模糊系统与模糊控制简介
人工智能-模糊控制全自动洗衣机 -
在模糊洗衣机中,布质和布量是无法通过物理传感器测出的;所以,它们的求取都是采用间接的方法.布质,布量和洗涤的过程有很大的关系.从一般人们的经验知道,布质是绵质,则洗涤会困难一些;布质如果是化学纤维,则困难会小一些.布量多一些,则洗涤过程要长一些,反之短一些.所以,除了肮脏度之外,模糊推理还考虑布质和布量.
模糊控制全自动洗衣机
1.模糊控制简介
模糊控制是一种非线性的控制方法,主要针对那些无法取得数学模型或数学模型相当粗糙的系。首先要对被控对象按照人们的经验总结出模糊规则,采用模糊量,借助单片机对这些信息按照模糊规则转换为控制量,来完成自动控制。
2.应用前景
近年来,模糊控制在家用电器控制中得到较广泛的应用,采用模糊控制的洗衣机,可具有自动识别衣质、衣量、脏污程度、脏污性质、自动决定水量、自动投入恰当的洗涤剂等功能,不仅实现了洗衣机的全面自动化,也大大提高了洗衣的质量。
则把水流定为特弱,洗涤时间定为特长;洗衣推理如表1所示:
表1洗衣机的模糊推理
他给出了洗衣机推理的所有规则。很明显这些规则的前见有三个因素,后件有两个因素。故它们也是一种多输入多输出的推理。对于输入量,即前件,各个因素的模糊量定义不同。布量的模糊量为多中少;水温的模糊量为高中低;而布质的模糊量为棉布偏多,棉布化纤各半,化纤偏多;而输出量,即后件中,水流的模糊量取特强,强,中,弱,特弱;时间的模糊量取特长,长,中,短,特短;在上述的模糊量中,各自的隶属函数都不同。水温,布质和时间的模糊量如图3所示。
对于主要因素推理和顺序因素推理这两种推理,它们之间是有这隐含的推理关系的。主要因素推理是以采用人的思维中的主要因素起到决定作用原理执行的。在这种原理中,抛弃各种次要因素,以见米欧那个的形式产生因素少的推理规则,便于进行处理。顺序因素推理则是把前一种推理的结果作为本次推理的前件,从而推理出新的结果。在洗衣机中,如果考虑浑浊度,洗涤剂投入量,水流,洗涤时间等因素的推理。作为主要因素推理显然有:
模糊控制简介
න
������������ (������)������������ (������) (������, ������)
������������
模糊逻辑与近似推理
➢ 近似推理过程: 前提1(事实):������是������’ 前提2(规则):������������ ������ 是 ������,������ℎ������������ ������ 是 ������ 结论:������是������’ 这里������’和������是论域������中的模糊集合,������’和������是论域������中的模
⋯ ������������ ������2, ������������
⋱
⋮
������������ ������������, ������1 ������������ ������������, ������2 ⋯ ������������ ������������, ������������
例:������ = {子,女},������ = {父,母},模糊关系������“子女与
父母长得相似”,用模糊矩阵表示则为:
父母
������
=
子 女
0.8 0.3
0.3 0.6
模糊控制的数学基础
➢ 模糊关系合成 设������、������、������是论域, ������是������到������的一个模糊关系, ������是������到������
模糊系统与模糊控制简介
2019/10/8
24
模糊系统的通用逼近能力
研究路线: 基于Stone-Weierstrass定理
如王立新证明了采用高斯隶属度函数、 Product推理和COG解模糊的简化模糊系 统是通用逼近器 。
2019/10/8
25
模糊系统的通用逼近能力
研究路线: 基于插值原理
如李洪兴认为模糊可以看作某种插值, 插值点充分近则可充分逼近。
2019/10/8
36
模糊系统的通用逼近能力
必要条件: 输入变量的划分不能少于被逼近函数的
极点个数 无论函数形式多复杂,只要极点很少的
函数用模糊系统逼近很有利 无论函数形式多简单,只要极点很多的
函数用模糊系统逼近很不利
2019/10/8
37
模糊系统的通用逼近能力
其它问题: 模糊系统通用逼近的误差界 如何选取相关参数以便更好地逼近 满足精度要求减少模糊规则的方法 满足精度要求寻找最小规则数 给定规则数寻找最佳逼近精度 等等
模糊控制在处理面向任务的问题时比传 统的控制更为有效,例如自动驾驶和停 靠、交通控制与运动控制等方面,利用 基于模糊规则控制策略要比传统的基于 微分方程的控制策略更为方便和有效。 但是,另一方面,模糊理论又表现出了 许多先天的不严谨性,不确定性和其它 局限性,导致模糊控制理论的不成熟。
2019/10/8
其它知识和信息表达方式的模糊系统
2019/10/8
