浙江省萧山区党湾镇中考数学一轮复习 二次函数课后作业

合集下载

中考数学一轮复习《二次函数》综合复习练习题(含答案)

中考数学一轮复习《二次函数》综合复习练习题(含答案)

中考数学一轮复习《二次函数》综合复习练习题(含答案)一、单选题1.二次函数223y x x =-+的一次项系数是( ) A .1B .2C .2-D .32.抛物线22(9)3y x =+-的顶点坐标是( ) A .(9,3)-B .(9,3)--C .(9,3)D .(9,3)-3.如图,一抛物线型拱桥,当拱顶到水面的距离为2m 时,水面宽度为4m .那么水位下降1m 时,水面的宽度为( )A 6mB .26mC .)64mD .()264m4.二次函数()225y x =+-的图象的顶点坐标是( ) A .2,5B .()2,5C .()2,5--D .()2,5-5.在平面直角坐标系xOy 中,点123(1)(2)(4)y y y -,,,,,在抛物线22y ax ax c =-+上,当0a >时,下列说法一定正确的是( ) A .若120y y <,则30y > B .若230y y >,则10y < C .若130y y <,则20y >D .若1230y y y =,则20y =6.抛物线221y x x =-+的顶点坐标是( ) A .(1,0)B .(-1,0)C .(1,2)D .(-1,2)7.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( ) A .()2323y x =++B .()2323y x =-+C .()2332y x =++D .()2332y x =-+8.小明在期末体育测试中掷出的实心球的运动路线呈抛物线形.若实心球运动的抛物线的解析式为21(3)9y x k =--+,其中y 是实心球飞行的高度,x 是实心球飞行的水平距离.已知该同学出手点A 的坐标为16(0)9,,则实心球飞行的水平距离OB 的长度为( )A .7mB .7.5mC .8mD .8.5m9.关于抛物线2(1)y x =-,下列说法错误的是( ) A .开口向上B .当1x >时,y 随x 的增大而减小C .对称轴是直线1x =D .顶点()1,010.一次函数y x a =+与二次函数2y ax a =-在同一平面直角坐标系中的图象可能是( )A .B .C .D .11.如图,小明以抛物线为灵感,在平面直角坐标系中设计了一款高OD 为14的奖杯,杯体轴截面ABC 是抛物线2459y x =+的一部分,则杯口的口径AC 为( )A .7B .8C .9D .1012.下表中列出的是一个二次函致的自变量x 与函数y 的几组对应值:下列各选项中,正确的是( ) x … 2- 0 1 3 …y … 6- 4 6 4 …A .函数的图象开口向上B .函数的图象与x 轴无交点C .函数的最大值大于6D .当12x -≤≤时,对应函数y 的取值范围是36y ≤≤二、填空题13.已知函数221y mx mx =++在32x -上有最大值4,则常数m 的值为 __.14.二次函数2y ax bx c =++的图象如图所示.当0y >时,自变量x 的取值范围是 _____.15.某园艺公司准备围建一个矩形花圃,其中一边靠墙(墙长20米),另外三边用篱笆围成如图所示,所用的篱笆长为32米.请问当垂直于墙的一边的长为____米时,花圃的面积有最大值,最大值是____.16.如图是抛物线型拱桥,当拱顶高距离水面2m 时,水面宽4m ,如果水面上升1.5m ,则水面宽度为________.17.如图,某拱桥呈抛物线形状,桥的最大高度是16米,跨度是40米,在线段AB 上离中心M 处5米的地方,桥的高度是___________米.18.在平面直角坐标系中,抛物线2yx 的图象如图所示,已知A 点坐标()1,1,过点A 作1AA x ∥轴交抛物线于点1A ,过点1A 作12A A OA ∥交抛物线于点2A ,过点2A 作23A A x ∥轴交抛物线于点3A ,过点3A 作34A A OA ∥交抛物线于点4A ,…,依次进行下去,则点2022A 的坐标为______.19.如图是抛物线型拱桥,当拱顶离水面2m 时,水面宽4m ,如果水面下降0.5m ,那么水面宽度增加________m .20.如图,某单位的围墙由一段段形状相同的抛物线形栅栏组成,为了牢固,每段栅栏间隔0.2米设置一根立柱(即AB 间间隔0.2米的7根立柱)进行加固,若立柱EF 的长为0.28米,则拱高OC 为_____米三、解答题21.已知关于x 的方程2(23)0mx m x m +-+=有两个不相等的实数根,求m 的取值范围.22.已知关于x 的一元二次方程x 2+x −m =0.(1)设方程的两根分别是x 1,x 2,若满足x 1+x 2=x 1•x 2,求m 的值. (2)二次函数y =x 2+x −m 的部分图象如图所示,求m 的值.23.俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售。

