平面直角坐标系提高题
平面直角坐标系(习题及答案)
平面直角坐标系(习题)巩固练习1.如图,小明用手盖住的点的坐标可能是()A.(2,3) B.(2,-3) C.(-2,3) D.(-2,-3) 2.平面直角坐标系中有一点P(a,b),如果a b=0,那么点P的位置在()A.原点B.x 轴上C.y 轴上D.坐标轴上3.在坐标平面内,有一点P(a,b),若a b>0,那么点P的位置在()A.第一象限B.第二象限 C.第一象限或第三象限D.第二象限或第四象限4.若点A(a,b)在第三象限,则点C(-a+1,3b-5)在第象限.5.在平面直角坐标系中,如果a<0,b>0,那么点(0,a)在。
;点(b,0)在.6.若点A(n-3,m-1)在x轴上,点B(2n+1,m+4)在y轴上,则点C(m,n)在第象限.7.若过A(4,m),B(n,-3)两点的直线与y轴平行,且A B=2,则m= ,n=_ .8.若点A(m,n)与点B(-3,-2)在同一条垂直于y轴的直线上,点A 到y轴的距离为4,则m= ,n= .9.如图,正方形ABCD 在平面直角坐标系中,其中三个顶点的坐标分别为(2,3),(-3,-1),(2,-1),则第四个顶点的坐标为.10.已知点P(4,-3),它到x轴的距离为,到y轴的距离为,到原点的距离为.11.点M在y轴的左侧,距离x轴4个单位长度,距离y轴3个单位长度,则点M的坐标为.12.点P(3,-2)关于x轴的对称点的坐标是,关于y轴的对称点的坐标是,关于原点的对称点的坐标是13.点P(-2a-1,a-1)在y轴上,则点P关于x轴的对称点的坐标为.14.若点P 先向左平移 2 个单位,再向上平移 1 个单位得到P′(-1,3),则点P的坐标是.15.如图,△ABC 内部任意一点P(a,b)平移后的对应点为P′(a+4,b+1),若将△ABC 作同样的平移得到△A′B′C′,则A′,B′,C′的坐标分别为、、.16.作图:在平面直角坐标系中,将坐标是(2,0),(2,2),(0,2),(0,3),(2,5),(3,5),(2,2),(5,3),(5,2),(3,0),(2,0)的点用线段依次连接起来形成一个图案.回答下列问题:(1)每个点的纵坐标保持不变,横坐标分别乘以-1,顺次连接这些点,所得图案与原图案的位置关系是;(2)每个点的横坐标保持不变,纵坐标分别乘以-1,顺次连接这些点,所得图案与原图案的位置关系是.17.如图是小刚画的一张脸,如果用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成.18.如图,若OA=OC=4,则点A 的坐标是,点C的坐标是.思考小结1.点的位置坐标的特征坐标举例第一象限(+,+)第二象限第三象限第四象限与x 轴平行的直线坐标相同与y 轴平行的直线坐标相同关于x 轴对称横坐标相同,纵坐标(a,b)与(a,-b)关于x 轴对称关于y 轴对称2.在第象限,则点P(a,b)在第象限.3.点(x,y)向左平移a个单位后的坐标为;点(x,y)向下平移b个单位后的坐标为;点(x,y)先向上平移a个单位,再向右平移b个单位后的坐标为.4.在如图所示的平面直角坐标系中,四边形ABCD 各个顶点的坐标分别是A(-3,1),B(3,3),C(4,-3),D(-2,-2).(1)这是一个不规则的四边形,所以要求面积准备采用(填“公式法”或“割补法”或“转化法”);(2)四边形ABCD 的面积为.【参考答案】巩固练习1.B2.D3.C4.四5.y 轴负半轴上;x 轴正半轴上6.四7. -1 或-5,48. 4 或 -4,-29. (-3,3)10. 3,4,511. (-3,4)或(-3,-4)12. (3,2),(-3,-2),(-3,2)13. (0,3 ) 214. (1,2)15. (1,3),(0,0),(5,2)16. 作图略(1)关于y 轴对称;(2)关于x 轴对称17. (1,0)18. ( 2 ,2),(2, 2 )思考小结1.略2.一或三,二或四3. (x-a,y);(x,y-b);(x+b,y+a)4. (1)割补法;(2)#。
点的坐标大题提升训练(重难点训练30题)(原卷版)
专题7.4点的坐标大题提升训练(重难点训练30题)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷试题解答30道,共分成三个层组:基础过关题(第1-10题)、能力提升题(第11-20题)、培优压轴题(第21-30题),每个题组各10题,可以灵活选用.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一.解答题(共30小题)1.(2022春•渑池县期中)已知平面直角坐标系中有一点M(m﹣1,2m+3).(1)点M在二、四象限的角平分线上,求点M的坐标;(2)点M到y轴的距离为1时,求点M的坐标.2.(2022春•陇县期末)已知点P(4﹣m,m﹣1).(1)若点P在x轴上,求m的值;(2)若点P到x轴的距离是到y轴距离的2倍,求P点的坐标.3.(2022秋•庐阳区校级月考)已知点P(2a﹣1,3﹣a),且点P在第二象限.(1)求a的取值范围;(2)若点P到坐标轴的距离相等,求点P的坐标.4.(2022秋•绿园区校级月考)已知点P(a,b)在第二象限,且点P到x轴、y轴的距离分别为4,3,求点P的坐标.5.(2022春•贵州期末)已知点P(8﹣2m,m+1).(1)若点P在y轴上,求m的值.(2)若点P在第一象限,且点P到x轴的距离是到y轴距离的2倍,求P点的坐标.6.(2022春•白河县期末)在平面直角坐标系中,有一点M(a﹣2,2a+6),试求满足下列条件的a值或取值范围.(1)点M在y轴上;(2)点M在第二象限;(3)点M到x轴的距离为2.7.(2022春•河南月考)已知点P(2m﹣1,m+2),试分别根据下列条件,求出点P的坐标.(1)点P的纵坐标比横坐标大5;(2)点P到y轴的距离为3,且在第二象限.8.在平面直角坐标系中,点A的坐标是(3a﹣5,a+1).(1)若点A在y轴上,求a的值及点A的坐标;(2)若点A在第二象限且到x轴的距离与到y轴的距离相等,求a的值及点A的坐标.9.(2022春•冷水滩区校级期中)已知在平面直角坐标系中有一点M(2m﹣1,m﹣3).(1)当点M到y轴的距离为1时,求点M的坐标;(2)当点M到x轴的距离为2时,求点M的坐标.10.(2022秋•长清区期中)(1)若点(2a+3,a﹣3)在第一、三象限的角平分线上,求a的值;(2)已知点P的坐标为(4﹣a,3a+6),且点P到两坐标轴的距离相等,求点P的坐标.11.(2022春•沂南县期中)已知点P(2a﹣3,a+1),请分别根据下列条件,求出点P的坐标.(1)点P在x轴上;(2)点P的纵坐标比横坐标大2.12.(2022春•南昌期中)已知点A(a﹣3,2b+2),以点A为坐标原点建立直角坐标系.(1)求a,b的值;(2)判断点B(2a﹣4,3b﹣1)、点C(﹣a+3,b)所在的位置.13.(2022春•韩城市期末)已知点P(8﹣2m,m﹣1).(1)若点P在x轴上,求m的值.(2)若点P在第一象限,且到两坐标轴的距离相等,求P点的坐标.14.(2021春•平罗县期末)已知:点P(2﹣a,3),且点P到x轴、y轴的距离相等.求:点P的坐标.15.(2020春•临颍县期末)平面直角坐标系中,有一点M(a﹣1,2a+7),试求满足下列条件的a的值.(1)点M在x轴上;(2)点M在第二象限;(3)点M到y轴距离是1.16.(2022春•滦南县期中)已知点P(2a﹣2,a+5),回答下列问题:(1)点P在y轴上,求出点P的坐标.(2)点P在第二象限,且它到x轴,y轴的距离相等,求a2020+2020的值.17.(2022春•周至县期末)若点P(a﹣1,a+1)到x轴的距离是3,且它位于第一象限,求它到y轴的距离.18.(2022春•启东市期末)在平面直角坐标系中,已知:点P(2m+4,m﹣1).(1)分别根据下列条件,求出点P的坐标:①点P在y轴上;②点P的纵坐标比横坐标大3;(2)点P是坐标原点(填“可能”或“不可能”).19.(2021秋•灌南县校级月考)已知点A(1,2a﹣1),点B(﹣a,a﹣3).(1)若点A在第一、三象限角平分线上,求a值.(2)若点B到x轴的距离是到y轴距离的2倍,求点B坐标.20.(2022春•合阳县期末)在平面直角坐标系中,点P的坐标为(1﹣a,2a﹣6),若点P在第三象限,且到x轴的距离为2,求点P的坐标.21.(2021秋•安徽期中)在平面直角坐标系中,点M(a+2b,3a﹣2b)在第四象限,且点M到x轴的距离为1,到y轴的距离为5,试求(a﹣b)2021的值.22.(2021秋•舒城县校级月考)点P坐标为(x,2x﹣4),点P到x轴、y轴的距离分别为d1,d2.(1)当点P在坐标轴上时,求d1+d2的值;(2)当d1+d2=3时,求点P的坐标;(3)点P不可能在哪个象限内?23.(2022秋•景德镇期中)已知点M(3a﹣8,a﹣1),试分别根据下列条件,求出点M的坐标.(1)点M在x轴上;(2)点M在第一、三象限的角平分线上.24.(2021春•长白县期中)在平面直角坐标系中,分别根据下列条件,求出各点的坐标.(1)点A在y轴上,位于原点上方,距离原点2个单位长度;(2)点B在x轴上,位于原点右侧,距离原点1个单位长度;(3)点C在x轴上方,y轴右侧,距离每条坐标轴都是2个单位长度;(4)点D在x轴下方,y轴左侧,距离每条坐标轴都是3个单位长度;(5)点E在x轴下方,y轴右侧,距离x轴2个单位长度,距离y轴4个单位长度.25.(2021春•饶平县校级期末)在平面直角坐标系中,已知点M(m,2m+3).(1)若点M在x轴上,求m的值;(2)若点M在第二象限内,求m的取值范围;(3)若点M在第一、三象限的角平分线上,求m的值.26.(2021秋•漳州期末)在平面直角坐标系xOy中,给出如下定义:点A到x轴、y轴距离的较大值称为点A的“长距”,当点P的“长距”等于点Q的“长距”时,称P,Q两点为“等距点”.(1)求点A(﹣5,2)的“长距”;(2)若C(﹣1,k+3),D(4,4k﹣3)两点为“等距点”,求k的值.27.(2020秋•百色期中)已知点P(4﹣2m,m+3).(1)若点P在y轴上,求m的值.(2)若点P在第一象限,且点P到x轴的距离是到y轴距离的2倍,求P点的坐标.28.(2020秋•泾阳县期中)已知点P(2a﹣2,a+5),若点P在第二象限,且它到x轴、y轴的距离相等,求a2020+2020的值.29.(2020春•崇川区校级期末)在平面直角坐标系xOy中,有点P(a,b),实数a,b,m满足以下两个等式:2a﹣3m+1=0,3b﹣2m﹣16=0.(1)当a=1时,点P到x轴的距离为;(2)若点P落在x轴上,求点P的坐标;(3)当a≤4<b时,求m的最小整数值.30.(2019春•新宾县期中)已知点M(3|a|﹣9,4﹣2a)在y轴的负半轴上.(1)求M点的坐标;(2)求(2﹣a)2019+1的值.。
(人教版)北京七年级数学下册第七单元《平面直角坐标系》提高卷(提高培优)
一、选择题 1.如图是北京市地图简图的一部分,图中“故宫”、“颐和园”所在的区域分别是( )D E F 6颐和园 奥运村 7故宫 日坛 8天坛 A .D7,E6 B .D6,E7 C .E7,D6 D .E6,D7 2.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的坐标分别为(2,1)A -和(2,3)B --,那么第一架轰炸机C 的坐标是( )A .(2,3)-B .(2,1)-C .(2,1)--D .(3,2)- 3.已知点 M 到x 轴的距离为 3,到y 轴的距离为2,且在第四象限内,则点M 的坐标为( )A .(-2,3)B .(2,-3)C .(3,2)D .不能确定 4.若点P(3a+5,-6a-2)在第四象限,且到两坐标轴的距离相等,则a 的值为( ) A .-1 B .79- C .1 D .25.已知点M (9,﹣5)、N (﹣3,﹣5),则直线MN 与x 轴、y 轴的位置关系分别为( )A .相交、相交B .平行、平行C .垂直相交、平行D .平行、垂直相交6.在平面直角坐标系中,点P (−1,23)在( )A .第一象限B .第二象限C .第三象限D .第四象限 7.将点()1,2P 向左平移3个单位后的坐标是( )A .()2,2-B .()1,1-C .()1,5D .()1,1-- 8.如图是医院、公园和超市的平面示意图,超市B 在医院O 的南偏东25︒的方向上,且到医院的距离为300m ,公园A 到医院O 的距离为400m .若∠90AOB =︒,则公园A 在医院O 的( )A .北偏东75︒方向上B .北偏东65︒方向上C .北偏东55︒方向上D .北偏西65°方向上9.如图,在坐标平面内,依次作点()3,1P -关于直线y x =的对称点1P ,1P 关于x 轴对称点2P ,2P 关于y 轴对称点3P ,3P 关于直线y x =对称点4P ,4P 关于x 轴对称点5P ,5P 关于y 轴对称点6P ,…,按照上述变换规律继续作下去,则点2019P 的坐标为( )A .()1,3-B .()1,3C .()3,1-D .()1,3- 10.在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P ′(﹣y +1,x +1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4…,这样依次得到点A 1,A 2,A 3,…,A n ,若点A 1的坐标为(3,1),则点A 2019的坐标为( ) A .(0,﹣2) B .(0,4) C .(3,1) D .(﹣3,1) 11.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)……按这样的运动规律,经过第2021次运动后,动点P 的坐标是( )A .(2021,0)B .(2020,1)C .(2021,1)D .(2021,2) 12.若点(1,)A n -在x 轴上,则点(1,1)B n n +-在( ). A .第一象限 B .第二象限 C .第三象限 D .第四象限 13.若点P (﹣m ,﹣3)在第四象限,则m 满足( )A .m >3B .0<m≤3C .m <0D .m <0或m >3 14.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m 其行走路线如图所示,第1次移动到1A ,第2次移动到2A ,…第n 次移动到n A .则32020OA A △的面积是( )A .2504.5mB .2505mC .2505.5mD .21010m 15.在平面直角坐标系中,点A (0,a ),点B (0,4﹣a ),且A 在B 的下方,点C(1,2),连接AC ,BC ,若在AB ,BC ,AC 所围成区域内(含边界),横坐标和纵坐标都为整数的点的个数为4个,那么a 的取值范围为( )A .﹣1<a ≤0B .0<a ≤1C .1≤a <2D .﹣1≤a ≤1二、填空题16.如图,平面直角坐标系xOy 中,点A(4,3),点B(3,0),点C(5,3),OAB ∆沿AC 方向平移AC 长度的到ECF ∆,四边形ABFC 的面积为_________.17.在平面直角坐标系中,若点(1, 2)M m m -+与点(23, 2)N m m ++之间的距离是5,则m =______.18.到x 轴距离为2,到y 轴距离为3的点的坐标为___________.19.如图,在平面直角坐标系中,对△ABC 进行循环往复的轴对称变换,若原来点A 坐标是(a ,b ),经过第1次变换后所得的1A 坐标是(),-a b ,则经过第2020次变换后所得的点2020A 坐标是_____.20.如图,已知A1(1,0),A2(1,1),A3(﹣1,1),A4(﹣1,﹣1),A5(2,﹣1),…,则坐标为(﹣505,﹣505)的点是______.21.在平面直角坐标系中,点A(2,0)B(0,4),作△BOC,使△BOC和△ABO全等,则点C坐标为________22.如图,在平面直角坐标系中,三角形ABC经过平移后得到三角形A′B′C′,且平移前后三角形的顶点坐标都是整数.若点P(12,﹣15)为三角形ABC内部一点,且与三角形A′B′C′内部的点P′对应,则对应点P′的坐标是_____.23.在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按下图中的规律摆放.点P从原点O出发,以每秒1个单位长度的速度沿着等边三角形的边"OA1→A1A2→A 2A3→A3A4→A4A5…."的路线运动,设第n秒运动到点P n(n为正整数);则点P2021的横坐标为_______24.已知点A (﹣3,2),AB ∥坐标轴,且AB =4,若点B 在x 轴的上方,则点B 坐标为__.25.在平面直角坐标系中,点()3,1A -在第______象限.26.如图,直线BC 经过原点O ,点A 在x 轴上,AD BC ⊥于D .若A (4,0),B (m ,3),C (n ,-5),则AD BC =______.三、解答题27.观察图形回答问题:(1)所给坐标分别代表图中的哪个点?(﹣3,1): ;(1,2): ; (2)图形上的一些点之间具有特殊的位置关系,请按如下要求找出这样的点,并说明所找点的坐标之间有何关系:①连接点 与点 的直线平行于x 轴,这两点的坐标的共同特点是 ; ②连接点 与点 的直线是第一、三象限的角平分线,这两点的坐标的共同特点是 .28.画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸内将ABC 经过一次平移后得到A B C ''',图中标出了点B 的对应点B '.''';(1)在给定方格纸中画出平移后的A B C(2)画出AB边上的中线CD和BC边上的高线AE;''的面积是多少?(3)求A B C29.如图,在平面直角坐标系中,点A(0,12),点B(m,12),且B到原点O的距离OB=20,动点P从原点O出发,沿路线O→A→B运动到点B停止,速度为每秒5个单位长度,同时,点Q从点B出发沿路线B→A→O运动到原点O停止,速度为每秒2个单位长度.设运动时间为t.(1)求出P、Q相遇时点P的坐标.(2)当P运动到AB边上时,连接OP、OQ,若△OPQ的面积为6,求t的值.30.三角形ABC(记作△ABC)在8×8方格中,位置如图所示,A(-3,1),B(-2,4).(1)请你在方格中建立直角坐标系,并写出C点的坐标;(2)把△ABC向下平移1个单位长度,再向右平移2个单位长度,请你画出平移后的△A1B1C1,若△ABC内部一点P的坐标为(a,b),则点P的对应点P1的坐标是.(3)在x轴上存在一点D,使△DB1C1的面积等于3,求满足条件的点D的坐标.。
2024年初一平面直角坐标系所有知识点总结和常考题提高难题压轴题练习含答案解析
初一平面直角坐标系所有知识点总结和常考题提升难题压轴题练习(含答案解析)知识点:1、对应关系:平面直角坐标系内的点与有序实数对一一对应。
2、平面内两条相互垂直、原点重叠组成的数轴组成平面直角坐标系。
水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴为y轴或纵轴,取向上 为正方向;两个坐标轴的交点为平面直角坐标系的原点。
坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标。
象限:两条坐标轴把平面提成四个部分,右上部分叫第一象限,按逆时针方向一次叫第二象限、第三象限、第四象限。
坐标轴上的点不在任何一个象限内3、三大规律(1)平移规律:点的平移规律 左右平移→纵坐标不变,横坐标左减右加;上下平移→横坐标不变,纵坐标上加下减。
图形的平移规律找特殊点(2)对称规律有关x轴对称→横坐标不变,纵坐标互为相反数; 有关y轴对称→横坐标互为相反数,纵坐标不变;有关原点对称→横纵坐标都互为相反数。