16
模糊推理方法
自从Zadeh的开创性工作以来,已经提出 了许多种推理方法,其中包括CRI方法, 证据推理方法,区间推理方法,三I方法, 基于相似度的近似类比推理方法等,但 是模糊推理的基本原理与逻辑基础似乎 均应重新考虑。
模糊控制系统简介
模糊理论在模糊控制中的应用——模糊控制系统摘要:模糊控制技术对工业自动化的进程有着极大地推动作用。
本文简要的讲述了模糊控制理论的起源及基本原理,详细分析了模糊控制器的设计方法,最后就典型的模糊控制系统原理和新型模糊控制系统应用进行了分析正文:一:模糊理论1.1模糊理论概念:模糊理论(Fuzzy Theory)是指用到了模糊集合的基本概念或连续隶属度函数的理论。
它可分类为模糊数学,模糊系统,不确定性和信息,模糊决策这五个分支,它并不是完全独立的,它们之间有紧密的联系。
1.2模糊理论产生:1965年,模糊理论创始人,美国加州福尼亚大学伯克利分校的自动控制理论专家L.A.Zadeh教授发表了题为“Fuzzy Set”的论文,这标志着模糊理论的诞生。
这一理论为描述和处理事务的模糊性和系统中的不确定性,以及模拟人所特有的模糊逻辑思维功能,从定性到定量,提供了真正强有力的工具。
1966年,马里诺斯发表了模糊逻辑的研究报告,而Zadeh进一步提出了著名的模糊语言值逻辑,并于1974年进行了模糊逻辑推理的研究。
由于这一研究和观点反映了客观世界中普遍存在的事务,它一出现便显示出强大的生命力和广阔的发展前途,在自然科学,其他科学领域及工业中得到了迅速的广泛的应用。
二:模糊控制理论2.1模糊控制理论的产生:在控制技术的应用过程中,对于多变量、非线性、多因素影响的生产过程,即使不知道该过程的数学模型,有经验的操作人员也能够根据长期的实践观察和操作经验进行有效地控制,而采用传统的自动控制方法效果并不理想。
从这一点引申开来,是否可将人的操作经验总结为若干条控制规则以避开复杂的模型建造过程?模糊控制理论与技术由此应运而生。
20世纪70年代模糊理论应用于控制领域的研究开始盛行,并取得成效。
其代表是英国伦敦大学玛丽皇后分校的E.H.Mamdani教授将IF-THEN型模糊规则用于模糊推理,并把这种规则型模糊推理用于蒸汽机的自动运转中。
模糊系统与智能控制技术
模糊系统与智能控制技术随着人工智能技术的不断发展,智能控制技术作为重要的一部分也得到了快速的发展。
其中,模糊系统作为智能控制的重要手段之一,逐渐在工程技术中得到了广泛应用。
一、模糊系统概述模糊系统指的是一类基于模糊数学理论为基础的人工智能系统,用于处理不确定、模糊、复杂的信息和控制问题。
模糊系统一般由模糊集合、模糊逻辑、模糊推理和模糊控制等组成。
模糊集合是模糊系统中的基本概念,通过模糊集合的模糊度来描述信息的不确定性和模糊性。
二、模糊系统在智能控制中的应用在智能控制中,模糊系统应用广泛,主要表现在以下方面:1.模糊控制模糊控制是模糊系统在控制领域中的一种应用,其核心是建立模糊控制器,通过输入变量经过模糊化、规则匹配和解模糊等过程,输出模糊控制量,控制被控对象达到某种期望状态或优化目标。
2.模糊识别模糊识别是指将输出与输入之间的模糊关系进行建模,并通过一定的方法求解识别问题。
常用的模糊识别方法包括模糊C均值聚类、模糊决策树等。
3.模糊优化模糊优化是将模糊规划和优化算法相结合,通过求解模糊集合上的优化问题,确定最优决策方案。
三、模糊系统的优势和不足模糊系统作为一种智能控制技术,在实际应用中有其独特的优势,包括:1.建模简单对于一些复杂、模糊、不易准确建模的问题,采用模糊系统可以使建模过程更加容易,而且表现出的精度和可靠性也比较高。
2.适应性强模糊系统具有一定的自适应性和鲁棒性,在面对变化和不确定性的环境中,能够更好地适应环境变化。
但是,模糊系统也有一定的不足之处,主要包括:1.复杂性高由于模糊系统需要考虑许多未知且不可测的因素,因此其模型结构比较复杂,不易于实现。
2.性能不稳定模糊系统的性能受到多种因素的影响,因此在一些极端情况下,很难保证控制效果的稳定性。
四、结语综上所述,模糊系统作为一种智能控制技术,在实际应用中能够解决许多不确定、模糊、复杂的信息和控制问题,并具有一些独特的优势。
随着人工智能技术的不断发展,相信模糊系统在未来的应用中也会发挥更大的作用。
模糊控制简介
R=(NBe × PBu ) + ( NSe × PSu ) + (0e × 0u ) + ( PSe × NSu ) + ( PBe × NSu )
