新课标人教A版高中数学(必修3)期末测试题
《3.3 几何概型》(同步训练)高中数学必修3_人教A版_2024-2025学年
《3.3 几何概型》同步训练(答案在后面)一、单选题(本大题有8小题,每小题5分,共40分)1、在掷一枚公平的六面骰子的实验中,事件A为“掷出的点数为偶数”,事件B 为“掷出的点数大于3”。
那么事件A与事件B的关系是:A、互斥事件B、对立事件C、相互独立事件D、互不相交事件2、在掷一枚均匀的骰子两次的实验中,事件A:“至少掷出一个6点”与事件B:“两次掷出的点数相同”的概率分别为P(A)和P(B),则下列结论正确的是()A、P(A) > P(B)B、P(A) < P(B)C、P(A) = P(B)D、无法确定P(A)与P(B)的大小关系3、在区间[0,4]上随机取一个实数,则该数大于1的概率是())A.(14)B.(34)C.(12)D.(134、从装有5个红球、4个蓝球和3个黄球的袋子里,随机取出2个球,取出的两个球颜色相同的概率是:A. 5/21B. 8/21C. 12/21D. 15/215、在一个圆盘上随机投针,圆盘的半径为10cm,针的长度为6cm,恰好针完全落在圆盘内的概率是多少?A. 0.3B. 0.4C. 0.5D. 0.66、在下列四个事件中,属于古典概型的是()A、抛掷一枚硬币,它落地时是正面的概率B、从一副52张的扑克牌中,随机抽取一张,抽取到红桃的概率C、从0,1,2,3,4中任取两个不同的自然数,所取得的两个数的和为偶数的概率D、从10000个零件中随机抽取一个,它是合格品的概率7、在等边三角形ABC中,D为BC边上的中点,E为AD上的中点,F为CE的延长线与AB的交点,若AB=6,则AF与BF的比值是:A. 1:1B. 2:1C. 3:1D. 4:18、在一个正方形中,随机取一点,该点距离正方形中心的距离与正方形边长的比值是:A. 0.5B. 0.1C. 0.4D. 0.6二、多选题(本大题有3小题,每小题6分,共18分)1、在下列事件中,属于几何概型的是()A. 抛掷一枚均匀的硬币,出现正面的概率B. 从一副52张的扑克牌中随机抽取一张,抽到红桃的概率C. 从0到1之间随机取一个数,这个数小于0.5的概率D. 从5个不同的球中随机抽取3个,抽到3个特定颜色的概率2、设在长为2的线段上随机取两个点,将线段分为三段,若这三段可以构成三角形的概率为P,则P的值为:A、1/4B、1/2C、1/3D、1/63、在一个等边三角形ABC中,内角A的对边长度为8cm,现从顶点A向BC边引一高AD,并假设在BC边上有一点P使得AP与AD垂直。
2021高中同步创新课堂数学优化方案人教A版必修3习题:第二章章末综合检测(二) Word版含答案
章末综合检测(二)[同学用书单独成册](时间:120分钟,满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法错误的是()A.在统计里,最常用的简洁随机抽样方法有抽签法和随机数法B.一组数据的平均数肯定大于这组数据中的每个数据C.平均数、众数与中位数从不同的角度描述了一组数据的集中趋势D.一组数据的方差越大,说明这组数据的波动越大解析:选B.平均数不大于最大值,不小于最小值.2.(2021·高考四川卷)某学校为了了解三班级、六班级、九班级这三个班级之间的同学视力是否存在显著差异,拟从这三个班级中按人数比例抽取部分同学进行调查,则最合理的抽样方法是() A.抽签法B.系统抽样法C.分层抽样法D.随机数法解析:选C.依据班级不同产生差异及按人数比例抽取易知应为分层抽样法.3.对变量x,y有观测数据(x i,y i)(i=1,2,…,10),得散点图1;对变量u,v有观测数据(u i,v i)(i=1,2,…,10),得散点图2.由这两个散点图可以推断()A.变量x与y正相关,u与v正相关B.变量x与y正相关,u与v负相关C.变量x与y负相关,u与v正相关D.变量x与y负相关,u与v负相关解析:选C.由点的分布知x与y负相关,u与v正相关.4.某学校有老师200人,男同学1 200人,女同学1 000人,现用分层抽样的方法从全体师生中抽取一个容量为n的样本,已知女同学一共抽取了80人,则n的值是()A.193 B.192C.191 D.190解析:选B .1 000×n200+1 200+1 000=80,解得n=192.5.(2021·高考湖南卷)在一次马拉松竞赛中,35名运动员的成果(单位:分钟)的茎叶图如图所示.若将运动员按成果由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成果在区间[139,151]上的运动员人数是()A.3 B.4C.5 D.6解析:选B.35÷7=5,因此可将编号为1~35的35个数据分成7组,每组有5个数据,在区间[139,151]上共有20个数据,分在4个小组中,每组取1人,共取4人.6.从存放号码分别为1,2,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并登记号码,统计结果如下:卡片号码 1 2 3 4 5 6 7 8 9 10取到的次数13 8 5 7 6 13 18 10 11 9A.0.53 B.0.5C.0.47 D.0.37解析:选A.1100(13+5+6+18+11)=0.53.7.在某项体育竞赛中,七位裁判为一选手打出的分数如下:90899095939493去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为()A.92,2 B.92,2.8C.93,2 D.93,2.8解析:选B.去掉最高分95,最低分89,所剩数据的平均值为15(90×2+93×2+94)=92,方差s2=15[(90-92)2×2+(93-92)2×2+(94-92)2]=2.8.8.(2022·高考湖北卷改编)依据如下样本数据x 3 4 5 6 7 8y 4.0 2.5 -0.5 0.5 -2.0 -3.0得到的回归方程为y^=b^x+a^,则()A.a^>0,b^>0 B.a^>0,b^<0C.a^<0,b^>0 D.a^<0,b^<0解析:选B.作出散点图如下:观看图象可知,回归直线y^=b^x+a^的斜率b^<0,当x=0时,y^=a^>0.故a^>0,b^<0.9.小波一星期的总开支分布如图1所示,一星期的食品开支如图2所示,则小波一星期的鸡蛋开支占总开支的百分比为()图1图2A.1% B.2%C.3% D.5%解析:选C.由图2知,小波一星期的食品开支为300元,其中鸡蛋开支为30元,占食品开支的10%,而食品开支占总开支的30%,所以小波一星期的鸡蛋开支占总开支的百分比为3%,故选C.10. 某校高一、高二班级各有7个班参与歌咏竞赛,他们的得分的茎叶图如图所示,对这组数据分析正确的是()A.高一班级的中位数大,高二班级的平均数大B.高一班级的平均数大,高二班级的中位数大C.高一班级的平均数、中位数都大D.高二班级的平均数、中位数都大解析:选A.由茎叶图可以看出,高一班级的中位数为93,高二班级的中位数为89,所以高一班级的中位数大.由计算得,高一班级的平均数为91,高二班级的平均数为6477,所以高二班级的平均数大.故选A.11.(2022·高考山东卷)为了争辩某药品的疗效,选取若干名志愿者进行临床试验,全部志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的挨次分别编号为第一组,其次组,…,第五组,如图是依据试验数据制成的频率分布直方图.已知第一组与其次组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()A.6 B.8C.12 D.18解析:选C.志愿者的总人数为20(0.16+0.24)×1=50,所以第三组人数为50×0.36=18,有疗效的人数为18-6=12.12.甲、乙、丙三名射箭运动员在某次测试中各射箭20次,三人的测试成果如表所示:甲的成果环数7 8 9 10频数 5 5 5 5乙的成果环数7 8 9 10频数 6 4 4 6丙的成果环数7 8 9 10频数 4 6 6 4s1、s2、s3分别表示甲、乙、丙三名运动员这次测试成果的标准差,则有()A.s3>s1>s2B.s2>s1>s3C.s1>s2>s3D.s2>s3>s1解析:选B.由于s21=1n(x21+x22+…+x2n)-x2,所以s21=120(5×72+5×82+5×92+5×102)-8.52=73.5-72.25=1.25=54,所以s1=2520.同理s2=2920,s3=2120,所以s2>s1>s3,故选B.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.(2021·高考广东卷)已知样本数据x1,x2,…,x n的均值x-=5,则样本数据2x1+1,2x2+1,…,2x n +1的均值为________.解析:由条件知x-=x1+x2+…+x nn=5,则所求均值x-0=2x1+1+2x2+1+…+2x n+1n=2(x 1+x 2+…+x n )+n n=2x -+1=2×5+1=11.答案:1114.一个总体中有100个个体,随机编号0,1,2,…,99,依从小到大的编号挨次平均分成10个小组,组号依次为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定假如在第1组随机抽取的号码为m ,那么在第k 组中抽取的号码个位数字与m +k 的个位数字相同,若m =8,则在第8组中抽取的号码是________.解析:由题意知:m =8,k =8,则m +k =16,也就是第8组的个位数字为6,十位数字为8-1=7,故抽取的号码为76.答案:7615.已知回归方程y ^=4.4x +838.19,则可估量x 与y 的增长速度之比约为________. 解析:x 与y 的增长速度之比应是回归方程斜率的倒数,即522.答案:52216.某校从参与高一班级期中考试的同学中随机抽取60名同学,将其数学成果(均为整数)分成六段[40,50),[50,60),…,[90,100]后得到如图所示的部分频率分布直方图.在统计方法中,同一组数据常用该组区间的中点值作为代表,观看图形的信息,据此估量本次考试的平均分为________.解析:在频率分布直方图中,全部小长方形的面积和为1,设[70,80)的小长方形面积为x ,则(0.01+0.015×2+0.025+0.005)×10+x =1,解得x =0.3,即该组频率为0.3,所以本次考试的平均分为45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71.答案:71三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤) 17.(本小题满分10分)有以下三个案例:案例一:从同一批次同类型号的10袋牛奶中抽取3袋检测其三聚氰胺含量;案例二:某公司有员工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.从中抽取容量为40的样本,了解该公司职工收入状况;案例三:从某校1 000名高一同学中抽取10人参与一项主题为“学雷锋,树新风”的志愿者活动.(1)你认为这些案例应接受怎样的抽样方式较为合适? (2)在你使用的分层抽样案例中写出抽样过程;(3)在你使用的系统抽样案例中按以下规定取得样本编号:假如在起始组中随机抽取的号码为L (编号从0开头),那么第K 组(组号K 从0开头,K =0,1,2,…,9)抽取的号码的百位数为组号,后两位数为L +31K 的后两位数.若L =18,试求出K =3及K =8时所抽取的样本编号.解:(1)案例一用简洁随机抽样,案例二用分层抽样,案例三用系统抽样. (2)①分层,将总体分为高级职称、中级职称、初级职称及其余人员四层; ②确定抽样比例k =40800=120;③按上述比例确定各层样本数分别为8人、16人、10人、6人; ④按简洁随机抽样方式在各层确定相应的样本; ⑤汇总构成一个容量为40的样本.(3)K =3时,L +31K =18+31×3=111,故第三组样本编号为311.K =8时,L +31K =18+31×8=266, 故第8组样本编号为866.18.(本小题满分12分)某制造商为运动会生产一批直径为40 mm 的乒乓球,现随机抽样检查20只,测得每只球的直径(单位:mm ,保留两位小数)如下:40.02 40.00 39.98 40.00 39.99 40.00 39.98 40.01 39.98 39.99 40.00 39.99 39.95 40.01 40.02 39.98 40.00 39.99 40.00 39.96(1)完成下面的频率分布表,并画出频率分布直方图;分组 频数 频率 频率组距 [39.95,39.97) [39.97,39.99) [39.99,40.01) [40.01,40.03]合计(2)假定乒乓球的直径误差不超过0.02 mm 为合格品,若这批乒乓球的总数为10 000只,试依据抽样检查结果估量这批产品的合格只数.解:(1)分组频数频率频率组距 [39.95,39.97) 2 0.10 5 [39.97,39.99) 4 0.20 10 [39.99,40.01) 10 0.50 25 [40.01,40.03]4 0.20 10 合计201(2)由于抽样的20只产品中在[39.98,40.02]范围内有18只,所以合格率为1820×100%=90%,所以10 000×90%=9 000(只).即依据抽样检查结果,可以估量这批产品的合格只数为9 000.19. (本小题满分12分)甲、乙两位同学参与数学竞赛培训,现分别从他们在培训期间参与的若干次预赛成果中随机抽取8次,记录如下:甲:82 81 79 78 95 88 93 84 乙:92 95 80 75 83 80 90 85(1)用茎叶图表示这两组数据;(2)现要从中选派一人参与数学竞赛,从统计学的角度(平均数和方差)考虑,你认为选派哪位同学参与合适?请说明理由.解:(1)作出茎叶图如下:(2)x -甲=18(78+79+81+82+84+88+93+95)=85,x -乙=18(75+80+80+83+85+90+92+95)=85.s 2甲=18[(78-85)2+(79-85)2+(81-85)2+(82-85)2+(84-85)2+(88-85)2+(93-85)2+(95-85)2]=35.5,s 2乙=18[(75-85)2+(80-85)2+(80-85)2+(83-85)2+(85-85)2+(90-85)2+(92-85)2+(95-85)2]=41. 由于x -甲=x -乙,s 2甲<s 2乙,所以甲的成果较稳定,派甲参赛比较合适.20.(本小题满分12分)随着我国经济的进展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:年份 2011 2022 2021 2022 2021 时间代号t 1 2 3 4 5 储蓄存款y (千亿元)567810(1)求y 关于t 的回归方程y ^=b ^t +a ^;附:回归方程y ^=b ^t +a ^中,b ^=∑i =1nt i y i -n t - y-∑i =1n t 2i -n t-2,a ^=y --b ^t -.解:(1)列表计算如下:i t i y i t 2i t i y i 1 1 5 1 5 2 2 6 4 12 3 3 7 9 21 4 4 8 16 32 5 5 10 25 50 ∑153655120这里n =5,t -=1n ∑i =1n t i =155=3,y -=1n ∑i =1ny i =365=7.2.又∑i =1n t 2i -n t -2=55-5×32=10,∑i =1n t i y i -n t -y -=120-5×3×7.2=12,从而b ^=1210=1.2,a ^=y --b ^t -=7.2-1.2×3=3.6,故所求回归方程为y ^=1.2t +3.6.(2)将t =6代入回归方程可猜测该地区2022年的人民币储蓄存款为y ^=1.2×6+3.6=10.8(千亿元). 21.(本小题满分12分)甲乙二人参与某体育项目训练,近期的五次测试成果得分状况如图.(1)分别求出两人得分的平均数与方差;(2)依据图和上面算得的结果,对两人的训练成果作出评价. 解:(1)由图象可得甲、乙两人五次测试的成果分别为 甲:10分,13分,12分,14分,16分; 乙:13分,14分,12分,12分,14分. x 甲=10+13+12+14+165=13,x 乙=13+14+12+12+145=13,s 2甲=15[(10-13)2+(13-13)2+(12-13)2+(14-13)2+(16-13)2]=4, s 2乙=15[(13-13)2+(14-13)2+(12-13)2+(12-13)2+(14-13)2]=0.8. (2)由s 2甲>s 2乙可知乙的成果较稳定. 从折线图看,甲的成果基本呈上升状态,而乙的成果上下波动,可知甲的成果在不断提高,而乙的成果则无明显提高.22.(本小题满分12分)某化工厂的原料中,有A 和B 两种有效成分,现随机抽取了10份原料样品进行抽样检测,测得A 和B 的含量如下表所示:i 1 2 3 4 5 6 7 8 9 10 x 67 54 72 64 39 22 58 43 46 34 y 24 15 23 19 16 11 20 16 17 13其中x 表示成分A 的百分含量x %,y 表示成分B 的百分含量y %.(1)作出两个变量y 与x 的散点图;(2)两个变量y 与x 是否线性相关?若是线性相关,求出线性回归方程.解:(1)依据y 从小到大的挨次调整表中数据(这样有利于描点,如用画图软件则不需要调整表格数据), 如下表所示:x 22 34 54 43 39 46 64 58 72 67 y11131516161719202324散点图如图所示:(2)观看散点图可知,y 与x 是线性相关关系. i 12 3 4 5 6 7 8 9 10 合计 x i 22 34 54 43 39 46 64 58 72 67 499 y i 11 13 15 16 16 17 19 20 23 24 174 x i y i 242 442 810 688 624 7821 216 1 160 1 656 1 608 9 228x 2i4841 1562 916 1 849 1 521 2 116 4 0963 3645 184 4 48927175所以x =49.9,y =17.4,10x - y -=8 682.6,10x 2=24 900.1设所求的线性回归方程是y ^=a ^+b ^x ,b ^=∑i =110x i y i -10x -y-∑i =110x 2i -10x2=9 228-8 682.627 175-24 900.1=545.42 274.9≈0.239 7,a ^=y -b ^x =17.4-0.239 7×49.9≈5.439 0, 所求的线性回归方程是y ^=0.239 7x +5.439 0.。
最新人教版高中数学必修三测试题及答案全套
最新人教版高中数学必修三测试题及答案全套阶段质量检测(一)(A 卷 学业水平达标) (时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分) 1.下列给出的赋值语句正确的有( ) ①2=A ; ②x +y =2; ③A -B =-2; ④A =A *AA .0个B .1个C .2个D .3个解析:选B 对于①,赋值语句中“=”左右不能互换,即不能给常量赋值,左边必须为变量,右边必须是表达式,若改写为A =2就正确了;②赋值语句不能给一个表达式赋值,所以②是错误的,同理③也是错误的,这四种说法中只有④是正确的.2.计算机执行下面的程序段后,输出的结果是( )a =1b =3a =a +b b =a -bPRINT a ,bA .1 3B .4 1C .0 0D .6 0解析:选B 输出a =1+3=4,b =4-3=1. 3.把二进制数10 110 011(2)化为十进制数为( ) A .182 B .181 C .180D .179解析:选D 10 110 011(2)=1×27+0×26+1×25+1×24+0×23+0×22+1×21+1×20=128+32+16+2+1=179.4.下图是计算函数y =⎩⎪⎨⎪⎧-x , x ≤-1,0, -1<x ≤2x 2, x >2的值的程序框图,则在①、②和③处应分别填入的是( )A.y=-x,y=0,y=x2B.y=-x,y=x2,y=0C.y=0,y=x2,y=-xD.y=0,y=-x,y=x2解析:选B当x>-1不成立时,y=-x,故①处应填“y=-x”;当x>-1成立时,若x>2,则y=x2,即②处应填“y=x2”,否则y=0,即③处应填“y=0”.5.下面的程序运行后的输出结果为()A.17 B.19C.21 D.23解析:选C第一次循环,i=3,S=9,i=2;第二次循环,i=4,S=11,i=3;第三次循环,i=5,S=13,i=4;第四次循环,i=6,S=15,i=5;第五次循环,i=7,S=17,i=6;第六次循环,i=8,S=19,i=7;第七次循环,i=9,S=21,i=8.此时i=8,不满足i<8,故退出循环,输出S=21,结束.6.下面的程序运行后,输出的值是( )i =0DOi =i +1LOOP UNTIL 2^i >2 000 i =i -1PRINT i ENDA .8B .9C .10D .11解析:选C 由题意知,此程序为循环语句,当i =10时,210=1 024;当i =11时,211=2 048>2 000,输出结果为i =11-1=10.7.下列程序框图运行后,输出的结果最小是( )A .2 015B .2 014C .64D .63解析:选D 由题图知,若使n (n +1)2>2 015,n 最小为63.8.(全国甲卷)中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n =2,依次输入的a 为2,2,5,则输出的s =( )A .7B .12C.17 D.34解析:选C第一次运算:s=0×2+2=2,k=1;第二次运算:s=2×2+2=6,k=2;第三次运算:s=6×2+5=17,k=3>2,结束循环,s=17.9.执行如图所示的程序框图,输出的结果为()A.55 B.89C.144 D.233解析:选B初始值:x=1,y=1,第1次循环:z=2,x=1,y=2;第2次循环:z=3,x=2,y =3;第3次循环:z=5,x=3,y=5;第4次循环:z=8,x=5,y=8;第5次循环:z=13,x=8,y =13;第6次循环:z=21,x=13,y=21;第7次循环:z=34,x=21,y=34;第8次循环:z=55,x =34,y=55;第9次循环:z=89,x=55,y=89;第10次循环时z=144,循环结束,输出y,故输出的结果为89.10.(四川高考)秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例.若输入n,x的值分别为3,2,则输出v的值为()A.9B.18C.20 D.35解析:选B由程序框图知,初始值:n=3,x=2,v=1,i=2,第一次循环:v=4,i=1;第二次循环:v=9,i=0;第三次循环:v=18,i=-1.结束循环,输出当前v的值18.故选B.二、填空题(本大题共4小题,每小题5分,共20分)11.459与357的最大公约数是________.解析:459=357×1+102,357=102×3+51,102=51×2,所以459与357的最大公约数为51. 答案:5112.对任意非零实数a ,b ,若a ⊗b 的运算原理如图所示,则log 28⊗⎝⎛⎭⎫12-2=________.解析:log 28<⎝⎛⎭⎫12-2,由题图,知log 28⊗⎝⎛⎭⎫12-2=3⊗4=4-13=1.答案:113.(山东高考)执行如图所示的程序框图,若输入的a ,b 的值分别为0和9,则输出的i 的值为________.解析:第1次循环:a =0+1=1,b =9-1=8,a <b ,此时i =2; 第2次循环:a =1+2=3,b =8-2=6,a <b ,此时i =3; 第3次循环:a =3+3=6,b =6-3=3,a >b ,输出i =3. 答案:314.(天津高考改编)阅读如图所示的程序框图,运行相应的程序,则输出S 的值为________.解析:S=4不满足S≥6,S=2S=2×4=8,n=1+1=2;n=2不满足n>3,S=8满足S≥6,则S=8-6=2,n=2+1=3;n=3不满足n>3,S=2不满足S≥6,则S=2S=2×2=4,n=3+1=4;n=4满足n>3,输出S=4.答案:4三、解答题(本大题共4小题,共50分.解答时应写出文字说明、证明过程或运算步骤.)15.(本小题满分12分)如图是求1+12+13+…+1100的算法的程序框图.(1)标号①②处应分别是什么?(2)根据框图用“当”型循环语句编写程序.解:(1)①k<101?(k<=100?)②S=S+1k. (2)程序如下:16.(本小题满分12分)以下是一个用基本算法语句编写的程序,根据程序画出其相应的程序框图.解:算法语句每一步骤对应于程序框图的步骤,其框图如下:17.(本小题满分12分)画出求12-22+32-42+…+992-1002的值的程序框图.解:程序框图如图所示:18.(本小题满分14分)已知某算法的程序框图如图所示,若将输出的(x,y)值依次记为(x1,y1),(x2,y2),…,(x n,y n).(1)若程序运行中输出的一个数组是(9,t),求t的值;(2)程序结束时,共输出(x,y)的组数为多少?(3)写出程序框图的程序语句.解:(1)由程序框图知:当x=1时,y=0;当x=3时,y=-2;当x=9时,y=-4,所以t=-4;(2)当n=1时,输出一对,当n=3时,又输出一对,…,当n=2 015时,输出最后一对,共输出(x,y)的组数为1 007;(3)程序框图的程序语句如下:(B卷能力素养提升)(时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分)1.算法的每一步都应该是确定的,能有效执行的,并且得到确定的结果,这是指算法的( ) A .有穷性 B .确定性 C .普遍性 D .不唯一性 答案:B2.已知函数y =⎩⎨⎧x ,x ≥0,x +1,x <0,输入自变量x 的值,输出对应的函数值.设计程序框图时,需用到的基本逻辑结构是( )A .顺序结构B .条件结构C .顺序结构、条件结构D .