中考数学专题复习二次函数的综合题附详细答案

中考数学专题复习二次函数的综合题附详细答案

中考数学专题复习二次函数的综合题附详细答案一、二次函数1.在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y=14x与抛物线交于A、B两点,直线l为y=﹣1.(1)求抛物线的解析式;(2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由.(3)知F(x0,y0)为平面内一定点,M(m,n)为抛物线上一动点,且点M到直线l的距离与点M到点F的距离总是相等,求定点F的坐标.【答案】(1)抛物线的解析式为y=14x2﹣x+1.(2)点P的坐标为(2813,﹣1).(3)定点F的坐标为(2,1).【解析】分析:(1)由抛物线的顶点坐标为(2,0),可设抛物线的解析式为y=a(x-2)2,由抛物线过点(4,1),利用待定系数法即可求出抛物线的解析式;(2)联立直线AB与抛物线解析式成方程组,通过解方程组可求出点A、B的坐标,作点B关于直线l的对称点B′,连接AB′交直线l于点P,此时PA+PB取得最小值,根据点B的坐标可得出点B′的坐标,根据点A、B′的坐标利用待定系数法可求出直线AB′的解析式,再利用一次函数图象上点的坐标特征即可求出点P的坐标;(3)由点M到直线l的距离与点M到点F的距离总是相等结合二次函数图象上点的坐标特征,即可得出(1-12-12y0)m2+(2-2x0+2y0)m+x02+y02-2y0-3=0,由m的任意性可得出关于x0、y0的方程组,解之即可求出顶点F的坐标.详解:(1)∵抛物线的顶点坐标为(2,0),设抛物线的解析式为y=a(x-2)2.∵该抛物线经过点(4,1),∴1=4a,解得:a=14,∴抛物线的解析式为y=14(x-2)2=14x2-x+1.(2)联立直线AB 与抛物线解析式成方程组,得:214114y x y x x ⎧⎪⎪⎨⎪-+⎪⎩==,解得:11114x y ⎧⎪⎨⎪⎩==,2241x y ⎧⎨⎩==, ∴点A 的坐标为(1,14),点B 的坐标为(4,1). 作点B 关于直线l 的对称点B′,连接AB′交直线l 于点P ,此时PA+PB 取得最小值(如图1所示).∵点B (4,1),直线l 为y=-1,∴点B′的坐标为(4,-3).设直线AB′的解析式为y=kx+b (k≠0),将A (1,14)、B′(4,-3)代入y=kx+b ,得: 1443k b k b ⎧+⎪⎨⎪+-⎩==,解得:131243k b ⎧-⎪⎪⎨⎪⎪⎩==, ∴直线AB′的解析式为y=-1312x+43, 当y=-1时,有-1312x+43=-1, 解得:x=2813, ∴点P 的坐标为(2813,-1). (3)∵点M 到直线l 的距离与点M 到点F 的距离总是相等,∴(m-x 0)2+(n-y 0)2=(n+1)2,∴m 2-2x 0m+x 02-2y 0n+y 02=2n+1.∵M (m ,n )为抛物线上一动点,∴n=14m2-m+1,∴m2-2x0m+x02-2y0(14m2-m+1)+y02=2(14m2-m+1)+1,整理得:(1-12-12y0)m2+(2-2x0+2y0)m+x02+y02-2y0-3=0.∵m为任意值,∴00220001110222220230yx yx y y⎧--⎪⎪-+⎨⎪+--⎪⎩===,∴021xy⎧⎨⎩==,∴定点F的坐标为(2,1).点睛:本题考查了待定系数法求二次(一次)函数解析式、二次(一次)函数图象上点的坐标特征、轴对称中的最短路径问题以及解方程组,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用两点之间线段最短找出点P的位置;(3)根据点M到直线l的距离与点M到点F的距离总是相等结合二次函数图象上点的坐标特征,找出关于x0、y0的方程组.2.如图,已知抛物线y=x2+bx+c与x轴交于A、B两点(A点在B点左侧),与y轴交于点C(0,-3),对称轴是直线x=1,直线BC与抛物线的对称轴交于点D.(1)求抛物线的函数表达式;(2)求直线BC的函数表达式;(3)点E为y轴上一动点,CE的垂直平分线交CE于点F,交抛物线于P、Q两点,且点P 在第三象限.①当线段PQ=34AB时,求tan∠CED的值;②当以点C、D、E为顶点的三角形是直角三角形时,请直接写出点P的坐标.【答案】(1)抛物线的函数表达式为y =x 2-2x -3.(2)直线BC 的函数表达式为y =x -3.(3)①23.①P 1(12),P 2(1,74). 【解析】【分析】已知C 点的坐标,即知道OC 的长,可在直角三角形BOC 中根据∠BCO 的正切值求出OB 的长,即可得出B 点的坐标.已知了△AOC 和△BOC 的面积比,由于两三角形的高相等,因此面积比就是AO 与OB 的比.由此可求出OA 的长,也就求出了A 点的坐标,然后根据A 、B 、C 三点的坐标即可用待定系数法求出抛物线的解析式.【详解】(1)∵抛物线的对称轴为直线x=1, ∴− 221bb a-⨯==1 ∴b=-2 ∵抛物线与y 轴交于点C (0,-3),∴c=-3,∴抛物线的函数表达式为y=x 2-2x-3;(2)∵抛物线与x 轴交于A 、B 两点,当y=0时,x 2-2x-3=0.∴x 1=-1,x 2=3.∵A 点在B 点左侧,∴A (-1,0),B (3,0)设过点B (3,0)、C (0,-3)的直线的函数表达式为y=kx+m ,则033k m m ==+⎧⎨-⎩, ∴13k m ⎧⎨-⎩== ∴直线BC 的函数表达式为y=x-3;(3)①∵AB=4,PQ=34AB , ∴PQ=3∵PQ ⊥y 轴∴PQ ∥x 轴,则由抛物线的对称性可得PM=32, ∵对称轴是直线x=1,∴P 到y 轴的距离是12,∴点P的横坐标为−12,∴P(−12,−74)∴F(0,−74),∴FC=3-OF=3-74=54∵PQ垂直平分CE于点F,∴CE=2FC=5 2∵点D在直线BC上,∴当x=1时,y=-2,则D(1,-2),过点D作DG⊥CE于点G,∴DG=1,CG=1,∴GE=CE-CG=52-1=32.在Rt△EGD中,tan∠CED=23 GDEG=.②P1(2,-2),P2(6-52).设OE=a,则GE=2-a,当CE为斜边时,则DG2=CG•GE,即1=(OC-OG)•(2-a),∴1=1×(2-a),∴a=1,∴CE=2,∴OF=OE+EF=2∴F、P的纵坐标为-2,把y=-2,代入抛物线的函数表达式为y=x2-2x-3得:2或2∵点P在第三象限.∴P1(1-2,-2),当CD为斜边时,DE⊥CE,∴OE=2,CE=1,∴OF=2.5,∴P和F的纵坐标为:-52,把y=-52,代入抛物线的函数表达式为y=x2-2x-3得:x=1-6,或1+6,∵点P在第三象限.∴P2(1-62,-52).综上所述:满足条件为P1(1-2,-2),P2(1-62,-52).【点睛】本题是二次函数的综合题型,其中涉及到的知识点有抛物线的顶点公式和三角形的面积求法.在求有关动点问题时要注意分析题意分情况讨论结果.3.某市实施产业精准扶贫,帮助贫困户承包荒山种植某品种蜜柚.已知该蜜柚的成本价为6元/千克,到了收获季节投入市场销售时,调查市场行情后,发现该蜜柚不会亏本,且每天的销售量y(千克)与销售单价x(元)之间的函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围;(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某村农户今年共采摘蜜柚12000千克,若该品种蜜柚的保质期为50天,按照(2)的销售方式,能否在保质期内全部销售完这批蜜柚?若能,请说明理由;若不能,应定销售价为多少元时,既能销售完又能获得最大利润?【答案】(1)y=﹣20x+500,(x≥6);(2)当x=15.5时,w的最大值为1805元;(3)当x=13时,w=1680,此时,既能销售完又能获得最大利润.【解析】【分析】(1)将点(15,200)、(10,300)代入一次函数表达式:y=kx+b即可求解;(2)由题意得:w=y(x﹣6)=﹣20(x﹣25)(x﹣6),∵﹣20<0,故w有最大值,即可求解;(3)当x=15.5时,y=190,50×190<12000,故:按照(2)的销售方式,不能在保质期内全部销售完;由50(500﹣20x )≥12000,解得:x ≤13,当x =13时,既能销售完又能获得最大利润.