第三象限第四象限 (—,—) (+,—) 特性坐标:x轴上→纵坐标为0;y轴上→横坐标为0;第一、三象限夹角平分线上→横纵坐标相等;常考题:一.选择题(共15小题)1.点P在第二象限内,P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为( )A.(﹣4,3)B.(﹣3,﹣4)ﻩC.(﹣3,4) D.(3,﹣4)2.如图,小手盖住的点的坐标也许为( )A.(5,2)ﻩB.(﹣6,3)ﻩC.(﹣4,﹣6) D.(3,﹣4)3.如图,已知棋子“车”的坐标为(﹣2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为( )A.(3,2)ﻩB.(3,1)C.(2,2)ﻩD.(﹣2,2)4.在平面直角坐标系中,点(﹣1,m2+1)一定在( )A.第一象限ﻩB.第二象限ﻩC.第三象限ﻩD.第四象限5.线段CD是由线段AB平移得到的.点A(﹣1,4)的对应点为C(4,7),则点B(﹣4,﹣1)的对应点D的坐标为()A.(2,9)B.(5,3)ﻩC.(1,2)D.(﹣9,﹣4)6.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为( )A.2B.3ﻩC.4D.57.点P(﹣2,﹣3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为( )A.(﹣3,0)ﻩB.(﹣1,6)ﻩC.(﹣3,﹣6)ﻩD.(﹣1,0)8.假如点P(m+3,m+1)在直角坐标系的x轴上,P点坐标为( )A.(0,2)B.(2,0)C.(4,0)ﻩD.(0,﹣4)9.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,假如我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置能够表示成( )A.(5,4)ﻩB.(4,5)ﻩC.(3,4)ﻩD.(4,3)10.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(﹣3,2)重叠,则点A的坐标是( )A.(2,5)ﻩB.(﹣8,5)ﻩC.(﹣8,﹣1)ﻩD.(2,﹣1)11.在平面直角坐标系中,若点P(m﹣3,m+1)在第二象限,则m的取值范围为( )A.﹣1<m<3B.m>3ﻩC.m<﹣1ﻩD.m>﹣112.若点A(a+1,b﹣2)在第二象限,则点B(﹣a,b+1)在( )A.第一象限B.第二象限ﻩC.第三象限ﻩD.第四象限13.在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是()A.(66,34)ﻩB.(67,33)ﻩC.(100,33)ﻩD.(99,34)14.小明的家,学校和书店依次坐落在一条南北方向的大街上,学校在家南边20米,书店在家北边100米,小明从家出来向北走了50米,又向北走了﹣70米,此时,小明的位置在( )A.家B.学校ﻩC.书店ﻩD.不在上述地方15.如图为小杰使用手机内的通讯软件跟小智对话的纪录.依照图中两人的对话纪录,若下列有一个走法能从邮局出发走到小杰家,则此走法为何?( )A.向北直走700公尺,再向西直走100公尺B.向北直走100公尺,再向东直走700公尺C.向北直走300公尺,再向西直走400公尺D.向北直走400公尺,再向东直走300公尺二.填空题(共10小题)16.在平面直角坐标系中,对于平面内任一点(m,n),要求如下两种变换:(1)f(m,n)=(m,﹣n),如f(2,1)=(2,﹣1);(2)g(m,n)=(﹣m,﹣n),如g(2,1)=(﹣2,﹣1)按照以上变换有:f[g(3,4)]=f(﹣3,﹣4)=(﹣3,4),那么g[f(﹣3,2)]= .17.已知点M(3,﹣2),将它先向左平移4个单位,再向上平移3个单位后得到点N,则点N的坐标是 .18.如图,把“QQ”笑脸放在直角坐标系中,已知左眼A的坐标是(﹣2,3),嘴唇C点的坐标为(﹣1,1),则将此“QQ”笑脸向右平移3个单位后,右眼B的坐标是 .19.若第二象限内的点P(x,y)满足|x|=3,y2=25,则点P的坐标是 . 20.如图的围棋盘放在某个平面直角坐标系内,白棋②的坐标为(﹣7,﹣4),白棋④的坐标为(﹣6,﹣8),那么黑棋①的坐标应当是 .21.如图,将平面直角坐标系中“鱼”的每个“顶点”的纵坐标保持不变,横坐标分别变为本来的,那么点A的对应点A′的坐标是 .22.如图,这是台州市地图的一部分,分别以正东、正北方向为x轴、y轴的正方向建立直角坐标系,要求一个单位长度表示1km,甲、乙两人对着地图如下描述路桥区A 处的位置.则椒江区B处的坐标是.23.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不停地移动,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n为自然数)的坐标为 (用n表示).24.一个质点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动,即(0,0)→(0,1)→(1,1)→(1,0)→…,且每秒移动一个单位,那么第35秒时质点所在位置的坐标是.25.如图,在平面直角坐标系中,有若干个整数点,其次序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)(4,0)依照这个规律探索可得,第100个点的坐标为 .三.解答题(共15小题)26.如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).(1)写出点A、B的坐标:A( , )、B( , )(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′的三个顶点坐标分别是A′( , )、B′( , )、C′(, ).(3)△ABC的面积为 .27.王霞和爸爸、妈妈到人民公园游玩,回到家后,她利用平面直角坐标系画出了公园的景区地图,如图所示.可是她忘掉了在图中标出原点和x轴、y轴.只懂得游乐园D 的坐标为(2,﹣2),你能帮她求出其他各景点的坐标吗?28.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其他甲虫,要求:向上向右走为正,向下向左走为负.假如从A到B记为:A→B(+1,+3),从B到A记为:A→B(﹣1,﹣3),其中第一个数表示左右方向,第二个数表示上下方向,那么图中(1)A→C( ,),B→D( , ),C→ (+1, );(2)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的旅程;(3)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置.29.如图所示的直角坐标系中,四边形ABCD各顶点的坐标分别为A(0,0)、B(9,0)、C(7,5)、D(2,7).求四边形ABCD的面积.30.小明的爷爷退休生活可丰富了!下表是他某日的活动安排.和平广场位于爷爷家东400米,老年大学位于爷爷家西600米.从爷爷家到和平路小学需先向南走300米,再向西走400米. 上午6:00﹣7:00与奶奶一起到和平广场锻炼与奶奶一起上老年大学 上午9:00﹣11:00下午4:30﹣5:30到和平路小学讲校史(1)请依据图示中给定的单位长度,在图中标出和平广场A、老年大学B与和平路小学的位置;(2)求爷爷家到和平路小学的直线距离.31.已知点A(﹣1,﹣2),点B(1,4)(1)试建立对应的平面直角坐标系;(2)描出线段AB的中点C,并写出其坐标;(3)将线段AB沿水平方向向右平移3个单位长度得到线段A1B1,写出线段A1B1两个端点及线段中点C1的坐标.32.在平面直角坐标系中,点M的坐标为(a,﹣2a).(1)当a=﹣1时,点M在坐标系的第 象限;(直接填写答案)(2)将点M向左平移2个单位,再向上平移1个单位后得到点N,当点N在第三象限时,求a的取值范围.33.已知:A(0,1),B(2,0),C(4,3)(1)求△ABC的面积;(2)设点P在坐标轴上,且△ABP与△ABC的面积相等,求点P的坐标.34.如图,在下面直角坐标系中,已知A(0,a),B(b,0),C(b,c)三点,其中a、b、c满足关系式|a﹣2|+(b﹣3)2=0,(c﹣4)2≤0(1)求a、b、c的值;(2)假如在第二象限内有一点P(m,),请用含m的式子表示四边形ABOP的面积;(3)在(2)的条件下,是否存在点P,使四边形ABOP的面积与△ABC的面积相等?若存在,求出点P的坐标,若不存在,请阐明理由.35.如图,已知A(﹣2,3)、B(4,3)、C(﹣1,﹣3)(1)求点C到x轴的距离;(2)求△ABC的面积;(3)点P在y轴上,当△ABP的面积为6时,请直接写出点P的坐标.36.有趣玩一玩:中国象棋中的马颇有骑士风度,自古有“马踏八方”之说,如图,按中国象棋中“马”的行棋规则,图中的马下一步有A、B、C、D、E、F、G、H八种不一样选择,它的走法就象一步从“日”字形长方形的对角线的一个端点到另一个端点,不能多也不能少.要将图中的马走到指定的位置P处,即从(四,6)走到(六,4),现提供一个走法:(四,6)→(六,5)→(四,4)→(五,2)→(六,4)(1)下面是提供的另一走法,请你填上其中所缺的一步:(四,6)→(五,8)→(七,7)→ →(六,4)(2)请你再给出另一个走法(只要与前面的两种走法不完全相同即可,步数不限),你的走法是: .你还能再写出一个走法吗.37.如图,在直角坐标系中,四边形ABCD各个顶点的坐标分别是A(﹣2,﹣3)、B(5,﹣2)、C(2,4)、D(﹣2,2),求这个四边形的面积.38.如图,在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD.(1)求点C,D的坐标及四边形ABDC的面积S四边形ABDC;(2)在y轴上是否存在一点P,连接PA,PB,使S△PAB=S四边形ABDC?若存在这么一点,求出点P的坐标;若不存在,试阐明理由.39.如图,长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(4,0),C点的坐标为(0,6),点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣A﹣B﹣C﹣O的路线移动(即:沿着长方形移动一周).(1)写出点B的坐标( ).(2)当点P移动了4秒时,描出此时P点的位置,并求出点P的坐标.(3)在移动过程中,当点P到x轴距离为5个单位长度时,求点P移动的时间.40.先阅读下列一段文字,在回答背面的问题.已知在平面内两点P1(x1,y1)、P2(x2,y2),其两点间的距离公式,同时,当两点所在的直线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为|x2﹣x1|或|y2﹣y1|.(1)已知A(2,4)、B(﹣3,﹣8),试求A、B两点间的距离;(2)已知A、B在平行于y轴的直线上,点A的纵坐标为5,点B的纵坐标为﹣1,试求A、B两点间的距离.(3)已知一个三角形各顶点坐标为A(0,6)、B(﹣3,2)、C(3,2),你能判定此三角形的形状吗?阐明理由.初一平面直角坐标系所有知识点总结和常考题提升难题压轴题练习(含答案解析)参考答案与试题解析一.选择题(共15小题)1.(•舟山)点P在第二象限内,P到x轴的距离是4,到y轴的距离是3,那么点P 的坐标为( )A.(﹣4,3)ﻩB.(﹣3,﹣4)ﻩC.(﹣3,4)ﻩD.(3,﹣4)【分析】先依照P在第二象限内判断出点P横纵坐标的符号,再依照点到坐标轴距离的意义即可求出点P的坐标.【解答】解:∵点P在第二象限内,∴点的横坐标<0,纵坐标>0,又∵P到x轴的距离是4,即纵坐标是4,到y轴的距离是3,横坐标是﹣3,∴点P的坐标为(﹣3,4).故选:C.【点评】解答此题的核心是熟记平面直角坐标系中各个象限内点的坐标符号,及点的坐标的几何意义.2.(•长春)如图,小手盖住的点的坐标也许为( )A.(5,2)B.(﹣6,3) C.(﹣4,﹣6)D.(3,﹣4)【分析】依照题意,小手盖住的点在第四象限,结合第四象限点的坐标特点,分析选项可得答案.【解答】解:依照图示,小手盖住的点在第四象限,第四象限的点坐标特点是:横正纵负;分析选项可得只有D符合.故选D.【点评】处理本题处理的核心是记住各象限内点的坐标的符号,进而对号入座,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.(•盐城)如图,已知棋子“车”的坐标为(﹣2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为( )A.(3,2)ﻩB.(3,1)ﻩC.(2,2)ﻩD.(﹣2,2)【分析】依照已知两点的坐标确定符合条件的平面直角坐标系,然后确定其他点的坐标.【解答】解:由棋子“车”的坐标为(﹣2,3)、棋子“马”的坐标为(1,3)可知,平面直角坐标系的原点为底边正中间的点,以底边为x轴,向右为正方向,以左右正中间的线为y轴,向上为正方向;依照得出的坐标系可知,棋子“炮”的坐标为(3,2).故选:A.【点评】此题考查了点的坐标处理实际问题的能力和阅读了解能力,处理此类问题需要先确定原点的位置,再求未知点的位置.或者直接利用坐标系中的移动法则“右加左减,上加下减”来确定坐标.4.(•江西)在平面直角坐标系中,点(﹣1,m2+1)一定在( )A.第一象限ﻩB.第二象限ﻩC.第三象限D.第四象限【分析】应先判断出点的横纵坐标的符号,进而判断点所在的象限.【解答】解:因为点(﹣1,m2+1),横坐标<0,纵坐标m2+1一定不小于0,因此满足点在第二象限的条件.故选B.【点评】处理本题的核心是记住平面直角坐标系中各个象限内点的符号,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).5.(春•潮阳区期末)线段CD是由线段AB平移得到的.点A(﹣1,4)的对应点为C (4,7),则点B(﹣4,﹣1)的对应点D的坐标为( )A.(2,9)ﻩB.(5,3)C.(1,2)ﻩD.(﹣9,﹣4)【分析】直接利用平移中点的变化规律求解即可.【解答】解:平移中,对应点的对应坐标的差相等,设D的坐标为(x,y);依照题意:有4﹣(﹣1)=x﹣(﹣4);7﹣4=y﹣(﹣1),解可得:x=1,y=2;故D的坐标为(1,2).故选:C.【点评】本题考查点坐标的平移变换,核心是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变.平移中,对应点的对应坐标的差相等.6.(•菏泽)如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为( )A.2B.3ﻩC.4D.5【分析】直接利用平移中点的变化规律求解即可.【解答】解:由B点平移前后的纵坐标分别为1、2,可得B点向上平移了1个单位,由A点平移前后的横坐标分别是为2、3,可得A点向右平移了1个单位,由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位,因此点A、B均按此规律平移,由此可得a=0+1=1,b=0+1=1,故a+b=2.故选:A.【点评】本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.7.(•安顺)点P(﹣2,﹣3)向左平移1个单位,再向上平移3个单位,则所得到的点的坐标为( )A.(﹣3,0)B.(﹣1,6)C.(﹣3,﹣6)ﻩD.(﹣1,0)【分析】依照平移时,坐标的变化规律“上加下减,左减右加”进行计算.【解答】解:依照题意,得点P(﹣2,﹣3)向左平移1个单位,再向上平移3个单位,所得点的横坐标是﹣2﹣1=﹣3,纵坐标是﹣3+3=0,即新点的坐标为(﹣3,0).故选A.【点评】此题考查了平移时,点的坐标变化规律:横坐标右移加,左移减;纵坐标上移加,下移减.8.(秋•平川区期末)假如点P(m+3,m+1)在直角坐标系的x轴上,P点坐标为( )A.(0,2)B.(2,0)C.(4,0)ﻩD.(0,﹣4)【分析】因为点P(m+3,m+1)在直角坐标系的x轴上,那么其纵坐标是0,即m+1=0,m=﹣1,进而可求得点P的横纵坐标.【解答】解:∵点P(m+3,m+1)在直角坐标系的x轴上,∴m+1=0,∴m=﹣1,把m=﹣1代入横坐标得:m+3=2.则P点坐标为(2,0).故选B.【点评】本题重要考查了点在x轴上时纵坐标为0的特点,比较简单.9.(春•和县期末)课间操时,小华、小军、小刚的位置如图1,小华对小刚说,假如我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置能够表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)【分析】依照已知两点的坐标确定平面直角坐标系,然后确定其他各点的坐标.【解答】解:假如小华的位置用(0,0)表示,小军的位置用(2,1)表示,如图所示就是以小华为原点的平面直角坐标系的第一象限,因此小刚的位置为(4,3).故选D.【点评】本题利用平面直角坐标系表示点的位置,是学数学在生活中用的例子.10.(•钦州)在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(﹣3,2)重叠,则点A的坐标是( )A.(2,5)B.(﹣8,5) C.(﹣8,﹣1)D.(2,﹣1)【分析】逆向思考,把点(﹣3,2)先向右平移5个单位,再向下平移3个单位后可得到A点坐标.【解答】解:在坐标系中,点(﹣3,2)先向右平移5个单位得(2,2),再把(2,2)向下平移3个单位后的坐标为(2,﹣1),则A点的坐标为(2,﹣1).故选:D.【点评】本题考查了坐标与图形变化﹣平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,对应的新图形就是把原图形向右(或向左)平移a个单位长度;假如把它各个点的纵坐标都加(或减去)一个整数a,对应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.11.(•菏泽)在平面直角坐标系中,若点P(m﹣3,m+1)在第二象限,则m的取值范围为( )A.﹣1<m<3ﻩB.m>3ﻩC.m<﹣1 D.m>﹣1【分析】依照点P(m﹣3,m+1)在第二象限及第二象限内点的符号特点,可得一个有关m的不等式组,解之即可得m的取值范围.【解答】解:∵点P(m﹣3,m+1)在第二象限,∴可得到,解得m的取值范围为﹣1<m<3.故选A.【点评】处理本题的核心是记住平面直角坐标系中各个象限内点的符号以及不等式组的解法,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).12.(•威海)若点A(a+1,b﹣2)在第二象限,则点B(﹣a,b+1)在( )A.第一象限ﻩB.第二象限 C.第三象限ﻩD.第四象限【分析】依照第二象限内的点的横坐标小于零,纵坐标不小于零,可得有关a、b的不等式,再依照不等式的性质,可得B点的坐标符号.【解答】解:由A(a+1,b﹣2)在第二象限,得a+1<0,b﹣2>0.解得a<﹣1,b>2.由不等式的性质,得﹣a>1,b+1>3,点B(﹣a,b+1)在第一象限,故选:A.【点评】本题考查了点的坐标,利用第二象限内点的横坐标小于零,纵坐标不小于零得出不等式,又利用不等式的性质得出B点的坐标符号是解题核心.13.(•株洲)在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是( )A.(66,34)ﻩB.(67,33)C.(100,33)D.(99,34)【分析】依照走法,每3步为一个循环组依次循环,且一个循环组内向右3个单位,向上1个单位,用100除以3,然后依照商和余数的情况确定出所处位置的横坐标与纵坐标即可.【解答】解:由题意得,每3步为一个循环组依次循环,且一个循环组内向右3个单位,向上1个单位,∵100÷3=33余1,∴走完第100步,为第34个循环组的第1步,所处位置的横坐标为33×3+1=100,纵坐标为33×1=33,∴棋子所处位置的坐标是(100,33).故选:C.【点评】本题考查了坐标确定位置,点的坐标位置的规律变化,读懂题目信息并了解每3步为一个循环组依次循环是解题的核心.14.(秋•杭州期末)小明的家,学校和书店依次坐落在一条南北方向的大街上,学校在家南边20米,书店在家北边100米,小明从家出来向北走了50米,又向北走了﹣70米,此时,小明的位置在( )A.家B.学校C.书店D.不在上述地方【分析】以家为坐标原点建立坐标系,依照题意即可确定小明的位置.【解答】解:依照题意:小明从家出来向北走了50米,又向北走了﹣70米,即向南走了20米,而学校在家南边20米.故此时,小明的位置在学校.故选B.【点评】本题考查了类比点的坐标及学生的处理实际问题的能力和阅读了解能力,画出平面示意图能直观地得到答案.15.(•台湾)如图为小杰使用手机内的通讯软件跟小智对话的纪录.依照图中两人的对话纪录,若下列有一个走法能从邮局出发走到小杰家,则此走法为何?( )A.向北直走700公尺,再向西直走100公尺B.向北直走100公尺,再向东直走700公尺C.向北直走300公尺,再向西直走400公尺D.向北直走400公尺,再向东直走300公尺【分析】依照题意先画出图形,可得出AE=400,AB=CD=300,再得出DE=100,即可得出邮局出发走到小杰家的途径为:向北直走AB+AE=700,再向西直走DE=100公尺.【解答】解:依题意,OA=OC=400=AE,AB=CD=300,DE=400﹣300=100,因此邮局出发走到小杰家的途径为,向北直走AB+AE=700,再向西直走DE=100公尺.故选:A.【点评】本题考查了坐标确定位置,依照题意画出图形是解题的核心.二.填空题(共10小题)16.(•黔西南州)在平面直角坐标系中,对于平面内任一点(m,n),要求如下两种变换:(1)f(m,n)=(m,﹣n),如f(2,1)=(2,﹣1);(2)g(m,n)=(﹣m,﹣n),如g(2,1)=(﹣2,﹣1)按照以上变换有:f[g(3,4)]=f(﹣3,﹣4)=(﹣3,4),那么g[f(﹣3,2)]= (3,2).【分析】由题意应先进行f方式的运算,再进行g方式的运算,注意运算次序及坐标的符号变化.【解答】解:∵f(﹣3,2)=(﹣3,﹣2),∴g[f(﹣3,2)]=g(﹣3,﹣2)=(3,2),故答案为:(3,2).【点评】本题考查了一个新型的运算法则,考查了学生的阅读了解能力,此类题的难点是判断先进行哪个运算,核心是明白两种运算变化了哪个坐标的符号.17.(•天水)已知点M(3,﹣2),将它先向左平移4个单位,再向上平移3个单位后得到点N,则点N的坐标是 (﹣1,1) .【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【解答】解:本来点的横坐标是3,纵坐标是﹣2,向左平移4个单位,再向上平移3个单位得到新点的横坐标是3﹣4=﹣1,纵坐标为﹣2+3=1.则点N的坐标是(﹣1,1).故答案填:(﹣1,1).【点评】解题核心是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变,平移变换是中考的常考点,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.18.(•绵阳)如图,把“QQ”笑脸放在直角坐标系中,已知左眼A的坐标是(﹣2,3),嘴唇C点的坐标为(﹣1,1),则将此“QQ”笑脸向右平移3个单位后,右眼B的坐标是(3,3) .【分析】先确定右眼B的坐标,然后依照向右平移几个单位,这个点的横坐标加上几个单位,纵坐标不变,由此可得出答案.【解答】解:∵左眼A的坐标是(﹣2,3),嘴唇C点的坐标为(﹣1,1),∴右眼的坐标为(0,3),向右平移3个单位后右眼B的坐标为(3,3).故答案为:(3,3).【点评】本题考查了平移变换的知识,注意左右平移纵坐标不变,上下平移横坐标不变.19.(•广元)若第二象限内的点P(x,y)满足|x|=3,y2=25,则点P的坐标是 (﹣3,5) .【分析】依照绝对值的意义和平方根得到x=±5,y=±2,再依照第二象限的点的坐标特点得到x<0,y>0,于是x=﹣5,y=2,然后可直接写出P点坐标.【解答】解:∵|x|=3,y2=25,∴x=±3,y=±5,∵第二象限内的点P(x,y),∴x<0,y>0,∴x=﹣3,y=5,∴点P的坐标为(﹣3,5),故答案为:(﹣3,5).【点评】本题考查了各象限内点的坐标的符号特性以及解不等式,记住各象限内点的坐标的符号是处理的核心,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).20.(•杭州)如图的围棋盘放在某个平面直角坐标系内,白棋②的坐标为(﹣7,﹣4),白棋④的坐标为(﹣6,﹣8),那么黑棋①的坐标应当是 (﹣3,﹣7) .【分析】依照已知两点的坐标建立坐标系,然后确定其他点的坐标.【解答】解:由白棋②的坐标为(﹣7,﹣4),白棋④的坐标为(﹣6,﹣8)得出:棋盘的y轴是右侧第一条线,横坐标从右向左依次为﹣1,﹣2,﹣3,…;纵坐标是以上边第一条线为﹣1,向下依次为﹣2,﹣3,﹣4,….∴黑棋①的坐标应当是(﹣3,﹣7).故答案为:(﹣3,﹣7).【点评】考查类比点的坐标处理实际问题的能力和阅读了解能力.依照已知条件建立坐标系是核心,或者直接利用坐标系中的移动法则右加左减,上加下减来确定坐标.21.(•青岛)如图,将平面直角坐标系中“鱼”的每个“顶点”的纵坐标保持不变,横坐标分别变为本来的,那么点A的对应点A′的坐标是 (2,3) .【分析】先写出点A的坐标为(6,3),横坐标保持不变,纵坐标分别变为本来的,即可判断出答案.【解答】解:点A变化前的坐标为(6,3),将横坐标保持不变,纵坐标分别变为本来的,则点A的对应点的坐标是(2,3),故答案为(2,3).【点评】此题考查了坐标与图形性质的知识,依照图形得到点A的坐标是解答本题的核心.22.(•台州)如图,这是台州市地图的一部分,分别以正东、正北方向为x轴、y轴的正方向建立直角坐标系,要求一个单位长度表示1km,甲、乙两人对着地图如下描述路桥区A处的位置.则椒江区B处的坐标是 (10,8).【分析】依照A点坐标,可建立平面直角坐标系,依照直角三角形的性质,可得AC的长,依照勾股定理,BC的长.【解答】解:如图:连接AB,作BC⊥x轴于C点,由题意,得AB=16,∠ABC=30°,AC=8,BC=8.OC=OA+AC=10,B(10,8).【点评】本题考查了坐标确定位置,利用A点坐标建立平面直角坐标系是解题核心,利用了直角三角形的性质:30°的角所正确直角边是斜边的二分之一.23.(•聊城)如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不停地移动,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n为自然数)的坐标为 (2n,1) (用n表示).【分析】依照图形分别求出n=1、2、3时对应的点A4n+1的坐标,然后依照变化规律写出即可.【解答】解:由图可知,n=1时,4×1+1=5,点A5(2,1),。