顺序结构、循环结构 答案:C3.用“辗转相除法”求得360和504的最大公约数是( ) A .72 B .36 C .24D .2520解析:选A 504=360×1+144,360=72×5+0,故最大公约数是72. 4.若十进制数26等于k 进制数32,则k 等于( ) A .4 B .5 C .6D .8解析:选D 由题意知,26=3×k 1+2,解得k =8.5.阅读下图所示的程序框图,运行相应的程序,输出的结果是( )A .3B .11C .38D .123解析:选B 根据框图可知第一步的运算为:a =1<10,满足条件,可以得到a =12+2=3,又因为a=3<10,满足条件,所以有a=32+2=11,因为a=11>10,不满足条件,输出结果a=11.6.对于下列算法:如果在运行时,输入2,那么输出的结果是()A.2,5 B.2,4C.2,3 D.2,9解析:选A本题主要考查条件语句的应用.输入a的值2,首先判断是否大于5,显然2不大于5,然后判断2与3的大小,显然2小于3,所以结果是b=5,因此结果应当输出2,5.7.根据下面的算法,可知输出的结果S为()第一步,i=1;第二步,判断i<10是否成立,若成立,则i=i+2,S=2i+3,重复第二步,否则执行下一步;第三步,输出S.A.19 B.21C.25 D.27解析:选C该算法的运行过程是:i=1,i=1<10成立,i=1+2=3,S=2×3+3=9,i=3<10成立,i=3+2=5,S=2×5+3=13,i=5<10成立,i=5+2=7,S=2×7+3=17,i=7<10成立,i=7+2=9,S=2×9+3=21,i=9<10成立,i=9+2=11,S=2×11+3=25,i=11<10不成立,输出S=25.8.按下列程序运行的结果是()A.10.5 B.11.5C.16 D.25解析:选D A=4.5,第一个条件结构中的条件不满足,则B=6-3=3,B=3+2=5;而第二个条件结构中的条件满足,则B=5×5=25,所以运行结果为25.9.如图是求x1,x2,…,x10的乘积S的程序框图,图中空白框中应填入的内容为()A.S=S*(n+1)B.S=S*x n+1C.S=S*nD.S=S*x n解析:选D由题意知,由于求乘积,故空白框中应填入S=S*x n.10.(全国卷Ⅱ)下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为14,18,则输出的a=()A.0 B.2C.4 D.14解析:选B a=14,b=18.第一次循环:14≠18且14<18,b=18-14=4;第二次循环:14≠4且14>4,a=14-4=10;第三次循环:10≠4且10>4,a=10-4=6;第四次循环:6≠4且6>4,a=6-4=2;第五次循环:2≠4且2<4,b=4-2=2;第六次循环:a=b=2,跳出循环,输出a=2,故选B.二、填空题(本大题共4小题,每小题5分,共20分)11.将二进制数110 101(2)化成十进制数,结果为________,再转为七进制数,结果为________.解析:110 101=1×25+1×24+0×23+1×22+0×21+1=32+16+0+4+0+1=53.110 101(2)=104(7).答案:53104(7)12.如图所示,程序框图(算法流程图)的输出结果是________.解析:第一次进入循环体有T =0+0,第二次有T =0+1,第三次有T =0+1+2,……,第n 次有T =0+1+2+…+n -1(n =1,2,3,…),令T =n (n -1)2>105,解得n>15,故n =16,k =15.答案:1513.输入8,下列程序执行后输出的结果是________.解析:∵输入的数据为8,t ≤4不成立, ∴c =0.2+0.1(8-3)=0.7. 答案:0.714.执行如图所示的程序框图,若输入n 的值为4,则输出s 的值为________.解析:第1次循环:s =1+(1-1)=1,i =1+1=2;第2次循环:s =1+(2-1)=2,i =2+1=3;第3次循环:s =2+(3-1)=4,i =3+1=4;第4次循环:s =4+(4-1)=7,i =4+1=5.循环终止,输出s 的值为7.答案:7三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤) 15.(本小题满分12分)阅读下列两个程序,回答问题. ①x =3 y =4 x =y PRINT x ,y END(1)上述两个程序的运行结果是:①________________;②_____________________________________________. (2)上述两个程序中的第三行有什么区别? 解:(1)两个程序的运行结果是①4 4;②3 3;(2)程序①中的x =y 是将y 的值4赋给x ,赋值后,x 的值变为4,程序②中的y =x 是将x 的值3赋给y ,赋值后y 的值变为3.16.(本小题满分12分)用秦九韶算法求多项式f (x )=7x 7+6x 6+5x 5+4x 4+3x 3+2x 2+x ,当x =3时的值.解:f (x )=((((((7x +6)x +5)x +4)x +3)x +2)x +1)x , v 0=7,v 1=7×3+6=27, v 2=27×3+5=86, v 3=86×3+4=262, v 4=262×3+3=789, v 5=789×3+2=2 369, v 6=2 369×3+1=7 108, v 7=7 108×3+0=21 324, ∴f (3)=21 324.17.(本小题满分12分)在音乐唱片超市里,每张唱片售价25元,顾客购买5张(含5张)以上但不足10张唱片,则按九折收费,顾客购买10张以上(含10张)唱片,则按八五折收费,编写程序,输入顾客购买唱片的数量a ,输出顾客要缴纳的金额C .并画出程序框图.②x =3 y =4 y =x PRINT x ,yEND解:由题意得C =⎩⎪⎨⎪⎧25a ,a <5,22.5a ,5≤a <10,21.25a ,a ≥10.程序框图,如图所示:程序如下:18.(本小题满分14分)设计一个算法,求f(x)=x 6+x 5+x 4+x 3+x 2+x +1,当x =2时的函数值,要求画出程序框图,并写出程序.解:则程序框图为:程序为:S =0i =0WHILE i ≤6S =S +2^i i =i +1WEND PRINT S END阶段质量检测(二)(A 卷 学业水平达标) (时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分)1.某学校为了调查高一年级的200名学生完成课后作业所需时间,采取了两种抽样调查的方式:第一种由学生会的同学随机抽取20名同学进行抽查;第二种由教务处对该年级的学生进行编号,从001到200,抽取学号最后一位为2的同学进行调查.则这两种抽样的方法依次是( )A .分层抽样,简单随机抽样B .简单随机抽样,分层抽样C .分层抽样,系统抽样D .简单随机抽样,系统抽样解析:选D 由抽样方法的概念知选D.2.将某班的60名学生编号为01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是( )A .09,14,19,24B .16,28,40,52C .10,16,22,28D .08,12,16,20解析:选B 分成5组,每组12名学生,按等间距12抽取.选项B 正确.3.某学校有教师200人,男学生1 200人,女学生1 000人.现用分层抽样的方法从全体师生中抽取一个容量为n 的样本,若女学生一共抽取了80人,则n 的值为( )A .193B .192C .191D .190解析:选B 1 000×n200+1 200+1 000=80,求得n =192.4.某商品的销售量y (件)与销售价格x (元/件)存在线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为y ^=-10x +200,则下列结论正确的是( )A .y 与x 具有正的线性相关关系B .若r 表示变量y 与x 之间的线性相关系数,则r =-10C .当销售价格为10元时,销售量为100件D .当销售价格为10元时,销售量在100件左右解析:选D y 与x 具有负的线性相关关系,所以A 项错误;当销售价格为10元时,销售量在100件左右,因此C 错误,D 正确;B 项中-10是回归直线方程的斜率.5.设有两组数据x 1,x 2,…,x n 与y 1,y 2,…,y n ,它们的平均数分别是x 和y ,则新的一组数据2x 1-3y 1+1,2x 2-3y 2+1,…,2x n -3y n +1的平均数是( )A .2x -3yB .2x -3y +1C .4x -9yD .4x -9y +1解析:选B 设z i =2x i -3y i +1(i =1,2,…,n ),则z =1n (z 1+z 2+…+z n )=2n (x 1+x 2+…+x n )-3n (y 1+y 2+…+y n )+⎝ ⎛⎭⎪⎫1+1+…+1n =2x -3y +1.6.某学习小组在一次数学测验中,得100分的有1人,得95分的有1人,得90分的有2人,得85分的有4人,得80分和75分的各有1人,则该小组数学成绩的平均数、众数、中位数分别是( )A .85,85,85B .87,85,86C .87,85,85D .87,85,90解析:选C ∵得85分的人数最多为4人,∴众数为85,中位数为85,平均数为110(100+95+90×2+85×4+80+75)=87.7.某出租汽车公司为了了解本公司司机的交通违章情况,随机调查了50名司机,得的他们某月交通违章次数的数据制成了如图所示的统计图,根据此统计图可得这50名出租车司机该月平均违章的次数为( )A .1B .1.8C .2.4D .3解析:选B5×0+20×1+10×2+10×3+5×450=1.8.8.下表是某厂1~4月份用水量情况(单位:百吨)的一组数据:用水量y 与月份x 之间具有线性相关关系,其线性回归方程为y =-0.7x +a ,则a 的值为( ) A .5.25 B .5 C .2.5D .3.5解析:选A 线性回归方程经过样本的中心点,根据数据可得样本中心点为(2.5,3.5),所以a =5.25. 9.在元旦晚会举办的挑战主持人大赛上,七位评委为某选手打出的分数的茎叶统计图如图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为( )A.84,4.84 B .84,1.6 C .85,1.6D .85,4解析:选C 去掉一个最高分93,去掉一个最低分79,平均数为15×(84+84+86+84+87)=85,方差为15[(85-84)2+(85-84)2+(85-86)2+(85-84)2+(85-87)2]=1.6.10.图甲是某县参加2017年高考学生的身高条形统计图,从左到右各条形表示的学生人数依次记为A 1,A 2,…,A 10{如A 2表示身高(单位:cm)在[150,155)内的学生人数},图乙是统计图甲中身高在一定范围内学生人数的一个算法流程图.现要统计身高在160~180 cm(含160 cm ,不含180 cm)的学生人数,那么在流程图中的判断框内应填写的条件是( )A .i <6?B .i <7?C .i <8?D .i <9?解析:选C 由图甲可知身高在160~180 cm 的学生都在A 4~A 7内,∴i <8. 二、填空题(本大题共4小题,每小题5分,共20分)11.甲、乙两套设备生产的同类型产品共4 800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为____件.解析:设乙设备生产的产品总数为x 件, 则4 800-x 50=x80-50,解得x =1 800,故乙设备生产的产品总数为1 800件. 答案:1 80012.一个容量为40的样本数据分组后组数与频数如下:[25,25.3),6;[25.3,25.6),4;[25.6,25.9),10;[25.9,26.2),8;[26.2,26.5),8;[26.5,26.8),4,则样本在[25,25.9)上的频率为________.解析:[25,25.9)包括[25,25.3),6;[25.3,25.6),4;[25.6,25.9),10;频数之和为20,频率为2040=12.答案:1213.要考察某种品牌的500颗种子的发芽率,抽取60粒进行实验,利用随机数表法抽取种子时,先将500颗种子按001,002,…,500进行编号,如果从随机数表第7行第8列的数3开始向右读,请你依次写出最先检测的5颗种子的编号:____________________,_______,_______,_______,_______. (下面摘取了随机数表第7行至第9行) 84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 7663 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54解析:选出的三位数分别为331,572,455,068,877,047,447,…,其中572,877均大于500,将其去掉,剩下的前5个编号为331,455,068,047,447.答案:331 455 068 047 44714.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如下图).由图中数据可知a =________.若要从身高在[120,130),[130,140),[140,150]三组的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]的学生中选取的人数应为________.解析:∵0.005×10+0.035×10+a ×10+0.020×10+0.010×10=1, ∴a =0.030.设身高在[120,130),[130,140),[140,150]三组的学生分别有x ,y ,z 人,则x100=0.030×10,解得x =30.同理,y =20,z =10.故从[140,150]的学生中选取的人数为1030+20+10×18=3.答案:0.030 3三、解答题(本大题共4题,共50分.解答时应写出文字说明、证明过程或演算步骤.)15.(本小题满分12分)某化肥厂有甲、乙两个车间包装肥料,在自动包装传送带上每隔30分钟抽取一包产品,称其重量(单位:kg),分别记录抽查数据如下:甲:102,101,99,98,103,98,99; 乙:110,115,90,85,75,115,110. (1)这种抽样方法是哪一种方法?(2)试计算甲、乙车间产品重量的平均数与方差,并说明哪个车间产品较稳定? 解:(1)甲、乙两组数据间隔相同,所以采用的方法是系统抽样法. (2)x 甲=17(102+101+99+98+103+98+99)=100, x乙=17(110+115+90+85+75+115+110)=100, s 2甲=17(4+1+1+4+9+4+1)≈3.43, s 2乙=17(100+225+100+225+625+225+100)=228.57, ∴s 2甲<s 2乙,故甲车间产品比较稳定. 16.(本小题满分12分)对某校高一年级学生参加社区服务次数进行统计,随机抽取M 名学生作为样本,得到这M 名学生参加社区服务的次数.根据此数据作出频数与频率的统计表和频率分布直方图如下:(1)求出表中M ,p 及图中a 的值;(2)若该校高一学生有360人,试估计该校高一学生参加社区服务的次数在区间[10,15)的人数. 解:由分组[10,15)的频数是10,频率是0.25, 知10M =0.25,所以M =40.因为频数之和为40,所以10+25+m +2=40,解得m =3.故p =3M =340=0.075.因为a 是对应分组[15,20)的频率与组距的商, 所以a =2540×5=0.125.(2)因为该校高一学生有360人,分组[10,15)的频率是0.25,所以估计该校高一学生参加社区服务的次数在此区间内的人数为360×0.25=90.17.(本小题满分12分)某地最近十年粮食需求量逐年上升,下表是部分统计数据:(1)利用所给数据求年需求量与年份之间的回归直线方程y =b x +a ; (2)利用(1)中所求出的直线方程预测该地2016年的粮食需求量.解:(1)由所给数据看出,年需求量与年份之间是近似直线上升的.对数据预处理如下:对预处理后的数据,容易算得x =0,y =3.2,b ^=(-4)×(-21)+(-2)×(-11)+2×19+4×2942+22+22+42=26040=6.5. a ^=y -b ^x =3.2.由上述计算结果知所求回归直线方程为 y ^-257=b ^(x -2 010)+a ^=6.5(x -2 010)+3.2. 即y ^=6.5(x -2 010)+260.2.①(2)利用直线方程①,可预测2016年的粮食需求量为 6.5×(2 016-2 010)+260.2 =6.5×6+260.2 =299.2(万吨).18.(本小题满分14分)(四川高考)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查.通过抽样,获得了某年100位居民每人的月均用水量(单位:吨).将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a 的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由; (3)估计居民月均用水量的中位数.解:(1)由频率分布直方图可知,月均用水量在[0,0.5)内的频率为0.08×0.5=0.04,同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5]内的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由1-(0.04+0.08+0.21+0.25+0.06+0.04+0.02)=2a ×0.5, 解得a =0.30.(2)由(1)知,该市100位居民中月均用水量不低于3吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率分布,可以估计30万居民中月均用水量不低于3吨的人数为300 000×0.12=36 000. (3)设中位数为x 吨.因为前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.73>0.5,而前4组的频率之和为0.04+0.08+0.15+0.21=0.48<0.5,所以2≤x<2.5.由0.50×(x-2)=0.5-0.48,解得x=2.04.故可估计居民月均用水量的中位数为2.04吨.(B卷能力素养提升)(时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分)1.我校在检查学生作业时,抽出每班学号尾数为5的学生作业进行检查,这里运用的是() A.分层抽样B.抽签抽样C.随机抽样D.系统抽样答案:D2.下列各选项中的两个变量具有相关关系的是()A.长方体的体积与边长B.大气压强与水的沸点C.人们着装越鲜艳,经济越景气D.球的半径与表面积解析:选C A、B、D均为函数关系,C是相关关系.3.为了调查全国人口的寿命,抽查了十一个省(市)的2 500名城镇居民.这2 500名城镇居民的寿命的全体是()A.总体B.个体C.样本D.样本容量答案:C4.已知总体容量为106,若用随机数表法抽取一个容量为10的样本.下面对总体的编号最方便的是()A.1,2,…,106 B.0,1,2,…,105C.00,01,…,105 D.000,001,…,105解析:选D由随机数抽取原则可知选D.5.有一个容量为200的样本,其频率分布直方图如图所示.根据样本的频率分布直方图估计,样本数据落在区间[10,12)内的频数为()A .18B .36C .54D .72解析:选B 易得样本数据在区间[10,12)内的频率为0.18,则样本数据在区间[10,12)内的频数为36. 6.对一组数据x i (i =1,2,3,…,n ),如果将它们改变为x i +c (i =1,2,3,…,n ),其中c ≠0,则下面结论中正确的是( )A .平均数与方差均不变B .平均数变了,而方差保持不变C .平均数不变,而方差变了D .平均数与方差均发生了变化解析:选B 设原来数据的平均数为x -,将它们改变为x i +c 后平均数为x ′,则x ′=x -+c ,而方差s ′2=1n[(x 1+c -x --c )2+…+(x n +c -x --c )2]=s 2.7.某中学高三从甲、乙两个班中各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图,其中甲班学生成绩的众数是85,乙班学生成绩的中位数是83,则x +y 的值为( )A .7B .8C .9D .10解析:选B 甲班学生成绩的众数为85,结合茎叶图可知x =5;又因为乙班学生成绩的中位数是83,所以y =3,即x +y =5+3=8.8.相关变量x ,y 的样本数据如下表:经回归分析可得y 与x 线性相关,并由最小二乘法求得回归直线方程为y ^=1.1x +a ,则a =( ) A .0.1 B .0.2 C .0.3D .0.4 解析:选C ∵回归直线经过样本点的中心(x ,y ),且由题意得(x ,y )=(3,3.6),∴3.6=1.1×3+a ,∴a =0.3.9.甲、乙两支女子曲棍球队在去年的国际联赛中,甲队平均每场进球数是3.2,全年进球数的标准差为3;乙队平均每场进球数是1.8,全年进球数的标准差为0.3.下列说法中,正确的个数为( )①甲队的技术比乙队好;②乙队发挥比甲队稳定;③乙队几乎每场都进球;④甲队的表现时好时坏.A.1个B.2个C.3个D.4个解析:选D因为甲队的平均进球数比乙队多,所以甲队技术较好,①正确;乙队的标准差比甲队小,标准差越小越稳定,所以乙队发挥稳定,①也正确;乙队平均每场进球数为1.8,所以乙队几乎每场都进球,①正确;由于s甲=3,s乙=0.3,所以甲队与乙队相比,不稳定,所以甲队的表现时好时坏,①正确.10.已知数据:①18,32,-6,14,8,12;②21,4,7,14,-3,11;③5,4,6,5,7,3;④-1,3,1,0,0,-3.各组数据中平均数和中位数相等的是()A.①B.②C.③D.①②③④解析:选D运用计算公式x=1n(x1+x2+…+x n),可知四组数据的平均数分别为13,9,5,0.根据中位数的定义:把每组数据从小到大排列,取中间一位数(或两位的平均数)即为该组数据的中位数,可知四组数据的中位数分别为13,9,5,0.故每组数据的平均数和中位数均对应相等.二、填空题(本大题共4小题,每小题5分,共20分)11.某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为________.解析:由分层抽样得,此样本中男生人数为560×280560+420=160.答案:16012.(山东高考)下图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5].样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5 ℃的城市个数为11,则样本中平均气温不低于25.5 ℃的城市个数为________.解析:设样本容量为n,则n×(0.1+0.12)×1=11,所以n=50,故所求的城市数为50×0.18=9.答案:913.(江苏高考)抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:解析:对于甲,平均成绩为x -=90,所以方差为s 2=15×[(87-90)2+(91-90)2+(90-90)2+(89-90)2+(93-90)2]=4,对于乙,平均成绩为x -=90,方差为s 2=15×[(89-90)2+(90-90)2+(91-90)2+(88-90)2+(92-90)2]=2.由于2<4,所以乙的平均成绩较为稳定.答案:214.某班12位学生父母年龄的茎叶图如图所示,则12位同学母亲的年龄的中位数是________,父亲的平均年龄比母亲的平均年龄多________岁.解析:由41+432=42,得中位数是42.母亲平均年龄=42.5, 父亲平均年龄为45.5,因而父亲平均年龄比母亲平均年龄多3岁. 答案:42 3三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤) 15.(本小题满分12分)某花木公司为了调查某种树苗的生长情况,抽取了一个容量为100的样本,测得树苗的高度(cm)数据的分组及相应频数如下:[107,109)3株;[109,111)9株;[111,113)13株; [113,115)16株;[115,117)26株;[117,119)20株; [119,121)7株;[121,123)4株;[123,125]2株. (1)列出频率分布表; (2)画出频率分布直方图;(3)据上述图表,估计数据在[109,121)范围内的可能性是百分之几? 解:(2)频率分布直方图如下:(3)由上述图表可知数据落在[109,121)范围内的频率为:0.94-0.03=0.91,即数据落在[109,121)范围内的可能性是91%.16.(本小题满分12分)甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:甲 82 81 79 78 95 88 93 84 乙 92 95 80 75 83 80 90 85 (1)用茎叶图表示这两组数据;(2)现要从中选派一人参加数学竞赛,从统计学的角度(在平均数、方差或标准差中选两个)考虑,你认为选派哪位学生参加合适?请说明理由?解:(1)作出茎叶图如下:(2)x 甲=18(78+79+81+82+84+88+93+95)=85,x 乙=18(75+80+80+83+85+90+92+95)=85.s 2甲=18[(78-85)2+(79-85)2+(81-85)2+(82-85)2+(84-85)2+(88-85)2+(93-85)2+(95-85)2]=35.5,s 2乙=18[(75-85)2+(80-85)2+(80-85)2+(83-85)2+(85-85)2+(90-85)2+(92-85)2+(95-85)2]=41, ∵x甲=x 乙,s 2甲<s 2乙,∴甲的成绩较稳定,派甲参赛比较合适.17.