【详解】解:(1)将点(15,200)、(10,300)代入一次函数表达式:y =kx +b 得:2001530010k b k b =+⎧⎨=+⎩, 解得:20500k b =-⎧⎨=⎩, 即:函数的表达式为:y =﹣20x +500,(x ≥6);(2)设:该品种蜜柚定价为x 元时,每天销售获得的利润w 最大,则:w =y (x ﹣6)=﹣20(x ﹣25)(x ﹣6),∵﹣20<0,故w 有最大值,当x =﹣2b a =312=15.5时,w 的最大值为1805元; (3)当x =15.5时,y =190,50×190<12000,故:按照(2)的销售方式,不能在保质期内全部销售完;设:应定销售价为x 元时,既能销售完又能获得最大利润w ,由题意得:50(500﹣20x )≥12000,解得:x ≤13,w =﹣20(x ﹣25)(x ﹣6),当x =13时,w =1680,此时,既能销售完又能获得最大利润.【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值).4.如图,在平面直角坐标系中,抛物线y=ax 2+2x+c 与x 轴交于A (﹣1,0)B (3,0)两点,与y 轴交于点C ,点D 是该抛物线的顶点.(1)求抛物线的解析式和直线AC 的解析式;(2)请在y 轴上找一点M ,使△BDM 的周长最小,求出点M 的坐标;(3)试探究:在拋物线上是否存在点P ,使以点A ,P ,C 为顶点,AC 为直角边的三角形是直角三角形?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由.【答案】(1)抛物线解析式为y=﹣x2+2x+3;直线AC的解析式为y=3x+3;(2)点M的坐标为(0,3);(3)符合条件的点P的坐标为(73,209)或(103,﹣139),【解析】分析:(1)设交点式y=a(x+1)(x-3),展开得到-2a=2,然后求出a即可得到抛物线解析式;再确定C(0,3),然后利用待定系数法求直线AC的解析式;(2)利用二次函数的性质确定D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(-3,0),利用两点之间线段最短可判断此时MB+MD的值最小,则此时△BDM的周长最小,然后求出直线DB′的解析式即可得到点M的坐标;(3)过点C作AC的垂线交抛物线于另一点P,如图2,利用两直线垂直一次项系数互为负倒数设直线PC的解析式为y=-13x+b,把C点坐标代入求出b得到直线PC的解析式为y=-13x+3,再解方程组223133y x xy x⎧-++⎪⎨-+⎪⎩==得此时P点坐标;当过点A作AC的垂线交抛物线于另一点P时,利用同样的方法可求出此时P点坐标.详解:(1)设抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∴﹣2a=2,解得a=﹣1,∴抛物线解析式为y=﹣x2+2x+3;当x=0时,y=﹣x2+2x+3=3,则C(0,3),设直线AC的解析式为y=px+q,把A(﹣1,0),C(0,3)代入得3p qq-+=⎧⎨=⎩,解得33pq=⎧⎨=⎩,∴直线AC的解析式为y=3x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(﹣3,0),∵MB=MB′,∴MB+MD=MB′+MD=DB′,此时MB+MD的值最小,而BD的值不变,∴此时△BDM的周长最小,易得直线DB′的解析式为y=x+3,当x=0时,y=x+3=3,∴点M的坐标为(0,3);(3)存在.过点C作AC的垂线交抛物线于另一点P,如图2,∵直线AC的解析式为y=3x+3,∴直线PC的解析式可设为y=﹣13x+b,把C(0,3)代入得b=3,∴直线PC的解析式为y=﹣13x+3,解方程组223133y x xy x⎧-++⎪⎨-+⎪⎩==,解得3xy=⎧⎨=⎩或73209xy⎧=⎪⎪⎨⎪=⎪⎩,则此时P点坐标为(73,209);过点A作AC的垂线交抛物线于另一点P,直线PC的解析式可设为y=﹣x+b,把A(﹣1,0)代入得13+b=0,解得b=﹣13,∴直线PC的解析式为y=﹣13x﹣13,解方程组2231133y x x y x ⎧-++⎪⎨--⎪⎩==,解得10x y =-⎧⎨=⎩或103139x y ⎧=⎪⎪⎨⎪=-⎪⎩,则此时P 点坐标为(103,﹣139). 综上所述,符合条件的点P 的坐标为(73,209)或(103,﹣139). 点睛:本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式,理解两直线垂直时一次项系数的关系,通过解方程组求把两函数的交点坐标;理解坐标与图形性质,会运用两点之间线段最短解决最短路径问题;会运用分类讨论的思想解决数学问题.5.在平面直角坐标系中,O为原点,抛物线2(0)y ax x a =≠经过点3)A -,对称轴为直线l ,点O 关于直线l 的对称点为点B .过点A 作直线//AC x 轴,交y 轴于点C .(Ⅰ)求该抛物线的解析式及对称轴;(Ⅱ)点P 在y 轴上,当PA PB +的值最小时,求点P 的坐标;(Ⅲ)抛物线上是否存在点Q ,使得13AOC AOQ S S ∆∆=,若存在,求出点Q 的坐标;若不存在,请说明理由.【答案】(Ⅰ)抛物线的解析式为2122y x x =-;抛物线的对称轴为直线2x =;(Ⅱ)P 点坐标为9(0,)4-;(Ⅲ)存在,Q点坐标为或(-,理由见解析【解析】【分析】(Ⅰ)将3)A -点代入二次函数的解析式,即可求出a ,再根据对称轴的公式即可求解.(Ⅱ)先求出B 点胡坐标,要求PA PB +胡最小值,只需找到B 关于轴的对称点1B ,则直线A 1B 与y 轴的交点就是点P ,根据待定系数法求出AB 1的解析式,令y=0,即可求出P 点的坐标.(Ⅲ)设点Q 的坐标,并求出△AOQ 面积,从而得到△AOQ 面积,根据Q 点胡不同位置进行分类,用m 及割补法求出面积方程,即可求解.【详解】(Ⅰ)∵2(0)y ax x a =≠经过点3)A -,∴232a-=⨯-12a=,∴抛物线的解析式为212y x x=,∵21222bxa=-=-=⨯∴抛物线的对称轴为直线2x=.(Ⅱ)∵点(0,0)O,对称轴为x=,∴点O关于对称轴的对称点B点坐标为.作点B关于轴的对称点1B,得1(B-,设直线AB1的解析式为y kx b=+,把点3)A-,点1(B-代入得3bb⎧-=+⎪⎨=-+⎪⎩,解得494kb⎧=-⎪⎪⎨⎪=-⎪⎩,∴944y x=--.∴直线94y x=-与y轴的交点即为P点.令0x=得9y4=-,∵P点坐标为9(0,)4-.(Ⅲ)∵3)A-,//AC x轴,∴AC=3OC=,∴11322AOCS OC AC∆=⋅=⋅=又∵13AOC AOQS S∆∆=,∴3AOQ AOCS S∆∆==.设Q点坐标为21(,)22m m m-,如图情况一,作QR CA⊥,交CA延长线于点R,∵932AOQ AOC AQR OCRQ S S S S ∆∆∆=--=梯形, ∴()21133113333322222m m m m ⎛⎫⋅+-+-⋅⋅- ⎪ ⎪⎭-⎝2133933222m m ⎛⎫-+= ⎪ ⎪⎝⎭, 化简整理得23180m m --=, 解得133m =,223m =-.如图情况二,作QN AC ⊥,交AC 延长线于点N ,交x 轴于点M , ∵932AOQ AQN QMO OMNA S S S S ∆∆∆=--=梯形, ∴2211331133(3m)3()2222m m m m m ⎛⎫⎛⎫--+--- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭393(3)22m m --+-=,化简整理得23180m m --=, 解得133m =,223m =-, ∴Q 点坐标为(33,0)或(23,15)-, ∴抛物线上存在点Q ,使得13AOC AOQ S S ∆∆=.【点睛】主要考查了二次函数的性质,以及求两边和的最小值,面积等常见的题型,计算量较大,但难度不是很大.6.如图,抛物线212222y x x =-++与x 轴相交于A B ,两点,(点A 在B 点左侧)与y 轴交于点C.