平面直角坐标系练习题3套带答案
6.1.1 有序数对(1)一、选择题:(每小题3分,共12分)1.如图1所示,一方队正沿箭头所指的方向前进,A 的位置为三列四行,表示为(3,4),那么B 的位置是 ( )A.(4,5);B.(5,4);C.(4,2);D.(4,3)2.如图1所示,B 左侧第二个人的位置是 ( )A.(2,5);B.(5,2);C.(2,2);D.(5,5) 3.如图1所示,如果队伍向西前进,那么A 北侧第二个人的位置是 ( ) A.(4,1); B.(1,4); C.(1,3); D.(3,1) 4.如图1所示,(4,3)表示的位置是 ( )A.AB.BC.CD.D二、填空题:(每小题4分,共12分)1.如图2所示,进行“找宝”游戏,如果宝藏藏在(3,3)字母牌的下面, 那么应该在字母______的下面寻找.(2)A B C D E F G H I J K L M N O P Q R S T U V W X Y2.如图3所示,如果点A 的位置为(3,2),那么点B 的位置为______, 点C 的位置为______,点D 和点E 的位置分别为______,_______.3.A 的位置为(1,2),那么点B 的位置为___,点C 的位置为______. 分) ,(2,4)与(4,2)表示的位置相同吗? 分) (2,6),小明从A 出发,经(2,5)→(3,5)→(4,5)→(4,4)→(5,4)→(6,4),小?五、探索发现:(共15分)如图所示,从2街4巷到4街2巷,走最短的路线,共有几种走法?(街)(巷)23541145326.1.2 平面直角坐标系(2)一、选择题:(每小题3分,共12分) 1.如图1所示,点A 的坐标是 ( )A.(3,2);B.(3,3);C.(3,-3);D.(-3,-3)2.如图1所示,横坐标和纵坐标都是负数的点是 ( ) A.A 点 B.B 点 C.C 点 D.D 点3.如图1所示,坐标是(-2,2)的点是 ( ) A.点A B.点B C.点C D.点D4.若点M 的坐标是(a,b),且a>0,b<0,则点M 在( ) A.第一象限;B.第二象限;C.第三象限;D.第四象限 二、填空题:(每小题3分,共15分)1.如图2所示,点A 的坐标为____,点A 关于x 轴的对称点B 的坐标为____, 点B 关于y 轴的对称点C 的坐标为______.2.在坐标平面内,已知点A(4,-6),那么点A 关于x 轴的对称点A ′的坐标为___,点A 关于y 轴的对称点A″的坐标为___.3.在坐标平面内,已知点A(a,b),那么点A 关于x 轴的对称点A ′的坐标为______,点A 关于y 轴的对称点A″的坐标为_____.4.点A(-3,2)在第______象限,点D(-3,-2)在第_______象限,点C( 3, 2) 在第____象限,点D(-3,-2)在第____象限,点E(0,2)在____轴上, 点F( 2, 0) 在_____轴上.5.已知点M(a,b),当a>0,b>0时,M 在第_______象限;当a____,b______时,M 在第二象限;当a_____,b_______时,M 在第四象限;当a<0,b<0时,M 在第______象限. 三、基础训练:(共12分)如果点A 的坐标为(a 2+1,-1-b 2),那么点A 在第几象限?为什么?四、提高训练:(共15分)如果点A(t-3s,2t+2s),B(14-2t+s,3t+2s-2)关于x 轴对称,求s,t 的值.五、探索发现:(共15分)如图所示,C,D 两点的横坐标分别为2,3,线段CD=1;B,D 两点的横坐标分别为-2,3,线段BD=5;A,B 两点的横坐标分别为-3,-2,线段AB=1.(1)如果x 轴上有两点M(x 1,0),N(x 2,0)(x 1<x 2),那么线段MN 的长为多少? (2)如果y 轴上有两点P(0,y 1),Q(0,y 2)(y1<y 2),那么线段PQ 的长为多少?六、 如果│3x -13y+16│+│x+3y -2│=0,那么点P(x,y)在第几象限?点Q(x+1,y-1)在坐标平面内的什么位置? (1)D C B A 五行三行六行二行六列五列四列三列二列一行一列(4)(1)答案:一、1.A 2.A 3.B 4.C二、1.M 2.(0,1) (1,3) (2,5) (2,1) 3.(0,1) (-1,0)三、解:不相同,如图所示,(2,4)表示A的位置,而(4,2)则表示B的位置.四、3个格.五、解:如图所示的是最短路线的6种走法.(3)(2)(1)(6)(5)(4)六、解:可利用角度和距离,如图所示,画一条水平的射线OA,则点B 的位置可以表示为(45,3),因此平面内不同的点可以用这样的有序数对进行表示.七、解:如图所示.(2)答案:一、1.B 2.C 3.D 4.D二、1.(-1,2) (-1,-2) (1,-2)2. (4,6) (-4,-6)3.(a,-b) (-a,b)4. 二四一三 y x5.一 <0 >0 >0 <0 三三、解:∵a2+1>0,-1-b2<0,∴点A在第四象限.四、解:∵关于x轴对称的两个点的横坐标相等,纵坐标互为相反数,∴3142223220t s t st s t s-=-+⎧⎨+++-=⎩即3414542t st s-=⎧⎨+=⎩,两式相加得8t=16,t=2.3×2-4s=14,s=-2.五、(1)MN=x2-x1 (2)PQ=y2-y1六、解:根据题意可得3x-13y+16=0,x+3y-2=0,由第2个方程可得x=2-3y,∴第1个方程化为3(2-3y)-13y+16=0,解得y=1,x=2-3y=-1,∴点P(x,y),即P(-1,1) 在第二象限,Q(x+1,y-1),即Q(0,0)在原点上.七、提示: 马能走遍棋盘中的任何一个位置,只需说明马能走到相邻的一个格点即可.第6章平面直角坐标系综合练习题(2)一、选择题1,点P (m +3,m +1)在直角坐标系的x 轴上,则P 点坐标为( )A.(0,-2)B.(2,0)C.(0,2)D.(0,-4)2,在直角坐标系xOy 中,已知A (2,-2),在y 轴上确定点P ,使△AOP 为等腰三角形,则符合条件的点P 共有( )A.2个B.3个C.4个D.5个3,如图1所示的象棋盘上,若帅位于点(1,-2)上,相位于点(3,-2)上,则炮位于点( )A.(-1,1)B.(-1,2)C.(-2,1)D.(-2,2)4,在平面直角坐标系中,若点()13-+,m m P在第四象限,则m 的取值范围为( )A 、-3<m <1B 、m >1C 、m <-3D 、m >-35,已知坐标平面内三点A (5,4),B (2,4),C (4,2),那么△ABC 的面积为( ) A.3 B.5 C.6 D.76,小明家的坐标为(1,2),小丽家的坐标为(-2,-1),则小明家在小丽家的( )A.东南方向B.东北方向C.西南方向D.西北方向7、已知如图2中方格纸中的每个小方格是边长为1的正方形,A 、B 两点在小方格的顶点上,位置分别用(2,2)、(4,3)来表示,请在小方格的顶点上确定一 点C ,连结AB ,AC ,BC ,使△ABC 的面积为2平方单位.则点C 的位置可能为( )A.(4,4)B.(4,2)C.(2,4)D.(3,2)8,如图3,若△ABC 中任意一点P (x 0,y 0)经平移后对应点为P 1(x 0+5,y 0-3)那么将△ABC 作同榉的平移得到△A 1B 1C 1,则点A 的对应点A 1的坐标是( )A.(4,1)B.(9,一4)C.(一6,7)D.(一1,2)9,已知点A (2,0)、点B (-12,0)、点C (0,1),以A 、B 、C 三点为顶点画平行四边形.则第四个顶点不可能在( )A.第一象限B.第二象限C.第三象限D.第四象限10,已知点A (0,-1),M (1,2),N (-3,0),则射线AM 和射线AN 组成的角的度数( )A.一定大于90°B.一定小于90°C.一定等于90°D.以上三种情况都有可能 二、填空题11,已知点M (a ,b ),且a ·b >0,a +b <0,则点M 在第___象限.12,如图4所示,从2街4巷到4街2巷,走最短的路线的走法共有___种.13,如图5所示,进行“找宝”游戏,如果宝藏藏在(4,5)字母牌的下面,那么应该在字母___的下面寻找.14,点P (a ,b )与点Q (a ,-b )关于___轴对称;点M (a ,b )和点N (-a ,b ) 关于___轴对称. 15,△ABC 中,A (-4,-2),B (-1,-3),C (-2,-1),将△ABC 先向右平移4个单位长度,再向上平移3个单位长度,则对应点A ′、B ′、C ′的坐标分别为___、___、___. 16,已知点M (-4,2),将坐标系先向下平移3个单位长度,再向左平移3个单位长度,则点M 在新坐标系内的坐标为___.17,在一座共8层的商业大厦中,每层的摊位布局基本相同.小明的父亲在6楼的位置如图3所示,其位置可以表示为(6,2,3).若小明的母亲在5楼,其摊位也可以用如图6表示,则小明的母亲的摊位的位置可以表示为___.18,观察图象,与如图7中的鱼相比,图5中的鱼发生了一些变化.若图7中鱼上点P 的坐标为(4,3.2),则这个点在如图8中的对应点P 1的坐标为___(图中的方格是1×1).19,长方形ABCD 中,A 、B 、C 三点的坐标分别是A (6,4),B (0,4),C (0,0)则D 点的坐标是 .图4 (街)(巷)2354114532Px图7y 图8xyP 1图5(2)A B C D E F G H I J K L M N O P Q R S TU V W X Y小明父小明母图60 1 2 3 4432 1图3相帅炮图1图3图2图920,如图9在一个规格为4×8的球台上,有两个小球P 和Q ,设小球P 的位置用(1,3)表示,小球Q 的位置用(7,2)表示,若击打小球P 经过球台的边AB 上的点O 反弹后,恰好击中小球Q ,则O 点的位置可表示为 .三、解答题(共36分)21,如图10所示的直角坐标系中,四边形ABCD 各个顶点的坐标分别是A (0,0),B (3,6),C (14,8),D (16,0),确定这个四边形的面积.22,如图11所示,A 的位置为(2,6),小明从A 出发,经(2,5)→(3,5)→(4,5)→(4,4)→(5,4)→(6,4),小刚也从A 出发,经(3,6)→(4,6)→(4,7)→(5,7)→(6,7),则此时两人相距几个格?23,如果│3x +3│+│x +3y -2│=0,那么点P (x ,y )在第几象限?点Q (x +1,y -1)在坐标平面内的什么位置?24,如图12所示,C 、D 两点的横坐标分别为2,3,线段CD =1;B 、D 两点的横坐标分别为-2,3,线段BD =5;A 、B 两点的横坐标分别为-3,-2,线段AB =1.(1)如果x 轴上有两点M (x 1,0),N (x 2,0)(x 1<x 2),那么线段MN 的长为多少? (2)如果y 轴上有两点P (0,y 1),Q (0,y 2)(y 1<y 2),那么线段PQ 的长为多少?25,如图13,三角形ABC 中任意一点P (x 0,y 0),经平移后对称点为P 1(x 0+3,y 0-5),将三角形作同样平移得到三角形A 1B 1C 1,求A 1、B 1、C 1 的坐标, 并在图中画出A 1B 1C 1的位置.26,如图14将图中的点(一5,2)(一3,3)(一1,2)(一4,2)(一2,2)(一2,0)(一4,0)做如下变化:(1)横坐标不变,纵坐标分别减4,再将所得的点用线段依次连接起来,所得的图形与原来的图形相比有什么变化?(2)纵坐标不变,横坐标分别加6,再将所得的点用线段依次连接起来,所得的图形与原来的图形相比有什么变化?图12 -2xy2341-1-3-40-3-2-12143DCB A 图13(1,1)(-4,-1)C (-1,4)B Axy012345-1-2-3-4-5-4-3-2-154321图10(3,6)(16,0)(14,8)(0,0)C D B A xy图1123654177145632A第6章平面直角坐标系综合练习题(2)一、1,B;2,C;3,C;4,A;5,A;6,B;7,C;8,A;9,C;10,C.二、11,三;12,6;13,X;14,x、y;15,(0,1)、(3,0)、(2,2);16,(-1,5);17,(5,4,2);18,P1(4,2.2);19,(6,0);20,(3,4).三、21,94;22,3个格;23,根据题意可得3x+3=0,x+3y-2=0,解得y=1,x=2-3y =-1,所以点P(x,y),即P(-1,1) 在第二象限Q(x+1,y-1),即Q(0,0)在原点上;24,(1)MN=x2-x1.(2)PQ=y2-y1;25,A1(2,-1),B1(-1,6) C1(4,-4),图略;26,(1)所得的图形与原来的图形相比向下平移了4个单位长度.(2)所得的图形与原来的图形相比向右平移了6个单位长度;27,P2(1,-1) ,P7(1,1) ,P100(1,-3).第6章平面直角坐标系综合练习题(3)一、选择题1,如图1所示,一方队正沿箭头所指的方向前进,A 的位置为三列四行,表示为(3,4),那么B 的位置是 ( )A.(4,5)B.(5,4)C.(4,2)D.(4,3)2,如图2所示,横坐标正数,纵坐标是负数的点是( )A.A 点B.B 点C.C 点D.D 点 3,(2008年扬州市)在平面直角坐标系中,点P (-1,2)的位置在 A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限 4,已知点A (-3,2),B (3,2),则A 、B 两点相距( )A.3个单位长度B.4个单位长度C.5个单位长度D.6个单位长度 5,点P (m ,1)在第二象限内,则点Q (-m ,0)在( )A.x 轴正半轴上B.x 轴负半轴上C.y 轴正半轴上D.y 轴负半轴上 6,若点P 的坐标是(m ,n ),且m <0,n >0,则点P 在( )A.第一象限B.第二象限C.第三象限D.第四象限 7,已知坐标平面内点A (m 、n )在第四象限,那么点B (n 、m )在( )A.第一象限B.第二象限C.第三象限D.第四象限8,把点P 1(2,一3)向右平移3个单位长度再向下平移2个单位长度到达点P 2处,则P 2的坐标是( ) A.(5,-1) B.(-1,-5) C.(5,-5) D.(-1,-1)9,如图3,将三角形向右平移2个单位长度,再向上平移3个单位长度,则平移后三个的坐标是( )A.(2,2)(3,4)(1,7) B.(一2,2)(4,3)(1,7)C.(一2,2)(3,4)(1,7)D.(2,一2)(3,3)(1,7)10,在直角坐标系中,A (1,2)点的横坐标乘以-1,纵坐标不变,得到A ′点,则A 与A ′的关系是( )A.关于x 轴对称B.关于y 轴对称C.关于原点对称D.将A 点向x 轴负方向平移一个单位 二、填空题11,电影票上“4排5号”,记作(4,5),则5排4号记作___.12,点(-2,3)先向右平移2个单位,再向下平移3个单位,此时的位置是___. 13,在平面直角坐标系中,点(3,-5)在第___象限.14,已知a <b <0,则点A (a -b ,b )在___象限.15,△ABO 中,OA =OB =5,OA 边上的高线长为4,将△ABO 放在平面直角坐标系中,使点O 与原点重合,点A 在x 轴的正半轴上,那么点B 的坐标是___.16,已知点P 在第二象限,且到x 轴的距离是2,到y 轴的距离是3,则点P 的坐标为___. 17,△ABC 的三个顶点A (1,2),B (-1,-2),C (-2,3)将其平移到点A ′(-1,-2)处,使A 与A ′重合,则B 、C 两点坐标分别为 , . 18,把面积为10cm 2的三角形向右平移5cm 后其面积为 .19,菱形的四个顶点都在坐标轴上,已知其中两个顶点的坐标分别是(3,0),(0,4),则另两个顶点的坐标是____.20,如图4所示,如果点A 的位置为(-1,0),那么点B 的位置为___,点C 的位置为___,点D 和点E 的位置分别为___、___.三、解答题21,用有序数对表示物体位置时,(-3,2)与(2,-3)表示的位置相同吗?请结合图形说明.22,如果点A 的坐标为(-a 2-3,b 2+2),那么点A 在第几象限?说说你理由.(1)DCB A五行四行三行六行二行六列五列四列三列二列一行一列图1 xy2341-1-2-3-4-3-2-12143(1)DCBA图2E(3)DCBA 图423,如图5所示,图中的“马”能走遍棋盘中的任何一个位置吗?若不能,指出哪些位置“马”无法走到;若能,请说明原因.24,在直角坐标系中描出下列各组点,并组各组的点用线段依次连结起来. (1)(1,0)、(6,0)、(6,1)、(5,0)、(6,-1)、(6,0); (2)(2,0)、(5,3)、(4,0); (3)(2,0)、(5,-3)、(4,0).观察所得到的图形像什么?如果要将此图形向上平移到x 轴上方,那么至少要向上平移几个单位长度.25,如图6笑脸的图案中,左右两眼的坐标分别为(4,3)和(6,3),嘴角左右端点分别为(4,1)和(6,1)试确定经过下列变化后,左右眼和嘴角左右两端的点的坐标. (1)将笑脸沿x 轴方向,向左平移2个单位的长度. (2)将笑脸沿y 轴方向,向左平移1个单位的长度.26,如图7,在平面直角坐标系中,已知点为A (-2,0),B (2,0).(1)画出等腰三角形ABC (画出一个即可); (2)写出(1)中画出的ABC 的顶点C 的坐标.27,如图8,△ABC 三个顶点的坐标分别为A (4,3),B (3,1),C (4,1).(1)将三角形ABC 三个顶点的横坐标都减去6,纵坐标不变,分别得到点A 1,B 1,C 1,依次连接A 1,B 1,C 1各点,所得△A 1B 1C 1与三角形ABC 的大小、形状和位置上有什么关系?(2)将△ABC 三个顶点的纵坐标都减去5,横坐标不变,分别得到点A 2,B 2,C 2,依次连接A 2,B 2,C 2各点,所得△A 2B 2C 2与△ABC 的大小、形状和位置上有什么关系?图7图5界 河马图6图8第6章平面直角坐标系综合练习题(3)一、1,A;2,B;3,B;4,D;5,A;6,B;7,B;8,C;9,C;10,B.二、11,(5,4);12,(0,0);13,四;14,三;15,(3,4)或(3,-4);16,(-3,2);17、B(一3,一6)、C(一4,一1);18,10;19,(-3,0)、(0,-4);20,(-2,3)、(0,2)、(2,1)、(-2,1).三、21,不同,图略;22,第二象限,因为-a2-3<0,b2+2>0;23,马能走遍棋盘中的任何一个位置,只需说明马能走到相邻的一个格点即可;24,至少要向上平移3个以单位长度;25,(1)(2,3)、(4,3)、(2,1)、(4,1).(2)(4,4)、(6,4)、(4,2)、(6,2);26,略;27,(1)所得△A1B1C1与△ABC的大小、形状完全相同,△A1B1C1可以看作△ABC向左平移6个单位长度得到的.(2)类似地△A2B2C2与△ABC的大小、形状完全相同,可以看作△ABC向下平移5个单位长度得到的.图略.。
2020年中考数学一轮专项复习——平面直角坐标系 中考真题提升卷(含详细解答)