(本小题满分12分)某个服装店经营某种服装,在某周内获纯利y (元)与该周每天销售这些服装件数x 之间有如下一组数据:已知∑i =17x 2i =280,∑i =17x i y i =3 487, (1)求x ,y ;(2)求纯利y 与每天销售件数x 之间的回归直线方程; (3)每天多销售1件,纯利y 增加多少元? 解:(1)x =17(3+4+5+…+9)=6,y =17(66+69+…+91)≈79.86.(2)设回归直线方程为y ^=a ^+b ^x ,则b ^=∑i =17x i y i -7x - y-∑i =17x 2i -7x2=3 487-7×6×79.86280-7×62≈4.75. a ^=y -b x -≈79.86-4.75×6=51.36. ∴所求的回归直线方程为y ^=51.36+4.75x .(3)由回归直线方程知,每天多销售1件,纯利增加4.75元.18.(本小题满分14分)某地统计局就该地居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在[1 000,1 500)).(1)求居民月收入在[3 000,3 500)的频率; (2)根据频率分布直方图算出样本数据的中位数;(3)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10 000人中用分层抽样方法抽出100人作进一步分析,则月收入在[2 500,3 000)的这段应抽多少人?解:(1)月收入在[3 000,3 500)的频率为0.000 3×(3 500-3 000)=0.15. (2)∵0.000 2×(1 500-1 000)=0.1, 0.000 4×(2 000-1 500)=0.2, 0.000 5×(2 500-2 000)=0.25, 0.1+0.2+0.25=0.55>0.5.∴样本数据的中位数为2 000+0.5-(0.1+0.2)0.000 5=2 000+400=2 400(元).(3)居民月收入在[2 500,3 000)的频率为0.000 5×(3 000-2 500)=0.25, 所以10 000人中月收入在[2 500,3 000)的人数为0.25×10 000=2 500(人).再从10 000人中分层抽样方法抽出100人,则月收入在[2 500,3 000)的这段应抽取100×2 50010 000=25(人).阶段质量检测(三)(A 卷 学业水平达标) (时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分)1.把黑、红、白3张纸牌分给甲、乙、丙三人,则事件“甲分得红牌”与“乙分得红牌”是( ) A .对立事件 B .互斥但不对立事件 C .不可能事件D .必然事件解析:选B 根据题意,把黑、红、白3张纸牌分给甲、乙、丙三人,事件“甲分得红牌”与“乙分得红牌”不会同时发生,故两者是互斥事件,但除了“甲分得红牌”与“乙分得红牌”之外,还有“丙分得红牌”,故两者不是对立事件,所以事件“甲分得红牌”与“乙分得红牌”是互斥但不对立事件.2.已知集合A ={2,3},B ={1,2,3},从A ,B 中各任意取一个数,则这两数之和等于4的概率是( ) A.23 B .12C.13D .16解析:选C 从A ,B 中各取一个数有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),共6种情况,其中和为4的有(2,2),(3,1),共2种情况,所以所求概率P =26=13.3.在区间[-3,3]上任取一个实数,所得实数是不等式x 2+x -2≤0的解的概率为( ) A.16 B .13C.12D .23解析:选C 由x 2+x -2≤0,得-2≤x ≤1, 所求概率为1-(-2)3-(-3)=12.4.在正方体ABCD A 1B 1C 1D 1中随机取点,则点落在四棱锥O ABCD 内(O 为正方体的对角线的交点)的概率是( )A.13 B .16C.12D .14解析:选B 设正方体的体积为V ,则四棱锥O ABCD 的体积为V6,所求概率为V 6V =16.5.从{}a ,b ,c ,d ,e 的所有子集中任取一个,这个集合恰是集合{}a ,b ,c 子集的概率是( ) A.35 B .25C.14D .18解析:选C 符合要求的是∅,{}a ,{}b ,{}c ,{}a ,b ,{}a ,c ,{}b ,c ,{}a ,b ,c 共8个,而集合{}a ,b ,c ,d ,e 共有子集25=32个,∴P =14.6.(全国乙卷)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( ) A.13B.12C.23D.56解析:选C 从4种颜色的花中任选2种颜色的花种在一个花坛中,余下2种颜色的花种在另一个花坛的种数有:红黄—白紫、红白—黄紫、红紫—白黄、黄白—红紫、黄紫—红白、白紫—红黄,共6种,其中红色和紫色的花不在同一花坛的种数有:红黄—白紫、红白—黄紫、黄紫—红白、白紫—红黄,共4种,故所求概率为P =46=23,故选C.7.连续掷两次骰子,以先后得到的点数m ,n 为点P (m ,n )的坐标,那么点P 在圆x 2+y 2=17内部的概率是( )A.19 B .29C.13D .49解析:选B 点P (m ,n )的坐标的所有可能为6×6=36种,而点P 在圆x 2+y 2=17内部只有⎩⎪⎨⎪⎧m =1n =1,⎩⎪⎨⎪⎧ m =1n =2,⎩⎪⎨⎪⎧ m =1n =3,⎩⎪⎨⎪⎧ m =2n =1,⎩⎪⎨⎪⎧ m =2n =2,⎩⎪⎨⎪⎧ m =2n =3,⎩⎪⎨⎪⎧ m =3n =1,⎩⎪⎨⎪⎧m =3n =2,共8种,故概率为29.8.甲、乙、丙三人在3天节假日中值班,每人值班1天,则甲排在乙的前面值班的概率是( ) A.16 B .14C.13 D .12解析:选C 甲、乙、丙三人在3天中值班的情况为甲,乙,丙;甲,丙,乙;丙,甲,乙;丙,乙,甲;乙,甲,丙;乙,丙,甲共6种,其中符合题意的有2种,故所求概率为13.9.一袋中装有大小相同,编号分别为1,2,3,4,5,6,7,8的八个卡片,从中无放回...地每次抽一张卡片,共抽2次,则取得两张卡片的编号和不小于...14的概率为( )A.128 B .156C.356D .114 解析:选D 从中无放回地取2次,所取号码共有56种,其中和不小于14的有4种,分别是(6,8),(8,6),(7,8),(8,7),故所求概率为456=114.10.小莉与小明一起用A ,B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6)玩游戏,以小莉掷的A 立方体朝上的数字为x ,小明掷的B 立方体朝上的数字为y 来确定点P (x ,y ),那么他们各。
高中数学 专题02 频率分布直方图及其应用分项汇编(含解析)新人教A版必修3
专题02 频率分布直方图及其应用一、选择题1.【2017-2018年北京市首都师大附中高二期末】对高速公路某段上汽车行驶速度进行抽样调查,画出如下频率分布直方图.根据直方图估计在此路段上汽车行驶速度的众数和行驶速度超过80km/h的概率A. 75,0.25B. 80,0.35C. 77.5,0.25D. 77.5,0.35【答案】D故选D.2.【人教B版高中数学必修三同步测试】根据某水文观测点的历史统计数据,得到某条河流水位的频率分布直方图(如图),从图中可以看出,该水文观测点平均至少100年才遇到一次的洪水的最低水位是()A. 48 mB. 49 mC. 50 mD. 51 m【答案】C【解析】由频率分布直方图知水位为50 m的频率组距为0.00520.01⨯=,即水文观测点平均至少一百年才遇到一次的洪水的最低水位是50 m. 本题选择C选项.3.【福建省三明市A片区高中联盟校2017-2018学年高二上学期阶段性考试】为了解某地区名高三男生的身体发育情况,抽查了该地区名年龄为~岁的高三男生体重(),得到频率分布直方图如图.根据图示,估计该地区高三男生中体重在kg的学生人数是( )A . B. C. D.【答案】C点睛:此题主要考查了频率分布直方图在实际问题中的应用,属于中低档题型,也是常考考点.在解决此类问题中,充分利用频率分布直方图的纵坐标的实际意义,其纵坐标值为:频率/组距,由此各组数据的频率=其纵坐标组距,各组频数=频率×总体,从而可估计出所求数据段的频数(即人数).4.【广东省中山一中、仲元中学等七校2017-2018学年高二3月联考】某商场在国庆黄金周的促销活动中,对10月1日9时至14时的销售额进行统计,其频率分布直方图如图所示.已知9时至10时的销售额为3万元,则9时至14时的销售总额为A. 10万元B. 12万元C. 15万元D. 30万元【答案】D【解析】9时至10时的销售额频率为0.1,因此所有销售总额为万元,故选D .5.【四川省成都外国语学校2017-2018学年高二上学期期末考试】容量为100的样本,其数据分布在[]2,18,将样本数据分为4组: [)2,6, [)6,10, [)10,14, []14,18,得到频率分布直方图如图所示.则下列说法不正确的是A . 样本数据分布在[)6,10的频率为0.32B . 样本数据分布在[)10,14的频数为40C . 样本数据分布在[)2,10的频数为40D . 估计总体数据大约有10%分布在[)10,14【答案】DD 不正确.故选D .6.【四川省雅安市2017-2018学年高二上学期期末考试】某高校进行自主招生,先从报名者中筛选出400人参加笔试,再按笔试成绩择优选出100人参加面试,现随机调查了24名笔试者的成绩,如下表所示:据此估计允许参加面试的分数线大约是( )A . 75B . 80C . 85D . 90【答案】B故选B7.【四川省成都市2017-2018学年高二上学期期末调研考试】容量为100的样本,其数据分布在[]2,18,将样本数据分为4组: [)[)[)[]2,6,6,10,10,14,14,18,得到频率分布直方图如图所示,则下列说法不正确的是( )A . 样本数据分布在[)6,10的频率为0.32B . 样本数据分布在[)10,14的频数为40C . 样本数据分布在[)2,10的频数为40D . 估计总体数据大约有10%分布在[)10,14【答案】D【解析】总体数据分布在[)10,14的概率为0.140%0.020.080.10.05=+++故选D8.【广西南宁市第二中学(曲靖一中、柳州高中)2017-2018学年高二上学期末期考试】2014年5月,国家统计局公布了《2013年农民工监测调查报告》,报告显示:我国农民工收入持续快速增长.某地区农民工人均月收入增长率如图1,并将人均月收入绘制成如图2的不完整的条形统计图.根据以上统计图来判断以下说法错误的是( )A. 2013年农民工人均月收入的增长率是.B. 2011年农民工人均月收入是元.C. 小明看了统计图后说:“农民工2012年的人均月收入比2011年的少了”.D. 2009年到2013年这五年中2013年农民工人均月收入最高.【答案】C9.【四川省遂宁市2017-2018学年高二上学期期末考试】供电部门对某社区位居民2017年12月份人均用电情况进行统计后,按人均用电量分为,,,,五组,整理得到如下的频率分布直方图,则下列说法错误的是A . 月份人均用电量人数最多的一组有人B . 月份人均用电量不低于度的有人C . 月份人均用电量为度D . 在这位居民中任选位协助收费,选到的居民用电量在一组的概率为【答案】C点睛:统计中利用频率分布直方图计算样本均值时,可利用组中值进行计算.10.【内蒙古赤峰市宁城县2017-2018学年高二上学期期末考试】有关部门从甲、乙两个城市所有的自动售货机是随机抽取了16台,记录上午8:00~11:00间各自的销售情况(单位:元),用茎叶图表示:设甲、乙的平均数分别为12,x x ,标准差分别为12,s s ,则( )A . 12x x >, 12s s >B . 12x x >, 12s s <C . 12x x <, 12s s <D . 12x x <, 12s s >【答案】D【解析】根据公式得到1x =()13078652014362225276041431616+++++++++++= ()2147710121820224627313268384243481616x =+++++++++++++=故12x x <,再将以上均值代入方差的公式得到12s s >.或者观察茎叶图,得到乙的数据更集中一些,故得到12s s >.故答案为:D .11.【陕西省黄陵中学2017-2018学年高二(重点班)上学期期末考试】某篮球运动员在一个赛季的40场比赛中的得分的茎叶图如右下图所示:则中位数与众数分别为()A. 3与3B. 23与23C. 3与23D. 23与3【答案】B点睛:茎叶图的问题需注意:(1)“叶”的位置只有一个数字,而“茎”的位置的数字位数一般不需要统一;(2)重复出现的数据要重复记录,不能遗漏,特别是“叶”的位置的数据.12.【内蒙古鄂尔多斯市第一中学2017-2018学年高二上学期第三次月考】如图是某次拉丁舞比赛七位评委为甲、乙两名选手打出的分数的茎叶图(其中m为数字0~9中的一个),去掉一个最高分和一个最低分后,甲、乙两名选手得分的平均数分别为a1、a2,则a1、a2的大小关系是()A. a1=a2B. a1>a2C. a2>a1D. 无法确定【答案】C【解析】由茎叶图,得甲、乙两名选手得分的平均数分别为18584858581845a++++==,28484868487855a++++==,即21a a>;故选C.填空题13.【吉林省辽源市田家炳高级中学2017-2018学年高二下学期3月月考】上方右图是一个容量为200的样本的频率分布直方图,请根据图形中的数据填空:(1)样本数据落在范围[5,9)的可能性为__________;(2)样本数据落在范围[9,13)的频数为__________.【答案】 0.32 72点睛:本题主要考查的知识点是频率分布直方图的意义以及应用图形解题的能力,属于基础题.对于()1根据频率=⨯频率组距组距即可求出结果,对于()2根据频数=频率⨯样本容量即可求出结果.14.【山西省临汾第一中学等五校2017-2018学年高二上学期期末联考】目前北方空气污染越来越严重,某大学组织学生参加环保知识竞赛,从参加学生中抽取40名,将其成绩(均为整数)整理后画出的频率分布直方图如图,若从成绩是80分以上(包括80分)的学生中选两人,则他们在同一分数段的概率为_______.【答案】∵前三组的累积频率为:0.10+0.15+0.25=0.50,故这次环保知识竞赛成绩的中位数为70;成绩在[80,90)段的人数有10×0.010×40=4人,成绩在[90,100]段的人数有10×0.005×40=2人,从成绩是80分以上(包括80分)的学生中任选两人共有15种不同的基本事件,其中他们在同一分数段的基本事件有:7,故他们在同一分数段的概率为故答案为:.15.【黑龙江省大庆中学2017-2018学年高二上学期期末考试】某高校在今年的自主招生考试成绩中随机抽取100名考生的笔试成绩,分为5组制出频率分布直方图如图所示.则a=__________,d=__________.【答案】 30 0.2点睛:利用频率分布直方图求众数、中位数与平均数时,易出错,应注意区分这三者.在频率分布直方图中:(1)最高的小长方形底边中点的横坐标即是众数;(2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.16.【辽宁省六校协作体2017-2018学年高二上学期期初联考】从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).若要从身高在[ 120 , 130),[130 ,140) , [140 , 150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140 ,150]内的学生中选取的人数应为【答案】3人【解析】试题分析:∵直方图中各个矩形的面积之和为1,∴10×(0.005+0.035+a+0.02+0.01)=1,解得a=0.03.由直方图可知三个区域内的学生总数为100×10×(0.03+0.02+0.01)=60人.其中身高在[140,150]内的学生人数为10人,所以身高在[140,150]范围内抽取的学生人数为人.考点:频率分布直方图.点评:本题考查频率分布直方图的相关知识.直方图中的各个矩形的面积代表了频率,所以各个矩形面积之和为1.同时也考查了分层抽样的特点,即每个层次中抽取的个体的概率都是相等的.解答题17.【2017-2018学年人教A版数学必修三同步测试】我校对高二600名学生进行了一次知识测试,并从中抽取了部分学生的成绩(满分100分)作为样本,绘制了下面尚未完成的频率分布表和频率分布直方图.分组频数频率[50,60) 2 0.04[60,70) 8 0.16[70,80) 10[80,90)[90,100] 14 0.28合计1.00(1)填写频率分布表中的空格,补全频率分布直方图,并标出每个小矩形对应的纵轴数据;(2)请你估算该年级学生成绩的中位数;(3)如果用分层抽样的方法从样本分数在[60,70)和[80,90)的人中共抽取6人,再从6人中选2人,求2人分数都在[80,90)的概率.【答案】(1)答案见解析;(2)83.125;(3) 2 5【解析】试题分析:试题解析:(1)填写频率分布表中的空格,如下表:分组频数频率[50,60) 2 0.04[60,70) 8 0.16[70,80) 10 0.2[80,90) 16 0.32[90,100] 14 0.28合计50 1.00补全频率分布直方图,如下图:(2)设中位数为x,依题意得0.04+0.16+0.2+0.032×(x-80)=0.5,解得x=83.125,所以中位数约为83.125.(3)由题意知样本分数在[60,70)有8人,样本分数在[80,90)有16人,用分层抽样的方法从样本分数在[60,70)和[80,90)的人中共抽取6人,则抽取的分数在[60,70)和[80,90)的人数分别为2人和4人.记分数在[60,70)的为a1,a2,在[80,90)的为b1,b2,b3,b4.从已抽取的6人中任选两人的所有可能结果有15种,分别为{a1,a2},{a1,b1},{a1,b2},{a1,b3},{a1,b4},{a2,b1},{a2,b2},{a2,b3},{a2,b4},{b1,b2},{b1,b3},{b1,b4},{b2,b3},{ b2,b4},{b3,b4},设“2人分数都在[80,90)”为事件A,则事件A包括{b1,b2},{b1,b3},{b1,b4},{b2,b3},{b2,b4},{b3,b4}共6种,所以P(A)=62 155.点睛:利用频率分布直方图求众数、中位数和平均数时,应注意三点:①最高的小长方形底边中点的横坐标即是众数;②中位数左边和右边的小长方形的面积和是相等的;③平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.18.【内蒙古自治区北方重工业集团有限公司第三中学2017-2018学年高二3月月考】节能减排以来,兰州市100户居民的月平均用电量单位:度,以分组的频率分布直方图如图.求直方图中x的值;求月平均用电量的众数和中位数;估计用电量落在中的概率是多少?【答案】(1)5;(2)众数为,中位数为224;(3).月平均用电量在中的概率是.试题解析:的频率之和为,的频率之和为,∴中位数在设中位数为y ,则解得故中位数为224.由频率分布直方图可知,月平均用电量在中的概率是.点睛:利用频率分布直方图估计样本的数字特征(1)中位数:在频率分布直方图中,中位数左边和右边的直方图的面积相等,由此可以估计中位数值. (2)平均数:平均数的估计值等于每个小矩形的面积乘以矩形底边中点横坐标之和. (3)众数:最高的矩形的中点的横坐标.19.【河南师范大学附属中学2017-2018学年高二4月月考】某重点中学100位学生在市统考中的理科综合分数,以[)160,180, [)180,200, [)200,220, [)220,240, [)240,260, [)260,280, []280,300分组的频率分布直方图如图.(1)求直方图中x 的值;(2)求理科综合分数的众数和中位数;(3)在理科综合分数为[)220,240, [)240,260, [)260,280, []280,300的四组学生中,用分层抽样的方法抽取11名学生,则理科综合分数在[)220,240的学生中应抽取多少人? 【答案】(1) 0.0075 (2)230, 224(3)5人 【解析】试题分析:(1)根据直方图求出x 的值即可;(2)根据直方图求出众数,设中位数为a,得到关于a的方程,解出即可;(3)分别求出[220,240),[240,260),[260,280),[280,300]的用户数,根据分层抽样求出满足条件的概率即可.(2)理科综合分数的众数是2202402302+=,∵()0.0020.00950.011200.450.5++⨯=<,∴理科综合分数的中位数在[)220,240内,设中位数为a,则()()0.0020.00950.011200.01252200.5a++⨯+⨯-=,解得224a=,即中位数为224.(3)理科综合分数在[)220,240的学生有0.01252010025⨯⨯=(位),同理可求理科综合分数为[)240,260,[)260,280,[]280,300的用户分别有15位、10位、5位,故抽取比为111 25151055=+++,∴从理科综合分数在[)220,240的学生中应抽取12555⨯=人.点睛:利用频率分布直方图求众数、中位数与平均数时,易出错,应注意区分这三者.在频率分布直方图中:(1)最高的小长方形底边中点的横坐标即是众数;(2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.20.【河北省阜城中学 2017-2018学年高二上学期期末考试】某校高一年级某次数学竞赛随机抽取100名学生的成绩,分组为[50,60),[60,70),[70,80),[80,90),[90,100],统计后得到频率分布直方图如图所示:(1)试估计这组样本数据的众数和中位数(结果精确到0.1);(2)年级决定在成绩[70,100]中用分层抽样抽取6人组成一个调研小组,对高一年级学生课外学习数学的情况做一个调查,则在[70,80),[80,90),[90,100]这三组分别抽取了多少人?(3)现在要从(2)中抽取的6人中选出正副2个小组长,求成绩在[80,90)中至少有1人当选为正、副小组长的概率.【答案】(1)65,73.3;(2)3,2,1;(3)【解析】试题分析:(1)由频率分布直方图中面积最大的矩形中点可得众数、左右面积各为0.5的分界处为中位数.(2)先求出成绩为[70,80)、[80,90)、[90,100]这三组的频率,由此能求出[70,80)、[80,90)、[90,100]这三组抽取的人数.(3)由(2)知成绩在[70,80)有3人,分别记为a,b,c;成绩在[80,90)有2人,分别记为d,e;成绩在[90,100]有1人,记为f.由此利用列举法能求出成绩在[80,90)中至少有1人当选为正、副小组长的概率.(2)成绩为[70,80)、[80,90)、[90,100]这三组的频率分别为0.3,0.2,0.1,∴[70,80)、[80,90)、[90,100]这三组抽取的人数分别为3人,2人,1人.(3)由(2)知成绩在[70,80)有3人,分别记为a,b,c;成绩在[80,90)有2人,分别记为d,e;成绩在[90,100]有1人,记为f.∴从(2)中抽取的6人中选出正副2个小组长包含的基本事件有种,分别为:ab,ba,ac,ca,ad,da,ae,ea,af,fa,bc,cb,bd,db,be,eb,bf,fb,cd,dc,ce,ec,cf,fc,de,ed,df,fd,ef,fe,记“成绩在[80,90)中至少有1人当选为正、副小组长”为事件Q,则事件Q包含的基本事件有18种,∴成绩在[80,90)中至少有1人当选为正、副小组长的概率P(Q)=.点睛:利用频率分布直方图求众数、中位数与平均数时,易出错,应注意区分这三者.在频率分布直方图中:(1)最高的小长方形底边中点的横坐标即是众数;(2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.21.【黑龙江省哈尔滨市第六中学2017-2018学年高二3月月考】从某学校高三年级共800名男生中随机抽取50名测量身高,测量发现被测学生身高全部介于155cm和195cm之间,将测量结果按如下方式分成八组:第一组[155,160);第二组[160,165)、…、第八组[190,195],下图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组、第七组、第八组人数依次构成等差数列.(1)估计这所学校高三年级全体男生身高180cm以上(含180cm)的人数;(2)求第六组、第七组的频率并补充完整频率分布直方图(如需增加刻度请在纵轴上标记出数据,并用直尺作图);(3)由直方图估计男生身高的中位数.【答案】(1);(2)详见解析;(3).试题解析:(1)由直方图,前五组频率为(0.008+0.016+0.04+0.04+0.06)×5=0.82,后三组频率为1-0.82=0.18.这所学校高三男生身高在180cm以上(含180cm)的人数为800×0.18=144人.(2)由频率分布直方图得第八组频率为0.008×5=0.04,人数为0.04×50=2人,设第六组人数为m,则第七组人数为0.18×50-2-m=7-m,又m+2=2(7-m),所以m=4,即第六组人数为4人,第七组人数为3人,频率分别为0.08,0.06.频率除以组距分别等于0.016,0.012,见图.(3)设中位数为,由频率为,所以,,解得=174.5 22.【广东省中山一中、仲元中学等七校2017-2018学年高二3月联考】某企业员工500人参加“学雷锋”志愿活动,按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的频率分布直方图如图所示.(1)上表是年龄的频数分布表,求正整数的值;(2)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,年龄在第1,2,3组的人数分别是多少?(3)在(2)的前提下,从这6人中随机抽取2人参加社区宣传交流活动,求至少有1人年龄在第3组的概率.【答案】(1);(2) 第1,2,3组分别抽取1人,1人,4人;(3).【解析】试题分析:(1))由题设可知,,;(2)由第1,2,3组的比例关系为1:1:4,则分别抽取1人,1人,4人;(3)设第1组的1位同学为,第2组的1位同学为,第3组的4位同学为,由穷举法,求得至少有1人年龄在第3组的概率为.(3)设第1组的1位同学为,第2组的1位同学为,第3组的4位同学为,则从6位同学中抽两位同学有:共种可能.其中2人年龄都不在第3组的有:共1种可能,所以至少有1人年龄在第3组的概率为.。
