模拟电子技术基础 第1章 晶体二极管及其基本电路

合集下载

模拟电子技术基础(第四版)第1章

模拟电子技术基础(第四版)第1章

ID
理想二极管符号 UD
(V)
ID
开关模型等效电路
0.7V 0 0.7
0
UD
(V)
(a)理想模型 特性 )理想模型VA特性
(b)开关模型 特性 )开关模型VA特性
3、折线模型:正向导通时。相 、折线模型:正向导通时。 当于理想二极管串联一个等效 和一个电压源U 电阻rD和一个电压源 ON ,特 性曲线如图( 所示 所示。 性曲线如图(c)所示。
二极管的伏安特性仍可由 二极管的伏安特性仍可由
iD = IS (e
近似描述。 近似描述。
UD / UT
−1)
D E
导通电压
IS:反向饱和电流 UT:电压当量,室温下26mV
IR
反向 漏电
开启电压 Uon
开启电压 导通电压
硅二极管 0 .5 V 0 . 6 ~ 0 .8 V (取 0 .7 V )
锗二极管 0 .1 V 0 . 2 ~ 0 .3 V (取 0 .3 V )
发射区:发射载流子 发射区: 集电区: 集电区:收集载流子 基区: 基区:传送和控制载流子 为例) (以NPN为例) 为例
演示
载流子的传输过程
以上看出,三极管内有两种载流子 自由电子 自由电子和 以上看出,三极管内有两种载流子(自由电子和空 参与导电, 穴)参与导电,故称为双极型三极管-BJT (Bipolar 参与导电 故称为双极型三极管- Junction Transistor)。 。
二极管伏安特性与温度T的关系: 二极管伏安特性与温度T的关系:
的增加而增加 所以二极管的正向压降 增加, 的增加而降低 降低。 由于IS随T 的增加而增加,所以二极管的正向压降VF随T 的增加而降低。 一般线性减少2 2.5mV/C° 一般线性减少2~2.5mV/C° (利用该特性,可以把二极管作为温度传感器) 利用该特性,可以把二极管作为温度传感器)

《模拟电子技术基础(第五版 康华光主编)》 复习提纲

《模拟电子技术基础(第五版 康华光主编)》 复习提纲

模拟电子技术基础复习提纲第一章绪论)信号、模拟信号、放大电路、三大指标。

(放大倍数、输入电阻、输出电阻)第三章二极管及其基本电路)本征半导体:纯净结构完整的半导体晶体。

在本征半导体内,电子和空穴总是成对出现的。

N型半导体和P型半导体。

在N型半导体内,电子是多数载流子;在P型半导体内,空穴是多数载流子。

载流子在电场作用下的运动称为漂移;载流子由高浓度区向低浓度区的运动称为扩散。

P型半导体和N型半导体的接触区形成PN结,在该区域中,多数载流子扩散到对方区域,被对方的多数载流子复合,形成空间电荷区,也称耗尽区或高阻区。

空间电荷区内电场产生的漂移最终与扩散达到平衡。

PN结最重要的电特性是单向导电性,PN结加正向电压时,电阻值很小,PN结导通;PN结加反向电压时,电阻值很大,PN结截止。

PN 结反向击穿包括雪崩击穿和齐纳击穿;PN结的电容效应包括扩散电容和势垒电容,前者是正向偏置电容,后者是反向偏置电容。

)二极管的V-I 特性(理论表达式和特性曲线))二极管的三种模型表示方法。

(理想模型、恒压降模型、折线模型)。

(V BE=)第四章双极结型三极管及放大电路基础)BJT的结构、电路符号、输入输出特性曲线。

(由三端的直流电压值判断各端的名称。

由三端的流入电流判断三端名称电流放大倍数))什么是直流负载线什么是直流工作点)共射极电路中直流工作点的分析与计算。

有关公式。

(工作点过高,输出信号顶部失真,饱和失真,工作点过低,输出信号底部被截,截止失真)。

)小信号模型中h ie和h fe含义。

)用h参数分析共射极放大电路。

(画小信号等效电路,求电压放大倍数、输入电阻、输出电阻)。

)常用的BJT放大电路有哪些组态(共射极、共基极、共集电极)。

各种组态的特点及用途。

P147。

(共射极:兼有电压和电流放大,输入输出电阻适中,多做信号中间放大;共集电极(也称射极输出器),电压增益略小于1,输入电阻大,输出电阻小,有较大的电流放大倍数,多做输入级,中间缓冲级和输出级;共基极:只有电压放大,没有电流放大,有电流跟随作用,高频特性较好。