2020年中考数学一轮专项复习——平面直角坐标系中考真题提升卷一.选择题1.(2019•南海区二模)在平面直角坐标系中,点P(﹣2,x2+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.(2019•台湾)如图的坐标平面上有原点O与A、B、C、D四点.若有一直线L通过点(﹣3,4)且与y轴垂直,则L也会通过下列哪一点?()A.A B.B C.C D.D 3.(2019•株洲)在平面直角坐标系中,点A(2,﹣3)位于哪个象限?()A.第一象限B.第二象限C.第三象限D.第四象限4.(2019•菏泽)在平面直角坐标系中,一个智能机器人接到的指令是:从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点A1,第二次移动到点A2……第n次移动到点A n,则点A的坐标是()2019A.(1010,0)B.(1010,1)C.(1009,0)D.(1009,1)5.(2019•百色)阅读理解:已知两点M(x1,y1),N(x2,y2),则线段MN的中点K(x,y)的坐标公式为:x=,y=.如图,已知点O为坐标原点,点A(﹣3,0),⊙O经过点A,点B为弦PA的中点.若点P(a,b),则有a,b满足等式:a2+b2=9.设B(m,n),则m,n满足的等式是()A.m2+n2=9 B.()2+()2=9C.(2m+3)2+(2n)2=3 D.(2m+3)2+4n2=9 6.(2019•娄底)如图,在单位长度为1米的平面直角坐标系中,曲线是由半径为2米,圆心角为120°的多次复制并首尾连接而成.现有一点P从A(A为坐标原点)出发,以每秒π米的速度沿曲线向右运动,则在第2019秒时点P的纵坐标为()A.﹣2 B.﹣1 C.0 D.1 7.(2019•日照)如图,在单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x轴上,斜边长分别为2,4,6,…的等直角三角形,若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,1),A3(0,0),则依图中所示规律,A2019的坐标为()A.(﹣1008,0)B.(﹣1006,0)C.(2,﹣504)D.(1,505)8.(2019•阜新)如图,在平面直角坐标系中,将△ABO沿x轴向右滚动到△AB1C1的位置,再到△A1B1C2的位置……依次进行下去,若已知点A(4,0),B(0,3),则点C100的坐标为()A.(1200,)B.(600,0)C.(600,)D.(1200,0)二.填空题,y1),=(x2,y2),如果∥,则x1•y2=x29.(2019•湘西州)阅读材料:设=(x,根据该材料填空,已知=(4,3),=(8,m),且∥,则m=.•y10.(2019•绥化)在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按如图中的规律摆放.点P从原点O出发,以每秒1个单位长度的速度沿着等边三角形的边“OA1→A1A2→A2A3→A3A4→A4A5…”的路线运动,设第n秒运动到点P n(n为正整数),则点P2019的坐标是.11.(2019•广安)如图,在平面直角坐标系中,点A1的坐标为(1,0),以OA1为直角边作Rt△OA1A2,并使∠A1OA2=60°,再以OA2为直角边作Rt△OA2A3,并使∠A2OA3=60°,再以OA3为直角边作Rt△OA3A4,并使∠A3OA4=60°…按此规律进行下去,则点A2019的坐标为.12.(2019•白银)中国象棋是中华民族的文化瑰宝,因趣味性强,深受大众喜爱.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(0,﹣2),“马”位于点(4,﹣2),则“兵”位于点.13.(2019•潍坊)如图所示,在平面直角坐标系xOy中,一组同心圆的圆心为坐标原点O,它们的半径分别为1,2,3,…,按照“加1”依次递增;一组平行线,l0,l1,l2,l3,…都与x轴垂直,相邻两直线的间距为1,其中l0与y轴重合.若半径为2的圆与l1在第一象限内交于点P1,半径为3的圆与l2在第一象限内交于点P2,…,半径为n+1的圆与l n在第一象限内交于点P n,则点P n的坐标为.(n为正整数)14.(2019•济宁)已知点P(x,y)位于第四象限,并且x≤y+4(x,y为整数),写出一个符合上述条件的点P的坐标.15.(2019•衢州)如图,由两个长为2,宽为1的长方形组成“7”字图形(1)将一个“7”字图形按如图摆放在平面直角坐标系中,记为“7”字图形ABCDEF,其中顶点A位于x轴上,顶点B,D位于y轴上,O为坐标原点,则的值为.(2)在(1)的基础上,继续摆放第二个“7”字图形得顶点F1,摆放第三个“7”字图形得顶点F2,依此类推,…,摆放第n个“7”字图形得顶点F n﹣1,…,则顶点F2019的坐标为.16.(2019•连云港)如图,将一等边三角形的三条边各8等分,按顺时针方向(图中箭头方向)标注各等分点的序号0、1、2、3、4、5、6、7、8,将不同边上的序号和为8的两点依次连接起来,这样就建立了“三角形”坐标系.在建立的“三角形”坐标系内,每一点的坐标用过这一点且平行(或重合)于原三角形三条边的直线与三边交点的序号来表示(水平方向开始,按顺时针方向),如点A的坐标可表示为(1,2,5),点B的坐标可表示为(4,1,3),按此方法,则点C的坐标可表示为.参考答案一.选择题1.解:∵x2≥0,∴x2+1≥1,∴点P(﹣2,x2+1)在第二象限.故选:B.2.解:如图所示:有一直线L通过点(﹣3,4)且与y轴垂直,故L也会通过D点.故选:D.3.解:点A坐标为(2,﹣3),则它位于第四象限,故选:D.4.解:A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),A6(3,1),…,2019÷4=504…3,所以A2019的坐标为(504×2+1,0),则A2019的坐标是(1009,0).故选:C.5.解:∵点A(﹣3,0),点P(a,b),点B(m,n)为弦PA的中点,∴m=,n=.∴a=2m+3,b=2n.又a,b满足等式:a2+b2=9,∴(2m+3)2+4n2=9.故选:D.6.解:点运动一个用时为÷π=2秒.如图,作CD⊥AB于D,与交于点E.在Rt△ACD中,∵∠ADC=90°,∠ACD=∠ACB=60°,∴∠CAD=30°,∴CD=AC=×2=1,∴DE=CE﹣CD=2﹣1=1,∴第1秒时点P运动到点E,纵坐标为1;第2秒时点P运动到点B,纵坐标为0;第3秒时点P运动到点F,纵坐标为﹣1;第4秒时点P运动到点G,纵坐标为0;第5秒时点P运动到点H,纵坐标为1;…,∴点P的纵坐标以1,0,﹣1,0四个数为一个周期依次循环,∵2019÷4=504…3,∴第2019秒时点P的纵坐标为是﹣1.故选:B.7.解:观察图形可以看出A1﹣﹣A4;A5﹣﹣﹣A8;...每4个为一组,∵2019÷4=504 (3)∴A2019在x轴负半轴上,纵坐标为0,∵A3、A7、A11的横坐标分别为0,﹣2,﹣4,∴A2019的横坐标为﹣(2019﹣3)×=﹣1008.∴A2019的坐标为(﹣1008,0).故选:A.8.解:根据题意,可知:每滚动3次为一个周期,点C1,C3,C5,…在第一象限,点C2,C,C6,…在x轴上.4∵A(4,0),B(0,3),∴OA=4,OB=3,∴AB==5,∴点C2的横坐标为4+5+3=12=2×6,同理,可得出:点C4的横坐标为4×6,点C6的横坐标为6×6,…,∴点C2n的横坐标为2n×6(n为正整数),∴点C100的横坐标为100×6=600,∴点C100的坐标为(600,0).故选:B.二.填空题(共8小题)9.解:∵=(4,3),=(8,m),且∥,∴4m=3×8,∴m=6;故答案为6;10.解:由题意知,A(,)1A(1,0)2A(,)3A(2,0)4A(,﹣)5A(3,0)6A(,)7…由上可知,每个点的横坐标为序号的一半,纵坐标每6个点依次为:,0,,0,﹣这样循环,∴A2019(,),故答案为:(,).11.解:由题意得,A的坐标为(1,0),1A的坐标为(1,),A的坐标为(﹣2,2),A的坐标为(﹣8,0),4A的坐标为(﹣8,﹣8),A的坐标为(16,﹣16),A的坐标为(64,0),7…由上可知,A点的方位是每6个循环,与第一点方位相同的点在x正半轴上,其横坐标为2n﹣1,其纵坐标为0,与第二点方位相同的点在第一象限内,其横坐标为2n﹣2,纵坐标为2n﹣2,与第三点方位相同的点在第二象限内,其横坐标为﹣2n﹣2,纵坐标为2n﹣2,与第四点方位相同的点在x负半轴上,其横坐标为﹣2n﹣1,纵坐标为0,与第五点方位相同的点在第三象限内,其横坐标为﹣2n﹣2,纵坐标为﹣2n﹣2,与第六点方位相同的点在第四象限内,其横坐标为2n﹣2,纵坐标为﹣2n﹣2,∵2019÷6=336…3,∴点A2019的方位与点A3的方位相同,在第二象限内,其横坐标为﹣2n﹣2=﹣22017,纵坐标为22017,故答案为:(﹣22017,22017).12.解:如图所示:可得原点位置,则“兵”位于(﹣1,1).故答案为:(﹣1,1).13.解:连接OP 1,OP 2,OP 3,l 1、l 2、l 3与x 轴分别交于A 1、A 2、A 3,如图所示: 在Rt △OA 1P 1中,OA 1=1,OP 1=2,∴A1P 1===,同理:A2P 2==,A 3P 3==,……, ∴P1的坐标为( 1,),P 2的坐标为( 2,),P 3的坐标为(3,),……,…按照此规律可得点Pn 的坐标是(n ,),即(n ,)故答案为:(n ,).14.解:∵点P (x ,y )位于第四象限,并且x ≤y +4(x ,y 为整数), ∴x >0,y <0, ∴当x =1时,1≤y +4, 解得:0>y ≥﹣3,∴y可以为:﹣2,故写一个符合上述条件的点P的坐标可以为:(1,﹣2)(答案不唯一).故答案为:(1,﹣2)(答案不唯一).15.解:(1)∵∠ABO+∠DBC=90°,∠ABO+∠OAB=90°,∴∠DBC=∠OAB,∵∠AOB=∠BCD=90°,∴△AOB∽△BCD,∴=,∵DC=1,BC=2,∴=,故答案为;(2)解:过C作CM⊥y轴于M,过M1作M1N⊥x轴,过F作FN1⊥x轴.根据勾股定理易证得BD==,CM=OA=,DM=OB=AN=,∴C(,),∵AF=3,M1F=BC=2,∴AM1=AF﹣M1F=3﹣2=1,∴△BOA≌ANM1(AAS),∴NM1=OA=,∵NM1∥FN1,∴,,∴FN1=,∴AN1=,∴ON1=OA+AN1=+=∴F(,),同理,F(,),即()F(,),即(,)2F(,),即(,)3F(,),即(,)4…F(,),即(,405),故答案为即(,405).16.解:根据题意得,点C的坐标可表示为(2,4,2),故答案为:(2,4,2).。
河南省实验中学七年级数学下册第七章【平面直角坐标系】提高卷(培优提高)
一、选择题1.一只跳蚤在第一象限及x 、y 轴上跳动,第一次它从原点跳到(0,1),然后按图中箭头所示方向跳动(0,0)→(0,1)→(1,1)→(1,0)→……,每次跳一个单位长度,则第2021次跳到点( )A .(3,44)B .(4,45)C .(44,3)D .(45,4) 2.如图,将一颗小星星放置在平面直角坐标系中第二象限内的甲位置,先将它绕原点O 旋转180︒到乙位置,再将它向上平移2个单位长到丙位置,则小星星顶点A 在丙位置中的对应点A '的坐标为( )A .()3,1-B .()1,3C .()3,1D .()3,1-3.已知P(a ,b )满足ab=0,则点P 在( )A .坐标原点B .X 轴上C .Y 轴上D .坐标轴上 4.如图,小球起始时位于(3,0)处,沿所示的方向击球,小球运动的轨迹如图所示.如果小球起始时位于(1,0)处,仍按原来方向击球,小球第一次碰到球桌边时,小球的位置是(0,1),那么小球第2020次碰到球桌边时,小球的位置是( )A .(3,4)B .(5,4)C .(7,0)D .(8,1)5.在平面直角坐标系中,点()2,1-关于x 轴对称的点的坐标是( )A .()2,1B .()2,1-C .()2,1--D .()2,1-6.平面直角坐标系中,线段CD 是由线段AB 平移得到的,点A(-1,4)的对应点C(4,7),点B(-4,-1)的对应点D 的坐标为( )A .(-1,-4)B .(1,-4)C .(1,2)D .(-1,2)7.在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P ′(﹣y +1,x +1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4…,这样依次得到点A 1,A 2,A 3,…,A n ,若点A 1的坐标为(3,1),则点A 2019的坐标为( ) A .(0,﹣2) B .(0,4) C .(3,1) D .(﹣3,1) 8.如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2,则表示数25-的点P 应落在( )A .线段AB 上 B .线段BO 上C .线段OC 上D .线段CD 上 9.已知点P 到x 轴的距离为2,到y 轴的距离为3,且点P 在x 轴的上方,则点P 的坐标为( )A .(2,3)B .(3,2)C .(2,3)或(-2,3)D .(3,2)或(-3,2)10.若把点A (-5m ,2m -1)向上平移3个单位后得到的点在x 轴上,则点A 在( ) A .x 轴上 B .第三象限 C .y 轴上 D .第四象限 11.在平面直角坐标系中,我们把横、纵坐标都是整数的点叫做整点,且规定:正方形内不包含边界上的点,观察如图所示的中心在原点,一边平行于x 轴的正方形,边长为1的正方形内部有一个整点,边长为3的正方形内部有9个整点,…,则边长为10的正方形内部的整点个数为( )A .100B .81C .64D .49二、填空题12.对于平面直角坐标系xOy 中的点P (a ,b ),若点P 的坐标为(a +kb ,ka +b )(其中k 为常数,且k ≠0),则称点P 为点P 的“k 属派生点”,例如:P (1,4)的“2属派生点”为P (1+2×4,2×1+4),即P ′(9,6).若点P 在x 轴的正半轴上,点P 的“k 属派生点”为点P ′,且线段PP ′的长度为线段OP 长度的5倍,则k 的值为___.13.点(1,1)P -向左平移2个单位,向上平移3个单位得1P ,则点1P 的坐标是________. 14.若电影票上座位是12排5号可记为(12,5),则(5,6)表示_______________. 15.如图,在平面直角坐标系中,对△ABC 进行循环往复的轴对称变换,若原来点A 坐标是(a ,b ),经过第1次变换后所得的1A 坐标是(),-a b ,则经过第2020次变换后所得的点2020A 坐标是_____.16.如图点 A 、B 的坐标分别为(1,2)、(3,0),将△AOB 沿 x 轴向右平移,得到△CDE . 已知点 D 在的点 B 左侧,且 DB =1,则点 C 的坐标为 ____ .17.已知点(1,0)A 、(0,2)B ,点P 在x 轴上,且PAB △的面积为5,则点P 的坐标为__________.18.若P(2-a ,2a+3)到两坐标轴的距离相等,则点P 的坐标是____________________. 19.若点M(a-2,a+3)在y 轴上,则点N(a+2,a-3)在第________象限.20.若x ,y 为实数,且满足330x y -++=,则 A(x ,y)在第____象限21.如图,直线BC 经过原点O ,点A 在x 轴上,AD BC ⊥于D .若A (4,0),B (m ,3),C (n ,-5),则AD BC =______.三、解答题22.在直角坐标系中,ABC 顶点C 的坐标为()1m ,.90C ∠=︒,//BC x 轴,直线//l y 轴,,BC a AC b ==,ABC 与111A B C △关于直线l 对称,222A B C △与111A B C △关于y 轴对称,333A B C △与222A B C △关于x 轴对称.(1)问ABC 与222A B C △通过平移能重合吗?若不能说明其理由,若能请你说出一个平移方案(平移的单位数用m 、a 表示):(2)试写出点33A B 、坐标(注:结果可用含a 、b 、m 的代数式表示).23.ABC 在如图所示的平面直角坐标系中,将其平移得到A B C ''',若B 的对应点B '的坐标为(1,1).(1)在图中画出A B C ''';(2)此次平移可以看作将ABC 向________平移________个单位长度,再向________平移________个单位长度,得A B C ''';(3)求A B C '''的面积并写出做题步骤.24.如图,在平面直角坐标系中,Rt △ABC 的三个顶点分别是 A (﹣3,2),B (0,4),C (0,2).(1)将△ABC 以点 O 为旋转中心旋转 180°,画出旋转后对应的△A 1B 1C 1;(2)平移△ABC ,使对应点 A 2 的坐标为(0,﹣4),写出平移后对应△A 2B 2C 2的中B 2,C 2点坐标.25.已知()4,0A ,点B 在x 轴上,且5AB =.(1)直接写出点B 的坐标;(2)若点C 在y 轴上,且10ABC S =△,求点C 的坐标.(3)若点()3,2D a a -+,且15ABD S =,求点D 的坐标.一、选择题1.在平面直角坐标系中,将三角形各顶点的纵坐标都加上3,横坐标保持不变,所得图形的位置与原图形相比( )A .向上平移3个单位B .向下平移3个单位C .向右平移3个单位D .向左平移3个单位2.在平面直角坐标系中,点()2,1-关于x 轴对称的点的坐标是( )A .()2,1B .()2,1-C .()2,1--D .()2,1-3.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A ()2,1-和B ()2,3--,那么第一架炸机C 的平面坐标是( )A .()2,1B .()3,1-C .()2,1-D .()3,14.下列关于有序数对的说法正确的是( )A .(3,4)与(4,3)表示的位置相同B .(a ,b )与(b ,a )表示的位置肯定不同C .(3,5)与(5,3)是表示不同位置的两个有序数对D .有序数对(4,4)与(4,4)表示两个不同的位置5.点(),A m n 满足0mn =,则点A 在( )A .原点B .坐标轴上C .x 轴上D .y 轴上6.在平面直角坐标系中,点P (﹣2019,2018)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 7.如图,一个粒子从原点出发,每分钟移动一次,依次运动到(0,1)()()()()()1,01,11,22,13,0....→→→→→→,则2018分钟时粒子所在点的横坐标为( )A .900B .946C .990D .8868.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到1A ,第2次移动到2A ,...,第n 次移动到n A .则22020OA A ∆的面积是( )A .210112mB .2505mC .220092m D .2504m 9.在平面直角坐标系中,点()25,1N a -+一定在( )A .第一象限B .第二象限C .第三象限D .第四象限 10.如图,线段OA ,OB 分别从与x 轴和y 轴重合的位置出发,绕着原点O 顺时针转动,已知OA 每秒转动45︒,OB 的转动速度是每秒转动30,则第2020秒时,OA 与OB 之间的夹角的度数为( )A .90︒B .145︒C .150︒D .165︒11.如图,将点A 0(-2,1)作如下变换:作A 0关于x 轴对称点,再往右平移1个单位得到点A 1,作A 1关于x 轴对称点,再往右平移2个单位得到点A 2,…,作A n -1关于x 轴对称点,再往右平移n 个单位得到点A n (n 为正整数),则点A 64的坐标为( )A .(2078,-1)B .(2014 ,-1)C .(2078 ,1)D .(2014 ,1)二、填空题12.小华在小明南偏西75°方向,则小明在小华______方向.(填写方位角)13.写一个第三象限的点坐标,这个点坐标是_______________.14.已知点()3,2P -,//MP x 轴,6MP =,则点M 的坐标为______.15.若点p(a+13,2a+23)在第二,四象限角平分线上,则a=_____. 16.如图,在平面直角坐标系中,对△ABC 进行循环往复的轴对称变换,若原来点A 坐标是(a ,b ),经过第1次变换后所得的1A 坐标是(),-a b ,则经过第2020次变换后所得的点2020A 坐标是_____.17.已知点P 的坐标为(a ,b )(a >0),点Q 的坐标为(c ,2),且|a ﹣8b -0,将线段PQ 向右平移a 个单位长度,其扫过的面积为24,那么a+b+c 的值为_____. 18.如图,在平面直角坐标系中,三角形ABC 经过平移后得到三角形A′B′C′,且平移前后三角形的顶点坐标都是整数.若点P (12,﹣15)为三角形ABC 内部一点,且与三角形A′B′C′内部的点P′对应,则对应点P′的坐标是_____.19.对于平面坐标系中任意两点()11,A x y ,()22,B x y 定义一种新运算“*”为:()()()11221221,*,,x y x y x y x y =.若()11,A x y 在第二象限,()22,B x y 在第三象限,则*A B 在第_________象限.20.在平面直角坐标系中,对于平面内任一点(),a b ,若规定以下三种变换:①()(),,a b a b ∆=-;②(),a b O (),a b =--;③()(),,a b a b Ω=-按照以上变换例如:()()()1,21,2∆O =-,则()()2,5O Ω等于__________.21.已知点P 在第四象限,且到x 轴的距离是1,到y 轴的距离是3,则P 的坐标是______. 三、解答题22.已知点(1,5)A a -和(2,1)B b -.试根据下列条件求出a ,b 的值.(1)A ,B 两点关于y 轴对称;(2)A ,B 两点关于x 轴对称;(3)AB ‖x 轴23.在平面直角坐标系中,ABC 的位置如图所示,把ABC 先向左平移2个单位,再向下平移4个单位可以得到A B C '''.(1)画出三角形A B C ''',并写出,,A B C '''三点的坐标;(2)求A B C '''的面积.24.如图,在平面直角坐标系中,点A (0,12),点B (m ,12),且B 到原点O 的距离OB =20,动点P 从原点O 出发,沿路线O →A →B 运动到点B 停止,速度为每秒5个单位长度,同时,点Q 从点B 出发沿路线B →A →O 运动到原点O 停止,速度为每秒2个单位长度.设运动时间为t .(1)求出P 、Q 相遇时点P 的坐标.(2)当P 运动到AB 边上时,连接OP 、OQ ,若△OPQ 的面积为6,求t 的值. 25.已知点P (2x ﹣6,3x +1),求下列情形下点P 的坐标.(1)点P 在y 轴上;(2)点P 到x 轴、y 轴的距离相等,且点P 在第二象限;(3)点P 在过点A (2,﹣4)且与y 轴平行的直线上.一、选择题1.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 2C 3C 2,…按如图所示的方式放置,点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y =x +1和x 轴上,已知点B 1(1,1),B 2(3,2),则B n 的坐标是( )A .(2n ﹣1,2n ﹣1)B .(2n ﹣1,2n ﹣1)C .(2n ﹣1,2n ﹣1)D .(2n ﹣1,2n ﹣1) 2.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的坐标分别为(2,1)A -和(2,3)B --,那么第一架轰炸机C 的坐标是( )A .(2,3)-B .(2,1)-C .(2,1)--D .(3,2)-3.点()1,3P --向右平移3个单位,再向上平移5个单位,则所得到的点的坐标为( ) A .()4,2- B .()2,2 C .()4,8-- D .()2,8-4.在平面直角坐标系中,一个智能机器人接到的指令是:从原点O 出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路程如图所示,第一次移动到点A 1,第二次移动到点A 2,第n 次移动到点A n ,则点A 2020的坐标是( )A .(1010,0)B .(1010,1)C .(1009,0)D .(1009,1) 5.已知点A 坐标为()2,3-,点A 关于x 轴的对称点为A ',则A '关于y 轴对称点的坐标为( )A .()2,3--B .()2,3C .()2,3-D .以上都不对 6.一只跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是( )A .(4,0)B .(5,0)C .(0,5)D .(5,5)7.将点()1,2P 向左平移3个单位后的坐标是( )A .()2,2-B .()1,1-C .()1,5D .()1,1-- 8.在平面直角坐标系中,对于点P (x ,y ),我们把点P ′(-y +1,x +1)叫做点P 的幸运点.已知点A 1的幸运点为A 2,点A 2的幸运点为A 3,点A 3的幸运点为A 4,……,这样依次得到点A 1,A 2,A 3,…,A n .若点A 1的坐标为(3,1),则点A 2020的坐标为( )A .(-3,1)B .(0,-2)C .(3,1)D .(0,4)9.在平面直角坐标系中,点P(-5,0)在( )A .第二象限B .x 轴上C .第四象限D .y 轴上10.在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P ′(﹣y +1,x +1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4…,这样依次得到点A 1,A 2,A 3,…,A n ,若点A 1的坐标为(3,1),则点A 2019的坐标为( ) A .(0,﹣2) B .(0,4) C .(3,1) D .(﹣3,1) 11.在平面直角坐标中,点()1,2P 平移后的坐标是)3(3,-'P ,按照同样的规律平移其它点,则以下各点的平移变换中( )符合这种要求.A .