人教A版数学必修3训练题
人教A 版数学必修3训练题一、 选择题1.某中学高一年级有20个班,每班50人;高二年级有30个班,每班45人;甲就读于高一,乙就读于高二.学校计划从这两个年级中共抽取235人进行视力调查,下列说法:①应该采用分层抽样法;②高一、高二年级应分别抽取100人和135人;③乙被抽到的可能性比甲大;④该问题中的总体是235名同学的视力.○5该问题的总体容量是2350其中正确说法的个数是 (C)A. 1B. 2C. 3D. 4 2.将五进位制(5)432化为二进制为( B )A.(2)1110011 B . (2)1110101 C. (2)1110111 D. (2)10101113. 如图1的程序框图,要使输入的x 值与输出的y 值相等,则x 的可能值个数为( C )A. 1个B. 2个C. 3个D.4个4. 若程序框图2中输出的S 是126,则①应为 ( B )A.n≤5? B.n≤6? C.n≤7?D.n≤85. 一块各面均涂有油漆的正方形被锯成1000个同样大小的小正方形,若将这些小正方形均匀的搅混在一起,则任意取出的一正方形其两面涂有油漆的概率是(A)A.12125 B. 325C. 110D. 112 6.从一箱产品中随机地抽取一件,设事件A={抽到一等品},事件B ={抽到二等品},事件C ={抽到三等品},且已知 P (A )= 0.65 ,P(B)=0.2 ,P(C)=0.1。
则事件“抽到的不是一等品”的概率为( C)A. 0.7B. 0.65C. 0.35D. 0.3 7.为调查武汉市中学生平均每人每天参加体育锻炼时间X (单位:分钟),按锻炼时间分下列4种情况统计:①0—10分钟②11—20分钟③21—30分钟④30分钟以上。
有10000名中学生参加了此项调查活动,如图是此次调查中某一项的流程图,其输出结果是6200,则平均每天参加体育锻炼时间在0-20分钟内的学生的频率是( C )图1A.3800B.6200C.0.38D.0.628.用简单随机抽样方法从6个个体的总体中,抽取一个容量为2的样本。
2023年新教材人教A版高中数学选择性必修第三册7.5正态分布 同步课时练习题含答案解析
7.5 正态分布(分层作业)(夯实基础+能力提升)【夯实基础】一、单选题 1.(2022春·广东潮州·高二统考期末)随机变量ξ服从正态分布()10,4N ξ,则标准差为( ) A .2 B .4C .10D .14【答案】A【分析】根据正态分布中的参数意义可知当差为4,进而可得标准差. 【详解】因为ξ服从正态分布()10,4N ξ可知:方差为4,故标准差为2,2.(2022春·江苏常州·高二统考期中)如图是三个正态分布()~0,0.64X N ,()~0,1Y N ,()~0,4Z N 的密度曲线,则三个随机变量X ,Y ,Z 对应曲线的序号分别依次为( ).A .①②③B .③②①C .②③①D .①③②【答案】A【分析】先利用正态分布求出三个变量的标准差,再利用当σ较小时,峰值高,正态曲线“瘦高”进行判定.【详解】由题意,得()0.8X σ=,()1Y σ=,()2Z σ=,因为当σ较小时,峰值高,正态曲线“瘦高”,且()()()X Y Z σσσ<<, 所以三个随机变量X ,Y ,Z 对应曲线的序号分别依次为①,②,③.3.(2022春·安徽安庆·高二安庆市第二中学校考期末)随机变量X 的概率分布密度函数()()()2212x f x x σ--=∈R ,其图象如图所示,设()2P X p ≥=,则图中阴影部分的面积为( )A .pB .2pC .12p -D .12p -A .两个随机变量的线性相关性越强,则相关系数r 的绝对值越接近于0B .若X 是随机变量,则()()()()2121,2141E X E X D X D X +=++=+.C .已知随机变量()0,1N ξ,若(1)P p ξ>=,则(1)12P p ξ>-=-D .设随机变量ξ表示发生概率为p 的事件在一次随机实验中发生的次数,则()14D ξ≤某中学参加网课的100名同学每天的学习时间(小时)服从正态分布()29,1N ,则这些同学中每天学习时间超过10小时的人数估计为( ). 附:随机变量ξ服从正态分布()2,N μσ,则()0.6826P μσξμσ-<<+=,()220.9544P μσξμσ-<<+=. A .12 B .16C .30D .32所以每天学习时间超过10小时的人数为1000.158716⨯≈,6.(2023秋·辽宁营口·高二统考期末)正常情况下,某厂生产的零件尺寸X 服从正态分布()22,N σ(单位:m ),()1.90.1P X <=,则()2.1P X <=( )A .0.1B .0.4C .0.5D .0.9【答案】D【分析】根据正态分布概率的对称性求解. 【详解】因为()()1.9 2.10.1P X P X <=>=, 所以()1.9 2.110.10.10.8P X <<=--=,所以()()()2.1 1.9 2.1 1.90.9P X P X P X <=<<+<=,7.(2022·高二课时练习)4月23日为世界读书日,已知某高校学生每周阅读时间(单位:h )()8,4XN ,则下列说法错误的是( )A .该校学生每周平均阅读时间为8hB .该校学生每周阅读时间的标准差为2C .若该校有10000名学生,则每周阅读时间在46h 的人数约为2718D .该校学生每周阅读时间低于4h 的人数约占2.28% ()8,4N 知)100.6826≤≈46h 的人数约占(62P X -≤,所以C 错误;0.95442.28%=从N (90,2σ),若()90950.3P c ≤≤=,则可估计该班体能测试成绩低于85分的人数为( )A .5B .10C .15D .30则可估计该班体能测试成绩低于85分的人数为500.210⨯=人, 9.(2022春·山西忻州·高二统考期末)随机变量X 服从正态分布()2,N μσ,且(1)(5)P X P X >-=<,则下列说法一定正确的是( )A .3μ=B .2μ=C .3σ=D .2σ=分)服从正态分布()285,N σ,且(8387)0.3,(7883)0.26P P ξξ<≤=<≤=,则(78)P ξ≤=( )A .0.03B .0.05C .0.07D .0.0911.(2022春·江苏苏州·高二校考期末)在网课期间,为了掌握学生们的学习状态,某省级示范学校对高二一段时间的教学成果进行测试.高二有1 000名学生,某学科的期中考试成绩(百分制且卷面成绩均为整数)Z 服从正态分布()282.5,5.4N ,则(人数保留整数) ( )参考数据:若20.682 7220.954 5()()()Z N P Z P Z μσμσμσμσμσ<≤≈<≤≈~,,则-+,-+,330.997 3()P Z μσμσ<≤≈-+.A .年级平均成绩为82.5分B .成绩在95分以上(含95分)人数和70分以下(含70分)人数相等C .成绩不超过77分的人数少于150D .超过98分的人数为1 【答案】ABD【分析】根据正态分布的概念可知A 对,根据对称性可知B 对,根据3σ原则和曲线的对称性即可求解C,D.【详解】由()282.5,5.4N Z ~,可知82.5, 5.4μσ==,所以平均分为82.5μ=,故A 对.12.(2022春·重庆沙坪坝·高二重庆八中校考期末)已知121,X N σ~,220,Y N σ~,则下列结论中正确的是( )A .若12σσ=,则()()10P X P Y >>>B .若12σσ=,则()()101P X P Y >+>=C .若12σσ>,则()()0211P X P Y ≤≤<-≤≤D .若12σσ>,则()()0101P X P Y ≤≤>≤≤13.(2022春·云南昭通·高二校联考期末)设随机变量()2,X N μσ,X 的正态密度函数为()22x f x -,则μ=______.14.(2023秋·河南南阳·高二统考期末)已知随机变量ξ服从正态分布()210,N σ,若()310.5P a ξ≤+=,则实数=a ______.【答案】3【分析】由正态分布曲线的特点可知,得正态曲线关于10x =对称,且100.5PX ≤=(),结合题意得到a 的值.【详解】随机变量ξ服从正态分布()210,N σ,正态曲线关于10x =对称,且100.5PX ≤=(), 由()310.5P a ξ≤+=,可知3110a +=,解得3a =.15.(2022春·重庆·高二校联考阶段练习)已知随机变量X 服从正态分布()2,N μσ,若()260.6P X <<=,()60.2P X ≥=,则μ=______. 【答案】4【分析】先求出()2P X ≤的概率,然后根据正态分布的特征求解即可. 【详解】解:由题意得:∵()()()()2162610.60.20.26P X P X P X P X ≤=-≥-<<=--==≥ ∴2与6关于x μ=对称 ∴4μ=.16.(2023秋·安徽宿州·高二安徽省泗县第一中学校考期末)某学校高二年级有1500名同学,一次数学考试的成绩X 服从正态分布()2110,10N .已知(100110)0.34P X <≤=,估计高二年级学生数学成绩在120分以上的有__________人.17.(2023秋·辽宁葫芦岛·高二葫芦岛第一高级中学校考期末)随机变量X 服从正态分布,即()10,9X N ~,随机变量23Y X =-,则()E Y =__________,()D Y =__________. 【答案】 17 36【分析】首先根据正态分布的知识得()(),E X D X ,然后可得答案. 【详解】因为()10,9X N ~,所以()()10,9E X D X ==,因为23Y X =-,所以()()2320317E Y E X =-=-=,()()436D Y D X ==, 五、解答题18.(2023秋·河南南阳·高二统考期末)某车间生产一批零件,现从中随机抽取10个,测量其内径的数据如下(单位:mm ):192,192,193,197,200,202,203,204,208,209.设这10个数据的均值为μ,标准差为σ. (1)求μ和σ;(2)已知这批零件的内径X (单位:mm )服从正态分布()2,N μσ,若该车间又新购一台设备,安装调试后,试生产了5个零件,测量其内径(单位:mm )分别为:181,190,198,204,213,如果你是该车间的负责人,以原设备生产性能为标准,试根据3σ原则判断这台设备是否需要进一步调试?并说明你的理由. 参考数据:若()2,XN μσ,则:()0.6826P X μσμσ-<≤+≈,()220.9544P X μσμσ-<≤+≈,()330.9974P X μσμσ-<≤+≈,40.99740.99≈. (200,36N )200180.9974+≈所以五个零件的内径中恰有1态分布()2N 500,5(单位:g ).(1)求正常情况下,任意抽取一包白糖,质量小于485g 的概率约为多少?。
高中数学 章末综合测评3 概率(含解析)新人教A版必修3-新人教A版高一必修3数学试题
章末综合测评(三) 概 率(满分:150分 时间:120分钟)一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列事件中,随机事件的个数为( )①在学校明年召开的田径运动会上,学生X 涛获得100米短跑冠军;②在体育课上,体育老师随机抽取一名学生去拿体育器材,抽到李凯;③从标有1,2,3,4的4X 号签中任取一X ,恰为1号签;④在标准大气压下,水在4℃时结冰.A .1B .2C .3D .4C [①在明年运动会上,可能获冠军,也可能不获冠军.②李凯不一定被抽到.③任取一X 不一定为1号签.④在标准大气压下水在4℃时不可能结冰,故①②③是随机事件,④是不可能事件.]2.若干个人站成一排,其中为互斥事件的是( )A .“甲站排头”与“乙站排头”B .“甲站排头”与“乙不站排尾”C .“甲站排头”与“乙站排尾”D .“甲不站排头”与“乙不站排尾”A [由互斥事件的定义知,“甲站在排头”与“乙站在排头”不能同时发生,是互斥事件.]3.给甲、乙、丙三人打,若打的顺序是任意的,则第一个打给甲的概率是( )A.16B.13C.12D.23B [给三人打的不同顺序有6种可能,其中第一个给甲打的可能有2种,故所求概率为P =26=13.] 4.在两根相距6 m 的木杆上系一根绳子,并在绳子上挂一盏灯,则灯与两端距离都大于2 m 的概率为( )A.12B.13C.14D.15B [所求事件构成的区域长度为2 m ,试验的全部结果所构成的区域长度为6 m ,故灯与两端距离都大于2 m 的概率为26=13.] 5.掷一枚均匀的硬币两次,事件M :“一次正面朝上,一次反面朝上”;事件N :“至少一次正面朝上”,则下列结果正确的是( )A .P (M )=13,P (N )=12B .P (M )=12,P (N )=12C .P (M )=13,P (N )=34D .P (M )=12,P (N )=34D [掷一枚硬币两次,所有基本事件为(正,正),(正,反),(反,正),(反,反)四种情况,事件M 包含2种情况,事件N 包含3种情况,故P (M )=12,P (N )=34.] 6.某人从甲地去乙地共走了500 m ,途中要过一条宽为x m 的河流,他不小心把一件物品丢在途中,若物品掉在河里就找不到,若物品不掉在河里,则能找到,已知该物品能找到的概率为45,则河宽为( ) A .100 mB .80 mC .50 mD .40 mA [设河宽为x m ,则1-x 500=45,∴x =100.] 7.考察下列命题:(1)掷两枚硬币,可能出现“两个正面”“两个反面”“一正一反”3种等可能的结果;(2)某袋中装有大小均匀的三个红球、二个黑球、一个白球,那么每种颜色的球被摸到的可能性相同;(3)从-4,-3,-2,-1,0,1,2中任取一数,取到的数小于0与不小于0的可能性相同;(4)分别从3个男同学、4个女同学中各选一个作代表,那么每个同学当选的可能性相同;(5)5人抽签,甲先抽,乙后抽,那么乙与甲抽到某号中奖签的可能性肯定不同.其中正确的命题有( )A .0个B .1个C .2个D .3个A [(1)中,出现“两个正面”“两个反面”的概率都是14,出现“一正一反”的概率是12,因此不是等可能的;(2)中,每种颜色的球的个数不同,因此被摸到的可能性不同;(3)中,小于0的数有4个,不小于0的数有3个,显然取到的数小于0的可能性更大;(4)中,每个男同学当选为代表的机会是13,每个女同学当选为代表的机会是14,显然可能性不同;(5)中,抽签无论先抽还是后抽,中奖的机会相等.综上,选A.]8.在区间[-1,4]内取一个数x ,则2x -x 2≥14的概率是( ) A.12B.13C.25D.35D [不等式2x -x 2≥14,可化为x 2-x -2≤0, 则-1≤x ≤2,故所求概率为2-(-1)4-(-1)=35.] 9.定义:abcde =10 000a +1 000b +100c +10d +e ,当五位数abcde 满足a <b <c ,且c >d >e 时,称这个五位数为“凸数”.由1,2,3,4,5组成的没有重复数字的五位数共120个,从中任意抽取一个,则其恰好为“凸数”的概率为( )A.16B.110C.112D.120D [由题意,由1,2,3,4,5组成的没有重复数字的五位数恰好为“凸数”的有:12543,13542,14532,23541,24531,34521,共6个基本事件,所以恰好为“凸数”的概率为P =6120=120.故选D.] 10.分别在区间[1,6]和[1,4]内任取一个实数,依次记为m 和n ,则m >n 的概率为( ) A.710B.310C.35D.25A [建立平面直角坐标系(如图所示),则由图可知满足m >n 的点应在梯形ABCD 内,所以所求事件的概率为P =S 梯形ABCD S 矩形ABCE =710. ]11.在一次随机试验中,彼此互斥的事件A ,B ,C ,D 的概率分别是0.2,0.2,0.3,0.3,则下列说法正确的是( )A .A +B 与C 是互斥事件,也是对立事件B .B +C 与D 是互斥事件,也是对立事件C .A +C 与B +D 是互斥事件,但不是对立事件D .A 与B +C +D 是互斥事件,也是对立事件D [由于A ,B ,C ,D 彼此互斥,且A +B +C +D 是一个必然事件,故各事件的关系可由图表示.由图可知,任何一个事件与其余3个事件的和事件必然是对立事件,任何两个事件的和事件与其余两个事件的和事件也是对立事件.]12.阅读图所示的程序框图,如果函数的定义域为(-3,4),则输出函数的值在⎝⎛⎭⎫54,32内的概率为( )A.17B.37C.27D.47A [由程序框图得,f (x )=⎩⎪⎨⎪⎧2x +1,-1≤x ≤1,2-x +1,x <-1或x >1.若-1≤x ≤1,令54<2x +1<32,即14<2x <12,∴-2<x <-1(舍去);若x <-1或x >1,令54<2-x +1<32,即14<2-x <12,∴1<x <2. 问题转化为长度的几何概型,总长度为4-(-3)=7,所求事件表示的长度为2-1=1,则所求的概率为17.故选A.] 二、填空题(本大题共4小题,每小题5分,共20分,把答案填在答题纸的横线上)13.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为________.0.98[由题意得,经停该高铁站的列车正点数约为10×0.97+20×0.98+10×0.99=39.2,其中高铁个数为10+20+10=40,所以该站所有高铁平均正点率约为39.240=0.98.] 14.从1,2,3,4这四个数字中,任取两个,这两个数字都是奇数的概率是________,这两个数字之和是偶数的概率是________.1613[从1,2,3,4四个数字中任取两个共有6种取法.取的两个数字都是奇数只有1,3一种情况,故此时的概率为16.若取出两个数字之和是偶数,必须同时取两个偶数或两个奇数,有1,3;2,4两种取法,所以所求的概率为26=13.]15.已知集合A ={(x ,y )|x 2+y 2=1},集合B ={(x ,y )|x +y +a =0},若A ∩B ≠∅的概率为1,则a 的取值X 围是________.[-2,2] [依题意知,直线x +y +a =0与圆x 2+y 2=1恒有公共点,故|a |12+12≤1, 解得-2≤a ≤ 2.]16.如图是在召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,它是由正方形ABCD 中四个全等的直角三角形和一个小正方形EFGH 构成.现设直角三角形的两条直角边长为3和4,在正方形ABCD 内随机取一点,则此点取自小正方形EFGH 内的概率为________.125[因为直角三角形的两条直角边长为3和4,所以正方形ABCD 的边长为a =32+42=5,所以S 正方形ABCD =a 2=25,所以S 正方形EFGH =S 正方形ABCD -4S △ABF =25-4×12×3×4=1, 因此,在正方形ABCD 内随机取一点,则此点取自小正方形EFGH 内的概率为P =S 正方形EFGH S 正方形ABCD =125.] 三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)某校从高二甲、乙两班各选出3名学生参加书画比赛,其中从高二甲班选出了1名女同学、2名男同学,从高二乙班选出了1名男同学、2名女同学.(1)若从这6名同学中抽出2名进行活动发言,写出所有可能的结果,并求高二甲班女同学、高二乙班男同学至少有一人被选中的概率;(2)若从高二甲班和乙班各选1名同学现场作画,写出所有可能的结果,并求选出的2名同学性别相同的概率.[解] (1)设选出的3名高二甲班同学为A ,B ,C ,其中A 为女同学,B ,C 为男同学,选出的3名高二乙班同学为D ,E ,F ,其中D 为男同学,E ,F 为女同学.从这6名同学中抽出2人的所有可能结果有(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ),共15种.其中高二甲班女同学、高二乙班男同学至少有一人被选中的可能结果有(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,D ),(C ,D ),(D ,E ),(D ,F ),共9种,故高二甲班女同学、高二乙班男同学至少有一人被选中的概率P =915=35. (2)高二甲班和乙班各选1名的所有可能结果为(A ,D ),(A ,E ),(A ,F ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),共9种,选出的2名同学性别相同的有(A ,E ),(A ,F ),(B ,D ),(C ,D ),共4种,所以选出的2名同学性别相同的概率为49. 18.(本小题满分12分)甲、乙两人玩一种游戏,每次由甲、乙各出1到5根手指,若和为偶数算甲赢,否则算乙赢.(1)若以A 表示和为6的事件,求P (A );(2)现连玩三次,若以B 表示甲至少赢一次的事件,C 表示乙至少赢两次的事件,试问B 与C 是否为互斥事件?为什么?(3)这种游戏规则公平吗?试说明理由.[解] (1)甲、乙出手指都有5种可能,因此基本事件的总数为5×5=25(种),事件A 包括甲、乙出的手指的情况有(1,5),(5,1),(2,4),(4,2),(3,3),共5种情况,∴P (A )=525=15. (2)B 与C 不是互斥事件.因为事件B 与C 可以同时发生,如甲赢一次,乙赢两次的事件即符合题意.(3)这种游戏规则不公平.由(1)知和为偶数的基本事件数为13,即(1,1),(1,3),(1,5),(2,2),(2,4),(3,1),(3,3),(3,5),(4,2),(4,4),(5,1),(5,3),(5,5).所以甲赢的概率为1325,乙赢的概率为1225. 所以这种游戏规则不公平.19.(本小题满分12分)四X 大小、质地均相同的卡片上分别标有数字1,2,3,4,现将标有数字的一面朝下扣在桌子上,从中随机抽取一X(不放回),再从桌子上剩下的3X 中随机抽取第二X .(1)列出前后两次抽得的卡片上所标数字的所有可能情况;(2)计算抽得的两X 卡片上的数字之积为奇数的概率是多少.[解] (1)如图.则所有可能情况为:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3),共12种.(2)积为奇数的情况为(1,3),(3,1),共2种,因此有P (积为奇数)=16. 20.(本小题满分12分)在等腰三角形ABC 中 ,∠B =∠C =30°,求下列事件的概率.(1)在底边BC 上任取一点P ,使BP <AB ;(2)在∠BAC 的内部任作射线AP 交BC 于P ,使BP <AB .[解](1)因为点P 随机地落在线段BC 上,故线段BC 为试验的全部结果所构成的区域,以B 为圆心,BA 为半径的弧交BC 于M ,记“在底边BC 上任取一点P ,使BP <AB ”为事件A ,则P (A )=BA BC =BA 2BA cos 30°=13=33. (2)所作射线AP 在∠BAC 内是等可能分布的,在BC 上取一点M ,使∠AMP =75°,则BM=BA .记“在∠BAC 的内部作射线AP 交线段BC 于P ,使BP <AB ”为事件B ,则P (B )=∠BAM ∠BAC=75°120°=58. 21. (本小题满分12分)某日用品按行业质量标准分成五个等级,等级系数X 依次为1,2,3,4,5,现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到如下频率分布表:(1)2件,求a,b,c的值;(2)在(1)的条件下,将等级系数为4的3件日用品记为x1,x2,x3,等级系数为5的2件日用品记为y1,y2,现从x1,x2,x3,y1,y2这5件日用品中任取2件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这2件日用品的等级系数恰好相等的概率.[解](1)因为抽取的20件日用品中,等级系数为4的恰有3件,所以b=320=0.15.等级系数为5的恰有2件,所以c=220=0.1.从而a=1-0.2-0.45-0.1-0.15=0.1.所以a=0.1,b=0.15,c=0.1.(2)从x1,x2,x3,y1,y2这5件日用品中任取2件,所有可能的结果为(x1,x2),(x1,x3),(x1,y1),(x1,y2),(x2,x3),(x2,y1),(x2,y2),(x3,y1),(x3,y2),(y1,y2),共10个.设事件A表示“从x1,x2,x3,y1,y2这5件日用品中任取2件,其等级系数相等”,则事件A所包含的基本事件为(x1,x2),(x1,x3),(x2,x3),(y1,y2),共4个.故所求的概率P(A)=410=0.4.22.(本小题满分12分)一条笔直街道上的A,B两盏路灯之间的距离为120米,由于光线较暗,想在中间再随意安装两盏路灯C,D,路灯次序为A,C,D,B,求A与C,B与D 之间的距离都不小于40米的概率.[解]设A与C之间的距离为x米,B与D之间的距离为y米,(x,y)可以看成平面中的点,在如图所示的平面直角坐标系xOy中,(x,y)的所有可能结果构成的区域为Ω={(x,y)|0<x +y<120,x>0,y>0},即两直角边边长都为120米的等腰直角三角形区域(不包括边界).而“A 与C,B与D之间的距离都不小于40米”(记为事件M)的所有可能结果构成的区域为M={(x,y )|x ≥40,y ≥40,x ∈Ω且y ∈Ω},即图中的阴影部分.由几何概型的概率计算公式得P (M )=12×40×4012×120×120=19.故A 与C ,B 与D 之间的距离都不小于40米的概率为19.。
人教A版高中数学必修3:2.3.2 线性回归直线方程(一)(平行班)
2.3.2 线性回归直线方程(一)
广州二中 张和发
回忆:
什么是正相关? 什么是负相关? 什么是线性相关? 什么是回归直线?