电子技术基础模拟部分第六版

电子技术基础模拟部分第六版
(参见“本书常用符号表”)
32
精选ppt
32
例R1 3.4.1 电路如图所示,已知二极管的V-I特性曲线、电源VDD和电 阻R,求二极管两端电压vD和流过二极管的电流iD 。
R
iD
+
VDD
D
vD
-
解:由电路的KVL方程,可得
iD
VDDvD R
即 iDR 1vDR 1VDD是一条斜率为-1/R的直线,称为负载线
一些典型的数据如下:
1 T=300 K室温下,本征硅的电子和空穴浓度: n=p
=21.掺4×杂1后010N/cm型3半导体中的自由电子浓度: n=5×1016/cm3
3 本征硅的原子浓度: 4.96×1022/cm3
以上三个浓度基本上依次相差106/cm3 。
11
精选ppt
11
3.2 PN结的形成及特性
当vs为正半周时,二极管导通,且导通压降为0V,vo = vs
vs
+
D
+
vs
R
vo
-
-
(a)
O
2 3
4 t
vo
O
2 3
4 t
39
精选ppt
39
2.模型分析法应用举例
(2)静态工作情况分析
当VDD=10V 时, (R=10k ) 理想模型
VD 0V
恒压模型
IDVDD /R1mA (a)简单二极管电路 (b)习惯画法
在一定的温度条件下,由本征激
反向偏 置特性
iD = -IS
-1.0
-0.5
iD/mA
发决定的少子浓度是一定的,故少
1.0
正向偏 子形成的漂移电流是恒定的,基本

模拟电子技术基础目录

模拟电子技术基础目录

模拟电子技术基础目录模拟电子技术基础目录模拟电子技术基础目录前言教学建议第1章半导体二极管及其应用1.1 半导体物理基础知识1.1.1 本征半导体1.1.2 杂质半导体1.2 pn结1.2.1 pn结的形成1.2.2 pn结的单向导电性1.2.3 pn结的反向击穿特性1.2.4 pn结的电容特性1.3 半导体二极管及其基本电路1.3.1 半导体二极管的伏安特性曲线1.3.2 半导体二极管的主要参数1.3.3 半导体二极管的电路模型1.3.4 二极管基本应用电路1.4 特殊二极管1.4.1 稳压二极管.1.4.2 变容二极管1.4.3 光电二极管1.4.4 发光二极管思考题习题第2章双极型晶体管及其放大电路2.1 双极型晶体管的工作原理2.1.1 双极型晶体管的结构2.1.2 双极型晶体管的工作原理2.2 晶体管的特性曲线2.2.1 共射极输出特性曲线2.2.2 共射极输入特性曲线2.2.3 温度对晶体管特性的影响2.2.4 晶体管的主要参数2.3 晶体管放大电路的放大原理2.3.1 放大电路的组成2.3.2 静态工作点的作用2.3.3 晶体管放大电路的放大原理2.3.4 基本放大电路的组成原则2.3.5 直流通路和交流通路2.4 放大电路的静态分析和设计2.4.1 晶体管的直流模型及静态工作点的估算2.4.2 静态工作点的图解分析法2.4.3 晶体管工作状态的判断方法2.4.4 放大状态下的直流偏置电路2.5 共射放大电路的动态分析和设计2.5.1 交流图解分析法2.5.2 放大电路的动态范围和非线性失真2.5.3 晶体管的交流小信号模型2.5.4 等效电路法分析共射放大电路2.5.5 共射放大电路的设计实例2.6 共集放大电路(射极输出器)2.7 共基放大电路2.8 多级放大电路2.8.1 级间耦合方式2.8.2 多级放大电路的性能指标计算2.8.3 常见的组合放大电路思考题习题第3章场效应晶体管及其放大电路3.1 场效应晶体管3.1.1 结型场效应管3.1.2 绝缘栅场效应管3.1.3 场效应管的参数3.2 场效应管工作状态分析及其偏置电路3.2.1 场效应管工作状态分析3.2.2 场效应管的偏置电路3.3 场效应管放大电路3.3.1 场效应管的低频小信号模型3.3.2 共源放大电路3.3.3 共漏放大电路思考题习题第4章放大电路的频率响应和噪声4.1 放大电路的频率响应和频率失真4.1.1 放大电路的幅频响应和幅频失真4.1.2 放大电路的相频响应和相频失真4.1.3 波特图4.2 晶体管的高频小信号模型和高频参数4.2.1 晶体管的高频小信号模型4.2.2 晶体管的高频参数4.3 晶体管放大电路的频率响应4.3.1 共射放大电路的频率响应4.3.2 共基、共集放大器的频率响应4.4 场效应管放大电路的频率响应4.4.1 场效应管的高频小信号等效电路4.4.2 共源放大电路的频率响应4.5 多级放大器的频率响应4.5.1 多级放大电路的上限频率4.5.2 多级放大电路的下限频率4.6 放大电路的噪声4.6.1 电子元件的噪声4.6.2 噪声的度量思考题习题第5章集成运算放大电路5.1 集成运算放大电路的特点5.2 电流源电路5.3 以电流源为有源负载的放大电路5.4 差动放大电路5.4.1 零点漂移现象5.4.2 差动放大电路的工作原理及性能分析5.4.3 具有电流源的差动放大电路5.4.4 差动放大电路的大信号分析5.4.5 差动放大电路的失调和温漂5.5 复合管及其放大电路5.6 集成运算放大电路的输出级电路5.7 集成运算放大电路举例5.7.1 双极型集成运算放大电路f0075.7.2 cmos集成运算放大电路mc145735.8 集成运算放大电路的外部特性及其理想化5.8.1 集成运放的模型5.8.2 集成运放的主要性能指标5.8.3 理想集成运算放大电路思考题习题第6章反馈6.1 反馈的基本概念及类型6.1.1 反馈的概念6.1.2 反馈放大电路的基本框图6.1.3 负反馈放大电路的基本方程6.1.4 负反馈放大电路的组态和四种基本类型6.2 负反馈对放大电路性能的影响6.2.1 稳定放大倍数6.2.2 展宽通频带6.2.3 减小非线性失真6.2.4 减少反馈环内的干扰和噪声6.2.5 改变输入电阻和输出电阻6.3 深度负反馈放大电路的近似计算6.3.1 深负反馈放大电路近似计算的一般方法6.3.2 深负反馈放大电路的近似计算6.4 负反馈放大电路的稳定性6.4.1 负反馈放大电路的自激振荡6.4.2 负反馈放大电路稳定性的判断6.4.3 负反馈放大电路自激振荡的消除方法思考题习题第7章集成运算放大器的应用7.1 基本运算电路7.1.1 比例运算电路7.1.2 求和运算电路7.1.3 积分和微分运算电路7.1.4 对数和反对数运算电路7.2 电压比较器7.2.1 电压比较器概述7.2.2 单门限比较器7.2.3 迟滞比较器7.2.4 窗口比较器7.3 弛张振荡器7.4 精密二极管电路7.4.1 精密整流电路7.4.2 峰值检波电路7.5 有源滤波器7.5.1 滤波电路的作用与分类7.5.2 一阶有源滤波器7.5.3 二阶有源滤波器7.5.4 开关电容滤波器思考题习题第8章功率放大电路8.1 功率放大电路的特点与分类8.2 甲类功率放大电路8.3 互补推挽乙类功率放大电路8.3.1 双电源互补推挽乙类功率放大电路8.3.2 单电源互补推挽乙类功率放大电路8.3.3 采用复合管的准互补推挽功率放大电路8.4 集成功率放大器8.5 功率器件8.5.1 双极型大功率晶体管8.5.2 功率mos器件8.5.3 绝缘栅双极型功率管及功率模块8.5.4 功率管的保护思考题习题第9章直流稳压电源9.1 直流电源的组成9.2 整流电路9.2.1 单相半波整流电路9.2.2 单相全波整流电路9.2.3 单相桥式整流电路9.2.4 倍压整流电路9.3 滤波电路9.3.1 电容滤波电路9.3.2 电感滤波电路9.3.3 复合型滤波电路9.4 稳压电路9.4.1 稳压电路的主要指标9.4.2 线性串联型直流稳压电路9.4.3 开关型直流稳压电路思考题习题第10章可编程模拟器件与电子电路仿真软件10.1 在系统可编程模拟电路原理与应用10.1.1 isppac10的结构和原理10.1.2 其他isppac器件的结构和原理10.1.3 isppac的典型应用10.2 multisim软件及其应用10.2.1 multisim 8的基本界面10.2.2 元件库10.2.3 仿真仪器10.2.4 仿真分析方法10.2.5 在模拟电路设计中的应用思考题习题第11章集成逻辑门电路11.1 双极型晶体管的开关特性11.2 mos管的开关特性11.3 ttl门电路11.3.1 ttl标准系列与非门11.3.2 其他类型的ttl标准系列门电路11.3.3 ttl其他系列门电路11.4 ecl门电路简介11.5 cmos门11.5.1 cmos反相器11.5.2 其他类型的cmos电路11.5.3 使用cmos集成电路的注意事项11.5.4 cmos其他系列门电路11.6 cmos电路与ttl电路的连接思考题习题参考文献延伸阅读:模拟电子技术基础50问1、空穴是一种载流子吗?空穴导电时电子运动吗?答:不是,但是在它的运动中可以将其等效为载流子。