()3,24(,2)→-B .()(104),5,--→-C .(1.2,5)→(-3.2,6)D .122.5, 1.5,33⎛⎫⎛⎫-→- ⎪ ⎪⎝⎭⎝⎭二、填空题12.在平面直角坐标系内,把点A (5,-2)向右平移3个单位,再向下平移2个单位,得到的点B 的坐标为______.13.如图,()3,3A -,()1,2P -,P 关于直线OA 的对称点为1P ,1P 关于x 轴的对称点为2P ,2P 关于y 轴的对称点为3P ,3P 关于直线OA 的对称点为4P ,4P 关于x 轴的对称点为5P ,5P 关于y 轴的对称点为6P ,6P 关于直线OA 的对称点为7P ,…,则2020P 的坐标是__________.14.在x 轴上方的点P 到x 轴的距离为3,到y 轴距离为2,则点P 的坐标为________. 15.某人从A 点沿北偏东60︒的方向走了100米到达点B ,再从点B 沿南偏西10︒的方向走了100米到达点C ,那么点C 在点A 的南偏东__度的方向上.16.如图,在平面直角坐标系中,对△ABC 进行循环往复的轴对称变换,若原来点A 坐标是(a ,b ),经过第1次变换后所得的1A 坐标是(),-a b ,则经过第2020次变换后所得的点2020A 坐标是_____.17.填一填如图,百鸟馆在老虎馆的(__________)偏(__________)(__________).方向;大象馆在老虎馆的(__________)偏(__________)(__________).方向.18.如图,已知点A 的坐标为(−2,2),点C 的坐标为(2,1),则点B 的坐标是____.19.在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如下图所示.那么点A 2020的坐标是________.20.如果点P (a ﹣1,a +2)在x 轴上,则a 的值为_____.21.把所有正整数从小到大排列,并按如下规律分组:(1)、(2,3)、(4,5,6)、(7,8,9,10)、……,若A n =(a ,b )表示正整数n 为第a 组第b 个数(从左往右数),如A 7=(4,1),则A 20=______________.三、解答题22.已知在长方形ABCD 中,4AB =,252BC =,O 为BC 上一点,72BO =,如图所示,以BC 所在直线为x 轴,O 为坐标原点建立平面直角坐标系,M 为线段OC 上的一点. (1)若点(1,0)M ,如图①,以OM 为一边作等腰OPM ,使点P 在长方形ABCD 的一边上.请直接写出所有符合条件的点P 的坐标;(2)若将(1)中的点M 的坐标改为()4,0,其它条件不变,如图②,求出所有符合条件的点P 的坐标.(3)若将(1)中的点M 的坐标改为()5,0,其它条件不变,如图③,请直接写出符合条件的等腰三角形有几个(不必求出点P 的坐标).23.如图,一只甲虫在55⨯的方格(每小格边长为1)上沿着网格线运动,它从A 处出发去看望B 、C 、D 处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A 到B 记为:(1,4)A B →++,从B 到A 记为:(1,4)B A →--,其中第一个数表示左右方向,第二个数表示上下方向,那么图中:(1)A C →(________,________),B C →(________,________),C D →(________,________);(2)若这只甲虫从A 处去甲虫P 处的行走路线依次为(+2,+2),(+2,-1),(-2,+3),(-1,-2),请在图中标出P 的位置.24.如图,在平面直角坐标系中,OAB ∆的顶点都在格点上,把OAB ∆平移得到111O A B ∆,在OAB ∆内一点()1,1M 经过平移后的对应点为()13,5M -.(1)画出111O A B ∆;(2)点1B 到y 轴的距离是____个单位长;(3)求111O A B ∆的面积.25.如图1,在平面直角坐标系中,A (a ,0),C (b ,4),且满足(a+5)2+5-b =0,过C 作CB ⊥x 轴于B .(1)a = ,b = ,三角形ABC 的面积= ;(2)若过B 作BD //AC 交y 轴于D ,且AE ,DE 分别平分∠CAB ,∠ODB ,如图2,求∠AED 的度数;(3)在y 轴上是否存在点P ,使得三角形ABC 和三角形ACP 的面积相等?若存在,求出P点坐标;若不存在,请说明理由.。
平面直角坐标系练习题
平面直角坐标系练习题一(考试时间:100分钟 满分:100分)一、选择题(每小题3分,共30分) 1、点A (3-,3)所在象限为( )A .第一象限B .第二象限C .第三象限D .第四象限2、点P 位于y 轴左方,距y 轴3个单位长,位于x 轴上方,距x 轴四个单位长,点P 的坐标是( ) A .(3,4-)B .(3-,4)C .(4,3-)D .(4-,3)3、若点P (x ,y )的坐标满足xy =0,则点P 的位置是( )A .在x 轴上B .在y 轴上C .是坐标原点D .在x 轴上或在y 轴上 4、坐标平面内下列各点中,在x 轴上的点是( )A .(0,3)B .(3-,0)C .(1-,2)D .(2-,3-) 5、如果yx<0,),(y x Q 那么在( )象限 A .第四 B .第二 C .第一、三 D .第二、四 6、若点P (m ,n )在第三象限,则点Q (m -,n -)在( )A .第一象限B .第二象限C .第三象限D .第四象限7、线段AB 两端点坐标分别为A (1-,4),B (4-,1),现将它向左平移4个单位长度,得到线段11B A ,则11B A ,的坐标分别为( )A .1A (5-,0),1B (8-,3-) B . 1A (3,7),1B (0,5)C .1A (5-,4),1B (8-,1)D . 1A (3,4),1B (0,1)8、如图:正方形ABCD 中点A 和点C 的坐标分别为(2-,3)和(3,2-),则点B 和点D 的坐标分别为( )A .(2,2)和(3,3)B .(2-,2-)和(3,3)C .(2-,2-)和(3-,3-)D .(2,2)和(3-,3-)9、已知平面直角坐标系内点(x ,y )的纵、横坐标满足2x y =,则点(x ,y )位于( ) A .x 轴上方(含x 轴) B .x 轴下方(含x 轴) C .y 轴的右方(含y 轴) D .y 轴的左方(含y 轴) 10、已知03)2(2=++-b a ,则P (a -,b -)的坐标为( )A .(2,3)B .(2,3-)C .(2-,3)D .(2-,3-)二、填空题(每小题4分,共24分),3(-的横坐标是,纵坐标11、有了平面直角坐标系,平面内的点就可以用一个来表示了.点)4是.12、设点P在坐标平面内的坐标为P(x,y),则当P在第一象限时x____0 ,y____0;当点P在第四象限时,x___0,y____0.13、到x轴距离为2,到y轴距离为3的坐标为.14、在平面直角坐标系中,将点(2,5-)向右平移3个单位长度,可以得到对应点坐标(__,__);将点(2-)向左平移3个单位长度可得到对应点(_,_);将点(2,5)向上平移3单位长度可得对-,5应点(__,___ );将点(2-,5)向下平移3单位长度可得对应点(_ ,_).三、解答题(共5小题,计46分,解答应写出过程)15、(本题7分)在平面直角坐标系中,依次描出下列各点,并将各点用线段依次连接起来;(2,1)(6,1)(6,3)(7,3)(4,6)(1,3)(2,3)16、(本题8分)将下图方格中的图案作下列变换,请画出相应的图案:(1)沿y轴正向平移4个单位;(2)关于y轴轴对称.17、(本题10分)下图中标明了小英家附近的一些地方.以小英家为坐标原点,建立如图所示的坐标系.(1)写出汽车站和消防站的坐标;(2)某星期日早晨,小英同学从家里出发,沿(3,2),(3,1-),(0,1-),(1-,2-),(3-,1-)的路线转了一下,又回到家里,写出路上她经过的地方.18、(本题10分)在如图所示的直角坐标系中,四边形ABCD 的各个顶点的坐标分别是A(0,0),B(2,5),C(9,8),D(12,0)确定这个四边形的面积.你是怎样做的?19、(本题11分)用围棋棋子可以在棋盘中摆出许多有趣的图案.如图(1),•在棋盘上建立平面直角坐标系,以直线x y =为对称轴,我们可以摆出一个轴对称图案(其中A 与A ′是对称点),你看它像不像一只美丽的鱼.(1)请你在图(2)中,也用10枚以上..的棋子摆出一个以直线x y =为对称轴的对称图案, 并在所作的图形中找出两组对称点,分别标为B 、B ′、C 、C ′(•注意棋子要摆在格点上).(2)在给定的平面直角坐标系中,你标出的B 、B ′、C 、C ′的坐标分别是:B ______,B ′______,C _______,C ′_______;根据以上对称点坐标的规律,写出点P (a ,b )关于对称轴x y =的对称点P ′的坐标是________.yxD(12,0)C(9,8)0121110131211987654321987654321B(2,5)A(0,0)10平面直角坐标系练习题精选二一、填空题1.点(-3,2)在第______象限;点(2,-3)在第______象限.2.点(p,q)既在x轴上,又在y轴上,则p=______;q=_________.3.点(p,q)到x轴距离是________;到y轴距离是________.4.点P(a,-a)是在______象限的角平分线上;或在________.5.若P1(x1,y1)、P2(x2,y2)两点关于原点对称,则x1与x2关系为_______,y1与y2•的关系为_______.6.如图1为某地区A、B、C、D四座城市,附近要建一所核电站E,向四座城市供电,试建立适当的直角坐标系,写出各点的坐标_____________________________________________________.二、选择题7.已知P(-4,3),与P关于x轴对称的点的坐标是()A.(-3,4) B.(-4,-3) C.(-3,-4) D.(4,-3)8.已知x轴上一点A(6,0),y轴上一点B(0,b),且AB=10,则b的值为()A.8 B.-8 C.±8 D.以上答案都不对9.一个平行四边形的三个顶点的坐标分别是(0,0)、(2,0)、(1,2),则第四个顶点的坐标为()A.(-1,2) B.(1,-2) C.(3,2)D.(1,-2)或(-1,2)或(3,2)10.在方格纸上有A、B两点,若以B点为原点建立直角坐标系,则A点坐标为(2,5),若以A点为原点建立直角坐标系,则B点坐标为()A.(-2,-5) B.(-2,5) C.(2,-5) D.(2,5)11.直角坐标系中,点P(x,y),xy<0,x<y,且P到x轴、y轴的距离分别为3,7,则P点的坐标为() A.(-3,-7) B.(-7,3) C.(3,-7) D.(7,-3)三、解答题12.边长为5的等边三角形ABC,以B点为原点,以BC边所在的直线为x•轴建立直角坐标系写出A、B、C各点的坐标.13.求以点(0,3)为圆心,5为半径的圆与x轴、y轴的四个交点的坐标.14.收集一些校园附近有代表性的建筑,绘制出相关的平面分布图.平面直角坐标系练习题一参考答案1、参考答案:B .考核的知识点:象限内点坐标的特征2、参考答案:B .考核的知识点:点坐标到坐标轴的距离与坐标之间的关系3、参考答案:D .考核的知识点:坐标轴上点的特征4、参考答案:B .考核的知识点:坐标轴上点的特征5、参考答案:C .考核的知识点:象限内点坐标的特征6、参考答案:C .考核的知识点:象限内点坐标的特征7、参考答案:C .考核的知识点:平移的性质8、参考答案:B .考核的知识点:关于坐标轴对称的点坐标的特征 9、参考答案:A .考核的知识点:函数图像上点坐标的特征 10、参考答案:C .考核的知识点:通过计算确定点的坐标 二、填空题(每小题4分,共24分)11、参考答案:坐标(或有序数对);3;4-.考核的知识点:平面直角坐标系的概念 12、参考答案:>,>;>,<.考核的知识点:象限内点坐标的特征 13、参考答案:(3,2)、(3,2-)、(3-,2)、(3-,2-).考核的知识点:平面直角坐标系中的点到坐标轴的距离 14、参考答案:(5,5-);(5-,5-);(2,8);(2-,2).考核的知识点:平面直角坐标系中点坐标平移的特征 三、解答题(共5小题,计46分,解答应写出过程)15、参考答案:如图所示:考核的知识点:平面直角坐标系中点的坐标 16、参考答案:如图所示:考核的知识点:坐标平面内图形的平移 17、参考答案:(1)汽车站(1,1),消防站(2,2-);(2)小英路上经过的地方:游乐场,公园,姥姥家,宠物店,邮局.考核的知识点:平面直角坐标系在生活中的应用18、参考答案:面积为5+10.5+35+12=62.5.用分割法:可将四边形分成三个直角三角形和一个矩形来进行计算. 考核的知识点:点的坐标与四边形面积的综合题 19、参考答案:(1)如图所示:(2)(3,10);(10,3);(7,10);(10,7);(b ,a )yxD(12,0)C(9,8)0121110131211987654321987654321B(2,5)A(0,0)10考核的知识点:坐标平面内对称点的性质平面直角坐标系练习题二参考答案1.二四 2.0 0 3.│q││p│ 4.二、四原点 5.x1+x2=0 y1+y2=0 6.答案不唯一7.B 8.C 9.D 10.A 11.B12.A(2.5,),B1(0,0),C1(5,0);2),B2(0,0),C2(5,0);A2(2.5,-2),B3(0,0),C3(-5,0);A3(-2.5,2A4(-2.5,),B4(0,0),C4(-5,0);13.(4,0),(-4,0),(0,-2),(0,8)14.略。
数学课程平面直角坐标系练习题及答案
数学课程平面直角坐标系练习题及答案一、选择题1. 下列哪个点的坐标为(-3, 2)?A. (2, -3)B. (3, -2)C. (-2, 3)D. (-3, 2)答案:D2. 图中直线方程的斜率是多少?A. 2B. -2C. 1/2D. -1/2答案:C3. 已知点A(-1, 3)和点B(5, 7),则线段AB的中点坐标为:A. (2, 5)B. (3, 6)C. (4, 5)D. (3, 5)答案:D二、填空题1. 直线y = 2x + 3与y轴的交点坐标为:(___, ___)。
答案:(0, 3)2. 直线的斜率为-1/4,且过点(-2, 5),则直线的方程为:y = ___x + ___。
答案:y = -1/4x + 4.53. 已知点A(3, 4)和点B(6, 8),则线段AB的长度为:___。
答案:5三、计算题1. 已知两点A(2, -1)和B(5, 4),求线段AB的斜率。
解答:斜率k = (y2 - y1) / (x2 - x1) = (4 - (-1)) / (5 - 2) = 5/32. 已知直线过点(3, 2)且垂直于直线y = 2x - 1,求直线的方程。
解答:直线垂直于y = 2x - 1的斜率为-1/2,过点(3, 2)的直线方程为y - 2 = -1/2(x - 3),化简得y = -1/2x + 7/23. 已知直线过点(1, 3)且平行于直线y = 2x + 1,求直线的方程。
解答:直线平行于y = 2x + 1的斜率为2,过点(1, 3)的直线方程为y - 3 = 2(x - 1),化简得y = 2x + 1四、应用题1. 一辆汽车以每小时60公里的速度行驶,从一个起点开始,2小时后行驶到终点,终点距离起点多远?解答:由速度公式 v = s / t,可得 s = v * t = 60 * 2 = 120 公里2. 一个正方形的对角线长为8单位长度,求其边长。
解答:设正方形边长为x,则根据勾股定理可得 x^2 + x^2 = 8^2,化简得 2x^2 = 64,解得 x = 43. 根据平面直角坐标系中两点之间的距离公式,计算点A(2, 3)和点B(5, 7)的距离。
人教版七年级数学下册 第七章 平面直角坐标系 培优专题测试训练(含答案)
人教版七年级数学下册第七章平面直角坐标系培优专题测试训练一、选择题1. 点(-2,1)在平面直角坐标系中所在的象限是( )A.第一象限 B.第二象限 C.第三象限 D.第四象限2. 已知点A的坐标为(2,1),将点A向下平移4个单位长度,得到的点A'的坐标是 ( )A.(6,1)B.(-2,1)C.(2,5)D.(2,-3)3.图是某动物园的平面示意图,若以猴山为原点,向右的水平方向为x轴正方向,向上的竖直方向为y轴正方向建立平面直角坐标系,则熊猫馆所在的象限是 ( )A.第一象限B.第二象限C.第三象限D.第四象限4.在平面直角坐标系中,将点P(x,y)先向左平移4个单位长度,再向上平移3个单位长度后得到点P'(1,2),则点P的坐标为( )A.(2,6)B.(-3,5)C.(-3,1)D.(5,-1)5.小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1 mm,则图中转折点P的坐标表示正确的是( )A.(5,30)B.(8,10)C.(9,10)D.(10,10)6. 平面直角坐标系中,点P(-2,3)关于x轴对称的点的坐标为( )A. (-2,-3)B. (2,-3)C. (-3,2)D. (3,-2)7.如图,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3,…,组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第21秒时,点P的坐标为( )A.(21,-1)B.(21,0)C.(21,1)D.(22,0)8.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点O运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)……按这样的运动规律,经过第2021次运动后,动点P的坐标是( )A.(2021,1)B.(2021,0)C.(2021,2)D.(2022,0)二、填空题9. 点P(-6,-7)到x轴的距离为 ,到y轴的距离为 .10. 已知点P(3-m,m)在第二象限,则m的取值范围是________.11.如图,线段AB经过平移得到线段A'B',其中点A,B的对应点分别为点A',B',这四个点都在格点上.若线段AB上有一点P(a,b),则点P在A'B'上的对应点P'的坐标为 .12.五子棋是一种两人对弈的棋类游戏,起源于中国古代的传统黑白棋种,规则是在正方形棋盘中,由黑方先行,白方后行,轮流弈子,下在棋盘横线与竖线的交叉点上,直到某一方首先在任一方向(横向、竖向或者是斜着的方向)上连成五子者为胜.如图,这一部分棋盘是两个同学的对弈图.若白子A的坐标为(0,-2),白子B的坐标为(-2,0),为了不让白方马上获胜,此时黑方应该下在坐标为 的位置.(写出一处即可)13.如图,在三角形ABC中,已知点A(0,4),C(3,0),且三角形ABC的面积为10,则点B的坐标为 .14. 将自然数按以下规律排列:第一列第二列第三列第四列第五列…第一行1451617第二行23615…第三行98714…第四行10111213…第五行………………表中数2在第二行、第一列,与有序数对(2,1)对应,数5与有序数对(1,3)对应,数14与有序数对(3,4)对应.根据这一规律,数2021对应的有序数对为 .15.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位长度,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,-1),P5(2,-1),P6(2,0),…,则点P60的坐标是 .16.在平面直角坐标系中,规定把一个三角形先沿着x轴翻折,再向右平移两个单位称为一次变换.如图,已知等边三角形ABC的顶点B、C的坐标分别是(-1,-1),(-3,-1),把△ABC经过连续九次这样的变换得到△A′B′C′,则点A的对应点A′的坐标是__________.三、解答题17. 在如图所示的平面直角坐标系中,描出下列各点:(0,4),(-1,1),(-4,1),(-2,-1),(-3,-4),(0,-2),(3,-4),(2,-1),(4,1),(1,1),(0,4).依次连接各点,观察得到的图形,你觉得它像什么?18.常用的确定物体位置的方法有两种.如图,在4×4的边长为1的小正方形组成的网格中,标有A ,B两点(点A,B之间的距离为m).请你用两种不同的方法表述点B相对于点A的位置.19. 如图所示,已知单位长度为1的方格中有一个三角形ABC.(1)请画出三角形ABC先向上平移3格,再向右平移2格所得的三角形A'B'C'(点A,B,C的对应点分别为点A',B',C');(2)请以点A为坐标原点,水平向右为x轴正方向,竖直向上为y轴正方向建立平面直角坐标系(在图中画出),然后写出点B,B'的坐标.20. 如图,在平面直角坐标系中,A(3,4),B(4,1),求三角形AOB的面积.21.如图,在长方形OABC中,O为平面直角坐标系的原点,点A的坐标为(4,0),点C的坐标为(0,6),点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O-A-B-C-O的路线移动(即沿着长方形的边移动一周).(1)点B的坐标为 ;(2)当点P移动了4秒时,求出点P的坐标,并在图中描出此时点P的位置;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.22.如图,在平面直角坐标系中,已知A(2,3),B(0,2),C(3,0).将三角形ABC的一个顶点平移到坐标原点O处,写出平移方法和另两个对应顶点的坐标.23. 如图,若三角形A 1B 1C 1是由三角形ABC 平移后得到的,且三角形ABC 中任意一点P (x ,y )经过平移后的对应点为P 1(x-5,y+2).(1)求点A 1,B 1,C 1的坐标;(2)求三角形A 1B 1C 1的面积.24. 【阅读】在平面直角坐标系中,以任意两点P (x 1,y 1)、Q (x 2,y 2)为端点的线段中点坐标为1212,22x x y y ++⎛⎫ ⎪⎝⎭.【运用】(1)如图,矩形ONEF 的对角线交于点M ,ON 、OF 分别在x 轴和y 轴上,O 为坐标原点,点E 的坐标为(4,3),求点M 的坐标;(2)在直角坐标系中,有A (-1,2),B (3,1),C (1,4)三点,另有一点D 与点A ,B ,C 构成平行四边形的顶点,求点D 的坐标.答案一、选择题1.B 2.D 3.B 4.D5.C [解析] 如图,过点C作CD⊥y轴于点D,∴CD=50÷2-16=9,OA=OD-AD=40-30=10,∴P(9,10).故选C.6.A 【解析】本题考查了直角坐标平面内的点关于x轴的对称点,点如果关于x轴对称,则它的横坐标不变,纵坐标互为相反数,于是点(-2,3)关于x轴对称的点的坐标为(-2,-3),故选A .7.C [解析] 半径为1的半圆的弧长是×2π×1=π,由此可列下表:故选C.8.A [解析]点P坐标的变化规律可以看作每运动四次一个循环,且横坐标与运动次数相同,纵坐标规律是:第1次纵坐标为1,第3次纵坐标为2,第2次和第4次纵坐标都是0.