探究讨论:
(上节中作业留下的问题) 数学成绩与物理成绩的散点图中的点在一条直 线附近,应怎样找出这一条直线?
数学成绩为99时估计相应的物理成绩是多少?
1、采用测量的方法,先画一条直线,测量出各点 到它的距离,然后移动直线,到达一个使距离之 和最小的位置,测量出此时直线的斜率和截距, 就得到回归方程。
x= -5°时, y=66
总结:
1. 最小二乘法的思想: 2.回归分析:对具有相关关系的两个变量进行统计分析 的方法叫做回归分析。 3. 运用回归分析的方法来分析、处理数据的一般步骤: ①收集数据,并制成表格; ②画出数据的散点图; ③利用散点图直观认识变量间的相关关系; ④运用科学计算器、Excel表格等现代信息技术手段
的“添加趋势线”,弹出对话框 (4)双击回归直线,弹出“趋势线格式”对话框, (5)单击“选项”,选定“显示公式”,确定即可
回归直线是
y =0.88x+11.75 当x=99时,
y =98.8估计物理成绩为99.
法三:用计算器的统计功能求系数(参考教材P94)
练习:
1、下表是某小卖部6天卖出热茶的杯数与当天气温的 对比表: 气温/℃ 26 18 13 10 4 -1 杯数 20 24 34 38 50 64 (1)将上表中的数据制成散点图. (2)求线性回归直线方程 (先用公式直接计算系数,再用统计功能验算) (3)估计某天气温为-5°时可卖多少杯热茶?
探究讨论:
怎样才能找到合适的回归直线? 求回归直线方程的目的是什么? 用什么标准来确定回归直线?
【新教材】2020新人教版A高中数学必修第一册期末复习高中数学必修第3章测试卷
第三章 函数的概念与性质考试时间120分钟,满分150分.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数y =x 2+1的值域是( B ) A .[0,+∞) B .[1,+∞) C .(0,+∞)D .(1,+∞)[解析] 由题意知,函数y =x 2+1的定义域为R ,则x 2+1≥1,∴y ≥1. 2.已知f (12x -1)=2x -5,且f (a )=6,则a 等于( B )A .-74B .74C .43D .-43[解析] 设12x -1=t ,则x =2t +2,t ∈R ,∴f (t )=2(2t +2)-5=4t -1,∴f (x )=4x -1.由f (a )=6得4a -1=6,即a =74.3.(2019·山东烟台高一期中测试)已知函数y =f (x )的部分x 与y 的对应关系如下表:则f [f (4)]A .-1 B .-2 C .-3D .3[解析] 由图表可知,f (4)=-3,∴f [f (4)]=f (-3)=3.4.已知幂函数f (x )=x α的图象过点(2,12),则函数g (x )=(x -2)f (x )在区间[12,1]上的最小值是( C )A .-1B .-2C .-3D .-4[解析] 由已知得2α=12,解得α=-1,∴g (x )=x -2x =1-2x 在区间[12,1]上单调递增,则g (x )min =g (12)=-3,故选C .5.(2019·吉林榆树一中高一期中测试)已知函数f (x -1)=x 2-3,则f (2)的值是( B ) A .-2B .6C.1 D.0[解析]解法一:令x-1=2,则x=3,∴f(2)=32-3=6.解法二:令x-1=t,则x=t+1,∴f(t)=(t+1)2-3=t2+2t-2,∴f(2)=22+2×2-2=6.6.(2019·吉林乾安七中高一期测试)已知函数f(x)=(m-1)x2+(m-2)x+m2-7m+12为偶函数,则m的值是(B)A.1 B.2C.3 D.4[解析]由题意得m-2=0,∴m=2.7.“龟兔赛跑”讲述了这样一个故事:领先的兔子看着缓缓爬行的乌龟,骄傲起来,睡了一觉,当它醒来时发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点.用s1和s2分别表示乌龟和兔子所行的路程,t为时间,s为路程,则下列图象中与故事情节相吻合的是(D)[解析]根据题意:s1是匀速运动,路程一直在增加,s2有三个阶段:开始是路程增加,中间睡觉,路程不变;醒来时发现乌龟快到终点了急忙追赶,路程增加;但是乌龟还是先到终点,即s1在s2上方,故选D.8.已知定义在R上的奇函数f(x)满足f(x-4)=-f(x)且在区间[0,2]上是增函数,则(D)A.f(-1)<f(3)<f(4) B.f(4)<f(3)<f(-1)C.f(3)<f(4)<f(-1) D.f(-1)<f(4)<f(3)[解析]因为f(x)是R上的奇函数,所以f(0)=0,又f(x)满足f(x-4)=-f(x),则f(4)=-f(0)=0,又f(x)=-f(-x)且f(x-4)=-f(x),所以f(3)=-f(-3)=-f(1-4)=f(1),又f (x )在区间[0,2]上是增函数,所以f (1)>f (0),即f (1)>0,所以f (-1)=-f (1)<0,f (3)=f (1)>0,可得f (-1)<f (4)<f (3),故选D . 二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得3分)9.下列幂函数中,其图象过点(0,0),(1,1),且为偶函数的是( BD )A .y =x 12B .y =x 2C .y =x-14D .y =x 4[解析] 由题设知该幂函数为偶函数,且幂指数大于0,故选BD .10.若奇函数f (x )在[3,7]上是增函数,且最小值是1,则它在[-7,-3]上( AB ) A .是增函数 B .最大值是-1 C .是减函数D .最小值是-1[解析] ∵奇函数在对称区间上的单调性相同,最值互为相反数.∴y =f (x )在[-7,-3]上有最大值-1且为增函数.故选AB .11.已知f (x )=3-2|x |,g (x )=x 2-2x ,F (x )=⎩⎪⎨⎪⎧g (x )(若f (x )≥g (x ))f (x )(若f (x )<g (x )),则F (x )( BC )A .最小值-1B .最大值为7-27C .无最小值D .无最大值[解析] 作出F (x )的图象,如图实线部分,知有最大值而无最小值,且最大值不是3,故选BC .12.已知f (x )是定义在[0,+∞)上的函数,根据下列条件,可以断定f (x )是增函数的是( CD )A .对任意x ≥0,都有f (x +1)>f (x )B .对任意x 1,x 2∈[0,+∞),且x 1≥x 2,都有f (x 1)≥f (x 2)C .对任意x 1,x 2∈[0,+∞),且x 1-x 2<0,都有f (x 1)-f (x 2)<0D .对任意x 1,x 2∈[0,+∞),且x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0[解析] 根据题意,依次分析选项:对于选项A ,对任意x ≥0,都有f (x +1)>f (x ),不满足函数单调性的定义,不符合题意;对于选项B ,当f (x )为常数函数时,对任意x 1,x 2∈[0,+∞),都有f (x 1)=f (x 2),不是增函数,不符合题意;对于选项C ,对任意x 1,x 2∈[0,+∞),且x 1-x 2<0,都有f (x 1)-f (x 2)<0,符合题意;对于选项D ,对任意x 1,x 2∈[0,+∞),设x 1>x 2,若f (x 1)-f (x 2)x 1-x 2>0,必有f (x 1)-f (x 2)>0,则函数在[0,+∞)上为增函数,符合题意.三、填空题(本大题共4小题,每小题5分,共20分.) 13.(2019·陕西黄陵中学高一期末测试)函数f (x )=4-2x +1x +1的定义域是__{x |x ≤2且x ≠-1}__.[解析] 由题意得⎩⎪⎨⎪⎧4-2x ≥0x +1≠0,解得x ≤2且x ≠-1,∴函数f (x )的定义域为{x |x ≤2且x ≠-1}.14.已知f (x )=⎩⎪⎨⎪⎧2x ,x >0,f (x +1),x ≤0,则f (-43)+f (43)等于__4__.[解析] ∵f (x )=⎩⎪⎨⎪⎧2x ,x >0,f (x +1),x ≤0,∴f (-43)=f (-43+1)=f (-13)=f (-13+1)=f (23)=23×2=43,f (43)=2×43=83,∴f (-43)+f (43)=43+83=4.15.已知幂函数f (x )=x α的图象经过点(9,3),则f (12)=2,函数f (1x -1)的定义域为__(0,1]__.[解析] 幂函数f (x )的图象经过点(9,3),所以3=9α,所以α=12,所以幂函数f (x )=x ,故f (12)=22,故1x-1≥0,解得0<x ≤1.16.设α∈{1,2,3,-1},则使y =x α为奇函数且在(0,+∞)上单调递增的α的值为__1或3__.[解析] 当α=1时,y =x 为奇函数,且在R 上单调递增,满足题意;当α=2时,y =x 2为偶函数不满足题意;当α=3时,y =x 3为奇函数,且在R 上单调递增,满足题意;当α=-1时,y =1x为奇函数,但在(0,+∞)上单调递减,不满足题意.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知函数f (x )=ax +b ,且f (1)=2,f (2)=-1. (1)求f (m +1)的值;(2)判断函数f (x )的单调性,并用定义证明.[解析] (1)由f (1)=2,f (2)=-1,得a +b =2,2a +b =-1,即a =-3,b =5,故f (x )=-3x +5,f (m +1)=-3(m +1)+5=-3m +2.(2)f (x )在R 上是减函数.证明:任取x 1<x 2(x 1,x 2∈R ),则f (x 2)-f (x 1)=(-3x 2+5)-(-3x 1+5)=3x 1-3x 2=3(x 1-x 2),因为x 1<x 2,所以f (x 2)-f (x 1)<0,即函数f (x )在R 上单调递减. 18.(本小题满分12分)已知函数f (x )=3-axa -1(a ≠1). (1)若a >0,求f (x )的定义域;(2)若f (x )在区间(0,1]上单调递减,求实数a 的取值范围.[解析] (1)当a >0且a ≠1时,由3-ax ≥0得x ≤3a ,即函数f (x )的定义域是(-∞,3a ].(2)当a -1>0,即a >1时,要使f (x )在(0,1]上单调递减,则需3-a ×1≥0,此时1<a ≤3. 当a -1<0,即a <1时,要使f (x )在(0,1]上单调递减,则需-a >0,且3-a ×1≥0,此时a <0.综上所述,所求实数a 的取值范围是(-∞,0)∪(1,3].19.(本小题满分12分)某商品在近30天内每件的销售价格P (元)和时间t (天)的函数关系为P =⎩⎪⎨⎪⎧t +20,0<t <25,-t +100,25≤t ≤30(t ∈N *).设商品的日销售量Q (件)与时间t (天)的函数关系为Q =40-t (0<t ≤30,t ∈N *),求这种商品的日销售金额的最大值,并指出日销售金额最大时是第几天.[解析] 设日销售金额为y 元,则y =PQ ,所以y =⎩⎪⎨⎪⎧-t 2+20t +800(0<t <25,t ∈N *),t 2-140t +4 000(25≤t ≤30,t ∈N *). 当0<t <25且t ∈N *时,y =-(t -10)2+900, 所以当t =10时,y max =900.①当25≤t ≤30且t ∈N *时,y =(t -70)2-900, 所以当t =25时,y max =1 125.②结合①②得y max =1 125.因此这种商品日销售金额的最大值为1 125元,且在第25天日销售金额最大.20.(本小题满分12分)已知二次函数f (x )的最小值为1,且f (0)=f (2)=3. (1)求f (x )的解析式;(2)若f (x )在区间[2a ,a +1]上不单调,求实数a 的取值范围.[解析] (1)由f (0)=f (2)知二次函数f (x )关于直线x =1对称,又函数f (x )的最小值为1, 故可设f (x )=a (x -1)2+1,由f (0)=3,得a =2. 故f (x )=2x 2-4x +3.(2)要使函数不单调,则2a <1<a +1, 则0<a <12.故实数a 的取值范围(0,12).21.(本小题满分12分)如果函数y =f (x )(x ∈D )满足: ①f (x )在D 上是单调函数;②存在闭区间[a ,b ]⊆D ,使f (x )在区间[a ,b ]上的值域也是[a ,b ]. 那么就称函数y =f (x )为闭函数.试判断函数y =x 2+2x 在[-1,+∞)内是否为闭函数.如果是闭函数,那么求出符合条件的区间[a ,b ];如果不是闭函数,请说明理由.[解析] 设x 1,x 2是[-1,+∞)内的任意两个不相等的实数,且-1≤x 1<x 2,则有f (x 2)-f (x 1)=(x 22+2x 2)-(x 21+2x 1)=(x 22-x 21)+2(x 2-x 1)=(x 2-x 1)(x 1+x 2+2). ∵-1≤x 1<x 2,∴x 2-x 1>0,x 1+x 2+2>0. ∴(x 2-x 1)(x 1+x 2+2)>0. ∴f (x 2)>f (x 1).∴函数y =x 2+2x 在[-1,+∞)内是增函数. 假设存在符合条件的区间[a ,b ],则有⎩⎪⎨⎪⎧ f (a )=a f (b )=b ,即⎩⎪⎨⎪⎧a 2+2a =ab 2+2b =b. 解得⎩⎪⎨⎪⎧ a =0b =0或⎩⎪⎨⎪⎧ a =0b =-1或⎩⎪⎨⎪⎧ a =-1b =0或⎩⎪⎨⎪⎧a =-1b =-1.又∵-1≤a <b ,∴⎩⎪⎨⎪⎧a =-1b =0.∴函数y =x 2+2x 在[-1,+∞)内是闭函数,符合条件的区间是[-1,0].22.(本小题满分12分)已知函数y =x +tx 有如下性质:如果常数t >0,那么该函数在(0,t )上是减函数,在[t ,+∞)上是增函数.(1)已知f (x )=4x 2-12x -32x +1,x ∈[0,1],利用上述性质,求函数f (x )的单调区间和值域;(2)对于(1)中的函数f (x )和函数g (x )=-x -2a ,若对任意x 1∈[0,1],总存在x 2∈[0,1],使得g (x 2)=f (x 1)成立,求实数a 的值.[解析] (1)y =f (x )=4x 2-12x -32x +1=2x +1+42x +1-8,设u =2x +1,x ∈[0,1],∴1≤u ≤3,则y =u +4u -8,u ∈[1,3].由已知性质得,当1≤u ≤2,即0≤x ≤12时,f (x )单调递减,所以单调减区间为[0,12];当2≤u ≤3,即12≤x ≤1时,f (x )单调递增,所以单调增区间为[12,1];由f (0)=-3,f (12)=-4,f (1)=-113,得f (x )的值域为[-4,-3].(2)g (x )=-x -2a 为减函数,故g (x )∈[-1-2a ,-2a ],x ∈[0,1].由题意知,f (x )的值域是g (x )的值域的子集,∴⎩⎪⎨⎪⎧-1-2a ≤-4,-2a ≥-3,∴a =32.。
2021高中同步创新课堂数学优化方案人教A版必修3习题:第一章章末综合检测(一) Word版含答案
章末综合检测(一)[同学用书单独成册](时间:120分钟,满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面对算法描述正确的一项是()A.算法只能用自然语言来描述B.算法只能用图形方式来表示C.同一个问题可以有不同的算法D.同一问题的算法不同,结果必定不同解析:选C.算法可以用自然语言、程序框图、程序语句等来描述,同一个问题可以有不同的算法,但结果是相同的.2.算法共有三种规律结构,即挨次结构、条件结构和循环结构,下列说法正确的是()A.一个算法只含有一种规律结构B.一个算法最多可以包含两种规律结构C.一个算法必需含有上述三种规律结构D.一个算法可以含有上述三种规律结构解析:选D.一个算法中具体含有哪种结构,主要看如何解决问题或解决怎样的问题,以上三种规律结构在一个算法中都有可能体现,故选D.3.下列给出的输入语句、输出语句和赋值语句:(1)输出语句INPUT a,b,c(2)输入语句INPUT y=3(3)赋值语句3=A(4)赋值语句A=B=C则其中正确的个数是()A.0个B.1个C.2个D.3个解析:选A.(1)中输出语句应使用PRINT;(2)中输入语句不符合格式INPUT“提示内容”;变量;(3)中赋值语句应为A=3;(4)中赋值语句消灭两个赋值号是错误的.4.(2022·日照检测)假如执行如图所示的程序框图,输入正整数N(N≥2)和实数a1,a2,…,a N,输出A,B,则()A.A+B为a1,a2,…,a N的和B .A+B2为a1,a2,…,a N的算术平均数C.A和B分别是a1,a2,…,a N中最大的数和最小的数D.A和B分别是a1,a2,…,a N中最小的数和最大的数解析:选C.由于x=a k,且x>A时,将x值赋给A,因此最终输出的A值是a1,a2,…,a N中最大的数;由于x=a k,且x<B时,将x值赋给B,因此最终输出的B值是a1,a2,…,a N中最小的数,故选C.5.(2021·高考北京卷)执行如图所示的程序框图,输出的k值为()A.3 B.4C.5 D.6解析:选B.初值为a=3,k=0,进入循环体后a=32,k=1;a=34,k=2;a=38,k=3;a=316,k=4,此时a<14,退出循环,则输出k=4.故选B.6.图示程序的功能是()S=1i=3WHILE S<=10 000S=S*ii=i+2WENDPRINT iENDA.求1×2×3×4×…×10 000的值B.求2×4×6×8×…×10 000的值C.求3×5×7×9×…×10 001的值D.求满足1×3×5×…×n>10 000的最小正整数n解析:选D.*法一:S是累乘变量,i是计数变量,每循环一次,S乘以i一次且i增加2.当S>10 000时停止循环,输出的i值是使1×3×5×…×n>10 000成立的最小正整数n.法二:最终输出的是计数变量i,而不是累乘变量S.7.(2021·高考全国卷Ⅱ)下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为14,18,则输出的a=()A.0 B.2C.4 D.14解析:选B.输入的a,b分别为14,18,程序依次运行:14≠18(是),14>18(否),b=4;14≠4(是),14>4(是),a=10;10≠4(是),10>4(是),a=6;6≠4(是),6>4(是),a=2;2≠4(是),2>4(否),b=2;2≠2(否),输出a=2.8.用秦九韶算法求多项式f(x)=208+9x2+6x4+x6当x=-4时的值时,v2的值为()A.-4 B.1C.17 D.22解析:选D.v0=1;v1=1×(-4)+0=-4;v2=-4×(-4)+6=22.9.(2022·武汉调研)执行如图所示的程序框图,若输出的结果是9,则推断框内m的取值范围是() A.(42,56]B.(56,72]C.(72,90] D.(42,90]解析:选B.第一次运行:S=2,k=2;其次次运行:S=6,k=3;…;第七次运行:S=56,k=8;第八次运行:S=2+4+6+…+16=72,k=9,输出结果.故推断框中m的取值范围是(56,72].10.(2021·高考安徽卷)执行如图所示的程序框图(算法流程图),输出的n为()A.3 B.4C.5 D.6解析:选B.初始值,a=1,n=1,|a-1.414|=0.414≥0.005,执行第一次循环,a=1+11+a=32,n=2;|a-1.414|=0.086≥0.005,执行其次次循环,a=1+11+a=75,n=3;|a-1.414|=0.014≥0.005,执行第三次循环,a =1+11+a =1712,n =4; |a -1.414|≈0.002 7<0.005,跳出循环,输出n =4.11.(2021·高考全国卷Ⅰ)执行如图所示的程序框图,假如输入的t =0.01,则输出的n =( )A .5B .6C .7D .8解析:选C.经推理分析可知,若程序能满足循环,则每循环一次,S 的值削减一半,循环6次后S 的值变为126=164>0.01,循环7次后S 的值变为127=1128<0.01,此时不再满足循环的条件,所以结束循环,于是输出的n =7.12.(2022·厦门质检)如图是推断“美数”的流程图,在[30,40]内的全部整数中,“美数”的个数是( )A .3B .4C .5D .6解析:选A.依题意可知,题中的“美数”包括12的倍数与能被3整除但不能被6整除的数.由此不难得知,在[30,40]内的“美数”有3×11、12×3、3×13这三个数.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.三个数390,455,546的最大公约数是________.解析:390与455的最大公约数是65, 65与546的最大公约数为13,可以用辗转相除法或更相减损术来求.答案:1314.把七进制数1 620(7)化为二进制数为________. 解析:1 620(7)=1×73+6×72+2×7+0=651, 651=1 010 001 011(2), 所以1 620(7)=1 010 001 011(2).答案:1 010 001 011(2)15.下面程序运行后输出的结果为________. x =-5y =-20IF x<0 THEN y =x -3ELSEy =x +3END IFPRINT x -y ,y -x END解析:由于输入x =-5<0, 所以y =x -3=-5-3=-8,所以输出x -y =-5-(-8)=3,y -x =-8-(-5)=-3.答案:3,-316.对任意非零实数a ,b ,若a ⊗b 的运算原理如图所示,则log 28⊗⎝⎛⎭⎫12-2=________.解析:log 28<⎝⎛⎭⎫12-2,由题意知,log 28⊗⎝⎛⎭⎫12-2=3⊗4=错误!=1.答案:1三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤) 17.(本小题满分10分)用秦九韶算法计算函数f (x )=2x 5+3x 4+2x 3-4x +5当x =2时的函数值. 解:依据秦九韶算法,把多项式改写成如下形式: f (x )=((((2x +3)x +2)x +0)x -4)x +5.从内到外的挨次依次计算一次多项式当x =2时的值: v 0=2;v 1=2×2+3=7; v 2=v 1×2+2=16; v 3=v 2×2+0=32; v 4=v 3×2-4=60; v 5=v 4×2+5=125.所以,当x =2时,多项式的值等于125.18.(本小题满分12分)已知函数y =⎩⎪⎨⎪⎧x 2-3,x ≥0,2x 2-6,x <0,画出程序框图,对每一个输入的x 值,都得到相应的函数值.解:程序框图如图所示:19.(本小题满分12分)以下是某次数学考试中某班15名同学的成果(单位:分):72,91,58,63,84,88,90,55,61,73,64,77,82,94,60.要求用程序框图将这15名同学中成果高于80分的同学的平均分数求出来.解:程序框图如图所示:20.(本小题满分12分)已知某算法的程序框图如图所示,若将输出的(x ,y )值依次记为(x 1,y 1),(x 2,y 2),…,(x n ,y n ),….(1)若程序运行中输出的一个数组是(9,t),求t的值;(2)程序结束时,共输出(x,y)的组数为多少;(3)写出程序框图的程序语句.解:(1)开头时,x=1时,y=0;接着x=3,y=-2;然后x=9,y=-4,所以t=-4;(2)当n=1时,输出一对,当n=3时,又输出一对,…,当n=2 015时,输出最终一对,共输出(x,y)的组数为1 008;(3)程序框图的程序语句如下:x =1y=0n=1DOPRINT(x,y)n=n+2x=3*xy=y-2LOOP UNTIL n>2 016END21.(本小题满分12分)在边长为4的正方形ABCD的边上有一点P,在折线BCDA中,由点B(起点)向A(终点)运动,设点P运动的路程为x,△APB的面积为y,求y与x之间的函数关系式,画出程序框图,写出程序.解:y=⎩⎪⎨⎪⎧2x,0≤x≤4,8,4<x≤8,2(12-x),8<x≤12.程序框图如图.程序如下:INPUT “x=”;xIF x>=0 AND x<=4 THENy=2*xELSEIF x<=8 THENy=8ELSEy=2*(12-x)END IFEND IFPRINT yEND22.(本小题满分12分)一个数被3除余2,被7除余4,被9除余5,求满足条件的最小正整数.画出程序框图,并写出程序.解:此问题即求不定方程组⎩⎪⎨⎪⎧m=3x+2,m=7y+4,m=9z+5的正整数解,首先可以从m=2开头检验条件,若三个条件任何一个不满足,则m递增1,始终到m同时满足3个条件为止.程序框图如图:程序如下:m=2WHILE m MOD 3<>2OR m MOD 7<>4ORm MOD 9<>5m=m+1WENDPRINT mEND。