模拟电子技术基础课后答案(黄丽亚著)(机械工业出版社)

模拟电子技术基础课后答案(黄丽亚著)(机械工业出版社)

题图 2.6
解: (1)Q1 点: β ≈ 50, Q2点:β ≈ 0。 (2) U ( BR )CEO ≈ 40V , PCM ≈ 330mW。
2.7 硅晶体管电路如题图 2.7 所示。设晶体管的 U BE ( on ) 作状态。 15V RB 470k Ω 1V D 0.3V (a) RC 2k Ω T RE 1k Ω RB 100k Ω RC 2k Ω T RE 1k Ω 15V
RB 500 C1 + ui RE 1k Ω kΩ
Q'
④ 4 6
Q
10 12
U CC − U BE ( on ) 12 = = 20 ( μ A ) ,直流负载线 RB + ( 1 + β )RE 500 + 100 U CE = U CC − I C ( RC + RE ) = 12 − 3 I C ,取两点 (U CE = 0 , IC = 4mA ; IC = 0 ,U CE = 12V ) ,可得直流负载线如图 2.18(b)中①线,工作 1 1 = − ,可得图 2.18(b)中 点 Q( U CEQ = 6 V, I CQ = 2 mA),交流负载线的斜率为 − RC 2
= 0.7 V, β = 100 。判别电路的工
9V
(b) 题图 2.7
(c)
解: 在题图(a )中,由于 U BE < 0 ,因而管子处于截止状态 。U C = U CC = 12V。
题图(b) :
2
I BQ =
15 − 0.7 = 25 μA RB + ( 1 + β )RE
I CQ = β I BQ = 2.5mA U CEQ = 15 − 2.5 × 3 = 7.5( V )