∵2021=505×4+1,∴经过第2021次运动后,动点P 的坐标是(2021,1).故选A .二、填空题9.7 6 10.m >3 【解析】∵点P 在第二象限,∴其横坐标是负数,纵坐标是正数,则根据题意得出不等式组,解得m >3. {3-m <0m >0)11.(a-2,b+3) [解析]由图可知线段AB 向左平移了2个单位长度,向上平移了3个单位长度,所以P'(a-2,b+3).12.(2,0)或(-2,4)13.(-2,0) [解析] S 三角形ABC =BC ·4=10,解得BC=5,∴OB=5-3=2,∴点B 的坐标为(-2,0).14.(45,5) [解析] 观察表格发现:偶数列的第一行数是“列数”的平方数,奇数行的第一列数是“行数”的平方数.下面从奇数行着手:(1,1)表示1,即12;(3,1)表示9,即32;(5,1)表示25,即52;依此类推可知(45,1)表示452,即2025,于是(45,2)表示2024,(45,3)表示2023,…,(45,5)表示2021.故填(45,5).15.(20,0) [解析] 因为P 3(1,0),P 6(2,0),P 9(3,0),…,所以P 3n (n ,0).当n=20时,P 60(20,0).16.(16,1+) 3解析:可以求得点A (-2,-1-),则第一次变换后点A 的坐标为A 1(0,1+),第二次变换33后点A 的坐标为A 2(2,-1-),可以看出每经过两次变换后点A 的y 坐标就还原,每经过一次3变换x 坐标增加2.因而第九次变换后得到点A 9的坐标为(16,1+).3三、解答题17.解:描点连线如图所示,它像五角星.18.解:方法一:用有序数对(a ,b )表示.比如:以点A为原点,水平向右为x轴正方向,竖直向上为y轴正方向建立平面直角坐标系,则点B相对于点A的位置是(3,3).方法二:用方向和距离表示.比如:点B位于点A的东北方向(或北偏东45°方向),距离点A m处.19.解:(1)如图.(2)如图,以点A为坐标原点,水平向右为x轴正方向,竖直向上为y轴正方向建立平面直角坐标系,则B(1,2),B'(3,5).20.[解析]三角形AOB的三边均不与坐标轴平行,不能直接利用三角形的面积公式求面积,需通过作辅助线,用“添补”法间接计算.解:如图,过点A作AE⊥y轴于点E,过点B作BF⊥x轴于点F,延长EA,FB交于点C,则四边形OECF为长方形.由点A,B的坐标可知AE=3,OE=4,OF=4,BF=1,CE=4,CF=4,所以AC=1,BC=3,所以S三角形AOB=S长方形OECF-S三角形OAE-S三角形ABC-S三角形BOF=4×4-×4×3-×3×1-×4×1=6.5.21.解:(1)(4,6)(2)因为点P的移动速度为每秒2个单位长度,所以当点P移动了4秒时,它移动了8个单位长度,此时点P的坐标为(4,4),图略.(3)当点P到x轴的距离为5个单位长度时,有两种情况:①若点P在AB上,则点P移动了4+5=9(个)单位长度,此时点P移动了9÷2=4.5(秒);②若点P在OC上,则点P移动了4+6+4+1=15(个)单位长度,此时点P移动了15÷2=7.5(秒).综上所述,当点P到x轴的距离为5个单位长度时,点P移动了4.5秒或7.5秒.22.解:(1)若将点A平移到原点O处,则平移方法(不唯一)是向左平移2个单位长度,再向下平移3个单位长度.另两个顶点B,C的对应点的坐标分别是(-2,-1),(1,-3).(2)若将点B平移到原点O处,则平移方法是向下平移2个单位长度.另两个顶点A,C的对应点的坐标分别是(2,1),(3,-2).(3)若将点C平移到原点O处,则平移方法是向左平移3个单位长度.另两个顶点A,B的对应点的坐标分别是(-1,3),(-3,2).23.解:(1)∵三角形ABC中任意一点P(x,y)经过平移后的对应点为P1(x-5,y+2),∴三角形ABC 向左平移5个单位长度,再向上平移2个单位长度(平移方法不唯一)得到三角形A 1B 1C 1.∵A (4,3),B (3,1),C (1,2),∴点A 1的坐标为(-1,5),点B 1的坐标为(-2,3),点C 1的坐标为(-4,4).(2)三角形A 1B 1C 1的面积=三角形ABC 的面积=3×2-×1×3-×1×2-×1×2=.24.解:(1)∵四边形ONEF 是矩形,∴点M 是OE 的中点.∵O (0,0),E (4,3),∴点M 的坐标为.(2,32)(2)设点D 的坐标为(x ,y ).若以AB 为对角线,AC ,BC 为邻边构成平行四边形,则AB ,CD 的中点重合∴Error!,解得,Error!.若以BC 为对角线,AB ,AC 为邻边构成平行四边形,则AD ,BC 的中点重合∴Error!,解得,Error!.若以AC 为对角线,AB ,BC 为邻边构成平行四边形,则BD ,AC 的中点重合∴Error!,解得,Error!.综上可知,点D 的坐标为(1,-1)或(5,3)或(-3,5).。
(必考题)初中七年级数学下册第七单元《平面直角坐标系》经典习题(提高培优)
一、选择题1.第24届冬季奥林匹克运动会将于2022年由北京市和张家口市联合举行.以下能够准确表示张家口市地理位置的是( )A .离北京市200千米B .在河北省C .在宁德市北方D .东经114.8°,北纬40.8°2.在平面直角坐标系中,点Q 的坐标是()35,1m m -+.若点Q 到x 轴的距离与到y 轴的距离相等,则m 的值为( )A .3B .1C .1或3D .2或3 3.点A(-π,4)在第( )象限 A .第一象限B .第二象限C .第三象限D .第四象限 4.在平面直角坐标系中,点A 的坐标为(21a +,3-),则点A 在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 5.如图,一个粒子在第一象限内及x 轴,y 轴上运动,第一分钟内从原点运动到(1,0),第二分钟从(1,0)运动到(1,1),而后它接着按图中箭头所示的与x 轴,y 轴平行的方向来回运动,且每分钟移动1个长度单位,那么,第2017分钟时,这个粒子所在位置的坐标是( )A .(7,44)B .(8,45)C .(45,8)D .(44,7) 6.象棋在中国有三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图是一局象棋残局,已知棋子“马”和“车”表示的点的坐标分别为(4,1),(2,1)--,则在第三象限的棋子有( )A .1颗B .2颗C .3颗D .4颗 7.点A (n+2,1﹣n )不可能在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 8.在平面直角坐标系中,点P (−1,23)在( )A .第一象限B .第二象限C .第三象限D .第四象限 9.点()1,3M m m ++在x 轴上,则M 点坐标为( )A .()0,4-B .()4,0C .()2,0-D .()0,2- 10.一只跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是( )A .(4,0)B .(5,0)C .(0,5)D .(5,5) 11.某公交车上显示屏上显示的数据(),a b 表示该车经过某站点时先下后上的人数.若车上原有10个人,此公交车依次经过某三个站点时,显示器上的数据如下:()()()3,2,8,5,6,1,则此公交车经过第二个站点后车上的人数为( )A .9B .12C .6D .112.平面直角坐标系中,线段CD 是由线段AB 平移得到的,点A(-1,4)的对应点C(4,7),点B(-4,-1)的对应点D 的坐标为( )A .(-1,-4)B .(1,-4)C .(1,2)D .(-1,2) 13.在下列点中,与点A(-2,-4)的连线平行于y 轴的是( ) A .(2,-4) B .(4,-2) C .(-2,4) D .(-4,2) 14.如图,一个粒子从原点出发,每分钟移动一次,依次运动到(0,1)()()()()()1,01,11,22,13,0....→→→→→→,则2018分钟时粒子所在点的横坐标为( )A .900B .946C .990D .88615.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到1A ,第2次移动到2A ,...,第n 次移动到n A .则22020OA A ∆的面积是( )A .210112mB .2505mC .220092mD .2504m二、填空题16.如图,平面直角坐标系xOy 中,点A(4,3),点B(3,0),点C(5,3),OAB ∆沿AC 方向平移AC 长度的到ECF ∆,四边形ABFC 的面积为_________.17.若点A (m +2,﹣3)与点B (﹣4,n +5)在二四象限角平分线上,则m +n =_____. 18.在x 轴上方的点P 到x 轴的距离为3,到y 轴距离为2,则点P 的坐标为________. 19.在平面直角坐标系中,点A ,B 的坐标分别为(1,0),(0,2),若将线段AB 平移到A 1B 1,点A 1,B 1的坐标分别为(2,a),(b ,3),则a 2-2b 的值为______.20.在平面直角坐标系中,点(,)A x y 的坐标满足方程34x y -=,(1)当点A 到两条坐标轴的距离相等时,点A 坐标为__________.(2)当点A 在x 轴上方时,点A 横坐标x 满足条件__________.21.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)…按这样的运动规律经过第2021次运动后,动点P 的坐标是_____.22.点A (m ,﹣3),点B (2,n ),AB //x 轴,则n=_____.23.在平面直角坐标系中,点P (m ,1﹣m )在第一象限,则m 的取值范围是_____. 24.若x ,y 为实数,且满足330x y -++=,则 A(x ,y)在第____象限25.已知线段AB 的长度为3,且AB 平行于y 轴,A 点坐标为()32,,则B 点坐标为______.26.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,按这样的运动规律,经过第1000次运动后,动点P 的坐标是_______;经过第2019次运动后,动点P 的坐标是_______.三、解答题27.已知,在平面直角坐标系中,三角形ABC 三个顶点的坐标分别为()5,6A ,()2,3B -,()3,1C .请在所给的平面直角坐标系中按要求完成以下问题:(1)画出三角形ABC ;(2)将三角形ABC 先向下平移6个单位长度,再向左平移3个单位长度后得到的三角形111A B C (点1A ,1B ,1C 分别是点A ,B ,C 移动后的对应点)请画出三角形111A B C ;并判断线段AC 与11A C 位置与数量关系.28.在平面直角坐标系中,已知点(),B a b ,线段BA x ⊥轴于A 点,线段BC y ⊥轴于C 点,且2(2)a b -++ |22|0a b --=. (1)求A ,B ,C 三点的坐标.(2)若点D 是AB 的中点,点E 是OD 的中点,求AEC 的面积.(3)在(2)的条件下,若点()2,P a ,且AEP AEC S S =△△,求点P 的坐标.29.平面直角坐标系中有点A(m+6n,-1),B(-2,2n-m),连接AB,将线段AB先向上平移,再向右平移,得到其对应线段A'B'(点A'和点A对应,点B'和点B对应),两个端点分别为A'(2m+5n,5),B'(2,m+2n).分别求出点A'、B'的坐标.30.三角形ABC(记作△ABC)在8×8方格中,位置如图所示,A(-3,1),B(-2,4).(1)请你在方格中建立直角坐标系,并写出C点的坐标;(2)把△ABC向下平移1个单位长度,再向右平移2个单位长度,请你画出平移后的△A1B1C1,若△ABC内部一点P的坐标为(a,b),则点P的对应点P1的坐标是.(3)在x轴上存在一点D,使△DB1C1的面积等于3,求满足条件的点D的坐标.。
备战中考数学二轮专题归纳提升真题平面直角坐标系规律探究问题(解析版)
专题01 平面直角坐标系规律探究问题【知识点梳理】1、关于x 轴、y 轴或原点对称的点的坐标的特征点P (a ,b )与关于x 轴对称点的坐标为 (a ,-b ) 点P (a ,b )与关于y 轴对称点的坐标为 (-a ,b ) 点P (a ,b )与关于原点对称点的坐标为 (-a ,-b ) 口诀:关于谁对称,谁不变,另一个变号,关于原点对称都变号 2、点的平移点P (a ,b )沿x 轴向右(或向左)平移m 个单位后对应点的坐标是(a ±m,b ); 点P (a ,b )沿y 轴向上(或向下)平移n 个单位后对应点的坐标是(a,b ±n ). 口诀:横坐标右加左减,纵坐标上加下减.3、两点间的距离:在x 轴或平行于x 轴的直线上的两点P 1 (x 1,y ),P 2 (x 2,y )间的距离为|x 1−x 2| 在y 轴或平行于y 轴的直线上的两点P 1 (x ,y 1),P 2 (x ,y 2)间的距离为|y 1−y 2| 任意两点P 1 (x 1,y 1),P 2 (x 2,y 2),则线段P 1P 2的中点坐标为(x 1+x 22,y 1+y 22)任意两点P 1 (x 1,y 1),P 2 (x 2,y 2),则线段P 1P 2=√(x 1−x 2)2+(y 1−y 2)2【典例分析】【例1y)经过某种变换后得到点P ′(−y +1,x +2),我们把点P ′(−y +1,x +2)叫做点P(x,y)的终结点.已知点P 1的终结点为P 2,点P 2的终结点为P 3,点P 3的终结点为P 4,这样依次得到P 1、P 2、P 3、P 4、…、nP 、…,若点p 1的坐标为(2,0),则点P 2022的坐标为_____。
【答案】(1,4).解析:解:P 1 坐标为(2,0),则P 2坐标为(1,4),P 3坐标为(-3,3),P 4坐标为(-2,-1),P 5坐标为(2,0),∴P n 的坐标为(2,0),(1,4),(-3,3),(-2,-1)循环, ∵2022=4×505+2, ∴P 2022 坐标与P 2点重合, 故答案为(1,4).【练1】在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P′(y -1,-x+1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4,…,这样依次得到点A 1,A 2,A 3,…,A n ,….若点A 1的坐标为(3,2),则A 2023的坐标为________【答案】(-3,0)解析:解:∵A1(3,2),A2(1,-2),A3(-3,0),A4(-1,4),A5(3,2),…,∴点A n的坐标4个一循环.∵2023=505×4+3,∴点A2023的坐标与点A2的坐标相同.∴A2023的坐标为(-3,0),故答案为:(-3,0).【练2】某同学在平面直角坐标系内设计了一个动点运动的编程.若一个动点从点A1(1,3)出发,沿A2(3,5)→A3(7,9)→…运动,则点A2022的坐标为()A.(22021﹣1,22021+1)B.(22022﹣1,22022+1)C.(22022﹣2,22022+2)D.(22021﹣2021,22021+2021)【答案】B【解析】解:∵一个动点从点A1(1,3)出发,沿A2(3,5)→A3(7,9)→…运动,∴A n(2n﹣1,2n+1),∴A2022的坐标为:(22022﹣1,22022+1),故选:B.【练3】对点(x,y)的一次操作变换记为P1(x,y),定义其变换法则如下:P1(x,y)=(x+y,x﹣y);且规定P n(x,y)=P1(P n﹣1(x,y))(n为大于1的整数).如P1(1,2)=(3,﹣1),P2(1,2)=P1(P1(1,2))=P1(3,﹣1)=(2,4),P3(1,2)=P1(P2(1,2))=P1(2,4)=(6,﹣2).则P2022(1,﹣1)=.【答案】(21011,21011)【解析】解:由题意可得:P1(1,﹣1)=(0,2),P2(1,﹣1)=(2,﹣2)P3(1,﹣1)=(0,4),P4(1,﹣1)=(4,﹣4)P5(1,﹣1)=(0,8),P6(1,﹣1)=(8,﹣8)…当n为奇数时,P n(1,﹣1)=(0,),当n为偶数时,P n(1,﹣1)=(2n2,2n2),∴P2022(1,﹣1)应该等于(21011,21011).故答案是:(21011,21011).【例2】如图,在平面直角坐标系中,A1(1,2),A2(2,0),A3(3,﹣2),A4(4,0)…根据这个规律,探究可得点A2022的坐标是()A.(2022,0)B.(2022,2)C.(2021,﹣2)D.(2022,﹣2)【答案】A【解析】解:观察图形可知,点A1(1,2),A2(2,0),A3(3,﹣2),A4(4,0)…的横坐标依次是1、2、3、4、…、n,纵坐标依次是2、0、﹣2、0、2、0、﹣2、…,四个一循环,2022÷4=505…2,故点A2022坐标是(2022,0).故选:A.【练1】如图,动点P1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),……,按这样的运动规律,经过第2022次运动后,动点P的坐标是()A.(2021,0)B.(2020,1)C.(2022,0)D.(2022,1)【答案】C【解析】分析图象可以发现,点P的运动每4次位置循环一次.每循环一次向右移动四个单位,∴2022=4×505+2.当第505循环结束时,点P位置在(2020,0),在此基础之上运动两次到(2022,0).故选C.【练2】如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第一次从原点O运动到点P1(1,1),第二次运动到点P2(2,0),第三次运动到P3(3,﹣2),…,按这样的运动规律,第2022次运动后,动点P2022的坐标是()A.(2022,1)B.(2022,2)C.(2022,﹣2)D.(2022,0)【答案】D【解析】解:观察图象,动点P第一次从原点O运动到点P1(1,1),第二次运动到点P2(2,0),第三次运动到P3(3,﹣2),第四次运动到P4(4,0),第五运动到P5(5,2),第六次运动到P6(6,0),…,结合运动后的点的坐标特点,可知由图象可得纵坐标每6次运动组成一个循环:1,0,﹣2,0,2,0;∵2022÷6=337,∴经过第2022次运动后,动点P的纵坐标是0,故选:D.【练3】如图,平面直角坐标系中,一个点从原点O出发,按向右→向上→向右→向下的顺序依次不断移动,每次移动1个单位,其移动路线如图所示,第1次移到点A1,第二次移到点A2,第三次移到点A3,…,第n次移到点A n,则点A2022的坐标是_____________.【答案】(1011,1).【解析】观察图象可知,点A的纵坐标每4个点循环一次,∵2022=505×4+2,∴点A2022的纵坐标与点A2的纵坐标相同,∵A2(1,1),A6(3,1),A10(5,1)……,∴点A2022的坐标是(1011,1).【例3】如图,在平面直角坐标系上有个点A(-1,O),点A第1次向上跳动一个单位至点A1(-1,1),紧接着第2次向右跳动2个单位至点A2(1,1),第3次向上跳动1个单位,第4次向左跳动3个单位,第5次又向上跳动1个单位,第6次向右跳动4个单位,…,依次规律跳动下去,点A第2022次跳动至点A2022的坐标是( )A.(-505, 1011)B.(505, 1010)C.(-506, 1010)D.(506, 1011)【答案】D【解析】解:设第n次跳动至点A n,观察,发现:A(-1,0),A1(-1,1),A2(1,1),A3(1,2),A4(-2,2),A5(-2,3),A6(2,3),A7(2,4),A8(-3,4),A9(-3,5),…,∴A4n(-n-1,2n),A4n+1(-n-1,2n+1),A4n+2(n+1,2n+1),A4n+3(n+1,2n+2)(n为自然数).∵2022=505×4+2,∴A2022(505+1,505×2+1),即(506,1011).故选:D.【练1】如图所示,在平面直角坐标系上有个点P(1,0),点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(−1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位……依此规律跳动下去,点P第99次跳动至点P99的坐标是_____【答案】(-25,50)【解析】解:由题中规律可得出如下结论:设点Px的横坐标的绝对值是n,则在y轴右侧的点的下标分别是4(n-1)和4n-3,在y轴左侧的点的下标是:4n-2和4n-1;判断P199的坐标,就是看99=4(n-1)和99=4n-3和99=4n-2和99=4n-1这四个式子中哪一个有负整数解,从而判断出点的横坐标.由上可得:点P第99次跳动至点P99的坐标是(-25,50)故答案为:(-25,50).【练2】如图,在平面直角坐标系上有点A0(1,0),点A0第一次跳动至点A1(−1,1),第二次点A1跳动至点A2(2,1),第三次点A跳动至点A3(−2,2),第四次点A3跳动至点A4(3,2),……依2此规律跳动下去,则点A2021与点A2022之间的距离是()A.2023B.2022C.2021D.2020【答案】A【解析】观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),…第2n次跳动至点的坐标是(n+1,n),则第2022次跳动至A2022点的坐标是(1012,1011),第2021次跳动至点A2021的坐标是(﹣1011,1011).∵点A2021与点A2022的纵坐标相等,∴点A2021与点A2022之间的距离=1012﹣(﹣1011)=2023.故选:A.【练3】在平面直角坐标系内原点O(0,0)第一次跳动到点A1(0,1),第二次从点A1跳动到点A2(1,2),第三次从点A2跳动到点A3(﹣1,3),第四次从点A3跳动到点A4(﹣1,4),…,按此规律下去,则点A2021的坐标是()A.(673,2021)B.(674,2021)C.(﹣673,2021)D.(﹣674,2021)【答案】B【解析】解:因为A1(0,1),A2(1,2),A3(﹣1,3),A4(﹣1,4),A5(2,5),A6(﹣2,6),A7(﹣2,7),A8(3,8),…A3n﹣1(n,3n﹣1),A3n(﹣n,3n),A3n+1(﹣n,3n+1)(n为正整数),∵3×674﹣1=2021,∴n=674,所以A2021(674,2021),故选:B.【例4】如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1)(1,1),(1,2),(2,2)……根据这个规律,第2022个点的坐标为________【答案】(45,6)【解析】解:观察图形,可知:第1个点的坐标为(1,0),第4个点的坐标为(1,1),第9个点的坐标为(3,0),第16个点的坐标为(1,3),…,∴第(2n-1)2个点的坐标为(2n-1,0)(n为正整数).∵2025=452,∴第2025个点的坐标为(45,0).