(Ⅰ)求A B ,两点坐标.(Ⅱ)连结AC ,若点P 在第一象限的抛物线上,P 的横坐标为t ,四边形ABPC 的面积为S.试用含t 的式子表示S ,并求t 为何值时,S 最大.(Ⅲ)在(Ⅱ)的基础上,若点,G H 分别为抛物线及其对称轴上的点,点G 的横坐标为m ,点H 的纵坐标为n ,且使得以,,,A G H P 四点构成的四边形为平行四边形,求满足条件的,m n 的值.【答案】(Ⅰ)(2,0),2,0)A B ;(Ⅱ)22(2)42(022)2S t t =--+<<,当2t =时,42S =最大;(Ⅲ)满足条件的点m n 、的值为:2324m n =-=,或52154m n ==-,或3214m n == 【解析】 【分析】(Ⅰ)令y=0,建立方程求解即可得出结论;(Ⅱ)设出点P 的坐标,利用S=S △AOC +S 梯形OCPQ +S △PQB ,即可得出结论;(Ⅲ)分三种情况,利用平行四边形的性质对角线互相平分和中点坐标公式建立方程组即可得出结论. 【详解】解:(Ⅰ)抛物线212222y x x =-++, 令0y =,则2122022x x -++=, 解得:2x =-22x =∴()()2,0,22,0A B - (Ⅱ)由抛物线21222y x x =-++,令0x =,∴2y =,∴()0,2C , 如图1,点P 作PQ x ⊥轴于Q , ∵P 的横坐标为t ,∴设(),P t p , ∴2122,22,2p t t PQ p BQ t OQ t =-++==-=, ∴()()11122222222AOC PQB OCPQ S S S S p t t p =++=⨯⨯++⨯+⨯-⨯V V 梯形 11222222t pt p pt p t =+++-=++ 21222222t t t ⎛⎫=-++++ ⎪ ⎪⎭()22242(022)2t t =--+<<,∴当2t =时,42S =最大;(Ⅲ)由(Ⅱ)知,2t =,∴)2,2P,∵抛物线21222y x x =-++的对称轴为2x =∴设2122,2,222G m m m H n ⎛⎫⎛⎫-++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭以,,,A G H P 四点构成的四边形为平行四边形,()2,0A , ①当AP 和HG 为对角线时,∴()2112111222,2022222222m m m n ⎛⎫⎛⎫=++=-+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,∴23,24m n =-=, ②当AG 和PH 是对角线时, ∴()()2112112122,2022222222m m m n ⎛⎫⎛⎫-=+-+++=+ ⎪ ⎪ ⎪ ⎪⎭⎝⎭, ∴5215,24m n ==-, ③AH 和PG 为对角线时,∴()()2121112122,22022222m m m n ⎛⎫⎛⎫-+=+-+++=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, ∴321,24m n =-=, 即:满足条件的点m n 、的值为:23,24m n =-=,或5215,24m n ==-,或321,24m n =-= 【点睛】此题是二次函数综合题,主要考查了坐标轴上点的特点,三角形的面积公式,梯形的面积公式,平行四边形的性质,中点坐标公式,用方程的思想解决问题是解本题的关键.7.如图1,在平面直角坐标系中,直线1y x =-与抛物线2y x bx c =-++交于A B 、两点,其中(),0A m ,()4,B n .该抛物线与y 轴交于点C ,与x 轴交于另一点D .(1)求mn 、的值及该抛物线的解析式; (2)如图2.若点P 为线段AD 上的一动点(不与A D 、重合).分别以AP 、DP 为斜边,在直线AD 的同侧作等腰直角△APM 和等腰直角△DPN ,连接MN ,试确定△MPN 面积最大时P 点的坐标.(3)如图3.连接BD 、CD ,在线段CD 上是否存在点Q ,使得以A D Q 、、为顶点的三角形与△ABD 相似,若存在,请直接写出点Q 的坐标;若不存在,请说明理由.【答案】(1)265y x x =-+-;(2)当2m =,即2AP =时,MPN S ∆最大,此时3OP =,所以()3,0P ;(3)存在点Q 坐标为2-3(,)或78-33⎛⎫ ⎪⎝⎭,. 【解析】分析:(1)把A 与B 坐标代入一次函数解析式求出m 与n 的值,确定出A 与B 坐标,代入二次函数解析式求出b 与c 的值即可;(2)由等腰直角△APM 和等腰直角△DPN ,得到∠MPN 为直角,由两直角边乘积的一半表示出三角形MPN 面积,利用二次函数性质确定出三角形面积最大时P 的坐标即可; (3)存在,分两种情况,根据相似得比例,求出AQ 的长,利用两点间的距离公式求出Q 坐标即可.详解:(1)把A (m ,0),B (4,n )代入y =x ﹣1得:m =1,n =3,∴A (1,0),B (4,3).∵y =﹣x 2+bx +c 经过点A 与点B ,∴101643b c b c -++=⎧⎨-++=⎩,解得:65b c =⎧⎨=-⎩,则二次函数解析式为y =﹣x 2+6x ﹣5;(2)如图2,△APM 与△DPN 都为等腰直角三角形,∴∠APM =∠DPN =45°,∴∠MPN =90°,∴△MPN 为直角三角形,令﹣x 2+6x ﹣5=0,得到x =1或x =5,∴D (5,0),即DP =5﹣1=4,设AP =m ,则有DP =4﹣m ,∴PM ,PN 4﹣m ),∴S △MPN =12PM •PN =12×2m ×2(4﹣m )=﹣14m 2﹣m =﹣14(m ﹣2)2+1,∴当m =2,即AP =2时,S △MPN 最大,此时OP =3,即P (3,0);(3)存在,易得直线CD 解析式为y =x ﹣5,设Q (x ,x ﹣5),由题意得:∠BAD =∠ADC =45°,分两种情况讨论:①当△ABD ∽△DAQ 时,AB DA =BD AQ 4AQ ,解得:AQ 公式得:(x ﹣1)2+(x ﹣5)2=1283,解得:x =73,此时Q (73,﹣83);②当△ABD ∽△DQA 时,BDAQ=1,即AQ ,∴(x ﹣1)2+(x ﹣5)2=10,解得:x =2,此时Q (2,﹣3).综上,点Q 的坐标为(2,﹣3)或(73,﹣83). 点睛:本题属于二次函数综合题,涉及的知识有:待定系数法求函数解析式,二次函数的图象与性质,相似三角形的判定与性质,两点间的距离公式,熟练掌握各自的性质是解答本题的关键.8.如图,抛物线2y ax bx c =++的图象过点(10)(30)(03)A B C ﹣,、,、,.(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P ,使得△PAC 的周长最小,若存在,请求出点P 的坐标及△PAC 的周长;若不存在,请说明理由;(3)在(2)的条件下,在x 轴上方的抛物线上是否存在点M (不与C 点重合),使得PAM PAC S S ∆∆=?若存在,请求出点M 的坐标;若不存在,请说明理由.【答案】(1)223y x x =++-;(2)存在,点(12)P ,1032;(3)存在,点M 坐标为(14), 【解析】 【分析】(1)由于条件给出抛物线与x 轴的交点1030A B (﹣,)、(,),故可设交点式13y a x x +=()(﹣),把点C 代入即求得a 的值,减小计算量.(2)由于点A 、B 关于对称轴:直线1x =对称,故有PA PB =,则PAC C AC PC PA AC PC PB ∆++++==,所以当C 、P 、B 在同一直线上时,PAC C AC CB ∆+=最小.利用点A 、B 、C 的坐标求AC 、CB 的长,求直线BC 解析式,把1x =代入即求得点P 纵坐标.(3)由PAM PAC S S ∆∆=可得,当两三角形以PA 为底时,高相等,即点C 和点M 到直线PA 距离相等.又因为M 在x 轴上方,故有//CM PA .由点A 、P 坐标求直线AP 解析式,即得到直线CM 解析式.把直线CM 解析式与抛物线解析式联立方程组即求得点M 坐标. 