最新苏科版七年级数学上册期中试卷
最新苏科版七年级上册数学期中测试题及答案
最新苏科版七年级上册数学期中测试题及答案班级___________ 姓名___________ 成绩_______(考试时间:120分钟 满分:150分)请注意:1.本试卷分选择题和非选择题两个部分.2.所有试题的答案均填写在答题纸上,答案写在试卷上无效.3.作图必须用2B 铅笔,并请加黑加粗.一、选择题(每小题3分,共18分)1.-2 的绝对值是( )A .-21 B .±2 C .2 D .-2 2.下列各组算式中,结果为负数的是( )A .)5(--B .|5|--C .)5()3(-⨯-D .2)5(- 3.下列计算正确的是( )A .7a +a =7a 2B .3x 2y -2yx 2=x 2yC .5y -3y =2D .3a +2b =5ab4.用代数式表示“a 的3倍与b 的差的平方”,正确的是( )A .(3a -b )2B .3(a -b)2C .3a -b 2D .(a -3b )25.已知a +b =4,c -d =-3,则(b +c )-(d -a )的值为( )A .7B .-7C .1D .-1 6.下列说法中正确的个数有( )①0是绝对值最小的有理数;②无限小数是无理数;③数轴上原点两侧的数互为相反数; ④a ,0,1x都是单项式; ⑤ 1432-+-x y x 是关于x ,y 的三次三项式,常数项是-1. A .2个 B .3个 C .4个 D .5个二、填空题(每题3分,共30分)7. 太阳半径大约是696000千米,将696000用科学记数法表示为 .8.一个数的绝对值是4,那么这个数是 .9. 多项式23322xy x y -+的最高次项系数为 . 10. 2x y -+的相反数是 .11.用“>”或“<”填空:--⎪⎭⎫ ⎝⎛--32. 12. 若代数式3x m y 2与-2x 3y n 是同类项,则m -n = .13. 比213-大而比312小的所有整数的和为 . 14.如图所示是计算机程序计算,若开始输入1-=x ,则最后输出的结果是 .15.校园足球联赛规则规定:赢一场得3分,平一场得1分,负一场得0分。
2024-2025学年苏科版七年级数学上册期中复习卷(含答案)
期中复习卷-2024-2025学年数学七年级上册苏科版(2024)一.选择题(共8小题)1.在下列数,+1,6.7,0,,﹣5,25%中整数有( )A.2个B.3个C.4个D.5个2.能源产业已成为云南省第一大支柱产业,目前正在推进的3000000千瓦光伏项目,将带动光伏、储能绿色能源装备的发展.3000000用科学记数法可以表示为( )A.0.3×108B.3×106C.30×105D.30×1063.我国部分地区的日温差较大,“早穿棉袄午穿纱”这句谚语描绘的就是某地这种奇妙的气温变化现象.若某市某日上午温度上升15℃记作+15℃,那么傍晚温度下降10℃记作( )A.﹣15℃B.+15℃C.﹣10℃D.+10℃4.﹣1.2﹣0.8=( )A.﹣2B.﹣0.4C.0.4D.25.如果x为有理数,式子2023﹣|x﹣2023|存在最大值,这个最大值是( )A.2023B.4046C.20D.06.如果单项式与x3y b是同类项,则a、b的值分别是( )A.2,2B.﹣3,2C.2,3D.3,27.当x=2时,代数式px3+qx+1的值等于2024,那么当x=﹣2时,代数式px3+qx+1的值为( )A.2024B.﹣2024C.2022D.﹣20228.小亮按如图所示的程序输入一个数x等于10,最后输出的结果为( )A.51B.251C.256D.255二.填空题(共8小题)9.计算:(1)﹣2﹣1= ;(2)(﹣2.1)+(+3.9)= ;(3)(﹣4)×6= ;10.数轴上表示﹣5与1这两个数对应的点之间的距离是 .11.已知|a|=3,,且a<0<b,则ab= .12.如图所示的数轴被墨迹盖住了一部分,则被遮住的所有整数个数为 .13.有理数a,b在数轴上的位置如图所示,若表示数b与﹣b的点相距36个单位长度,a与原点的距离是|b|的,则a= .14.已知单项式﹣2ab3与4a n b m+1是同类项,则m+n= .15.如果(k﹣2)x3+(|k|﹣2)x2﹣5是关于x的三次二项式,则k的值为 .16.某公园准备修建一块长方形草坪,长为35m,宽为25m.并在草坪上修建如图所示的十字路,已知十字路宽x m,则修建的十字路的面积是 m2.(用含x的代数式表示)三.解答题(共8小题)17.计算:(1)﹣6+3+2﹣1(2)(3)(4)18.已知,求ab﹣(a+b)c的值.19.先化简,再求值:2(ab2+3a2b)﹣3(ab2+a2b)﹣a2b,其中,b=2.20.已知数a,b表示的点在数轴上的位置如图所示.(1)在数轴上表示出a,b的相反数的位置;(2)若数b与其相反数相距20个单位长度,则b表示的数是多少?(3)在(2)的条件下,若数a表示的点与数b的相反数表示的点相距5个单位长度,求a表示的数是多少?21.在数学活动课上,李老师设计了一个游戏活动,四名同学分别代表一种运算,四名同学可以任意排列,每次排列代表一种运算顺序,剩余同学中,一名学生负责说一个数,其他同学负责运算,运算结果既对又快着获胜,可以得到一个奖品.F面我们用四个卡片代表四名同学(如图):列式,并计算:(1)﹣3经过A、B、C、D的顺序运算后,结果是多少?(2)5经过B、C、A、D的顺序运算后,结果是多少?22.某同学做一道数学题,已知两个多项式A、B,其中B=2x2y﹣3xy+2x+5,试求A+B.这位同学把A+B 误看成A﹣B,结果求出的答案为4x2y+xy﹣x﹣4.(1)请你替这位同学求出A+B的正确答案;(2)若A﹣3B的值与x的取值无关,求y的值.23.阅读下列材料,我们知道,5x+3x﹣4x=(5+3﹣4)x=4x,类似的,我们把(a+b)看成一个整体,则5(a+b)+3(a+b)﹣4(a+b)=(5+3﹣4)(a+b)=4(a+b),“整体思想“是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛,尝试应用;(1)把(a﹣b)2看成一个整体,合并2(a﹣b)2+6(a﹣b)2﹣3(a﹣b)2的结果 .(2)已知m+n=15,3a﹣2b=11,求2m+6a﹣(4b﹣2n)的值.(3)拓展探索:已知a﹣3b=4,3b﹣c=﹣3,c﹣d=11,求(a﹣c)+(3b﹣d)﹣(3b﹣c)的值.24.如图,通过观察,小丽同学发现可以用这样的方法确定每个图形中黑色和白色小正方形的总个数:图(1)中共有1个黑色小正方形,图(2)中共有1+3=22个黑白小正方形,图(3)中共有1+3+5=32个黑白小正方形,图(4)中共有1+3+5+7=42个黑白小正方形,回答下列问题.(1)根据前四个图中计算黑白小正方形的总个数的方法和规律,则第(5)个图中计算小正方形个数的等式是: ;(2)根据规律,第50个图比第49个图多 个小正方形;(3)根据每个图中计算黑白小正方形总个数的方法和规律,计算:①1+3+5+…+197+199;②201+203+205+…+297+299.期中复习卷-2024-2025学年数学七年级上册苏科版(2024)参考答案与试题解析一.选择题(共8小题)1.在下列数,+1,6.7,0,,﹣5,25%中整数有( )A.2个B.3个C.4个D.5个【解答】解:,+1,6.7,0,,﹣5,25%中整数有:+1,0,﹣5,共3个,故选:B.2.能源产业已成为云南省第一大支柱产业,目前正在推进的3000000千瓦光伏项目,将带动光伏、储能绿色能源装备的发展.3000000用科学记数法可以表示为( )A.0.3×108B.3×106C.30×105D.30×106【解答】解:3000000=3×106,故选:B.3.我国部分地区的日温差较大,“早穿棉袄午穿纱”这句谚语描绘的就是某地这种奇妙的气温变化现象.若某市某日上午温度上升15℃记作+15℃,那么傍晚温度下降10℃记作( )A.﹣15℃B.+15℃C.﹣10℃D.+10℃【解答】解:温度上升15℃记作+15℃,那么傍晚温度下降10℃记作﹣10℃,故选:C.4.﹣1.2﹣0.8=( )A.﹣2B.﹣0.4C.0.4D.2【解答】解:﹣1.2﹣0.8=﹣1.2+(﹣0.8)=﹣2,故选:A.5.如果x为有理数,式子2023﹣|x﹣2023|存在最大值,这个最大值是( )A.2023B.4046C.20D.0【解答】解:∵绝对值具有非负性,∴|x﹣2023|≥0,∵2023﹣|x﹣2023|有最大值,∴当|x﹣2023|=0时,式子有最大值,此时的值是2023,故A正确.故选:A.6.如果单项式与x3y b是同类项,则a、b的值分别是( )A.2,2B.﹣3,2C.2,3D.3,2【解答】解:由同类项定义可知a=3,b=2.故选:D.7.当x=2时,代数式px3+qx+1的值等于2024,那么当x=﹣2时,代数式px3+qx+1的值为( )A.2024B.﹣2024C.2022D.﹣2022【解答】解:当x=2时,px3+qx+1=8p+2q+1=2024,∴4p+q=,∴当x=﹣2时,px3+qx+1=﹣8p﹣2q+1=﹣2(4p+q)+1=﹣+1=﹣2022.故选:D.8.小亮按如图所示的程序输入一个数x等于10,最后输出的结果为( )A.51B.251C.256D.255【解答】解:当x=10时,5x+1=51<200,此时输入的数为51,5x+1=256>200,所以输出的结果为256.故选:C.二.填空题(共8小题)9.计算:(1)﹣2﹣1= ﹣3 ;(2)(﹣2.1)+(+3.9)= 1.8 ;(3)(﹣4)×6= ﹣24 ;【解答】解:(1)原式=﹣3,故答案为:﹣3;(2)原式=1.8,故答案为:1.8;(3)原式=﹣24,故答案为:﹣24.10.数轴上表示﹣5与1这两个数对应的点之间的距离是 6 .【解答】解:如图,点A所表示的数是﹣5,点B所表示的数是1,所以AB=|1﹣(﹣5)|=6,故答案为:6.11.已知|a|=3,,且a<0<b,则ab= ﹣1 .【解答】解:∵|a|=3,,a<0<b,∴,∴,∴.故答案为:﹣1.12.如图所示的数轴被墨迹盖住了一部分,则被遮住的所有整数个数为 13 .【解答】解:根据题意得:被盖住的整数为﹣10,﹣9,﹣8,﹣7,﹣6,﹣5,7,8,9,10,11,12,13,∴被盖住的整数的个数为13,故答案为:13.13.有理数a,b在数轴上的位置如图所示,若表示数b与﹣b的点相距36个单位长度,a与原点的距离是|b|的,则a= 6 .【解答】解:∵表示数b与﹣b的点相距36个单位长度,∴,∵a与原点的距离是|b|的,∴|a|=6,∴a=±6,由数轴得:a>0,∴a=6.故答案为:6.14.已知单项式﹣2ab3与4a n b m+1是同类项,则m+n= 3 .【解答】解:由同类项定义可知n=1,m+1=3,解得m=2,n=1,∴m+n=2+1=3.故答案为:3.15.如果(k﹣2)x3+(|k|﹣2)x2﹣5是关于x的三次二项式,则k的值为 ﹣2 .【解答】解:∵多项式(k﹣2)x3+(|k|﹣2)x2﹣5是三次二项式,∴|k|﹣2=0,k﹣2≠0,∴k=﹣2.故答案为:﹣2.16.某公园准备修建一块长方形草坪,长为35m,宽为25m.并在草坪上修建如图所示的十字路,已知十字路宽x m,则修建的十字路的面积是 (60x﹣x2) m2.(用含x的代数式表示)【解答】解:由图可得,修建的十字路的面积是:35x+25x﹣x2=(60x﹣x2)m2,故答案为:(60x﹣x2).三.解答题(共8小题)17.计算:(1)﹣6+3+2﹣1(2)(3)(4)【解答】解:(1)原式=﹣3+2﹣1=﹣1﹣1=﹣2;(2)原式===;(3)原式==﹣1﹣5﹣3=﹣9;(4)==﹣20+8﹣9=﹣21.18.已知,求ab﹣(a+b)c的值.【解答】解:∵,∴a+1=0,2b﹣5=0,=0,∴a=﹣1,b=,c=,∴ab﹣(a+b)c=.19.先化简,再求值:2(ab2+3a2b)﹣3(ab2+a2b)﹣a2b,其中,b=2.【解答】解:原式=2ab2+6a2b﹣3ab2﹣3a2b﹣a2b=﹣ab2+2a2b,当a=﹣,b=2时,原式=﹣(﹣)×22+2×(﹣)2×2=2+1=3.20.已知数a,b表示的点在数轴上的位置如图所示.(1)在数轴上表示出a,b的相反数的位置;(2)若数b与其相反数相距20个单位长度,则b表示的数是多少?(3)在(2)的条件下,若数a表示的点与数b的相反数表示的点相距5个单位长度,求a表示的数是多少?【解答】解:(1)如图,;(2)数b与其相反数相距20个单位长度,则b表示的点到原点的距离为10,所以b表示的数是﹣10;(3)因为﹣b表示的点到原点的距离为10,而数a表示的点与数b的相反数表示的点相距5个单位长度,所以a表示的点到原点的距离为5,所以a表示的数是5.21.在数学活动课上,李老师设计了一个游戏活动,四名同学分别代表一种运算,四名同学可以任意排列,每次排列代表一种运算顺序,剩余同学中,一名学生负责说一个数,其他同学负责运算,运算结果既对又快着获胜,可以得到一个奖品.F面我们用四个卡片代表四名同学(如图):列式,并计算:(1)﹣3经过A、B、C、D的顺序运算后,结果是多少?(2)5经过B、C、A、D的顺序运算后,结果是多少?【解答】解:(1)[(﹣3)×2﹣(﹣5)]÷3+6=(﹣6+5)÷3+6==;(2)[5﹣(﹣5)]÷3×2+6=(5+5)÷3×2+6==.22.某同学做一道数学题,已知两个多项式A、B,其中B=2x2y﹣3xy+2x+5,试求A+B.这位同学把A+B 误看成A﹣B,结果求出的答案为4x2y+xy﹣x﹣4.(1)请你替这位同学求出A+B的正确答案;(2)若A﹣3B的值与x的取值无关,求y的值.【解答】解:(1)由题意可得,A﹣B=4x2y+xy﹣x﹣4,∴A=4x2y+xy﹣x﹣4+(2x2y﹣3xy+2x+5)=4x2y+xy﹣x﹣4+2x2y﹣3xy+2x+5=6x2y﹣2xy+x+1,∴A+B=6x2y﹣2xy+x+1+(2x2y﹣3xy+2x+5)=6x2y﹣2xy+x+1+2x2y﹣3xy+2x+5=8x2y﹣5xy+3x+6;(2)A﹣3B=6x2y﹣2xy+x+1﹣3(2x2y﹣3xy+2x+5),=6x2y﹣2xy+x+1﹣6x2y+9xy﹣6x﹣15,=7xy﹣5x﹣14,=(7y﹣5)x﹣14,∵A﹣3B的值与x的取值无关,∴7y﹣5=0,∴.23.阅读下列材料,我们知道,5x+3x﹣4x=(5+3﹣4)x=4x,类似的,我们把(a+b)看成一个整体,则5(a+b)+3(a+b)﹣4(a+b)=(5+3﹣4)(a+b)=4(a+b),“整体思想“是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛,尝试应用;(1)把(a﹣b)2看成一个整体,合并2(a﹣b)2+6(a﹣b)2﹣3(a﹣b)2的结果 5(a﹣b)2 .(2)已知m+n=15,3a﹣2b=11,求2m+6a﹣(4b﹣2n)的值.(3)拓展探索:已知a﹣3b=4,3b﹣c=﹣3,c﹣d=11,求(a﹣c)+(3b﹣d)﹣(3b﹣c)的值.【解答】解:(1)2(a﹣b)2+6(a﹣b)2﹣3(a﹣b)2=(2+6﹣3)(a﹣b)2=5(a﹣b)2.故答案为:5(a﹣b)2.(2)2m+6a﹣(4b﹣2n)=2(m+n)+2(3a﹣2b),∵m+n=15,3a﹣2b=11,∴2(m+n)+2(3a﹣2b)=2×15+2×11,=52.(3)∵a﹣3b=4,3b﹣c=﹣3,c﹣d=11,∴(a﹣c)+(3b﹣d)﹣(3b﹣c),=a﹣c+3b﹣d﹣3b+c,=a﹣d,=4+3b﹣(c﹣11),=4+3b﹣c+11,=4+(3b﹣c)+11,=4﹣3+11,=12.24.如图,通过观察,小丽同学发现可以用这样的方法确定每个图形中黑色和白色小正方形的总个数:图(1)中共有1个黑色小正方形,图(2)中共有1+3=22个黑白小正方形,图(3)中共有1+3+5=32个黑白小正方形,图(4)中共有1+3+5+7=42个黑白小正方形,回答下列问题.(1)根据前四个图中计算黑白小正方形的总个数的方法和规律,则第(5)个图中计算小正方形个数的等式是: 1+3+5+7+9=52 ;(2)根据规律,第50个图比第49个图多 99 个小正方形;(3)根据每个图中计算黑白小正方形总个数的方法和规律,计算:①1+3+5+…+197+199;②201+203+205+…+297+299.【解答】解:(1)图(1)中共有12个黑色小正方形,图(2)中共有22个黑白小正方形,图(3)中共有32个黑白小正方形,图(4)中共有42个黑白小正方形,∴图(5)中共有52个黑白小正方形,故答案为:1+3+5+7+9=52;(2)∵图(1)中共有1个黑色小正方形,图(2)中共有1+3=22个黑白小正方形,图(3)中共有1+3+5=32个黑白小正方形,图(4)中共有1+3+5+7=42个黑白小正方形,⋯,则图(n)中共有1+3+5+7+9+(2n﹣1)=n2个黑白小正方形,∴第50个图比第49个图多502﹣492=99(个),故答案为:99;(3)由(2)得图(n)中共有1+3+5+7+9+(2n﹣1)=n2个黑白小正方形,∴①2n﹣1=199,解得:n=100,∴1+3+5+⋯+197+199=1002=10000;②2n﹣1=99,解得:n=50,∴201+203+205+⋯+297+299=200×100+(1+3+5+7⋯+97+99)=20000+502=22500.。
苏科版数学七年级上册期中考试试卷及答案解析
苏科版七年级上学期期中考试数学试题一、选择题(本大题共8小题,每小题3分,共24分.)1.下列计算中正确的是( )A. 235a a a +=B. 236a a a ⋅=C. 32a a a ÷=D. ()328=a a 2.如图,在“A”字型图中,AB 、AC 被DE 所截,则ADE ∠与DEC ∠是( )A. 内错角B. 同旁内角C. 同位角D. 对顶角3.下列等式从左到右的变形,属于因式分解的是( )A. 2(3)(2)6x x x x +-=+-B. 24(2)(2)x x x -=+- C. 2323824a b a b =⋅D. 1()1ax ay a x y --=-- 4.如图,下列条件不能判定直线a ∥b 的是A. ∠1=∠3B. ∠2=∠4C. ∠2=∠3D. ∠2+∠3=180° 5.下列各式能用平方差公式计算的是( )A. ()()22a b b a +-B. 111122x x ⎛⎫⎛⎫-+-- ⎪⎪⎝⎭⎝⎭C. ()()2a b a b +-D. ()()2121x x --+ 6. 多边形剪去一个角后,多边形的外角和将( )A. 减少180ºB. 不变C. 增大180ºD. 以上都有可能 7.若2m a =,3n a =,则m n a +等于( )A. 15B. 6C. 8D. 98.如图,△ABC 中,∠A=60°,点E 、F 在AB 、AC 上,沿EF 向内折叠△AEF,得△DEF,则图中∠1+∠2的和等于 ( )A. 60︒B. 90︒C. 120︒D. 150︒二、填空题(本大题共10小题,每小题4分,共40分.)9.分解因式22x x -=____________.10.一种细菌的半径是0.0000076厘米,用科学计数法表示为_____________厘米11.如图,直线a 、b 被直线c 所截,且//a b ,165∠=︒,那么2∠=______º.12.若一个多边形的内角和是900º,则这个多边形是 边形.13.如图,在△ABC 中,BC =5cm ,把△ABC 沿直线BC 的方向平移到△DEF 的位置,若EC =2cm ,则平移的距离为_____cm .14.714139⎛⎫⨯- ⎪⎝⎭= ________ 15.若等腰三角形的两边的长分别是2cm 、5cm,则第三边的长为________cm.16.若多项式216x mx -+能用完全平方公式进行因式分解,则m =_______.17.如图,将一副直角三角板如图所示放置,使含30角的三角板的一条直角边和含45度角的三角板的一条直角边重合,则1∠的度数为________°.18.对于任何实数a ,b ,c ,d ,我们都规定符号的意义是a c b dad bc =-,按照这个规定请你计算:当2310x x -+=时,12x x +-31xx -的值为________.三、解答题: (本大题共4小题,每题各6分,共24分. 解答时应写出必要的文字说明、计算过程或演算步骤)19.计算:()1201220182-⎛⎫--+ ⎪⎝⎭ 20.计算:()()()211a a a a -++-21.分解因式: 2961x x -+22.分解因式:3x x -四、解答题: (本大题共2小题,每小题8分,共16分. 解答时应写出必要的文字说明、计算过程或演算步骤)23.化简再求值:()()()2353535y y y -+++,其中.0.4y = 24.已知:5,3x y xy +==-,求:(1)22x y +值(2) ()()11x y --的值五、解答题: (本大题共2小题,每小题8分,共16分. 解答时应写出必要的文字说明、计算过程或演算步骤)25.如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.(1)画出△ABC 的AB 边上的中线CD;(2)画出△ABC 向右平移4个单位后得到的△A 1B 1C 1;(3)图中AC 与A 1C 1的关系是: ;(4)能使S △ABQ =S △ABC 的格点Q,共有 个,在图中分别用Q 1,Q 2,…表示出来.26.如图:已知12,3,B FG AB G ∠=∠∠=∠⊥于,猜想CD 与AB的位置关系,并写出合适的理由. 六、解答题: (本题10分. 解答时应写出必要的文字说明、计算过程或演算步骤) 27.计算如图所示的十字形草坪的面积时,小明和小丽都运用了割补的方法,但小明使“做加法”,列式为“()()222a a b b a b -+-”,小丽使“做减法”,列式为“224a b -”.(1)请你把上述两式都分解因式;(2)当63.5a m =、18.25b m =时,求这块草坪的面积.(小明) (小丽)七、解答题: (本题10分. 解答时应写出必要的文字说明、计算过程或演算步骤)28.如图1,已知ACD ∠是ΔABC 的一个外角,我们容易证明ACD ∠=A B ∠+∠,即三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?尝试探究:(1)如图2,DBC ∠与ECB ∠分别为ABC 的两个外角,则DBC ECB ∠+∠ 180A ∠+︒(横线上填 >、< 或=)初步应用:(2)如图3,ABC 纸片中剪去CED ,得到四边形ABDE ,1135∠=︒,则2C ∠-∠= . (3)解决问题:如图4,在ABC 中,BP 、CP 分别平分外角DBC ∠、ECB ∠,P ∠与A ∠有何数量关系?请利用上面的结论直接写出答案 .(4)如图5,在四边形ABCD 中,BP 、CP 分别平分外角EBC ∠、FCB ∠,请利用上面的结论探究P ∠与A ∠、D ∠的数量关系.图1 图2 图3图4 图5答案与解析一、选择题(本大题共8小题,每小题3分,共24分.)1.下列计算中正确的是( )A. 235a a a +=B. 236a a a ⋅=C. 32a a a ÷=D. ()328=a a 【答案】C【解析】【分析】根据合并同类项,同底数幂相乘,底数不变指数相加;同底数的幂相乘,底数不变,指数相加;同底数幂相除,底数不变指数相减;幂的乘方,底数不变,指数相乘;对各选项分别计算后利用排除法求解.【详解】A. 2a 与3a 不是同类项,不能合并,故不正确;B. 235a a a ⋅= ,故不正确;C. 32a a a ÷= ,故正确;D. ()326a a =,故不正确;故选C.【点睛】本题考查了合并同类项,同底数幂的乘法,同底数幂的除法,幂的乘方,熟练掌握运算性质是解题的关键,不是同类项的一定不能合并.2.如图,在“A”字型图中,AB 、AC 被DE 所截,则ADE ∠与DEC ∠是( )A. 内错角B. 同旁内角C. 同位角D. 对顶角【答案】A【解析】 试题分析:如图,∠ADE 与∠DEC 是AB 、AC 被DE 所截的内错角.故选A .考点:同位角、内错角、同旁内角.点评:正确记忆内错角的定义是解决本题的关键.3.下列等式从左到右的变形,属于因式分解的是( )A. 2(3)(2)6x x x x +-=+-B. 24(2)(2)x x x -=+- C. 2323824a b a b =⋅D. 1()1ax ay a x y --=-- 【答案】B【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A .