2020_2021学年新教材高中数学模块质量检测含解析新人教A版选择性必修第三册
模块质量检测一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知变量x 与y 满足关系y =0.8x +9.6,变量y 与z 负相关.下列结论正确的是()A .变量x 与y 正相关,变量x 与z 正相关B .变量x 与y 正相关,变量x 与z 负相关C .变量x 与y 负相关,变量x 与z 正相关D .变量x 与y 负相关,变量x 与z 负相关2.甲、乙、丙三人到三个景点旅游,每人只去一个景点,设事件A 为“三个人去的景点不相同”,B 为“甲独自去一个景点”,则概率P(A|B)等于()A .49B .29C .12D .133.某校高二期末考试学生的数学成绩ξ(满分150分)服从正态分布N(75,σ2),且P(60<ξ<90)=0.8,则P(ξ≥90)=()A .0.4B .0.3C .0.2bD .0.14.二项式⎝⎛⎭⎪⎫x -13x 8展开式中的常数项为()A .28B .-28C .56D .-565.已知离散型随机变量X 的分布列为:则随机变量X 的期望为() A .134B .114C .136D .1166.参加完某项活动的6名成员合影留念,前排和后排各3人,不同排法的种数为()A .360B .720C .2160D .43207.为考察某种药物预防疾病的效果,进行动物试验,得到如下列联表:患病 未患病 合计 服用药 10 45 55 没服用药 20 30 50 合计3075105附表及公式:α 0.10 0.05 0.025 0.010 0.005 0.001 x α2.7063.8415.0246.6357.87910.828参考公式:χ2=2(a +b )(c +d )(a +c )(b +d )A .0.025B .0.010C .0.005D .0.0018.如图是一块高尔顿板示意图:在一块木板上钉着若干排互相平行但相互错开的圆柱形小木块,小木块之间留有适当的空隙作为通道,小球从上方的通道口落下后,将与层层小木块碰撞,最后掉入下方的某一个球槽内.若小球下落过程中向左、向右落下的机会均等,则小球最终落入④号球槽的概率为()A .332B .1564C .532D .516二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.下列说法正确的是()A .在残差图中,残差点分布的水平带状区域越窄,说明模型的拟合效果越好B .经验回归直线y ^=b ^x +a ^至少经过点(x 1,y 1),(x 2,y 2),…,(x n ,y n )中的一个C.若D(X)=1,Y=2X-1,则D(Y)=4D.设随机变量X~N(μ,7),若P(X<2)=P(X>4),则μ=310.研究变量x,y得到一组样本数据,进行回归分析,以下说法正确的是()A.残差平方和越小的模型,拟合的效果越好B.用相关指数R2来刻画回归效果,R2越小说明拟合效果越好C.在经验回归方程y^=0.2x+0.8中,当解释变量x每增加1个单位时,响应变量y^平均增加0.2个单位D.若变量y和x之间的相关系数为r=-0.9462,则变量y和x之间的负相关很强11.一组数据2x1+1,2x2+1,2x3+1,…,2x n+1的平均值为7,方差为4,记3x1+2,3x2+2,3x3+2,…,3x n+2的平均值为a,方差为b,则()A.a=7B.a=11C.b=12D.b=912.2020年3月,为促进疫情后复工复产期间安全生产,某医院派出甲、乙、丙、丁4名医生到A,B,C三家企业开展“新冠肺炎”防护排查工作,每名医生只能到一家企业工作,则下列结论正确的是()A.若C企业最多派1名医生,则所有不同分派方案共48种B.若每家企业至少分派1名医生,则所有不同分派方案共36种C.若每家企业至少分派1名医生,且医生甲必须到A企业,则所有不同分派方案共12种D.所有不同分派方案共43种三、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.已知随机变量X~N(1,σ2),若P(X>2)=0.2,则P(X>0)=________.14.若随机变量X的分布列如下表,且E(X)=2,则D(2X-3)的值为________.15.某种品牌汽车的销量y()之间具有线性相关关系,样本数据如表所示:经计算得经验回归方程y=b x+a的斜率为0.7,若投入宣传费用为8万元,则该品牌汽车销量的预报值为________万辆.16.已知(ax-1)2020=a0+a1x+a2x2+…+a2020x2020(a>0),得a0=________.若(a0+a2+…+a2020)2-(a1+a3+…+a2019)2=1,则a=________.四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知⎝⎛⎭⎪⎫x 2+1x n 的展开式中的所有二项式系数之和为32. (1)求n 的值;(2)求展开式中x 4的系数.18.(本小题满分12分)生男生女都一样,女儿也是传后人,由于某些地区仍然存在封建传统思想,头胎的男女情况可能会影响生二孩的意愿,现随机抽取某地200户家庭进行调查统计.这200户家庭中,头胎为女孩的频率为0.5,生二孩的频率为0.525,其中头胎生女孩且生二孩的家庭数为60.(1)完成下列2×2列联表:(2)附:χ2=n2(a+b)(c+d)(a+c)(b+d)(其中n=a+b+c+d).19.(本小题满分12分)据某县水资源管理部门估计,该县10%的乡村饮用水井中含有杂质A.为了弄清该估计值是否正确,需要进一步验证.由于对所有的水井进行检测花费太大,所以决定从全部饮用水井中随机抽取5口水井检测.(1)假设估计值是正确的,求抽取5口水井中至少有1口水井含有杂质A的概率;(2)在概率中,我们把发生概率非常小(一般以小于0.05为标准)的事件称为小概率事件,意思是说,在随机试验中,如果某事件发生的概率非常小,那么它在一次试验中几乎是不可能发生的.假设在随机抽取的5口水井中有3口水井含有杂质A,试判断“该县10%的乡村饮用水井中含有杂质A”的估计是否正确,并说明理由.参考数据:93=729,94=6561,95=59049.20.(本小题满分12分)在全国科技创新大会上,主席指出为建设世界科技强国而奋斗.某科技公司响应号召基于领先技术的支持,不断创新完善,业内预测月纯利润在短期内逐月攀升.该公司在第1个月至第9个月的月纯利润y(单位:万元)关于月份x 的数据如表:(2)请预测第12个月的纯利润. 附:经验回归的方程是:y ^=b ^x +a ^,其中b ^=∑i =1nx i y i -n x -y -i =1n(x i -x -)2,a ^=y --b ^x -.参考数据:∑i =19x i y i =1002,i =19(x i -x -)2=60.21.(本小题满分12分)1933年7月11日,中华苏维埃某某国临时中央政府根据中央革命军事委员会6月30日的建议,决定8月1日为中国工农红军成立纪念日,中华人民某某国成立后,将此纪念日改称为中国人民解放军建军节,为庆祝建军节,某校举行“强国强军”知识竞赛,该校某班经过层层筛选,还有最后一个参赛名额要在A ,B 两名学生中间产生,该班委设计了一个测试方案:A ,B 两名学生各自从6个问题中随机抽取3个问题作答,已知这6个问题中,学生A 能正确回答其中的4个问题,而学生B 能正确回答每个问题的概率均为23,A ,B 两名学生对每个问题回答正确与否都是相互独立、互不影响的.(1)求A 恰好答对两个问题的概率; (2)求B 恰好答对两个问题的概率;(3)设A 答对题数为X ,B 答对题数为Y ,若让你投票决定参赛选手,你会选择哪名学生?请说明理由.22.(本小题满分12分)某汽车公司拟对“东方红”款高端汽车发动机进行科技改造,根据市场调研与模拟,得到科技改造投入x(亿元)与科技改造直接收益y(亿元)的数据统计如下:模型①:y ^=4.1x +11.8;模型②:y ^=21.3x -14.4;当x>16时,确定y 与x 满足的经验回归方程为:y ^=-0.7x +a.(1)根据下列表格中的数据,比较当0<x ≤16时模型①、②的相关指数R 2,并选择拟合精度更高、更可靠的模型,预测对“东方红”款汽车发动机科技改造的投入为16亿元时的直接收益.(附:刻画回归效果的相关指数R 2=1-i =1n(y i -y ^i )2i =1n(y i -y -)2.)(2)为鼓励科技创新,当科技改造的投入不少于20亿元时,国家给予公司补贴收益10亿元,以回归方程为预测依据,比较科技改造投入16亿元与20亿元时公司实际收益的大小.(附:用最小二乘法求经验回归方程y ^=b ^x +a ^的系数公式b ^=∑i =1nx i y i -n x -·y -∑i =1n x 2i -n x -2=i =1n(x i -x -)(y i -y -)i =1n(x i -x -)2;a ^=y --b ^x -)(3)科技改造后,“东方红”款汽车发动机的热效率X 大幅提高,X 服从正态分布N(0.52,0.012),公司对科技改造团队的奖励方案如下:若发动机的热效率不超过50%,不予鼓励;若发动机的热效率超过50%但不超过53%,每台发动机奖励2万元;若发动机的热效率超过53%,每台发动机奖励4万元.求每台发动机获得奖励的分布列和数学期望.(附:随机变量ξ服从正态分布N(μ,σ2),则 P(μ-σ<ξ<μ+σ)=0.6827, P(μ-2σ<ξ<μ+2σ)=0.9545.)模块质量检测1.解析:根据变量x 与y 满足关系y =0.8x +9.6可知,变量x 与y 正相关;再由变量y 与z 负相关知,变量x 与z 负相关.故选B .答案:B2.解析:甲独自去一个景点有3种,乙、丙有2×2=4种,则B “甲独自去一个景点”,共有3×4=12种,A “三个人去的景点不相同”,共有3×2×1=6种,概率P(A|B)=612 =12 .故选C .答案:C3.解析:∵数学成绩ξ服从正态分布N(75,σ2),则正态分布曲线的对称轴方程为x =75,又P(60<ξ<90)=0.8,∴P(ξ≥90)=12 [1-P(60<ξ<90)]=12(1-0.8)=0.1.故选D .答案:D4.解析:二项式⎝⎛⎭⎪⎫x -13x 8展开式的通项公式为T r +1=C r 8 x8-r ⎝ ⎛⎭⎪⎫-13x r=(-1)r C r 8 x 8-4r3,令8-4r 3=0,解得r =6,∴二项式⎝ ⎛⎭⎪⎫x -13x 8展开式中的常数项为(-1)6C 68=28.故选A .答案:A5.解析:由分布列的概率的和为1,可得:缺失数据:1-13 -16 =12.所以随机变量X 的期望为:1×13 +2×16 +3×12 =136 .故选C .答案:C6.解析:根据题意,分2步进行分析:①在6人中任选3人,安排在第一排,有C 36 A 33 =120种排法;②将剩下的3人全排列,安排在第二排,有A 33 =6种排法; 则有120×6=720种不同的排法;故选B . 答案:B7.解析:χ2=105(10×30-20×45)255×50×30×75 ≈6.109∈(5.024,6.635)所以这种推断犯错误的概率不超过0.025,故选A . 答案:A8.解析:设这个球落入④号球槽为时间A ,落入④号球槽要经过两次向左,三次向右,所以P(A)=C 35⎝ ⎛⎭⎪⎫12 3 ⎝ ⎛⎭⎪⎫12 2 =516 .故选D .答案:D9.解析:对于A ,在残差图中,残差点比较均匀的分布在水平带状区域中,带状区域越窄,说明模型的拟合效果越好,选项正确;对于B ,经验回归直线不一定经过样本数据中的一个点,它是最能体现这组数据的变化趋势的直线,选项错误;对于C ,D(Y)=D(2X -1)=22D(X)=4×1=4,选项正确;对于D ,随机变量X ~N(μ,7),若P(X<2)=P(X>4),则μ=2+42=3,选项正确;综上可得,正确的选项为A ,C ,D ,故选ACD . 答案:ACD10.解析:A 可用残差平方和判断模型的拟合效果,残差平方和越小,模型的拟合效果越好,故A 正确;B 用相关指数R 2来刻画回归效果,R 2越大说明拟合效果越好,故B 错误;C 在经验回归方程y ^ =0.2x +0.8中,当解释变量x 每增加1个单位时,响应变量y ^平均增加0.2个单位,故C 正确;D 若变量y 和x 之间的相关系数为r =-0.946 2,r 的绝对值趋向于1,则变量y 和x 之间的负相关很强,故D 正确.故选ACD .答案:ACD11.解析:设X =(x 1,x 2,x 3,…,x n ),数据2x 1+1,2x 2+1,2x 3+1,…,2x n +1的平均值为7,方差为4, 即E(2X +1)=7,D(2X +1)=4, 由离散型随机变量均值公式可得E(2X +1)=2E(X)+1=7,所以E(X)=3,因而3x 1+2,3x 2+2,3x 3+2,…,3x n +2的平均值为a =E(3X +2)=3E(X)+2=3×3+2=11;由离散型随机变量的方差公式可得 D(2X +1)=4D(X)=4,所以D(X)=1,因而3x 1+2,3x 2+2,3x 3+2,…,3x n +2的方差为b =D(3X +2)=9D(X)=9,故选BD .答案:BD12.解析:对于选项A :若C 企业没有派医生去,每名医生有2种选择,则共有24=16种,若C 企业派1名医生则有C 14 ·23=32种,所以共有16+32=48种.对于选项B :若每家企业至少分派1名医生,则有C 24 C 12 C 11A 22·A 33 =36种.对于选项C :若每家企业至少分派1名医生,且医生甲必须到A 企业,若甲企业分2人,则有A 33 =6种;若甲企业分1人,则有C 23 C 11 A 22 =6种,所以共有6+6=12种.对于选项D :所有不同分派方案共有34种.故选ABC .答案:ABC13.解析:因为随机变量X ~N(1,σ2),P(X>2)=0.2,所以P(X<0)=P(X>2)=0.2,因此P(X>0)=1-P(X ≤0)=1-0.2=0.8.答案:0.814.解析:由题意可得:16 +p +13 =1,解得p =12 ,因为E(X)=2,所以:0×16 +2×12 +a ×13=2,解得a =3. D(X)=(0-2)2×16+(2-2)2×12+(3-2)2×13=1. D(2X -3)=4D(X)=4. 答案:415.解析:由题意可得x - =3+4+5+64 =4.5;y - =2.5+3+4+4.54=3.5;经验回归方程y ^ =b ^ x +a ^ 的斜率为0.7,可得y ^ =0.7x +a ^,所以3.5=0.7×4.5+a ^ ,可得a ^ =0.35,经验回归方程为:y ^=0.7x +0.35,投入宣传费用为8万元,则该品牌汽车销量的预报值为:0.7×8+0.35=5.95(万辆). 答案:5.9516.解析:已知(ax -1)2 020=a 0+a 1x +a 2x 2+…+a 2 020x 2 020(a>0), 令x =0,可得a 0=1.令x =1得,(a -1)2 020=a 0+a 1+a 2+…+a 2 020,令x =-1得,(-a -1)2 020=a 0-a 1+a 2-a 3+…+a 2 020,而(a 0+a 2+…+a 2 020)2-(a 1+a 3+…+a 2 019)2=(a 0+a 1+a 2+…+a 2 020)(a 0-a 1+a 2-a 3+…+a 2 020)=(a -1)2 020(-a -1)2 020=[(a -1)(-a -1)]2 020=(a 2-1)2 020=1,解得a =2 (负值和0舍).答案:1217.解析:(1)由题意可得,2n =32,解得n =5;(2)⎝ ⎛⎭⎪⎫x 2+1x n =⎝⎛⎭⎪⎫x 2+1x 5 , 二项展开式的通项为T r +1=C r5(x 2)5-r ⎝ ⎛⎭⎪⎫1x r=C r 5 x10-3r . 由10-3r =4,得r =2. ∴展开式中x 4的系数为C 25 =10.18.解析:(1)因为头胎为女孩的频率为0.5,所以头胎为女孩的总户数为200×0.5=100.因为生二孩的概率为0.525,所以生二孩的总户数为200×0.525=105. 2×2列联表如下:(2)由2×2列联表得:χ2=200(60×55-45×40)2105×95×100×100 =600133≈4.511>3.841=x 0.05故在犯错误的概率不超过0.05的前提下能认为是否生二孩与头胎的男女情况有关. 19.解析:(1)假设估计值是正确的,即随机抽一口水井,含有杂质A 的概率p =0.1.抽取5口水井中至少有1口水井含有杂质A 的概率P =1-(1-0.1)5=0.409 51;(2)在随机抽取的5口水井中有3口水井含有杂质A 的概率为C 35 ·(0.1)3·(0.9)2=0.0081<0.05.说明在随机抽取的5口水井中有3口水井含有杂质A 是小概率事件,它在一次试验中几乎是不可能发生的,说明“该县10%的乡村饮用水井中含有杂质A ”的估计是错误的.20.解析:(1)x -=19 (1+2+3+4+5+6+7+8+9)=5,y - =19(13+14+17+18+19+23+24+25+27)=20.b ^ =∑i =19x i y i -9x - y-∑i =19(x i -x -)2=1 002-9×5×2060=1.7.a ^=y --b ^x -=20-1.7×5=11.5.∴y 关于x 的经验回归方程为y =1.7x +11.5; (2)由y =1.7x +11.5,取x =12, 得y =1.7×12+11.5=31.9(万元). 故预测第12个月的纯利润为31.9万元.21.解析:(1)A ,B 两名学生各自从6个问题中随机抽取3个问题作答.这6个问题中,学生A 能正确回答其中的4个问题,而学生B 能正确回答每个问题的概率均为23,A ,B 两名学生对每个问题回答正确与否都是相互独立、互不影响的. A 恰好答对两个问题的概率为:P 1=C 24 C 12C 36=35.(2)B 恰好答对两个问题的概率为C 23⎝ ⎛⎭⎪⎫232·13=49. (3)X 所有可能的取值为1,2,3.P (X =1)=C 14 C 22 C 36 =15;P (X =2)=C 24 C 12 C 36 =35;P (X =3)=C 34 C 02 C 36=15.所以E (X )=1×15+2×35+3×15=2.由题意,随机变量Y ~B ⎝ ⎛⎭⎪⎫3,23,所以E (Y )=3×23=2.D (X )=(1-2)2×15+(2-2)2×35+(3-2)2×15=25.D (Y )=3×23×13=23.因为E (X )=E (Y ),D (X )<D (Y ),可见,A 与B 的平均水平相当,但A 比B 的成绩更稳定, 所以选择投票给学生A .22.解析:(1)由表格中的数据,有182.4>79.2,即182.4∑i =17(y i -y -)2>79.2∑i =17(y i -y -)2,所以模型①的R 2小于模型②,说明回归模型②刻画的拟合效果更好. 所以当x =16亿元时,科技改造直接收益的预测值为: y ^=21.3×16 -14.4=70.8(亿元).(2)由已知可得:x --20=1+2+3+4+55=3,∴x - =23,y --60=8.5+8+7.5+6+65 =7.2,∴y -=67.2,∴a =y - +0.7x -=67.2+0.7×23=83.3, ∴当x>16亿元时,y 与x 满足的经验回归方程为: y ^=-0.7x +83.3,∴当x =20亿元时,科技改造直接收益的预测值 y ^=-0.7×20+83.3=69.3,∴当x =20亿元时,实际收益的预测值为 69.3+10=79.3亿元>70.8亿元,∴科技改造投入20亿元时,公司的实际收益更大. (3)∵P(0.52-0.02<X<0.52+0.02)=0.954 5, P(X>0.50)=1+0.954 52 =0.977 25,P(X ≤0.5)=1-0.954 52 =0.022 75,∵P(0.52-0.1<X<0.52+0.1)=0.682 7, ∴P(X>0.53)=1-0.682 72=0.158 65,∴P(0.50<X ≤0.53)=0.977 25-0.158 65=0.818 6, 设每台发动机获得的奖励为Y(万元),则Y 的分布列为:∴每台发动机获得奖励的数学期望E(Y)=0×0.022 75+2×0.818 6+4×0.158 65=2.271 8(万元).。
人教A版高中数学必修3:终结性评价笔试试题(1)【含答案解析】
数学必修3终结性评价笔试试题(一)本试卷分选择题和非选择题两部分,共4页.满分为150分.考试用时120分钟.注意事项:1.考生应在开始答题之前将自己的姓名、考生好和座位号填写在答题卷指定的位置上.2.应在答题卷上作答,答在试卷上的答案无效.3.选择题每小题选出答案后,应将对应题目的答案标号填涂在答题卷指定的位置上. 4.非选择题的答案必须写在答题卷各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.本次考试不允许使用函数计算器.6.考生必须保持答题卷的整洁,考试结束后,将答题卷交回.第一部分 选择题(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中, 只有一项是符合题目要求的.1.在用样本频率估计总体分布的过程中,下列说法正确的是A.总体容量越大,估计越精确 B.总体容量越小,估计越精确 C.样本容量越大,估计越精确 D.样本容量越小,估计越精确 2.刻画数据的离散程度的度量,下列说法正确的是(1) 应充分利用所得的数据,以便提供更确切的信息; (2) 可以用多个数值来刻画数据的离散程度;(3) 对于不同的数据集,其离散程度大时,该数值应越小。