NBe × PBu = (1, 0.5, 0, 0, 0, 0, 0) × (0, 0, 0, 0, 0, 0.5,1) NSe × PSu = (0, 0.5,1, 0, 0, 0, 0) × (0, 0, 0, 0,1, 0.5, 0) 0e × 0u = (0, 0, 0.5,1, 0.5, 0, 0) × (0, 0, 0.5,1, 0.5, 0, 0) PSe × NSu = (0, 0, 0, 0,1, 0.5, 0) × (0, 0.5,1, 0, 0, 0, 0) PBe × NSu = (0, 0, 0, 0, 0, 0.5,1) × (1, 0.5, 0, 0, 0, 0, 0) 0 0 0 0 0.5 1 0 0 0 0 0 0.5 0.5 0.5 0 0 0.5 0.5 1 0 0 R= 0 0 0.5 1 0.5 0 0 0 0.5 1 0.5 0.5 0 0 0 0 0 0.5 0.5 0.5 0 1 0.5 0 0 0 0 0
学习功能
数据存储 单元
y
∗ k
e
r + —
∆
∆
k
e
e
k
c
2
e
k
Байду номын сангаас
r
模糊 控制 规则
k
∆
u
u
u
u
k −1
k
+ +
被 控 对 象
y
k
六.思考
矛盾对立统一规律: 矛盾对立统一规律:两面性 • 优点:模糊逻辑本身提供了由专家构造语 优点: 言信息并将其转化为控制策略的一种系统 的推理方法, 的推理方法,因而能够解决许多复杂而无 法建立精确数学模型系统的控制问题, 法建立精确数学模型系统的控制问题,所 以它是处理推理系统和控制系统中不精确 和不确定性的一种有效方法。从广义上讲, 和不确定性的一种有效方法。从广义上讲, 模糊控制是适于模糊推理, 模糊控制是适于模糊推理,模仿人的思维 方式, 方式,对难以建立精确数学模型的对象实 施的一种控制策略。 施的一种控制策略。它是模糊数学同控制 理论相结合的产物, 理论相结合的产物,同时也是智能控制的 重要组成部分。 重要组成部分。
模糊逻辑与模糊控制的基本原理
模糊逻辑与模糊控制的基本原理在现代智能控制领域中,模糊逻辑与模糊控制是研究的热点之一。
模糊逻辑可以应用于形式化描述那些非常复杂,无法准确或完全定义的问题,例如语音识别、图像处理、模式识别等。
而模糊控制可以通过模糊逻辑的方法来设计控制系统,对那些难以表达精确数学模型的问题进行控制,主要用于不确定的、非线性的、运动系统模型的控制。
本文主要介绍模糊逻辑和模糊控制的基本原理。
一、模糊逻辑的基本原理模糊逻辑是对布尔逻辑的延伸,在模糊逻辑中,各种概念之间的相互关系不再是严格的,而是模糊的。
模糊逻辑的基本要素是模糊集合,模糊集合是一个值域在0和1之间的函数,它描述了一个物体属于某个事物的程度。
以温度为例,一般人将15℃以下的温度视为冷,20至30℃为暖,30℃以上为热。
但是在模糊逻辑中,这些概念并不是非黑即白,而可能有一些模糊的层次,如18℃可能既不是冷又不是暖,但是更接近于暖。
因此,设180℃该点的温度为x,则可以用一个图形来描述该温度与“暖”这个概念之间的关系,这个图形称为“隶属函数”或者“成员函数”图。
一个隶属函数是一个可数的、从0到1变化的单峰实函数。
它描述了一个物体与一类对象之间的相似程度。
对于温度为18℃的这个例子,可以用一个隶属函数来表示其与“暖”这一概念之间的关系。
这个隶属函数,可以用三角形或者梯形函数来表示。
模糊逻辑还引入了模糊关系和模糊推理的概念。
模糊关系是对不确定或模糊概念间关系的粗略表示,模糊推理是指通过推理机来对模糊逻辑问题进行判断和决策。
二、模糊控制的基本原理在控制系统中,通常采用PID控制或者其他经典控制方法来控制系统,但对于一些非线性控制系统,这些方法越发显得力不从心。
模糊控制是一种强大的、在处理非线性系统方面表现出色的控制方法。
它通过对遥测信号进行模糊化处理,并将模糊集合控制规则与一系列的控制规则相关联起来以实现控制。
模糊控制的基本组成部分主要包括模糊化、模糊推理、去模糊化等三个步骤。
模糊控制技术课后习题答案
模糊控制技术课后习题答案模糊控制技术课后习题答案模糊控制技术是一种广泛应用于工程领域的控制方法,它通过模糊推理和模糊逻辑来处理模糊信息,从而实现对复杂系统的控制。
在学习模糊控制技术的过程中,课后习题是巩固知识和加深理解的重要途径。
下面将为大家提供一些模糊控制技术课后习题的答案,希望对大家的学习有所帮助。
1. 什么是模糊控制系统?模糊控制系统是一种基于模糊逻辑和模糊推理的控制系统。
它通过建立模糊规则库,对输入和输出进行模糊化处理,然后通过模糊推理得到控制信号,实现对系统的控制。
模糊控制系统能够处理模糊信息和不确定性,适用于复杂系统的控制。
2. 什么是模糊集合?模糊集合是对现实世界中模糊概念的数学描述。
与传统的集合不同,模糊集合中的元素具有模糊隶属度,表示了元素与集合之间的模糊关系。
模糊集合可以用隶属函数来表示,隶属函数的取值范围在[0,1]之间。
3. 什么是模糊逻辑?模糊逻辑是一种扩展了传统逻辑的数学理论,它能够处理模糊信息和不确定性。
在模糊逻辑中,命题的真值不再是只有真和假两种取值,而是可以是任意在[0,1]范围内的模糊值。
模糊逻辑通过模糊推理和模糊规则来处理模糊信息,实现对复杂问题的推理和决策。