【详解】解:(1)∵抛物线与x 轴交于点1030A B (﹣,)、(,)∴可设交点式13y a x x +=()(﹣) 把点03C (,)代入得:33a ﹣=1a ∴=﹣21323y x x x x ∴+++=-()(﹣)=﹣∴抛物线解析式为223y x x ++=-(2)在抛物线的对称轴上存在一点P ,使得PAC ∆的周长最小. 如图1,连接PB 、BC∵点P 在抛物线对称轴直线1x =上,点A 、B 关于对称轴对称PA PB ∴=PAC C AC PC PA AC PC PB ∆∴++++==∵当C 、P 、B 在同一直线上时,PC PB CB +=最小103003A B C Q (﹣,)、(,)、(,)AC BC ∴===PAC C AC CB ∆∴+=设直线BC 解析式为3y kx +=把点B 代入得:330k +=,解得:1k =﹣ ∴直线BC :3y x +=﹣132P y ∴+=﹣=∴点12P (,)使PAC ∆. (3)存在满足条件的点M ,使得PAM PAC S S ∆∆=. ∵PAM PAC S S ∆∆=S △PAM =S △PAC ∴当以PA 为底时,两三角形等高 ∴点C 和点M 到直线PA 距离相等 ∵M 在x 轴上方//CM PA ∴1012A P Q (﹣,),(,),设直线AP 解析式为y px d += 02p d p d -+=⎧∴⎨+=⎩ 解得:p 1d 1=⎧⎨=⎩∴直线1AP y x +:=∴直线CM 解析式为:3y x +=2323y x y x x =+⎧⎨=-++⎩Q 解得:1103x y =⎧⎨=⎩(即点C ),2214x y =⎧⎨=⎩∴点M 坐标为14(,)【点睛】考查了待定系数法求二次函数解析式、一次函数解析式,轴对称的最短路径问题,勾股定理,平行线间距离处处相等,一元二次方程的解法.其中第(3)题条件给出点M 在x 轴上方,无需分类讨论,解法较常规而简单.9.如图,二次函数245y x x =-++图象的顶点为D ,对称轴是直线l ,一次函数215y x =+的图象与x 轴交于点A ,且与直线DA 关于l 的对称直线交于点B .(1)点D 的坐标是 ______;(2)直线l 与直线AB 交于点C ,N 是线段DC 上一点(不与点D 、C 重合),点N 的纵坐标为n .过点N 作直线与线段DA 、DB 分别交于点P ,Q ,使得DPQ ∆与DAB ∆相似.①当275n =时,求DP 的长; ②若对于每一个确定的n 的值,有且只有一个DPQ ∆与DAB ∆相似,请直接写出n 的取值范围 ______.【答案】(1)()2,9;(2)①95DP =②92155n <<. 【解析】 【分析】(1)直接用顶点坐标公式求即可;(2)由对称轴可知点C (2,95),A (-52,0),点A 关于对称轴对称的点(132,0),借助AD 的直线解析式求得B (5,3);①当n=275时,N (2,275),可求,DN=185,CD=365,当PQ ∥AB 时,△DPQ ∽△DAB ,;当PQ 与AB 不平行时,②当PQ ∥AB ,DB=DP 时,DN=245,所以N (2,215),则有且只有一个△DPQ 与△DAB 相似时,95<n <215. 【详解】(1)顶点为()2,9D ; 故答案为()2,9; (2)对称轴2x =,9(2,)5C ∴,由已知可求5(,0)2A -,点A 关于2x =对称点为13(,0)2, 则AD 关于2x =对称的直线为213y x =-+,(5,3)B ∴,①当275n =时,27(2,)5N ,DA ∴=,182DN =,365CD =当PQ AB ∥时,PDQ DAB ∆∆:,DAC DPN ∆∆Q :,DP DN DA DC∴=,DP ∴=当PQ 与AB 不平行时,DPQ DBA ∆∆:,DNQ DCA ∴∆∆:,DP DNDB DC∴=,DP ∴=综上所述DP =②当PQ AB ∥,DB DP =时,35DB =,DP DNDA DC∴=, 245DN ∴=, 21(2,)5N ∴, ∴有且只有一个DPQ ∆与DAB ∆相似时,92155n <<; 故答案为92155n <<; 【点睛】本题考查二次函数的图象及性质,三角形的相似;熟练掌握二次函数的性质,三角形相似的判定与性质是解题的关键.10.如图①,在平面直角坐标系xOy 中,抛物线y=ax 2+bx+3经过点A(-1,0) 、B(3,0) 两点,且与y 轴交于点C.(1)求抛物线的表达式;(2)如图②,用宽为4个单位长度的直尺垂直于x 轴,并沿x 轴左右平移,直尺的左右两边所在的直线与抛物线相交于P 、 Q 两点(点P 在点Q 的左侧),连接PQ ,在线段PQ 上方抛物线上有一动点D ,连接DP 、DQ. ①若点P 的横坐标为12-,求△DPQ 面积的最大值,并求此时点D 的坐标; ②直尺在平移过程中,△DPQ 面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.【答案】(1)抛物线y=-x 2+2x+3;(2)①点D ( 31524,);②△PQD 面积的最大值为8 【解析】分析:(1)根据点A 、B 的坐标,利用待定系数法即可求出抛物线的表达式;(2)(I )由点P 的横坐标可得出点P 、Q 的坐标,利用待定系数法可求出直线PQ 的表达式,过点D作DE∥y轴交直线PQ于点E,设点D的坐标为(x,-x2+2x+3),则点E的坐标为(x,-x+54),进而即可得出DE的长度,利用三角形的面积公式可得出S△DPQ=-2x2+6x+72,再利用二次函数的性质即可解决最值问题;(II)假设存在,设点P的横坐标为t,则点Q的横坐标为4+t,进而可得出点P、Q的坐标,利用待定系数法可求出直线PQ的表达式,设点D的坐标为(x,-x2+2x+3),则点E 的坐标为(x,-2(t+1)x+t2+4t+3),进而即可得出DE的长度,利用三角形的面积公式可得出S△DPQ=-2x2+4(t+2)x-2t2-8t,再利用二次函数的性质即可解决最值问题.详解:(1)将A(-1,0)、B(3,0)代入y=ax2+bx+3,得:309330a ba b-+⎧⎨++⎩==,解得:12ab-⎧⎨⎩==,∴抛物线的表达式为y=-x2+2x+3.(2)(I)当点P的横坐标为-12时,点Q的横坐标为72,∴此时点P的坐标为(-12,74),点Q的坐标为(72,-94).设直线PQ的表达式为y=mx+n,将P(-12,74)、Q(72,-94)代入y=mx+n,得:17247924m nm n⎧-+⎪⎪⎨⎪+-⎪⎩==,解得:154mn-⎧⎪⎨⎪⎩==,∴直线PQ的表达式为y=-x+54.如图②,过点D作DE∥y轴交直线PQ于点E,设点D的坐标为(x,-x2+2x+3),则点E的坐标为(x,-x+54),∴DE=-x2+2x+3-(-x+54)=-x2+3x+74,∴S△DPQ=12DE•(x Q-x P)=-2x2+6x+72=-2(x-32)2+8.∵-2<0,∴当x=32时,△DPQ的面积取最大值,最大值为8,此时点D的坐标为(32,154).(II)假设存在,设点P的横坐标为t,则点Q的横坐标为4+t,∴点P的坐标为(t,-t2+2t+3),点Q的坐标为(4+t,-(4+t)2+2(4+t)+3),利用待定系数法易知,直线PQ的表达式为y=-2(t+1)x+t2+4t+3.设点D的坐标为(x,-x2+2x+3),则点E的坐标为(x,-2(t+1)x+t2+4t+3),∴DE=-x2+2x+3-[-2(t+1)x+t2+4t+3]=-x2+2(t+2)x-t2-4t,∴S△DPQ=12DE•(x Q-x P)=-2x2+4(t+2)x-2t2-8t=-2[x-(t+2)]2+8.∵-2<0,∴当x=t+2时,△DPQ的面积取最大值,最大值为8.∴假设成立,即直尺在平移过程中,△DPQ面积有最大值,面积的最大值为8.点睛:本题考查了待定系数法求二次(一次)函数解析式、二次(一次)函数图象上点的坐标特征、三角形的面积以及二次函数的最值,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数表达式;(2)(I)利用三角形的面积公式找出S△DPQ=-2x2+6x+72;(II)利用三角形的面积公式找出S△DPQ=-2x2+4(t+2)x-2t2-8t.11.如图,已知抛物线的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5)。