是整式乘法,故A 错误;B .是因式分解,故B 正确;C .左边不是多项式,不是因式分解,故C 错误;D .右边不是整式积的形式,故D 错误.故选B .【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.4.如图,下列条件不能判定直线a ∥b 的是A. ∠1=∠3B. ∠2=∠4 C . ∠2=∠3D. ∠2+∠3=180°【答案】C【解析】【分析】 根据平行线的判定方法逐项分析即可,①两同位角相等,两直线平行; ②内错角相等,两直线平行;③同旁内角互补,两直线平行.【详解】A. ∵ 13∠=∠ ,∴a ∥b (两同位角相等,两直线平行);故A 能;B. ∵24∠=∠,∴a ∥b (两同位角相等,两直线平行);故B 能;C. 由23∠=∠不能判定a ∥b ,故C 不能;D. ∵23180∠+∠=︒.∴a ∥b (同旁内角互补,两直线平行);故D 能;故选C.【点睛】本题考查了平行线的判定方法,熟练掌握平行线的判定方法是解答本题的关键.5.下列各式能用平方差公式计算的是( )A. ()()22a b b a +-B. 111122x x ⎛⎫⎛⎫-+-- ⎪⎪⎝⎭⎝⎭C. ()()2a b a b +-D. ()()2121x x --+【答案】B【解析】【分析】运用平方差公式()()22a b a b a b +-=-时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.【详解】A 中不存在互为相同或相反的项,不能用平方差公式计算,故本选项错误;B 中12x -是相同的项,互为相反项是1与1-,符合平方差公式的要求,故本选项正确; C 中不存在相反的项,不能用平方差公式计算,故本选项错误 ;D 中符合完全平方公式,不能用平方差公式计算,故本选项错误.故选:B .【点睛】考查了平方差公式,运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.6. 多边形剪去一个角后,多边形的外角和将( )A 减少180ºB. 不变C. 增大180ºD. 以上都有可能【答案】B【解析】试题分析:任何多边形的外角都等于360°.考点:多边形的外角和.7.若2m a =,3n a =,则m n a +等于( )A. 15B. 6C. 8D. 9 【答案】B【解析】【分析】根据同底数幂的乘法法则的逆运算变性后,把2m a =,3n a =代入即可求值.【详解】∵2m a =,3n a =,∴m n a +=·m n a a =2×3=6.故选B. 【点睛】本题考查了同底数幂乘法的逆运算,熟练掌握同底数幂的乘法法则是解答本题的关键,特别注意运算过程中指数的变化规律,灵活运用法则的逆运算进行计算,培养学生的逆向思维意识. 8.如图,△ABC 中,∠A=60°,点E 、F 在AB 、AC 上,沿EF 向内折叠△AEF,得△DEF,则图中∠1+∠2的和等于 ( )A. 60︒B. 90︒C. 120︒D. 150︒ 【答案】C【解析】【分析】先根据三角形内角和定理求出∠AEF +∠AFE 的度数,再由图形翻折变换的性质得出∠AEF =∠DEF ,∠AFE =∠DFE ,进而可得出结论.【详解】∵△AEF 中,∠A =60°,∴∠AEF +∠AFE =180°-60°=120°,∵△DEF 由△AEF 翻折而成,∴∠AEF =∠DEF ,∠AFE =∠DFE , ∴∠1+∠2=360°-2(∠AEF +∠AFE )=360°-2×120°=120°.故选C.【点睛】本题考查的是三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.二、填空题(本大题共10小题,每小题4分,共40分.)9.分解因式22x x -=____________.【答案】()()211x x +-.【解析】【分析】多项式22x x -有两项,两项都含有相同的因式x,所以提取提取公因式x 即可.【详解】22x x -= x (2x -1).故答案为x (2x -1).【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.10.一种细菌的半径是0.0000076厘米,用科学计数法表示为_____________厘米【答案】67.610-⨯【解析】【分析】对于一个绝对值小于1的非0小数,用科学记数法写成10n a -⨯ 的形式,其中110a ≤<,n 是正整数,n 等于原数中第一个非0数字前面所有0的个数(包括小数点前面的0).【详解】0.0000076=7.6×10-6. 故答案为7.6×10-6. 【点睛】本题考查了正整数指数科学计数法,根据科学计算法的要求,正确确定出a 和n 的值是解答本题的关键.11.如图,直线a 、b 被直线c 所截,且//a b ,165∠=︒,那么2∠=______º.【答案】115°【解析】【分析】根据两直线平行,同旁内角互补可得,∠1+∠2=180°,把165∠=︒代入即可求出∠2的值.【详解】∵//a b ,165∠=︒,∴∠1+∠2=180°,∵165∠=︒,∴∠2=180°-65°=115°.故答案为115°. 【点睛】本题考查了平行线的性质:①两直线平行同位角相等;②两直线平行内错角相等;③两直线平行同旁内角互补;④夹在两平行线间的平行线段相等.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.12.若一个多边形的内角和是900º,则这个多边形是 边形.【答案】七【解析】【分析】根据多边形的内角和公式()2180n -⋅︒,列式求解即可.【详解】设这个多边形是n 边形,根据题意得,()2180900n -︒=⋅︒,解得7n =.故答案为7.【点睛】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.13.如图,在△ABC 中,BC =5cm ,把△ABC 沿直线BC 的方向平移到△DEF 的位置,若EC =2cm ,则平移的距离为_____cm .【答案】3【解析】【分析】据平移的性质,结合图形,可知线段BE的长度即是平移的距离.【详解】据图形可得:线段BE的长度即是平移的距离,∵BC=5cm,, EC=2cm,∴BE=5-2=3cm.故答案为:3.【点睛】本题考查了平移的性质,解题的关键是理解平移的方向,由图形判断平移的方向和距离.注意结合图形解题的思想.14.714139⎛⎫⨯- ⎪⎝⎭= ________【答案】-1【解析】【分析】先根据幂的乘方把314变形为97,然后逆用积的乘方计算即可.【详解】7 141 39⎛⎫⨯-⎪⎝⎭=7 71 99⎛⎫⨯-⎪⎝⎭=7199⎡⎤⎛⎫⨯- ⎪⎢⎥⎝⎭⎣⎦=-1.故答案为-1.【点睛】本题考查了幂的乘方和积的乘方的逆运算,熟练掌握幂的乘方和积的乘方法则是解答本题的关键,特别注意运算过程中指数的变化规律,灵活运用法则的逆运算进行计算,培养学生的逆向思维意识.15.若等腰三角形的两边的长分别是2cm、5cm,则第三边的长为________cm.【答案】5【解析】【分析】题目给出等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】2是腰时,2,2,5不能组成三角形,应舍去;当5是腰时,2,5,5能够组成三角形.则第三边应是5.故答案为5.【点睛】本题考查了等腰三角形的性质及三角形三边关系;三角形任意两边之和大于第三边,任意两边之差小于第三边.16.若多项式216-+能用完全平方公式进行因式分解,则m=_______.x mx±【答案】8【解析】中间一项为加上或减去x和4积的2倍,故m=±8,解得m=±8,故答案为±8.点睛:本题主要考查了完全平方式.先根据两平方项确定出两个数,在根据完全平方公式的乘积的二倍即可确定m的值.根据平方项确定出这两个数是解题的关键,也是难点,书记完全平方公式对解题非常重要. 17.如图,将一副直角三角板如图所示放置,使含30角的三角板的一条直角边和含45度角的三角板的一条∠的度数为________°.直角边重合,则1【答案】75【解析】【详解】如图.∵∠2=60°,∠3=45°,∴∠1=180°-(∠2+∠3)=75°.故答案75.18.对于任何实数a ,b ,c ,d ,我们都规定符号的意义是a c b dad bc =-,按照这个规定请你计算:当2310x x -+=时,12x x +-31x x -的值为________.【答案】1【解析】【分析】 先解2310x x -+=变形为231x x -=-,再根据a c b d ad bc =-,把12x x +- 31x x -转化为普通运算,然后把231x x -=-代入计算即可.【详解】∵2310x x -+=,∴231x x -=-, ∵a c b dad bc =-, ∴12x x +- 31xx - =(x +1)(x -1)-3x (x -2)= x 2-1-3x 2+6x=-2x 2+6x -1=-2(x 2-3x )-1=-2×(-1)-1=1.故答案为1.【点睛】本题考查了信息迁移,整式的混合运算及添括号法则,三、解答题: (本大题共4小题,每题各6分,共24分. 解答时应写出必要的文字说明、计算过程或演算步骤)19.计算:()1201220182-⎛⎫--+ ⎪⎝⎭ 【答案】3【解析】【分析】根据乘方的意义,非零数的负整数指数幂等于这个数的正整数次幂的倒数;非零数的零次幂等于1,逐项化简,然后再按有理数的加减法则计算.【详解】()1201220182-⎛⎫--+ ⎪⎝⎭ 421=+-3=【点睛】本题考查了有理数的运算,熟练掌握乘方的意义、负整数指数幂和零指数幂是解答本题的关键. 20.计算:()()()211a a a a -++-【答案】21a -【解析】【分析】先根据单项与多项式的乘法和平方差公式计算,再合并同类项即可.【详解】()()()211a a a a -++-=2221a a a -+-=21a -【点睛】本题考查了整式的混合运算,熟练掌握单项与多项式的乘法和平方差公式是解答本题的关键. 21.分解因式: 2961x x -+【答案】()231x -【解析】【分析】 2961x x -+可变形为()232?3?11x x -+,显然有两个平方项,并且中间一项是首尾积的两倍,所以可用完全平方公式分解.【详解】2961x x -+=()232?3?11x x -+=()231x -【点睛】本题考查了用完全平方公式分解因式,熟练掌握完全平方公式的特点是解答本题的关键. 22.分解因式:3x x -【答案】()()11x x x +-【解析】【分析】先提公因式x ,再把剩下的因式x 2-1用平方差公式继续分解.【详解】3x x -=()21x x -=()()11x x x +-【点睛】本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止. 四、解答题: (本大题共2小题,每小题8分,共16分. 解答时应写出必要的文字说明、计算过程或演算步骤)23.化简再求值:()()()2353535y y y -+++,其中.0.4y = 【答案】30【解析】【分析】先根据平方差公式和完全平方公式计算,然后合并同类项,再把0.4y =代入计算即可.【详解】原式=2292593025y y y -+++=3018y +当0.4y =时原式=300.418⨯+=30【点睛】本题考查了整式的化简求值,熟练掌握平方差公式和完全平方公式是解答本题的关键.24.已知:5,3x y xy +==-,求:(1)22x y +的值(2) ()()11x y --的值【答案】(1)31(2)-7【解析】【分析】(1)把22x y +变形为(x +y )2-2xy ,然后把5,3x y xy +==-代入计算;(2)先把()()11x y --按照多项式的乘法计算,然后把5,3x y xy +==-代入计算.【详解】(1)原式=()22x y xy +-当5,3x y xy +==-时原式=()2523-⨯- =31(2)原式=1y x xy --+=()1x y xy -++当5,3x y xy +==-时原式=()153-+-=7-【点睛】本题考查了整式的化简求值,熟练掌握完全平方公式的变形是解答(1)的关键,掌握多项式的乘法法则是解(2)的关键.五、解答题: (本大题共2小题,每小题8分,共16分. 解答时应写出必要的文字说明、计算过程或演算步骤)25.如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.(1)画出△ABC 的AB 边上的中线CD;(2)画出△ABC 向右平移4个单位后得到的△A 1B 1C 1;(3)图中AC 与A 1C 1的关系是: ;(4)能使S △ABQ =S △ABC 的格点Q,共有 个,在图中分别用Q 1,Q 2,…表示出来.【答案】(1)见解析;(2)见解析:(3)平行且相等;(4)4个,图见解析.【解析】【分析】(1)根据中线的定义得出AB的中点即可得出△ABC的AB边上的中线CD;(2)平移A,B,C各点,得出各对应点,连接得出△A1B1C1;(3)利用平移的性质得出AC与A1C1的关系;(4)首先求出S△ABC的面积,进而得出Q点的个数.【详解】解:(1)如图所示:取AB的中点D,连接CD;CD就是△ABC的AB边上的中线;(2)如图所示:将A,B,C各点向右平移四个单位,得出各对应点,然后顺次连接;(3)根据平行的性质可得:AC与A1C1的关系为:平行且相等;(4)如图所示,S △ABQ=S △ABC的格点Q,共有4个【点睛】此题主要考查了平移的性质以及三角形面积求法以及中线的性质,根据已知得出△ABC的面积进而得出Q点位置是解题关键.∠=∠∠=∠⊥于,猜想CD与AB的位置关系,并写出合适的理由. 26.如图:已知12,3,B FG AB G⊥【答案】CD AB【解析】【分析】已知∠3=∠B,根据同位角相等,两直线平行,则DE∥BC,通过平行线的性质和等量代换可得∠2=∠DCB,从而证得CD∥GF,又因为FG⊥AB,所以CD与AB的位置关系是垂直.⊥【详解】CD AB∠=∠.∵3B∴DE BC,∠=∠,∴14∠=∠,又∵12∠=∠,∴24∴GF CD,∠=∠,∴CDB BGF⊥,又∵FG AB∴90BGF ∠=︒,90CDB ∴∠=︒,即CD AB ⊥.【点睛】本题考查了平行线的判定和性质,证明GF CD 是解答本题的关键.平行线的判定方法:①两同位角相等,两直线平行; ②内错角相等,两直线平行;③同旁内角互补,两直线平行;④平行于同一直线的两条直线互相平行;同一平面内,垂直于同一直线的两条直线互相平行.六、解答题: (本题10分. 解答时应写出必要的文字说明、计算过程或演算步骤)27.计算如图所示的十字形草坪的面积时,小明和小丽都运用了割补的方法,但小明使“做加法”,列式为“()()222a a b b a b -+-”,小丽使“做减法”,列式为“224a b -”.(1)请你把上述两式都分解因式;(2)当63.5a m =、18.25b m =时,求这块草坪的面积.(小明) (小丽)【答案】(1)()()22a b a b -+(2)2700【解析】【分析】(1)把()()222a a b b a b -+-用提取公因式法分解,把224a b -用平方差公式分解;(2)把63.5a m =、18.25b m =代入()()22a b a b -+计算即可.详解】(1)()()222a a b b a b -+-=()()22a b a b -+;224a b -=()()22a b a b -+;(2)把63.5a m =、18.25b m =代入()()22a b a b -+,原式=()()63.5218.2563.5218.25-⨯+⨯=()()63.536.563.536.5-+=27100⨯=2700【点睛】本题主要考查了学生对“代数式应用”知识点的掌握情况,解答本题的关键是由割补思想列代数式求解,然后通过题意列出式子,代入已知数值得到答案,解答本题时要注意:割补思想及代数式应用.七、解答题: (本题10分. 解答时应写出必要的文字说明、计算过程或演算步骤) 28.如图1,已知ACD ∠是ΔABC 的一个外角,我们容易证明ACD ∠=A B ∠+∠,即三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?尝试探究:(1)如图2,DBC ∠与ECB ∠分别为ABC 的两个外角,则DBC ECB ∠+∠ 180A ∠+︒(横线上填 >、< 或=)初步应用:(2)如图3,在ABC 纸片中剪去CED ,得到四边形ABDE ,1135∠=︒,则2C ∠-∠= . (3)解决问题:如图4,在ABC 中,BP 、CP 分别平分外角DBC ∠、ECB ∠,P ∠与A ∠有何数量关系?请利用上面的结论直接写出答案 .(4)如图5,在四边形ABCD 中,BP 、CP 分别平分外角EBC ∠、FCB ∠,请利用上面的结论探究P ∠与A ∠、D ∠的数量关系.图1 图2 图3图4 图5【答案】(1)=;(2)45°;(3)1902P A∠=︒-∠;(4)()11802P A D∠=︒-∠+∠.【解析】【分析】(1)根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠DBC+∠ECB,再利用三角形内角和定理整理即可得解;(2)根据(1)的结论整理计算即可得解;(3)表示出∠DBC+∠ECB,再根据角平分线的定义求出∠PBC+∠PCB,然后利用三角形内角和定理列式整理即可得解;(4)如图,延长BA,CD相交于H,然后利用(1)和(3)的结论求解即可.【详解】解:(1)∠DBC+∠ECB-∠A=180°,理由是:∵∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,∴∠DBC+∠ECB=2∠A+∠ACB+∠ABC=180°+∠A,∴∠DBC+∠ECB=∠A+180°.故答案为:=.(2)∠2-∠C=45°.理由是:∵∠2+∠1-∠C=180°,∠1=135°,∴∠2-∠C+135°=180°,∴∠2-∠C=45°.故答案为:45°;(3)∠P=90°-12∠A,理由是:∵BP平分∠DBC,CP平分∠ECB,∴∠CBP=12∠DBC,∠BCP=12∠ECB,∵△BPC中,∠P=180°-∠CBP-∠BCP=180°-12(∠DBC+∠ECB),∵∠DBC+∠ECB=180°+∠A,∴∠P=180°-12(180°+∠A )=90°-12∠A . 故答案为:∠P=90°-12∠A , (4)()11802P A D ∠=︒-∠+∠. 如图,延长BA,CD 相交于H ,由(3)得1902P H ∠=︒-∠, 2180P H ∴∠=︒-∠,1802H P ∴∠=︒-∠,由(1)得180BAD ADC H ∠+∠=+∠, 当1802H P ∴∠=︒-∠,∴ 1801802BAD ADC P ∠+∠=︒+︒-,∴ 3602BAD ADC P ∠+∠=︒-,()11802P BAD ADC ∴∠=︒-∠+∠, 即原图中()11802P A D ∠=︒-∠+∠. 【点睛】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,角平分线的定义,熟记性质并读懂题目信息是解题的关键.。
江苏省徐州市2024-2025学年苏科版数学七年级上册期中猜测卷A
江苏省徐州市2024-2025学年苏科版数学七年级上册期中猜测卷A(满分140分,时间90分钟)一、选择题(本题共8小题,每题3分,共24分)1.下列计算中,正确的是()A.()527-++=- B.1313⎛⎫-⨯-=- ⎪⎝⎭C.()328--=- D.1393⎛⎫-÷-= ⎪⎝⎭2.单项式3492a b c -的系数和次数分别为()A.92,8 B.92-,8 C.92,7 D.92-,73.下列添括号正确的是()A.()x y x y +=--B.()x y x y -=-+ C.()x y x y -+=-- D.()x y x y --=--4.下列说法正确的是()A.21x +是二次单项式B.数字0是单项式C.23πab -的系数是23-D.2a -的次数是2,系数是15.若22x y -=,则421x y -+的值是()A.3B.4C.5D.66.如图,某同学用直尺画数轴,数轴上点A,B 分别在直尺的1cm ,9cm 处,若点A 对应4-,直尺的0刻度位置对应6-,则线段AB 中点对应的数为()A.4B.5C.8D.07.如图所示,a b 、是有理数,则式子a b a b a b ++++-化简的结果为()A.3a b+B.3a b-C.3b a+D.3b a-8.如图,表中给出的是本月的月历,任意选取“”型框中的6个数(譬如阴影部分所示),则这6个数的和不可能是()A.87B.99C.129D.135二、填空题(本题共8小题,每题3分,共24分)9.比较大小:25-_______13-.(请在横线上填入“>”、“=”或“<”)10.列式表示“x 的2倍与y 的和”为______.11.若24m x y 与33n x y -是同类项,则m n +=___________.12.当k=__________时,多项式x-1与2-kx 的乘积中不含x 的一次项.13.若a 是最大的负整数,b 是绝对值最小的数,c 与2a 互为相反数,则()32025a b c -+=.14.已知225a ab +=-,223ab b -=-,则2293332a ab b +++的值等于______.15.找出下列各图形中数的规律,依此,a 的值为_______.16.七巧板(如图1)是中国古代人民发明的一种传统智力玩具,它由五块等腰直角三角形一块正方形和一块平行四边形共七块板组成(已知线段长度如图所示).现将它拼成一个“房子”造型(如图2),恰好..放入长方形...ACD 容器中,则长方形...容器的周长为________(用含m ,n 的代数式表示).三、解答题(本题共8小题,共82分)17.(本题12分)计算:(1)()()121033⎛⎫-÷-⨯- ⎪⎝⎭;(2)()2021231210.25⎡⎤⎛⎫---+-⨯ ⎪⎢⎥⎝⎭⎣⎦18.(本题12分)化简:(1)68ab ab ab -++;(2)()()3333384a b b b a b +--.19.(本题10分)先化简,再求值:()()222233233a b ab ab a a b a ⎡⎤-+-+-+⎣⎦,其中a,b 满足()2210a b -++=.20.(本题12分)已知整式A 和B 满足:22243,333B A a ab B a ab -=+=-+-.(1)求整式A (用所含,a b 的代数式表示);(2)比较A 与B 的大小.21.(本题10分)老师在黑板上写了一个正确的演算过程,然后用手掌捂住了一个多项式,形式如下:(1)求被捂住的多项式;(2)当3a =,2b =时,求被捂住的多项式的值.22.(本题12分)定义:若6a b +=,则称a 与b 是关于6的实验数.(1)4与______是关于6的实验数;代数式______与52x -是关于6的实验数.(2)若242a x x =-+,()22222b x x x =---,判断a 与b 是否是关于6的实验数,说明理由.(3)若c 与d 是关于6的实验数,且()22341c x x =---,求d 的值.23.(本题12分)地自2022年1月起,居民生活用水开始试行阶梯式计量水价,该阶梯式计量水价分为三级(如下表所示):月用水量(吨)水价(元/吨)第一级20吨以下(含20吨) 1.6第二级20吨—30吨(含30吨) 2.4第三级30吨以上 3.2例:某用户的月用水量为32吨,按三级计量应缴交水费为:1.620 2.410 3.2262.4⨯+⨯+⨯=(元).(1)如果甲用户某月用水量为10吨,则甲当月需缴交的水费为______元;(2)如果乙用户某月缴交的水费为39.2元,则乙该月用水量为______吨;(3)如果丙用户某月用水量为a吨,则丙该月应缴交水费多少元?(用含a的式子表示,并化简)24.(本题12分)数学课上李老师说:咱们一起来玩儿一个找原点的游戏吧!(1)如图1,在数轴上标有A,B两点,已知A,B两点所表示的数互为相反数.①如果点A所表示的数是5-,那么点B所表示的数是____________;②在图1中标出原点O的位置;(2)图2是小慧所画的数轴,数轴上标出的点中任意相邻两点间的距离都相等.根据小慧提供的信息,标出隐藏的原点O的位置,写出此时点C所表示的数是_______;(3)如图3,数轴上标出若干个点,其中点A,B,C,D所表示的数分别为a,b,c,d.①用a,c表示线段AC的长为____________;②如果数轴上标出的若干个点中每相邻两点相距1个单位(如1BC=),且210d a-=.判断此时数轴上的原点是A,B,C,D中的哪一点,并说明理由.。