4. 什么是模糊推理?模糊推理是模糊控制系统中的核心过程,它通过对模糊规则进行推理,得到模糊输出。
模糊推理的基本思想是将输入与模糊规则库中的规则进行匹配,然后根据匹配程度和规则的权重计算出输出的模糊值。
常用的模糊推理方法有模糊关联和模糊推理机。
5. 什么是模糊控制器?模糊控制器是模糊控制系统中的关键组成部分,它通过模糊推理和模糊规则来生成控制信号,实现对系统的控制。
模糊控制器的输入是模糊化后的系统状态,输出是经过去模糊化处理的控制信号。
常见的模糊控制器有模糊PID控制器和模糊神经网络控制器。
通过以上几个问题的回答,我们对模糊控制技术有了初步的了解。
模糊控制技术作为一种处理模糊信息和不确定性的控制方法,在工程领域有着广泛的应用。
模糊控简介及模糊控制器的设计要点
目录摘要........................................................................ (1)1模糊控制简介................................................................................ .. (1)模糊控制方法的研究现状 (2)模糊控制的特色...........................................................................2模糊控制的研究对象 (3)模糊控制的展望............................................................................32模糊控制器的结构与工作原理 (4)根本结构与构成............................................................................4一般模糊控制器各主要环节的功能 (4)隶属函数的确定原那么和根本确立方法 (5)模糊条件语句与模糊控制规那么 (6)模糊量的裁决方法 (6)模糊控制规那么的设计和模糊化方法 (8)解模糊化.......................................................................... (8)3模糊控制器的设计................................................................................94对于模糊(及智能)控制理论与技术展开的思虑 (11)参照文件.................................................................................. (12)摘要纲要:本文主要介绍了模糊控制系统的研究现状、特色,以及模糊控制器的结构与工作原理。
第三章、模糊控制系统
精确量(V0)
∴V0 = 5
当论域V中,其最大隶属度函数对应的输出值多于一个时, 简单取最大隶属度输出的平均即可:
即:当有(v1) µ 2)= L =µc (vJ ) 最大时 µ = (v
1 J 取v0 = ∑ v j J j =1
U 1 , U 2 , L ,U n :输出论域上模糊子集
总的模糊关系: R( 其中:
e , de , u ) = U Ri
n
当ki 取µv (vi )时
重心法
模糊化计算的其它方法:左取大、右取大等。
第二节:模糊控制系统的设计 一、模糊控制器的结构设计 模糊控制器的结构设计包括:输入输出变量选择、模糊化 算法、模糊推理规则和精确化计算方法。 一维模糊控制器 被控对象 输入输出 (按模糊控制器输入变量个数) 变量 多输入多输出 单输入单输出 二维模糊控制器 多维模糊控制器
例:x分成三档(NB、ZE、PB); y y分成两档(NB、PB); 模糊分区形式:
PB NB 0 NB ZE
R1
R2 R4
R3
PB 24
问:在此分档情况下,最大规则数为多少?
x
2 规则库 用一系列模糊条件描述的模糊控制规则就构成模糊控制规则库。 建立 规则库 选择输入变量和输出变量 建立规则(完备性、交叉性、一致性)
完备性:对于任意给定的输入均有相应的控制规则起作用。 交叉性:控制器的输出值总由数条规则来决定。 一致性:规则中不存在相互矛盾的规则。
模糊控制规则建立方法 1)专家经验法: 通过对专家控制经验的咨询形成控制规则库。 实质:通过语言条件语句来模拟人类的控制行为。
模糊控制系统2.1 模糊集合
规则1:如果服务差或者食物不好,那 么小费就少。规则2:如果服务好,那 这种推理步骤有助于产 么小费一般。规则3:如果服务极好, 生某条规则的结论部分。 或者食物很美味,那么小费多。 13
步骤3:从前提 到结论的推理; 在这个规则中, 输出MF“少”在 μ =0.3时被截 得以形成如图 所示的模糊输 出.
