电磁学测试题

合集下载

(完整版)电磁学题库(附答案)

(完整版)电磁学题库(附答案)

《电磁学》练习题(附答案)1. 如图所示,两个点电荷+q 和-3q ,相距为d . 试求:(1) 在它们的连线上电场强度0=E的点与电荷为+q 的点电荷相距多远?(2) 若选无穷远处电势为零,两点电荷之间电势U =0的点与电荷为+q 的点电荷相距多远?2. 一带有电荷q =3×10-9 C 的粒子,位于均匀电场中,电场方向如图所示.当该粒子沿水平方向向右方运动5 cm 时,外力作功6×10-5 J ,粒子动能的增量为4.5×10-5 J .求:(1) 粒子运动过程中电场力作功多少?(2) 该电场的场强多大?3. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.4. 一半径为R 的带电球体,其电荷体密度分布为ρ =Ar (r ≤R ) , ρ =0 (r >R )A 为一常量.试求球体内外的场强分布.5. 若电荷以相同的面密度σ均匀分布在半径分别为r 1=10 cm 和r 2=20 cm 的两个同心球面上,设无穷远处电势为零,已知球心电势为300 V ,试求两球面的电荷面密度σ的值. (ε0=8.85×10-12C 2/ N ·m 2 )6. 真空中一立方体形的高斯面,边长a =0.1 m ,位于图中所示位置.已知空间的场强分布为: E x =bx , E y =0 , E z =0.常量b =1000 N/(C ·m).试求通过该高斯面的电通量.7. 一电偶极子由电荷q =1.0×10-6 C 的两个异号点电荷组成,两电荷相距l =2.0 cm .把这电偶极子放在场强大小为E =1.0×105 N/C 的均匀电场中.试求: (1) 电场作用于电偶极子的最大力矩.(2) 电偶极子从受最大力矩的位置转到平衡位置过程中,电场力作的功.8. 电荷为q 1=8.0×10-6 C 和q 2=-16.0×10-6 C 的两个点电荷相距20 cm ,求离它们都是20 cm 处的电场强度. (真空介电常量ε0=8.85×10-12 C 2N -1m -2 )9. 边长为b 的立方盒子的六个面,分别平行于xOy 、yOz 和xOz 平面.盒子的一角在坐标原点处.在此区域有一静电场,场强为j i E300200+= .试求穿过各面的电通量.EqLq P10. 图中虚线所示为一立方形的高斯面,已知空间的场强分布为: E x =bx , E y =0, E z =0.高斯面边长a =0.1 m ,常量b =1000 N/(C ·m).试求该闭合面中包含的净电荷.(真空介电常数ε0=8.85×10-12 C 2·N -1·m -2 )11. 有一电荷面密度为σ的“无限大”均匀带电平面.若以该平面处为电势零点,试求带电平面周围空间的电势分布.12. 如图所示,在电矩为p 的电偶极子的电场中,将一电荷为q 的点电荷从A 点沿半径为R 的圆弧(圆心与电偶极子中心重合,R >>电偶极子正负电荷之间距离)移到B 点,求此过程中电场力所作的功.13. 一均匀电场,场强大小为E =5×104 N/C ,方向竖直朝上,把一电荷为q = 2.5×10-8 C 的点电荷,置于此电场中的a 点,如图所示.求此点电荷在下列过程中电场力作的功.(1) 沿半圆路径Ⅰ移到右方同高度的b 点,ab =45 cm ; (2) 沿直线路径Ⅱ向下移到c 点,ac =80 cm ;(3) 沿曲线路径Ⅲ朝右斜上方向移到d 点,ad =260 cm(与水平方向成45°角).14. 两个点电荷分别为q 1=+2×10-7 C 和q 2=-2×10-7 C ,相距0.3 m .求距q 1为0.4 m 、距q 2为0.5 m 处P 点的电场强度. (41επ=9.00×109 Nm 2 /C 2) 15. 图中所示, A 、B 为真空中两个平行的“无限大”均匀带电平面,A 面上电荷面密度σA =-17.7×10-8 C ·m -2,B 面的电荷面密度σB =35.4 ×10-8 C ·m -2.试计算两平面之间和两平面外的电场强度.(真空介电常量ε0=8.85×10-12 C 2·N -1·m -2 )16. 一段半径为a 的细圆弧,对圆心的张角为θ0,其上均匀分布有正电荷q ,如图所示.试以a ,q ,θ0表示出圆心O 处的电场强度.17. 电荷线密度为λ的“无限长”均匀带电细线,弯成图示形状.若半圆弧AB 的半径为R ,试求圆心O 点的场强.ABRⅠⅡ Ⅲ dba 45︒cEσAσBA BOa θ0 q AR ∞∞O18. 真空中两条平行的“无限长”均匀带电直线相距为a ,其电荷线密度分别为-λ和+λ.试求:(1) 在两直线构成的平面上,两线间任一点的电场强度(选Ox 轴如图所示,两线的中点为原点).(2) 两带电直线上单位长度之间的相互吸引力.19. 一平行板电容器,极板间距离为10 cm ,其间有一半充以相对介电常量εr =10的各向同性均匀电介质,其余部分为空气,如图所示.当两极间电势差为100 V 时,试分别求空气中和介质中的电位移矢量和电场强度矢量. (真空介电常量ε0=8.85×10-12 C 2·N -1·m -2)20. 若将27个具有相同半径并带相同电荷的球状小水滴聚集成一个球状的大水滴,此大水滴的电势将为小水滴电势的多少倍?(设电荷分布在水滴表面上,水滴聚集时总电荷无损失.) 21. 假想从无限远处陆续移来微量电荷使一半径为R 的导体球带电.(1) 当球上已带有电荷q 时,再将一个电荷元d q 从无限远处移到球上的过程中,外力作多少功? (2) 使球上电荷从零开始增加到Q 的过程中,外力共作多少功?22. 一绝缘金属物体,在真空中充电达某一电势值,其电场总能量为W 0.若断开电源,使其上所带电荷保持不变,并把它浸没在相对介电常量为εr 的无限大的各向同性均匀液态电介质中,问这时电场总能量有多大?23. 一空气平板电容器,极板A 、B 的面积都是S ,极板间距离为d .接上电源后,A 板电势U A =V ,B 板电势U B =0.现将一带有电荷q 、面积也是S 而厚度可忽略的导体片C 平行插在两极板的中间位置,如图所示,试求导体片C 的电势.24. 一导体球带电荷Q .球外同心地有两层各向同性均匀电介质球壳,相对介电常量分别为εr 1和εr 2,分界面处半径为R ,如图所示.求两层介质分界面上的极化电荷面密度.25. 半径分别为 1.0 cm 与 2.0 cm 的两个球形导体,各带电荷 1.0×10-8 C ,两球相距很远.若用细导线将两球相连接.求(1) 每个球所带电荷;(2) 每球的电势.(22/C m N 1094190⋅⨯=πε)-λ +λdd/2 d/226. 如图所示,有两根平行放置的长直载流导线.它们的直径为a ,反向流过相同大小的电流I ,电流在导线内均匀分布.试在图示的坐标系中求出x 轴上两导线之间区域]25,21[a a 内磁感强度的分布.27. 如图所示,在xOy 平面(即纸面)内有一载流线圈abcd a ,其中bc 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向为沿abcd a 的绕向.设线圈处于B = 8.0×10-2T ,方向与a →b 的方向相一致的均匀磁场中,试求:(1) 图中电流元I ∆l 1和I ∆l 2所受安培力1F ∆和2F∆的方向和大小,设∆l 1 =∆l 2 =0.10 mm ;(2) 线圈上直线段ab 和cd 所受的安培力ab F 和cd F的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受的安培力bc F 和da F的大小和方向.28. 如图所示,在xOy 平面(即纸面)内有一载流线圈abcda ,其中b c 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向沿abcda 的绕向.设该线圈处于磁感强度B = 8.0×10-2 T 的均匀磁场中,B方向沿x 轴正方向.试求:(1) 图中电流元I ∆l 1和I ∆l 2所受安培力1F ∆和2F∆的大小和方向,设∆l 1 = ∆l 2=0.10 mm ;(2) 线圈上直线段ab 和cd 所受到的安培力ab F 和cd F的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受到的安培力bc F 和da F的大小和方向.29. AA '和CC '为两个正交地放置的圆形线圈,其圆心相重合.AA '线圈半径为20.0 cm ,共10匝,通有电流10.0 A ;而CC '线圈的半径为10.0 cm ,共20匝,通有电流 5.0 A .求两线圈公共中心O 点的磁感强度的大小和方向.(μ0 =4π×10-7 N ·A -2)30. 真空中有一边长为l 的正三角形导体框架.另有相互平行并与三角形的bc 边平行的长直导线1和2分别在a 点和b 点与三角形导体框架相连(如图).已知直导线中的电流为I ,三角形框的每一边长为l ,求正三角形中心点O 处的磁感强度B.31. 半径为R 的无限长圆筒上有一层均匀分布的面电流,这些电流环绕着轴线沿螺旋线流动并与轴线方向成α 角.设面电流密度(沿筒面垂直电流方向单位长度的电流)为i ,求轴线上的磁感强度.a b c dO RR x yI I 30° 45° I ∆l 1I ∆l 2a bc d O RR xyI I 30° 45° I ∆l 1 I ∆l 232. 如图所示,半径为R ,线电荷密度为λ (>0)的均匀带电的圆线圈,绕过圆心与圆平面垂直的轴以角速度ω 转动,求轴线上任一点的B的大小及其方向.33. 横截面为矩形的环形螺线管,圆环内外半径分别为R 1和R 2,芯子材料的磁导率为μ,导线总匝数为N ,绕得很密,若线圈通电流I ,求. (1) 芯子中的B 值和芯子截面的磁通量. (2) 在r < R 1和r > R 2处的B 值.34. 一无限长圆柱形铜导体(磁导率μ0),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1 m ,宽为2 R ),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量.35. 质子和电子以相同的速度垂直飞入磁感强度为B的匀强磁场中,试求质子轨道半径R 1与电子轨道半径R 2的比值.36. 在真空中,电流由长直导线1沿底边ac 方向经a 点流入一由电阻均匀的导线构成的正三角形线框,再由b 点沿平行底边ac 方向从三角形框流出,经长直导线2返回电源(如图).已知直导线的电流强度为I ,三角形框的每一边长为l ,求正三角形中心O 处的磁感强度B.37. 在真空中将一根细长导线弯成如图所示的形状(在同一平面内,由实线表示),R EF AB ==,大圆弧BCR ,小圆弧DE 的半径为R 21,求圆心O 处的磁感强度B 的大小和方向. 38. 有一条载有电流I 的导线弯成如图示abcda 形状.其中ab 、cd 是直线段,其余为圆弧.两段圆弧的长度和半径分别为l 1、R 1和l 2、R 2,且两段圆弧共面共心.求圆心O 处的磁感强度B的大小.39.地球半径为R =6.37×106 m .μ0 =4π×10-7 H/m .试用毕奥-萨伐尔定律求该电流环的磁矩大小. 40. 在氢原子中,电子沿着某一圆轨道绕核运动.求等效圆电流的磁矩m p与电子轨道运动的动量矩L 大小之比,并指出m p和L 方向间的关系.(电子电荷为e ,电子质量为m )1 m41. 两根导线沿半径方向接到一半径R =9.00 cm 的导电圆环上.如图.圆弧ADB 是铝导线,铝线电阻率为ρ1 =2.50×10-8Ω·m ,圆弧ACB 是铜导线,铜线电阻率为ρ2 =1.60×10-8Ω·m .两种导线截面积相同,圆弧ACB 的弧长是圆周长的1/π.直导线在很远处与电源相联,弧ACB 上的电流I 2 =2.00A,求圆心O 点处磁感强度B 的大小.(真空磁导率μ0 =4π×10-7 T ·m/A)42. 一根很长的圆柱形铜导线均匀载有10 A 电流,在导线内部作一平面S ,S 的一个边是导线的中心轴线,另一边是S 平面与导线表面的交线,如图所示.试计算通过沿导线长度方向长为1m 的一段S 平面的磁通量.(真空的磁导率μ0 =4π×10-7 T ·m/A ,铜的相对磁导率μr ≈1)43. 两个无穷大平行平面上都有均匀分布的面电流,面电流密度分别为i 1和i 2,若i 1和i 2之间夹角为θ ,如图,求: (1) 两面之间的磁感强度的值B i . (2) 两面之外空间的磁感强度的值B o . (3) 当i i i ==21,0=θ时以上结果如何?44. 图示相距为a 通电流为I 1和I 2的两根无限长平行载流直导线.(1) 写出电流元11d l I 对电流元22d l I的作用力的数学表达式;(2) 推出载流导线单位长度上所受力的公式.45. 一无限长导线弯成如图形状,弯曲部分是一半径为R 的半圆,两直线部分平行且与半圆平面垂直,如在导线上通有电流I ,方向如图.(半圆导线所在平面与两直导线所在平面垂直)求圆心O 处的磁感强度.46. 如图,在球面上互相垂直的三个线圈 1、2、3,通有相等的电流,电流方向如箭头所示.试求出球心O 点的磁感强度的方向.(写出在直角坐标系中的方向余弦角)47. 一根半径为R 的长直导线载有电流I ,作一宽为R 、长为l 的假想平面S ,如图所示。