江苏苏州2024-2025学年上学期七年级数学期中模拟卷1一4章 (解析版)
苏州市2024-2025学年上学期初一数学期中模拟卷(考试时间:90分钟 试卷满分:100分)一、选择题,本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,只有一个选项是正确的,请将正确选项前的字母填涂在答题卷相应位置上......... 1. 2的相反数是( )A. 2B. 12C. 2−D. 4−【答案】C【解析】【分析】根据只有符号不同的两个数是互为相反数解答即可.【详解】解:2的相反数是-2,故选C .【点睛】本题考查了相反数的定义,解答本题的关键是熟练掌握相反数的定义,正数的相反数是负数,0的相反数是0,负数的相反数是正数.2. 下列计算正确的是( )A. 326=B. 2416−=−C. 880−−=D. 523−−=− 【答案】B【解析】【分析】根据有理数的加法法则和减法法则与乘方法则进行计算即可.【详解】解:A. 328=,故错误;B. 2416−=−,故正确;C. 88-16−−=,故错误;D. 527−−=−,故错误.故选B.【点睛】本题主要考查了有理数与实数的运算,熟练掌握运算法则是解题的关键. 3. 单项式32−23x y z 的系数和次数分别为( ) A. ﹣3,5 B. 32−,5 C. ﹣3,6 D. 32−,6 【答案】D【解析】【分析】根据单项式系数和次数的定义计算即可. 【详解】∵32−23x y z 的系数和次数分别为32−,6, 故选D .【点睛】本题考查了单项式的概念,熟练掌握单项式的系数即单项式中的数字因数,单项式的次数即单项式中所有字母的指数和是解题的关键.4. 化简()221x x −−++的结果为( )A. 221x x −++B. 221x x −+C. 221x x −−D. 221x x −−+ 【答案】C【解析】【分析】根据去括号法则“如果括号外因数是负数,去括号后原括号内各项的符号与原来符号相反”化简,选择答案即可.【详解】解: 222121x x x x ,故选:C .【点睛】本题主要考查了整式的化简,熟记去括号法则是解题的关键.5. 下列说法中正确的是( )A. 2不是单项式B. 2abc −的系数是12−C. 单项式23r 的次数是3D. 多项式25612a ab −+的次数是4 【答案】B【解析】【分析】本题考查单项式与多项式定义,涉及单项式识别、单项式系数、次数及多项式次数等知识,熟记单项式及多项式定义,逐项验证是解决问题的关键.【详解】解:A 、2是单项式,该选项错误,不符合题意;B 、2abc −的系数是12−,该选项正确,符合题意; C 、单项式23r 的次数是2,该选项错误,不符合题意;D 、多项式25612a ab −+的次数是25a 或6ab 的次数,是2,该选项错误,不符合题意;故选:B .的6. 已知有理数a b 、,则a b b a b a a b +−−+、、在数轴上表示的点在原点右侧的个数为( ) A. 0个B. 1个C. 2个D. 无法确定 【答案】B【解析】 【分析】本题考查了有理数符号的判断,需分类讨论,当a b 、同号时,当a b 、异号且0a b +>时,当a b 、异号且0a b +<时,分别判断即可.【详解】解:当a b 、同号时,a b a b a b +--+、是负数,b a是正数, 所以在数轴上表示的点在原点右侧的个数为1个,当a b 、异号且0a b +>时,a b a b a b +--+、中有一个是正数,b a是负数, 所以在数轴上表示的点在原点右侧的个数为1个,当a b 、异号且0a b +<时,a b a b a b +--+、中有一个是正数,b a是负数, 所以在数轴上表示的点在原点右侧的个数为1个,综上所述,在数轴上表示的点在原点右侧的个数为1个.故选:B .7. 某临江的县城为进一步提升旅游业质量和档次,满足游客消费需求,开通了甲、乙两地沿江旅游航线,已知游艇在江中来往航行于甲、乙两地之间,顺流航行全程需2小时,逆流航行全程需3小时(实际船速=静水船±水速).已知水流速度为每小时3km ,求该县甲、乙两地的距离,若设该县甲、乙两地的距离为km x ,则所列方程为( ) A. 323x x += B. 923xx =+ C. 3323x x −=+ D. 3323x x +=− 【答案】C【解析】【分析】本题主要考查了由实际问题抽象出一元一次方程,明确题意,准确得到等量关系是解题的关键.设甲、乙两地的距离为km x ,根据题意,列出方程,即可求解.【详解】解:设甲、乙两地的距离为km x , 根据题意得:3323x x −=+. 故选:C .8. 已知方程()||110k k x −+=是关于x 的一元一次方程,则方程的解等于( ) A. 1B. 0C. 1−D. 12 【答案】D【解析】【分析】本题考查的是解一元一次方程和一元一次方程的定义,掌握一元一次方程的定义与求解是解题的关键.根据一元一次方程的定义,即含有1个未知数,且未知数的最高次数是1的整式方程是一元一次方程,据此求出k 的值,然后再求解方程即可.【详解】解:根据一元一次方程的定义可知,||1k =且10k −≠,解得:1k =−,原方程为:210x −+=, 解得:12x =, 故选:D9. 对于有理数a 、b ,定义一种新运算“※”,规定:a ※b =|a|﹣|b|﹣|a ﹣b|,则2※(﹣3)等于( )A. ﹣2B. ﹣6C. 0D. 2 【答案】B【解析】【分析】根据a ※b=|a|-|b|-|a-b|,可以求得所求式子的值.【详解】解:∵a ※b=|a|-|b|-|a-b|,∴2※(-3)=|2|-|-3|-|2-(-3)|=2-3-|2+3|=2-3-5=-6,故选:B .【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.10. 已知一列数123a a a ,,,…,具体如下规律:2112n n n n n a a a a a ++=+=,(n 是正整数).若11a =,则61a 的值为( )A. 9B. 10C. 11D. 12【答案】A【解析】【分析】根据数列中的各项关系求出61a 和1a 的关系即可.【详解】∵2112n n n n n a a a a a ++=+=,(n 是正整数), ∴613031a a a =+151516a a a =++1582a a +()7842a a a =++74222a a a =++()344122a a a a =+++()1222122a a a a a =++++()1111122a a a a a =++++111232a a a =×++19a =∵11a =,∴619a =,故选:A .【点睛】此题考查了数字的变化规律,根据数列中的各项关系得到61a 和1a 的关系是解题的关键.二、填空题:本大题共8小题,每小题2分,共16分.请将答案填在答题卷相应位置上......... 11. 单项式23ax −的系数和次数依次是________.【答案】-3,3【解析】【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【详解】解:单项式23ax −的系数和次数依次是-3,3,故答案:-3,3.【点睛】此题主要考查了单项式,正确把握单项式的次数与系数是解题关键.12. 比较大小:()8−+______9−−; 23−______3(4−填“>”、“<”、或“=”符号). 【答案】 ①. > ②. >【解析】【分析】根据正数都大于0,负数都小于0,正数大于一切负数,两个负数,绝对值大的其值反而小.①首先化简,然后比较大小即可;②通分,化成同分母分数,再比较其绝对值的大小,即可得出答案. 【详解】解:()88−+=− ①,99−=−,89−>−, ()89∴−+>−;2283312−== ②,3394412−==,891212 , 2334∴−>−. 故答案为:>;>.【点睛】本题主要考查了有理数大小比较,熟练掌握有理数比较大小的方法是解题关键.13. 台湾省自古以来就是中国领土不可分割的一部分,祖国统一是两岸人民的共同心愿.据统计,2022年台湾省常住人口总数约为23410000人,数据23410000用科学记数法可表示为______.【答案】72.34110×【解析】【分析】根据绝对值大于1的数表示为科学记数法的形式为10n a ×,n 为整数位数减去1,据此求解即可.【详解】723410000 2.34110=×,故答案为:72.34110×.【点睛】本题考查用科学记数法表示绝对值大于1的数,熟练掌握科学记数法的表示方法是解题关键. 14. 若x 与3互为相反数,则6x +的值为______.【答案】3【解析】为【分析】根据相反数的定义可得3x =−,再代入所求式子计算即可.【详解】解:x 与3互为相反数,3x ∴=−,6363x ∴+=−+=.故答案为:3.【点睛】本题考查了相反数,掌握相反数的定义是解答本题的关键.15. 按如图所示的程序计算,当输入x 的值为3−时,输出的值为_____.【答案】63【解析】【分析】本题主要与程序流程图有关的有理数计算,先输入3−,计算出结果,如果大于10则输出,如果小于10,则把计算的结果作为新的数输入,如此往复,直至计算的结果大于10进行输出即可.【详解】解:当输入3−时,计算的结果为()23191810−−=−=<,当输入8时,计算的结果为()2816416310−=−=>,∴输出结果为63,故答案为:63. 16. 已知23x y +=,则124x y −−=______. 【答案】5−【解析】【分析】本题考查了已知式子的值求代数式的值,先整理()124122x y x y −−=−+,再代入23x y +=,即可计算进行作答.【详解】解:∵23x y +=. ∴()1241221235x y x y −−=−+=−×=−,故答案为:5−.17. 关于x ,y 的代数式2232axy x xy bx y −+++中不含二次项,则()2023a b +=______.【答案】1【解析】【分析】将原式进行合并同类项,由题意可知,所有二次项的系数为0,则可确定a 、b 的值,再代入()2023a b +求值即可,本题考查了合并同类项,解题的关键是:充分理解多项式系数的定义.【详解】将代数式2232axy x xy bx y −+++合并同类项得: ()()223a xy b x y ++−+,由题意得二次项系数为0,则:20a +=,30b −=, 解得:2a =−,3b =,代入()2023a b +得:()202320233112=+=−,故答案为:1.18. 已知x ,a ,b 为互不相等的三个有理数,且a b >,若式子x a x b −+−的最小值为3,则2020a b +−的值为______.【答案】2023【解析】 【分析】本题考查绝对值,有理数的减法,由数轴上x a x b −+−表示的几何意义,求出a b −的值,即可得到答案. 【详解】解:∵x a x b −+−的最小值为3,且a b >,∴3a b −=,∴2020a b +−20203+2023=,∴2020a b +−的值为2023.故答案为:2023.三、解答题:本大题共8小题,共64分.19. 计算:(1)()11324234 +−×−; (2)()()2213442−×+−÷−. 【答案】(1)2−(2)172【解析】【分析】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.(1)根据乘法分配律计算即可;(2)先算乘方,再算乘除法,然后算加法即可.【小问1详解】 解:()11324234 +−×− 113(24)(24)(24)234×−+×−−×− 12(8)18=−+−+2;=−【小问2详解】 解:()()2213442−×+−÷− 1916(4)2=−×+÷− 9(4)2=−+− 17.2=− 20. 解方程:(1)2(1)25(2)x x −=−+;(2)5172124x x ++−=. 【答案】(1)67x =− (2)43x =【解析】 【分析】本题考查了解一元一次方程,熟练掌握解一元一次方程的步骤是解题的关键.(1)按照解一元一次方程的步骤:去括号,移项,合并同类项,系数化为1,进行计算即可解答;(2)按照解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为1,进行计算即可解答.【小问1详解】解: 2(1)25(2)x x −=−+,∴222510x x −=−−,∴252102x x +=−+,∴76x =−, ∴67x =−; 【小问2详解】 解:5172124x x ++−=, ∴2(51)(72)4x x +−+=, ∴102724x x +−−=,∴107422x x −=−+,∴34x =, ∴43x =. 21. 先化简再求值:(3a 2b -2ab 2)-2(ab 2-3a 2b ),其中12,2a b == 【答案】2294a b ab −,16【解析】 【分析】先去括号,再合并同类项,然后将12,2a b ==代入,即可求解. 【详解】解:原式=22223226a b ab ab a b −−+=2294a b ab −当2a =,12b =时, 原式=2211924222××−××()=16. 【点睛】本题主要考查了整式加减混合运算中的化简求值,熟练掌握整式加减混合运算法则是解题的关键.22. 已知()2120a b −++=,c 和d 互为倒数,e 和f 互为相反数,求()35332a cd e b f +−+−值. 【答案】4−的【解析】【分析】先根据非负数性质求解1a =,2b =−,再根据倒数,相反数的含义求解1cd =,0e f +=,再把原代数式变形,再代入求值即可.【详解】解:∵ ()2120a b −++=,∴10a −=,20b +=, 解得:1a =,2b =−,∵c 和d 互为倒数,e 和f 互为相反数, ∴1cd =,0e f +=, ∴()35332a cd e b f +−+−()3653a b cd e f =++−+31250=−+−4=−.【点睛】本题考查的是倒数,相反数的含义,绝对值,偶次方的非负性的应用,求解代数式的值,掌握“代入法求解代数式的值”是解本题的关键.23. 高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):17+,9−,10+,15−,3−,11+,6−,8−,(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)若汽车耗油量为0.1升/千米,则这次养护共耗油多少升?(3)养护过程中,最远处离出发点有多远?【答案】(1)养护小组最后到达的地方在出发点的西方,距出发点3千米(2)这次养护小组的汽车共耗油7.9升(3)最远处离出发点有18千米【解析】【分析】(1)根据加法法则,将正数与正数相加,负数与负数相加,进而得出计算得结果.(2)利用绝对值性质以及有理数加法法则求出即可;(3)分别求出每次养护距离出发点的距离,进而作出比较.【小问1详解】解:1791015311683−+−−+−−=−(千米), 所以养护小组最后到达的地方在出发点的西方,距出发点3千米;的的【小问2详解】 解:17910153116879+−++−+−++−+−=(千米), 790.17.9×=(升); 所以这次养护小组的汽车共耗油7.9升;【小问3详解】解:第一次:17,第二次:1798−=;第三次:81018+=;第四次:18153−=;第五次:330−=;第六次:01111+=;第七次:1165−=;第八次:583−=−;所以养护过程中,最远处离出发点有18千米.【点睛】本题考查了有理数的加减混合运算以及绝对值的性质,关键是熟练利用加法的运算法则进行运算.24. 学校要利用专款建一长方形的自行车停车场,其他三面用护栏围起,其中长方形停车场的长为()23a b +米,宽比长少()a b −米.(1)求护栏的总长度;(2)若3010a b =,,每米护栏造价80元,求建此停车场所需的费用.【答案】(1)()411a b +米(2)建此停车场所需的费用为18400元.【解析】【分析】(1)直接利用整式的加减运算法则得出宽,进而得出答案;(2)利用(1)中所求,把已知数据代入得出答案.【小问1详解】解:由题意可得宽为:()()23234a b a b a b a b a b +−−=+−+=+米,则护栏的总长度为:()2324a b a b +++2328a b a b =+++()411a b +米;【小问2详解】解:由(1)得:当3010a b =,时,原式4301110230=×+×=(米), ∵每米护栏造价80元,∴2308018400×=(元), 答:建此停车场所需的费用为18400元.【点睛】此题主要考查了整式的加减的应用,正确合并同类项是解题关键.25. 已知数轴上两点A ,B 对应的数分别为1−,3,点P 为数轴上一动点,其对应的数为x .(1)若点P 为AB 的中点,则点P 对应的数是 .(2)数轴的原点右侧有点P ,使点P 到点A ,点B 的距离之和为8.请你求出x 的值.(3)现在点A ,点B 分别以每秒2个单位长度和每秒0.5个单位长度的速度同时向右运动,同时点P 以每秒6个单位长度的速度从表示数1的点向左运动.当点A 与点B 之间的距离为3个单位长度时,直接写出点P 对应的数.【答案】(1)1 (2)x 的值是5(3)点P 对应的数是3−或27−【解析】【分析】本题考查数轴上点表示的数及两点间距离,解题的关键是掌握点运动后表示的数与运动前表示的数的关系.(1)根据点P 为AB 的中点列方程即可解得答案;(2)分两种情况,当P 在线段AB 上时,由()()1348PA PB x x +=−−+−=≠ ,知这种情况不存在;当P 在B 右侧时,()()138x x −−+−=,求解即可; (3)设运动的时间是t 秒,表示出运动后A 表示的数是12t −+,B 表示的数是30.5t +,P 表示的数是16t −,根据点A 与点B 之间的距离为3个单位长度得:()()1230.53t t −+−+=,解出t 的值,即可得到答案.【小问1详解】解:∵A ,B 对应的数分别为1−,3,点P 为AB 的中点,∴()31x x −=−−,解得1x =,∴点P 对应的数是1;【小问2详解】解:当P 在线段AB 上时,()()1348PA PB x x +=−−+−=≠ , ∴这种情况不存在;当P 在B 右侧时,()()138x x −−+−=, 解得5x =,答:x 的值是5;【小问3详解】解:设运动的时间是t 秒,则运动后A 表示的数是12t −+,B 表示的数是30.5t +,P 表示的数是16t −, 根据题意得:()()1230.53t t −+−+=, 解得23t =或143t =, 当23t =时,P 表示的数是2161633t −=−×=−, 当143t =时,P 表示的数是141616273t −=−×=−, 答:点P 对应的数是3−或27−.26. 观察下列新的定义心运算:(2)(10)12 ++=+☆;(2)(10)12 −−=+☆;(4)(6)10++=+☆;(8)(2)10−−=+☆;(2)(10)12−+=−☆;(2)(10)12+−=−☆;(4)(6)10−+=−☆;(8)(2)10 +−=−☆. 0(12)12−=+☆;0(12)12+=+☆;(8)08+=+☆;(8)08−=+☆;(1)请你认真思考上述运算,归纳☆运算的法则:两数进行☆运算时,同号两数运算结果取正号..,并把绝对值相加.....; 两数进行☆运算时,异号两数运算结果取 号,并把 ;特别地,0和任何数进行☆运算,或任何数和0进行☆运算,结果等于 ;(2)计算:()()902 −−=☆☆ ; (3)若()3314a a ×−=☆,试判断a 的值能否为0?若不能,求出a 符合条件所有可能的值. 【答案】(1)负,绝对值相加,这个数的绝对值(2)11−(3)a 的值不能为0,a 的值为8或10−【解析】【分析】本题考查了新定义,根据所给算式总结出运算法则是解答本题的关键. (1)观察所给算式总结即可;(2)根据新定义运算即可;(3)先判断a 不等于0,再根据新定义转化为一元一次方程求解即可.【小问1详解】两数进行☆运算时,同号两数运算结果取正号..,并把绝对值相加.....; 两数进行☆特别地,0和任何数进行☆运算,或任何数和0进行☆运算,结果等于这个数的绝对值. 故答案为:负,绝对值相加,这个数的绝对值【小问2详解】()()()929211−+=−+=−☆. 故答案为:11−;【小问3详解】当0a =时,∵()3313318a ×−=×−=☆,40a =,∴()3314a a ×−≠☆.∴a 的值不能为0.当0a >时,∵()3314a a ×−=☆,∴()3314a a ×−=+, ∴8a =;当0a <时, ∵()3314a a ×−=☆, ∴()3314a a ×−−−= , ∴10a =−. ∴a 的值为8或10−.。
最新苏科版七年级上册数学期中测试卷及答案
最新苏科版七年级上册数学期中测试卷及答案班级___________ 姓名___________ 成绩_______一、选择题1.23的相反数是 ( ) A .23 B . -23 C .32 D .-32 2.下列计算正确的是 ( )A.277a a a +=B.532y y -=C.22232x y yx x y -= D.325a b ab += 3. 地球与月球的平均距离大约为384000km ,则这个平均距离用科学记数法表示为A.384⨯103 km B . 0.384⨯106 km C. 3.84⨯105 km D. 3.84⨯104 km ( )4. 用代数式表示“a 的3倍与b 的差的平方”,正确的是 ( )A. 2(3)a b -B. 23()a b -C. 23a b -D. 2(3)a b -5. 解方程2(3)3(4)5x x ---=时,下列去括号正确的是 ( )A.23345x x --+=B.26345x x ---=C.233125x x ---=D.263125x x --+=6.若单项式2423ab c -的系数、次数分别是m 、n ,则 ( ) A.2,63m n == B.2,63m n =-= C.2,73m n == D. 2,73m n =-= 7.若|3||2|0x y ++-=,则x y +的值为 ( )A .5B .-5C .-1D .18.给出如下结论:①如果b a =,那么a=b ;②当x =5,y =4时,代数式x 2-y 2的值为1;③化简(x +14)-2(x -14)的结果是-x +34;④若单项式57ax 2y n +1与-75ax m y 4的差仍是单项式,则m+n =5.其中正确的结论有 ( )A .1个B .2个C .3个D .4个9.如图,从边长为(a +4)的正方形纸片中剪去一个边长为(a +1)的正方形(a >0),剩余部分沿虚线又剪拼成一个长方形(不重叠、无缝隙),若拼成的长方形一边的长为3,则另一边的长为( )A .2a +5B .2a +8C .2a +3D .2a +210.一个由小菱形组成的装饰链,断去了一部分,剩下部分如图所示,则断去部分的小菱形的个数可能是 ( )A.2016个B. 2015个C. 2014个D. 2013个二、填空题:11.计算:(4)6-⨯= . 12.当x = 时,代数式344x -的值是12. 13.如果关于x 的方程23ax b +=的解是1x =-,那么代数式2a b -= .14.若单项式22m x y 与313n x y -是同类项,则m n +的值是 . 15.当k = 时,多项式22(1)325x k xy y xy +----中不含xy 项. 16.如图是一个数值转换机,若输入的a 值为-3,则输出的结果应为 .17.若关于x 的方程320x a -=与23130x a +-=的解相同,则a =__ ____.18.有理数a 、b 、c 在数轴上的位置如图所示,则|a ﹣b |-|2a -c |= .三、解答题19.(本题满分10分)计算:(1) ()()1218715--+-- ; (2)2)6()61121197(26-⨯+--.20.(本题满分10分)化简:(1))3(4)3(52222b a ab ab b a +---; (2)()⎪⎭⎫⎝⎛+---+321422722x x x x .21.解方程(每题5分;共10分)(1)2(34)5(1)3x x +-+= ; (2)2151136x x +--=.22(本题满分6分) 先化简,再求值:22224[(5)(32)]xy x xy y x xy y -+--+-,其中14x =-,12y =-.23. (本题满分6分)某停车场的收费标准如下:中型汽车的停车费为12元/辆,小型汽车的停车费为8元/辆.现在停车场共有50辆中、小型汽车,其中中型汽车有x 辆.(1)则小型汽车有 辆(用含x 的代数式表示);(2)这些车共缴纳停车费480元,中、小型汽车各有多少辆?24. (本题满分5分)定义一种新运算:a ⊗b=a−2b .(1)直接写出b ⊗a 结果为__ _(用含a 、b 的式子表示);(2)化简:()y y x y x 3212⊗⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛-⊗+; (3)解方程:()x x ⊗=⊗⊗2112.25.(本题6分)已知代数式21,123222-+-=-++=x xy x B y xy x A (1)当2-==y x 时,求B A 2-的值;(2)若B A 2-的值与x 的取值无关,求y 的值.26.(本题6分)若:55443322105)12(x a x a x a x a x a a x +++++=-(1)当0=x 时,求0a 的值 ; (2)求54321a a a a a ++++的值。