Zo
当论域为离散形式时,其表达式为
Z , ( Z )dZ (Z )dZ
out out
Zo
Z
i 1 n i
n
out
(Zi )
i 1
out
(Zi )
24
两规则系统的 输出解模糊
基于COA公式得到的 精确输出为
1 2 2 2 1 1 1 1 2 3 4 5 6 7 3 3 3 3 3 3 3 3.7 Zo 1 2 2 2 1 1 1 3 3 3 3 3 3 3 如果在某些区域内两条或两条以上规则的作用结 果有重叠的话,那么重叠部分仅被计算一次。
a)模糊集合 b)清晰集合
8
2.1.3模糊系统
一个模糊推理系统(或称模糊系统 )实质上包含从 一个基于模糊逻辑的给定输入集合到输出集合的 映射算式。该映射的过程反映了推理或推断的基 本思想。一个模糊推理过程包括以下五个步骤: 步骤1:输入变量的模糊化; 步骤 2 :对规则的前提部分应用模糊运算 (AND 、 OR、NOT); 步骤3:从前提到结论的推理; 步骤4:所有规则作用结果的聚集; 步骤5:解模糊。
20
基于零阶Sugeno方 法的三条规则模糊 系统。
模糊控制的定义
模糊控制的定义一、引言模糊控制是现代控制理论中的一种方法,它能够有效地解决一些传统控制方法难以处理的问题,例如非线性系统、不确定性、模型不精确等。
本文将从定义、基本概念、模糊控制系统的结构和应用等四个方面,介绍模糊控制的基本知识。
二、定义模糊控制是一种基于模糊集理论的控制方法。
与传统的精确数学控制方法不同,模糊控制使用来自现实世界的不确定性知识。
具体来说,模糊控制的本质就是利用人类专家系统内建的经验知识,将经验知识应用到控制问题上,不需要完全精确的数学模型,根据不精确的输入输出数据做出判断和决策。
相对于传统控制方法,模糊控制的表现更加稳定,更加鲁棒。
三、基本概念1、模糊集合:模糊集合是指一组具有模糊不确定性的元素。
与传统的集合不同,模糊集合没有明确的界限,元素之间的归属度也不是二元的关系,而是一个连续的值域。
2、模糊逻辑:模糊逻辑是针对模糊事物而设计的一种逻辑方法。
其中最基本的是模糊量词(例如“非常”、“有点”、“不”、“比较”等),模糊运算(例如“模糊合取”、“模糊析取”、“模糊最小值”等)。
模糊逻辑使得模糊集合的综合运算与精确数学中的逻辑方法类似。
3、模糊控制器:模糊控制器包括模糊化、模糊推理和去模糊化三个过程。
模糊化将输入量转化为模糊集合,模糊推理利用模糊逻辑和控制规则的知识对模糊集进行逻辑推理和决策,去模糊化则将模糊输出转化为确定性输出。
四、模糊控制系统的结构模糊控制系统包括模糊控制器、模糊输入、模糊输出和模糊规则库等组成部分。
其中,模糊输入和输出是指输入量和输出量分别通过模糊化和去模糊化转化为模糊集合和确定性输出。
模糊规则库是由专家产生的一些基本规则库,其中每个规则由条件部分和结论部分组成。
五、应用模糊控制在工业自动化、交通控制、机器人控制、金融预测等领域都有广泛应用。
例如在温度控制中,传统PID控制器需要通过精确的数学模型计算开环控制和闭环控制需要的参数,而模糊控制则可以直接利用专家经验,根据当前温度输出控制信号,大大简化了控制过程。
模糊控制的名词解释
模糊控制的名词解释模糊控制是一种基于模糊逻辑的控制方法,它利用一系列模糊规则来处理模糊的输入和输出。
相比传统的精确数学模型,模糊控制具有更强的适应性和鲁棒性,在处理复杂、非线性、模糊的系统时表现良好。
本文将从模糊控制的基本原理、应用案例以及发展前景等方面进行阐述。
首先,我们来解释一下模糊控制的基本原理。
模糊控制的核心思想是将模糊的输入转化为模糊的输出,通过一系列模糊规则来实现系统的控制。
在传统的控制方法中,系统的输入和输出往往是精确的数学值,例如温度、压力等。
而在模糊控制中,我们使用模糊集合来描述输入和输出的模糊程度。
模糊集合是一种介于0和1之间的隶属度函数,表示事物在某种属性上的相似性。
通过建立模糊规则,将输入的模糊集合映射到输出的模糊集合,从而实现对系统的控制。
模糊控制的应用十分广泛,下面我们将介绍几个典型的案例。
首先是自动驾驶系统。
在自动驾驶中,模糊控制被用于处理复杂的交通环境和模糊的车辆行为。
通过对输入数据进行模糊化处理,例如车辆间的距离、速度等,可以更好地适应多变的交通状况,从而提高驾驶的安全性和舒适性。
其次是机器人控制。
在机器人控制中,模糊控制被应用于路径规划、障碍物避免等方面。
通过对环境的感知和模糊规则的设计,机器人可以更灵活地应对复杂的工作场景。
此外,模糊控制还被广泛应用于工业过程控制、电力系统、航空航天等领域。
在工业过程控制中,模糊控制可以应对非线性和时变的过程,实现更精确和稳定的控制效果。
在电力系统中,模糊控制可以应对电网的复杂性和不确定性,实现电力的高效供应和调度。
在航空航天领域,模糊控制可以应对飞行器的姿态控制、导航以及自主决策等方面的问题。
随着科技的发展和应用的不断深化,模糊控制领域也在不断壮大。
未来,模糊控制可以与其他智能技术结合,例如人工神经网络、遗传算法等,实现更高级的智能控制。
同时,模糊控制也在不断发展新的算法和方法,以应对更复杂、更大规模的系统。