模拟电子技术基础-第一章课后习题详解

模拟电子技术基础-第一章课后习题详解

习题1.1选择合适答案填入空内。

(1)在本征半导体中加入元素可形成N型半导体,加入元素可形成P型半导体。

A. 五价B. 四价C. 三价(2)当温度升高时,二极管的反向饱和电流将。

A. 增大B. 不变C. 减小(3)工作在放大区的某三极管,如果当I B从12μA增大到22μA时,I C从1mA变为2mA,那么它的β约为。

A. 83B. 91C. 100(4)当场效应管的漏极直流电流I D从2mA变为4mA时,它的低频跨导g m将。

A.增大B.不变C.减小解:(1)A ,C (2)A (3)C (4)A1.2 能否将1.5V的干电池以正向接法接到二极管两端?为什么?解:不能。

因为二极管的正向电流与其端电压成指数关系,当端电压为1.5V时,管子会因电流过大而烧坏。

1.3 电路如图P1.3所示,已知u i=10sinωt(v),试画出u i与u O的波形。

设二极管正向导通电压可忽略不计。

图P1.3解图P1.3解:u i和u o的波形如解图P1.3所示。

1.4 电路如图P1.4所示,已知u i=5sinωt(V),二极管导通电压U D=0.7V。

试画出u i与u O的波形,并标出幅值。

图P1.4解图P1.4解:波形如解图P1.4所示。

1.5 电路如图P1.5(a)所示,其输入电压u I1和u I2的波形如图(b)所示,二极管导通电压U D=0.7V。

试画出输出电压u O的波形,并标出幅值。

图P1.5解:u O的波形如解图P1.5所示。

解图P1.51.6 电路如图P1.6所示,二极管导通电压U D=0.7V,常温下U T≈26mV,电容C对交流信号可视为短路;u i为正弦波,有效值为10mV。

试问二极管中流过的交流电流有效值解:二极管的直流电流I D=(V-U D)/R=2.6mA其动态电阻r D≈U T/I D=10Ω故动态电流有效值I d=U i/r D≈1mA 图P1.61.7现有两只稳压管,它们的稳定电压分别为6V和8V,正向导通电压为0.7V。

模拟电子技术基础知识点总结

模拟电子技术基础知识点总结

模拟电子技术复习资料总结第一章半导体二极管一.半导体的根底知识1.半导体---导电能力介于导体和绝缘体之间的物质(如硅Si、锗Ge)。

2.特性---光敏、热敏和掺杂特性。

3.本征半导体----纯洁的具有单晶体构造的半导体。

4.两种载流子----带有正、负电荷的可移动的空穴和电子统称为载流子。

5.杂质半导体----在本征半导体中掺入微量杂质形成的半导体。

表达的是半导体的掺杂特性。

*P型半导体:在本征半导体中掺入微量的三价元素〔多子是空穴,少子是电子〕。

*N型半导体: 在本征半导体中掺入微量的五价元素〔多子是电子,少子是空穴〕。

6.杂质半导体的特性*载流子的浓度---多子浓度决定于杂质浓度,少子浓度与温度有关。

*体电阻---通常把杂质半导体自身的电阻称为体电阻。

*转型---通过改变掺杂浓度,一种杂质半导体可以改型为另外一种杂质半导体。

7. PN结* PN结的接触电位差---硅材料约为0.6~0.8V,锗材料约为0.2~0.3V。

* PN结的单向导电性---正偏导通,反偏截止。

8. PN结的伏安特性二. 半导体二极管*单向导电性------正向导通,反向截止。

*二极管伏安特性----同PN结。

*正向导通压降------硅管0.6~0.7V,锗管0.2~0.3V。

*死区电压------硅管0.5V,锗管0.1V。

3.分析方法------将二极管断开,分析二极管两端电位的上下:假设 V阳 >V阴( 正偏 ),二极管导通(短路);假设 V阳 <V阴( 反偏 ),二极管截止(开路)。

1〕图解分析法该式与伏安特性曲线的交点叫静态工作点Q。

2) 等效电路法➢直流等效电路法*总的解题手段----将二极管断开,分析二极管两端电位的上下:假设 V阳 >V阴( 正偏 ),二极管导通(短路);假设 V阳 <V阴( 反偏 ),二极管截止(开路)。