最新苏科版七年级上册数学《期中测试题》(带答案解析)
2020-2021学年度第一学期期中测试苏科版七年级数学试题一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填涂在答题卡相应位置上)1.3-的倒数是( )A. 3B.13C. 13-D. 3-2.如图,数轴上A ,B 两点分别对应实数a ,b ,则下列结论正确的是( )A. a+b >0B. ab >0C. a ﹣b >0D. |a|﹣|b|>03.下列各对数中,互为相反数的是( ) A. 3与3- B. 32与()23-C. ()23-与23D. ()41-与()31-4.若多项式1(4)62ax a x --+是关于x 的四次三项式,则a 的值是( ) A. 4-B. 2C. 4-或4D. 45.下列说法错误的是( ) A. 2的倒数是12B. ()()264---=C. 22a b +表示,a b 两数和的平方D.3π是无理数 6.北京的故宫占地面积约为720000平方米,数据720000用科学记数法表示为( ) A. 40.7210⨯B. 57210⨯.C. 57210⨯D. 67.210⨯7.如图,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2020个格子中的数是( )A. 3B. 1-C. 2D. 2-8.数轴上A 点表示的数是2的相反数,B 点表示的数是绝对值最小的数,C 点表示的数是16的倒数,若将数轴折叠,使得点A 与点B 重合,则与点C 重合的点表示的数是( ) A. 6B. 6-C. 8-D. 3-二、填空题(本大题共8小题,每小题3分,本大题共24分.不需要写出解答过程,只需把答案直接填写在答题卡相应位置上)9.如果收入100元记作100+元,那么支出90元记作__________元. 10.单项式2323x y π-的系数是_____________.11.某中学为每个学生编号,设定末位用1表示男生,用2表示女生.如果182162表示2018年入学的2班16号的同学是位女生,那么2019年入学的5班19号男生的编号是__________. 12.比较大小:2||3--______34-(填“<”、“=”、“>”)13.若33ax y -与5by x -是同类项,则2a b -=______.14.已知代数式22a a -的值是3,则代数式2542a a +-的值为__________.15.已知2A x mx =+,2241B nx x =--,且多项式3A B +的值与字母x 的值无关,那么32m n +=____. 16.设{}x 表示大于x 的最小整数,如{}34=,{}1.21-=-,则下列结论中正确的是__________.(填写所有正确结论的序号)①{}00=;②{}x x -的最小值是0;③{}x x -的最大值是1;④存在实数x ,使{}0.5x x -=成立.三、解答题(本题共10小题,共102分.解答时应写出必要的步骤、过程或文字说明)17.计算: (1)123⎛⎫÷- ⎪⎝⎭(2)()()235----⎡⎤⎣⎦ (3)()315604612⎛⎫--+⨯- ⎪⎝⎭(4)()()34312484⎡⎤-+-⨯÷--⎢⎥⎣⎦18.化简: (1)221433x y x y - (2)()23213a a +--212322a a ⎛⎫--+⎪⎝⎭19.画一条数轴,在数轴上表示:平方是14的数,绝对值等于3的数,最大负整数和最小的正整数,并把这些数用“>”连接起来.20.先化简再求值2213232ab ab a b ab ⎡⎤⎛⎫---+ ⎪⎢⎥⎝⎭⎣⎦,其中34a =,1b =-. 21.有20筐苹果,以每筐20千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:(1)20筐苹果中,最重的一筐比最轻的一筐重多少千克? (2)与标准质量相比,20筐苹果总计超过或不足多少千克? (3)若苹果每千克售价5元,则售出这20筐苹果可卖多少元?22.某同学做一道题:“已知两个多项式,A B ,计算“A B -”时,他误将“A B -”看成“B A -”,求得的结果为2927x x --.已知232B x x =+-,请求出“A B -”的正确答案. 23.如图,正方形ABCD 和正方形ECGF边长分别为a 和6.(1)写出表示阴影部分面积的代数式(结果要求化简); (2)求3a =时,阴影部分的面积. 24.请观察下列算式,找出规律并填空112⨯=1-12, 123⨯=12-13, 134⨯=13-14, 145⨯=14-15则第10个算式是 = 第n 个算式是 = 根据以上规律解答下题:1111 (12233499100)++++⨯⨯⨯⨯ 25.某商店将进货价为每件30元的商品以每件40元的销售价售出,平均每月能售出100件.市场调查发现,当每件商品售价每上涨1元时,其销售量将减少2件.若设每件商品的销售价m 元. (1)试用含m 的代数式填空:①涨价后,每件商品的利润为 元;②涨价后,商店该商品平均每月的销售量为 件;(填化简后的结果) ③涨价后,商店平均每月销售利润为 元;(2)如果这家商店要想平均每月销售利润达到1600元,甲同学说:在原售价每件40元的基础上再上涨30元,可以完成任务.乙同学说:不用涨那么多,在原售价每件40元的基础上再上涨10元就可以了.请你根据计算说明甲同学与乙同学的说法是否正确.26.(1)如图(1),数轴上有一个表示数a 的点M ,已知点M 在数轴上移动3个单位长度后表示的数是5,那么a 的值是 ;(2)如图(2),有一根木尺PQ 放置在数轴上,它的两端P Q 、分别落在A B 、两点处.将木尺在数轴上水平移动,当点P 移动到点B 时,点Q 所对应的数为24;当点Q 移动到点A 时,点P 所对应的数为6(单位:cm ).利用所学知识求出点A 、点B 所表示的数及木尺PQ 的长.(3)借助上面的方法解决问题:一天,小明去问爷爷的年龄,爷爷说:我若是你现在这么大,你还要40年才出生呢,你若是我现在这么大,我已经是116岁!小明纳闷,爷爷今年到底是多少岁?请你画出示意图,求出小明和爷爷的年龄,并写出合理的计算过程.答案与解析一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填涂在答题卡相应位置上)1.3-的倒数是()A. 3B. 13C.13- D. 3-【答案】C【解析】【分析】由互为倒数的两数之积为1,即可求解.【详解】∵1313⎛⎫-⨯-=⎪⎝⎭,∴3-的倒数是13-.故选C2.如图,数轴上A,B两点分别对应实数a,b,则下列结论正确的是()A. a+b>0B. ab>0C. a﹣b>0D. |a|﹣|b|>0 【答案】C【解析】【分析】本题要先观察a,b在数轴上的位置,得b<-1<0<a<1,然后对四个选项逐一分析.【详解】解:A、∵b<-1<0<a<1,∴|b|>|a|,∴a+b<0,故选项A错误;B、∵b<-1<0<a<1,∴ab<0,故选项B错误;C、∵b<-1<0<a<1,∴a-b>0,故选项C正确;D、∵b<-1<0<a<1,∴|a|-|b|<0,故选项D错误.故选:C.【点睛】本题考查了实数与数轴的对应关系,数轴上右边的数总是大于左边的数.3.下列各对数中,互为相反数的是( ) A. 3与3- B. 32与()23-C. ()23-与23D. ()41-与()31-【答案】D 【解析】 【分析】注意相反数的特征:绝对值相等但是符号不同的数是互为相反数. 【详解】A 、33-=,则,33=-,故选项错误;B 、328=,()239-=,则32与()23-不相等,也不是相反数,故选项错误; C 、()239-=,239=,则()2233-=,故选项错误; D 、()411-=,()311-=-,互为相反数,故选项正确. 故选D .【点睛】本题考查的是相反数的概念,注意相反数和倒数概念的区别. 4.若多项式1(4)62ax a x --+是关于x 的四次三项式,则a 的值是( ) A. 4- B. 2C. 4-或4D. 4【答案】A 【解析】 【分析】根据多项式及其有关定义可知,该多项式的最高次数为4,项数是3,所以可确定a 的值. 【详解】解:∵多项式1(4)62ax a x --+是关于x 的四次三项式, ∴4a =,(4)0a --≠, ∴4a =-. 故选A .【点睛】本题考查了与多项式有关的概念,解题的关键理解四次三项式的概念,多项式中每个单项式叫做多项式的项,有几项叫几项式,这些单项式中的最高次数,就是这个多项式的次数. 5.下列说法错误的是( )A. 2的倒数是12B. ()()264---=C. 22a b +表示,a b 两数和的平方D.3π是无理数 【答案】C 【解析】 【分析】乘积为1的两个数互为倒数,可判别A 选项;计算可判别B 选项;22a b +是表示,a b 两数的平方和的平方,可判别C 选项;3π是无理数. 【详解】2的倒数是12,故选项A 不合题意; ()()26264---=-+=,故选项B 不合题意;()2a b +表示,a b 两数和的平方,故选项C 符合题意;3π是无理数,故选项D 不合题意. 故选C .【点睛】本题考查了考列代数式以及倒数的概念、无理数的概念等,熟练掌握概念是解题的关键. 6.北京的故宫占地面积约为720000平方米,数据720000用科学记数法表示为( ) A. 40.7210⨯ B. 57210⨯.C. 57210⨯D. 67.210⨯【答案】B 【解析】 【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a n ≤<,为整数. 【详解】将720000用科学记数法表示为57210⨯.元. 故选B【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.7.如图,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2020个格子中的数是( )A. 3B. 1-C. 2D. 2-【答案】D 【解析】 【分析】根据表格中的任意三个相邻格子中所填整数之和都相等列出方程即可求解. 【详解】解:根据题意,得:231a b c -++=+-, ∴4a b c +-=, ∵31a b c c ++=+-, ∴2a b +=, ∴2c =-, ∴230b -+=, ∴1b =-, ∴3a =,∴格子中的数字为:2-、3、1-、2-、3、1-… ∴格子中的数为3个数一个循环, ∴2020÷3=673…1,∴第2020个格子中的数为:2-. 故选D .【点睛】本题考查了数字的变化类规律,解决本题的关键是找出等量关系,列出方程,求出a 、b 、c 的值. 8.数轴上A 点表示的数是2的相反数,B 点表示的数是绝对值最小的数,C 点表示的数是16的倒数,若将数轴折叠,使得点A 与点B 重合,则与点C 重合的点表示的数是( ) A. 6 B. 6-C. 8-D. 3-【答案】C 【解析】 【分析】根据相反数、绝对值、倒数的概念分别求得A 、B 、C 各点表示的数,利用对称的性质可求解.【详解】数轴上A 点表示的数是2的相反数,A ∴表示的数为2-;B 点表示的数是绝对值最小的数,B ∴点表示的数是0;C 点表示的数是16的倒数,C ∴点表示的数是6, 若将数轴折叠,使得点A 与点B 重合,则点A 与点B 的中点对应的数为1-,()617--=,178--=-,∴与点C 重合的点表示的数是8-.故选C .【点睛】本题考查了相反数、绝对值、倒数的概念,对称的性质以及数轴上两点的距离公式,正确理解题意是解题的关键.二、填空题(本大题共8小题,每小题3分,本大题共24分.不需要写出解答过程,只需把答案直接填写在答题卡相应位置上)9.如果收入100元记作100+元,那么支出90元记作__________元. 【答案】-90 【解析】 【分析】根据正数和负数可以用来表示具有相反意义的量即可直接得出答案. 【详解】如果收入100元记作100+元.那么支出90元记作90-元. 故答案为90-.【点睛】本题考查了对正数和负数的认识及应用.10.单项式2323x y π-的系数是_____________.【答案】23π-【解析】 【分析】直接根据单项式系数的定义进行解答即可. 【详解】∵单项式2323x y π-的数字因数是23π-,∴此单项式的系数是:23π-. 故答案为23π-. 【点睛】本题考查了单项式的系数,熟知单项式中的数字因数叫做单项式的系数是解答此题的关键.11.某中学为每个学生编号,设定末位用1表示男生,用2表示女生.如果182162表示2018年入学的2班16号的同学是位女生,那么2019年入学的5班19号男生的编号是__________.【答案】195191【解析】【分析】根据前两位表示年,第3个数表示班,第4、5两个数表示号,最后一位表示男女,可得答案. 【详解】编号182162表示2018年入学的2班16号的同学是位女生,2019∴年入学的5班19号男生的编号是:195191.故答案为195191.【点睛】本题考查了用数字表示事件.12.比较大小:2||3--______34-(填“<”、“=”、“>”) 【答案】>【解析】先将绝对值去掉,再比较大小即可. 解:∵2283312--=-=-,39412-=-, ∴2334-->-. “点睛”分母相同,分子大的分数值就大;分子相同,分母大的分数值反而小;分子、分母都不相等,通分成分母相同,分子大的分数值就大,即可得解.13.若33a x y -与5b y x -是同类项,则2a b -=______.【答案】4-【解析】【分析】根据同类项的定义:字母相同,相同字母的指数也相同,即可得到答案.【详解】解:∵33a x y -与5b y x -是同类项,∴5a =,3b =,∴2253594a b -=-=-=-;故答案为4-.【点睛】本题考查了同类项的定义,解题的关键是根据同类项的定义,正确求出a 、b 的值.14.已知代数式22a a -的值是3,则代数式2542a a +-的值为__________.【答案】-1【解析】【分析】由已知条件得到(a 2-2a )的值后,代入代数式求值.【详解】223a a -=,∴原式()2522a a =--561=-=-,故答案1-.【点睛】本题考查了整式的运算,要会把a 2-2a 看作一个整体,然后整体代入计算.15.已知2A x mx =+,2241B nx x =--,且多项式3A B +的值与字母x 的值无关,那么32m n +=____.【答案】1【解析】【分析】直接利用整式的加减运算法则合并,进而得出2n ,3m 的值,进而计算得出答案.【详解】解:∵2A x mx =+,2241B nx x =--,∴222333241(32)(34)1A B x mx nx x n x m x +=++--=++--,∵多项式3A B +的值与字母x 的值无关,∴320n +=,340m -=,∴23n =-,34m =,∴32431m n +=-=;故答案为1.【点睛】此题主要考查了整式的加减运算,正确合并同类项,求出2n 与3m 的值,是解题关键.16.设{}x 表示大于x 的最小整数,如{}34=,{}1.21-=-,则下列结论中正确的是__________.(填写所有正确结论的序号)①{}00=;②{}x x -的最小值是0;③{}x x -的最大值是1;④存在实数x ,使{}0.5x x -=成立.【答案】③④【解析】【分析】根据题中所给出的例子可知{}x 表示大于x 的最小整数,由此即可判断得出结论.【详解】①{}01=,故本项错误;②{}0x x ->,但是取不到0,故本项错误;③{}1x x -≤,即最大值为1,故本项正确;④存在实数x ,使{}0.5x x -=成立,例如0.5x =时,故本项正确.故答案是:③④.【点睛】本题考查的是实数大小比较,此题属新定义型题目,明确{}x 表示大于x 的最小整数是解答此题的关键.三、解答题(本题共10小题,共102分.解答时应写出必要的步骤、过程或文字说明) 17.计算:(1)123⎛⎫÷- ⎪⎝⎭(2)()()235----⎡⎤⎣⎦(3)()315604612⎛⎫--+⨯- ⎪⎝⎭ (4)()()34312484⎡⎤-+-⨯÷--⎢⎥⎣⎦【答案】(1)-6;(2)-10;(3)30;(4)9【解析】【分析】根据有理数的运算顺序运算:先乘方再乘除,最后算加减即可;(1)除法转化成乘法,除数变倒数;(2)减法转化成加法,减数变相反数;(3)利用简洁的分配律,使运算更简便;(4)先乘方再乘除,按有理数的运算法则运算.【详解】(1)原式()236=⨯-=-;(2)原式()235=--+=2810--=-;(3)原式()316046=-⨯--⨯()()5606012-+⨯- 451025=+-30=;(4)原式131824⎛⎫=--⨯-- ⎪⎝⎭ 110=-+9=.【点睛】本题考查了有理数的混合运算,熟练掌握有理数的运算法则是解题关键.18.化简:(1)221433x y x y - (2)()23213a a +--212322a a ⎛⎫--+ ⎪⎝⎭【答案】(1)2x y -;(2)21032a a -+【解析】【分析】(1)合并同类项即可;(2)先按照去括号法则去掉整式中的括号,再合并整式中的同类项即可.【详解】(1)原式2x y =-;(2)原式2639a a =+-2641a a ++- 21032a a =-+.【点睛】本题考查了整式的加减,解决此类题目的关键是熟记去括号法则以及熟练运用合并同类项的法则.19.画一条数轴,在数轴上表示:平方是14的数,绝对值等于3的数,最大负整数和最小的正整数,并把这些数用“>”连接起来.【答案】数轴上表示见解析,113122>>>-13>->- 【解析】【分析】 先按要求求出各数,再在数轴上表示出这些数,最后用“>”把它们连接起来即可.【详解】如图所示:113122>>>-13>->-. 【点睛】本题考查了数轴及有理数在数轴上的表示,有理数大小的比较,依照数轴上的数从左到右依次用“>”连接起来是比较有理数大小常用的方法.20.先化简再求值2213232ab ab a b ab ⎡⎤⎛⎫---+ ⎪⎢⎥⎝⎭⎣⎦,其中34a =,1b =-. 【答案】24ab a b --,3【解析】【分析】先按照去括号法则去掉代数式中的括号,再合并同类项,化成最简式;把a b 、的值代入到化简后的式子中求值即可.【详解】原式2232ab ab a b =-+--234ab ab a b =--,当34a =,1b =-时, 原式39344=+=. 【点睛】本题考查了整式的加减,最后将字母的值代入化简后的式子就可以求出结论.解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则.21.有20筐苹果,以每筐20千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:(1)20筐苹果中,最重的一筐比最轻的一筐重多少千克?(2)与标准质量相比,20筐苹果总计超过或不足多少千克?(3)若苹果每千克售价5元,则售出这20筐苹果可卖多少元?【答案】(1)最重的一筐比最轻的一筐重6kg ;(2)20筐苹果总计超过4.5千克;(3)售出这20筐苹果可卖2022.5元【解析】【分析】(1)根据最大数减最小数,可得答案;(2)根据有理数的加法,可得答案;(3)根据单价乘以数量,可得销售价格.【详解】(1)()()2.5 3.56kg --=, ∴最重的一筐比最轻的一筐重6kg ;(2)将表格中数据求和,得()()3.524 1.52-+-⨯+-⨯+()14 2.56 4.5kg ⨯+⨯=,20∴筐苹果总计超过4.5千克;(3)()2020 4.5404.5kg ⨯+=,404.552022.5⨯=(元),∴售出这20筐苹果可卖2022.5元.【点睛】本题考查了正数和负数,利用了有理数的加减法运算,单价乘以数量等于销售价格. 22.某同学做一道题:“已知两个多项式,A B ,计算“A B -”时,他误将“A B -”看成“B A -”,求得的结果为2927x x --.已知232B x x =+-,请求出“A B -”的正确答案.【答案】2927x x -++【解析】【分析】根据题意列出关系式,去括号合并即可得到结果【详解】2927B A x x -=--,232B x x =+-,()2927A B x x ∴=---232x x =+--()2927x x --2855x x =-++,()2855A B x x ∴-=-++()232x x -+-2927x x =-++.【点睛】本题考查了整式的加减,熟练掌握运算法则是解题的关键.23.如图,正方形ABCD 和正方形ECGF 的边长分别为a 和6.(1)写出表示阴影部分面积的代数式(结果要求化简);(2)求3a =时,阴影部分的面积.【答案】(1)213182a a -+;(2)272 【解析】【分析】 (1)阴影部分面积=两个正方形面积和减去两个直角三角形面积,把对应的三角形面积代入即可(2)直接把3a cm =代入(1)中可求出阴影部分的面积. 【详解】(1)阴影部分面积=两个正方形面积和减去两个直角三角形面积, 即:221362a a +-⨯()1662a -⨯⨯+213182a a =-+;(2)当3a =时,代入213182a a -+, 即213182a a -+1279331822=⨯-⨯+=. 【点睛】本题考查列代数式.准确把握图形间的关系,找到阴影部分的面积是哪些规则图形的面积差是解题的关键.24.请观察下列算式,找出规律并填空112⨯=1-12, 123⨯=12-13, 134⨯=13-14, 145⨯=14-15则第10个算式是 = 第n 个算式是 =根据以上规律解答下题:1111 (12233499100)++++⨯⨯⨯⨯ 【答案】11011⨯=111011- 111(1)1n n n n =-++ 99100【解析】【分析】(1)观察一系列等式确定出第10个等式即可;(2)归纳总结得到一般性规律,写出即可;(3)利用得出的拆项方法计算即可.【详解】解:(1)第10个算式是11011⨯=111011-; (2)第n 个算式为()111n n 1n n 1=-++; (3)根据以上规律解答下题:1111 (12233499100)++++⨯⨯⨯⨯=1-12+12-13+14+…+199=1-199100100=. 【点睛】本题是数字类的规律题,此类题除了计算准确外,还要认真观察已知所给的式子有什么关系,大胆猜想,仔细分析,利用特别的方法进行计算,并得出相应的规律.25.某商店将进货价为每件30元的商品以每件40元的销售价售出,平均每月能售出100件.市场调查发现,当每件商品售价每上涨1元时,其销售量将减少2件.若设每件商品的销售价m 元.(1)试用含m 代数式填空:①涨价后,每件商品的利润为 元;②涨价后,商店该商品平均每月的销售量为 件;(填化简后的结果)③涨价后,商店平均每月销售利润为 元;(2)如果这家商店要想平均每月销售利润达到1600元,甲同学说:在原售价每件40元的基础上再上涨30元,可以完成任务.乙同学说:不用涨那么多,在原售价每件40元的基础上再上涨10元就可以了.请你根据计算说明甲同学与乙同学的说法是否正确.【答案】(1)①()30m -元;②()1802m -件;③()()301802m m --元;(2)两位同学都说的对,理由见解析【解析】【分析】(1)①利润=销售价-进货价;②根据每件商品售价每上涨1元时,其销售量将减少2件可列式为()1802m -件③每月销售利润=销售量⨯利润;(2)按照甲、乙两位同学说的售价,分别计算比较即可得到答案.【详解】(1)①涨价后,每件商品的利润为()30m -元;②涨价后,商店该商品平均每月的销售量为()1802m -件;③涨价后,商店平均每月销售利润为()()301802m m --元;故答案为()30m -;()1802m -;()()301802m m --;(2)甲同学:()403030+-()1802701600-⨯=元,乙同学:()401030+-()1802501600-⨯=元,∴两位同学说的都对.【点睛】此题考查了代数式在实际生活中的应用.解题的关键是理解题意.26.(1)如图(1),数轴上有一个表示数a 的点M ,已知点M 在数轴上移动3个单位长度后表示的数是5,那么a 的值是 ;(2)如图(2),有一根木尺PQ 放置在数轴上,它的两端P Q 、分别落在A B 、两点处.将木尺在数轴上水平移动,当点P 移动到点B 时,点Q 所对应的数为24;当点Q 移动到点A 时,点P 所对应的数为6(单位:cm ).利用所学知识求出点A 、点B 所表示的数及木尺PQ 的长.(3)借助上面的方法解决问题:一天,小明去问爷爷的年龄,爷爷说:我若是你现在这么大,你还要40年才出生呢,你若是我现在这么大,我已经是116岁!小明纳闷,爷爷今年到底是多少岁?请你画出示意图,求出小明和爷爷的年龄,并写出合理的计算过程.【答案】(1)2或8;(2)A :12,B :18,PQ =6;(3)图形见解析,小明12岁,爷爷64岁【解析】【分析】(1)分M 点向右或向左移动两种情况讨论;(2)根据题意由数轴观察得三个木尺的长为24618-=,即可求得答案;(3)在求爷爷年龄时,借助数轴,把小明与爷爷的年龄差看做木尺的长,由此可知爷爷的年龄;【详解】(1)当M 点向右移动,则532a =-=,当点M 向左移动,则538a =+=,故答案2或8;(2)由题意可知,B 点到24的距离、PQ 的距离、A 点到6的距离相等,()24636PQ ∴=-÷=,A ∴点表示的数为6612+=,B 点表示的数为24618-=;(3)如图:精品试卷爷爷和小明的年龄差为:()11640352+÷=(岁),∴爷爷的年龄为1165264-=(岁),小明的年龄为645212-=(岁),∴小明12岁,爷爷64岁.【点睛】本题主要考查了一元一次方程的应用,以及用数轴解决实际问题,解决问题的关键是弄清题意,根据题意画出图示,找到题目中的等量关系.。