大学物理电磁学考试试题及答案

大学物理电磁学考试试题及答案

大学电磁学习题1一.选择题(每题3分)1.如图所示,半径为R 的均匀带电球面,总电荷为Q 设无穷远处的电势为零,则球内距离球心为r 的P 点处的电场强度的大小和电势为: (A) E =0,RQU 04επ=.(B) E =0,rQU 04επ=. (C) 204rQE επ=,r Q U 04επ= . (D) 204rQ E επ=,R QU 04επ=. [ ]2.一个静止的氢离子(H +)在电场中被加速而获得的速率为一静止的氧离子(O +2)在同一电场中且通过相同的路径被加速所获速率的: (A) 2倍. (B) 22倍.(C) 4倍. (D) 42倍. [ ]3.在磁感强度为B 的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n与B 的夹角为,则通过半球面S 的磁通量(取弯面向外为正)为 (A) r 2B . . (B) 2r 2B .(C) -r 2B sin . (D) -r 2B cos . [ ]O RrP Qn Bα S4.一个通有电流I 的导体,厚度为D ,横截面积为S ,放置在磁感强度为B 的匀强磁场中,磁场方向垂直于导体的侧表面,如图所示.现测得导体上下两面电势差为V ,则此导体的霍尔系数等于 (A) IB VDS . (B) DS IBV. (C) IBD VS . (D) BDIVS . (E)IBVD. [ ]5.两根无限长载流直导线相互正交放置,如图所示.I 1沿y 轴的正方向,I 2沿z 轴负方向.若载流I 1的导线不能动,载流I 2的导线可以自由运动,则载流I 2的导线开始运动的趋势是 (A) 绕x 轴转动. (B) 沿x 方向平动. (C) 绕y 轴转动. (D) 无法判断. [ ]6.无限长直导线在P 处弯成半径为R 的圆,当通以电流I 时,则在圆心O 点的磁感强度大小等于(A)R I π20μ. (B) RI40μ.y zxI 1 I 2(C) 0. (D) )11(20π-R Iμ. (E))11(40π+R Iμ. [ ]7.如图所示的一细螺绕环,它由表面绝缘的导线在铁环上密绕而成,每厘米绕10匝.当导线中的电流I 为2.0 A 时,测得铁环内的磁感应强度的大小B 为 T ,则可求得铁环的相对磁导率r为(真空磁导率=4×10-7 T ·m ·A -1)(A) ×102 (B) ×102 (C) ×102 (D) [ ]8.一根长度为L 的铜棒,在均匀磁场 B中以匀角速度绕通过其一端的定轴旋转着,B 的方向垂直铜棒转动的平面,如图所示.设t =0时,铜棒与Ob 成角(b 为铜棒转动的平面上的一个固定点),则在任一时刻t 这根铜棒两端之间的感应电动势的大小为:(A) )cos(2θωω+t B L . (B) t B L ωωcos 212. (C) )cos(22θωω+t B L . (D) B L 2ω. (E)B L 221ω. [ ]9.面积为S 和2 S 的两圆线圈1、2如图放置,通有相同的电流I .线圈1的电流所产生的通过线圈2的磁通用21表示,线圈2的电流所产生的通过线圈1Bω L O θ b12S 2 SII的磁通用12表示,则21和12的大小关系为:(A) 21=212. (B) 21>12.(C)21=12. (D)21=2112. [ ]10.如图,平板电容器(忽略边缘效应)充电时,沿环路L 1的磁场强度H的环流与沿环路L 2的磁场强度H的环流两者,必有:(A) >'⎰⋅1d L l H ⎰⋅'2d L l H.(B) ='⎰⋅1d L l H ⎰⋅'2d L l H .(C) <'⎰⋅1d L l H ⎰⋅'2d L l H.(D) 0d 1='⎰⋅L l H. [ ]二.填空题(每题3分)1.由一根绝缘细线围成的边长为l 的正方形线框,使它均匀带电,其电荷线密度为,则在正方形中心处的电场强度的大小E =_____________.2.描述静电场性质的两个基本物理量是___________ ___;它们的定义式HL 1L 2是____________ ____和__________________________________________.3.一个半径为R的薄金属球壳,带有电荷q,壳内充满相对介电常量为的各向同性均匀电介质,r壳外为真空.设无穷远处为电势零点,则球壳的电势U= ________________________________.4.一空气平行板电容器,电容为C,两极板间距离为d.充电后,两极板间相互作用力为F.则两极板间的电势差为______________,极板上的电荷为______________.5.真空中均匀带电的球面和球体,如果两者的半径和总电荷都相等,则带电球面的电场能量W1与带电球体的电场能量W2相比,W1________ W2 (填<、=、>).6.若把氢原子的基态电子轨道看作是圆轨道,已知电子轨道半径r =×10-10 m ,绕核运动速度大小v =×108 m/s, 则氢原子基态电子在原子核处产生的磁感强度B的大小为____________.(e = ×10-19 C ,=4×10-7 T ·m/A)7.如图所示.电荷q (>0)均匀地分布在一个半径为R 的薄球壳外表面上,若球壳以恒角速度绕z 轴转动,则沿着z轴从-∞到+∞磁感强度的线积分等于____________________.8.带电粒子穿过过饱和蒸汽时,在它走过的路径上,过饱和蒸汽便凝结成小液滴,从而显示出粒子的运动轨迹.这就是云室的原理.今在云室中有磁感强度大小为B = 1 T 的均匀磁场,观测到一个质子的径迹是半径r = 20 cm 的圆弧.已知质子的电荷为q = ×10-19 C ,静止质量m = ×10-27 kg ,则该质子的动能为_____________.9.真空中两只长直螺线管1和2,长度相等,单层密绕匝数相同,直径之比d 1 / d 2 =1/4.当它们z RO ω通以相同电流时,两螺线管贮存的磁能之比为W1 / W2=___________.10.平行板电容器的电容C为F,两板上的电压变化率为d U/d t=×105 V·s-1,则该平行板电容器中的位移电流为____________.三.计算题(共计40分)1. (本题10分)一“无限长”圆柱面,其电荷面密度为:= 0cos ,式中为半径R与x轴所夹的角,试求圆柱轴线上一点的场强.2. (本题5分)厚度为d的“无限大”均匀带电导体板两表面单位面积上电荷之和为.试求图示离左板面距离为a的一点与离右板面距离为b的一点之间的电势差.ORzyxφ1σda b3. (本题10分)一电容器由两个很长的同轴薄圆筒组成,内、外圆筒半径分别为R 1 = 2 cm ,R 2 = 5 cm ,其间充满相对介电常量为r的各向同性、均匀电介质.电容器接在电压U = 32 V 的电源上,(如图所示),试求距离轴线R = 3.5 cm 处的A 点的电场强度和A 点与外筒间的电势差.4. (本题5分)一无限长载有电流I 的直导线在一处折成直角,P 点位于导线所在平面内,距一条折线的延长线和另一条导线的距离都为a ,如图.求P 点的磁感强度B.5. (本题10分)无限长直导线,通以常定电流I .有一与之共面的直角三角形线圈ABC .已知AC 边长为b ,且与长直导线平行,BC 边长为a .若线圈以垂直于导线方向的速度v向右平移,当B 点与长直导线的距离为d 时,求线圈ABC 内的感应电动势的大小和感应电动势的方向.AR 1R 2RrUaaP II v ABC ab c d基础物理学I 模拟试题参考答案一、选择题(每题3分,共30分)1.[A]2.[B]3.[D]4.[E]5.[A]6.[D]7.[B]8.[E]9.[C] 10.[C]二、填空题(每题3分,共30分)1.0 3分 2. 电场强度和电势 1分 3. q / (40R ) 3分0/q F E=, 1分lE q W U aa ⎰⋅==00d /(U 0=0) 1分4. C Fd /2 2分5. < 3分6. 12.4 T 3分 FdC2 1分7.π200qωμ 3分参考解:由安培环路定理 ⎰⋅⎰⋅+∞∞-=l B l Bd d I 0μ=而 π=20ωq I , 故 ⎰⋅+∞∞-l B d =π200q ωμ8. 3.08×10-13 J 3分参考解∶ rm B q 2v v = ==m qBr v ×107m/s 质子动能 ==221v m E K ×10-13 J9. 1∶16 3分参考解:02/21μB w =nI B 0μ=)4(222102220021d l I n V B W π==μμμ)4/(21222202d l I n W π=μ16:1::222121==d d W W10. 3 A 3分 三、计算题(共40分)1. (本题10分)解:将柱面分成许多与轴线平行的细长条,每条可视为“无限长”均匀带电直线,其电荷线密度为=cos R d ,它在O 点产生的场强为: φφεσελd s co 22d 000π=π=RE 3分 它沿x 、y 轴上的二个分量为: d E x =-d E cos =φφεσd s co 220π- 1分 d E y =-d E sin =φφφεσd s co sin 20π 1分 积分: ⎰ππ-=20200d s co 2φφεσx E =002εσ2分0)d(sin sin 220=π-=⎰πφφεσy E 2分 ∴ i i E E x02εσ-== 1分2. (本题5分)解:选坐标如图.由高斯定理,平板内、外的场强分布为:E = 0 (板内) )2/(0εσ±=x E (板外) 2分1、2两点间电势差 ⎰=-2121d x E U U xOxRyφd φd E x d E yd E1σd abxOx x d b d d d a d 2d 22/2/02/)2/(0⎰⎰+-+-+-=εσεσ )(20a b -=εσ3分3. (本题10分)解:设内外圆筒沿轴向单位长度上分别带有电荷+和, 根据高斯定理可求得两 圆筒间任一点的电场强度为 rE r εελ02π= 2分则两圆筒的电势差为 1200ln 22d d 2121R R r r r E U r R R r R R εελεελπ=π==⎰⎰⋅ 解得 120ln 2R R Ur εελπ= 3分于是可求得A点的电场强度为 A E )/ln(12R R R U== 998 V/m 方向沿径向向外 2分A 点与外筒间的电势差: ⎰⎰=='22d )/ln(d 12RR R Rr rR R U r E U RR R R U212ln )/ln(= = V3分4. (本题5分)解:两折线在P 点产生的磁感强度分别为:)221(401+π=aIB μ 方向为1分)221(402-π=aIB μ 方向为⊙2分)4/(2021a I B B B π=-=μ 方向为各1分5. (本题10分)解:建立坐标系,长直导线为y 轴,BC 边为x 轴,原点在长直导线上,则斜边的方程为 a br a bx y /)/(-= 式中r 是t 时刻B 点与长直导线的距离.三角形中磁通量 ⎰⎰++-π=π=Φra rra rx axbra b I x x yId )(2d 200μμ)ln(20r r a a br b I +-π=μ 6分tr r a a r r a a Ib t d d )(ln 2d d 0+-+π=Φ-=μE 3分当r =d 时, v )(ln20da ad d a aIb+-+π=μE 方向:ACBA (即顺时针)1分附赠材料:考试做题技巧会学习,还要会考试时间分配法:决定考场胜利的重要因素科学分配答题时间,是决定考场能否胜利的重要因素。

电磁学试题大集合(含答案)

电磁学试题大集合(含答案)

长沙理工大学考试试卷一、选择题:(每题3分,共30分)1. 关于高斯定理的理解有下面几种说法,其中正确的是:(A)如果高斯面上E 处处为零,则该面内必无电荷。

(B)如果高斯面内无电荷,则高斯面上E 处处为零。

(C)如果高斯面上E处处不为零,则该面内必有电荷。

(D)如果高斯面内有净电荷,则通过高斯面的电通量必不为零 (E )高斯定理仅适用于具有高度对称性的电场。

[ ]2. 在已知静电场分布的条件下,任意两点1P 和2P 之间的电势差决定于:(A)1P 和2P 两点的位置。

(B)1P 和2P 两点处的电场强度的大小和方向。

(C)试验电荷所带电荷的正负。

(D)试验电荷的电荷量。

[ ]3. 图中实线为某电场中的电力线,虚线表示等势面,由图可看出:(A)C B A E E E >>,C B A U U U >>(B)C B A E E E <<,C B A U U U <<(C)C B A E E E >>,C B A U U U <<(D)C B A E E E <<,C B A U U U >> [ ]4. 如图,平行板电容器带电,左、右分别充满相对介电常数为ε1与ε2的介质,则两种介质内:(A)场强不等,电位移相等。

(B)场强相等,电位移相等。

(C)场强相等,电位移不等。

(D)场强、电位移均不等。

[ ]5. 图中,Ua-Ub 为:(A)IR -ε (B)ε+IR(C)IR +-ε (D)ε--IR [ ]6. 边长为a 的正三角形线圈通电流为I ,放在均匀磁场B 中,其平面与磁场平行,它所受磁力矩L 等于: (A)BI a 221 (B)BI a 2341 (C)BI a2 (D)0 [ ]7. 如图,两个线圈P 和Q 并联地接到一电动势恒定的电源上,线圈P 的自感和电阻分别是线圈Q 的两倍,线圈P 和Q 之间的互感可忽略不计,当达到稳定状态后,线圈P 的磁场能量与Q 的磁场能量的比值是:(A)4; (B)2; (C)1; (D)1/2 [ ]8. 在如图所示的电路中,自感线圈的电阻为Ω10,自感系数为H 4.0,电阻R为Ω90,电源电动势为V 40,电源内阻可忽略。

电磁学试题(含答案)

电磁学试题(含答案)