又∵2025-3=2022,∴第2022个点在第2025个点的上方3个单位长度处,∴第2022个点的坐标为(45,3).故答案为:(45,3).【练1】如图,一个蒲公英种子从平面直角坐标系的原点O出发,向正东走3米到达点A1,再向正北方向走6米到达点A2,再向正西方向走9米到达点A3,再向正南方向走12米到达点A4,再向正东方向走15米到达点A5,以此规律走下去,当种子到达点A10时,它在坐标系中坐标为()A.(﹣12,﹣12)B.(15,18)C.(15,﹣12)D.(﹣15,18)【答案】B【解析】解:根据题意可知:O A1=3,A1A2=6,A2A3=9,A3A4=12,A4A5=15,A5A6=18,A9A10=30,∴A1点坐标为(3,0),A2点坐标为(3,6),A3点坐标为(﹣6,6),A4点坐标为(﹣6,﹣6),A5点坐标为(9,﹣6),A6点坐标为(9,12),以此类推,A9点坐标为(15,﹣12),所以A10点横坐标为15,纵坐标为﹣12+30=18,∴A10点坐标为(15,18),故选:B.【练2】如图,一个点在第一象限及x轴、y轴上移动,在第一秒钟,它从原点移动到点(1,0),然后按照图中箭头所示方向移动,即(0,0)→(1,0)→(1,1)→(0,1)→(0,2)→…,且每秒移动一个单位,那么第2022秒时,点所在位置的坐标是( )A .(2,44)B .(41,44)C .(44,41)D .(44,2)【答案】【解析】解:观察可发现,点到(0,2)用4=22秒,到(3,0)用9=32秒,到(0,4)用16=42秒,则可知当点离开x 轴时的横坐标为时间的平方,当点离开y 轴时的纵坐标为时间的平方, 此时时间为奇数的点在x 轴上,时间为偶数的点在y 轴上, ∵2022=452﹣3=2025﹣3,∴第2025秒时,动点在(45,0),故第2022秒时,动点在(45,0)向左一个单位,再向上2个单位, 即(44,2)的位置. 故选:D .【练3】如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,1),(3,0),(3,−1)…根据这个规律探索可得,第99个点的坐标为( )A.(14,−1)B.(14,0)C.(14,1)D.(14,2)【答案】C【解析】解:在横坐标上,第一列有一个点,第二列有2个点…第n 个有n 个点, 并且奇数列点数对称而偶数列点数y 轴上方比下方多一个, 所以奇数列的坐标为(n,n−12),(n,n−12−1),…,(n,1−n 2);偶数列的坐标为(n,n2),(n,n2−1),…,(n,1−n2), ∵1+2+3+4+……+13=91∴第99个点位于第14列自上而下第7行.−6),即(14,1).代入上式得(14,142故选C.【例5】如图,在平面直角坐标系中,将边长为3,4,5的直角△ABO沿x轴向右滚动到△AB1C1的位置,再到△A1B1C2的位置…依次进行下去,发现A(3,0),A1(12,3),A2(15,0)…那么点A2022的坐标为.【答案】(12135,0)【解析】解:∵∠AOB=90°,点A(3,0),B(0,4),根据勾股定理得AB=5,根据旋转可知:OA+AB1+B1C2=3+5+4=12,所以点A1(12,3),A2(15,0);继续旋转得A3(24,3),A4(27,0);…发现规律:A2n﹣1(12n,3),A2n(12n+3,0),∵2022=2n,∴n=1011,∴点A2022的坐标为(12135,0),故答案为:(12135,0).【练1】如图,动点P从(0,3)出发沿所示方向运动,每当碰到长方形的边时反弹,反弹时反射角等于入射角,当点P第2022次碰到长方形的边时点P的坐标为.【答案】(0,3【解答过程】解:如图所示:经过6次反弹后动点回到出发点(0,3),∵2022÷6=337∴当点P第2022次碰到矩形的边时与P点起点位置重合,∴点P的坐标为(0,3).故答案为:(0,3).【练2】如图,将边长为2的等边三角形沿x轴正方向连续翻折2019次,依次得到点P1,P2,P3,...,P2022,则点P2022的坐标是()A.(2022,2)B.(2022,√3)C.(4043,2)D.(4043, √3)【答案】D【解析】解:由题意可知P1是1P的横坐标是3,P3的横坐标是5,P4的横坐标是7…依此类推下去,P n的横坐标是2n-1,∴P2022的横坐标是2×2022-1=4043纵坐标都是√3,故选:D.连续作旋转变换,依【练3】如图,在直角坐标系中,已知点A(−3,0),B(0,4),对OAB次得到Δ1,Δ2,Δ3,Δ4,…,则∆2022的直角顶点的坐标为______.【答案】(8088,0)【解析】解:∵点A(-3,0)、B(0,4),∴AB=√32+42=5由图可知,每三个三角形为一个循环组依次循环,一个循环组前进的长度为:4+5+3=12,∵2022÷3=674,∴∆2022的直角顶点是第674个循环组的最后一个三角形的直角顶点;∵674×12=8088,∴∆2022的直角顶点的坐标为(8088,0).故答案为(8088,0).【例6】如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推……则正方形OB2021B2022C2022的顶点B2022的坐标是_____.【答案】(0,-22011)【解析】解:∵正方形OA1B1C1的边长为1,∴OB1=√2∴OB2=2∴B2(0,2),同理可知B3(-2,2),B4(-4,0),B5(-4,-4),B6(0,-8),B7(8,-8),B9(16,16),B10(0,32).由规律可以发现,每经过8次作图后,点的坐标符号与第一次坐标的符号相同,每次正方形的边长变为原来的√2倍,∵2022÷8=252⋯⋯6,∴B8n+6(0,-24n+3),∴B2022(0,-22011).故答案为:(0,-22011).【练1】如图,在平面直角坐标系中,等腰直角三角形OAA1的直角边OA在x轴上,点A1在第一象限,且OA=1,以点A1为直角顶点,0A1为一直角边作等腰直角三角形OA1A2,再以点A2为直角顶点,OA2为直角边作等腰直角三角形OA2A3…依此规律,则点A2022的坐标是_____.【答案】(0,-22011)【解析】解:由等腰直角三角形的性质,可知:A 1(1,1),A 2(0,2),A 3(﹣2,2),A 4(0,﹣4),A 5(﹣4,﹣4),A 6(0,﹣8),A 7(8,﹣8),A 8(16,0),A 9(16,16),A 10(0,32),A 11(﹣32,32),…,∵2022=252×8+6∴点A 8n+6的坐标为(0,24n+3)(n 为自然数).∴点A 2022的坐标为(0,24×252+3),即(0,-22011),故答案为:(0,-22011).【练2】在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为(1,0),点D 的坐标为(0,2).长CB 交x 轴于点A 1,作正方形A 1B 1C 1C ;延长C 1B 1交x 轴于点2A ,作正方形A 2B 2C 2C 1……按这样的规律进行下去,第2022个正方形的面积为_____.【答案】5×(32)4042.【解析】解:∵点A 的坐标为(1,0),点D 的坐标为(0,2)∴正方形ABCD 的边长为√5,设其面积为S 1=5,依此类推,接下来的面积依次为S 2,S 3,S 4⋯⋯第2022个正方形的面积为S 2022,又∵三角形相似,∴ OA OD =A 1B AB =A 2B 1A 1B 1=⋯=12. ∴ S 2=5×94,S 3=5×(94)2…… ∴S 2022=5×(94)2022−1=5×(94)2021=5×(32)4042.【练3】如图,在平面直角坐标系xOy中,B1(0,1),B2(0,3),B3(0,6),B4(0,10),…,以B1B2为对角线作第一个正方形A1B1C1B2,以B2B3为对角线作第二个正方形A2B2C2B3,以B3B4为对角线作第三个正方形A3B3C3B4,…,如果所作正方形的对角线B n B n+1都在y 轴上,且B n B n+1的长度依次增加1个单位长度,顶点A n都在第一象限内(n≥1,且n为整数),那么A1的纵坐标为;用n的代数式表示A n的纵坐标:.【答案】2;【解析】解:作A1D⊥y轴于点D,则B1D=B1B2÷2=(3﹣1)÷2=1,∴A1的纵坐标=B1D+B1O=1+12,同理可得A2的纵坐标=OB2+(B2B3)÷2=3+(6﹣3)÷2 4.5,∴A n的纵坐标为,故答案为2,.。
广西百色市七年级数学下册第七章【平面直角坐标系】复习题(培优提高)
一、选择题1.已知点A (0,-6),点B (0,3),则A ,B 两点间的距离是( )A .-9B .9C .-3D .32.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 2C 3C 2,…按如图所示的方式放置,点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y =x +1和x 轴上,已知点B 1(1,1),B 2(3,2),则B n 的坐标是( )A .(2n ﹣1,2n ﹣1)B .(2n ﹣1,2n ﹣1)C .(2n ﹣1,2n ﹣1)D .(2n ﹣1,2n ﹣1)3.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A ()2,1-和B ()2,3--,那么第一架炸机C 的平面坐标是( )A .()2,1B .()3,1-C .()2,1-D .()3,14.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,……按这样的运动规律,经过第2020次运动后,动点P 的坐标是( )A .()2020,0B .()2020,1C .()2021,1D .()2021,2 5.若实数a ,b 满足2(2)30a b ++-=,则点P(a ,b)所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 6.下列说法正确的是( )A .若0ab =,则点(,)P a b 表示原点B .点(1,)a 在第三象限C .已知点(3,3)A -与点(3,3)B ,则直线//AB x 轴D .若0ab >,则点(,)P a b 在第一或第三象限7.如图,在平面直角坐标系中,若干个半径为3个单位长度,圆心角为60°的扇形组成一条连续的曲线,点P 从原点O 出发,沿这条曲线向右上下起伏运动,点在直线上的速度为每秒3个单位长度,点在弧线上的速度为每秒π个单位长度,则2020秒时,点P 的坐标是( )A .(2020,0)B .(3030,0)C .( 30303)D .(30303) 8.课间操时,小华、小军和小刚的位置如图所示,如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,那么小刚的位置可以表示为( )A.(5,4) B.(4,5) C.(3,4) D.(4,3)9.在平面直角坐标系中,将点A(﹣2,﹣2)先向右平移6个单位长度再向上平移5个单位长度得到点A',则点A'的坐标是()A.(4,5)B.(4,3)C.(6,3)D.(﹣8,﹣7)10.如图,线段OA,OB分别从与x轴和y轴重合的位置出发,绕着原点O顺时针转动,已知OA每秒转动45︒,OB的转动速度是每秒转动30,则第2020秒时,OA与OB之间的夹角的度数为()A.90︒B.145︒C.150︒D.165︒11.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中(1,0)→(2,0)→(2,1)→(1,1)→(1,2)→(2,2)…根据这个规律,则第2016个点的横坐标为()A.44 B.45 C.46 D.47二、填空题12.如图,()3,3A -,()1,2P -,P 关于直线OA 的对称点为1P ,1P 关于x 轴的对称点为2P ,2P 关于y 轴的对称点为3P ,3P 关于直线OA 的对称点为4P ,4P 关于x 轴的对称点为5P ,5P 关于y 轴的对称点为6P ,6P 关于直线OA 的对称点为7P ,…,则2020P 的坐标是__________.13.已知点A(3,b)在第一象限,那么点B(-3,-b)在第________象限.14.某人从A 点沿北偏东60︒的方向走了100米到达点B ,再从点B 沿南偏西10︒的方向走了100米到达点C ,那么点C 在点A 的南偏东__度的方向上.15.若电影票上座位是12排5号可记为(12,5),则(5,6)表示_______________. 16.写一个第三象限的点坐标,这个点坐标是_______________.17.在平面直角坐标系中,点A ,B 的坐标分别为(1,0),(0,2),若将线段AB 平移到A 1B 1,点A 1,B 1的坐标分别为(2,a),(b ,3),则a 2-2b 的值为______.18.如图,已知A 1(1,0),A 2(1,1),A 3(﹣1,1),A 4(﹣1,﹣1),A 5(2,﹣1),…,则坐标为(﹣505,﹣505)的点是______.19.如图,在平面直角坐标系中,已如点A (1,1),B (-1,1),C (-1,-2),D (1,-2),把一根长为2019个单位长度没有弹性的细线(线的相细忽略不计)的一端固定在A 处,并按A B C D A →→→→的规律紧绕在四边形ABCD 的边上,则细线的另一端所在位置的点的坐标是__________.20.在平面直角坐标系中,对于平面内任一点(),a b ,若规定以下三种变换:①()(),,a b a b ∆=-;②(),a b O (),a b =--;③()(),,a b a b Ω=-按照以上变换例如:()()()1,21,2∆O =-,则()()2,5O Ω等于__________.21.已知P (a,b ),且ab <0,则点P 在第_________象限. 三、解答题22.如图,一只甲虫在55⨯的方格(每小格边长为1)上沿着网格线运动,它从A 处出发去看望B 、C 、D 处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A 到B 记为:(1,4)A B →++,从B 到A 记为:(1,4)B A →--,其中第一个数表示左右方向,第二个数表示上下方向,那么图中:(1)A C →(________,________),B C →(________,________),C D →(________,________);(2)若这只甲虫从A 处去甲虫P 处的行走路线依次为(+2,+2),(+2,-1),(-2,+3),(-1,-2),请在图中标出P 的位置.23.如图,已知平面直角坐标系中,点A 在y 轴上,点B 、C 在x 轴上,S △ABO =8,OA =OB ,BC =10,点P 的坐标是(-6,a )(1)求△ABC 三个顶点A 、B 、C 的坐标;(2)连接PA 、PB ,并用含字母a 的式子表示△PAB 的面积(a ≠2);(3)在(2)问的条件下,是否存在点P ,使△PAB 的面积等于△ABC 的面积?如果存在,请求出点P 的坐标;若不存在,请说明理由.24.如图,在平面直角坐标系中,△ABC 的顶点为(5,1)A -,(1,0)B -,(1,5)C -. (1)作出△ABC 关于y 轴对称图形△A 1B 1C 1;(2)若点P 在x 轴上,且△ABP 与△ABC 面积相等,求点P 的坐标.25.如图为某校区分布图的一部分,方格纸中每个小方格是边长为1个单位的正方形,若教学楼的坐标为A(1,2),图书馆的坐标为(-2,-1).解答以下问题:(1)在图中找到坐标系中的原点O ,并建立直角坐标系;(2)若体育馆的坐标为C(1,-3),餐厅坐标为D (2,0),请在图中标出体育馆和餐厅的位置; (3)顺次连接教学楼、图书馆、体育馆、餐厅得到四边形ABCD ,求四边形ABCD 的面积.一、选择题1.如图,小球起始时位于(3,0)处,沿所示的方向击球,小球运动的轨迹如图所示.如果小球起始时位于(1,0)处,仍按原来方向击球,小球第一次碰到球桌边时,小球的位置是(0,1),那么小球第2020次碰到球桌边时,小球的位置是( )A .(3,4)B .(5,4)C .(7,0)D .(8,1)2.在平面直角坐标系中,点Q 的坐标是()35,1m m -+.若点Q 到x 轴的距离与到y 轴的距离相等,则m 的值为( )A .3B .1C .1或3D .2或33.如图,在棋盘上建立平面直角坐标系,若使“将”位于点(-1,-2),“象”位于点(4,-1),则“炮”位于点( )A .(2,-1)B .(-1,2)C .(-2,1)D .(-2,2) 4.象棋在中国有三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图是一局象棋残局,已知棋子“马”和“车”表示的点的坐标分别为(4,1),(2,1)--,则在第三象限的棋子有( )A .1颗B .2颗C .3颗D .4颗5.已知点A 坐标为()2,3-,点A 关于x 轴的对称点为A ',则A '关于y 轴对称点的坐标为( )A .()2,3--B .()2,3C .()2,3-D .以上都不对 6.点()P 3,2-在平面直角坐标系中所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 7.在平面直角坐标系中,点P(-5,0)在( )A .第二象限B .x 轴上C .第四象限D .y 轴上8.如图是医院、公园和超市的平面示意图,超市B 在医院O 的南偏东25︒的方向上,且到医院的距离为300m ,公园A 到医院O 的距离为400m .若∠90AOB =︒,则公园A 在医院O 的( )A .北偏东75︒方向上B .北偏东65︒方向上C .北偏东55︒方向上D .北偏西65°方向上9.点(),A m n 满足0mn =,则点A 在( )A .原点B .坐标轴上C .x 轴上D .y 轴上 10.如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2,则表示数25-的点P 应落在( )A .线段AB 上 B .线段BO 上C .线段OC 上D .线段CD 上 11.若把点A (-5m ,2m -1)向上平移3个单位后得到的点在x 轴上,则点A 在( ) A .x 轴上 B .第三象限 C .y 轴上 D .第四象限二、填空题12.如图,平面直角坐标系xOy 中,点A(4,3),点B(3,0),点C(5,3),OAB ∆沿AC 方向平移AC 长度的到ECF ∆,四边形ABFC 的面积为_________.13.小华在小明南偏西75°方向,则小明在小华______方向.(填写方位角) 14.若点M (5,a )关于y 轴的对称点是点N (b ,4),则(a+b )2020= __15.如图,有A ,B ,C 三点,如果A 点用()1,1表示,B 点用()2,3表示,则C 点的坐标为_______.16.若不在第一象限的点(),22A x x -+到两坐标轴距离相等,则A 点坐标为 _________. 17.在平面直角坐标系中,有点A (a ﹣2,a ),过点A 作AB ⊥x 轴,交x 轴于点B ,且AB =2,则点A 的坐标是___.18.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2)…按这样的运动规律经过第2021次运动后,动点P 的坐标是_____.19.在平面直角坐标系中,对于任意三点A 、B 、C 的“矩面积”,给出如下定义:水平底a 为任意两点的横坐标差的最大值,铅垂高h 为任意两点的纵坐标差的最大值,则“矩面积”S =ah .若A (1,2),B (﹣2,1),C (0,t )三点的“矩面积”是18,则t 的值为_____. 20.已知点 P(b+1,b-2)在x 轴上,则P 的横坐标值为____21.若点A (-2,n )在x 轴上,则点B(n-2,n+1)在第_____象限 .三、解答题22.已知在平面直角坐标系中,ABC 三个顶点的坐标分别为:(3,1)A --,(2,4)B --,(1,3)C -.(1)作出ABC ;(2)若将ABC 向上平移3个单位后再向右平移2个单位得到111A B C △,请作出111A B C △. 23.在如图的直角坐标系中,将三角形ABC 平移后得到三角形111A B C ,他们的对应点坐标如下表所示:ABC(,0)A a (3,0)B (5,5)C 111A B C △ 1(4,2)A 1(7,)B b1(,)C c d (1)观察表中各对应点坐标变化,写出平移规律:________.(2)在坐标系中画出两个三角形.(3)求出111A B C △面积.24.已知三角形ABC 在平面直角坐标系中,点(3,6)A ,点()1,3B ,点(4,2)C ,则三角形ABC 的面积为多少?25.如图,在长方形OABC 中,O 为平面直角坐标系的原点,点A 坐标为(a ,0),点C 的a +|b﹣6|=0,点B在第一象限内,点P从原点出发,以坐标为(0,b),且a、b满足4每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.(1)a=,b=,点B的坐标为;(2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.一、选择题1.在平面直角坐标系xOy 中,线段AB 的两个端点坐标分别为(1,1)A --,(1,2)B ,平移线段AB ,得到线段A B '',已知A '的坐标为(3,1)-,则点B '的坐标为( )A .(4,2)B .(5,2)C .(6,2)D .(5,3)2.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,……按这样的运动规律,经过第2020次运动后,动点P 的坐标是( )A .()2020,0B .()2020,1C .()2021,1D .()2021,2 3.若点(),A m n 到y 轴的距离是它到x 轴距离的两倍,则( ).A .2m n =B .2m n =C .2m n =D .2m n = 4.点(,)M x y 在第二象限,且230,40x y -=-=,则点M 的坐标是( )A .(3,2)-B .(3,2)-C .(2,3)-D .(2,3)- 5.如图,在平面直角坐标系中,、、A B C 三点的坐标分别是()()()1,2,4,2,2,1--,若以A B C D 、、、为顶点的四边形为平行四边形,则点D 的坐标不可能是( )A .()7,1-B .()3,1--C .()1,5D .()2,56.在平面直角坐标系中,点P(-5,0)在( )A .第二象限B .x 轴上C .第四象限D .y 轴上7.一个图形的各点的纵坐标乘以2,横坐标不变,这个图形发生的变化是( ) A .横向拉伸为原来的2倍B .纵向拉伸为原来的2倍C .横向压缩为原来的12D .纵向压缩为原来的128.如图,在平面直角坐标系中,若干个半径为3个单位长度,圆心角为60°的扇形组成一条连续的曲线,点P 从原点O 出发,沿这条曲线向右上下起伏运动,点在直线上的速度为每秒3个单位长度,点在弧线上的速度为每秒π个单位长度,则2020秒时,点P 的坐标是( )A .(2020,0)B .(3030,0)C .