2024-2025学年江苏省淮安市苏教版七年级数学上册期中测试 题
2024-2025学年江苏省淮安市苏教版七年级数学上册期中测试题1.三车魏景元四年(公元263年),由我国古典数学理论的奠基人之一刘徽完成了《九章算术注》十卷,《重差》为第一卷,它是我国学者编撰的最早的一部测量数学著作,亦为地图学提供了数学基础,该卷中的第一个问题是求海岛上的山峰的高度,这本书的名称是()A.《海岛算经》B.《孙子算经》C.《九章算术》D.《五经算术》2.据统计,2013年河南省旅游业总收入达到约3875.5亿元,若将3875.5亿用科学记数法表示为3.8755×10n,则n等于()A.10B.11C.12D.133.小丽在纸上画了一条数轴后,折叠纸面,使数轴上表示2的点与表示-4的点重合;若数轴上A、B两点之间的距离为10(A在B的左侧),且A、B两点经上述折叠后重合,则A点表示的数是()A.-5B.-6C.-10D.-44.下列说法中:①﹣a一定是负数;②|﹣a|一定是正数;③有理数不是整数就是分数;④绝对值等于它本身的数是1;正确的说法有()个A.1B.2C.3D.45.如图,数轴上的A、B两点分别表示有理数a、b,下列式子中不正确的是()A.a+b<0B.a﹣b<0C.﹣a+b>0D.|b|>|a|6.大润发超市有三种袋装大米质量分别为10±0.1kg,10±0.2kg,10±0.3kg各十袋,从中抽取两袋,则它们质量相差最大为()A.0.3kg B.0.4kg C.0.5kg D.0.6kg7.将化成小数,则小数点后第个数字为()A.B.C.D.8.,b,c在数轴上的位置如图,化简:|c﹣b|+|a﹣b|﹣|a+c|=()A.0B.-2b C.2b-2a D.2a9.若与互为相反数,则的值为()A.3B.C.1D.10.计算:=__________.11.到原点的距离等于3的数是______.12.在中,底数是_____,其计算结果为_____.13.已知,,且,则的值等于__________.14.已知|x|=4,y2=25,xy<0,则x﹣y=__.15.多项式x|m|﹣(m﹣3)x+6是关于x的三次三项式,则m的值是_____.16.若,,则的值是___________.17.计算:(1)1÷(﹣3)×(2)(3)18.把下列各数填入相应的括号内.,0.212112111…(1)正数集合:{…};(2)负数集合:{…};(3)整数集合:{…};(4)分数集合:{…}.19.化简与求值先化简,再求值:其中20.形如的式子叫做二阶行列式,它的运算法则用公式表示为=ad﹣bc,依此法则计算:.21.如图,已知a、b、c在数轴上的位置.(1)c﹣b0,a+b0,a﹣c0.(填“>”或“<”)(2)化简:﹣|c﹣b|﹣|a+b|+|a﹣c|.22.巡道员每天沿着一条东西向的铁路进行巡视维护.他早晨从住地出发,先向东走了7km,休息半小时之后又向东走了3km,然后折返向西走了12km.(1)此时他在住地的方,与住地的距离是km;(2)若巡道员最终返回住地,问这一天他巡视维护共走了多少路程?23.已知a、b满足(a﹣b+1)2+|a+b﹣2|=0,求代数式的值.24.一天上午,某出租车被安排以地为出发地,只在东西方向的道路上营运,规定:向东行驶为正,向西行驶为负,行车里程(单位:)依先后次序记录如下:,.假设该出租车每次乘客下车后,都停车等待下一位乘客,直到下一位乘客上车再出发.(1)将最后一位乘客送到目的地后,出租车在地哪个方向,距离多远?(2)若出租车按每千米3元的价格收费,则该出租车司机当天上午的营业额是多少元?25.小王家买了一套新房,其结构如图所示(单位:m).他打算将卧室铺上木地板,其余部分铺上地砖.(1)木地板和地砖分别需要多少平方米?(2)如果地砖的价格为每平方米元,木地板的价格为每平方米元,那么小王一共需要花多少钱?26.材料1:一般地,个相同因数相乘:记为.如,此时,3叫做以2为底的8的对数,记为(即)(1)计算__________,__________.材料2:新规定一种运算法则:自然数1到的连乘积用表示,例如:,,,,…在这种规定下(2)求出满足该等式的:(3)当为何值时,27.我国著名数学家华罗庚说过“数缺形时少直观,形少数时难人微”,数形结合是解决数学问题的重要思想方法.请阅读下列材料:材料(一):代数式|x﹣2|的几何意义是数轴上表示有理数x所对应的点与表示有理数2所对应的点之间的距离;因为|x+1|=|x﹣(﹣1)|,所以|x+1|的几何意义就是数轴上表示有理数x所对应的点与表示有理数﹣1所对应的点之间的距离.材料(二):如图,点A、B、P分别表示有理数数﹣1、2、x,AB=3,∵|x+1|+|x﹣2|的几何意义是线段PA与PB的长度之和,∴当点P在线段AB上时,PA +PB=3,当点P在点A的左侧或点B的右侧时,PA+PB>3,∴|x+1|+|x﹣2|的最小值是3;解决问题:(1)在数轴上,若点M表示的数为﹣2,点Q表示的数为1,点N表示的数为6,请画出一条数轴,标出点M、Q、N的位置,①线段NQ=;②若数轴上点C表示的有理数为x,求|x+2|+|x﹣6|的最小值.(2)若代数式|x+a|+|x﹣3|的最小值是2,求a的值.。
最新苏科版七年级上册数学《期中考试卷》(附答案)
2020-2021学年度第一学期期中测试苏科版七年级数学试题一、选一选,比比谁细心(本大题共10小题,每小题3分,共30分)1.12-的相反数是( ) A. 2-B. 2C. 12-D.122.在数轴上距离原点2个单位长度的点所表示的数是( ) A. 2B. ﹣2C. 2或﹣2D. 1或﹣13.下列各式中正确的是 ( ) A. -4-3=-1B. 5-(-5)=0C. 10+(-7)=-3D. -5-4-(-4)=-54.下列各题中的两项是同类项的是 ( ) A. 2ab 与212a b -B. 3xy 与22x yC. 2x 与2yD. 3与5-5.下面的计算正确的是 ( ) A. 220x y yx -+= B.C. 2242a a a +=D. 2242m n m n mn -=6.下列变形中,不正确的是( ) A -(-+)-a b c d a b c d =+- B. a-b-(c-d)=a-b-c-dC. a+b-(-c-d)=a+b+c+dD. ()a b c d a b c d ++-=++-7.下列式子:22132,4,,,5,07ab ab x x a c++-中,整式的个数是 ( ) A. 6B. 5C. 4D. 38.下列说法错误的是 ( ) A. 2231x xy --二次三项式B. 1x -+不是单项式C. 223xy π-的系数是23π-D. 222xab -的次数是69.一个多项式与221x x -+和是32x -,则这个多项式为( )A. 253x x -+B. 21x x -+-C. 253x x -+-D. 2513x x --10.如图所示的运算程序中,若开始输入的x 值为48,我们发现第1次输出的结果为24,第2次输出的结果为12,…第2017次输出的结果为( )A. 3B. 6C. 4D. 2二、填一填, 看看谁仔细(本大题每空2分, 共20分, 请将你的答案写在“______”处)11.的倒数为 ______.12.比较大小:(8)-+ 9--; 2- 34-(填“>”、“<”、或“=”符号). 13.地球到月球的平均距离是 384 000 000米,这个数用科学记数法表示为________ 米. 14.若4x 2m y n+1与-3x 6y 2是同类项,则m+n =______. 15.计算2()242F x x ax a =-+-,结果等于 .16.若关于x 的方程2(1)10k x x -+-=是一元一次方程,则k 的值为__________ 17.若m 2+3n -1的值为7,则代数式2m 2+6n +8的值为______. 18.325x k x k =---=若是方程的解,则的值是 .19.88层的金茂大厦的电梯上,有显示楼层的液晶屏,如图,可显示01,02,…,88,由于屏幕受到损坏,显示左边数字的7根线段中有1根不能亮了,显示右边数字的7根线段中有3根不能亮了.请问:电梯在运行的过程中,最多还有 _____个楼层的数字显示是正确的.说明】数字0、1、2、3、4、5、6、7、8、9显示方式如下图所示.三、 解一解, 试试谁更棒(本大题共7小题,共50分)20.把下列各数分别填入相应的集合内: -2.5, - , 0, 8, 45-, 2π, 53, -0.5252252225…(每两个5之间依次增加1个2)(1)正数集合: { …}; (2)负分数集合:{ …}; (3)整数集合: { …}; (4)无理数集合:{ …}. 21.计算:(1)-20+(-5)-(-18) (2)94(81)(16)49-÷⨯÷- (3)13(1)4864-+⨯ (4)221(1)3(3)6⎡⎤--⨯--⎣⎦22.解方程:(1)7854x x -=+ (2) 325254x x -++=23.先化简,再求值:已知()2210a b -++=,求代数式22225(31)(35)a b ab ab a b ---+-的值.24.有理数a 、b 、c 在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:c b - 0,-a b 0,c -a 0. (2)化简:32______a a a ⋅⋅=25.足球比赛中,守门员根据场上攻守情况在门前来回跑动,若以球门线为基准,向前跑记作正数,返回跑记作负数,一段时间内,某守门员的跑动情况记录如下(单位:m ):+10,﹣2,+5,﹣6,+12,﹣9,+4,﹣14.(假定开始计时时,守门员正好在球门线上)(1)守门员最后是否回到球门线上? (填“是”或“否”) (2)守门员离开球门线的最远距离达 米? (3)这段时间内,这位守门员一共跑动 米?26.(1)小明说:“请你任意想一个数,把这个数乘2后加8,然后除以4,再减去你原来所想的那个数的,我可以知道你计算的结果是2.” 请你帮助小明说明上述结论的正确性.如果设任意想的那个数为x ,则根据题意,得代数式(请完善下面的解题过程):(2)在(1)中,得到的代数式化简后结果为2,它不含有x ,我们称之为“与x 无关”. 试解决下列“无关”类问题:①多项式(241)2(2)x yx x xy +--+的值( ) A .仅与x 的大小无关 B .仅与y 的大小无关 C .与x 、y 的大小都无关 D .与x 、y 的大小都有关②如果已知代数式的值与其中某个字母的取值无关,你能求出哪一个字母的值?此时这个字母的值是多少?27. 某单位在12月份准备组织部分员工到北京旅游,现联系了甲、乙两家旅行社,两家旅行社报价均为2000元/人,两家旅行社同时都对10人以上团体推出了优惠举措:甲旅行社对每位员工七五折优惠;而乙旅行社是免去一位带队管理员工的费用,其余员工八折优惠.(1)如果设参加旅游的员工共有a (a >10)人,则甲旅行社的费用为 元,乙旅行社的费用为 元;(用含a 的代数式表示,并化简.)(2)假如这个单位现组织包括管理员工在内的共20名员工到北京旅游,该单位选择哪一家旅行社比较优惠?请说明理由.(3)如果计划在12月份外出旅游七天,设最中间一天的日期为x,则这七天的日期之和为.(用含x的代数式表示,并化简.)(4)假如这七天的日期之和为63的倍数,则他们可能于12月几号出发?(写出所有符合条件的可能性)答案与解析一、选一选,比比谁细心(本大题共10小题,每小题3分,共30分)1.12-的相反数是()A. 2-B. 2C.12- D.12【答案】D 【解析】【详解】因为-12+12=0,所以-12的相反数是12.故选D.2.在数轴上距离原点2个单位长度的点所表示的数是()A. 2B. ﹣2C. 2或﹣2D. 1或﹣1【答案】C【解析】试题分析:分点在原点左边与右边两种情况讨论求解.解:①在原点左边时,∵距离原点2个单位长度,∴该点表示的数是﹣2;②在原点右边时,∵距离原点2个单位长度,∴该点表示的数是2.综上,距离原点2个单位长度的点所表示的数是﹣2或2.故选C.【点评】本题考查了数轴,难点在于要分点在原点的左边与右边两种情况讨论求解.3.下列各式中正确的是()A. -4-3=-1B. 5-(-5)=0C. 10+(-7)=-3D. -5-4-(-4)=-5 【答案】D【解析】试题解析:A、-4-3=-7,故本选项错误;B、5-(-5)=5+5=10,故本选项错误;C 、10+(-7)=3,故本选项错误;D 、-5-4-(-4)=-5-4+4=-5,故本选项正确. 故选D .4.下列各题中的两项是同类项的是 ( ) A. 2ab 与212a b - B. 3xy 与22x yC. 2x 与2yD. 3与5-【答案】D 【解析】解:A 相同字母a 的指数不同,不是同类项; B 相同字母a 的指数不同,不是同类项; C 没有相同字母,不是同类项; D 是同类项. 故选D .5.下面的计算正确的是 ( ) A. 220x y yx -+= B.C. 2242a a a +=D. 2242m n m n mn -=【答案】A 【解析】 解:A 正确;B .222532m m m -=,故B 错误;C .2222a a a +=,故C 错误;D .22243m n m n m n -=. 故选A .6.下列变形中,不正确的是( ) A. -(-+)-a b c d a b c d =+- B. a-b-(c-d)=a-b-c-d C. a+b-(-c-d)=a+b+c+d D. ()a b c d a b c d ++-=++- 【答案】B 【解析】 【分析】根据去括号法则,如果括号前面是负号,去括号后括号里每一项都要改变符号,即可解题. 【详解】解:因为a-b-(c-d)=a-b-c+d, 所以B 错误, 故选B.【点睛】本题考查了去括号法则,属于简单题,熟悉去括号法则是解题关键.7.下列式子:22132,4,,,5,07ab ab x x a c++-中,整式的个数是 ( ) A. 6 B. 5 C. 4 D. 3【答案】C 【解析】解:整式有:22x +,237ab ,-5x ,0,一共有4个,故选C . 8.下列说法错误的是 ( ) A. 2231x xy --是二次三项式 B. 1x -+不是单项式 C. 223xy π-的系数是23π- D. 222xab -的次数是6【答案】D 【解析】【详解】试题分析:根据多项式和单项式的有关定义判断即可. A .根据多项式的次数:次数最高的那项的次数.22x 次数为2;3xy -次数为2;-1的次数为0,所以2231x xy --是二次三项式 ,正确; B .根据单项式是数字与字母的积可得1x -+不是单项式 ,正确; C .根据单项式系数:字母前边的数字因数可得223xy π-的系数是23π-,正确; D .根据单项式的次数是所有字母指数的和可得222xab -的次数是4,,错误. 所以选D.考点:多项式、单项式9.一个多项式与221x x -+的和是32x -,则这个多项式为( ) A. 253x x -+ B. 21x x -+-C. 253x x -+-D. 2513x x --【答案】C【分析】由题意可得被减式为3x−2,减式为x2−2x +1,根据差=被减式−减式可得出这个多项式. 【详解】解:由题意得:这个多项式=3x−2−(221x x -+), =3x−2−x 2+2x−1, =−x 2+5x−3. 故选C .【点睛】本题考查整式的加减,难度不大,注意在合并同类项时要细心.10.如图所示的运算程序中,若开始输入的x 值为48,我们发现第1次输出的结果为24,第2次输出的结果为12,…第2017次输出的结果为( )A 3B. 6C. 4D. 2【答案】D 【解析】根据运算程序得到:除去前两个结果24,12,剩下的以6,3,8,4,2,1循环,∵(2017-2)÷6=335…5, 则第2017次输出的结果为2, 故选D . 二、填一填, 看看谁仔细(本大题每空2分, 共20分, 请将你的答案写在“______”处)11.的倒数为 ______.【答案】32-. 【解析】 解:23-的倒数为:32-.故答案为32-. 12.比较大小:(8)-+ 9--; 2- 34-(填“>”、“<”、或“=”符号). 【答案】>,<.解:-(+8)=-8,-|-9|=-9,∴-(+8)>-|-9|,-2<34-,故答案为>,<. 13.地球到月球的平均距离是 384 000 000米,这个数用科学记数法表示为________ 米. 【答案】【解析】试题分析:科学记数法的表示形式为a×的形式,其中1≤|a|<10,n 为整数.所以确定n 的值是看小数点向左移动的个数.可得384 000 000=.考点:科学记数法.14.若4x 2m y n+1与-3x 6y 2是同类项,则m+n =______. 【答案】4. 【解析】试题分析:根据同类项的概念求解. ∵4x 2m y m+n 与-3x 6y 2是同类项, ∴2m=6,m+n=2. 故答案为2. 考点:同类项.15.计算2()242F x x ax a =-+-,结果等于 . 【答案】5. 【解析】解:原式=1(5)-⨯- =5.故答案为5.16.若关于x 的方程2(1)10k x x -+-=是一元一次方程,则k 的值为__________ 【答案】1. 【解析】解:∵是一元一次方程,∴k -1=0,解得:k =1.故答案为1. 17.若m 2+3n -1的值为7,则代数式2m 2+6n +8的值为______. 【答案】24. 【解析】解:∵m 2+3n -1=7,∴m 2+3n =8,∴2m 2+6n +8=2(m 2+3n )+8=2×8+8=24.故答案为24.18.325x k x k =---=若是方程的解,则的值是 .【答案】-1.【解析】解:把x =-3代入得:-2k +3=5,解得:k =-1.故答案为-1.19.88层的金茂大厦的电梯上,有显示楼层的液晶屏,如图,可显示01,02,…,88,由于屏幕受到损坏,显示左边数字的7根线段中有1根不能亮了,显示右边数字的7根线段中有3根不能亮了.请问:电梯在运行的过程中,最多还有 _____个楼层的数字显示是正确的.【说明】数字0、1、2、3、4、5、6、7、8、9显示方式如下图所示.【答案】12.【解析】解:左边少了一根,最多能正确显示6个数字,分别是1;3;4;5;7;9;少了最左下边的一根,右边少了三根,最多能正确显示2个数字,分别是1;7,除了4外,其它字母都要5根或5根以上的才能组成,少了3根,只有4根,所以最多只能有数字1和7能正确显示;所以左右两边可以组成11,17,31,37,41,47,51,57,71,77,91,97,这12个数字还能正确显示.故答案为12.点睛:学生学会按照一定顺序,有规律地进行枚举,做到“不重不漏”;应用字典排列法解决整数分拆的问题,学会分辨“计次序”与“不计次序”的情形.三、 解一解, 试试谁更棒(本大题共7小题,共50分)20.把下列各数分别填入相应的集合内:-2.5, -, 0, 8, 45-, 2π, 53, -0.5252252225…(每两个5之间依次增加1个2)(1)正数集合: { …};(2)负分数集合:{ …};(3)整数集合: { …};(4)无理数集合:{ …}.【答案】详见解析.【解析】试题分析:根据实数的分类解答即可.试题解析:解:正数集:8,2π, 53 负分数集:-2.5, -,45- 整数集:0,8无理数集:2π ,-0.5252252225…(每两个5之间依次增加1个2) 21.计算:(1)-20+(-5)-(-18) (2)94(81)(16)49-÷⨯÷- (3)13(1)4864-+⨯ (4)221(1)3(3)6⎡⎤--⨯--⎣⎦ 【答案】(1)-7;(2)原式=1; (3)原式=-76; (4)原式=2.【解析】试题分析:(1)根据有理数的四则运算法则计算即可.试题解析:解:(1)原式=-20-5+18=-7;(2)原式=441819916-⨯⨯⨯-()=1; (3)原式= 48-8+36=-76;(4)原式=1113916266--=-⨯-=()(). 22.解方程:(1)7854x x -=+ (2)325254x x -++= 【答案】(1)x =6;(2)x =-1.【解析】试题分析:(1)移项合并同类项即可;(2)去分母,去括号,移项合并同类项即可.试题解析:解:(1)7x -5x =4+82x =12x =6(2) 4(3x -2)+40=5(x +5)12x -8+40=5x +257x =-7x =-123.先化简,再求值: 已知()2210a b -++=,求代数式22225(31)(35)a b ab ab a b ---+-的值. 【答案】由已知可得:a =2,b=-1,先化简得22126a b ab -, 代入得-60.【解析】试题分析:先根据整式的加减法则把原式进行化简,再根据非负数的性质求出a 、b 的值,代入所求代数式进行计算即可.试题解析:解:由已知可得:a =2,b=-1.原式=2222155535a b ab ab a b ----+=22126a b ab -当a =2,b=-1时,原式=22122(1)62(1)⨯⨯--⨯⨯- =-48-12=-60.点睛:本题考查的是整式的加减,此类试题的解答主要就在于化简,本题的化简只需一步步的展开未知数即可,化为最简单的式子,然后把所需的解代入即可.24.有理数a 、b 、c 在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:c b - 0,-a b 0,c -a 0.(2)化简:32______a a a ⋅⋅=【答案】(1) >, < , > ;(2) 0【解析】试题分析:先根据数轴上a、b、c的位置关系求出c-b、a﹣b、c-a的符号,然后代入(2)中求解即可.