2024年中考数学总复习:二次函数(附答案解析)

2024年中考数学总复习:二次函数(附答案解析)

2024年中考数学总复习:二次函数一.选择题(共25小题)1.抛物线y=(x+1)2﹣1的对称轴是()A.直线x=0B.直线x=1C.直线x=﹣1D.直线y=12.将抛物线y=﹣x2+2向左平移2个单位,再向下平移3个单位,得到抛物线解析式为()A.y=﹣(x+2)2﹣1B.y=﹣(x﹣2)2﹣1C.y=﹣(x+2)2+5D.y=﹣(x﹣2)2+53.已知二次函数y=kx2+2x+1的图象与x轴有交点,则k的取值范围是()A.k<1且k≠0B.k≤1C.k≥1D.k≤1且k≠0 4.把抛物线y=x2+bx+2的图象向右平移3个单位,再向上平移2个单位,所得到的图象的解析式为y=x2﹣4x+7,则b=()A.2B.4C.6D.85.已知点(﹣3,y1),(2,y2),(−12,y3)都在函数y=x2﹣1的图象上,则()A.y2<y1<y3B.y1<y3<y2C.y1<y2<y3D.y3<y2<y1 6.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:①当x>﹣1时,y的值随x值的增大而增大;②a﹣b+c>0;③4a+b=0;④9a+c>3b;其中正确的结论是()A.①B.②C.③D.④7.已知二次函数y=3(x﹣1)2+k的图像上有三点A(√2,y1),B(3,y2),A(0,y3),则y1,y2,y3为的大小关系为()A.y1>y2>y3B.y2>y1>y3C.y3>y1>y2D.y2>y3>y18.A(−12,y1),B(1,y2),C(4,y3)三点都在二次函数y=﹣(x﹣1)2+k的图象上,则y1,y2,y3的大小关系为()A.y1<y2<y3B.y1<y3<y2C.y3<y1<y2D.y3<y2<y1第1页(共17页)。