A .(1)和(3)B .(2)和(3)C . (1)和(2)D .都正确 3.数据5,7,7,8,10,11的标准差是A .8B .4C .2D .14.某公司现有职员160人,中级管理人员30人,高级管理人员10人,要从其中抽取20个人进行身体健康检查,如果采用分层抽样的方法,则职员、中级管理人员和高级管理人员各应该抽取多少人A .8,15,7B .16,2,2C .16,3,1D .12,3,55.阅读右面的流程图,若输入的a 、b 、c 分别 是21、32、75,则输出的a 、b 、c 分别是: A .75、21、32 B .21、32、75C .32、21、75D .75、32、21 6.已知两组样本数据}{n x x x ,......,21的平均数为h ,}{m y y y ,......,21的平均数为k, 则把两组数据合并成一组以后,这组样本的平均数为A .2k h + B .n m mk nh ++ C .n m nh mk ++ D .nm kh ++ 7.条件语句的一般形式如右所示,其中B 表示的是 A .条件 B .条件语句C .满足条件时执行的内容D .不满足条件时执行的内容 8.从一批产品中取出三件,设A =“三件产品全不是次品”,B =“三件产品全是次品”,C =“三件产品不全是次品”,则下列结论正确的是A .A 与C 互斥B .B 与C 互斥 C .任两个均互斥D .任两个均不互斥(2) (3) (4) A .(1)(2) B .(1)(3) C .(2)(4) D .(2)(3) 10.同时抛掷两枚质地均匀的硬币,则出现两个正面朝上的概率是 A .21 B .41 C .31 D .81第二部分 非选择题(共100分)二、填空题 :本大题共4小题,每小题5分,共20分.将最简答案填在题后横线上。
高中数学 章末检测试卷(一)(含解析)新人教A版必修3-新人教A版高一必修3数学试题
章末检测试卷(一)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.算法共有三种逻辑结构,即顺序结构、条件结构、循环结构,下列说法正确的是( ) A.一个算法只能含有一种逻辑结构B.一个算法最多可以包含两种逻辑结构C.一个算法必须含有上述三种逻辑结构D.一个算法可以含有上述三种逻辑结构的任意组合答案 D解析任何一种算法都是由上述三种逻辑结构组成的,它可以含有三种结构中的一种、两种或三种.2.下面一段程序执行后的结果是( )A.6B.4C.8D.10答案 A解析由程序知a=2,2×2=4,4+2=6,故最后输出a的值为6,故选A.3.执行如图所示的程序框图,若输出的结果为11,则M处可填入的条件为( )A.k≥31B.k≥15C.k>31D.k>15答案 B解析依题意k=1,S=0,进入循环,循环过程依次为:S=0+1=1,k=2×1+1=3;S=1+3=4,k=2×3+1=7;S=4+7=11,k=2×7+1=15,终止循环,输出S=11.结合选项知,M处可填k≥15.4.中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s为( )A.7B.12C.17D.34答案 C解析由框图可知,输入x=2,n=2,a=2,s=2,k=1,不满足条件;a=2,s=4+2=6,k=2,不满足条件;a=5,s=12+5=17,k=3,满足条件输出s=17,故选C.5.执行如图所示的程序框图,输出的S值为( )A.1B.3C.7D.15答案 C解析由程序框图得S=0+20=1,k=1;S=1+21=3,k=2;S=3+22=7,k=3,输出S的值为7.6.运行如图所示的程序,当输入的数据为75,45时,输出的值为( ) INPUT “输入两个不同正整数m,n=”;m,nDOIF m>n THENm=m-nELSEn=n-mEND IFLOOP UNTIL m=nPRINT mENDA.24B.18C.12D.15答案 D解析由程序语句知,此程序是用更相减损术求75,45的最大公约数.7.执行如图所示的框图,输入N=5,则输出S的值为( )A.54B.45C.65D.56 答案 D解析 第一次循环,S =0+11×2=12,k =2; 第二次循环,S =12+12×3=23,k =3;第三次循环,S =23+13×4=34,k =4;第四次循环,S =34+14×5=45,k =5;第五次循环,S =45+15×6=56,此时k =5不满足判断框内的条件,跳出循环, 输出S =56,故选D.8.若如图所示的程序框图的功能是计算1×12×13×14×15的结果,则在空白的执行框中应该填入( )A .T =T ·(i +1)B .T =T ·iC .T =T ·1i +1D .T =T ·1i答案 C解析 程序框图的功能是计算1×12×13×14×15的结果,依次验证选项可得C 正确.9.如图所示的程序运行时,从键盘输入-3,则输出值为( ) INPUT “x=”;x IF x >0 THEN y =1 ELSEIF x =0 THENy =0 ELSEy =-1 END IF END IF PRINT y END A .-3B .3C .1D .-1 答案 D解析 由程序知,当x >0时,y =1;否则,当x =0时,y =0;当x <0时,y =-1. 即y =⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0.10.执行如图所示的程序框图,若输出的k =5,则输入的整数p 的最大值为( )A .7B .15C .31D .63 答案 B解析 由程序框图可知:①S =0,k =1;②S =1,k =2;③S =3,k =3;④S =7,k =4;⑤S =15,k =5,输出k ,此时S =15≥p ,则p 的最大值为15,故选B.11.执行如图所示的程序框图,若输出的结果是4,则判断框内实数m 的取值X 围是( )A .(2,6]B .(6,12]C .(12,20]D .(2,20] 答案 B解析 由程序框图,知第一次循环后,S =0+2=2,k =2; 第二次循环后,S =2+4=6,k =3; 第三次循环后,S =6+6=12,k =4.∵输出k =4,∴循环体执行了3次,此时S =12,∴6<m ≤12,故选B.12.执行如图所示的程序框图,若输出的结果为2,则输入的正整数a 的取值的集合是( )A.{1,2,3,4,5}B.{1,2,3,4,5,6}C.{2,3,4,5}D.{2,3,4,5,6}答案 C解析若输入a=1,则a=2×1+3=5,i=0+1=1,因为5>13不成立,所以继续循环;a =2×5+3=13,i=1+1=2,因为13>13不成立,所以继续循环;a=2×13+3=29,i=2+1=3,因为29>13成立,所以结束循环,输出的结果为3,不为2,所以a≠1,排除A,B,若输入a=6,则a=2×6+3=15,i=0+1=1,因为15>13成立,所以结束循环,输出的结果为1,不为2,所以a≠6,排除D,故选C.二、填空题(本大题共4小题,每小题5分,共20分)13.执行如图程序框图,若输入的a,b的值分别为0和9,则输出的i的值为________.答案 3解析第1次循环:i=1,a=1,b=8,a<b;第2次循环:i=2,a=3,b=6,a<b;第3次循环:i=3,a=6,b=3,a>b,输出i的值为3.14.将二进制数110101(2)化成十进制数,结果为________,再将该结果化成七进制数,结果为________.答案53 104(7)解析110101(2)=1×25+1×24+0×23+1×22+0×21+1×20=53,然后用除7取余法得53=104(7).15.执行如图所示的程序框图,则输出结果S=________.答案1010解析根据程序框图知,S=(-1+2)+(-3+4)+…+(-2019+2020)=1010,故输出的S 的值为1010.16.阅读下面的程序,该算法的功能是_____________________.S=0t=1i=1DOS=S+it=t*ii=i+1LOOP UNTIL i>20PRINT S,tEND答案求S=1+2+3+…+20,t=1×2×3×…×20三、解答题(本大题共6小题,共70分)17.(10分)分别用辗转相除法和更相减损术求282与470的最大公约数.解辗转相除法:470=1×282+188,282=1×188+94,188=2×94,所以282与470的最大公约数为94.更相减损术:470与282分别除以2得235和141.235-141=94,141-94=47,94-47=47,所以470与282的最大公约数为47×2=94.18.(12分)下面给出一个用循环语句编写的程序:(1)指出程序所用的是何种循环语句,并指出该程序的算法功能;(2)请用另一种循环语句的形式把该程序写出来.解(1)本程序所用的循环语句是WHILE循环语句,其功能是计算12+22+32+…+92的值.(2)用UNTIL语句改写程序如下:19.(12分)下列是某个问题的算法,将其改为程序语言,并画出程序框图. 算法:第一步,令i =1,S =0.第二步,若i ≤999成立,则执行第三步; 否则,输出S ,结束算法. 第三步,S =S +1i.第四步,i =i +2,返回第二步. 解 程序如下: i =1 S =0WHILE i<=999 S =S +1/i i =i +2 WEND PRINT S END程序框图如图:20.(12分)下列语句是求S =2+3+4+…+99的一个程序,请回答问题: i =1 S =0DOS =S +ii =i +1LOOP UNTIL i >=99PRINT SEND(1)程序中是否有错误?若有,请加以改正;(2)把程序改成另一种类型的循环语句.解 (1)错误有两处:第一处:语句i =1应改为i =2.第二处:语句LOOPUNTIL i >=99应改为LOOPUNTIL i >99.(2)改为当型循环语句为:i =2S =0WHILE i <=99S =S +ii =i +1WENDPRINT SEND21.(12分)输入x ,求函数y =⎩⎪⎨⎪⎧ 3x -2,x ≥2,-2,x <2的值的程序框图如图所示.(1)指出程序框图中的错误之处并写出正确的算法步骤;(2)重新绘制程序框图,并回答下面提出的问题.①要使输出的值为7,则输入的x 的值应为多少?②要使输出的值为正数,则输入的x 应满足什么条件?解 (1)函数y =⎩⎪⎨⎪⎧ 3x -2,x ≥2,-2,x <2是分段函数,其程序框图中应该有判断框,应该有条件结构,不应该只用顺序结构.正确的算法步骤如下所示:第一步,输入x .第二步,判断x ≥2是否成立.若是,则y =3x -2;否则y =-2.第三步,输出y .(2)根据(1)中的算法步骤,可以画出程序框图如图所示.①要使输出的值为7,则3x -2=7,故x =3,即输入的x 的值应为3.②要使输出的值为正数,则⎩⎪⎨⎪⎧ x ≥2,3x -2>0,得x ≥2.故当x ≥2时,输出的值为正数.22.(12分)为了节约用水,学校改革澡堂收费制度,开始实行计时收费,30min 以内每分钟收费0.1元,30min 以上超过部分每分钟收费0.2元,编写程序并画出程序框图,要求输入洗澡时间,输出洗澡费用.解 用y (单位:元)表示洗澡费用,x (单位:min)表示洗澡时间,则y =⎩⎪⎨⎪⎧ 0.1x ,0<x ≤30,3+0.2x -30,x >30.程序如下:INPUT xIF x <=30 THENy =0.1*xELSEy =3+0.2*x -30END IFPRINT yEND程序框图如图所示.。
高中数学 第三章 概率 31 随机事件的概率练习 新人教A版必修3 试题
3.1随机事件的概率3.1.1随机事件的概率一、选择题1.下面事件:①某项体育比赛出现平局;②抛掷一枚硬币,出现反面;③全球变暖会导致海平面上升;④一个三角形的三边长分别为1,2,3;其中是随机事件的是( )A.①②B.①③C.②③D.③④2.在25件同类产品中,有2件次品,从中任取3件产品,其中不可能事件为( )A.3件都是正品B.至少有1件次品C.3件都是次品D.至少有1件正品3.某人将一枚硬币连续抛掷了10次,正面朝上的情形出现了6次,则( )A.正面朝上的概率为0.6B.正面朝上的频率为0.6C.正面朝上的频率为6D.正面朝上的概率接近于0.64.给出下列三个命题,其中正确命题的个数是( )①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面,因此,出现正面的概率是0.3;③随机事件发生的频率就是这个随机事件发生的概率.A.0B.1C.2D.35.一个家庭有两个小孩,则这两个小孩所有情况有( )A.2种B.3种C.4种D.5种6.先从一副扑克牌中抽取5张红桃,4张梅花,3张黑桃,再从抽取的12张牌中随机抽出10张,恰好红桃、梅花、黑桃3种牌都抽到,这种事情( )A.可能发生B.不可能发生C.必然发生D.无法判断7.下列事件:①如果a>b,那么a-b>0.②任取一实数a(a>0且a≠1),函数y=logax是增函数.③某人射击一次,命中靶心.④从盛有一红、二白共三个球的袋子中,摸出一球观察结果是黄球.其中是随机事件的为( )A.①②B.③④ C.①④D.②③8.下列说法中,不正确的是( )A.某人射击10次,击中靶心8次,则他击中靶心的频率是0.8B.某人射击10次,击中靶心7次,则他击不中靶心的频率是0.7C.某人射击10次,击中靶心的频率是12,则他应击中靶心5次D.某人射击10次,击中靶心的频率是0.6,则他击不中靶心的次数应为4二、填空题9.一家保险公司想了解汽车的挡风玻璃破碎的概率,公司收集了20000部汽车的相关信息,时间是从某年的5月1日到下一年的5月1日,共发现有600部汽车的挡风玻璃破碎,则一部汽车在一年内挡风玻璃破碎的概率近似是.10.已知随机事件A发生的频率是0.02,事件A出现了10次,那么共进行了________次试验.11.在200件产品中,有192件一级品,8件二级品,则事件(1)“在这200件产品中任意选出9件,全部是一级品”;(2)“在这200件产品中任意选出9件,全部是二级品”(3)“在这200件产品中任意选出9件,不全是一级品”;(4)“在这200件产品中任意选出9件,其中不是一级品的件数小于10”.是必然事件; 是不可能事件; 是随机事件.12.根据某社区医院的调查,该地区居民血型的分布为:O型50%,A型15%,B型30%,AB型5%,现有一血液为A型的病人需要输血,若在该地区任选一人,那么能为该病人输血的概率是.三、解答题13.设集合M={1,2,3,4},a∈M,b∈M,(a,b)是一个基本事件.(1)“a+b=5”这一事件包含哪几个基本事件?“a<3且b>1”呢?(2)“ab=4”这一事件包含哪几个基本事件?“a=b”呢?(3)“直线ax+by=0的斜率k>-1”这一事件包含哪几个基本事件?14.从含有两件正品a1,a2和一件次品b的三件产品中每次任取一件,每次取出后不放回,连续取两次.(1)写出这个试验的所有结果;(2)设A为“取出两件产品中恰有一件次品”,写出事件A;(3)把“每次取出后不放回”这一条件换成“每次取出后放回”,其余不变,请你回答上述两个问题.15.某批乒乓球产品质量检查结果如下表所示:(1)计算表中乒乓球优等品的频率;(2)从这批乒乓球产品中任取一个,质量检查为优等品的概率是多少?(结果保留到小数点后三位)附加题16.(1)从甲、乙、丙、丁四人中选出两人,分别在星期六和星期天两天值班,写出该试验的所有可能的结果;(2)从甲、乙、丙、丁四人中选出3人去旅游,写出所有可能的结果.3.1.2概率的意义一、选择题1.“某彩票的中奖概率为11000”意味着( )A.买1000张彩票就一定能中奖B.买1000张彩票中一次奖C.买1000张彩票一次奖也不中D.购买彩票中奖的可能性是2.某学校有教职工400名,从中选出40名教职工组成教工代表大会,每位教职工当选的概率是110,其中正确的是( )A.10个教职工中,必有1人当选B.每位教职工当选的可能性是110C.数学教研组共有50人,该组当选教工代表的人数一定是5D.以上说法都不正确3.向上抛掷100枚质地均匀的硬币,下列哪种情况最有可能发生( )A.50枚正面朝上, 50枚正面朝下B.全都是正面朝上C.有10枚左右的硬币正面朝上D.大约有20枚硬币正面朝上4.同时向上抛100个质地均匀的铜板,落地时100个铜板朝上的面都相同,你认为对这100个铜板下面情况最有可能正确的是( )A.这100个铜板的两面是一样的B.这100个铜板的两面是不同的C.这100个铜板中有50个两面是一样的,另外50个两面是不相同的D.这100个铜板中有20个两面是一样的,另外80个两面是不相同的5.抛掷一枚质地均匀的正方体骰子(六个面上分别写有1,2,3,4,5,6),若前3次连续抛到“6点朝上”,则对于第4次抛掷结果的预测,下列说法中正确的是( )A.一定出现“6点朝上”B.出现“6点朝上”的概率大于16C.出现“6点朝上”的概率等于16D.无法预测“6点朝上”的概率6.甲、乙两人做游戏,下列游戏中不公平的是( )A.抛掷一枚骰子,向上的点数为奇数则甲获胜,向上的点数为偶数则乙获胜B.同时抛掷两枚硬币,恰有一枚正面向上则甲获胜,两枚都正面向上则乙获胜C.从一副不含大小王的扑克牌中抽一张,扑克牌是红色的则甲获胜,扑克牌是黑色的则乙获胜D.甲、乙两人各写一个数字1或2,如果两人写的数字相同甲获胜,否则乙获胜7.根据某医疗所的调查,某地区居民血型的分布为:O型50%,A型15%,AB型5%,B型30%.现有一血型为O型的病人需要输血,若在该地区任选一人,那么能为病人输血的概率为( ) A.50% B.15%C.45% D.65%8.下列命题中的真命题有( )①做9次抛掷一枚均匀硬币的试验,结果有5次出现正面,因此,出现正面的概率是59;②盒子中装有大小均匀的3个红球,3个黑球,2个白球,那么每种颜色的球被摸到的可能性相同;③从-4,-3,-2,-1,0,1,2中任取一个数,取得的数小于0和不小于0的可能性相同;④分别从2名男生,3名女生中各选一名作为代表,那么每名学生被选中的可能性相同.A.0个B.1个C.2个D.3个二、填空题9.设某厂产品的次品率为2%,估算该厂8000件产品中合格品的件数可能为件.10.如果掷一枚质地均匀的硬币,连续5次正面向上,则下次出现反面向上的概率为.11.玲玲和倩倩是一对好朋友,她俩都想去观看周杰伦的演唱会,可手里只有一张票,怎么办呢?玲玲对倩倩说:“我向空中抛2枚同样的一元硬币,如果落地后一正一反,就是我去;如果落地后两面一样,就是你去!”你认为这个游戏公平吗? .12.在一次考试中,某班有80%的同学及格,80%是________.(选“概率”或“频率”填空)13.某射击教练评价一名运动员时说:“你射中的概率是90%.”你认为下面两个解释中能代表教练的观点的为________.①该射击运动员射击了100次,恰有90次击中目标②该射击运动员射击一次,中靶的机会是90%三、解答题14.试解释下列情况下概率的意义:(1)某商场为促进销售,实行有奖销售活动,凡购买其商品的顾客中奖率是0.20;(2)一生产厂家称:我们厂生产的产品合格率是0.98.15.某水产试验厂实行某种鱼的人工孵化,10000个鱼卵能孵化8513尾鱼苗,根据概率的统计定义解答下列问题:(1)这种鱼卵的孵化概率(孵化率)是多少?(2)30000个鱼卵大约能孵化多少尾鱼苗?(3)要孵化5000尾鱼苗,大概需备多少个鱼卵?(精确到百位)3.1.3 概率的性质一、选择题1.已知P(A)=0.1,P(B)=0.2,则P(A∪B)等于( D )A.0.3B.0.2C.0.1D.不确定2.抽查10件产品,记事件A为“至少有2件次品”,则A的对立事件为(B )A.至多有2件次品B.至多有1件次品C.至多有2件正品D.至少有2件正品3.给出事件A与B的关系图,如图所示,则( )A.A⊆B B.A⊇BC.A与B互斥D.A与B互为对立事件4.对空中飞行的飞机连续射击两次,每次发射一枚炮弹,设A={两次都击中飞机},B={两次都没击中飞机},C={恰有一弹击中飞机},D={至少有一弹击中飞机},下列关系不正确的是( ) A.A⊆D B.B∩D=∅C.A∪C=D D.A∪B=B∪D5.从1,2,…,9中任取两个数,其中:①恰有一个偶数和恰有一个奇数;②至少有一个是奇数和两个都是奇数;③至少有一个奇数和两个都是偶数;④至少有一个奇数和至少有一个偶数.在上述几对事件中是对立事件的是( )A.①B.②④C.③D.①③6.下列四种说法:①对立事件一定是互斥事件;②若A,B为两个事件,则P(A∪B)=P(A)+P(B);③若事件A,B,C彼此互斥,则P(A)+P(B)+P(C)=1;④若事件A,B满足P(A)+P(B)=1,则A,B是对立事件.其中错误的个数是( )A.0 B.1 C.2 D.37.从一批羽毛球产品中任取一个,其质量小于4.8 g的概率为0.3,质量小于4.85 g的概率为0.32,那么质量在[4.8,4.85]g范围内的概率是( )A.0.62B.0.38C.0.02 D.0.688.现有语文、数学、英语、物理和化学共5本书,从中任取1本,取出的是理科书的概率为( )A.15B.25C.35D.45二、填空题9.口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,则摸出黑球的概率是________.10.甲、乙两队进行足球比赛,若两队战平的概率是14,乙队胜的概率是13,则甲队胜的概率是________.11.同时抛掷两枚骰子,没有5点或6点的概率为49,则至少有一个5点或6点的概率是________.12.从4名男生和2名女生中任选3人参加演讲比赛,所选3人中至少有1名女生的概率为三、解答题13.某射手射击一次射中10环,9环,8环,7环的概率分别是0.24,0.28,0.19,0.16,计算这名射手射击一次.(1)射中10环或9环的概率;(2)至少射中7环的概率.1______ 2______ 3______ 4______ 5______ 6______ 7______ 8______ 9______ 10_____ 11_____14.某家庭电话在家中有人时,打进的电话响第一声时被接的概率为0.1,响第二声时被接的概率为0.3,响第三声时被接的概率为0.4,响第四声时被接的概率为0.1,那么电话在响前四声内被接的概率是多少?15.某公务员去开会,他乘火车、轮船、汽车、飞机去的概率分别为0.3、0.2、0.1、0.4.(1)求他乘火车或乘飞机去的概率;(2)求他不乘轮船去的概率;(3)如果他乘某种交通工具的概率为0.5,请问他有可能乘哪种交通工具?附加题16.在某一时期内,一条河流某处的年最高水位计算在同一时期内,河流这一处的年最高水位在下列范围内的概率:(1)[10,16)(m);(2)[8,12)(m);(3)水位不低于12 m.3.1.1随机事件的概率1-8 ACBA CCDB9. P==0.0310.50011. (4) (2) (1)(3)12. 