试题解析:解:(1)如图:由图知:b<c,a<b,c>a;因此c﹣b>0;a﹣b<0;c﹣a>0;(2)原式=c﹣b﹣(a﹣b)﹣(c-a)=0.点睛:由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.25.足球比赛中,守门员根据场上攻守情况在门前来回跑动,若以球门线为基准,向前跑记作正数,返回跑记作负数,一段时间内,某守门员的跑动情况记录如下(单位:m):+10,﹣2,+5,﹣6,+12,﹣9,+4,﹣14.(假定开始计时时,守门员正好在球门线上)(1)守门员最后是否回到球门线上? (填“是”或“否”)(2)守门员离开球门线的最远距离达米?(3)这段时间内,这位守门员一共跑动米?【答案】(1)是;(2)守门员离开球门线的最远距离达19米;(3)这位守门员一共跑动62米.【解析】试题分析:(1)根据有理数的加法,可得答案;(2)根据有理数的加法,可得每次与球门线的距离,根据有理数的大小比较,可得答案;(3)求出所有数的绝对值的和即可.试题解析:解:(1)+10﹣2+5﹣6+12﹣9+4﹣14=0.答:守门员最后正好回到球门线上;(2)第一次10,第二次10﹣2=8,第三次8+5=13,第四次13﹣6=7,第五次7+12=19,第六次19﹣9=10,第七次10+4=14,第八次14﹣14=0,19>14>13>10>8>7.答:守门员离开球门线的最远距离达19米;(3)10+2+5+6+12+9+4+14=62米.答:这位守门员一共跑动62米.26.(1)小明说:“请你任意想一个数,把这个数乘2后加8,然后除以4,再减去你原来所想的那个数的,我可以知道你计算的结果是2.”请你帮助小明说明上述结论的正确性. 如果设任意想的那个数为x ,则根据题意,得代数式(请完善下面的解题过程):(2)在(1)中,得到的代数式化简后结果为2,它不含有x ,我们称之为“与x 无关”.试解决下列“无关”类问题:①多项式(241)2(2)x yx x xy +--+的值( )A .仅与x 的大小无关B .仅与y 的大小无关C .与x 、y 的大小都无关D .与x 、y 的大小都有关②如果已知代数式的值与其中某个字母的取值无关,你能求出哪一个字母的值?此时这个字母的值是多少?【答案】(1)28111224222x x x x +-=+-=;(2)①C ;②与a 无关,得x=0;与x 无关,得a= -3. 【解析】 试题分析:(1)按要求列出式子11(28)42x x +-,化简之后得结果2,所以无关. (2)①由于2x 4yx 12x 2xy 1++=-(-)-(),所以选C. ②可以有与a 无关和与x 无关两种情况. 试题解析:(1)化简11(28)42112222x x x x +-=+-=, 所以这个代数式的值与x 的取值无关,即x 取任一个数,这个代数式的值都是2;(2)①C ;②当与a 无关时,x=0;当与x 无关时,∵原式=(a+3)x+5,∴a+3=0,∴a=-3.考点:列代数式,代数式的运算:去括号,合并同类项27. 某单位在12月份准备组织部分员工到北京旅游,现联系了甲、乙两家旅行社,两家旅行社报价均为2000元/人,两家旅行社同时都对10人以上的团体推出了优惠举措:甲旅行社对每位员工七五折优惠;而乙旅行社是免去一位带队管理员工的费用,其余员工八折优惠.(1)如果设参加旅游的员工共有a(a>10)人,则甲旅行社的费用为元,乙旅行社的费用为元;(用含a的代数式表示,并化简.)(2)假如这个单位现组织包括管理员工在内的共20名员工到北京旅游,该单位选择哪一家旅行社比较优惠?请说明理由.(3)如果计划在12月份外出旅游七天,设最中间一天的日期为x,则这七天的日期之和为.(用含x的代数式表示,并化简.)(4)假如这七天的日期之和为63的倍数,则他们可能于12月几号出发?(写出所有符合条件的可能性)【答案】(1)甲:1500a;乙:1600a-1600;(2)甲比较优惠;(3)7x;(4)12月6号或15号或24号出发.【解析】试题分析:(1)由题意得,甲旅行社的费用=2000×0.75a;乙旅行社的费用=2000×0.8(a-1),再对两个式子进行化简即可;(2)将a=20代入(1)中的代数式,比较费用较少的比较优惠;(3)设最中间一天的日期为x,分别用含有x的式子表示其他六天,然后求和即可;根据前面求得七天的日期之和的求得最中间的那个日期,然后分别求得当为63的1倍,2倍,3倍时,日期分别是什么即可.试题解析:(1)甲:2000×0.75a=1500a;乙:2000×0.8(a﹣1)=1600a-1600,将a=20代入(1)中的代数式,甲:1500a=30000,乙:1600a-1600=30400甲比较优惠;(3)设最中间一天的日期为x,则这七天分别为:x﹣3,x﹣2,x﹣1,x,x+1,x+2,x+3∴这七天的日期之和=(x﹣3)+(x﹣2)+(x﹣1)+x+(x+1)+(x+2)+(x+3)=7x (4)①设这七天的日期和是63,则7x=63,x=9,所以x-3=6,即6号出发;②设这七天的日期和是63的2倍,即126,则7x=126,x=18,所以x-3=15,即15号出发;③设这七天的日期和是63的3倍,即189,则7x=189,x=27,所以c-3=24,即24号出发;所以他们可能于12月6号或15号或24号出发.考点:列代数式;一元一次方程的应用.。
最新苏科版七年级上期中测试数学试卷(含答案)
最新苏科版七年级上期中测试数学试卷(含答案)最新教学资料·苏教版数学第一学期期中测试七年级数学试卷(满分:100分考试时间:100分钟)一、选择题(每小题2分,共20分,请将正确答案填写在下面表格里) 1.-3的相反数是 A .3B .-3C .13D .-132.下列比较大小的式子中,正确的是 A .2<-(+5)B .-1>-0.01C .33-<+D .-(-5)>+(-7)3.下列运算正确的是A 、3a +2b =5abB 、3a 2b -3ba 2=0C 、3x 2+2x 3=5x 5D 、3m 4-2m 4=14.在-227,-π,0,3.14, 0.1010010001,-313中,无理数的个数有 A 、1个 B 、2个 C 、3个 D 、4个5.下列说法不正确的是A .任何一个有理数的绝对值都是正数B .0既不是正数也不是负数C .有理数可以分为正有理数,负有理数和零D .0的绝对值等于它的相反数6.如图,数轴的单位长度为1.如果点B 、C 表示的数的绝对值相等,那么点A 表示的数是A .-2B .-5C .-4D .-67.数a 、b 、c 在数轴上对应的位置如下图,化简a b c b +--的结果是A .a +cB .c -aC .-c -aD .a +2b -c 8.若m -n =-1,则(m -n)2-2m +2n 的值是 A .3 B .2 C .1 D .-19.若a =2,b =a ,则a +b 为A .±4B .0C .0、±4D .以上都不对10.今年苹果的价格比去年便宜了20%,已知今年苹果的价格是每千克a 元,则去年的价格是每千克( )元A .(1+20%) aB .(1-20%)aC .120%a-D .120%a+二、填空题(每小题2分,共20分)11.如果“+200元”表示收入200元,那么“-100元”的实际意义是_______.12.我国南海面积约为350万平方千米,“350万”这个数用科学记数法表示为_______ 13.写出在-212和1之间的负整数:_______. 14.已知(b +3)2+2a -=0,则b a 的值是_______.15.在数轴上,点A 表示数-1,距A 点2.5个单位长度的点表示的数是_______.16.如图,是一个简单的数值运算程序,当输入x 的值为-4时,则输出的数值为_______.17.若a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为2,则2a bm cd m++-的值是_______.18.当k =_______时,多项式x 2+(k -1)xy -3y 2-2xy -5中不含xy 项.19.下列图形是由一些小正方形和实心圆按一定规律排列而成的,如图所示,按此规律排列下去,第n 个图形中有_______个实心圆.20.设[x)表示大于x 的最小整数,如[3)=4,[-1.2)=-1,则下列结论中正确的是_______.(填写所有正确结论的序号)①[0)=0;②[x)-x 的最小值是0;③[x)-x 的最大值是0;④存在实数x ,使[x)-x =0.5成立。
24-25学年七年级数学上学期期中模拟卷(江苏通用,测试范围:苏科版2024七上第1章-第3章)解析
2024-2025学年七年级数学上学期期中模拟卷(苏科版2024)(考试时间:120分钟 试卷满分:100分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:苏科版2024七年级上册第1章-第3章。
5.难度系数:0.85。
第Ⅰ卷一、选择题:本题共8小题,每小题2分,共16分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.2024的绝对值是( )A .2024-B .2024C .12024D .12024-2.下列各组整式中,不是同类项的是( )A .ab -与baB .25与52C .20.2a b 与212a b -D .23a b 与32a b -故选:D .3.下列各数中,最小的数是( )A .2B .4-C .p -D .0【答案】B【详解】解:∵402p -<-<<,∴所给的各数中,最小的数是4-.故选:B .4.若m 、n 满足()2|2|30m n -++=,则m n =( )A .9-B .9C .6D .6-5.甲数为x ,乙数为y ,则甲数的3倍与乙数的和除甲数与乙数的3倍的差,可表示为( )A .33x yx y +-B .33x yx y -+C .33x yx y -+D .33x yx y+-6.若224a b -=,则代数式232a b -+的值为( )A .11B .7C .1-D .5-【答案】C【详解】解:∵224a b -=,∴()223232341a b a b -+=--=-=-.故选C .7.如图所示是计算机程序流程图,若开始输入1x =,则最后输出的结果是( )A .11B .11-C .13D .13-【答案】C 【详解】解:当1x =时,()41411310x ---=-´+=-<,∴当3x =-时,()()414311310x ---=-´-+=>,符合要求,∴最后输出的结果是:13.故选:C .8.用大小完全相同的圆点按如图所示的规律拼图案,其中第①个图案中有5个圆点,第②个图案中有9个圆点,第③个图案中有13个圆点,第④个图案中有17个圆点,…,按此规律排列下去,则第⑨个图案中圆点的个数为( )A .29B .33C .37D .40第Ⅱ卷二、填空题:本题共10小题,每小题2分,共20分。
2024-2025学年苏科版数学七年级上册(江苏省盐城市)期中模拟卷【含答案】
2024-2025学年苏科版数学七年级上册 (江苏省盐城市)期中模拟卷(满分100分,时间90分钟)一、选择题(本题共8小题,每题3分,共24分)1.在()6--,()20201-,3-,0,()35-中,负数的个数是( )A .1个B .2个C .3个D .4个2.下列单项式中,与ab 是同类项的是( )A .22a bB .13abC .22a bD .2ab 3.下列各组数中,互为相反数的是( )A .-32与(-3)2B .-(-4)与|-4|C .-(+5)与+(-5 )D .-23与(-2)34.下列说法中正确的是( )A .多项式1x p +是二次二项式B .单项式225m n -的系数为25,次数为3C .多项式3327462xy x y xy --+的次数是7D .单项式a 的系数、次数都是15.如图,下面的4个数中哪一个数所表示的点被数轴上的杭州亚运会吉祥物之一宸宸卡通贴纸所覆盖( )A .2B .1C .2-D .4-6.某粮店出售的三种品牌的面粉袋上,分别标有质量为()()250.1kg 250.2kg ±±、、()250.3kg ±的字样,从中任意拿出不同品牌的两袋,它们的质量最多相差( )A .0.2kgB .0.4kgC .0.5kgD .0.6kg7.有理数a ,b 在数轴上对应点的位置如图所示,下列各式正确的是( )A .0a b +<B .a b >C .0a b -<D .0ab >8.将黑色圆点按如图所示的规律进行排列:图中黑色圆点的个数依次为:1,3,6,10,…,将其中所有能被3整除的数按从小到大的顺序重新排列成一组新数据,则新数据中的第34个数为( )A .595B .630C .1275D .1326二、填空题(本题共8小题,每题3分,共24分)9.比较大小:23-34-(填“>”或“<”)10.单项式323a b -的次数是.11.已知2a -3b =2,则8-6a+9b 的值是.12.已知多项式(3﹣b )x 5+xa +x ﹣6是关于x 的二次三项式,则a 2﹣b 2的值为 .13.在数轴上,如果点A 所表示的数是2-,那么到点A 距离等于6个单位长度的点所表示的数是 .14.已知数a b c 、、在数轴上的位置如图所示,化简:a b b c c a ---++= .15.定义如下运算程序,则输入4a =,2b =-时,输出的结果为 .16.观察下列图形:第1个图形中一共有4个小圆圈,第2个图形中一共有10个小圆圈,第3个图形中一共有18个小圆圈…,按此规律排列,则第n 个图形中小圆圈的个数是.三、解答题(本题共8小题,共52分)17.计算题:(1)()1235+-+--;(2)()()4211236éù--´--ëû;18.化简:(1)22221352x xy x xy --+;(2)223(21)(23)3m m m m ----+.19.先化简,再求值. ()()2222132412a b ab a b ab éù----+ëû,其中a ,b 满足()2210a b ++-=.20.老师在黑板上书写了一个正确的演算过程,随后用一张纸当住了一个二次三项式A ,形式如下:224153x x x x +-+=+-(1)求被挡住的二次三项式A ;(2)若2230x x -+=,求所挡的二次三项式的值.21.学校要利用专款建一长方形的自行车停车场,其他三面用护栏围起,其中长方形停车场的长为()23a b +米,宽比长少()a b -米.(1)求护栏的总长度;(2)若3010a b ==,,每米护栏造价80元,求建此停车场所需的费用.22.给出新定义如下:()22f x x =-,()3g y y =+;例如:()22222f =´-=,()6633g -=-+=;根据上述知识,解下列问题:(1)若2x =-,3y =,则()()f x g y +=______;(2)若()()0f x g y +=,求23x y -的值;(3)若3x <-,化简:()()f x g x +.(结果用含x 的代数式表示)23.某校七年级1至4班计划每班购买数量相同的图书布置班级读书角,但是由于种种原因,实际购书量与计划有出入,如表是实际购书情况:班级1班2班3班4班实际购买数量a 33c21实际购买量与计划购买量的差值12b8-9-(1)直接写出a = ,b = ,c = ;(2)根据记录的数据可知4个班计划每班购书 本;(3)若每本书售价为25元,请计算这4个班整体购书的总花费是多少元?24.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.小明在草稿纸上画了一条数轴进行操作探究:操作一:(1)如图1,在数轴上,三个有理数从左到右依次是1-,m ,1m +,利用刻度尺或圆规,在数轴上画出原点O ;操作二:(2)折叠这条数轴所在纸面,若使1-表示的点与数3与表示的点重合,数m 表示的点与数2023-表示的点重合,则m = ;操作三:(3)从数轴上剪下9个单位长度(从1-到8)的部分(不考虑宽度),并把这条数轴沿数m 所在点竖直折叠,然后在重叠部分某处剪开,得到三条线段. 若这三条线段的长度之比为112∶∶,求m 的值.1.B【分析】此题考查了有理数的乘方,绝对值,多重符号化简和正数与负数的定义,先化简各数,再根据负数就是小于0的数,依据定义即可求解.【详解】解:()()()2020366,11,33,5125--=-=-=--=-Q ,\在()6--,()20201-,3-,0,()35-中,负数的个数有2个,故选:B .2.B【分析】根据同类项的定义:“所含字母相同,相同字母的指数也相同的单项式”,进行判断即可.【详解】解:由题意,与ab 是同类项的是13ab ;故选B .3.A【分析】先进行有理数的运算,再根据相反数的定义判断即可求解.【详解】解:A . -32=-9,(-3)2=9,是互为相反数,故此选项符合题意;B . -(-4)=4,|-4|=4,不是互为相反数,故此选项不符合题意;C . -(+5)=-5,+(-5 )=-5,不是互为相反数,故此选项不符合题意;D . -23=-8与(-2)3=-8,不是互为相反数,故此选项不符合题意.故选A .【点睛】此题主要考查有理数的运算,绝对值,相反数多重符号化简,乘方,相反数,解题的关键是熟知相反数的定义.4.D【分析】利用多项式的意义,多项式的项,次数,注意分析判定得出答案即可.【详解】A 、多项式1x p +是一次二项式,该选项错误;B 、单项式225m n -的系数为-25,次数为3,该选项错误;C 、多项式3327462xy x y xy --+的次数是6,该选项错误;D 、单项式a 的系数、次数都是1,该选项正确;故选:D .【点睛】本题考查了多项式.单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.5.C【分析】本题考查了数轴的应用,由所覆盖部分在0和3-之间,逐个判断即可.【详解】解:由图得,覆盖的区域为负半轴,且在0和3-之间,故覆盖的数可能是2-,故选:C .6.C【分析】本题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.根据题意给出三种品牌的面粉的质量波动范围,并求出任意两袋质量相差的最大数.【详解】解:∵0.30.20.10.10.20.3-<-<-<<<,∴从中任意拿出不同品牌的两袋,它们的质量最多相差:()0.30.20.5kg --=,故选:C .7.C【分析】根据a ,b 两数在数轴的位置依次判断所给选项的正误即可.【详解】解:根据a ,b 两数在数轴的位置,可得10,1a b -<<>,a b <,选项B 错误;则0a b +>,选项A 错误;0a b -<,选项C 正确;0ab <,选项D 错误,故选:C .【点睛】本题考查数轴的相关知识,利用数轴比较大小以及绝对值的定义等,正确理解相关概念以及运算法则是解题的关键.8.D【分析】此题考查了规律型:图形的变化类,关键是通过归纳与总结,得到其中的规律.首先得到前n 个图形中每个图形中的黑色圆点的个数,得到第n 个图形中的黑色圆点的个数为()12n n +,再判断其中能被3整除的数,得到每3个数中,都有2个能被3整除,再计算出第34个能被3整除的数所在组,为原数列中第51个数,代入计算即可.【详解】解:第①个图形中的黑色圆点的个数为:1,第②个图形中的黑色圆点的个数为:()12232+´=,第③个图形中的黑色圆点的个数为:()13362+´=,第④个图形中的黑色圆点的个数为:()144102+´=,¼第n 个图形中的黑色圆点的个数为()12n n +,则这列数为1,3,6,10,15,21,28,36,45,55,66,78,91,¼,其中每3个数中,都有2个能被3整除,34217¸=,17351´=,则第34个被3整除的数为原数列中第51个数,即515213262´=,故选:D 9.>【分析】本题考查有理数的大小比较,根据两个负数比较大小,绝对值大的反而小求解即可.【详解】解:∵2283312-==,3394412-==,891212<,∴2334->-,故答案为:>.10.4【分析】本题考查了单项式的次数的定义,解题的关键是根据单项式中的字母的指数的和,叫单项式的次数求解.【详解】解:单项式323a b -的次数是4,故答案为:4.11.2【分析】原式后两项提取3-变形后,将已知等式代入计算即可求出值.【详解】解:232a b -=Q ,\原式83(23)832862a b =--=-´=-=.故答案为:2.【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.12.﹣5【分析】由题意,根据二次三项式的定义可知:3-b =0,a =2,代入原式即可求出答案.【详解】解:多项式是二次三项式所以最高次为2,而式子中含有x 5,所以它的系数为0,∴3﹣b =0,b =3,而剩余项中已知的没有2次,所以xa 为二次项,∴ a =2所以a 2﹣b 2=4-9=-5,故答案为:-5.【点睛】本题主要考查多项式的命名规则的运用.多项式的命名规则中的次数,一定是多项式中的各项中的最高次数.13.4或8-【分析】本题考查数轴,根据题意可知,到A 点距离等于6个单位长度的点在其左侧和右侧各有一个,据此可解决问题.【详解】解:由题知,到A 点距离等于6个单位长度的点在A 点左侧和右侧各有一个,Q 点A 表示的数是2-,\268--=-或264-+=.即到点A 的距离等于6个单位长度的点所表示的数是4或8-.故答案为:4或8-.14.2a-【分析】本题考查了绝对值的化简,先根据数轴上a 、b 、c 的位置确定a b -、b c -、c a +的符号,再根据绝对值的性质化简即可,解题的关键是要能根据数轴上点的位置确定各式子的符号.【详解】解:由数轴可得,0c a b <<<,∴0a b -<,0b c ->,0c a +<,∴原式()()b a b c c a éù=---+-+ëû,b a bc c a =--+--,2a =-,故答案为:2a -.15.2【分析】由程序框图将4a =,2b =-代入a b +计算可得答案.【详解】解:4a =Q ,2b =-,a b >,\输出结果为代入()422a b +=+-=.故答案为:2.【点睛】此题考查了代数式的求值与有理数的运算,熟练掌握运算法则是解本题的关键.16.n 2+3n【分析】分两部分:上面部分是由小圆圈围成的三角形,下面部分是小圆圈围成的正方形,由此分别计算出前4个图形的小圆圈的个数,得到规律,即可得第n 个图形中小圆圈的个数.【详解】观察图形得:第1个图形有12+3×1=4个圆圈,第2个图形有22+3×2=10个圆圈,第3个图形有32+3×3=18个圆圈,第4个图形有42+3×4=18个圆圈,…第n 个图形有n 2+3n 个圆圈,故答案为:n 2+3n .【点睛】本题规律性问题,主要考查用代数式表示图形类规律,学生分析问题、观察总结规律的能力,解题的关键是通过观察分析找出规律.17.(1)3-(2)136【分析】本题考查有理数的混合运算.(1)去绝对值,再进行加减运算即可;(2)先乘方,去括号,再进行乘法运算,最后算减法.熟练掌握有理数的运算法则,正确的计算,是解题的关键.【详解】(1)解:原式12353=-+-=-;(2)原式()17131291666=-´-=+=.18.(1)22122x xy+(2)23m m-【分析】本题考查了整式的加减运算.正确的合并同类项是解题的关键.(1)直接合并同类项即可;(2)先去括号,然后合并同类项即可.【详解】(1)解:22221352x xy x xy --+22122x xy =+;(2)解:223(21)(23)3m m m m ----+223632+33m m m m =---+23m m =-.19.25a b 12-,9【分析】原式去括号合并得到最简结果,利用非负数的性质求出a 与b 的值,代入原式计算即可得到结果.【详解】解:∵()2210a b ++-=,∴a+2=0,b-1=0,解得a=-2 b=1,()()2222132412a b ab a b ab éù----+ëû=222213+212a b ab a b ab ---+=25a b 12- 将a=-2 b=1代入原式得()25-2112´´-=9.【点睛】此题考查了整式的加减−化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.20.(1)2364A x x =-+-(2)5【分析】此题主要考查了整式的加减运算,根据加减法的关系逆推出所挡的二次三项式是解题的关键.(1)根据题意确定出所挡的二次三项式即可;(2)根据2230x x -+=得出223x x -=-,再整体代入计算即可求出值.