例如,基于模糊集合和模糊规则的大规模控制系统优化算法,可以使系统在多个不同的目标之间进行权衡和优化。
模糊控制及其在工业中的应用
模糊控制及其在工业中的应用模糊控制作为一种新兴的控制方法,已经在工业控制领域中得到了广泛的应用。
相比于传统的控制方法,模糊控制具有更强的适应性和容错性,特别适合于复杂变化的工业环境。
本文将简单介绍模糊控制的基本概念和操作原理,并重点探讨其在工业应用中的优点和实际效果。
一、模糊控制概述模糊控制是一种针对模糊系统(即输入与输出之间不存在确定关系的系统)的控制方法。
这种方法其实是将模糊逻辑与控制理论相结合,形成了一套具有自适应性和容错性的控制方案。
模糊控制有广泛的应用领域,例如温度控制、气压控制、流量控制等等。
二、模糊控制原理模糊控制的基本原理是将控制系统中的输入(例如传感器采集的数据)转化为一个或多个模糊集合,然后对其进行处理并得出相应的输出(例如对某一机器的控制指令)。
简单来说,就是将现实世界中的模糊输入映射到模糊输出上。
具体实现方式有很多种,常见的操作包括模糊化、推理、去模糊化等。
模糊化是将模糊输入值映射到一个或多个模糊集合中。
假设我们要控制一台机器的转速,输入值是机器转速仪器采集到的数据。
我们可以将这些数据映射到“低速”、“中速”和“高速”三个模糊集合上,并根据具体情况划分每个集合的范围。
推理是将模糊输入值与事先设置的控制规则相匹配,从而得到相应的控制输出。
例如,当机器转速处于“低速”状态时,我们可能会规定控制指令为“加速”;当机器转速处于“高速”状态时,我们可能会规定控制指令为“减速”。
去模糊化是将模糊输出映射到具体的数值控制指令上。
例如,当我们得到了一个模糊输出“加速”时,需要将其转化为具体的机器转速指令,例如“增加20%的转速”。
三、模糊控制在工业中的优点和实际效果模糊控制在工业中的应用有很多优点。
首先,由于模糊控制具有适应性和容错性,可以在复杂多变的工业环境下进行控制。
其次,模糊控制的控制算法相对简单,不需要过多的数学计算和模型推导,降低了系统开发的难度和时间。
最后,模糊控制的参数调整也比较容易,不像传统控制方法需要通过复杂的数学模型和计算获得最优参数值。
模糊系统与模糊控制简介
模糊控制在汽车控制中的应用
01
发动机控制
模糊逻辑控制用于汽车发动机控制中,可以根据发动机的工况和驾驶员
的意图自动调整发动机的输出功率和转速,提高汽车的燃油经济性和动
力性能。
02
自动变速器控制
通过模糊逻辑控制,汽车自动变速器可以根据车速、发动机转速和驾驶
员的油门开度等因素自动调整变速器的档位和传动比,提高汽车的驾驶
模糊推理
基于模糊逻辑规则对输入 输出变量的模糊集合进行 推理,得出控制变量的模 糊集合。
去模糊化
将控制变量的模糊集合转 换为精确值,用于实际控 制。
模糊化与去模糊化
模糊化
将输入输出变量的精确值转换为模糊集合的过程,通常采用高斯隶属度函数实现。
去模糊化
将控制变量的模糊集合转换为精确值的过程,常用的去模糊化方法有最大值、最小值、中心平 均值等。
02 动作控制
在机器人的动作控制中,模糊逻辑系统可以处理 各种传感器输入,根据环境变化调整机器人的动 作和姿态,提高机器人的灵活性和适应性。
03 任务规划
模糊逻辑系统可以帮助机器人进行任务规划,根 据模糊规则和专家经验,机器人可以自主决策如 何完成任务,提高任务执行效率和成功率。
模糊控制在智能家居中的应用
神经网络
神经网络模拟人脑神经 元的结构和工作原理, 通过训练和学习,能够 识别模式并进行预测。
遗传算法
遗传算法借鉴生物进化 原理,通过选择、交叉 和变异等操作,寻找问
题的最优解。
比较
模糊逻辑擅长处理不确 定性和不完全的信息, 而神经网络和遗传算法 则擅长处理大规模数据 和复杂模式识别。结合 三者优点,可以更好地
研究方向
深入研究混合智能系统的理论框架、设计方法和应用领域,加强与其他领域的交叉融合,拓展其在不 同领域的应用价值。同时,关注混合智能系统在实际应用中遇到的问题和挑战,提出有效的解决方案 。
模糊控制系统的设计:分析模糊控制系统的设计原则、方法和应用
模糊控制系统的设计:分析模糊控制系统的设计原则、方法和应用引言在现代控制系统中,模糊控制是一种常用的方法,它能够有效地应对复杂、不确定、非线性的系统。
模糊控制系统的设计原则、方法和应用十分重要,对于提高系统的性能和鲁棒性具有重要意义。
模糊控制系统的基本原理模糊控制系统的设计是基于模糊逻辑的,而模糊逻辑是一种能够处理模糊信息的逻辑。
模糊逻辑通过建立“模糊集合”和“模糊规则”来描述系统的行为。
模糊集合是指在某个范围内具有模糊边界的集合,例如“大”和“小”。
而模糊规则是一种以模糊集合为输入和输出的规则,例如“如果输入是大,则输出是小”。
模糊控制系统通过将输入信号模糊化,然后根据模糊规则进行推理,最后将输出信号去模糊化,从而实现对系统的控制。
模糊控制系统的设计原则原则一:定义合适的输入与输出在设计模糊控制系统时,首先需要明确输入和输出的变量及其范围。
输入变量是指模糊控制系统的输入信号,例如温度、压力等。
输出变量是指模糊控制系统的输出信号,例如阀门开度、电机转速等。