*三种模型➢微变等效电路法三.稳压二极管及其稳压电路*稳压二极管的特性---正常工作时处在PN结的反向击穿区,所以稳压二极管在电路中要反向连接。

电子技术基础 模拟部分 课后复习思考题答案

电子技术基础 模拟部分 课后复习思考题答案

100 100 v o 2v o1 1 v o2 2(v o1 v o2 ) 2(3vi1 vi2 2vi3 ) 50 150
6.试写出图示加法器对vI1、vI2、vI3 的运算结果:vO = f (vI1、vI2、vI3)。
解:A2 的输出 vO2=-(10/5)vI2-(10/100)vI3=-2vI2-0.1vI3 vO=-(100/20)vI1-(100/100)vO2=-5vI1+2vI2+0.1vI3
10Ω 10Ω 1V 6 1V 10 5 V 1MΩ 10Ω 10 Ω
在拾音头与扬声器之间接入放大电路后,使用电压放大电路模型,则等效电路如下图所示
2
Vi
Ri 1MΩ Vs 1V 0.5V Rs Ri 1MΩ 1MΩ RL 10Ω AvoVi 1 0.5V 0.25V RL Ro 10Ω 10Ω
7.在 图 示 电 路 中 , 已 知 输 入 电 压 v i 的 波 形 如 图 ( b ) 所 示 , 当 t = 0 时 , 电 容 C 上 的 电 压 vC= 0。 试 画 出 输 出 电 压 vo 的 波 形 。
7
1 t2 vi dt v C ( t1 ) RC t1 1 vi ( t 2 t1 ) v C ( t1 ) -100 vi ( t 2 - t1 ) v C ( t1 ) 解: 当 vi 为常数时 v o RC 若 t1 0, v C 0, t 2 5ms 时 vo 100 5 5 10 3 2.5V vo 若 t1 5ms, v C -2.5V, t 2 15ms 时 vo -100 (-5) 10 10 3 ( 2.5) 2.5V

模电第一章半导体基础及二极管电路

模电第一章半导体基础及二极管电路

vS

if (vS 0) vS


if (vS 0) vS

D1

vS
RL vO
D2
D1

vO
RL vO
D2
D1


RL vO
vS

D2
t
t
D1
RL vO
D2
38
二极管整流电路:全波整流


D4
D1
AC
Line
vS
vO
vS
Voltage
R
t


D2
D3

3
本征半导体及其特性
导 体 (Conductor)
电导率 >105 铝、金、钨、铜等金属,镍铬等合金。
半导体 (Semiconductor)
电导率 10-9~ 102 硅、锗、砷化镓、磷化铟、碳化镓、重掺杂多晶硅
绝缘体 (Insulator)
电导率10-22 ~10-14
二氧化硅、氮氧化硅、氮化硅等
RL VO
当 RL不变时:


Vs
Vo
Vz

I Vo z

IR

VR
Vo 当 Vs 不变时:
# 不加R可以吗?
RL Io IR Vo Iz IR VR
Vo
41
二极管模拟电路:限幅电路(一)
限幅:按照规定的范围,将输入信号波形的一部分传 送到输出端、而将其余部分消去。一般利用器件的开 关特性实现

I evD /VT S
当vD 100mV 时,i IS ,反向电流基本不变

模拟电子电路电子课件第一章二极管及其应用

模拟电子电路电子课件第一章二极管及其应用
18
第一章 二极管及其应用
(2)扩散电容 当PN结外加正向电压时,在空间电荷区两侧的扩散区内,少数载流子 的分布会随外加电压的变化而发生改变,形成电容效应,称为扩散电容。 PN结的势垒电容和扩散电容都是非线性电容。PN结的结电容为势垒电 容和扩散电容之和。由于结电容的存在,当工作频率很高时,结电容的影 响就不可忽略,如果工作频率过高,高频电流将主要从结电容通过,这将 会破坏PN结的单向导电性。
38
第一章 二极管及其应用
将交流电转换为直流电称为整流。具有单向导电性的二极管是最常用的 整流元件。
电动自行车充电器
39
第一章 二极管及其应用
一、单相半波整流电路
观察半波整流电路波形,实验电路如图所示。
单相半波整流电路 a)原理电路 b)实测半波整流波形
40
第一章 二极管及其应用
二、单相桥式整流电路
PN结外加正向电压
16
第一章 二极管及其应用
(2)PN结外加反向电压 PN结P区接低电位、N区接高电位时,称PN结外加反向电压,又称PN结 反向偏置,简称反偏,如图所示。这时,外电场与PN结内电场方向相同, 内电场被增强,PN结空间电荷区变宽。这使得多数载流子的扩散运动受阻, 但对少数载流子的漂移运动有利,从而形成极小的反向电流,反向电流的 方向由N区指向P区。
26
第一章 二极管及其应用
二极管内部结构示意图 a)点接触型 b)面接触型 c)平面型
27
第一章 二极管及其应用
二、二极管的型号命名
国产二极管的型号命名方法见表。
国产二极管的型号命名方法
28
第一章 二极管及其应用
三、二极管的主要参数
不同型号的二极管都有一些技术数据(即参数)作为它合理、安全使用 的依据。二极管的主要参数如下:

南邮模电课件-第1章--晶体二极管及其基本电路

南邮模电课件-第1章--晶体二极管及其基本电路
28
第1章 半导体二极管及其基本电路
耗尽 区
耗尽 区
P+
N
P
N+
(a)
(b)
图1―8不对称PN结
29
第1章 半导体二极管及其基本电路
1―2―2 PN 一、PN结加正向电压— forward bias
IF P 区
外电场
N区 内电场
限流电阻
外电场使多子向 PN 结移动, 中和部分离子使空间电荷区变窄。
及外加电场的强度等因素决定。
21
第1章 半导体二极管及其基本电路
二、扩散电流(扩散运动) 1.定义:因某种原因使半导体中的载流子的浓度分 布不均匀时,载流子从浓度大的地方向浓度小的地方 作扩散运动,形成的电流。 2.扩散电流主要取决于载流子的浓度差(即浓度 梯度)。浓度差越大,扩散电流越大,而与浓度值无 关。
18
第1章 半导体二极管及其基本电路
nn pn ni2
pn
ni2 nn
ni2 ND
对P型半导体,多子pp与少子np有
pp np ni2
np
ni2 pp
ni2 NA
(1―2a)
(1―2b) N型半导体,施
主浓度
(1―3a)
(1―3b) P型半导体,受
主浓度
19
第1章 半导体二极管及其基本电路
本征半导体受外界能量(热、电、光等能量)激发,同 时产生电子、空穴对的过程称为本征激发。
二、本征载流子浓度 1.复合:在本征半导体中,由于本征激发,不断产生
电子、空穴对,使载流子密度增加。与此同时,又会有 相反的过程发生。由于正负电荷相吸引,电子会填入空 穴成为价电子,同时释放出相应的能量,从而消失一对 电子、空穴,这一过程称为复合。

模拟电子技术基础第四版课件-第一章

模拟电子技术基础第四版课件-第一章
60A 40A
20A IB=0 9 12 UCE(V)
(1-51)
4
IC(mA
) 此区域中UC1E00UBAE,
集电结正偏,
3
IB>IC,UCE800.3VA 称为饱和区。
60A
2
40A
1
20A
IB=0
3 6 9 12 UCE(V)
(1-52)
IC(mA ) 4 3
2
此1区00域A中 :
I,UB=B80E0<,ICA死=I区CEO 电压60,A称为 截止40区A。
变薄
+ P
-+ -+ -+ -+
内电场被削弱,多子 的扩散加强能够形成 较大的扩散电流。
_ N
外电场
R
内电场
E
(1-22)
2、PN 结反向偏置
_ P
变厚
-+ -+ -+ -+
内电场被被加强,多子
的扩散受抑制。少子漂
移加强,但少子数量有
限,只能形成较小的反
向电流。
+
N
内电场
外电场
R
E
(1-23)
3 PN 结方程
I
U
I I S (e UT 1)
U
三 PN结的击穿
(1-24)
四 PN结的电容效应
PN结高频小信号时的等效电路: rd
势垒电容和扩散电 容的综合效应
(1-25)
1. 2 半导体二极管
1.2. 1 半导体二极管的结构和符号
PN 结加上管壳和引线,就成为半导体二极管。
点接触型
触丝线
PN结
引线 外壳线

《模拟电子技术基础》习题答案

《模拟电子技术基础》习题答案

模拟电子技术基础答案 第1章习题及答案1.1.在图题1.1所示的各电路图中E =5V ,t u i ωsin 10=V ,二极管的正向压降可忽略不计,试分别画出输出电压o u 的波形。

oo(a)(b)(c)(d)图题1.1解:(a )图:当i u > E 时,o u = E ,当i u < E 时,i o u u =。

(b )图:当i u < E 时,o i u u =;当i u > E 时,E u o =。

(c )图:当i u < E 时,E u o =;当i u > E 时,i o u u =。

(d )图:当i u > E 时,i o u u =;当i u < E 时,E u o =。

画出o u 波形如图所示。

Vu i /u o /u o /u o /u o /1.2.有两个稳压管D Z1和D Z2,其稳定电压分别为5.5V 和8.5V ,正向压降都是0.5V 。

如果要得到0.5V ,3V ,6V ,9V 和14V 几种稳定电压,问这两个稳压管(还有限流电阻)应如何连接?画出各个电路。

解:各电路图如图所示。

(a)0.5V ;(b)3V ;(c)6V ;(d)9V ;(e)14V。

R LR L(a)(b)R LR LR L(c) (d) (e)1.3.在如图题1.3所示的发光二极管的应用电路中若输入电压为1.0V 试问发光二极管是否发光,为什么?U图题1.3解:若输入电压U I =1.0V ,发光二极管不发光,因为发光二极管正向工作电压为2~2.5V 。

1.4.光电二极管在电路中使用时,是正向连接还是反向连接?解:光电二极管在电路中使用时,是反向连接,因为光电二极管工作在反偏状态,它的反向电流随光照强度的增加而上升,用于实现光电转换功能。