【详解】(1)解:由题意得:22(53)(41)A x x x x =+---+=225341x x x x -+-+-=2364x x -+-;(2)解:∵2230x x -+=,∴223x x -=-,2364x x \-+-=23(2)4x x ---=3(3)4-´--5=.21.(1)()411a b +米(2)建此停车场所需的费用为18400元.【分析】(1)直接利用整式的加减运算法则得出宽,进而得出答案;(2)利用(1)中所求,把已知数据代入得出答案.【详解】(1)解:由题意可得宽为:()()23234a b a b a b a b a b +--=+-+=+米,则护栏的总长度为:()2324a b a b +++2328a b a b=+++()411a b =+米;(2)解:由(1)得:当3010a b ==,时,原式4301110230=´+´=(米),∵每米护栏造价80元,∴2308018400´=(元),答:建此停车场所需的费用为18400元.【点睛】此题主要考查了整式的加减的应用,正确合并同类项是解题关键.22.(1)12(2)11(3)31x --【分析】(1)把相应的值代入新定义的运算中,结合有理数的相应的运算法则进行求解即可;(2)由非负数的性质可求得x 与y 的值,代入所求的式子运算即可;(3)根据绝对值的定义进行求解即可.【详解】(1)解:当2x =-,3y =时,()()f xg y +()22233=´--++426=--+66=+12=.故答案为:12.(2)∵()()0f x g y +=,∴2230x y -++=,∴220x -=,30y +=,解得:1x =,=3y -,23x y-()2133=´-´-29=+11=.(3)()3当3x <-时,∴220x -<,30x +<,∴()()f xg x +223x x =-++()()223x x =---+223x x =-+--31x =--.【点睛】本题考查有理数的混合运算,绝对值的定义和非负性,求代数式的值,列代数式,整式的加减等知识点.解答的关键是对相应的运算法则,绝对值的定义和非负性的掌握.23.(1)42,3+,22(2)30(3)这4个班整体购书的总花费2950元【分析】(1)由于4班实际购入21本,且实际购买量与计划购买量的差值为9-,即可得计划购书量为30,进而可求出a 、b 、c ;(2)根据题意,计划每班购买数量相同,由(1)即可得出答案;(3)求出购书总数,再根据每本书售价为25元,列式计算可得答案.本题考查了正数和负数,利用正数和负数表示相反意义的量,利用了有理数的混合运算,熟练掌握相关知识点是解题的关键.【详解】(1)解:由于4班实际购入21本,且实际购买量与计划购买量的差值为9-,则每班计划购书量为30(本),则301242a =+=,33303b =-=,30822c =-=,故答案为:42,3+,22;(2)解:根据题意,计划每班购买数量相同,由(1)得:计划每班购书30(本);故答案为:30;(3)解:实际买书的总数42332221118+++=(本),若每本书售价为25元,这4个班整体购书的总花费:118252950´=(元),答:这4个班整体购书的总花费为2950元.24.(1)见解析(2)2025(3)198或72或378【分析】本题考查了有理数和数轴的关系,及数轴上的折叠变换问题,(1)根据,1m m +相距一个单位,故原点O 在1-右边一个单位处,利用刻度尺测量即可得出答案;(2)根据对称性可列出方程计算即可;(3)分三种情况进行讨论:设折痕处对应的点所表示的数是x ,由题意可得:9AD =,根据三条线段的长度之比为112∶∶,设每一份为a ,可列29a a a ++=,解得: 94a =,如图1,当112AB BC CD =::::时,设2AB a BC a CD a ===,,,得出AB BC CD 、、的值,计算得x 的值,同理可得出如图2、3对应的x 的值.【详解】解:(1),1m m +Q 相距一个单位,故原点O 在1-右边一个单位处,如图:原点O 即为所求;(2)由折叠可知:()202313m +-=-+,解得:2025m =;故答案为:2025;(3)设折痕处对应的点所表示的数是x ,如图1,由题意可得:9AD =,Q 三条线段的长度之比为112∶∶,设每一份为a ,29a a a \++=,解得: 94a =,当112AB BC CD =::::时,则2AB a BC a CD a ===,,,∴94AB =, 94BC =, 92CD =, 991912448x \=-++¸=,如图2,当121AB BC CD =::::时,则2AB a BC a CD a ===,,,∴94AB =, 92BC =, 94CD =,99712422x \=-++¸=,如图3,当211AB BC CD =::::时, 则2AB a BC a CD a ===,,,∴92AB =, 94BC CD ==,993712248x \=-++¸=,综上所述:则折痕处对应的点所表示的数可能是198或72或378.。
最新苏科版七年级上册数学《期中检测试卷》(含答案)
2020-2021学年度第一学期期中测试苏科版七年级数学试题一.选择题1.2-的相反数是( ) A. 2-B. 2C.12D. 12-2.单项式-x 2y 3的系数是( ) A. 0B. 6C. -1D. 53.北京奥运会主会场“鸟巢”的座席数是91000个,这个数用科学记数法表示为( ) A. 50.9110⨯B. 49.110⨯C. 39110⨯D. 39.110⨯4.下列各项中是同类项的是( ▲ ) A. xy 2与-3x 2yB. 2x 2y 与-3x 2yzC. a 3与b 3D. -3a 3b 与3ba 35.下列等式一定成立的是( ▲ ) A. 3m +3m =6m 2B. 7m 2 -6m 2=1 C -(m -2)=-m +2D. 3(m -1)=3m -16.在一组数-4,0.5,0,π,-227,1.3•,0.1010010001...(相邻两个1之间依次增加1个0)中,无理数有( )个 A. 1个B. 2 个C. 3 个D. 4个7.已知代数式x +2y 的值是2,则代数式1-2x -4y 的值是 ( ▲ ) A. -1B. -3C. -5D. -88.已知点O ,A ,B ,C 在数轴上的位置如图所示,O 为原点,BC =1,OA =OB .若点C 所表示的数为a ,则点A 所表示的数为( )A. -a -1B. -a +1C. a +1D. a -1二.填空题9.如果收入100元记作+100元,那么支出50元记作 元.10.用“<”、“>”或“=”连接:-12_________-13.11.上午10:00的气温为18℃,到中午12:00气温上升了4℃,到晚上6:00气温又下降了9℃,那么晚上6:00的气温是_________℃.12.对于“ a<0,|a|=-a ”用数学文字语言表述为_________.13.请写出一个只含有x,y两个字母,且次数为5的单项式_________.14.若3x m-1 y3与-5xy n是同类项,则m+n的值等于_________.15.已知一个等边三角形的边长为a,则3a所表示的实际意义是_________.16.已知有理数a在数轴上的位置如图,则a+|a-1|=__________.17.如图是一个简单的数值运算程序,当输入m的值为-3时,则输出的结果为_________.18.一只小球落在数轴上的某点P0,第一次从P0向左跳1个单位到P1,第二次从P1向右跳2个单位到P2,第三次从P2向左跳3个单位到P3,第四次从P3向右跳4个单位到P4….若小球从原点出发,按以上规律跳了6次时,它落在数轴上的点P6所表示的数是_________;若小球按以上规律跳了2n次时,它落在数轴上的点P2n所表示的数恰好是n+2,则这只小球的初始位置点所表示的数P0是_________.三.解答题19.计算与化简(1)-18+21+(-13)(2)-81÷94×49÷(-16)(3)(12+56-712)×(-24)(4)-22-25×[4-(-3)2](5)化简:5(3x2y-xy2)-4(-xy2+2x2y)(6)先化简,再求值:-12x+2(x-13y2) - (-32x+13y2);其中x=2,y=1 .20.学校餐厅中,一张桌子可坐6人,现有以下两种摆放方式:(1)当有5张桌子时,第一种方式能坐人,第二种方式能坐人.(2)当有n张桌子时,第一种方式能坐人,第二种方式能坐人.(3)新学期有200人在学校就餐,但餐厅只有60张这样的餐桌,若你是老师,你打算选择以下哪种方式来摆放餐桌?为什么?21.有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:(1)这8筐白菜中,最接近25千克的那筐白菜为______千克;(2)以每筐25千克为标准,这8筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2元,则出售这8筐白菜可卖多少元?22.气象资料表明,高度每增加100米,气温大约下降0.6℃.(1)我国黄山的天都峰高约1800米,当山脚温度为18℃时,求山顶气温.(2)有两名研究人员为了估算某山峰高度,同时在上午10点测得山脚和山顶气温分别为10℃和-8℃,你能帮他们算算此山峰多高吗?23.如图,一个长方形运动场被分隔成A、B、A、B、C共5个区,A区是边长为a m的正方形,C区是4个边长为b m的小正方形组成的正方形.(1)列式表示每个B区长方形场地的周长,并将式子化简;(2)列式表示整个长方形运动场的周长,并将式子化简;(3)如果a=40 m,b=20 m,求整个长方形运动场的面积.24.问题背景:小红同学在学习过程中遇到这样一道计算题“计算4×2.112-4×2.11×2.22+2.222”,她觉得太麻烦,估计应该有可以简化计算的方法,就去请教崔老师.崔老师说:你完成下面的问题后就可能知道该如何简化计算啦!获取新知:请你和小红一起完成崔老师提供的问题:(1)填写下表:(2)观察表格,你发现A与B有什么关系?解决问题:(3)请利用..A与B之间的关系计算:4×2.112-4×2.11×2.22+2.222.25.已知在透明纸面上有一数轴(如图1),折叠透明纸面.(1)若表示1的点与表示-1的点重合,则表示-7的点与表示的点重合;(2)若表示-2的点与表示6的点重合,回答以下问题:①表示12的点与表示的点重合;②如图2,若数轴上A、B两点之间的距离为2020(点A在点B的左侧),且A、B两点经折叠后重合,则A、B 两点表示的数分别是、.(3)如图3,若m和n表示的点C和点D经折叠后重合(m>n),折痕与数轴的交点为折痕点.已知线段CD上两点P、Q (点P在点Q的左侧,PQ<CD),PQ=a.当线段PQ的端点与折痕点重合时,求P、Q两点表示的数分别是多少?(用含m,n,a的代数式表示).答案与解析一.选择题1.2-的相反数是()A. 2-B. 2C. 12D.12-【答案】B【解析】【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B.【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .2.单项式-x2y3的系数是( )A. 0B. 6C. -1D. 5【答案】C【解析】【分析】根据单项式系数的定义即可得出答案.【详解】根据单项式系数的定义可得,系数为-1,故答案选择C.【点睛】本题考查的是单项式的系数:字母前面的系数部分.3.北京奥运会主会场“鸟巢”的座席数是91000个,这个数用科学记数法表示为()A. 50.9110⨯ B. 49.110⨯ C. 39110⨯ D. 39.110⨯【答案】B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:因为91000=9.1×104,故答案为B.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.下列各项中是同类项的是( ▲ )A. xy2与-3x2yB. 2x2y与-3x2yzC. a3与b3D. -3a3b与3ba3【答案】D【解析】【分析】根据同类项得定义即可得出答案.【详解】A:字母的指数不一样,不是同类项,故选项A错误;B:字母不同,不是同类项,故选项B错误;C:字母不同,不是同类项,故选项C错误;D:字母相同,相同字母的指数相同,是同类项,故选项D正确;因此答案选择D.【点睛】本题考查的是同类项的定义:字母相同,相同字母的指数相同.5.下列等式一定成立的是( ▲ )A. 3m+3m=6m2B. 7m2 -6m2=1C. -(m-2)=-m+2D. 3(m-1)=3m-1【答案】C【解析】【分析】根据整式的加减法则即可得出答案.【详解】A:3m+3m=6m,故选项A错误;B:7m2 -6m2= m2,故选项B错误;C:-(m-2)=-m+2,故选项C正确;D:3(m-1)=3m-3,故选项D错误;因此答案选择:C.【点睛】本题考查的是整式的加减,需要熟练掌握整式的加减法则.6.在一组数-4,0.5,0,π,-227,1.3•,0.1010010001...(相邻两个1之间依次增加1个0)中,无理数有( )个A. 1个B. 2 个C. 3 个D. 4个【答案】B【解析】【分析】根据无理数的定义即可得出答案. 【详解】根据无理数的定义可得:π、0.1010010001...(相邻两个1之间依次增加1个0)为无理数,共2个,故答案选择B.【点睛】本题考查的是无理数的定义:无限不循环小数.7.已知代数式x+2y的值是2,则代数式1-2x-4y的值是( ▲ )A. -1B. -3C. -5D. -8【答案】B【解析】【分析】将代数式1-2x-4y化简成1-2(x+2y),再将x+2y=2代入即可得出答案.【详解】1-2x-4y=1-2(x+2y)将x+2y=2代入得原式=1-2×2=-3故答案选择B.【点睛】本题考查的是求代数式的值,需要熟练掌握整体代入法.8.已知点O,A,B,C在数轴上的位置如图所示,O为原点,BC=1,OA=OB.若点C所表示的数为a,则点A所表示的数为( )A. -a-1B. -a+1C. a+1D. a-1【答案】A【解析】【分析】根据求出C的坐标和B的坐标,再根据等式“OA=OB”即可求出答案.【详解】∵点C所表示的数为a∴C的坐标为a又BC=1∴B的坐标a+1又∵OA=OB∴A的坐标为-a-1故答案选择A.【点睛】本题考查的是点在数轴上的表示,注意原点左边的数为负,原点右边的数为正.二.填空题9.如果收入100元记作+100元,那么支出50元记作元.【答案】-50【解析】试题分析:“正”和“负”相对,所以,如果收入100元记作+100元,那么支出50元记作-50元.考点:正数和负数.点评:解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.10.用“<”、“>”或“=”连接:-12_________-13.【答案】<【解析】【分析】比较两个负数的绝对值,绝对值大的反而小,即可得出答案.【详解】因为1122-=,1133-=,1123>,所以1123-<-,故答案为<.【点睛】本题考查的是负数的比较大小:先计算每个数的绝对值,绝对值大的反而小.11.上午10:00的气温为18℃,到中午12:00气温上升了4℃,到晚上6:00气温又下降了9℃,那么晚上6:00的气温是_________℃.【答案】13【解析】【分析】用上午十点的气温加上中午十二点上升的气温再减去晚上六点下降的气温即可得出答案.【详解】18+4-9=13℃,故答案为13.【点睛】本题考查的是有理数的加减,需要熟练掌握有理数的加减法则.12.对于“ a<0,|a|=-a ”用数学文字语言表述为_________.【答案】负数的绝对值等于它的相反数【解析】【分析】分别解释“a<0”和“|a|=-a”即可得出答案.【详解】“ a<0,|a|=-a ” 用数学文字语言表述为:负数的绝对值等于它的相反数故答案为负数的绝对值等于它的相反数.【点睛】本题考查的是绝对值的性质:正数的绝对值等于本身,负数的绝对值等于它的相反数,0的绝对值等于0.13.请写出一个只含有x,y两个字母,且次数为5的单项式_________.【答案】x2y3(答案不唯一)【解析】【分析】根据单项式的定义结合题目意思即可得出答案.【详解】根据题意可得,只含有x,y两个字母,且次数为5的单项式为:x2y3故答案为x2y3(答案不唯一)【点睛】本题考查的是单项式的定义:①数字或字母的乘积;②单个的数字或字母.14.若3x m-1 y3与-5xy n是同类项,则m+n的值等于_________.【答案】5【解析】【分析】根据同类项的定义求出m和n的值,代入m+n中即可得出答案.【详解】∵3x m-1 y3与-5xy n是同类项∴m-1=1,n=3解得:m=2,n=3∴m+n=2+3=5故答案为5.【点睛】本题考查的是同类项的定义:字母相同且相同字母的指数相同.15.已知一个等边三角形的边长为a ,则3a 所表示的实际意义是 _________. 【答案】这个等边三角形的周长 【解析】 【分析】根据边长a 与3a 的关系即可得出答案. 【详解】∵等边三角形的边长为a 又3a=a+a+a∴3a 表示的实际意义是:这个等边三角形的周长 故答案为这个等边三角形的周长.【点睛】本题考查的是三角形周长公式:三边之和.16.已知有理数a 在数轴上的位置如图,则a+|a-1|=__________.【答案】1 【解析】试题分析:先根据a 在数轴上的位置确定出a 的符号,再根据绝对值的性质把原式进行化简即可. 解:由数轴上a 点的位置可知,a <0, ∴a ﹣1<0, ∴原式=a+1﹣a=1. 故答案为1.考点:绝对值;数轴.17.如图是一个简单的数值运算程序,当输入m 的值为-3时,则输出的结果为_________.【答案】30 【解析】 【分析】将m=-3代入2m m -中求出值,比较与28的大小,若大于则输出结果,若小于则将计算结果代入2m m -求值,再比较,直到计算结果大于28为止,即可得出答案. 【详解】将m=-3代入得:2233628m m -=-=< 将m=6代入得:22663028m m -=-=> 故答案30.【点睛】本题考查的是求代数式的值,解题关键是要判断是否满足输出条件.18.一只小球落在数轴上的某点P 0,第一次从P 0向左跳1个单位到P 1,第二次从P 1向右跳2个单位到P 2,第三次从P 2向左跳3个单位到P 3,第四次从P 3向右跳4个单位到P 4….若小球从原点出发,按以上规律跳了6次时,它落在数轴上的点P 6所表示的数是_________;若小球按以上规律跳了2n 次时,它落在数轴上的点P 2n 所表示的数恰好是n +2,则这只小球的初始位置点所表示的数P 0是_________. 【答案】 (1). 3 (2). 2 【解析】 【分析】根据题意,可以发现题目中每次跳跃后相对于初始点的距离,即可得出答案.【详解】根据题意可得,小球从原点出发,按以上规律跳了6次时,它落在数轴上的点P 6所表示的数是6÷2=3 小球按以上规律跳了2n 次时,它落在数轴上的点P 2n 所表示的数恰好是n+2,则这只小球的初始位置点P 0所表示的数是:n+2-(2n÷2)=2 故答案为3,2.【点睛】本题主要考查的是找规律,理解题目意思找出对应的规律是解决本题的关键.三.解答题19.计算与化简 (1)-18+21+(-13)(2)-81÷94×49÷(-16) (3)(12+56-712)×(-24) (4)-22-25×[4-(-3)2] (5)化简:5(3x 2y -xy 2)-4(-xy 2+2x 2y ) (6)先化简,再求值:-12x +2(x -13y 2) - (-32x +13y 2);其中x =2,y =1-.【答案】(1)-10;(2) 1 ;(3)-18 ;(4)-2 ; (5) 7x 2y —xy 2; (6) 3x —y 2 ,5 【解析】 【分析】(1)根据有理数的加减运算法则计算即可得出答案; (2)根据有理数的乘除运算法则计算即可得出答案;(3)先去括号,再根据有理数的四则运算法则计算即可得出答案; (4)先算乘方,再根据有理数的四则运算法则计算即可得出答案; (5)先去括号,再根据整式的加减运算法则计算即可得出答案;(6)先去括号,再利用整式的加减运算法则化简,最后将x 和y 的值代入计算即可得出答案. 【详解】(1)解:原式=-18+21-13 =-31+21 =-10. (2)解:原式=441-81-9916⨯⨯⨯()= 1(3)解:原式=122014--+=-18(4)解:原式=-4-25×﹙4-9﹚ =-4-25×﹙-5﹚=-4+2 =-2(5) 解:原式=222215-54-8x y xy xy x y += 7x 2y —xy 2(6) 解:原式=221231-2--2323x x y x y ++ =3x —y 2当x =2,y =1-时, 原式=3×2-(-1)2 =5【点睛】本题主要考查的是有理数的混合运算和整式的加减,熟练掌握各种运算法则是解决本题的关键.20.学校餐厅中,一张桌子可坐6人,现有以下两种摆放方式:(1)当有5张桌子时,第一种方式能坐人,第二种方式能坐人.(2)当有n张桌子时,第一种方式能坐人,第二种方式能坐人.(3)新学期有200人在学校就餐,但餐厅只有60张这样的餐桌,若你是老师,你打算选择以下哪种方式来摆放餐桌?为什么?【答案】(1)22,14;( 2)(2+4n),(4+2n);(3)解: 打算以第一种方式来摆放餐桌,见解析【解析】【分析】(1)第一种中,只有一张桌子是6人,后边多一张桌子多4人,即有n张桌子时是6+4(n-1)=4n+2;第二种中,有一张桌子时6人,后边多一张桌子多2人,即6+2(n-1)=2n+4,将n=5代入即可得出答案;(2)根据(1)找出的规律即可得出答案;(3)分别求出n=60时,两种不同的摆放方式对应的人数,即可得出答案.【详解】解:(1)第一种22人,第二种14人;(2)第一种(2+4n)人,第二种(4+2n)人;(3)打算以第一种方式来摆放餐桌∵第一种中,当n=60时,4×60+2=242>200第二种中,当n=60时,2×60+4=124<200∴选择第一种摆放方式.【点睛】本题主要考查图形的变化规律,找出图形之间的联系,得出运算规律,利用规律解决问题.21.有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:(1)这8筐白菜中,最接近25千克的那筐白菜为______千克;(2)以每筐25千克为标准,这8筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2元,则出售这8筐白菜可卖多少元?【答案】(1)24.5;(2)不足5.5千克;(3)389元【解析】【分析】(1)与标准重量比较,绝对值越小的越接近标准重量,据此解答即可;(2)与标准重量比较,8筐白菜总计超过或不足的重量即是正负数相加的结果;(3)只需计算出8筐白菜的总重量,再乘以2即可求出结果.【详解】解:(1)这8个数中,-0.5的绝对值最小,所以最接近25千克的那筐白菜为25-0.5=24.5千克,故答案为24.5;(2)1.5-3+2-0.5+1-2-2-2.5=-5.5(千克).答:这8筐白菜总计不足5.5千克.(3)(1.5-3+2-0.5+1-2-2-2.5+25×8)×2=389(元).答:出售这8筐白菜可卖389元.【点睛】本题考查了有理数的运算在实际中的应用,解此题的关键是理解正负数的意义,从而列出相应的算式.22.气象资料表明,高度每增加100米,气温大约下降0.6℃.(1)我国黄山的天都峰高约1800米,当山脚温度为18℃时,求山顶气温.(2)有两名研究人员为了估算某山峰高度,同时在上午10点测得山脚和山顶的气温分别为10℃和-8℃,你能帮他们算算此山峰多高吗?【答案】(1)1 7.2℃;(2) 3000米【解析】【分析】(1)先求出1800米气温下降多少,再用18℃减去下降的气温即可得出答案;(2)先算出山顶和山脚的温差,再除以0.6乘以100即可得出答案.【详解】解:(1)18-1800100×0.6=7.2℃答:山顶气温7.2℃(2)10(8)10030000.6--⨯=m答:此山峰3000米【点睛】本题主要考查的是有理数的混合运算,需要熟练掌握有理数的混合运算法则.23.如图,一个长方形运动场被分隔成A、B、A、B、C共5个区,A区是边长为a m的正方形,C区是4个边长为b m的小正方形组成的正方形.