浙江省萧山区党湾镇中考数学一轮复习 二次函数课后作业

浙江省萧山区党湾镇中考数学一轮复习 二次函数课后作业

二次函数课后作业1、在同一平面直角坐标系中,函数y=ax+b 与y=ax 2-bx 的图象可能是( )A .B .C .D .2、已知函数y=ax 2-2ax-1(a 是常数,a≠0),下列结论正确的是( ) A .当a=1时,函数图象过点(-1,1) B .当a=-2时,函数图象与x 轴没有交点 C .若a >0,则当x≥1时,y 随x 的增大而减小 D .若a <0,则当x≤1时,y 随x 的增大而增大3、已知二次函数y=ax 2+bx+c (a >0)的图象经过点A (-1,2),B (2,5),顶点坐标为(m ,n ),则下列说法错误的是( )A .c <3B .m≤21C .n≤2D .b <1 4、如图,已知二次函数y=ax 2+bx+c (a≠0)的图象如图所示,给出以下四个结论:①abc=0,②a+b+c >0,③a >b ,④4ac-b 2<0;其中正确的结论有( )A .1个B .2个C .3个D .4个5、已知二次函数y=ax 2+bx+c (a≠0)的图象如图所示,则下列结论:①b <0,c >0;②a+b+c <0;③方程的两根之和大于0;④a-b+c <0,其中正确的个数是( )A .4个B .3个C .2个D .1个6、以x 为自变量的二次函数y=x 2-2(b-2)x+b 2-1的图象不经过第三象限,则实数b 的取值范围是( )A .b≥45B .b≥1或b≤-1C .b≥2D .1≤b≤2 7、如图,在平面直角坐标系中,菱形OABC 的顶点A 在x 轴正半轴上,顶点C 的坐标为(4,3),D 是抛物线y=-x 2+6x 上一点,且在x 轴上方,则△BCD 面积的最大值为 .8、已知抛物线y=ax 2+bx+c 开口向上且经过点(1,1),双曲线y=x21经过点(a ,bc ),给出下列结论:①bc >0;②b+c >0;③b ,c 是关于x 的一元二次方程x 2+(a-1)x+a21=0的两个实数根;④a-b-c≥3.其中正确结论是 (填写序号)9、如图,抛物线y=-x 2+2x+3与y 轴交于点C ,点D (0,1),点P 是抛物线上的动点.若△PCD 是以CD 为底的等腰三角形,则点P 的坐标为 .10、如图,已知抛物线y=-x 2+mx+3与x 轴交于A ,B 两点,与y 轴交于点C ,点B 的坐标为(3,0)(1)求m 的值及抛物线的顶点坐标.(2)点P 是抛物线对称轴l 上的一个动点,当PA+PC 的值最小时,求点P 的坐标.11、如图,已知点A(0,2),B(2,2),C(-1,-2),抛物线F:y=x2-2mx+m2-2与直线x=-2交于点P.(1)当抛物线F经过点C时,求它的表达式;(2)设点P的纵坐标为y P,求y P的最小值,此时抛物线F上有两点(x1,y1),(x2,y2),且x1<x2≤-2,比较y1与y2的大小;(3)当抛物线F与线段AB有公共点时,直接写出m的取值范围.12、如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.参考答案1、解析:首先根据图形中给出的一次函数图象确定a 、b 的符号,进而运用二次函数的性质判断图形中给出的二次函数的图象是否符合题意,根据选项逐一讨论解析,即可解决问题.解:A 、对于直线y=ax+b 来说,由图象可以判断,a >0,b >0;而对于抛物线y=ax 2-bx 来说,对称轴x=ab2>0,应在y 轴的右侧,故不合题意,图形错误; B 、对于直线y=ax+b 来说,由图象可以判断,a <0,b >0;而对于抛物线y=ax 2-bx 来说,对称轴x=ab2<0,应在y 轴的左侧,故不合题意,图形错误; C 、对于直线y=ax+b 来说,由图象可以判断,a >0,b >0;而对于抛物线y=ax 2-bx 来说,图象开口向上,对称轴x=ab2>0,应在y 轴的右侧,故符合题意; D 、对于直线y=ax+b 来说,由图象可以判断,a >0,b >0;而对于抛物线y=ax 2-bx 来说,图象开口向下,a <0,故不合题意,图形错误;故选:C .2、解析:把a=1,x=-1代入y=ax 2-2ax-1,于是得到函数图象不经过点(-1,1),根据△=8>0,得到函数图象与x 轴有两个交点,根据抛物线的对称轴为直线x=-aa22-=1判断二次函数的增减性.解:A 、∵当a=1,x=-1时,y=1+2-1=2,∴函数图象不经过点(-1,1),故错误;B 、当a=-2时,∵△=42-4×(-2)×(-1)=8>0,∴函数图象与x 轴有两个交点,故错误; C 、∵抛物线的对称轴为直线x=-aa22-=1,∴若a >0,则当x≥1时,y 随x 的增大而增大,故错误;D 、∵抛物线的对称轴为直线x=-aa22-=1,∴若a <0,则当x≤1时,y 随x 的增大而增大,故正确;故选D .3、解析:根据已知条件得到a −b +c =2, 4a +2b +c =5,解方程组得到c=3-2a <3,b=1-a <1,求得二次函数的对称轴为x=-a b 2=-a a 21-=21-a 21<21,根据二次函数的顶点坐标即可得到结论.解:由已知可知:a −b +c =2,4a +2b +c =5, 消去b 得:c=3-2a <3, 消去c 得:b=1-a <1,对称轴:m=x=-a b 2=-a a 21-=21-a 21<21,∵A (-1,2),a >0,那么顶点的纵坐标为函数的最小值, ∴n≤2, 故B 错.4、解析:首先根据二次函数y=ax 2+bx+c 的图象经过原点,可得c=0,所以abc=0;然后根据x=1时,y <0,可得a+b+c <0;再根据图象开口向下,可得a <0,图象的对称轴为x=-23,可得-ab2=−23,b <0,所以b=3a ,a >b ;最后根据二次函数y=ax 2+bx+c 图象与x 轴有两个交点,可得△>0,所以b 2-4ac >0,4ac-b 2<0,据此解答即可.解:∵二次函数y=ax 2+bx+c 图象经过原点, ∴c=0,∴abc=0∴①正确;∵x=1时,y <0,∴a+b+c <0,∴②不正确; ∵抛物线开口向下,∴a <0,∵抛物线的对称轴是x=-23,∴-a b 2=−23,b <0,∴b=3a ,又∵a <0,b <0,∴a >b ,∴③正确;∵二次函数y=ax 2+bx+c 图象与x 轴有两个交点,∴△>0,∴b 2-4ac >0,4ac-b 2<0,∴④正确;综上,可得正确结论有3个:①③④.故选:C .5、解析:由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.解:∵抛物线开口向下, ∴a <0,∵抛物线对称轴x >0,且抛物线与y 轴交于正半轴, ∴b >0,c >0,故①错误;由图象知,当x=1时,y <0,即a+b+c <0,故②正确, 令方程ax 2+bx+c=0的两根为x 1、x 2, 由对称轴x >0,可知221x x +>0,即x 1+x 2>0,故③正确; 由可知抛物线与x 轴的左侧交点的横坐标的取值范围为:-1<x <0, ∴当x=-1时,y=a-b+c <0,故④正确.故选:B .6、解析:由于二次函数y=x 2-2(b-2)x+b 2-1的图象不经过第三象限,所以抛物线在x 轴的上方或在x 轴的下方经过一、二、四象限,根据二次项系数知道抛物线开口方向向上,由此可以确定抛物线与x 轴有无交点,抛物线与y 轴的交点的位置,由此即可得出关于b 的不等式组,解不等式组即可求解.解:∵二次函数y=x 2-2(b-2)x+b 2-1的图象不经过第三象限, ∴抛物线在x 轴的上方或在x 轴的下方经过一、二、四象限, 当抛物线在x 轴的上方时, ∵二次项系数a=1, ∴抛物线开口方向向上,∴b 2-1≥0,△=[2(b-2)]2-4(b 2-1)≤0, 解得b≥45; 当抛物线在x 轴的下方经过一、二、四象限时, 设抛物线与x 轴的交点的横坐标分别为x 1,x 2, ∴x 1+x 2=2(b-2)≥0,b 2-1≥0, ∴△=[2(b-2)]2-4(b 2-1)>0,① b-2>0,② b 2-1>0,③ 由①得b <45,由②得b >2, ∴此种情况不存在, ∴b≥45, 故选A .7、解析:设D (x ,-x 2+6x ),根据勾股定理求得OC ,根据菱形的性质得出BC ,然后根据三角形面积公式得出∴S △BCD =21×5×(-x 2+6x-3)=-25(x-3)2+15,根据二次函数的性质即可求得最大值.解:∵D 是抛物线y=-x 2+6x 上一点, ∴设D (x ,-x 2+6x ), ∵顶点C 的坐标为(4,3),∴OC=2234 =5, ∵四边形OABC 是菱形, ∴BC=OC=5,BC ∥x 轴, ∴S △BCD =21×5×(-x 2+6x-3)=-25(x-3)2+15, ∵-25<0, ∴S △BCD 有最大值,最大值为15, 故答案为15.8、解析:根据抛物线y=ax 2+bx+c 开口向上且经过点(1,1),双曲线y=x21经过点(a ,bc ),可以得到a >0,a 、b 、c 的关系,然后对a 、b 、c 进行讨论,从而可以判断①②③④是否正确,本题得以解决.解:∵抛物线y=ax 2+bx+c 开口向上且经过点(1,1),双曲线y=x21经过点(a ,bc ), ∴a >0, a +b +c =1,bc =a21 ∴bc >0,故①正确;∴a >1时,则b 、c 均小于0,此时b+c <0, 当a=1时,b+c=0,则与题意矛盾,当0<a <1时,则b 、c 均大于0,此时b+c >0, 故②错误;∴x 2+(a-1)x+a21=0可以转化为:x 2-(b+c )x+bc=0,得x=b 或x=c ,故③正确; ∵b ,c 是关于x 的一元二次方程x 2+(a-1)x+a21=0的两个实数根,∴a-b-c=a-(b+c )=a+(a-1)=2a-1, a+b+c=1故b+c=1-a <1,当1>1-a >-1,即2>a >0时,有(b+c )2<1, 由(b-c )2>0可得:b 2+c 2>2bc ,所以4bc <(b+c )2, 即4bc <1,bc <41,从而得出a >2,与题设矛盾; 故a≥2,即2a-1≥3; 故④正确; 故答案为:①③④.9、解析:当△PCD是以CD为底的等腰三角形时,则P点在线段CD的垂直平分线上,由C、D 坐标可求得线段CD中点的坐标,从而可知P点的纵坐标,代入抛物线解析式可求得P点坐标.解:∵△PCD是以CD为底的等腰三角形,∴点P在线段CD的垂直平分线上,如图,过P作PE⊥y轴于点E,则E为线段CD的中点,∵抛物线y=-x2+2x+3与y轴交于点C,∴C(0,3),且D(0,1),∴E点坐标为(0,2),∴P点纵坐标为2,在y=-x2+2x+3中,令y=2,可得-x2+2x+3=2,解得x=1±2,∴P点坐标为(1+2,2)或(1-2,2),故答案为:(1+2,2)或(1-2,2).10、解析:(1)首先把点B的坐标为(3,0)代入抛物线y=-x2+mx+3,利用待定系数法即可求得m的值,继而求得抛物线的顶点坐标;(2)首先连接BC交抛物线对称轴l于点P,则此时PA+PC的值最小,然后利用待定系数法求得直线BC的解析式,继而求得答案.解:(1)把点B的坐标为(3,0)代入抛物线y=-x2+mx+3得:0=-32+3m+3,解得:m=2,∴y=-x2+2x+3=-(x-1)2+4,∴顶点坐标为:(1,4).(2)连接BC交抛物线对称轴l于点P,则此时PA+PC的值最小,设直线BC的解析式为:y=kx+b,∵点C(0,3),点B(3,0),∴0=3k+b, 3=b解得:k=−1, b=3∴直线BC的解析式为:y=-x+3,当x=1时,y=-1+3=2,∴当PA+PC的值最小时,点P的坐标为:(1,2).11、解析:(1)根据抛物线F:y=x2-2mx+m2-2过点C(-1,-2),可以求得抛物线F的表达式;(2)根据题意,可以求得y P的最小值和此时抛物线的表达式,从而可以比较y1与y2的大小;(3)根据题意可以列出相应的不等式组,从而可以解答本题解:(1)∵抛物线F经过点C(-1,-2),∴-2=(-1)2-2×m×(-1)+m2-2,解得,m=-1,∴抛物线F的表达式是:y=x2+2x-1;(2)当x=-2时,y p=4+4m+m2-2=(m+2)2-2,∴当m=-2时,y p的最小值-2,此时抛物线F的表达式是:y=x2+4x+2=(x+2)2-2,∴当x≤-2时,y随x的增大而减小,∵x1<x2≤-2,∴y1>y2;(3)m的取值范围是-2≤m≤0或2≤m≤4,理由:∵抛物线F与线段AB有公共点,点A(0,2),B(2,2),∴m2−2≤2, 22−2m×2+m2−2≥2或m2−2≥2, 22−2m×2+m2−2≤2解得,-2≤m≤0或2≤m≤4.12、解析:(1)把A与B坐标代入二次函数解析式求出a与b的值即可;(2)如图,过A作x轴的垂直,垂足为D(2,0),连接CD,过C作CE⊥AD,CF⊥x轴,垂足分别为E,F,分别表示出三角形OAD,三角形ACD,以及三角形BCD的面积,之和即为S,确定出S 关于x的函数解析式,并求出x的范围,利用二次函数性质即可确定出S的最大值,以及此时x的值.解:(1)将A (2,4)与B (6,0)代入y=ax 2+bx , 得4a +2b =4, 36a +6b =0,解得:a =21,b =3; (2)如图,过A 作x 轴的垂直,垂足为D (2,0),连接CD ,过C 作CE ⊥AD ,CF ⊥x 轴,垂足分别为E ,F ,S △OAD =21OD•AD=21×2×4=4; S △ACD =21AD•CE=21×4×(x-2)=2x-4;S △BCD =21BD•CF=21×4×(-21x 2+3x )=-x 2+6x ,则S=S △OAD +S △ACD +S △BCD =4+2x-4-x 2+6x=-x 2+8x , ∴S 关于x 的函数表达式为S=-x 2+8x (2<x <6), ∵S=-x 2+8x=-(x-4)2+16,∴当x=4时,四边形OACB 的面积S 有最大值,最大值为16.。