电磁学试题(含答案)⼀、单选题1、如果通过闭合⾯S 的电通量e Φ为零,则可以肯定A 、⾯S 内没有电荷B 、⾯S 内没有净电荷C 、⾯S 上每⼀点的场强都等于零D 、⾯S 上每⼀点的场强都不等于零 2、下列说法中正确的是 A 、沿电场线⽅向电势逐渐降低 B 、沿电场线⽅向电势逐渐升⾼ C 、沿电场线⽅向场强逐渐减⼩ D 、沿电场线⽅向场强逐渐增⼤3、⾼压输电线在地⾯上空m 25处,通有A 1023的电流,则该电流在地⾯上产⽣的磁感应强度为A 、T 104.15-? B 、T 106.15-? C 、T 1025-? D 、T 104.25-? 4、载流直导线和闭合线圈在同⼀平⾯内,如图所⽰,当导线以速度v 向左匀速运动时,在线圈中 A 、有顺时针⽅向的感应电流B 、有逆时针⽅向的感应电C 、没有感应电流D 、条件不⾜,⽆法判断 5、两个平⾏的⽆限⼤均匀带电平⾯,其⾯电荷密度分别为σ+和σ-,则P 点处的场强为A 、02εσ B 、0εσ C 、02εσ D 、0 6、⼀束α粒⼦、质⼦、电⼦的混合粒⼦流以同样的速度垂直进⼊磁场,其运动轨迹如图所⽰,则其中质⼦的轨迹是 A 、曲线1 B 、曲线2C 、曲线3D 、⽆法判断7、⼀个电偶极⼦以如图所⽰的⽅式放置在匀强电场E中,则在电场⼒作⽤下,该电偶极⼦将A 、保持静⽌B 、顺时针转动C 、逆时针转动D 、条件不⾜,⽆法判断 8、点电荷q 位于边长为a 的正⽅体的中⼼,则通过该正⽅体⼀个⾯的电通量为 A 、0 B 、εqC 、04εq D 、06εq 9、长直导线通有电流A 3=I ,另有⼀个矩形线圈与其共⾯,如图所⽰,则在下列哪种情况下,线圈中会出现逆时针⽅向的感应电流? A 、线圈向左运动 B 、线圈向右运动 C 、线圈向上运动 D 、线圈向下运动10、下列说法中正确的是A 、场强越⼤处,电势也⼀定越⾼σ+ σ-P3IB 、电势均匀的空间,电场强度⼀定为零C 、场强为零处,电势也⼀定为零D 、电势为零处,场强⼀定为零11、关于真空中静电场的⾼斯定理0εi Sq S d E ∑=??,下述说法正确的是:A. 该定理只对有某种对称性的静电场才成⽴;B. i q ∑是空间所有电荷的代数和;C. 积分式中的E⼀定是电荷i q ∑激发的;D. 积分式中的E是由⾼斯⾯内外所有电荷激发的。

电磁学练习题(含答案)

电磁学练习题(含答案)

一、选择题1、在磁感强度为的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量与的夹角为α ,则通过半球面S 的磁通量(取弯面向外为正)为(A) πr 2B . . (B) 2 πr 2B .(C) -πr 2B sin α. (D) -πr 2B cos α. [ D ]2、电流由长直导线1沿半径方向经a 点流入一电阻均匀的圆环,再由b 点沿切向从圆环流出,经长直导线2返回电源(如图).已知直导线上电流为I ,.若载流长直导线1、2以及圆环中的电流在圆心O 点所产生的磁感强度分别用1B 、2B , 3B 表示,则O 点的磁感强度大小(A) B = 0,因为B 1 = B 2 = B 3 = 0. (B ) B = 0,因为021=+B B ,B 3 = 0. (C ) B ≠ 0,因为虽然021=+B B ,但B 3≠ 0.(D ) B ≠ 0,因为虽然B 1 = B 3 = 0,但B 2≠ 0.(E ) B ≠ 0,因为虽然B 2 = B 3 = 0,但B 1≠ 0. [ D ]3、边长为L 的一个导体方框上通有电流I ,则此框中心的磁感强度(A) 与L 无关. (B) 正比于L 2.(C) 与L 成正比. (D) 与L 成反比.(E) 与I 2有关. [ D ]4、无限长直圆柱体,半径为R ,沿轴向均匀流有电流.设圆柱体内( r < R )的磁感强度为B i ,圆柱体外( r > R )的磁感强度为B e ,则有(A) B i 、B e 均与r 成正比.(B) B i 、B e 均与r 成反比.(C) B i 与r 成反比,B e 与r 成正比.(D) B i 与r 成正比,B e 与r 成反比. [ D ]5、如图,在一圆形电流I 所在的平面内,选取一个同心圆形闭合回路L ,则由安培环路定理可知(A) ⎰=⋅0l d B ,且环路上任意一点B = 0.(B) ⎰=⋅0l d B ,且环路上任意一点B ≠0.(C) ⎰≠⋅0l d B ,且环路上任意一点B ≠0.(D) ⎰≠⋅0l d B ,且环路上任意一点B =常量. [ B ]6、按玻尔的氢原子理论,电子在以质子为中心、半径为r 的圆形轨道上运动.如果把这样一个原子放在均匀的外磁场中,使电子轨道平面与垂直,如图所示,则在r 不变的情况下,电子轨道运动的角速度将:(A) 增加. (B) 减小.(C) 不变. (D) 改变方向. [ A ]7、如图所示,一根长为ab 的导线用软线悬挂在磁感强度为的匀强磁场中,电流由a 向b 流.此时悬线张力不为零(即安培力与重力不平衡).欲使ab 导线与软线连接处张力为零则必须:(A) 改变电流方向,并适当增大电流.(B) 不改变电流方向,而适当增大电流.(C) 改变磁场方向,并适当增大磁感强度的大小. (D) 不改变磁场方向,适当减小磁感强度的大小. [ B ]8、有一半径为R 的单匝圆线圈,通以电流I ,若将该导线弯成匝数N = 2的平面圆线圈,导线长度不变,并通以同样的电流,则线圈中心的磁感强度和线圈的磁矩分别是原来的(A) 4倍和1/8. (B) 4倍和1/2.(C) 2倍和1/4. (D) 2倍和1/2. [ B ]9、如图所示的一细螺绕环,它由表面绝缘的导线在铁环上密绕而成,每厘米绕10匝.当导线中的电流I 为2.0 A 时,测得铁环内的磁感应强度的大小B 为1.0 T ,则可求得铁环的相对磁导率μr 为(真空磁导率μ0 =4π×10-7 T ·m ·A -1)(A) 7.96×102 (B) 3.98×102(C) 1.99×102 (D) 63.3 [ B ]10、半径为a 的圆线圈置于磁感强度为的均匀磁场中,线圈平面与磁场方向垂直,线圈电阻为R ;当把线圈转动使其法向与的夹角α =60°时,线圈中通过的电荷与线圈面积及转动所用的时间的关系是(A) 与线圈面积成正比,与时间无关.(B) 与线圈面积成正比,与时间成正比.(C) 与线圈面积成反比,与时间成正比.(D) 与线圈面积成反比,与时间无关. [ A ]11、如图所示,直角三角形金属框架abc 放在均匀磁场中,磁场平行于ab 边,bc 的长度为l .当金属框架绕ab 边以匀角速度ω转动时,abc 回路中的感应电动势 和a 、c 两点间的电势差U a –U c 为(A) =0,221l B U U b a ω=-. (B) =0,221l B U U b a ω-=-. (C) =2l B ω,221l B U U b a ω=- (D) =2l B ω,221l B U U b a ω-=-. [ B ]12、有两个长直密绕螺线管,长度及线圈匝数均相同,半径分别为r 1和r 2.管内充满均匀介质,其磁导率分别为μ1和μ2.设r 1∶r 2=1∶2,μ1∶μ2=2∶1,当将两只螺线管串联在电路中通电稳定后,其自感系数之比L 1∶L 2与磁能之比W m 1∶W m 2分别为:(A) L 1∶L 2=1∶1,W m 1∶W m 2 =1∶1.(B) L 1∶L 2=1∶2,W m 1∶W m 2 =1∶1.(C) L 1∶L 2=1∶2,W m 1∶W m 2 =1∶2.(D) L 1∶L 2=2∶1,W m 1∶W m 2 =2∶1. [ C ]13、用导线围成的回路(两个以O 点为心半径不同的同心圆,在一处用导线沿半径方向相连),放在轴线通过O 点的圆柱形均匀磁场中,回路平面垂直于柱轴,如图所示.如磁场方向垂直图面向里,其大小随时间减小,则(A)→(D)各图中哪个图上正确表示了感应电流的流向?[ B ]二、填空题 14、如图,一个均匀磁场B 只存在于垂直于图面的P 平面右侧,B 的方向垂直于图面向里.一质量为m 、电荷为q 的粒子以速度射入磁场.在图面内与界面P 成某一角度.那么粒子在从磁场中射出前是做半径为______________的圆周运动.如果q > 0时,粒子在磁场中的路径与边界围成的平面区域的面积为S ,那么q < 0时,其路径与边界围成的平面区域的面积是_________________.答案:)(qB mv15、若在磁感强度B =0.0200T 的均匀磁场中,一电子沿着半径R = 1.00 cm 的圆周运动,则该电子的动能E K =________________________eV .(e =1.6 ×10-19 C, m e = 9.11×10-31 kg)答案: 3.51×103参考解: mR B q mv E K 2212222== =5.62×10-16 J=3.51×103 eV16、氢原子中电子质量m ,电荷e ,它沿某一圆轨道绕原子核运动,其等效圆电流的磁矩大小p m 与电子轨道运动的动量矩大小L 之比=Lp m ________________. 答案:me 217、载有恒定电流I 的长直导线旁有一半圆环导线cd ,半圆环半径为b ,环面与直导线垂直,且半圆环两端点连线的延长线与直导线相交,如图.当半圆环以速度沿平行于直导线的方向平移时,半圆环上的感应电动势的大小是____________________.答案:ba b a Iv -+ln 20πμ 18、如图所示,一段长度为l 的直导线MN ,水平放置在载电流为I 的竖直长导线旁与竖直导线共面,并从静止由图示位置自由下落,则t 秒末导线两端的电势差=-N M U U ______________________.答案:al a Igt +-ln 20πμ 19、位于空气中的长为l ,横截面半径为a ,用N匝导线绕成的直螺线管,当符 合________和____________________的条件时,其自感系数可表成V I N L 20)/(μ=,其中V 是螺线管的体积.20、一线圈中通过的电流I 随时间t 变化的曲线如图所示.试定性画出自感电动势 L 随时间变化的曲线.(以I 的正向作为 的正向)答案:21、真空中两条相距2a 的平行长直导线,通以方向相同,大小相等的电流I ,O 、P 两点与两导线在同一平面内,与导线的距离如图所示,则O 点的磁场能量密度w m o =___________,P 点的磁场能量密度w mr =__________________.答案: 022、一平行板空气电容器的两极板都是半径为R 的圆形导体片,在充电时,板间电场强度的变化率为d E /d t .若略去边缘效应,则两板间的位移电流为 ________________________.答案:dt dE R /20πε三、计算题23、如图所示,一无限长直导线通有电流I =10 A ,在一处折成夹角θ =60°的折线,求角平分线上与导线的垂直距离均为r =0.1 cm 的P 点处的磁感强度.(μ0 =4π×10-7 H ·m -1)解:P 处的可以看作是两载流直导线所产生的,与的方向相同.)]60sin(90[sin 4)]90sin(60[sin 400 --+--=rI r I πμπμ ]90sin 60[sin 420 +=rI πμ=3.73×10-3 T 方向垂直纸面向上.24、一根很长的圆柱形铜导线均匀载有10 A 电流,在导线内部作一平面S ,S 的一个边是导线的中心轴线,另一边是S 平面与导线表面的交线,如图所示.试计算通过沿导线长度方向长为1m 的一段S 平面的磁通量.(真空的磁导率μ0 =4π×10-7 T ·m /A ,铜的相对磁导率μr ≈1)解:在距离导线中心轴线为x 与dx x +处,作一个单位长窄条,其面积为dx dS ⋅=1.窄条处的磁感强度所以通过d S 的磁通量为 dx R Ix BdS d r 202πμμ==Φ 通过1m 长的一段S 平面的磁通量为Wb I dx R Ix r R r 600201042-===Φ⎰πμμπμμ 25、 一通有电流I 1 (方向如图)的长直导线,旁边有一个与它共面通有电流I 2 (方向如图)每边长为a 的正方形线圈,线圈的一对边和长直导线平行,线圈的中心与长直导线间的距离为a 23 (如图),在维持它们的电流不变和保证共面的条件下,将它们的距离从a 23变为a 25,求磁场对正方形线圈所做的功.解:如图示位置,线圈所受安培力的合力为方向向右,从x = a 到x = 2a 磁场所作的功为26、螺绕环中心周长l = 10 cm ,环上均匀密绕线圈N = 200匝,线圈中通有电流I = 0.1 A .管内充满相对磁导率μr = 4200的磁介质.求管内磁场强度和磁感强度的大小.解: 200===l NI nI H A/mH H B r μμμ0===1.06 T27、如图所示,有一矩形回路,边长分别为a 和b ,它在xy 平面内以匀速沿x 轴方向移动,空间磁场的磁感强度与回路平面垂直,且为位置的x 坐标和时间t 的函数,即kx t B t x B sin sin ),(0ω =,其中0B ,ω,k 均为已知常数.设在t =0时,回路在x =0处.求回路中感应电动势对时间的关系.解:选沿回路顺时针方向为电动势正方向,电动势是由动生电动势 1和感生电动势 2组成的.设回路在x 位置:∴ kkx a x k t bB cos )(cos cos 02-+=ωωε 设总感应电动势为 ,且 x =v t ,则有∴。

