2,0,2}B.{-4,0,4}C.{-2,0,2}D.{-4,0,2,12}
9.已知函数f(x)=2x2+2kx-8在[-5,-1]上单调递减,则实数k的取值范围是()
(1)求f(f(-2));
(2)画出函数的图象并求出函数f(x)在区间(-2,2)上的值域.
解:(1)∵f(-2)=2,f(2)=8,∴f(f(-2))=f(2)=8
(2)图象如下:
∵f(0)=4f(2)=8f(-2)=2∴值域为(2,8).
19.(12分)函数f(x)是定义在[-1,0)∪(0,1]上的奇函数,当x∈[-1,0)时,f(x)=2x+ (x∈R).
11.设f(x)是奇函数,且在(0,+∞)内是增函数,又f(-3)=0,则x·f(x)<0的解集是()
A.{x|-3<x<0或x>3} B.{x|x<-3或0<x<3}
C.{x|x<-3或x>3} D.{x|-3<x<0或0<x<3}
12.已知函数f(x)= 若f(2-x)>f(x),则x的取值范围是()
15.函数f(x)为奇函数,且x>0时,f(x)= +1,则当x<0时,f(x)=________.
16.已知A,B是非空集合,定义运算A-B={x|x∈A且x∉B},若M={x|y= },
N={y|y=x2,-1≤x≤1},则M-N=________.
三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.
相关文档
最新文档