( 3030,3)D .(3030,﹣3) 9.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到1A ,第2次移动到2A ,...,第n 次移动到n A .则22020OA A ∆的面积是( )A .210112mB .2505mC .220092mD .2504m 10.若点(1,)A n -在x 轴上,则点(1,1)B n n +-在( ).A .第一象限B .第二象限C .第三象限D .第四象限 11.如图所示,某战役缴获敌人防御工事坐标地图碎片,依稀可见,一号暗堡的坐标为(4,2),四号暗堡的坐标为(2,4)-,原有情报得知:敌军指挥部的坐标为(0,0),你认为敌军指挥部的位置大约是( )A .A 处B .B 处C .C 处D .D 处二、填空题12.如图,平面直角坐标系xOy 中,点A(4,3),点B(3,0),点C(5,3),OAB ∆沿AC 方向平移AC 长度的到ECF ∆,四边形ABFC 的面积为_________.13.下列四个命题中:①对顶角相等;②如果两条直线被第三条直线所截,那么同位角相等;③如果两个实数的平方相等,那么这两个实数也相等;④当0m ≠时,点()2,P m m -在第四象限内.其中真命题有________(填序号).14.在电影院内找座位,将“4排3号”简记为(4,3),则(8,7)表示______15.已知点A (2m +,3-)和点B (4,1m -),若直线//AB x 轴,则m 的值为______. 16.点P 先向左平移4个单位,再向上平移1个单位,得到点Q(2,-3),则点P 坐标为__ 17.已知点M 在y 轴上,纵坐标为4,点P (6,﹣4),则△OMP 的面积是__. 18.下图是利用平面直角坐标系画出的老北京一些地点的示意图,这个坐标系分别以正东和正北方向为x 轴和y 轴的正方向,如果表示右安门的点的坐标为(-2,-3),表示朝阳门的点的坐标为(3,2),那么表示西便门的点的坐标为___________________.19.对于平面坐标系中任意两点()11,A x y ,()22,B x y 定义一种新运算“*”为:()()()11221221,*,,x y x y x y x y =.若()11,A x y 在第二象限,()22,B x y 在第三象限,则*A B 在第_________象限.20.如图,已知点A 的坐标为(−2,2),点C 的坐标为(2,1),则点B 的坐标是____.21.如图,直线BC 经过原点O ,点A 在x 轴上,AD BC ⊥于D .若A (4,0),B (m ,3),C (n ,-5),则AD BC =______.三、解答题22.在平面直角坐标系中,有A(﹣2,a +1),B(a ﹣1,4),C(b ﹣2,b )三点.(1)当点C 在y 轴上时,求点C 的坐标;(2)当AB ∥x 轴时,求A ,B 两点间的距离;(3)当CD ⊥x 轴于点D ,且CD =1时,求点C 的坐标.23.已知三角形ABC 在平面直角坐标系中,点(3,6)A ,点()1,3B ,点(4,2)C ,则三角形ABC的面积为多少?24.如图,方格纸中每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,ABC的顶点在格点上,且A(2,−4),B(5,−4),C(4,−1)(1)画出ABC;(2)求出ABC的面积;''',在图中(3)若把ABC向上平移2个单位长度,再向左平移4个单位长度得到A B C ''',并写出B'的坐标画出A B C25.如图,在平面直角坐标系中有一个△ABC.(1)将△ABC向右平移3个单位得到△A1B1C1,画出△A1B1C1.(2)写出△A1B1C1,三个顶点的坐标.。
平面直角坐标系培优提高卷(含答案)
平面直角坐标系培优提高一、选择题。
1. 某校数学课外小组,在坐标纸上为学校的一块空地设计植树方案如下:第K 棵树种植在P k (X k ,Y k )处,其中X 1=1,Y 1=1,当k ≥2时,X k =X k –1+1-5([51-k ]-[52-k ]),Y k =Y k –1+[51-k ]-[52-k ],[a ]表示非负实数a 的整数部分,例如[2.6]= 2,[0.2]= 0,按此方案,第2013棵树种植点的坐标是( )A .(3,402)B .(3,403)C .(4,403)D .(5,403)2.如图,在平面直角坐标系中,已知点A (-1,1),B (-1,-2),将线段AB 向下平移2个单位,再向右平移3个单位得到线段A /B /,设点),(y x P 为线段A /B /上任意一点,则y x ,满足的条件为( )A .3=x ,14-≤≤-yB .2=x ,14-≤≤-yC .14-≤≤-x ,3=yD .14-≤≤-x ,2=y(第2题) (第3题) (第4题)3.如图,在平面直角坐标系中,A (1,1),B (﹣1,1),C (﹣1,﹣2),D (1,﹣2).把一条长为2014个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处,并按A ﹣B ﹣C ﹣D ﹣A …的规律绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是( )A .(﹣1,0)B .(1,﹣2)C .(1,1)D .(﹣1,﹣1)4.如图,A ,B 的坐标为(2,0),(0,1),若将线段AB 平移至A 1B 1,则a +b 的值为( )A .2B .3C .4D .55.在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n 步的走法是:当n 能被3整除时,则向上走1个单位;当n 被3除,余数为1时,则向右走1个单位;当n 被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是( )A .(66,34)B .(67,33)C .(100,33)D .(99,34)6.在平面直角坐标系中,对于平面内任一点(m ,n ),规定以下两种变换:①()()f m n m n =-,,,如()()f 2121=- ,,;②()()g m n m n =--,,,如()()g 2121=-- ,,.按照以上变换有:()()()f g 34f 3434⎡⎤=--=-⎣⎦ ,,,,那么()g f 32⎡-⎤⎣⎦ ,]等于( )A .(3,2)B .(3,2-,)C .(3-,2)D .(3-,2-,)7.如图,矩形OABC 的边OA 、OC 分别在x 轴、y 轴上,点B 的坐标为(3,2).点D 、E 分别在AB 、BC 边上,BD =BE =1.沿直线DE 将△BDE 翻折,点B 落在点B ′处,则点B ′的坐标为 ( )A .(1,2)B .(2,1)C .(2,2)D .(3,1)8.如图,△ABC 的两个顶点BC 均在第一象限,以点(0,1)为位似中心,在y 轴左方作△ABC 的位似图形△AB ′C ′,△ABC 与△A ′B ′C 的位似比为1:2.若设点C 的纵坐标是m ,则其对应点C ′的纵坐标是( )A . ﹣(2m ﹣3)B . ﹣(2m ﹣2)C . ﹣(2m ﹣1)D . ﹣2m9.已知点A (0,0),B (0,4),C (3,t +4),D (3,t ).记N (t )为ABCD 内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N (t )所有可能的值为( )A .6、7 、8 、7、8 、8、9二、填空题。
平面直角坐标系经典训练题(含答案)
平面直角坐标系1.下列各点中,在第三象限的点是( )A .()1,4--B .()1,4-C .()1,4-D .()1,4 2.在直角坐标系中,若点P(2x -6,x -5)在第四象限,则x 的取值范围是( ) A .3<x <5 B .-5<x <3 C .-3<x <5 D .-5<x <-3 3.在平面直角坐标系中,点(-2,-3)到x 轴的距离是( ) A .-2 B .-3 C .2 D .3 4.在平面直角坐标系的第四象限内有一点M ,到x 轴的距离为4,到y 轴的距离为5,则点M 的坐标为( )A .()4,5-B .(5,4)-C .(4,5)-D .(5,4)- 5.如图,半径为1的圆,在x 轴上从原点O 开始向右滚动一周后,落定点M 的坐标为( )A .(0,2π)B .(2π,0)C .(π,0)D .(0,π) 6.如图,在平面直角坐标系中,以原点O 为圆心作弧,分别与x 轴和y 轴的正半轴交于点A 和点B ,再分别以A 、B 为圆心,以大于12AB 的长为半径作弧,两弧交于点P (m ﹣1,2n ),则实数m 与n 之间的关系是( )A .m ﹣2n =1B .m +2n =1C .2n ﹣m =1D .n ﹣2m =17.已知点P (3,﹣1),则点P 关于x 轴对称的点Q _____.8.在平面直角坐标系中,点A (x ﹣1,2﹣x )关于y 轴对称的对称点在第一象限,则实数x 的取值范围是_____.9.如果点P (m +3,m +1)在x 轴上,则点P 的坐标为________10.已知,AB ∥x 轴,点A 的坐标是(3,2),并且AB=5,则点B 的坐标为________. 11.若点M(a ﹣3,a+1)在y 轴上,则M 点的坐标为______.12.如图,点A 、B 、C 的坐标分别是(0,2)、(2,2)、(0,-1),那么以点A 、B 、C 为顶点的平行四边形的第四个顶点D 的坐标是:________.13.已知点(,)P x y 的坐标满足||3x =2=,且0xy <,则点P 的坐标是__________ 14.如图,若在象棋棋盘上建立平面直角坐标系,使棋子“将”的位置的坐标为(0,0),棋子“象”的位置的坐标为(2,0),则“炮”的位置的坐标为_______.答案第1页,总1页 参考答案1.A2.A3.D4.D5.B6.A7.(3,1)8.x <19.(2,0)10.(8,2)或(-2,2) 11.()0,412.(2,-1)或(-2,-1)或(2,5) 13.()3,4-14.( 3 3 )-,。
平面直角坐标系练习题
平面直角坐标系练习题一、选择题1. 在平面直角坐标系中,点P(3, 2)位于第几象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限2. 已知点A(3, 4)和点B(2, 1),则线段AB的中点坐标为?A. (1/2, 3/2)B. (1/2, 7/2)C. (1/2, 3/2)D. (1/2, 3/2)3. 点M(0, a)在平面直角坐标系中位于?A. x轴B. y轴C. 第一象限D. 无法确定4. 若点P在第二象限,则点P的横坐标和纵坐标的符号分别为?A. 正,正B. 正,负C. 负,正D. 负,负二、填空题1. 在平面直角坐标系中,点Q的坐标为(4,5),则点Q关于原点的对称点坐标为______。
2. 已知点A(2, 3)和点B(2, 3),则线段AB的斜率为______。
3. 点P在x轴上,且到原点的距离为5个单位长度,则点P的坐标为______或______。
4. 在平面直角坐标系中,点(x,y)到y轴的距离为|x|,则该点到x轴的距离为______。
三、解答题1. 已知点A(1, 2)和点B(3, 4),求线段AB的长度。
2. 在平面直角坐标系中,求点P(3, 4)、Q(3, 4)和R(3, 4)构成的三角形PQR的面积。
3. 已知点M(2, 1)和点N(4, 3),求线段MN的垂直平分线的方程。
4. 在平面直角坐标系中,求经过点A(0, 2)、B(4, 0)和C(0, 2)的圆的方程。
四、作图题2. 画出点P(3, 2)关于x轴的对称点P',并画出点Q(4, 2)关于原点的对称点Q'。
3. 在同一平面直角坐标系中,画出直线y = 2x + 1和直线y = x + 3,并标出它们的交点。
4. 画出以原点为中心,半径为4的圆,并标出圆上与x轴正半轴夹角为45度的点。
五、综合题1. 已知点A(1, 2)和点B(2, 1),求线段AB的中垂线方程。
2. 在平面直角坐标系中,点P(a, b)到原点的距离等于到点Q(3, 4)的距离,求点P的坐标。
平面直角坐标系自我提高测试题
图3相帅炮《平面直角坐标系》综合测试题班级: 姓名: 评定:一、选择题(本题共12个小题,每小题3分,共36分)1.如果用有序数对(4,2)表示课室里第4列第2排的座位,则位于第5列第4排的座位应记作( )A 、(4,5)B 、(5,4)C 、(5、4)D 、(4、5)2.直角坐标系中,点在第二象限,且 到 轴、 轴距离分别为3,7,则 点坐标为( )A 、B 、C 、D 、 3.将点A (-4,2)向上平移3个单位长度得到的点B 的坐标是( )A. (-1,2)B. (-1,5)C. (-4,-1)D. (-4,5)4.已知点(23)P -,关于y 轴的对称点为()Q a b ,,则a b +的值是( )A.1 B.1- C.5 D.5-5.在平面直角坐标系中,点()1,12+-m 一定在( )A .第一象限B .第二象限C .第三象限D .第四象限6.点(x ,1-x )不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限7、已知03)2(2=++-b a ,则),(b a P --的坐标为( )A 、 )3,2(B 、 )3,2(-C 、 )3,2(-D 、 )3,2(--8.将点P ()3,4-先向左平移2个单位,再向下平移2个单位得点P ′,则点P ′的坐标为( )A .()5,2-B .()1,6-C .()5,6-D .()1,2-9.如果yx <0,),(y x Q 那么在( )象限 ( ) A 、 第四 B 、 第二 C 、 第一、三 D 、 第二、四10.已知平面直角坐标系内点),(y x 的纵、横坐标满足2x y =,则点),(y x 位于( )A 、 x 轴上方(含x 轴)B 、 x 轴下方(含x 轴)C 、 y 轴的右方(含y 轴)D 、 y 轴的左方(含y 轴)11.如图1所示的象棋盘上,若○帅位于点(1,-2)上,○相位于点(3,-2)上,则○炮位于点( )A 、(-1,1)B 、(-1,2)C 、(-2,1)D 、(-2,2)12. 已知点P (a,b ),ab >0,a +b <0,则点P 在( )A .第一象限B .第二象限C .第三象限D .第四象限二、填空题(每空3分,共30分)13.已知点 且 ∥ 轴,则 ________, ________.14.若P (x ,y )是第四象限内的点,且2,3x y ==,则点P 的坐标是15.在平面直角坐标系内,点A (-2,3)到x 轴的距离是 ,到y 轴的距离是 ,所在象限是16.一只蚂蚁由(0,0)先向上爬4个单位长度,再向右爬3个单位长度,再向下爬2个单位长度后,它所在位置的坐标是17.线段C D 是由线段A B 平移得到的点A (1,4)的对应点为C (4,7),则点 B (-4,-1)的对应点D 的坐标为18.已知线段MN 平行于x 轴,且MN 的长度为5,若M (2,-2),那么点N 的坐标是__________.19.已知点P 的坐标(2-a ,3a+6),且点P 到两坐标轴的距离相等,则点P 的坐标是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面直角坐标系
一、平面内点的坐标的特征
1. 点P的坐标是(2,-3),则点P在第 象限.
2. 若点P(x ,y )的坐标满足xy ﹥0,则点P在第 象限;
若点P(x ,y )的坐标满足xy ﹤0,且在x 轴上方,则点P在第 象限.
若点P (a ,b )在第三象限,则点P '(-a ,-b +1)在第 象限;
3.若点P(m -1, m )在第二象限,则下列关系正确的是 ( )
A.10<<m
B.0<m
C.0>m
D.1>m
4.点(x ,1-x )不可能在 ( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
5.设点P 的坐标(x ,y ),根据下列条件在横线上写出点P 在坐标平面内的位置:
(1)0xy =;_________ (2)0xy >;___________ (3)0x y +=.____________
6、已知点M (a+1,2-a )在y 轴上,则a=________
二、点与坐标轴的距离
1.若点A的坐标是(-3,5),则它到x 轴的距离是 ,到y 轴的距离是 .
2、点A(2,3)到x 轴的距离为 ;点B(-4,0)到y 轴的距离为 ;
3、X 轴上的点P 到Y 轴的距离为2.5,则点P的坐标为____________
4、点P (x ,y )在第四象限,且|x|=3,|y|=2,则P 点的坐标是 。
5.点 A 在第二象限 ,它到 x 轴 、y 轴的距离分别是 3 、2,则坐标是 ;
6.在平面直角坐标系中,点P (2,1)向左平移3个单位得到的的点在( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
7.若点P (a ,b )到x 轴的距离是2,到y 轴的距离是3,则这样的点P 有 ( ) A.1个 B.2个 C.3个 D.4个
三、特殊的点的坐标1、已知点A(-3,2),点B (1,4),
(1)若CA 平行于x 轴,BC 平行于y 轴,则点C 的
坐标是 ;
(2)若CA 平行于y 轴,BC 平行于x 轴,则点C 的坐标是
2.点A(a,2a-3)在第二、第四象限坐标轴夹角平分线上, 那么a= _______.
3.已知点P(a,-2),Q(3,b)且PQ ∥y 轴, 则a_______,b _______.
4、(提高题)在平面直角坐标系中,A ,B ,C 三点的 坐标分别为(0,0),(0,-5),(-2,-2),
•以这三点为平行四边形的三个顶点,
则第四个顶点的坐标为_________________。
四、平移与对称点的坐标: 1.线段CD 是由线段AB 平移得到的,点A (-1,3)的对应点C (2,5),则B (-3,-2)的对应点D 的坐标为 。
2.若将△ABC 向x 的负半轴平移3个单位,各顶点的坐标变化特征是 。
3. 点P(1-,2)关于x 轴的对称点的坐标是 ,关于y 轴的对称点的坐标是 ,关于原点的对称点的坐标是 ;
4.若点A(m,-2),B(1,n)关于原点对称,则m= ,n= .
5.已知:点P 的坐标是(m ,1-),且点P 关于x 轴对称的点的坐标是(3-,n 2),则_________,==n m ;
6.若 ),()与,(13-m n N m M 关于原点对称 ,则 __________,==n m ;
7.直角坐标系中,将某一图形的各顶点的横坐标都乘以1-,纵坐标保持不变,得到的图形与原图形关于_____轴对称;将某一图形的各顶点的纵坐标都乘以1-,横坐标保持不变,得到的图形与原图形关于____轴对称.
五、建立平面直角坐标系 对于边长为6的正△ABC ,建立适当的直角坐标系,
并写出各个顶点的坐标.
六、有关面积的计算
1、
2
七、拓展延伸
1.已知直角三角形ABC 的顶点A(2 ,0),B(2 ,3).A 是直角顶点,斜边长为5,求顶点C 的坐标 .
2. 将点)4,4(-P 绕原点按顺时针方向旋转90度后的坐标为___________。
按逆时针方向旋转45度后的坐标为____________。
3. 如图,在平面直角坐标系中,直线l 是第一、三象限的角平分线 实验与探究: (1) 由图观察易知A (0,2)关于直线l 的对称点A '的坐标为(2,0),请在图中分别标明 B (5,3) 、C (-2,5) 关于直线l 的对称点B '、C '的位置,并写出他们的坐标: B ' 、 C ' ; 归纳与发现:
(2) 结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P (a ,b )关于第一、三象限的角平分线l 的对称点P '的坐标为________ (不必证明);
运用与拓广:
(3) 已知两点D (1,-3)、E (-1,-4),试在直线l 上 确定一点Q ,使点Q 到D 、E 两点的距离之和 最小。
4. 如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),…,根据这个规律探究可得,第100个点的坐标为 .
(第22题图)x
巩固提升题:
1.平面直角坐标系内一点P(-2,3)关于原点对称的点的坐标是()
A.(3,-2)B.(2,3)C.(-2,-3)D.(2,-3)
2.在平面直角坐标系中,点P(2,3)关于y轴的对称点在()
A.第一象限B.第二象限C.第三象限D.第四象限
3.已知点P(x,y)在第四象限,且|x|=3,|y|=5,则P点的坐标是()
A.(-3,-5)B.(5,-3)C.(3,-5)D.(-3,5)
4.如果点E(-a,-a)在第一象限,那么点F(-a2,-2a)在()
A.第四象限B.第三象限C.第二象限D.第一象限
5.若a>0,b<-2,则点(a,b+2)在()
A.第一象限B.第二象限C.第三象限D.第四象限
6.已知点P关于x轴的对称点P1坐标是(2,3),那么点P关于原点的对称点P2坐标()A.(-3,-2)B.(2,-3)C.(-2,-3)D.(-2,3)
7.矩形ABCD中,三点的坐标分别是(0,0);(5,0);(5,3).则第四点的坐标是()A.(0,3)B.(3,0) C.(0,5) D.(5,0)
8.点P(6,-8) 到x轴的距离是,到y轴的距离是,到原点的距离是_______.
9.直角坐标系中有一点M(a,b),其中ab=0,则点M的位置在.
10.已知P点坐标为(2a+1,a-3),点P在x轴上,则a= ;点P在y轴上,则a= ;11.点C到x轴的距离为1,到y轴的距离为3,且在第三象限,则C点坐标是。
12.点A在x轴上,位于原点的右侧,距离坐标原点5个单位长度,则此点的坐标为;点B在y轴上,位于原点的下方,距离坐标原点5个单位长度,则此点的坐标为;点C 在y轴左侧,在x轴下方,距离每个坐标轴都是5个单位长度,则此点的坐标为。
13.三角形ABC中BC边上的中点为M,在把△ABC向左平移2个单位,再向上平移3个单位后,
得到△A1B1C1的B1C1边上中点M1此时的坐标为(-1,0),则M点坐标为.
14.课间操时,小华、小军、小刚的位置如下图左,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )
A.(5,4) B.(4,5) C.(3,4) D.(4,3)
15.一个菱形ABCD相邻的内角分别是60度和180度,对角线AC长是6 (AC>AB),
取两条对角线所在的直线为坐标轴,求四个顶点坐标.
16.点A(0,-1),点B(0,-4),点C在x轴上,如果△ABC的面积为15,求点C的坐标.
17.△ABC三个顶点A、B、C的坐标分别为A(2,-1)、B(1,-3)、C(4,--2).
(1)在直角坐标系中画出△ABC;
(2)把△A1B1C1向右平移4个单位,再向下平移3个单位,恰好得到△ABC,试写出△A1B1C1三个顶点的坐标,并在直角坐标系中描出这些点;
(3)求出△A1B1C1的面积.
18.已知平行四边形的三个顶点的坐标分别为O(0,0)、A(2,0)、B(1, 1),则第四个顶点C的坐标是多少?。