电磁学练习题电磁场与电磁辐射

电磁学练习题电磁场与电磁辐射

电磁学练习题电磁场与电磁辐射电磁学练习题——电磁场与电磁辐射一、选择题1. 下列哪种现象不能用电磁场解释?A. 镜子中的反射B. 电灯发光C. 铁器被磁铁吸引D. 声音的传播2. 电荷在电场中受到的力的方向与下列哪一项有关?A. 电荷的大小B. 电荷的性质C. 电场的大小D. 电场的方向3. 下列哪个单位不属于电磁辐射的计量单位?A. 瓦特B. 凯尔文C. 焦耳D. 安培二、填空题1. “库仑力”是电场中两个点电荷之间的相互作用力的另一种称呼,它的大小与两个点电荷之间的距离的______ 成反比,与两点电荷的______ 成正比。

2. 电场强度是用来描述电场的______ 特征的物理量,其方向与正电荷受力方向______。

3. 电磁波是由______ 、______ 交替振动所产生的一种能量传播现象。

4. 电磁辐射的频率范围较宽,常将其分为不同的区域,其中射频电磁辐射的频率范围是______ Hertz。

三、简答题1. 简述电场力线的性质及其应用。

电场力线是用来模拟电场空间分布的线条,其性质如下:- 电场力线的方向表示电场力的方向;- 电场力线从正电荷发出,进入负电荷;- 电场力线越密集表示电场强度越大;- 电场力线不会相交或断裂。

电场力线的应用:- 可以通过绘制电场力线来研究电场的分布、形状和特征;- 可以帮助预测电荷在电场中的运动轨迹;- 可以用于解释电场对带电物体的作用力等。

2. 简述电磁波的产生及其特点。

电磁波是由电场和磁场相互作用而产生的一种能量传播现象。

电磁波的产生主要包括以下过程:- 电荷加速或振动:当带电粒子加速或振动时,会产生电场和磁场的变化。

- 电场和磁场相互作用:电场和磁场相互作用形成交替的波动。

电磁波的特点如下:- 电磁波可以在真空中传播,无需介质;- 电磁波的传播速度为真空中的光速;- 电磁波具有不同的频率和波长,形成了电磁波谱;- 电磁波可以被反射、折射、干涉和衍射等现象改变传播方向和幅度;- 不同频率的电磁波具有不同的能量和特性,可应用于通信、医学、遥感等领域。

电磁学考试题库及答案详解

电磁学考试题库及答案详解

电磁学考试题库及答案详解一、单项选择题1. 真空中两个点电荷之间的相互作用力遵循()。

A. 牛顿第三定律B. 库仑定律C. 高斯定律D. 欧姆定律答案:B解析:库仑定律描述了真空中两个点电荷之间的相互作用力,其公式为F=k*q1*q2/r^2,其中F是力,k是库仑常数,q1和q2是两个电荷的量值,r是它们之间的距离。

2. 电场强度的方向是()。

A. 从正电荷指向负电荷B. 从负电荷指向正电荷C. 垂直于电荷分布D. 与电荷分布无关解析:电场强度的方向是从正电荷指向负电荷,这是电场的基本性质之一。

3. 电势能与电势的关系是()。

A. 电势能等于电势的负值B. 电势能等于电势的正值C. 电势能等于电势的两倍D. 电势能与电势无关答案:A解析:电势能U与电势V的关系是U=-qV,其中q是电荷量,V是电势。

4. 电容器的电容C与板间距离d和板面积A的关系是()。

A. C与d成正比B. C与d成反比C. C与A成正比D. C与A和d都成反比解析:电容器的电容C与板间距离d成反比,与板面积A成正比,公式为C=εA/d,其中ε是介电常数。

5. 磁场对运动电荷的作用力遵循()。

A. 洛伦兹力定律B. 库仑定律C. 高斯定律D. 欧姆定律答案:A解析:磁场对运动电荷的作用力遵循洛伦兹力定律,其公式为F=qvBsinθ,其中F是力,q是电荷量,v是电荷的速度,B是磁场强度,θ是速度与磁场的夹角。

二、多项选择题1. 以下哪些是电磁波的特性?()A. 传播不需要介质B. 具有波粒二象性C. 传播速度等于光速D. 只能在真空中传播答案:ABC解析:电磁波的传播不需要介质,具有波粒二象性,传播速度等于光速,但它们也可以在其他介质中传播,只是速度会因为介质的折射率而改变。

2. 以下哪些是电场线的特点?()A. 电场线从正电荷出发,终止于负电荷B. 电场线不相交C. 电场线是闭合的D. 电场线的疏密表示电场强度的大小答案:ABD解析:电场线从正电荷出发,终止于负电荷,不相交,且电场线的疏密表示电场强度的大小。

高二电磁学综合测试题

高二电磁学综合测试题

电磁学综合测试题一、选择题1、关于电场强度和电场线,下列说法正确的是()A.在电场中某点放一检验电荷后,该点的电场强度会发生改变B.由电场强度的定义式E=F/q可知,电场中某点的E与q成反比,与q所受的电场力F成正比C.电荷在电场中某点所受力的方向即为该点的电场强度方向D.初速为零、重力不计的带电粒子在电场中运动的轨迹可能不与电场线重合2、图1是两个等量异种点电荷电场,AB为中垂线,且AO=BO,则()A.A、B两点场强大小相等,方向相反B.正电荷从A运动到B,电势能增加C.负电荷从A运动到B,电势能增加图1 D.A、B两点电势差为零3、如图2所示,四只灯泡规格相同,全部发光,比较其亮度正确的是()图2A.灯C比D亮B.灯C比B亮C.灯A和C一样亮D.灯A和B一样亮4、空间存在竖直向下的匀强电场和水平方向(垂直纸面向里)的匀强磁场,如图3所示,已知一离子在电场力和洛仑兹力共同作用下,从静止开始自A点沿曲线ACB运动,到达B点时速度为零,C为运动的最低点.不计重力,则图3A.该离子带负电B.A、B两点位于同一高度C.在C点时离子速度最大D.离子到达B点后,将沿原曲线返回A点5、如图4所示,在x--y-- z直角坐标系中,匀强磁场方向与+z 轴方向相反,有一个带负电粒子,沿+x 方向射入匀强磁场中,要使粒子不发生偏转,所加匀强电场的方向应为( )A 、+y 方向B 、-- y 方向C 、-- x 方向D 、-- z 方向6 如图5所示,要使金属环C 向线圈A 运动,导线AB 在金属导轨上应( )图5B.向左做减速运动C.向右做加速运动D.向左做加速运动7、关于电磁场和电磁波,下列叙述中正确的是( )A 、均匀变化的电场在它周围空间产生均匀变化的磁场;B 、电磁波和机械波一样依赖于媒质传播;C 、电磁波是横波,它的传播速度与介质无关;D 、只要空间某个区域有振荡的电场或磁场,就能产生电磁波。

8、如图6所示,在匀强磁场中两根平行的金属导轨MN与PQ ,其电阻不计,ab 、cd 为两根金属杆,其电阻R ab <R cd ,当ab 杆在外力F 1作用下,匀速向左滑动时,cd 杆在外力F 2作用下保持静止。

电磁学期末考试题及答案

电磁学期末考试题及答案

电磁学期末考试题及答案一、选择题(每题2分,共20分)1. 以下哪项是电流的单位?A. 牛顿B. 库仑C. 安培D. 伏特答案:C2. 电磁波的传播速度在真空中是恒定的,其值是:A. 299,792,458 m/sB. 300,000,000 m/sC. 3.00 x 10^8 m/sD. 3.00 x 10^5 m/s答案:C3. 根据麦克斯韦方程组,以下哪项描述了电场与磁场之间的关系?A. 高斯定律B. 法拉第电磁感应定律C. 欧姆定律D. 安培环路定理答案:B4. 一个点电荷在电场中受到的力与以下哪个因素无关?A. 电荷量B. 电场强度C. 电荷的正负D. 电荷的质量答案:D5. 以下哪个选项是描述磁场的基本物理量?A. 电势B. 磁通C. 磁感应强度D. 电场强度答案:C6. 一个闭合电路中的感应电动势与以下哪个因素有关?A. 磁场强度B. 导线长度C. 导线运动速度D. 所有以上因素答案:D7. 根据洛伦兹力定律,一个带电粒子在磁场中运动时受到的力与以下哪个因素无关?A. 粒子的电荷量B. 粒子的速度C. 磁场的强度D. 粒子的质量答案:D8. 电磁波的波长与频率的关系是:A. 波长与频率成正比B. 波长与频率成反比C. 波长与频率无关D. 波长与频率的乘积是常数答案:B9. 以下哪种材料最适合用于制作超导磁体?A. 铁B. 铜C. 铝D. 铌钛合金答案:D10. 电磁感应现象是由以下哪位科学家发现的?A. 牛顿B. 法拉第C. 麦克斯韦D. 欧姆答案:B二、填空题(每题2分,共20分)1. 电磁波的传播不需要______。

答案:介质2. 电流通过导线时,导线周围会产生______。

答案:磁场3. 根据欧姆定律,电流I等于电压V除以电阻R,即I=______。

答案:V/R4. 电荷的定向移动形成了______。

答案:电流5. 电磁波的传播速度在真空中是______。

答案:3.00 x 10^8 m/s6. 电磁波的波长、频率和波速之间的关系是______。

(完整版)电磁学试题库试题及答案

(完整版)电磁学试题库试题及答案

电磁学试题库 试题3一、填空题(每小题2分,共20分)1、带电粒子受到加速电压作用后速度增大,把静止状态下的电子加速到光速需要电压是( )。

2、一无限长均匀带电直线(线电荷密度为λ)与另一长为L ,线电荷密度为η的均匀带电直线AB 共面,且互相垂直,设A 端到无限长均匀带电线的距离为a ,带电线AB 所受的静电力为( )。

3、如图所示,金属球壳内外半径分别为a 和b ,带电量为Q ,球壳腔内距球心O 为r 处置一电量为q 的点电荷,球心O 点的电势(4、两个同心的导体薄球壳,半径分别为b a r r 和,其间充满电阻率为ρ的均匀介质(1)两球壳之间的电阻( )。

(2)若两球壳之间的电压是U ,其电流密度( )。

5、载流导线形状如图所示,(虚线表示通向无穷远的直导线)O 处的磁感应强度的大小为( )6、一矩形闭合导线回路放在均匀磁场中,磁场方向与回路平 面垂直,如图所示,回路的一条边ab 可以在另外的两条边上滑动,在滑动过程中,保持良好的电接触,若可动边的长度为L ,滑动速度为V ,则回路中的感应电动势大小( ),方向( )。

7、一个同轴圆柱形电容器,半径为a 和b ,长度为L ,假定两板间的电压t U u m ω=sin ,且电场随半径的变化与静电的情况相同,则通过半径为r (a<r<b )的任一圆柱面的总位移电流是( )。

8、如图,有一均匀极化的介质球,半径为R ,极 化强度为P ,则极化电荷在球心处产生的场强 是( )。

9、对铁磁性介质M B H、、三者的关系是( ) )。

10、有一理想变压器,12N N =15,若输出端接一个4Ω的电阻,则输出端的阻抗为( )。

一、选择题(每小题2分,共20分) 1、关于场强线有以下几种说法( ) (A )电场线是闭合曲线(B )任意两条电场线可以相交(C )电场线的疏密程度代表场强的大小(D )电场线代表点电荷在电场中的运动轨迹R I O a b vPzRLI2、对某一高斯面S ,如果有0=⋅⎰S S d E则有( ) (A )高斯面上各点的场强一定为零 (B )高斯面内必无电荷 (C )高斯面内必无净电荷 (D )高斯面外必无电荷3、将一接地的导体B 移近一带正电的孤立导体A 时,A 的电势。