合适的输入与输出定义能够提高系统的可靠性和鲁棒性,从而有效地控制系统。
原则二:选择适当的隶属函数隶属函数是用来描述模糊集合的函数,它决定了模糊集合的形状和分布。
在选择隶属函数时,需要考虑系统的非线性特性和响应速度。
常用的隶属函数有三角形、梯形等。
选择适当的隶属函数能够提高系统的性能和鲁棒性。
原则三:建立有效的模糊规则模糊规则是模糊控制系统的核心,它决定了输入和输出之间的关系。
在建立模糊规则时,需要考虑系统的特性和控制目标。
模糊规则可以通过专家经验、试错法和数据分析等方式获取。
建立有效的模糊规则能够提高系统的控制能力。
模糊控制系统的设计方法方法一:典型模糊控制系统的设计方法典型模糊控制系统的设计方法包括以下几个步骤:1.确定控制目标和要求,明确输入和输出的定义;2.确定隶属函数的形状和分布,选择适当的隶属函数;3.根据系统的特性和控制目标,建立模糊规则;4.设计模糊推理机制,实现对输入和输出的模糊化和去模糊化;5.建立模糊控制系统的仿真模型,进行系统性能和鲁棒性分析;6.根据仿真结果进行参数调整和系统优化;7.实际应用中进行系统测试和调整。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/5/4
10
模糊系统概述
模糊理论经常被问及的问题 模糊系统方法中没有模糊的地方 模糊系统与其它非线性建模方法相比,
优点何在
比较依据:逼近精度与复杂性的平衡; 学习算法的收敛速度; 结果的可解释性; 充分利用各种不同形式的信息。
2020/5/4
11
模糊系统概述
模糊系统与模糊控制简介
--博士生论坛系列报告
主要内容
模糊系统概述 模糊推理方法 模糊系统的通用逼近能力 模糊控制器的结构分析 模糊控制器的稳定性 模糊控制器的系统化设计 模糊PID
2020/5/4
2
模糊系统概述
模糊系统发展的历程 1965年,美国系统论专家Zadeh教授创立了模
糊集合理论,提供了处理模糊信息的工具 1974年,英国学者Mamdani首次将模糊理论应
如汪培庄证明了采用全交叠三角形隶属 度函数的MISO简化模糊系统是通用逼近 器,很难研究非全交叠的情况及T-S模型。
2020/5/4
23
模糊系统的通用逼近能力
研究路线: 基于泛函分析
研究神经网络常用的方法,由一类模糊 系统生成的函数簇在空间上稠密证明逼 近性,只能证明存在性,无法分析逼近 精度。
2020/5/4
26
模糊系统的通用逼近能力
研究路线: 基于微分中值定理
如王立新证明了采用全交叠三角形隶属 度函数,由两输入一输出T-S模型组成的 多层模糊系统是通用逼近器,要求函数 可微。
2020/5/4
27
模糊系统的通用逼近能力
研究路线: 基于Weierstrass定理
两步法,先逼近多项式再逼近函数。
8
模糊系统概述
常规方法需要系统的模型,这有时是很 难做到的,智能控制在此背景下发展起 来,模糊控制、神经网络控制、专家系 统被视为三种典型的智能控制方法。
2020/5/4
9
模糊系统概述
模糊理论经常被问及的问题 能否举一个例子,只能用模糊控制来解
决,而其它方法无法解决。 我们是否需要模糊理论,因为模糊理论
2020/5/4
33
模糊系统的通用逼近能力
必要条件需要回答的问题: 实现给定精度的逼近性,最小配置是什
么
2020/5/4
34
模糊系统的通用逼近能力
必要条件:
Necessary conditions on minimal system configuration for general MISO Mamdani fuzzy systems as universal approximators Yongsheng Ding; Hao Ying; Shihuang Shao Systems, Man and Cybernetics, Part B, IEEE Transactions on , Volume: 30 Issue: 6 , Dec. 2000 Page(s): 857 864
14
模糊系统概述
模糊理论发展方向 将模糊控制与非模糊控制相结合,互相
借鉴 深入分析模糊系统的结构特性及逼近精
度,建立一套完整的理论,使人们应用 模糊系统时做到心中有数
2020/5/4
15
模糊系统概述
适用于模糊系统的学习算法的提出,算 法收敛性分析,及学习完成后模糊系统 的性能分析
多变量模糊系统的方法 构造能利用除“if then ”知识形式以外的
E1,E2 E1,E2
Fuzzification
Rule Base R( )
RulesRuilein1
Reasoning
Premise A( )
Compositional Operation
Reasoning
Consequence B( )
u Defuzzification
Inference Method
用于工业控制(蒸气机的压力和速度控制) 近30年来,模糊控制在理论、方法和应用都取
得了巨大的进展
2020/5/4
3
模糊系统概述
▪ 模糊理论的地位已经和六七十年代有了根本性 的不同:模糊逻辑的数学基础已经比较好地建 立起来;最基本的理论已经到位;模糊逻辑在 基础学科――特别是在数学、物理和化学―― 的影响日益显著;基于模糊理论的应用向家用 消费品、工业系统、生物工程、决策分析和认 识技术等各个方向发展