1.5.某二极管的管壳标有电路符号,如图所示,已知该二极管是好的,万用表的欧姆档示意图如图题1.5所示,(1)在测二极管的正向电阻时,两根表笔如何连接?(2)在测二极管的反向电阻时,两根表笔又如何连接?(3)两次测量中哪一次指针偏转角度大?偏转角度大的一次的阻值小还是阻值大?图题1.5解:(1)在测二极管的正向电阻时,黑表笔接正极,红表笔接负极。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9
第1章 晶体二极管及其基本电路
一、N型半导体 在本征硅 (或锗 )中掺入少量的五价元素,如磷、砷、 锑等,就得到 N型半导体。这时,杂质原子替代了晶格中 的某些硅原子,它的四个价电子和周围四个硅原子组成共 价键,而多出一个价电子只能位于共价键之外,如图1―4 所示。 这种杂质原子能“施舍”出一个电子,所以称为施主原 子(杂质)。 在N型半导体中,电子浓度远大于空穴浓度。故称电 子为多数载流子,简称多子;而空穴称为少数载流子,简 称少子。因此N型半导体主要靠电子导电,所以也称为电 子型半导体。
ni = pi = A0T 3 / 2 e− EG 0 / 2 kT
(1―1)
式中 ni,pi 分别表示电子和空穴的浓度 (cm –3 ) ; T 为热 力学温度 (K) ; EG0 为 T=0K时的禁带宽度 ( 硅为 1.21eV, 锗 为 0.78eV) ; k为玻尔兹曼常数 (8.63 × 10 –6 V/K); A0 是与 半导体材料有关的常数( 硅为 3.87 ×1016cm-3·K-3/2 ,锗为 1.76×1016cm-3·K-3/2)。
12
第1章 晶体二极管及其基本电路
+4
+4 空位
+4
+4
+3 受主 原子
+4
+4
+4
+4
图1―5 P型半导体原子结构示意图
注意:N型半导体和 P型半导体仍然是电中性的。
13
第1章 晶体二极管及其基本电路
三、杂质半导体的载流子浓度 • 在杂质半导体中,尽管掺入的杂质浓度很小,但通常 由杂质原子提供的载流子数却远大于本征载流子数。 因此,在杂质半导体中,多数载流子的浓度主要由掺 杂浓度决定。 • 杂质半导体中的少子浓度,因掺杂不同,会随多子浓 度的变化而变化。在热平衡下,两者之间有如下关系: 多子浓度值与少子浓度值的乘积恒等于本征载流子浓 度值ni的平方。即 对N型半导体,多子nn与少子pn有
15
第1章 晶体二极管及其基本电路
结论: • 本征半导体通过掺杂,可以大大改变半导体内载流子 的浓度,并使一种载流子多,而另一种载流子少。 • 多子浓度主要取决于杂质的含量,它与温度几乎无 关;少子的浓度则主要与本征激发有关,因而它的大 小与温度有十分密切的关系。
16
第1章 晶体二极管及其基本电路
10
第1章 晶体二极管及其基本电路
+4
+4 键外 电子
+4
+4
+5 施主 原子
+4
+4
+4
+4
图1―4N型半导体原子结构示意图
11
第1章 晶体二极管及其基本电路
二、P型半导体 在本征硅 (或锗 )中掺入少量的三价元素,如硼、铝、 铟等,就得到 P型半导体。这时杂质原子替代了晶格中的 某些硅原子,它的三个价电子和相邻的四个硅原子组成共 价键时,只有三个共价键是完整的,第四个共价键因缺少 一个价电子而出现一个空位,如图1--5所示。 这种杂质能接受价电子,所以称为受主原子(杂质) 在 P型半导体中,空穴浓度远大于电子浓度。故称空穴为 多数载流子,简称多子;而电子称为少数载流子,简称少子。 因此P型半导体主要靠空穴导电所以也称为空穴型半导体。
U

UB+U E R
图1―10 反向偏置的 PN结
27
第1章 晶体二极管及其基本电路
三、PN结电流方程 理论分析证明,流过 PN结的电流 i 与外加电压 u 之 间的关系为
i=IS (e qu/kT-1)= IS (e u/UT-1)
(1―4)
式中, IS为反向饱和电流,其大小与 PN结的材料、 制作工艺、温度等有关; UT=kT/q,称为温度的电压当 量或热电压。在T=300K(室温)时, UT =26mV。
17
第1章 晶体二极管及其基本电路
二、扩散电流 1.定义:因某种原因使半导体中的载流子的浓度分 布不均匀时,载流子从浓度大的地方向浓度小的的地 方作扩散运动,形成的电流。 2 .扩散电流主要取决于载流子的浓度差(即浓度 梯度)。浓度差越大,扩散电流越大,而与浓度值无 关。 反映在浓度分布曲线上(见图 1 ―6),即扩散电流正 比于浓度分布线上某点处的斜率dn(x)/dx(dp(x)/dx)。
U UB-U

E
R
图1―9 正向偏置的 PN结
26
第1章 晶体二极管及其基本电路
二、PN结加反向电压 使 P区电位低于 N区电位的接法,称 PN结加反向电 压或反向偏置 ( 简称反偏 ) 。由于反向电压与 UB 的极性 一致,因而耗尽区两端的电位差变为 UB+U,如图 1―10 所示。
耗尽区