大学物理电磁学题库及标准答案

大学物理电磁学题库及标准答案

大学物理电磁学题库及答案————————————————————————————————作者:————————————————————————————————日期:一、选择题:(每题3分)1、均匀磁场的磁感强度B垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为 (A) 2πr 2B . (B) πr 2B .(C) 0. (D) 无法确定的量. [ B ]2、在磁感强度为B的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n与B 的夹角为α ,则通过半球面S 的磁通量(取弯面向外为正)为(A) πr 2B . (B) 2 πr 2B .(C) -πr 2B sin α. (D) -πr 2B cos α. [ D ]3、有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为 (A) 0.90. (B) 1.00.(C) 1.11. (D) 1.22. [ C ]4、如图所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度(A) 方向垂直环形分路所在平面且指向纸内.(B) 方向垂直环形分路所在平面且指向纸外. (C) 方向在环形分路所在平面,且指向b .(D) 方向在环形分路所在平面内,且指向a .(E) 为零. [ E ]5、通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为: (A) B P > B Q > B O . (B) B Q > B P > B O .(C) B Q > B O > B P . (D) B O > B Q > B P .[ D ]6、边长为l 的正方形线圈,分别用图示两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感强度的大小分别为 (A) 01=B ,02=B . (B) 01=B ,l I B π=0222μ.(C) lIB π=0122μ,02=B .nBα Sc Id b aa I I I a aa a 2a I P Q O I aIB 1IB 12abc dI(D) l I B π=0122μ,lIB π=0222μ. [C ]7、在真空中有一根半径为R 的半圆形细导线,流过的电流为I ,则圆心处的磁感强度为(A) R 140πμ. (B) R120πμ.(C) 0. (D) R140μ. [ D ]9、电流I 由长直导线1沿垂直bc 边方向经a 点流入由电阻均匀的导线构成的正三角形线框,再由b 点沿垂直ac 边方向流出,经长直导线2返回电源(如图).若载流直导线1、2和三角形框中的电流在框中心O 点产生的磁感强度分别用1B 、2B和3B 表示,则O 点的磁感强度大小(A) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B,B 3 = 0.(C) B ≠ 0,因为虽然B 3= 0,但021≠+B B.(D) B ≠ 0,因为虽然021=+B B,但B 3≠ 0. [ A ]10、电流由长直导线1沿半径方向经a 点流入一电阻均匀的圆环,再由b 点沿切向从圆环流出,经长导线2返回电源(如图).已知直导线上电流强度为I ,圆环的半径为R ,且a 、b 与圆心O 三点在同一直线上.设直电流1、2及圆环电流分别在O 点产生的磁感强度为1B 、2B及3B ,则O 点的磁感强度的大小 (B) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为021=+B B,B 3 = 0.(C) B ≠ 0,因为虽然B 1 = B 3 = 0,但B 2≠ 0. (D) B ≠ 0,因为虽然B 1 = B 2 = 0,但B 3≠ 0.(E) B ≠ 0,因为虽然B 2 = B 3 = 0,但B 1≠ 0. [ C ]11、电流I 由长直导线1沿垂直bc 边方向经a 点流入由电阻均匀的导线构成的正三角形线框,再由b 点流出,经长直导线2沿cb 延长线方向返回电源(如图).若载流直导线1、2和三角形框中的电流在框中心O 点产生的磁感强度分别用1B 、2B和3B 表示,则O 点的磁感强度大小ab cI O 12a b2I1OabcI O1 2 I(C) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B,B 3 = 0. (C) B ≠ 0,因为虽然B 3 = 0、B 1= 0,但B 2≠ 0.(D) B ≠ 0,因为虽然021≠+B B,但3B ≠ 0. [ C ]12、电流由长直导线1沿平行bc 边方向经过a 点流入由电阻均匀的导线构成的正三角形线框,由b 点流出,经长直导线2沿cb 延长线方向返回电源(如图).已知直导线上的电流为I ,三角框的每一边长为l .若载流导线1、2和三角框中的电流在三角框中心O 点产生的磁感强度分别用1B 、2B和3B 表示,则O 点的磁感强度大小(A) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为021=+B B,B 3= 0.(C) B ≠0,因为虽然021=+B B,但B 3≠ 0.(D) B ≠0,因为虽然B 3= 0,但021≠+B B. [ D ]13、电流由长直导线1沿半径方向经a 点流入一电阻均匀的圆环,再由b 点沿半径方向流出,经长直导线2返回电源(如图).已知直导线上电流为I ,圆环的半径为R ,且a 、b与圆心O 三点在一直线上.若载流直导线1、2和圆环中的电流在O 点产生的磁感强度分别用1B 、2B和3B 表示,则O 点磁感强度的大小为(D) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B,B 3 = 0.(C) B ≠ 0,因为虽然021=+B B,但B 3≠ 0.(D) B ≠ 0,因为虽然B 3 = 0,但021≠+B B. [ A ] 15、电流由长直导线1沿半径方向经a 点流入一由电阻均匀的导线构成的圆环,再由b 点沿半径方向从圆环流出,经长直导线2返回电源(如图).已知直导线上电流强度为I ,∠aOb =30°.若长直导线1、2和圆环中的电流在圆心O 点产生的磁感强度分别用1B 、2B、3B 表示,则圆心O 点的磁感强度大小(E) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B,B 3 = 0.(C) B ≠ 0,因为虽然B 3= 0,但021≠+B B.(D) B ≠ 0,因为B 3≠ 0,021≠+B B,所以0321≠++B B B . [ A ]a bcI IO 1 2Oa b12a b 1O Ic216、如图所示,电流由长直导线1沿ab 边方向经a 点流入由电阻均匀的导线构成的正方形框,由c 点沿dc方向流出,经长直导线2返回电源.设载流导线1、2和正方形框中的电流在框中心O 点产生的磁感强度分别用1B 、2B 、3B 表示,则O 点的磁感强度大小 (A) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B.B 3 = 0(C) B ≠ 0,因为虽然021=+B B,但B 3≠ 0.(D) B ≠ 0,因为虽然B 3= 0,但021≠+B B. [ B ]17、 如图所示,电流I 由长直导线1经a 点流入由电阻均匀的导线构成的正方形线框,由b 点流出,经长直导线2返回电源(导线1、2的延长线均通过O 点).设载流导线1、2和正方形线框中的电流在框中心O 点产生的磁感强度分别用 1B、2B、3B 表示,则O 点的磁感强度大小(A) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0、B 3≠ 0,但0321=++B B B.(C) B ≠ 0,因为虽然021=+B B,但B 3≠ 0.(D) B ≠ 0,因为虽然B 3= 0,但021≠+B B. [ A ]19、如图,边长为a 的正方形的四个角上固定有四个电荷均为q 的点电荷.此正方形以角速度ω 绕AC 轴旋转时,在中心O 点产生的磁感强度大小为B 1;此正方形同样以角速度ω绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感强度的大小为B 2,则B 1与B 2间的关系为(A) B 1 = B 2. (B) B 1 = 2B 2.(C) B 1 = 21B 2. (D) B 1 = B 2 /4. [C ]20、边长为L 的一个导体方框上通有电流I ,则此框中心的磁感强度 (A) 与L 无关. (B) 正比于L 2. (C) 与L 成正比. (D) 与L 成反比. (E) 与I 2有关. [ D ]21、如图,流出纸面的电流为2I ,流进纸面的电流为I ,则下述各式中哪一个是正确的? (A) I l H L 2d 1=⎰⋅ . (B) I l H L =⎰⋅2d(C) I l H L -=⎰⋅3d . (D) I l H L -=⎰⋅4d .II ab1 2c d OII ab 12OA C q q qq OL 2 L 1 L 3L 42II[ D ]22、如图,在一圆形电流I 所在的平面内,选取一个同心圆形闭合回路L ,则由安培环路定理可知(A) 0d =⎰⋅Ll B,且环路上任意一点B = 0. (B) 0d =⎰⋅Ll B,且环路上任意一点B ≠0. (C) 0d ≠⎰⋅Ll B,且环路上任意一点B ≠0.(D)0d ≠⎰⋅Ll B,且环路上任意一点B =常量. [ B ]23、如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I 从a 端流入而从d 端流出,则磁感强度B沿图中闭合路径L 的积分⎰⋅Ll Bd(A) I 0μ. (B) I 031μ.(C) 4/0I μ. (D) 3/20I μ. [ D ]24、若空间存在两根无限长直载流导线,空间的磁场分布就不具有简单的对称性,则该磁场分布(A) 不能用安培环路定理来计算. (B) 可以直接用安培环路定理求出. (C) 只能用毕奥-萨伐尔定律求出.(D) 可以用安培环路定理和磁感强度的叠加原理求出. [ D ] 25、取一闭合积分回路L ,使三根载流导线穿过它所围成的面.现改变三根导线之间的相互间隔,但不越出积分回路,则(A) 回路L 内的∑I 不变,L 上各点的B不变.(B) 回路L 内的∑I 不变,L 上各点的B改变.(C) 回路L 内的∑I 改变,L 上各点的B不变.(D) 回路L 内的∑I 改变,L 上各点的B改变. [ B ] 27、在图(a)和(b)中各有一半径相同的圆形回路L 1、L 2,圆周内有电流I 1、I 2,其分布相同,且均在真空中,但在(b)图中L 2回路外有电流I 3,P 1、P 2为两圆形回路上的对应点,则:(A) =⎰⋅1d L l B ⎰⋅2d L l B , 21P P B B = (B) ≠⎰⋅1d L l B ⎰⋅2d L l B, 21P P B B =. (C) =⎰⋅1d L l B⎰⋅2d L l B, 21P P B B ≠.(D) ≠⎰⋅1d L l B⎰⋅2d L l B , 21P P B B ≠. [ C ]L OIIIabc dL120°L 1 L 2P 1 P 2I 1 I 2 I 3I 1 I 2 (a)(b)⊙⊙ ⊙⊙ ⊙28、如图,一个电荷为+q 、质量为m 的质点,以速度v沿x 轴射入磁感强度为B 的均匀磁场中,磁场方向垂直纸面向里,其范围从x = 0延伸到无限远,如果质点在x = 0和y = 0处进入磁场,则它将以速度v -从磁场中某一点出来,这点坐标是x = 0 和(A) qB m y v +=. (B) qB m y v 2+=. (C) qB m y v 2-=. (D) qB m y v-=. [ B ]30、A 、B 两个电子都垂直于磁场方向射入一均匀磁场而作圆周运动.A 电子的速率是B 电子速率的两倍.设R A ,R B 分别为A 电子与B 电子的轨道半径;T A ,T B 分别为它们各自的周期.则(A) R A ∶R B =2,T A ∶T B =2. (B) R A ∶R B 21=,T A ∶T B =1.(C) R A ∶R B =1,T A ∶T B 21=. (D) R A ∶R B =2,T A ∶T B =1. [ D ]31、一铜条置于均匀磁场中,铜条中电子流的方向如图所示.试问下述哪一种情况将会发生?(A) 在铜条上a 、b 两点产生一小电势差,且U a > U b . (B) 在铜条上a 、b 两点产生一小电势差,且U a < U b . (C) 在铜条上产生涡流. (D) 电子受到洛伦兹力而减速. [ A ]32、一电荷为q 的粒子在均匀磁场中运动,下列哪种说法是正确的? (A) 只要速度大小相同,粒子所受的洛伦兹力就相同.(B) 在速度不变的前提下,若电荷q 变为-q ,则粒子受力反向,数值不变. (C) 粒子进入磁场后,其动能和动量都不变. (D) 洛伦兹力与速度方向垂直,所以带电粒子运动的轨迹必定是圆.[ B ] 34、图为四个带电粒子在O 点沿相同方向垂直于磁感线射入均匀磁场后的偏转轨迹的照片.磁场方向垂直纸面向外,轨迹所对应的四个粒子的质量相等,电荷大小也相等,则其中动能最大的带负电的粒子的轨迹是(A) Oa . (B) Ob .(C) Oc . (D) Od . [ C ]xy+q, m v BOO Bdc b aabB × × × ×× × × × × × × ×大学物理 电磁学35、如图所示,在磁感强度为B的均匀磁场中,有一圆形载流导线,a 、b 、c 是其上三个长度相等的电流元,则它们所受安培力大小的关系为(A) F a > F b > F c . (B) F a < F b < F c .(C) F b > F c > F a . (D) F a > F c > F b . [ C ]36、如图,长载流导线ab 和cd 相互垂直,它们相距l ,ab 固定不动,cd 能绕中点O 转动,并能靠近或离开ab .当电流方向如图所示时,导线cd 将 (A) 顺时针转动同时离开ab .(B) 顺时针转动同时靠近ab . (C) 逆时针转动同时离开ab .(D) 逆时针转动同时靠近ab . [ D ]37、两个同心圆线圈,大圆半径为R ,通有电流I 1;小圆半径为r ,通有电流I 2,方向如图.若r << R (大线圈在小线圈处产生的磁场近似为均匀磁场),当它们处在同一平面内时小线圈所受磁力矩的大小为(A) R r I I 22210πμ. (B) R r I I 22210μ.(C) rR I I 22210πμ. (D) 0. [ D ]339、有一N 匝细导线绕成的平面正三角形线圈,边长为a ,通有电流I ,置于均匀外磁场B中,当线圈平面的法向与外磁场同向时,该线圈所受的磁力矩M m 值为 (A) 2/32IB Na . (B) 4/32IB Na . (C) ︒60sin 32IB Na . (D) 0. [ B ]40、有一矩形线圈AOCD ,通以如图示方向的电流I ,将它置于均匀磁场B 中,B的方向与x 轴正方向一致,线圈平面与x 轴之间的夹角为α,α < 90°.若AO 边在y轴上,且线圈可绕y 轴自由转动,则线圈将(A) 转动使α 角减小.(B) 转动使α角增大. (C) 不会发生转动.(D) 如何转动尚不能判定. [ D ]41、若一平面载流线圈在磁场中既不受力,也不受力矩作用,这说明: (A) 该磁场一定均匀,且线圈的磁矩方向一定与磁场方向平行.bBa cI Iab cd II O Or R I 1I 2y zx AO CDInBα大学物理 电磁学(B) 该磁场一定不均匀,且线圈的磁矩方向一定与磁场方向平行. (C) 该磁场一定均匀,且线圈的磁矩方向一定与磁场方向垂直.(D) 该磁场一定不均匀,且线圈的磁矩方向一定与磁场方向垂直.[ A ]42、图示一测定水平方向匀强磁场的磁感强度B(方向见图)的实验装置.位于竖直面内且横边水平的矩形线框是一个多匝的线圈.线框挂在天平的右盘下,框的下端横边位于待测磁场中.线框没有通电时,将天平调节平衡;通电后,由于磁场对线框的作用力而破坏了天平的平衡,须在天平左盘中加砝码m 才能使天平重新平衡.