其它知识和信息表达方式的模糊系统
2020/5/4
16
模糊推理方法
▪ 自从Zadeh的开创性工作以来,已经提出 了许多种推理方法,其中包括CRI方法, 证据推理方法,区间推理方法,三I方法, 基于相似度的近似类比推理方法等,但 是模糊推理的基本原理与逻辑基础似乎 均应重新考虑。
2020/5/4
17
模糊推理方法
2020/5/4
38
模糊控制器的结构分析
主要内容: 模糊控制器的数学表达式 模糊控制器与传统的控制方法比较 模糊控制器各设计参数对控制结构的影
响
2020/5/4
39
模糊控制器的结构分析
模糊控制器两种基本类型: Mamdani型
R i:ifXisA i thY ein sB i
T-S型
R i:ifX iA sithY eC in X d i
2020/5/4
24
模糊系统的通用逼近能力
研究路线: 基于Stone-Weierstrass定理
如王立新证明了采用高斯隶属度函数、 Product推理和COG解模糊的简化模糊系 统是通用逼近器 。
2020/5/4
25
模糊系统的通用逼近能力
研究路线: 基于插值原理
如李洪兴认为模糊可以看作某种插值, 插值点充分近则可充分逼近。
模糊控制的机理
模糊系统与模糊控制器已得到比较充分 的研究,特别是证明了它的万能逼近性, 这为模糊控制系统的分析与设计奠定了 一个坚实的理论基础。但它们是万能的 吗?它们还有哪些能力?又不具有哪些 能力?是否应将新的思想注入到模糊控 制器中?
2020/5/4
12
模糊系统概述
模糊控制的局限性
▪ 模糊控制在处理面向任务的问题时比传 统的控制更为有效,例如自动驾驶和停 靠、交通控制与运动控制等方面,利用 基于模糊规则控制策略要比传统的基于 微分方程的控制策略更为方便和有效。 但是,另一方面,模糊理论又表现出了 许多先天的不严谨性,不确定性和其它 局限性,导致模糊控制理论的不成熟。
现有模糊推理方法框图
2020/5/4
18
模糊推理方法
▪ 目前最常用的模糊推理方法是CRI方法, 但是在δ–等式的定义下讨论得出其鲁棒 性并不理想的结论,这里的鲁棒性是指 模糊前件的微小变化对模糊后件的影响。 最优模糊推理的鲁棒性是否有所改进也 是我们需要研究的一个问题。
2020/5/4
19
模糊系统的通用逼近能力
模糊系统的通用逼近性:以任意精度逼 近紧致集上的任意连续实函数
紧致集:设 X是拓扑空间,X 的子集 K称为 紧致的当且仅当K的每个开覆盖 有有限个子覆盖。
有界且闭的有限维空间是紧致的。
2020/5/4
20
模糊系统的通用逼近能力
主要内容: 模糊系统通用逼近的研究路线 模糊系统通用逼近的充分条件 模糊系统通用逼近的必要条件 模糊系统通用逼近的其它问题
2020/5/4
35
模糊系统的通用逼近能力
必要条件:
Typical Takagi-Sugeno and Mamdani fuzzy systems as universal approximators: necessary conditions and comparison Hao Ying; Yongsheng Ding; Shaokuan Li; Shihuang Shao Fuzzy Systems Proceedings, 2019. IEEE World Congress on Computational Intelligence., The 2019 IEEE International Conference on , Volume: 1 , 2019 Page(s): 824 -828 vol.1
的因素 高标准的性能要求
2020/5/4
6
模糊系统概述
模糊控制的特征: 不需要对象的精确数学模型,而要求有
关的控制经验和知识 鲁棒性强 适用于非线性、时变、大滞后系统的控
制
2020/5/4
7
模糊系统概述
参考输入
模糊化
知识库 模糊推理
解模糊化
输出 被控对象
模糊控制器的结构图
2020/5/4
2020/5/4
30
模糊系统的通用逼近能力
充分条件:
Fuzzy systems are universal approximators Wang, L.-X. Fuzzy Systems, 1992., IEEE International Conference on , 1992 Page(s): 1163 -1170
2020/5/4
32
模糊系统的通用逼近能力
充分条件:
Approximation of C 1 Functions and
Their Derivative Functions by SISO Linear T-S Fuzzy Systems. Zeng Ke, Zhang Naiyao and Xu Wenli The 3rd WCICA, Hefei, June, 2000, Vol.3: 1836-1839
2020/5/4
28
模糊系统的通用逼近能力
充分条件需要回答的问题: 模糊系统是否具有逼近的能力 每个输入输入的变量如何划分以及如何