65%13. 这个试验的基本事件构成集合Ω={(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)}.(1)“a+b=5”包含以下4个基本事件:(1,4),(2,3),(3,2),(4,1).“a<3且b>1”包含以下6个基本事件:(1,2),(1,3),(1,4),(2,2),(2,3),(2,4).(2)“ab =4”这一事件包含以下3个基本事件:(1,4),(2,2),(4,1); “a =b ”这一事件包含以下4个基本事件:(1,1),(2,2),(3,3),(4,4). (3)直线ax +by =0的斜率k =-ab>-1,∴a<b ,∴包含以下6个基本事件:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).14.(1)这个试验的所有可能结果Ω={(a1,a2),(a1,b),(a2,b),(a2,a1),(b ,a1),(b ,a2)}. (2)A ={(a1,b),(a2,b),(b ,a1),(b ,a2)}.(3)①这个试验的所有可能结果Ω={(a1,a1),(a1,a2),(a1,b),(a2,a1),(a2,a2),(a2,b),(b ,a1),(b ,a2),(b ,b)}.②A ={(a1,b),(a2,b),(b ,a1),(b ,a2)}.15. 解:(1)依据公式可算出表中乒乓球优等品的频率依次为0.900,0.920,0.970,0.940,0.954,0.951.(2)由(1)知,抽取的球数n 不同,计算得到的频率值虽然不同,但却都在常数0.950的附近摆动,所以抽取一个乒乓球检测时,质量检查为优等品的概率为0.950.16. 解:(1)由题意知选出两人,分别在星期六和星期天值班,故可能的结果为:甲乙;乙甲;甲丙;丙甲;甲丁;丁甲;乙丙;丙乙;乙丁;丁乙;丙丁;丁丙. 共12种可能的结果.(2)有四种结果{甲,乙,丙}{甲,乙,丁}{甲,丙,丁}{乙,丙,丁}. 3.1.2概率的意义 1-8 DBAA CBAA 9. 7840 10. 0.5 11.公平 12.频率 13. ②14. 解:(1)“中奖率是0.20”是指购买其商品的顾客中奖的可能性是20%.(2)“产品的合格率是0.98”是指该厂生产的产品合格的可能性是98%. 15. 解:(1)这种鱼卵的孵化概率P==0. 8513.(2)30000个鱼卵大约能孵化30000×=25539(尾)鱼苗. (3)设大概需备x 个鱼卵,由题意知, ∴x=≈5900(个). ∴大概需备5900个鱼卵.3.1.3 概率的性质1-8 DBCD CDCC 9. 0.3010. 512 11. 5912. 4/513.解 设“射中10环”,“射中9环”,“射中8环”,“射中7环”的事件分别为A 、B 、C 、D ,则A 、B 、C 、D 是互斥事件,(1)P(A∪B)=P(A)+P(B)=0.24+0.28 =0.52;(2)P(A∪B∪C∪D)=P(A)+P(B)+P(C)+P(D)=0.24+0.28+0.19+0.16=0.87. 答 射中10环或9环的概率是0.52,至少射中7环的概率为0.87.14.解 记“响第1声时被接”为事件A ,“响第2声时被接”为事件B ,“响第3声时被接”为事件C ,“响第4声时被接”为事件D.“响前4声内被接”为事件E ,则易知A 、 B 、C 、D 互斥,且E =A∪B∪C∪D,所以由互斥事件的概率的加法公式得P(E)=P(A∪B∪C∪D) =P(A)+P(B)+P(C)+P(D) =0.1+0.3+0.4+0.1=0.9.15.解 (1)记“他乘火车去”为事件A 1,“他乘轮船去”为事件A 2,“他乘汽车去”为事件A 3,“他乘飞机去”为事件A 4,这四个事件不可能同时发生,故它们彼此互斥.故P(A 1∪A 4)=P(A 1)+P(A 4)=0.3+0.4=0.7. 所以他乘火车或乘飞机去的概率为0.7. (2)设他不乘轮船去的概率为P , 则P =1-P(A 2)=1-0.2=0.8, 所以他不乘轮船去的概率为0.8. (3)由于P(A)+P(B)=0.3+0.2=0.5,P(C)+P(D)=0.1+0.4=0.5,故他可能乘火车或乘轮船去,也有可能乘汽车或乘飞机去.16.解设水位在[a,b)范围的概率为P([a,b)).由于水位在各范围内对应的事件是互斥的,由概率加法公式得:(1)P([10,16))=P([10,12))+P([12,14))+P([14,16))=0.28+0.38+0.16=0.82.(2)P([8,12))=P([8,10))+P([10,12))=0.1+0.28=0.38.(3)记“水位不低于12 m”为事件A,P(A)=1-P([8,12))=1-0.38=0.62.。
2023年新教材人教A版高中数学选择性必修第三册7.3.1离散型随机变量的均值 同步课时练习题含答案
7.3.1离散型随机变量的均值(分层作业)(夯实基础+能力提升)【夯实基础】一、单选题 1.(2022春·江苏常州·高二校考期末)下列说法正确的是( ) A .离散型随机变量的均值是[]0,1上的一个数B .离散型随机变量的均值反映了随机变量取值的平均水平C .若离散型随机变量X 的均值()2E X =,则(21)4E X +=D .离散型随机变量X 的均值12()nx x x E X n+++=【答案】B【分析】利用离散型随机变量的均值的定义即可判断选项AB ; 结合离散型随机变量的均值线性公式即可判断选项C ; 由离散型随机变量的均值为1()ni i i E X x p ==∑即可得D 选项.【详解】对于A ,离散型随机变量的均值是一个常数,不一定在[]0,1上, 故A 错误,对于B ,散型随机变量的均值反映了随机变量取值的平均水平, 故B 正确,对于C ,离散型随机变量X 的均值()2E X =, 则(21)2()15E X E X +=+=, 故C 错误,对于D ,离散型随机变量X 的均值1()ni i i E X x p ==∑,故D 错误.2.(2022春·浙江杭州·高二杭州市长河高级中学校考期中)某项上机考试的规则是:每位学员最多可上机考试3次,一旦通过,则停止考试;否则一直到3次上机考试结束为止.某学员一次上机考试通过的概率为()0p p ≠,考试次数为X ,若X 的数学期望() 1.75E X >,则p 的取值可能是( ) A .12 B .512C .712 D .34【答案】B【分析】根据独立重复实验的概率计算方法求出随机变量X 的分布列,根据数学期望的公式即可计算p 的范围.生产出一件甲等品可获利50元,生产出一件乙等品可获利30元,生产一件次品,要赔20元,已知这台机器生产出甲等、乙等和次品的概率分别为0.6、0.3和0.1,则这台机器每生产一件产品,平均预期可获利( ) A .36元 B .37元C .38元D .39元【答案】B【分析】根据离散型随机变量的分布列,即可根据期望的公式进行求解.【详解】由题意可得:设这台机器每生产一件产品可获利X ,则X 可能取的数值为50,30,20-,所以X 的分布列为:()500.6P X ==,()300.3P X ==,()200.1P X =-=,所以这台机器每生产一件产品平均预期可获利为:500.6300.3200.137⨯+⨯-⨯=(元)4.(2022春·北京顺义·高二统考期末)已知离散型随机变量X 的分布列如下表,则X 的数学期望()E X 等于( )A .0.3B .0.8C .1.2D .1.3【答案】D【分析】根据分布列的性质求出a ,再根据期望公式计算可得; 【详解】解:依题意可得0.20.51a ++=,解得0.3a =, 所以()00.210.320.5 1.3E X =⨯+⨯+⨯=;5.(2023秋·辽宁·高二辽河油田第二高级中学校考期末)在采用五局三胜制(先取得三局胜利的一方,获得最终胜利)的篮球总决赛中,当甲队先胜2场时,因疫情暴发不得不中止比赛.已知甲、乙两队水平相当,每场甲、乙胜的概率都为12,总决赛的奖金为80万元,总决赛的胜者获得全部奖金.根据我们所学的概率知识,甲队应分得的奖金为( )万元. A .80 B .70C .50D .40【答案】B6.(2022春·河北承德·高二校联考阶段练习)已知随机变量X 的分布列如下表所示.若()506P X =≥,则( )A .6m = B .16n =C .()16E X =D .()16E X =-7.(2022春·广东·高二校联考阶段练习)若随机变量X 服从两点分布,其中()03P X ==,()E X ,()D X 分别为随机变量X 的均值与方差,则下列结论正确的是( ) A .()()1P X E X == B .()324E X += C .()324D X += D .()29D X =8.(2023秋·辽宁营口·高二统考期末)掷一枚质地均匀的骰子,若将掷出的点数记为得分,则得分的均值为______.9.(2022春·山西吕梁·高二校考期中)已知离散型随机变量X 的分布列如下表,则_________.10.(2022·高二课时练习)若某一随机变量X 的分布为0.50.2b ⎪⎝⎭,且() 5.9E X =,则实数=a ______. 【答案】6【分析】根据概率和为1可得b ,根据期望的公式即可求解a . 【详解】由分布列可知:0502103...b b ++=⇒=, 又()0.540.20.39 5.96E X a a =⨯++⨯=⇒=11.(2022春·安徽滁州·高二统考期末)某棉纺厂为检测生产的棉花质量,从一批棉花中随机抽取了100根棉花纤维测量它们的长度(棉花纤维的长度是棉花质量的一个重要指标),所测得数据都在区间[]5,40(单位:mm)中,其频率分布直方图如图所示,现从这一批棉花中任取3根棉花纤维,其中长度超过25mm 的棉花纤维数量为X ,则X 的均值为______.【答案】65##1.2235 B⎛⎫ ⎪⎝⎭,,2022春·山西吕梁大小的小正方体,经过充分搅拌后,从中随机取1个小正方体,记它的油漆面数为X,则()E X=__________.13.(2023·高二课时练习)已知随机变量ξ的分布为0240.40.30.3⎛⎫ ⎪⎝⎭,则[]54E ξ+=______. 【答案】13【分析】根据分布列求出数学期望()E ξ,再用公式()()E a b aE b ξξ+=+即可求得[]54E ξ+的值.【详解】解:由随机变量ξ的分布为0240.40.30.3⎛⎫ ⎪⎝⎭,可得()00.420.340.3 1.8E ξ=⨯+⨯+⨯=, 所以[]()54545 1.8413E E ξξ+=+=⨯+=.14.(2023·高二单元测试)在掷一枚图钉的随机试验中,令1,0,X ⎧=⎨⎩针尖向上针尖向下,若随机变量X的分布为010.3p ⎛⎫⎪⎝⎭,则[]E X =___________.【答案】0.7##710【分析】根据分布列的性质可求得p ,根据数学期望公式可求得结果. 【详解】0.31p +=,0.7p ∴=,[]00.310.70.7E X ∴=⨯+⨯=. 四、解答题15.(2023秋·辽宁营口·高二统考期末)某一部件由4个电子元件按如图方式连接而成,4个元件同时正常工作时,该部件正常工作,若有元件损坏则部件不能正常工作,每个元件损坏的概率为()01p p <<,且各个元件能否正常工作相互独立.(1)当15p =时,求该部件正常工作的概率; (2)使用该部件之前需要对其进行检测,有以下2种检测方案: 方案甲:将每个元件拆下来,逐个检测其是否损坏,即需要检测4次;方案乙:先将该部件进行一次检测,如果正常工作则检测停止,若该部件不能正常工作则需逐个检测每个元件; 进行一次检测需要花费a 元. ①求方案乙的平均检测费用;②若选方案乙检测更划算,求p 的取值范围.故方案乙的平均检测费用为541a a p --;②方案甲的平均检测费用为4a ,若选方案乙检测更划算,则()45414a a p a --<,因为0a >,且01p <<,解得012p <<-,故p 的取值范围是0,1⎛ ⎝⎭. 16.(2023秋·江苏南京·高二南京市第九中学校考期末)现有甲、乙两个靶.某射手向甲靶射击两次,每次命中的概率为34,每命中一次得1分,没有命中得0分;向乙靶射击一次,命中的概率为23,命中得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击.(1)求该射手恰好命中两次的概率;(2)求该射手的总得分X 的分布列及数学期望()E X .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东省2010-2011学年度第二学期必修3单元考试高一数学试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(填空题解答题)两部分,满分120分,考试时间120分钟。
参考公式:用最小二乘法求线性回归方程系数公式∑∑==--=n i i ni ii xn x yx n yx b1221ˆ,x b y aˆˆ-=。
第Ⅰ卷(选择题 满分60分)一、选择题(本大题共l2小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的).1.下列给出的赋值语句中正确的是( )A .3A =B .m m 3=C .2B A ==D .0x y +=2.算法的三种基本结构是 ( )A. 顺序结构、模块结构、条件结构B. 顺序结构、循环结构、模块结构C. 顺序结构、条件结构、循环结构D. 模块结构、条件结构、循环结构 3.已知变量a ,b 已被赋值,要交换a 、b 的值,应采用的算法是( )A . a b b a ==,B . b c a b c a ===,,C . a c a b c a ===,,D .c b b a a c ===,, 4.在下列各图中,每个图的两个变量具有相关关系的图是( )(2) (3) (4) A .(1)(2) B .(1)(3) C .(2)(4) D .(2)(3)5.一个年级有12个班,每个班有50名同学,随机编号为1~50,为了了解他们在课外的兴趣,要求每班第40号同学留下来进行问卷调查,这里运用的抽样方法是( ) A 、系统抽样法 B 、分层抽样法 C 、随机数表法 D 、抽签法6.某小组有3名男生和2名女生,从中任选2名同学参加演讲比赛,那么互斥不对立的两个事件是( ) A .恰有1名男生与恰有2名女生 B .至少有1名男生与全是男生 C .至少有1名男生与至少有1名女生 D .至少有1名男生与全是女生7.一组数据的平均数是2.8,方差是3.6,若将这组数据中的每一个数据都加上60,得到 一组新数据,则所得新数据的平均数和方差分别( ) A .57.2 3.6 B .57.2 56.4 C .62.8 63.6 D .62.8 3.6 8.一个单位有职工160人,其中有业务员104人,管理人员32人,后勤服务人员24人,要从中抽取一个容量为20的样本,用分层抽样的方法抽取样本,则在20人的样本中应抽取管理人员人数为( ) A .3B .4C .5D .69..4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( )A .13B .12C .23D .3410.同时抛掷两枚质地均匀的硬币,则出现两个正面朝上的概率是( ) A .21 B .41 C .31 D .81 11.右图是一个程序框图,如果在条件框内填写上语句“i >50”,那么这个程序是计算( )A .1+2+3+…+50B .2+4+6+…+50C .1+2+3+…+49D .1+2+3+…+5112.200辆汽车通过某一段公路时的时速的频率分布直方图如右图所示,则时速的众数,中位数,平均数的估计值为( )A .65,62.5,57B .65,60,62C .65,62.5,62D .62.5,62.5,62)第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题4分,共16分,把答案填在题中的横线上) 13.右图是求满足1+2+3+…+n > 500的最小的自然数n 的程序框图,则输出框内的内容是_______________________。
14.已知样本9,10,11,x ,y 的平均数是10,方差是2,则xy = .15.已知x 与y 之间的一组数据为则y 与x 的回归直线方程a x b y ˆˆˆ+=必过定点________16.天气预报说,在今后的三天中,每一天下雨的概率为40%,用随机模拟的方法估计这三天中恰有两天下雨的概率。
可利用计算机产生0到9之间的整数值的随机数,如果我们用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨,顺次产生的随机数如下:90 79 66 19 19 25 27 19 32 81 24 58 56 96 83 43 12 57 39 30 27 55 64 88 73 01 13 13 79 89 则这三天中恰有两天下雨的概率约是__________________三、解答题(本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分12分)(说明:不用字母........、.符号酌情扣分)....... 某公务员去开会,他乘火车、轮船、汽车、飞机去的概率分别是0.3、0.2、0.1、0.4,求: (1)他乘火车或乘飞机去的概率; (2)他不乘轮船去的概率(3)如果他去的概率为0.5,请问他有可能是乘何种交通工具去的?18.(本小题满分12分)从甲、乙两个城市随机抽取的16台自动售货机的销售额如下:甲: 5, 6, 8,10,10,14,18,18,22,25, 27,30,30,41,43,58 乙:10,23,27,12,43,48,18,20,22,23, 31,32,34,34,38,42,(1)画出茎叶图。
(2)求出甲、乙两组数据的中位数、众数、极差分别是多少? (3)不用计算比较甲、乙两组数据的平均数和方差的大小. 19.(本小题满分12分)(1)求利润额y 与销售额x 之间的线性回归方程a x b yˆˆˆ+=(2)若该公司某月的总销售额为40千万元,则它的利润额估计是多少?20.(本小题满分12分)已知算法:(1)指出其功能(用函数解析式式表示),(2)将该算法用流程图描述之。
21.(本小题满分12分)假设大王家订了一份报纸,送报人可能在早上6点—8点之间把报纸送到他家,他每天离家外出的时间在早上6点—9点之间.(1)他离家前看不到...报纸(称事件A)的概率是多少?(必须有过程、区域)(2)请你设计一种用产生随机数模拟的方法近似计算事件A的概率(已知]1,0[()∈rand)22.(本小题满分14分)把一颗骰子抛掷2次,观察出现的点数,并记第一次出现的点数为a,第二次出现的点数为b.试就方程组322ax byx y+=⎧⎨+=⎩解答下列各题:(1)求方程组只有一个解的概率;(2)求方程组只有正数解的概率.山东省新泰一中2010-2011学年度第二学期必修3模块考试高一数学试卷参考答案一、选择题:1-5 BCDDA 6-10 ADBCB 11-12AC二、填空题:13.(输出)1-i 14. 96 15.(1.5,4) 16.0.3三、解答题:17、说明:若不使用符号扣1-2分18、解: (1)甲 乙8 6 5 08 8 4 0 0 1 0 2 87 5 2 2 0 2 3 3 7 0 0 3 1 2 4 4 8 3 1 4 2 3 88 5 …………………………3分(说明叶部分不排序也可,排序更优)8分 (3) 甲的平均数小于乙的平均数.甲的方差大于乙的方差.……………………………12分19、解:(1)由题意得6, 3.4x y == ……………………………………………………………2分11251=∑=i i i y x ,200512=∑=i i x ……………………………………………………………6分b ˆ11256 3.40.52005663.40.560.4b a -⨯⨯==-⨯⨯=-⨯= 4.065.04.3ˆ=⨯-=a则,线性回归方程为4.05.0ˆ+=x y……………………………………………10分 (2)将x =40代入线性回归方程中得到0.5400.420.4y =⨯+=(千万元)…………12分 20、解:算法的功能为:)2()22()2(1122>≤≤--<⎪⎩⎪⎨⎧-+=x x x x xx y ……………………………………………………………6分………………………………………………………………………………………12分 (每处错误扣2分)21.解:如图,设送报人到达的时间为x ,大王离家去工作的时间为y . ),(y x 可以看成平面中的点.……………………………………………………………………………………1分试验的全部结果所构成的区域为}96,86|,{(≤≤≥≤=Ωy x y x 是一个矩形区域,,事件A 表示大王离家前不能看到报纸,所构成的区域为A ={),(y x Ω∈|y x ≥},……4分又ΩS =6A S =22221=⨯⨯.这是一个几何概型,……………………………………6分 所以P (A )Ω=S S A 3162=. 即大王离家前不能看到报纸的概率是31.------…………………………………………8分 (2)方法一:用计算机产生随机数摸拟试验,X 是0~1之间的均匀随机数,Y 也是0~1之间的均匀随机数,各产生N 个.依序计算,如果满足(2X+6)>(3y+6),即2X-3Y>0,…………10分 那大王离家前能看到报纸,统计共有多少个,记为M , 则即NMA P ≈)(为估计的概率.----………………………………………………------12分 方法二:首先产生随机数()36(),26rand y rand x +=+=共N 组,……………………10分 统计出满足条件y x ≥的共M 组, 则N M A P ≈)(即大王离家前不能看到报纸的概率约是NM …………………………12分 22、解:(Ⅰ)记A =“方程组只有一解”,则所有的基本事件为总数为3666N =⨯=;……………………………………………………………………3分方程组只有一个解等价于a b 2≠当a b 2=时,ab }36,24,12{∈,方程组无解,否则都有一解,故12113631)A (P =-=………………………………………………………6分 (Ⅱ)记B =“方程组只有正数解”解方程组⎩⎨⎧=+=+223y x by ax 得 ⎪⎪⎩⎪⎪⎨⎧--=--=a b a y ab b x 223262当0>x 且0>y 时方程组只有正数解,有下面两种情况:(1)若02>-a b 时,⎪⎩⎪⎨⎧>->->0230622a b ab ,得⎪⎪⎩⎪⎪⎨⎧<>>2332a b a b ,即⎩⎨⎧==6,5,41b a有3种基本事件满足要求;………………………………………………………………10分(2)若02<-a b 时,⎪⎩⎪⎨⎧<-<-<0230622a b ab ,得⎪⎪⎩⎪⎪⎨⎧><<2332a b a b ,即⎩⎨⎧==2,16,5,4,3,2b a 有10种基本事件满足要求,故3613)B (P =.………………………………………………………………13分 答:(1)方程组只有一解的概率为1211;(2)方程组只有正数解的概率为3613.………14分。