若待测磁场的磁感强度增为原来的3倍,而通过线圈的电流减为原来的21,磁场和电流方向保持不变,则要使天平重新平衡,其左盘中加的砝码质量应为 (A) 6m . (B) 3m /2. (C) 2m /3. (D) m /6.(E) 9m /2. [ B ]43、如图,无限长直载流导线与正三角形载流线圈在同一平面内,若长直导线固定不动,则载流三角形线圈将 (A) 向着长直导线平移. (B) 离开长直导线平移. (C) 转动. (D) 不动. [ A ]44、四条皆垂直于纸面的载流细长直导线,每条中的电流皆为I .这四条导线被纸面截得的断面,如图所示,它们组成了边长为2a 的正方形的四个角顶,每条导线中的电流流向亦如图所示.则在图中正方形中心点O 的磁感强度的大小为(A) I aB π=02μ. (B) I a B 2π=02μ. (C) B = 0. (D) I aB π=0μ. [ C ]46、四条平行的无限长直导线,垂直通过边长为a =20 cm 的正方形顶点,每条导线中的电流都是I =20 A ,这四条导线在正方形中心O 点产生的磁感强度为 (μ0 =4π×10-7 N ·A -2)(A) B =0. (B) B = 0.4×10-4 T . (C) B = 0.8×10-4 T. (D) B =1.6×10-4 T . [ C ]i BI 1I 2I I I I 2a2a O I I I IOa47、有一半径为R 的单匝圆线圈,通以电流I ,若将该导线弯成匝数N = 2的平面圆线圈,导线长度不变,并通以同样的电流,则线圈中心的磁感强度和线圈的磁矩分别是原来的(A) 4倍和1/8. (B) 4倍和1/2.(C) 2倍和1/4. (D) 2倍和1/2. [ B ]55、一闭合正方形线圈放在均匀磁场中,绕通过其中心且与一边平行的转轴OO ′转动,转轴与磁场方向垂直,转动角速度为ω,如图所示.用下述哪一种办法可以使线圈中感应电流的幅值增加到原来的两倍(导线的电阻不能忽略)? (A) 把线圈的匝数增加到原来的两倍. (B) 把线圈的面积增加到原来的两倍,而形状不变. (C) 把线圈切割磁力线的两条边增长到原来的两倍.(D) 把线圈的角速度ω增大到原来的两倍. [ D ]56、一导体圆线圈在均匀磁场中运动,能使其中产生感应电流的一种情况是 (A) 线圈绕自身直径轴转动,轴与磁场方向平行. (B) 线圈绕自身直径轴转动,轴与磁场方向垂直. (C) 线圈平面垂直于磁场并沿垂直磁场方向平移.(D) 线圈平面平行于磁场并沿垂直磁场方向平移. [ B ]57、如图所示,一矩形金属线框,以速度v从无场空间进入一均匀磁场中,然后又从磁场中出来,到无场空间中.不计线圈的自感,下面哪一条图线正确地表示了线圈中的感应电流对时间的函数关系?(从线圈刚进入磁场时刻开始计时,I 以顺时针方向为正)[ C ]58、两根无限长平行直导线载有大小相等方向相反的电流I ,并各以d I /d t 的变化率增长,一矩形线圈位于导线平面内(如图),则:(A) 线圈中无感应电流. (B) 线圈中感应电流为顺时针方向.O ′O B ωvBI IO O tt(A)(D)IO t (C)O t (B)II I(C) 线圈中感应电流为逆时针方向.(D) 线圈中感应电流方向不确定. [ B ]59、将形状完全相同的铜环和木环静止放置,并使通过两环面的磁通量随时间的变化率相等,则不计自感时(A) 铜环中有感应电动势,木环中无感应电动势. (B) 铜环中感应电动势大,木环中感应电动势小. (C) 铜环中感应电动势小,木环中感应电动势大. (D) 两环中感应电动势相等. [ D ]60、在无限长的载流直导线附近放置一矩形闭合线圈,开始时线圈与导线在同一平面内,且线圈中两条边与导线平行,当线圈以相同的速率作如图所示的三种不同方向的平动时,线圈中的感应电流(A) 以情况Ⅰ中为最大. (B) 以情况Ⅱ中为最大.(C) 以情况Ⅲ中为最大. (D) 在情况Ⅰ和Ⅱ中相同. [ B ]61、一个圆形线环,它的一半放在一分布在方形区域的匀强磁场B中,另一半位于磁场之外,如图所示.磁场B的方向垂直指向纸内.欲使圆线环中产生逆时针方向的感应电流,应使(A) 线环向右平移. (B) 线环向上平移.(C) 线环向左平移. (D) 磁场强度减弱. [ C ]62、如图所示,一载流螺线管的旁边有一圆形线圈,欲使线圈产生图示方向的感应电流i ,下列哪一种情况可以做到?(A) 载流螺线管向线圈靠近. (B) 载流螺线管离开线圈.(C) 载流螺线管中电流增大.(D) 载流螺线管中插入铁芯. [ B ]63、如图所示,闭合电路由带铁芯的螺线管,电源,滑线变阻器组成.问在下列哪一种情况下可使线圈中产生的感应电动势与原电流I的方向相反. (A) 滑线变阻器的触点A 向左滑动.(B) 滑线变阻器的触点A 向右滑动.(C) 螺线管上接点B 向左移动(忽略长螺线管的电阻).(D) 把铁芯从螺线管中抽出. [ A ]a b c d ab c dab c d v v vⅠⅢⅡ IBiIAB I64、 一矩形线框长为a 宽为b ,置于均匀磁场中,线框绕OO ′轴,以匀角速度ω旋转(如图所示).设t =0时,线框平面处于纸面内,则任一时刻感应电动势的大小为(A) 2abB | cos ω t |. (B) ω abB(C)t abB ωωcos 21. (D) ω abB | cos ω t |.(E) ω abB | sin ω t |. [ D ]65、一无限长直导体薄板宽为l ,板面与z 轴垂直,板的长度方向沿y 轴,板的两侧与一个伏特计相接,如图.整个系统放在磁感强度为B 的均匀磁场中,B的方向沿z 轴正方向.如果伏特计与导体平板均以速度v向y 轴正方向移动,则伏特计指示的电压值为(A) 0. (B) 21v Bl .(C) v Bl . (D) 2v Bl . [ A ]66、一根长度为L 的铜棒,在均匀磁场 B中以匀角速度ω绕通过其一端O 的定轴旋转着,B 的方向垂直铜棒转动的平面,如图所示.设t =0时,铜棒与Ob 成θ 角(b 为铜棒转动的平面上的一个固定点),则在任一时刻t 这根铜棒两端之间的感应电动势是:(A) )cos(2θωω+t B L . (B) t B L ωωcos 212.(C) )cos(22θωω+t B L . (D) B L 2ω.(E)B L 221ω. [ E ]67、如图,长度为l 的直导线ab 在均匀磁场B中以速度v 移动,直导线ab 中的电动势为(A) Bl v . (B) Bl v sin α. (C) Bl v cos α. (D) 0. [ D ]68、如图所示,导体棒AB 在均匀磁场B 中 绕通过C 点的垂直于棒长且沿磁场方向的轴OO ' 转动(角速度ω与B 同方向),BC 的长度为棒长的31,则(A) A 点比B 点电势高. (B) A 点与B 点电势相等.(B) A 点比B 点电势低. (D) 有稳恒电流从A 点流向B 点.O O ′Ba bωz By lVBω L O θ blBb avαOO ′ BB A C[ A ]69、如图所示,矩形区域为均匀稳恒磁场,半圆形闭合导线回路在纸面内绕轴O 作逆时针方向匀角速转动,O 点是圆心且恰好落在磁场的边缘上,半圆形闭合导线完全在磁场外时开始计时.图(A)—(D)的--t 函数图象中哪一条属于半圆形导线回路中产生的感应电动势?[ A ]70、如图所示,M 、N 为水平面内两根平行金属导轨,ab 与cd 为垂直于导轨并可在其上自由滑动的两根直裸导线.外磁场垂直水平面向上.当外力使ab 向右平移时,cd (A) 不动. (B) 转动. (C) 向左移动. (D) 向右移动.[ D ]72、已知一螺绕环的自感系数为L .若将该螺绕环锯成两个半环式的螺线管,则两个半环螺线管的自感系数(A) 都等于L 21. (B) 有一个大于L 21,另一个小于L 21.(C) 都大于L 21. (D) 都小于L 21. [ D ]73、面积为S 和2 S 的两圆线圈1、2如图放置,通有相同的电流I .线圈1的电流所产生的通过线圈2的磁通用Φ21表示,线圈2的电流所产生的通过线圈1的磁通用Φ12表示,则Φ21和Φ12的大小关系为: (A) Φ21 =2Φ12. (B) Φ21 >Φ12.(C) Φ21 =Φ12. (D) Φ21 =21Φ12. [ A ]76、两根很长的平行直导线,其间距离d 、与电源组成回路如图.已知导线上的电流为I ,两根导线的横截面的半径均为r 0.设用L 表示两导线回路单位长度的自感系数,则沿导线单位长度的空间内的总磁能W m 为(A) 221LI .(B) 221LI ⎰∞+π-+0d π2])(2π2[2002r r r r d I r I I μμ (C) ∞.☜ t O (A)☜t O(C)☜t O (B)☜t O(D)C DO ωBc abd N M B12S 2 SI I2(D)221LI 020ln 2r dI π+μ [ A ]77、真空中一根无限长直细导线上通电流I ,则距导线垂直距离为a 的空间某点处的磁能密度为(A) 200)2(21aI πμμ (B)200)2(21a I πμμ (C) 20)2(21I a μπ (D) 200)2(21a I μμ [ B ] 79、对位移电流,有下述四种说法,请指出哪一种说法正确.(A) 位移电流是指变化电场.(B) 位移电流是由线性变化磁场产生的. (C) 位移电流的热效应服从焦耳─楞次定律.(D) 位移电流的磁效应不服从安培环路定理. [ A ]80、在感应电场中电磁感应定律可写成t l E L K d d d Φ-=⎰⋅ ,式中K E 为感应电场电场强度.此式表明:(A) 闭合曲线L 上K E处处相等. (B) 感应电场是保守力场.(C) 感应电场的电场强度线不是闭合曲线. (D) 在感应电场中不能像对静电场那样引入电势的概念. [ D ] 二、填空题(每题4分)81、一磁场的磁感强度为k c j b i a B++= (SI),则通过一半径为R ,开口向z 轴正方向的半球壳表面的磁通量的大小为πR 2c Wb .82、真空中有一载有稳恒电流I 的细线圈,则通过包围该线圈的封闭曲面S的磁通量Φ=⎰⋅Ss d B=0.若通过S 面上某面元S d 的元磁通为d Φ,而线圈中的电流增加为2I 时,通过同一面元的元磁通为d Φ',则d Φ∶d Φ'=1:285、在真空中,将一根无限长载流导线在一平面内弯成如图所示的形状,并通以电流I ,则圆心O 点的磁感强度B 的值为μ0I/(4a ).87、在真空中,电流由长直导线1沿半径方向经a 点流入一由电阻均匀的导线构成的圆环,再由b 点沿切向从圆环流出,经长直导线2返回电源(如图).已知直导线上的电流强度为I ,圆环半径为R .a 、b 和圆心O 在同一直线上,则O 处的磁感强度B 的大小为_μ0I/(4R π)__.I IIa Oa b1 O 291、边长为2a 的等边三角形线圈,通有电流I ,则线圈中心 处的磁感强度的大小为___9μ0I /(4πa )__.92、两根长直导线通有电流I ,图示有三种环路;在每种情况下,⎰⋅l B d 等于: ________μ0I ___(对环路a ).________0____(对环路b ).___2μ0I ____(对环路c ).94、如图,在无限长直载流导线的右侧有面积为S 1和S 2的两个矩形回路.两个回路与长直载流导线在同一平面,且矩形回路的一边与长直载流导线平行.则通过面积为S 1的矩形回路的磁通量与通过面积为S 2的矩形回路的磁通量之比为__1:1__.96、如图所示的空间区域内,分布着方向垂直于纸面的匀强磁场,在纸面内有一正方形边框abcd (磁场以边框为界).而a 、b 、c 三个角顶处开有很小的缺口.今有一束具有不同速度的电子由a 缺口沿ad 方向射入磁场区域,若b 、c 两缺口处分别有电子射出,则此两处出射电子的速率之比v b /v c =_1:2_101、电子在磁感强度为B的匀强磁场中垂直于磁力线运动.若轨道的曲率半径为R ,则磁场作用于电子上力的大小F =__ R(eB)2/(m e )__. 103、质量m ,电荷q 的粒子具有动能E ,垂直磁感线方向飞入磁感强度为B 的匀强磁场中.当该粒子越出磁场时,运动方向恰与进入时的方向相反,那么沿粒子飞入的方向上磁场的最小宽度L =__)/(2qB Em _____.104、如图所示,一根通电流I 的导线,被折成长度分别为a 、b ,夹角为 120°的两段,并置于均匀磁场B中,若导线的长度为b 的一段与B平行,则a ,b 两段载流导线所受的合磁 力的大小为___2/3aIB __.O60°I a ab ⊗⊙ c I I c aS 1S 2aa2aa b c dBa b I120°B105、如图所示,在真空中有一半径为a 的3/4圆弧形的导线,其中通以稳恒电流I ,导线置于均匀外磁场B 中,且B与导线所在平面垂直.则该载流导线bc 所受的磁力大小为__aIB 2__.108、一面积为S ,载有电流I 的平面闭合线圈置于磁感强度为B的均匀磁场中,此线圈受到的最大磁力矩的大小为___ IBS__,此时通过线圈的磁通量为____0_.当此线圈受到最小的磁力矩作用时通过线圈的磁通量为__BS__.109.已知载流圆线圈1与载流正方形线圈2在其中心O 处产生的磁感强度大小之比为B 1∶B 2 =1∶2,若两线圈所围面积相等,两线圈彼此平行地放置在均匀外磁场中,则它们所受力矩之比M 1∶M 2 =23)2(-π.110、已知面积相等的载流圆线圈与载流正方形线圈的磁矩之比为2∶1,圆线圈在其中心处产生的磁感强度为B 0,那么正方形线圈(边长为a )在磁感强度为B的均匀外磁场中所受最大磁力矩为__ B 0Ba 3/(0μπ)__.111、有一长20 cm 、直径1 cm 的螺线管,它上面均匀绕有1000匝线圈,通以I = 10 A 的电流.今把它放入B = 0.2 T 的均匀磁场中,则螺线管受到的最大的作用力F =__0__螺线管受到的最大力矩值M =_0.157Nm __.112、电流元l Id 在磁场中某处沿直角坐标系的x 轴方向放置时不受力,把电流元转到y 轴正方向时受到的力沿z 轴反方向,该处磁感强度B指向___+x _方向.113、如图,有一N 匝载流为I 的平面线圈(密绕),其面积为S ,则在图示均匀磁场B的作用下,线圈所受到的磁力矩为_ NISB _.线圈法向矢量n 将转向__ y 轴正方向_.114、如图,半圆形线圈(半径为R )通有电流I .线圈处在与线圈平面平行向右的均匀磁场B中.线圈所受磁力矩的大小为 IB R 221π,方向为__在图面中向上_.把线圈绕OO '轴转过角 度ππn +2,(n=1,2,…)时,磁力矩恰为零.aa Ic bBOyxzOI O z y x B nOO ′RI B116、如图所示,在纸面上的直角坐标系中,有一根载流导线AC 置于垂直于纸面的均匀磁场B中,若I = 1 A ,B = 0.1 T ,则AC 导线所受的磁力大小为_5×10-3N __. 117、如图,一根载流导线被弯成半径为R 的1/4圆弧,放在磁感强度为B 的均匀磁场中,则载流导线ab 所受磁场的作用力的大小为BIR 2,方向沿y 轴正向 119、一无限长载流直导线,通有电流I ,弯成如图形状.设各线段皆在纸面内,则P 点磁感强度B的大小为aIB πμ830=120、一弯曲的载流导线在同一平面内,形状如图(O 点是半径为R 1和R 2的两个半圆弧的共同圆心,电流自无穷远来到无穷远去),则O 点磁感强度的大小是2020100444R IR IR IB πμμμ-+=121、已知两长直细导线A 、B 通有电流I A = 1 A ,I B = 2 A ,电流流向和放置位置如图.设I A 与I B 在P 点产生的磁感强度大小分别为B A 和B B ,则B A 与B B之比为1:1__,此时P 点处磁感强度P B与x 轴夹角为_30o __.137、一平行板空气电容器的两极板都是半径为R 的圆形导体片,在充电时,板间电场强度的变化率为d E /d t .若略去边缘效应,则两板间的位移电流为 dt dE R /20πε.140、平行板电容器的电容C 为20.0 μF ,两板上的电压变化率为d U /d t =1.50×105 V ·s -1,则该平行板电容器中的位移电流为_3A _.O A c 3 4x (cm) y (cm) × × ×× × ×× × × Ixy a b OI 45° 45° BPaI aO IR 1 R 2xPI A I B1 m2 m。