(1)列式表示每个B区长方形场地的周长,并将式子化简;(2)列式表示整个长方形运动场的周长,并将式子化简;(3)如果a=40 m,b=20 m,求整个长方形运动场的面积.【答案】(1) (a+2b+a—2b)×2,4a;(2)4a+2(a+2b)+2(a—2b),8a;(3) 4800 m2【解析】【分析】(1)利用图形得出区域B的长和宽,即可得出答案;(2)利用图形得出整个长方形的长和宽,即可得出答案;(3)借助(2)求出的长和宽,利用面积公式计算即可得出答案.【详解】解:(1)由图可知:B区长方形的长是(a+b)m,宽是(a-b)m则B区长方形的周长=(a+2b+a-2b)×2=4a(m)(2)由图可知:整个长方形的长是(a+b+a)m,宽是(a+a-b)m则整个长方形的周长=4a+2(a+2b)+2(a-2b)=8a(m)(3)S=(2a-2b)×﹙2a+2b﹚=4 a2- 4b2(m2)当a=40,b=20时,原式=4 ×402- 4×202=4800 (m2)答:整个长方形运动场的面积为4800 m2【点睛】本题考查的是列代数式,熟读题目,理解题目意思是解决本题的关键.24.问题背景:小红同学在学习过程中遇到这样一道计算题“计算4×2.112-4×2.11×2.22+2.222”,她觉得太麻烦,估计应该有可以简化计算的方法,就去请教崔老师.崔老师说:你完成下面的问题后就可能知道该如何简化计算啦! 获取新知:请你和小红一起完成崔老师提供的问题:(1)填写下表:(2)观察表格,你发现A 与B 有什么关系? 解决问题:(3)请利用..A 与B 之间的关系计算:4×2.112-4×2.11×2.22+2.222. 【答案】(1)25 ,1 ;(2)A 2=B 即(2x -y )2=4x 2-4xy +y 2 ;(3)4 【解析】 【分析】(1)将x 和y 的值分别代入B =4x 2-4xy +y 2中求出B 的值即可得出答案; (2)根据(1)中补全的B 的值,观察A 和B 的关系即可得出答案; (3)根据(2)得到的公式将x=2.11,y=2.22代入即可得出答案.【详解】解:(1)当x=2,y=-1时,B =4x 2-4xy +y 2=()()22424211⨯-⨯⨯-+-=25, 当x=2,y=3时,B =4x 2-4xy +y 2=22424233⨯-⨯⨯+=1; (2)A 2=B 即(2x -y )2=4x 2-4xy +y 2 (3)原式=(2×2.11-2.22)2 =4【点睛】本题主要考查的是代数式求值,求代数式的值可以直接代入、计算;如果给出的代数式可以化简则需要先化简再求值.25.已知在透明纸面上有一数轴(如图1),折叠透明纸面.(1)若表示1的点与表示-1的点重合,则表示-7的点与表示 的点重合; (2)若表示-2的点与表示6的点重合,回答以下问题:①表示12的点与表示 的点重合; ②如图2,若数轴上A 、B 两点之间的距离为2020(点A 在点B 的左侧),且A 、B 两点经折叠后重合,则A 、B两点表示的数分别是 、 .(3)如图3,若m 和n 表示的点C 和点D 经折叠后重合(m >n ),折痕与数轴的交点为折痕点.已知线段CD 上两点P 、Q (点P 在点Q 的左侧,PQ <CD ),PQ =a .当线段PQ 的端点与折痕点重合时,求P 、Q 两点表示的数分别是多少?(用含m ,n ,a 的代数式表示).【答案】(1)7;(2)①-8;②-1008 ,1012 ;(3)若P 为折痕点,则P :2m n +, Q :22m n a++ ;若Q 为折痕点,则P :22m n a +- , Q :2m n+. 【解析】 【分析】(1)根据“表示1的点与表示-1的点重合”找出对称轴,即可得出答案;(2)①根据“表示-2的点与表示6的点重合”找出对称轴,即可得出答案;②根据对称轴求出到对称轴距离为1010的点即可得出答案;(3)根据(2)的计算方法计算即可得出答案.【详解】解:(1)由题意可得:原点为对称轴,故答案为7 ; (2)①由题意可得:2为对称轴,故答案为-8; ②∵对称轴为2到2距离为1010的点为:-1008和1012 又点A 在点B 的左侧∴点A 表示的数为-1008,点B 表示的数为1012;(3)根据题意可得,折痕点为2m n+ ①若P 为折痕点,则P :2m n +,Q :22m n a++ ②若Q 为折痕点:则P :22m n a +- ,Q :2m n+ 【点睛】本题考查的是数轴,认真审题理解题意是解决本题的关键.。
2024-2025学年苏科版七年级数学上册期中复习试卷
2024-2025学年苏科版七年级数学上册期中复习试卷一、单选题1.2024-的绝对值是( ) A .12024B .12024-C .2024-D .20242.杭州奥体中心体育场又称“大莲花”,里面有80800个座位.数据80800用科学记数法表示为( )A .48.810⨯B .48.0810⨯C .58.810⨯D .58.0810⨯3.一个点在数轴上从表示 - 3的点A 开始,先向左移动5个单位,再移动3个单位到达点B ,这时点B 到点A 的距离为( ) A .2B .9C .2或8D .2或94.下列各说法中,错误的是( )A .x ,y 的平方和,用代数式表示为22x y +B .x 与y 和的5倍,用代数式表示为5()x y +C .x 的5倍与y 的和的一半,用代数式表示为52yx + D .比x 的2倍多3的数,用代数式表示为23x + 5.下列各对数中,相等的一对是( )A .223与223⎛⎫ ⎪⎝⎭B .3(2)-与32-C .22-与2(2)-D .()23--与2||3--6.若()2230a b -++=,则()2024a b +的值是( )A .1-B .2024-C .1D .20247.如图,a b c d e f ,,,,,均为有理数,图中各行,各列及两条对角线上三个数的和都相等,则a b c d e f -+-+-的值为( )A .1B .3-C .7D .88.有理数a 、b 在数轴上对应的点的位置如右图所示,则下面结论:①a <0; ②|a ∣>|b |; ③a +b >0;④b -a >0;其中正确的个数有( )个.A .1B .2C .3D .49.如图,将一张长方形的纸对折,可得到一条折痕(图中虚线),继续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕.想象一下,如果对折n 次,可以得到折痕的条数是( )A .nB .1n -C .21n -D .121n --10.如图所示,在这个运算程序当中,若开始输入的x 是48,则经过2023次输出的结果是( )A .3B .6C .12D .24二、填空题 11.比较大小:23-34-. 12.若代数式513m a b +与22n a b -是同类项,那么m+n= .13.若22(3)0a b ++-=,则b a =.14.根据如图所示的程序计算,若输入x 的值为0,则输出y 的值为.15.已知22210,216a ab b ab -=-=-,则()()22224a ab b a b -+--=.16.已知210x y --=,则52x y -+的值是17.定义一种新运算,规定:3a b a b ⊕=-,若1(6)24a b ⊕-=-请计算(2)(25)a b a b +⊕-值为.18.列各正方形中的四个数之间都有相同的规律,根据此规律,x 的值为三、解答题 19.计算:(1)()()6487--+-+; (2)()25118362⎛⎫--⨯- ⎪⎝⎭; (3)()211623--÷-⨯-.20.(1)把下面的直线补充成一条数轴,在数轴上表示下列各数;(2)--,4,112-,0,2.5, 3.5-.(2)用“>”将(1)中的每个数连接起来. 21.化简: (1)3245m m --+;(2)()()222332x y x y ++-;22.用火柴棒按图中的方式搭图形.按上述信息填空: (1)a =______,b =______;(2)按照这种方式搭下去,则搭第n 个图形需要火柴棒的根数为______;(用含n 的代数式来表示)(3)按照这种方式搭下去,用(2)中的代数式求第2023个图形需要的火柴棒根数. 23.水果超市最近新进了一批橙子,每斤进价10元,9月29日每斤售价15元,国庆黄金周9月30日起试行机动价格,价格超出前一天的部分记为正,不足前一天的部分记为负,超市记录了国庆黄金周橙子的售价变化情况和售出情况:(1)10月4日超市售出的橙子的单价是多少元?(2)10月4日超市售出的橙子的收益如何?(盈利成亏损的钱数) (3)国庆黄金周水果超市出售此种接子的收益如何? 24.【情景创设】12,16,112,120,130…是一组有规律的数,我们如何求这些连续数的和呢? 【探索活动】(1)根据规律第6个数是______,1132是第______个数; 【阅读理解】111111111111111511122334455622334455666++++=-+-+-+-+-=-=⨯⨯⨯⨯⨯ 【实践应用】根据上面获得的经验完成下面的计算: (2)11112612132+++⋅⋅⋅+;(3)1111 1232343458910 +++⋅⋅⋅+⨯⨯⨯⨯⨯⨯⨯⨯.25.某超市在双十一期间对顾客实行优惠政策,规定如下表:(1)若小惠一次购物原价300元,她实际付款___________元;若一次购物原价600元,她实际付款___________元.(2)若小惠在该超市一次购物x元.当x大于或等于500元时,她实际付款___________元(用含x的代数式表示并化简).(3)如果小惠两次购物合计850元(原价),第一次购物的原价为a元(200300a<<),用含a的代数式表示两次购物实际付款一共多少元?当250a=元时,小惠两次购物一共节省了多少元?26.如图,数轴上点A表示的有理数为4-,点B表示的有理数为6,点P从点A出发以每秒2个单位长度的速度在数轴上沿由A到B方向运动,当点P到达点B后立即返回,仍然以每秒2个单位长度的速度点运动至点A停止运动,设运动时间为t(单位:秒).(1)当2t=时,点P表示的有理数为.(2)当点P与点B重合时t的值为.(3)①在点P由A到点B的运动过程中,点P与点A的距离为.(用含t的代数式表示)②在点P由点A到点B的运动过程中,点P表示的有理数为.(用含t的代数式表示)(4)当点P表示的有理数与原点距离是2的单位长度时,t的值为.。
2024-2025学年苏科版七年级数学上册期中测试卷
2024-2025学年苏科版七年级数学上册期中测试卷1.的相反数为()A.6B.C.D.2.在数轴上,与表示数﹣1的点的距离是2的点表示的数是()A.1B.3C.±2D.1或﹣33.在2017年的“双11”网上促销活动中,某网站的交易额突破了3200000000元,将数字3200000000用科学记数法表示为()A.B.C.D.4.下列关于单项式的说法正确的是()A.系数是,次数是4B.系数是,次数是3C.系数是,次数是4D.系数是,次数是35.火车票上的车次号有两个意义,一是数字越小表示车速越快,1~98次为特快列车,101~198次为直快列车,301~398次为普快列车,401~498次为普客列车;二是单数与双数表示不同的行驶方向,其中单数表示从北京开出,双数表示开往北京.根据以上规定,杭州开往北京的某一直快列车的车次号可能是()A.200B.119C.120D.3196.下列各式中,计算正确的是()A.(-9.2)-(-9.2)=-18.4B.5×(-32)=-45C.-23×(-2)2=32D.16÷×=17.如图,A、B两点在数轴上表示的数分别为a、b,以下结论:①a﹣b>0;②a+b<0;③(b﹣1)(a+1)>0;④.其中结论正确的是()A.①②B.③④C.①③D.①②④8.下列图形都是有几个黑色和白色的正方形按一定规律组成,图①中有2个黑色正方形,图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形,…,按此规律,图⑩中黑色正方形的个数是()A.32B.29C.28D.269.水果市场上鸭梨包装箱上印有字样:“”,有一箱鸭梨的质量为,则这箱鸭梨_________标准.(填“符合”或“不符合”)10.一只蚂蚁从数轴上一点出发,爬了个单位长度到了点,则点所表示的数是______.11.数轴上,若A,B表示互为相反数的两个点,A在B的左边,并且这两点的距离为8,则A点所表示的数是______.12.绝对值小于2.5的所有整数的积为_______.13.某种商品原价每件b元,第一次降价是打8折(按原价的出售),第二次降价每件又减10元,这时的售价用含b的代数式表示是______元.14.根据如图所示的运算程序,若输入x,y的值分别为,,则输出的值为______.15.若,,则的值为______.16.某工厂一周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的车辆数记为正数,减少的车辆数记为负数):生产量最多的一天比生产量最少的一天多生产______辆.星期一二三四五六日增减/辆17.一种新运算,规定有以下两种变换:①f(m,n)=(m,﹣n).如f(3,2)=(3,﹣2);②g(m,n)=(﹣m,﹣n),如g(3,2)=(﹣3,﹣2).按照以上变换有f[g(3,4)]=f(﹣3,﹣4)=(﹣3,4),那么g[f(5,﹣6)]等于_____.18.如图所示,圆的周长为4个单位长度,在圆的4等分点处标上字母A,B,C,D,先将圆周上的字母A对应的点与数轴的数字1所对应的点重合,若将圆沿着数轴向左滚动.那么数轴上的-2018所对应的点将与圆周上字母_____所对应的点重合.19.把下列各数填入表示它所在的数集的大括号里:,,(每两个2之间依次增加一个1),0,,,正数集合:{...};负有理数集合:{...};整数集合:{...};无理数集合:{...}.20.把下列各数:-2.5,-12,,-(-3),0在数轴上表示出来,并用“<”把它们连接起来.21.计算:(1);(2);(3);(4).22.化简:(1);(2).23.已知(x ﹣3)2+=0,求式子2x 2+(-x 2﹣2xy+2y 2)-2(x 2﹣xy+2y 2)的值。
24-25学年七年级数学上学期期中测试卷(无锡专用,测试范围:苏科版2024七上第1章-第3章)考试
2024-2025学年七年级数学上学期期中模拟卷(无锡专用)(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:苏科版2024七年级上册第1章-第3章。
5.难度系数:0.8。
第Ⅰ卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.2-的相反数是( )A .2B .12C .12-D .2-2.下列计算正确的是( )A .278a a a +=B .862y y -=C .222325x y x y x y +=D .325a b ab+=3.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果支出1000元记作1000-元,那么1080+元表示( )A .支出80元B .收入 80元C .支出1080元D .收入1080元4.单项式347πa b c 的系数和次数分别是( )A .7,4B .7,8C .7π,4D .7π,85.在4+,73, 3.14-,0,0.5中,表示正分数的有( )A .0个B .1个C .2个D .3个6.下列各选项中的两个单项式,不是同类项的是 ( )A .23x y 与22yx -B .22ab 与2ba -C .3xy 与5xyD .23a 与32a7.将数轴上一点A 沿数轴向左平移7单位到点B ,再由B 向右平移6个单位到点C ,而C 为数轴上表示2的点,则点A 表示的数是( )A .0B .1C .2D .38.若1230x y z -+++-=.则x y z ++的值为( )A .2B .2-C .0D .69.有一个数值转换器,其工作原理如图所示,若输入2-,则输出的结果是( )A .8-B .6-C .4-D .2-10.如图,6张全等的小长方形纸片放置于矩形ABCD 中,设小长方形的长为a ,宽为()b a b >,若要求出两块黑色阴影部分的周长差,则只要测出下面哪个数据( )(小蜜蜂提醒:小长方形有部分重叠)A .aB .bC .a b +D .a b-第Ⅱ卷二、填空题:本题共8小题,每小题3分,共24分。
苏科版数学初一上学期期中试卷及解答参考(2024-2025学年)
2024-2025学年苏科版数学初一上学期期中模拟试卷(答案在后面)一、选择题(本大题有10小题,每小题3分,共30分)1、一个长方形的长是8厘米,宽是5厘米,那么这个长方形的周长是多少厘米?A、19厘米B、21厘米C、30厘米D、40厘米2、一个正方形的边长是10厘米,那么这个正方形的面积是多少平方厘米?A、100平方厘米B、50平方厘米C、25平方厘米D、20平方厘米3、下列哪一个等式表示的是线性方程?A.(2x2+3x−5=0)B.(4x+7=15)C.(x3−2x+1=0)+2=3)D.(1x4、如果一个长方形的长是宽的两倍,并且它的周长是30厘米,那么这个长方形的面积是多少平方厘米?A. 30B. 45C. 60D. 905、下列各组数中,都是质数的一组是:A. 7,11,13,17B. 6,10,14,18C. 4,8,12,16D. 3,9,15,216、若a、b是正整数,且a+b=10,则a和b的最大公约数是:A. 1B. 2C. 5D. 107、已知点A(3, -2),点B(-1, 4),则线段AB的中点M的坐标是多少?A. (1, 1)B. (2, 1)C. (1, 2)D. (1, 1.5)8、如果一个正方形的边长增加了原来的50%,那么面积增加了多少百分比?A. 50%B. 100%C. 125%D. 150%9、一个长方形的长是8厘米,宽是长的一半,那么这个长方形的周长是多少厘米?选项:A. 16厘米B. 20厘米C. 24厘米D. 32厘米 10、一个正方形的对角线长是10厘米,那么这个正方形的边长是多少厘米?选项:A. 5厘米B. 10厘米C. 15厘米D. 20厘米二、填空题(本大题有5小题,每小题3分,共15分)1、若(a+b=7),且(a−b=3),则(a)的值为____ 。
2、已知一个长方形的长是宽的2倍,如果它的周长是30厘米,则这个长方形的面积为 ____ 平方厘米。
苏科版七年级上期中考试数学试题(三套)
一、选择题:CCBDD
参考答案
CCCAD
二、填充:-1,-5、-4、4、5, 4x 2 ,4、-4,6.65×105 ,10,a 不等于-2 ,-2, 5
15、2n -1
三、21 计算:(1)5 (2)9
(3)— 29 10
(4)— 1 6
22 化简及求值(1)-5a+3
(2)-15 m 2 n 20mn
与标准质量的误差
-4
-6
0
+1
+3
+6
(单位:克)
袋数
5
2
3
5
4
1
(1)在抽取的样品中,最重的那袋食品的质量比最轻的那袋多多少克? (2)若标准质量为 200 克/袋,则这次抽样检测的总质量是多少克
25、(本题 6 分)为了节约用水,某自来水公司采取以下收费方法:若每户每月用水不超 过 15 吨,则每吨水收费 2 元;若每户每月用水超过 15 吨,则超过部分按每吨 2.5 元 收费. 9 月份小明家里用水 a 吨(a>15 吨). (1)请用代数式表示李老师 9 月份应交的水费; (2)当 a=20 时,求小明 9 月份应交水费多少元?
买门票若不超过 100 张,票价为 120/张;如果超过 100 张,则票价为 100/张.设购买门票
数为 x(张),总费用为 y(元).
(1)方案一中,总费用 y=
;
方案二中,当 0≤x≤100 时,总费用 y=
;
当 x>100 时,总费用 y=
.
(2)如果某单位购买本次音乐节门票 200 张,那么选择哪一种方案可使总费用最省?请
.
13、“x 的 4 倍与-2 的和除以 5”列式为________________.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新苏教版七年级数学上册期中试卷
一、选择题
1.下列各式中,是一元一次方程的是( )
A .2x+5y=6
B .3x ﹣2
C .x 2=1
D .3x+5=8
2.2013年我国国内生产总值达到56.9万亿元,比上年增长7.7%。
将56.9万亿用科学记数法表示为( )
A.5.69×1012
B.5.69×1013
C.56.9×1012
D.0.569×1014
3.-2012的相反数是 ( )
A .-2012
B .-1
2012 C .1
2012 D .2012
4.高度每增加1千米,气温就下降2°C ,现在地面气温是10°C ,那么7千米高空的气温是 ( )
A .14-°C
B .24-°
C C .4-°C
D .14°C
5.下列四个式子中,是方程的是 ()
A 、 1 + 2 =3
B 、 x —5
C 、 x = 0
D 、 |1-0. 5|= 0. 5
6..下列说法错误的( )
A .相反数等于本身的数只有0
B .平方后等于本身的数只有0、1
C .立方后等于本身的数是-1、0、1
D .绝对值等于本身的数只有1
7.若a 是负数,则下列各式不正确的是( )
(A ) 22)(a a -=;(B ) 22a a = ;( C ) 33)(a a -= ; ( D ) )(33a a --=.
8.方程2x -1=0的解是( )
A.12
B.-12
C. 2
D.-2 9.下列各式中错误的是 ( )
A .「(x-y )3」2=(x y)6
B .(2a 2)4=16a 8
C .(m 2n)3=m 6n 3 D. (ab 3)3=a 3b 6 10.新纪元学校科学老师在生物实验室做试验时,将水稻种子分组进行发芽试验;第1组取3粒,第2组取5粒,第3组取7粒即每组所取种子数目比该组前一组增加2粒,按此规律,那么请你推测第n 组应该有种子的粒数为( )
A 、
B 、
C 、
D 、
二、填空题
12.如图是一组数值转换机,若它的输出结果为2,则x =.
---13-127
--12+n 12-n n 22+n
13.已知:2+
23=22×23,3+38=32×38,4+415=42×415
,5+524=52×524,若10+b a =102×b a 符合前面式子的规律,则b ﹣a =. 14.已知一列数-1,3,-5,7,-9,11……按一定规律排列,请找出规律,写出第2003个数是。
15.数轴上点A 、B 的位置如图7所示,若点B 关于点A 的对称点为C ,则点C 表示的数为
16.、多项式2-5
1xy 2-4xy 是次项式。
17.计算:3a•2a 2
= .
18.八⑵班同学春游结束后,生活委员李哲在记帐时发现现金少了21.15元,查帐后得知是一笔支出款...
的小数点看错了一位,李哲查出这笔看错了的支出款实际应是元. 19.(2011四川绵阳18,4)观察上面的图形,它们是按一定规律排列的,依照此规律,第____个图形共有120 个。
20.如图,,的中点与的中点的距离是,则______.
三、计算题
21.计算:250150+-
22.计算-
52+65×(23-1)×(-5)×(-221
)) 23.计算:6811()()1010∙; 24.解方程:
(1)341x x
=-; (2)2220x x +-=.
四、解答题
25.元旦期间,弟弟和妈妈从家里出发一同去外婆家,他们走了1小时后,哥哥发现带给外婆的礼品忘在家里,便立刻带上礼品以每小时6千米的速度去追,若弟弟和妈妈每小时行2千米,他们从家里到外婆家需要1小时45分钟,问哥哥能在弟弟和妈妈到外婆家之前追上他们吗?
图
7
26.己知x +4y=-1,xy=5,求(6xy +7y )+ [8x-(5xy-y+6x )]的值
27.在数轴上画出表示下列各数的点,再用“<”号把各数连接起来.
-5,,,1,-3.75
28.如果2•8m •16m =222成立,求m 的值。
29.某车床生产一种工件,该工件的标准直径为mm 10400±,下面是从中抽取的5个工件的检测结果(单位:mm ):305,408,402,380,405.该车床所生产的工件的合格率是多少?
30.当x 取何值时,代数式7x +5与3x -1的值相等?
31.某中学七年级A 班有50人,某次活动中分为四组,第一组有3a+4b+2人第二组比第一组的一半多b 人,第三组比前两组的和的3
1多3人. (1)求第四组的人数(用含a,b 的整式表示)(4分)
(2)试判断a=1,b=2时,是否满足题意(4分)
2122
12
-。