内电场
8
第1章 晶体二极管及其基本电路
3.结论: • 本征半导体的导电能力是很弱的; • 本征载流子浓度随温度升高近似按指数规律增大(由式 1-1可知),所以其导电性能对温度的变化很敏感。
1―1―2杂质半导体 在本征半导体中,有选择地掺入少量其它元素, 会使其导电性能发生显著变化。这些少量元素统称为 杂质。掺入杂质的半导体称为杂质半导体。根据掺入 的杂质不同,有N型半导体和P型半导体两种。
u
T
图1―11
PN结的伏安特性
31
第1章 晶体二极管及其基本电路
一、雪崩击穿 条件:1. PN结反偏; 2. PN结轻掺杂;
过程:耗尽区较宽,少子漂移通过耗尽区时被加速,动能 ↑,被加速的少子与中性原子的价电子相碰撞,产生新的 空穴、电子对。新的空穴、电子对被电场加速后,又会撞 出新的空穴、电子对,这些新的空穴、电子对又被电场加 速,形成连锁反应,使耗尽区内的载流子数剧增,从而引 起反向电流急剧增大。其现象类似于雪崩,所以称为雪崩 击穿。
14
第1章 晶体二极管及其基本电路
nn ⋅ pn = n
2 i
2 i 2 i
(1―2a)
n n pn = ≈ nn N D
对P型半导体,多子pp与少子np有
(1―2b) N型半导体, 施主浓度
p p ⋅ np = n
2 i
2 i 2 i
(1―3a)
n n np = ≈ pp N A
(1―3b) P型半导体, 受主浓度
28
第1章 晶体二极管及其基本电路
由式(1―4)可知: • PN结正偏,且 u大于UT几倍以上,则有, i≈Iseu/UT,即
i随u呈指数规律变化;
• PN结反偏,且 |u|大于UT 几倍以上,则i ≈ ―IS (负号表示 与正向参考电流方向相反)。 • 由式(1―4)可画出PN结的伏安特性曲线,如图1―11所示。
6
第1章 晶体二极管及其基本电路
+4 空穴 +4
+4 +4 自由电 子
+4
+4
+4
+4
+4
图1 ―3本征激发产生电子和空穴
7
第1章 晶体二极管及其基本电路
2.载流子浓度:载流子浓度越大,复合的机会就越多。在 一定温度下,当没有其它能量存在时,电子、空穴对的 产生与复合最终达到一种热平衡状态,使本征半导体中 载流子的浓度一定。理论分析表明,本征载流子的浓度 为:
23
第1章 晶体二极管及其基本电路
对称PN结:如果P区和N区的掺杂浓度相同,则耗尽区相对 界面对称,称为对称结。见图1―7(b) 不对称 PN结:如果一边掺杂浓度大(重掺杂),一边掺杂浓 度小(轻掺杂) ,则称为不对称结,用P+N或PN+ 表示(+号 表示重掺杂区)。这时耗尽区主要伸向轻掺杂区一边,如 图1--8(a),(b)所示。
因此只有当扩散运动和漂移运动达 到动态平衡时,空间电荷区的宽度 和内电场的大小才能相对稳定下来
21
第1章 晶体二极管及其基本电路
P
N
P
空间电荷区
N
(a )
内电场
UB
(b )
图 1―7PN结的形成
22
第1章 晶体二极管及其基本电路
开始时,扩散运动占优势,随着扩散运动的不断进 行,空间电荷区展宽,使内电场不断↑,漂移运动随之 ↑ ,而扩散运动相对 ↓。最后,使扩散和漂移运动达到 动态平衡。平衡时,空间电荷区的宽度一定,UB 也保持 一定,如图1―7(b)所示。 由于空间电荷区内没有载流子,所以空间电荷区也 称为耗尽区(层)。又因为空间电荷区的内电场对扩散有 阻挡作用,好像壁垒一样,所以又称它为阻挡区或势垒 区。
1―1―3半导体中的电流 了解了半导体中的载流子情况之后,我们来讨论 它的电流。在半导体中有两种电流:漂移电流和扩散 电流。 一、漂移电流 •定义:在电场作用下,半导体中的载流子作定向漂移 运动形成的电流。 •形成:当外加电场时,电子逆电场方向作定向运动, 形成电子电流In,而空穴顺电子方向作定向运动,形成 空穴电流Ip。In和Ip的方向是一致的,均为空穴流动的 方向。因此,半导体中的总电流为两者之和,即 I=In+Ip 漂移电流的大小将由半导体中载流子浓度、迁移速度 及外加电场的强度等因素决定。
2
第1章 晶体二极管及其基本电路
2.半导体的原子结构:
+4
图 1―1原子的简化模型
3
第1章 晶体二极管及其基本电路
纯净的单晶半导体称为本征半导体。在本征硅和 锗的单晶中,原子按一定间隔排列成有规律的空间点 阵(称为晶格)。由于原子间相距很近,价电子不仅受到 自身原子核的约束,还要受到相邻原子核的吸引,使 得每个价电子为相邻原子所共有,从而形成共价键。 这样四个价电子与相邻的四个原子中的价电子分别组 成四对共价键,依靠共价键使晶体中的原子紧密地结 合在一起。图1 ―2是单晶硅或锗的共价键结构平面示意 图。共价键中的电子,由于受到其原子核的吸引,是 不能在晶体中自由移动的,所以是束缚电子,不能参 与导电。
相关文档
最新文档