大学物理电磁学测试题

大学物理电磁学测试题

(4)选择题大学物理电磁学测试题舱室 姓名一.选择1. 一元电流在其环绕的平面内各点的磁感应强度B 【 】 (A) 方向相同, 大小相等; (B) 方向不同,大小不等; (C) 方向相同, 大小不等; (D) 方向不同,大小相等。

2. 下列各种场中的保守力场为:【 】(A) 静电场; (B) 稳恒磁场; (C) 涡旋电场; (D) 变化磁场。

3. 一带电粒子以速度v 垂直射入匀强磁场 B 中,它的运动轨迹是半径为R 的圆, 若要半径变为2R ,磁场B 应变为: 【 】B 22)D (B 21)C (B 2)B (B 2)A ( 4. 如图所示导线框a ,b ,c ,d 置于均匀磁场中(B 的方向竖直向上), 线框可绕AB 轴转动。

导线通电时,转过α角后,达到稳定平衡,如果导线改用密度为原来1/2的材料做,欲保持原来的稳定平衡位置(即α不变), 可以采用哪一种办法? (导线是均匀的) 【 】(A) 将磁场B 减为原来的1/2或线框中电流强度减为原来的1/2;(B) 将导线的bc 部分长度减小为原来的1/2; (C) 将导线ab 和cd 部分长度减小为原来的1/2;(D) 将磁场B 减少1/4, 线框中电流强度减少1/4。

5. 如图所示,L L 12,回路的圆周半径相同, 无限长直电流I I 12,, 在L L 12,内的位置一样,但在 (b) 图中L 2外又有一无限长直电流I 3, P P 12与为两圆上的对应点,在以下结论中正确的结论是【 】(A)2112P P L L B B ,l d B l d B =⋅=⋅⎰⎰且(B)2121P P L L B B ,l d B l d B =⋅≠⋅⎰⎰且(C) 2121P P L L B B ,l d B l d B ≠⋅=⋅⎰⎰且(D)⎰⎰≠⋅≠⋅1212L P P L B B ,l d B l d B 且(3)填空题二.填空1.两根平行金属棒相距L ,金属杆a ,b 可在其上自由滑动,如图所示在两棒的同一端接一电动势为E ,内阻R 的电源,忽略金属棒及ab杆的电阻,整个装置放在均匀磁场B 中,则a ,b 杆滑动的极限速度 。

物理学导论(电磁学)期末单元测试与答案

物理学导论(电磁学)期末单元测试与答案

一、单选题1、总结了电磁现象规律的基本理论是A.库仑定律B.法拉第电磁感应定律C.安培定律D.麦克斯韦方程组正确答案:D2、描述稳恒电路和交变电路规律的两个主要理论是A.欧姆定律和库仑定律B.欧姆定律和基尔霍夫方程组C.库仑定律和洛伦兹力公式D.安培定律和基尔霍夫方程组正确答案:B3、1747年美国科学家富兰克林进行雷电实验的主要意义是A.使人们认识到电现象和磁现象是无关的B.使人们认识到雷电和地面电现象的性质相同C.促使人们发明了感应起电机D.促使人们发明了莱顿瓶正确答案:B4、1831年,英国物理学家法拉第从实验中发现了A. 电荷之间的相互作用力公式B.电流的磁效应现象C.电磁感应现象D.磁荷之间的相互作用力公式正确答案:C5、安培为了说明磁现象的本质,提出了A.磁场的概念B.分子环流假说C. 磁荷的概念D.静电、静磁公式正确答案:B6、下列关于电荷的说法正确的是A.中性原子内部不含有任何电荷B.两个电子之间的相互作用力为吸引力C.带正电的原子与等量的负电荷复合后,原子恢复中性D.中性原子失去电子会带负电正确答案:C7、关于下雨时的雷鸣闪电现象,下列说法错误的是A.天空中产生的电荷与地面电荷的性质不同B.下雨时云层的上、下表面会带有符号相反的电荷C.正负电荷复合时,会释放巨大能量,产生爆炸,所以我们会听到雷鸣声D.下降的雨滴与上升的热气摩擦,会产生正负电荷分离正确答案:A8、声波的传播速度大约为A.每秒300千米B.每秒3300米C.每秒330米D.每秒3万米正确答案:C9、极光一般只能在地球的两极观察到,是因为A.太阳辐射的高能粒子只能沿着与地磁场垂直的方向传播B.地球的两极含有大量的氧分子和氮分子,有利于产生极光C.地球的两极人烟稀少,便于观察D.太阳辐射的高能粒子只能沿着与地磁场平行的方向传播正确答案:D10、总结了电磁学的实验和理论研究结果,提出电磁场基本方程组的科学家是A.德国的欧姆B.英国的法拉第C.英国的麦克斯韦D.法国的安培正确答案:C二、判断题1、实验发现,虽然电能够产生磁,但磁不能产生电正确答案:×2、物质发光是由于组成物质的粒子在不同能量状态间的跃迁正确答案:√3、机械能、电能、热能及光能之间可以相互转换正确答案:√4、发电机是利用电磁感应原理产生电流的装置正确答案:√5、变压器是把电能转换为机械能的装置正确答案:×。

电磁学期末测试试题及答案

电磁学期末测试试题及答案

学生姓名__________ 学号_________________院系___________ 班级___________-------------------------------密------------------------------封----------------------------线---------------------------------烟台大学 ~ 学年第一学期普通物理(电磁学)试卷A(考试时间为120分钟)题号 1 2 3 4 5 6 7 8 9 10 总分 得分阅卷人合分人一、简答题 (38分)1、 (6分) 长度为L 的圆柱体底面半径为r ,以x 轴为对称轴,电场ˆ200E x=K,写出通过圆柱体全面积的电通量。

2、 (6分) 导体在磁场中运动产生动生电动势,从电源电动势的角度来看,是存在一种非静电力可以将正电荷从低电位处移动到高电位处,表示为:∫+−⋅=l d K GG ε。

试解释动生电动势中这种非静电力K G来源。

3、 (10分) 空间某一区域的磁场为ˆ0.080T B x=K,一质子以55ˆˆ210310v x y =×+×K的速度射入磁场,写出质子螺线轨迹的半径和螺距。

(质子质量271.6710kg p m −=×, 电荷191.610C e −=×)4、 (6分) 如图所示,写出矩形线圈与长直导线之间的互感。

5、 (10分) 写出麦克斯韦方程组的积分形式,并解释各式的物理意义。

二、计算题 (62分)1、 (16分) 球形电容器由半径为1R 的导体球和与它同心的导体球壳构成,壳的内半径为2R ,其间有两层均匀电介质,分界面的半径为r ,介电常数分别为1ε和2ε,求 (1)电容C ;(2)当内球带电Q −时,各个表面上的极化电荷面密度eσ′。

2、(12分) 电缆由一导体圆柱和一同轴的导体圆筒构成。

使用时,电流I 从一导体流去,从另一导体流回,电流都均匀分布在截面上。

电磁学的测试题

电磁学的测试题

电磁学的测试题电磁学是物理学中非常重要的一个分支,研究电和磁现象之间的相互作用。

在学习电磁学的过程中,进行一些测试题是不可或缺的,以检验我们对电磁学知识的掌握程度。

接下来,我将为大家提供一些电磁学的测试题。

第一部分:选择题1. 下列哪个是能量形式的传播?A. 电磁波B. 电流C. 电压D. 电荷2. 当一个导体通过一个磁场时,磁场力对导体的作用为何?A. 使导体发光B. 使导体加热C. 使导体发声D. 使导体受力3. 以下哪个物理量单位不是磁感应强度的单位?A. 特斯拉B. 高斯C. 韦伯D. 坎培4. 电流环路中发生感应电动势的条件是什么?A. 磁场线交变B. 磁场线垂直C. 电流方向变化D. 电流大小变化5. 常用的直流电机是通过什么原理工作的?A. 电动势感应原理B. 电流感应原理C. 洛伦兹力原理D. 磁感应强度原理第二部分:计算题1. 一个长直导线,电流为 I = 2A,位于原点处的磁感应强度为 B = 5T,求导线上某一点的磁场力。

2. 一根长度为 2m 的导线,位于 x 轴上,电流为 I = 3A,位于点P(4,0,0) 处的磁感应强度为 B = 2T,求点 P 处导线所受的磁场力。

第三部分:简答题1. 什么是法拉第电磁感应定律?请简要解释。

2. 请解释電磁波的特性和应用。

3. 解释电磁感应发电原理。

4. 简述电磁波运动方式的三种常见形式。

5. 简述洛伦兹力的定义和计算公式。

以上就是电磁学的一些测试题,包括选择题、计算题和简答题。

这些测试题旨在帮助大家巩固和加深对电磁学知识的理解和应用。

通过反复练习和思考这些题目,相信大家在电磁学学科上会有更进一步的提高。

希望这些测试题对大家的学习有所帮助!。

(完整版)电磁学练习题(毕奥—萨伐尔定律(2))

(完整版)电磁学练习题(毕奥—萨伐尔定律(2))

恒定磁场的高斯定理和安培环路定理1. 选择题1.磁场中高斯定理:⎰=•ss d B 0ϖϖ ,以下说法正确的是:( )A .高斯定理只适用于封闭曲面中没有永磁体和电流的情况B .高斯定理只适用于封闭曲面中没有电流的情况C .高斯定理只适用于稳恒磁场D .高斯定理也适用于交变磁场 答案:D2.在地球北半球的某区域,磁感应强度的大小为5104-⨯T ,方向与铅直线成60度角。

则穿过面积为1平方米的水平平面的磁通量 ( )A .0B .5104-⨯Wb C .5102-⨯Wb D .51046.3-⨯Wb答案:C3.一边长为l =2m 的立方体在坐标系的正方向放置,其中一个顶点与坐标系的原点重合。

有一均匀磁场)3610(k j i B ϖϖϖϖ++=通过立方体所在区域,通过立方体的总的磁通量有( )A .0B .40 WbC .24 WbD .12Wb 答案:A4.无限长直导线通有电流I ,右侧有两个相连的矩形回路,分别是1S 和2S ,则通过两个矩形回路1S 、2S 的磁通量之比为:( )。

A .1:2B .1:1C .1:4D .2:1 答案:B5.均匀磁场的磁感应强度B ϖ垂直于半径为R 的圆面,今以圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为()A .B R 22π B .B R 2π C .0 D .无法确定 答案:B6.在磁感强度为B ϖ的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n ϖ与B ϖ的夹角为α,则通过半球面S 的磁通量为( )A .B r2π B .B r 22π C .απsin 2B r - D .απcos 2B r -答案:D7.若空间存在两根无限长直载流导线,空间的磁场分布就不具有简单的对称性,则该磁场分布( )A .不能用安培环路定理来计算B .可以直接用安培环路定理求出C .只能用毕奥-萨伐尔定律求出D .可以用安培环路定理和磁感应强度的叠加原理求出 答案:D 8.在图(a)和(b)中各有一半径相同的圆形回路L 1和L 2,圆周内有电流I 1和I 2,其分布相同,且均在真空中,但在(b)图中L 2回路外有电流I 3,P 2、P 1为两圆形回路上的对应点,则:()A .2121,P P L L B B l d B l d B =⋅=⋅⎰⎰ϖϖϖϖ B .2121,P P L L B B l d B l d B ≠⋅≠⋅⎰⎰ϖϖϖϖC .2121,P P L L B B l d B l d B ≠⋅=⋅⎰⎰ϖϖϖϖ D .2121,P P L L B B l d B l d B =⋅≠⋅⎰⎰ϖϖϖϖ答案:C9.一载有电流I 的导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺线管(R=2r ),两螺线管单位长度上的匝数相等,两螺线管中的磁感应强度大小B R 和B r 应满足()A .B R =2B r B .B R =B rC .2B R =B rD .B R =4B r 答案:B10.无限长载流空心圆柱导体的内外半径分别为a,b,电流在导体截面上均匀分布,则空间各处的B ρ的大小与场点到圆柱中心轴线的距离r 的关系定性地如图所示。

(完整版)初中电磁学练习题和答案

(完整版)初中电磁学练习题和答案
B.a
B、螺线管中电流强度的方向
左端为打极,右端为]「极。下列表示从丄;极到丁极磁性强弱变化情况的图像中正确的是
( )
b端是N极,磁性减弱B.a端是S板,磁性增强C. b端是S极,磁性减弱
AB
14、如图所示,通电螺线管周围的小磁针静止时,小磁针
B•改装成的力量计的零刻度线就是原电流表的零刻度线
11、有两根大头针被磁铁一端吸引,悬在磁铁下方,如下图所示的四幅图中能正确反映实际情况的是
I
A.IAb>UBc
U
3、两个定值电阻,甲标有“16Q,1.5A”
是()A.
19V
B.
I
乙标有“22Q,0.5A”,现把它们串联起来,则该串联电路两端允许加的最高电压
B. 41V
C.35V
D. 57V
4、一个定值电阻接在某段电路中,当电压为 是()A•电流为原来的2倍
阻为原来的1/2
1.5V时,通过的电流为
C.握力越大电路总电阻越小,总电流越大
A、螺线管的匝数
B.将向中间靠拢
A.只有甲
13、如图所示,一根条形磁铁
如图当开关S闭合后,滑动变阻器的滑片向左移动时,下列说法正确的是
5所示,可能是大米的是
握力越大,弹簧的长度越长;握力越小,弹簧长度越短
12、有三种干燥的物质,用三根完全相同的磁铁分别插入其中
C、螺线管中有无铁心
4乙所示,则下列说法正确的是
B•天然气浓度减小,电流表示数变大
D•天然气浓度减小,电压表与电流表示数的比值不变
R>R电压表示数分别Ui、lb电流表A、A的示数分别为I
D. U<U
I
U—I”关系图像

9题

大学电磁学测试题含答案

大学电磁学测试题含答案

大学电磁学测试题含答案一、选择题(每题2分,共20分)1.电磁波在真空中的传播速度是多少?A.300,000km/sB.299,792km/sC.299,792km/s(光速)D.299,792km/s(电磁波速度)答案:C2.法拉第电磁感应定律描述了什么现象?A.磁场对电流的作用B.电流对磁场的作用C.变化的磁场产生电场D.变化的电场产生磁场答案:C3.根据麦克斯韦方程组,以下哪项不是电磁场的基本方程?A.高斯定律B.高斯磁定律C.法拉第电磁感应定律D.欧姆定律答案:D4.电容器的电容与哪些因素有关?A.电容器的面积B.电容器的间距C.电介质材料D.所有以上因素答案:D5.以下哪种介质不能增强电场?A.电介质B.导体C.真空D.磁介质答案:B6.洛伦兹力定律描述了什么?A.磁场对运动电荷的作用B.电场对静止电荷的作用C.重力对物体的作用D.摩擦力对物体的作用答案:A7.电磁波的频率和波长之间有什么关系?A.频率与波长成正比B.频率与波长成反比C.频率与波长无关D.频率与波长成正比(错误选项)答案:B8.根据楞次定律,当线圈中的磁通量增加时,感应电流的方向如何?A.与磁通量增加的方向相同B.与磁通量增加的方向相反C.与磁通量增加的方向垂直D.与磁通量增加的方向无关答案:B9.什么是自感?A.电路中由于电流变化而产生的电磁感应B.电路中由于电压变化而产生的电流C.电路中由于电阻变化而产生的电压D.电路中由于电感变化而产生的电流答案:A10.以下哪种材料不是超导体?A.汞B.铅C.铜D.铝答案:C二、填空题(每空1分,共10分)1.电场强度的国际单位是_______。

答案:伏特/米2.电容器储存电荷的能力称为_______。

答案:电容3.磁场强度的国际单位是_______。

答案:特斯拉4.麦克斯韦方程组包括_______个基本方程。

答案:四个5.电感的国际单位是_______。

答案:亨利三、计算题(每题10分,共30分)1.一个平行板电容器,板间距离为2mm,板面积为0.01平方米,板间电介质的介电常数为2.5,求该电容器的电容。

大学电磁学测试题及答案

大学电磁学测试题及答案

大学电磁学测试题及答案一、选择题(每题2分,共20分)1. 以下哪个选项是麦克斯韦方程组中描述磁场变化产生电场的方程?A. ∇·E = ρ/ε₀B. ∇×E = -∂B/∂tC. ∇·B = 0D. ∇×B = μ₀J + ε₀μ₀∂E/∂t答案:B2. 在真空中,电磁波的传播速度是多少?A. 2.998×10^8 m/sB. 3.0×10^8 m/sC. 3.3×10^8 m/sD. 3.0×10^5 km/s答案:B3. 以下哪个物理量是标量?A. 电场强度B. 磁场强度C. 电荷D. 电流答案:C4. 根据洛伦兹力公式,当一个带电粒子垂直于磁场方向运动时,它受到的力的方向是?A. 与磁场方向相同B. 与磁场方向相反C. 与磁场方向垂直D. 与带电粒子运动方向相同答案:C5. 以下哪种情况会导致电磁波的偏振?A. 电磁波在真空中传播B. 电磁波在介质中传播C. 电磁波通过偏振片D. 电磁波通过非均匀介质答案:C6. 电磁感应定律表明,当磁场变化时,会在导体中产生什么?A. 电流B. 电压C. 电阻D. 电场答案:B7. 根据法拉第电磁感应定律,感应电动势与以下哪个因素成正比?A. 磁场强度B. 磁通量的变化率C. 导体长度D. 导体电阻答案:B8. 以下哪个选项不是电磁波的特性?A. 传播速度B. 波长C. 频率D. 质量答案:D9. 电磁波的波速、波长和频率之间的关系是什么?A. v = λfB. v = 1/(λf)C. v = λ/fD. v = f/λ答案:A10. 以下哪种介质对电磁波的传播速度影响最大?A. 真空B. 空气C. 水D. 玻璃答案:D二、填空题(每题2分,共20分)1. 电磁波的传播不需要______。

答案:介质2. 根据麦克斯韦方程组,电场的散度等于电荷密度除以______。

答案:真空电容率3. 电磁波的波长、频率和波速之间的关系可以用公式______表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013级物理学电磁学期末测试题
姓名 学号 一.填空题
1.在一边长为a 正方形的四个顶点分别放置一电荷量为q 的正点电荷,则顶点的电荷受力大小是 .
2.静电场中的电场的高斯定理公式和环路定理公式分别是 和 .
3.点电荷 q 处在不带电导体球壳的中心,壳的内外半径分别为R1和R2,则导体球壳的电势是 .
4.电流为I ,单位长度匝数为n 的无限长载流长直螺线管内部的磁场强度大小为 .
5.自感系数为L 的线圈,通过电流0I 是自感磁能为 .
二.判断题
1.真空中,两带相同电量的正电荷Q 的金属球a,b ,相距为r ,则a 受力大小大于
2
02r
4πεQ . ( )。

2.真空中,静电场中的场强E ,沿任意闭合回路的线积分可能不为0 . ( )。

3.静电场中,静电平衡的导体内部电势处处为0. ( )。

4.恒定电流的磁场中,磁感应强度沿一闭合路径 L 的线积分等于0.
( )。

5.楞次定律:感应电动势产生的感应电流方向,总是企图使感应电流产生的磁场通过回路的磁通量去阻碍该感应电流的磁通量的变化。

( )。

三.选择题
1.一半径为 R 的导体球的体电荷密度为ρ ,则在距球面 4R 处的电场强度大小为().
A.075ερR
B. 048ερR
C. 025ερR
D.0
16ερR
2.在边长为 a 的正四面体中心放一电荷 Q ,则通过一个侧面的电通量为 ( ) A.0
Q
ε B.0
2Q
ε C. 0
3Q
ε D.0
4Q
ε
3.两电容大小为C 的电容器并联,再与一电容大小为2C 的电容器串联后的电容大小为().
A.4C B.3C C.2C D.C
4.对半径为 R 载流为 I 的无限长直圆柱体,距轴线 r 处的 B 大小?() A.圆柱体内、圆柱体外都与 r 成正比;
B.圆柱体内与 r 成正比,圆柱体外与 r 成反比; C .圆柱体内、圆柱体外都与 r 成反比;
D .圆柱体内与 r 成反比, 圆柱体外与 r 成正比。

5.长为L 的铜棒,在磁感强度为的均匀磁B 场中以角速度 2w 在与磁场方向垂直的平面内绕棒的一端O匀速转动,则棒中的动生电动势大小为()。

A.
2L B ω B.221L B ω C.2
2
3L B ω D.2
2L B ω 四.解答题
1.求均匀带电球体内的电场 (设半径R, 电荷体密度ρ, 带电量Q ,用高斯定理求解).
2.用金属导线作成的直径和边长均为 a 的圆形和正方形回路中,通以相等的电流,试求它们中心处磁感应强度大小之比.
3.一长直同轴电缆,内外圆筒的半径为R1和 R2,今在电缆中通以随时间变化的电流I,I的变化率为恒量b,求圆筒轴线上的感应电场的场强。


参考答案及评分
一.填空题(每小题3分)
1.2028122a q πε)(+
2.0
s
εi
q s d E ∑=⋅⎰→
0d =⋅⎰l E L
3.
2
04R q πε
4.nI u 0
5.
2
0LI 2
1 二.判断题(每小题3分)
1.X 2.X 3.X 4.X 5.X
三.选择题(每小题4分)
1.A
2.D
3.D
4.B
5.A
四.解答题 1.(15分)
解:对称性分析,场强沿半径向外,且大小相等;(2分)
做如图半径为r 的高斯面,则:(1分)
E r ds E ds E s d E s
2s
s
4π==⋅=⋅⎰⎰⎰
→ (5分) 3
03
3
03
4
R
Qr r q i εεπρε==
∑内
(5分) ∴ 0
3034ερεπr
R r r Q E =
=
(2分) 2.(15分)
解:直径为a 圆形载流直导线中心的磁感应强度大小为:
a
I
u B 01=
(5分) 有限长直导线在距离为R 的磁感应强度大小为:
)cos (cos 4B 210θθπ-=
R
I
u (3分) 则在距离长直导线为2a ,41πθ=,432π
θ=的磁感应强度大小为:
a 22)43cos 4(cos 2
a 4B 000ππ
ππI u I u =-=
(3分) 故边长为a 正方形载流直导线中心的磁感应强度大小为:
a
224002πI
u B B =
=
(2分) 所以 2
221π
=
B B (2分)
O
3.(20分)
解:轴线上感应电场的分布 与无限长多层螺线管的轴线 上磁场的分布相同,在电 缆的外面,r>R2处不存在
电场。

作一矩形回路,则 (3分)
s d t B l E s L i
⋅∂∂-=⋅⎰⎰d (3分) r d t B l l E s i
⋅∂∂∆-=∆⎰
(2分) 又因为r
I
u B π20= (2分)
所以
r
b u r I
u t B ππ2t 200=∂∂=∂∂ (3分) 故dr r b u dr t B
E s s i ⋅-=⋅∂∂-=⎰⎰π20 (3分) 1
2
0ln 2R R b u E i π-
= (2分) 方向沿轴线向下。

(2分)
考察知识点
一.填空题
1.库仑定律、叠加原理
2.静电场中的电场的高斯定理和环路定理
3.电势的计算
4.磁感应强度的计算
5.自感磁能的计算
二.判断题
1.库仑定律
2.静电场中的电场的环路定理
3.静电平衡条件
4.恒定电流的磁场中的环路定理
5.楞次定律
三.选择题
1.电场的计算
2.电通量的计算
3.电容的串并联
4.磁感应强度的计算
5.动生电动势的计算
四.解答题
1.静电场中的电场的高斯定理的应用。

2.磁感应强度的计算、叠加原理。

3.法拉第电磁感应定律的应用。

相关文档
最新文档