中考数学二次函数的综合复习附详细答案

中考数学二次函数的综合复习附详细答案

中考数学二次函数的综合复习附详细答案一、二次函数1.如图,抛物线y =12x 2+bx ﹣2与x 轴交于A ,B 两点,与y 轴交于C 点,且A (﹣1,0).(1)求抛物线的解析式及顶点D 的坐标; (2)判断△ABC 的形状,证明你的结论;(3)点M 是抛物线对称轴上的一个动点,当MC +MA 的值最小时,求点M 的坐标.【答案】(1)抛物线的解析式为y =213x -22x ﹣2,顶点D 的坐标为 (32,﹣258);(2)△ABC 是直角三角形,证明见解析;(3)点M 的坐标为(32,﹣54). 【解析】 【分析】(1)因为点A 在抛物线上,所以将点A 代入函数解析式即可求得答案;(2)由函数解析式可以求得其与x 轴、y 轴的交点坐标,即可求得AB 、BC 、AC 的长,由勾股定理的逆定理可得三角形的形状;(3)根据抛物线的性质可得点A 与点B 关于对称轴x 32=对称,求出点B ,C 的坐标,根据轴对称性,可得MA =MB ,两点之间线段最短可知,MC +MB 的值最小.则BC 与直线x 32=交点即为M 点,利用得到系数法求出直线BC 的解析式,即可得到点M 的坐标. 【详解】(1)∵点A (﹣1,0)在抛物线y 212x =+bx ﹣2上,∴2112⨯-+()b ×(﹣1)﹣2=0,解得:b 32=-,∴抛物线的解析式为y 21322x =-x ﹣2. y 21322x =-x ﹣212=(x 2﹣3x ﹣4 )21325228x =--(),∴顶点D 的坐标为 (32528,-). (2)当x =0时y =﹣2,∴C (0,﹣2),OC =2. 当y =0时,21322x -x ﹣2=0,∴x 1=﹣1,x 2=4,∴B (4,0),∴OA =1,OB =4,AB=5.∵AB2=25,AC2=OA2+OC2=5,BC2=OC2+OB2=20,∴AC2+BC2=AB2.∴△ABC是直角三角形.(3)∵顶点D的坐标为(325 28,-),∴抛物线的对称轴为x32=.∵抛物线y12=x2+bx﹣2与x轴交于A,B两点,∴点A与点B关于对称轴x32=对称.∵A(﹣1,0),∴点B的坐标为(4,0),当x=0时,y21322x=-x﹣2=﹣2,则点C 的坐标为(0,﹣2),则BC与直线x32=交点即为M点,如图,根据轴对称性,可得:MA=MB,两点之间线段最短可知,MC+MB的值最小.设直线BC的解析式为y=kx+b,把C(0,﹣2),B(4,0)代入,可得:240bk b=-⎧⎨+=⎩,解得:122kb⎧=⎪⎨⎪=-⎩,∴y12=x﹣2.当x32=时,y1352224=⨯-=-,∴点M的坐标为(3524-,).【点睛】本题考查了待定系数法求二次函数解析式、一次函数的解析式、直角三角形的性质及判定、轴对称性质,解决本题的关键是利用待定系数法求函数的解析式.2.如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).(1)求这个二次函数的表达式;(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点M,连接PC.①求线段PM的最大值;②当△PCM是以PM为一腰的等腰三角形时,求点P的坐标.【答案】(1)二次函数的表达式y=x 2﹣2x ﹣3;(2)①PM 最大=94;②P (2,﹣3)或(22﹣2). 【解析】 【分析】(1)根据待定系数法,可得答案;(2)①根据平行于y 轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得二次函数,根据二次函数的性质,可得答案;②根据等腰三角形的定义,可得方程,根据解方程,可得答案. 【详解】(1)将A ,B ,C 代入函数解析式,得09303a b c a b c c -+=⎧⎪++=⎨⎪=-⎩,解得123a b c =⎧⎪=-⎨⎪=-⎩,这个二次函数的表达式y=x 2﹣2x ﹣3; (2)设BC 的解析式为y=kx+b , 将B ,C 的坐标代入函数解析式,得303k b b +=⎧⎨=-⎩,解得13k b =⎧⎨=-⎩, BC 的解析式为y=x ﹣3,设M (n ,n ﹣3),P (n ,n 2﹣2n ﹣3), PM=(n ﹣3)﹣(n 2﹣2n ﹣3)=﹣n 2+3n=﹣(n ﹣32)2+94, 当n=32时,PM 最大=94; ②当PM=PC 时,(﹣n 2+3n )2=n 2+(n 2﹣2n ﹣3+3)2, 解得n 1=0(不符合题意,舍),n 2=2, n 2﹣2n ﹣3=-3, P (2,-3);当PM=MC 时,(﹣n 2+3n )2=n 2+(n ﹣3+3)2,解得n 1=0(不符合题意,舍),n 2=3+2(不符合题意,舍),n 3=3-2, n 2﹣2n ﹣3=2-42, P (3-2,2-42);综上所述:P (2,﹣3)或(3-2,2﹣42). 【点睛】本题考查了二次函数的综合题,涉及到待定系数法、二次函数的最值、等腰三角形等知识,综合性较强,解题的关键是认真分析,弄清解题的思路有方法.3.如图,在平面直角坐标系中,直线483y x =-+与x 轴,y 轴分别交于点A 、B ,抛物线24y ax ax c =-+经过点A 和点B ,与x 轴的另一个交点为C ,动点D 从点A 出发,以每秒1个单位长度的速度向O 点运动,同时动点E 从点B 出发,以每秒2个单位长度的速度向A 点运动,设运动的时间为t 秒,0﹤t ﹤5.(1)求抛物线的解析式;(2)当t 为何值时,以A 、D 、E 为顶点的三角形与△AOB 相似; (3)当△ADE 为等腰三角形时,求t 的值;(4)抛物线上是否存在一点F ,使得以A 、B 、D 、F 为顶点的四边形是平行四边形?若存在,直接写出F 点的坐标;若不存在,说明理由. 【答案】(1)抛物线的解析式为228833y x x =-++; (2)t 的值为3011或5013; (3)t 的值为103或6017或258; (4)符合条件的点F 存在,共有两个1F (4,8),2(227F +,-8). 【解析】(1)由B 、C 两点的坐标,利用待定系数法可求得抛物线的解析式;(2)利用△ADE ∽△AOB 和△AED ∽△AOB 即可求出t 的值;(3)过E 作EH ⊥x 轴于点H ,过D 作DM ⊥AB 于点M 即可求出t 的值;(4)分当AD 为边时,当AD 为对角线时符合条件的点F 的坐标.解:(1)A (6,0),B (0,8),依题意知36240{8a a c c -+==,解得2{38a c =-=, ∴228833y x x =-++. (2)∵ A (6,0),B (0,8),∴OA=6,OB=8,AB=10,∴AD=t ,AE=10-2t , ①当△ADE ∽△AOB 时,AD AE AO AB =,∴102610t t -=,∴3011t =; ②当△AED ∽△AOB 时,AE AD AO AB =,∴102610t t -=,∴5013t =; 综上所述,t 的值为3011或5013. (3) ①当AD=AE 时,t=10-2t ,∴103t =; ②当AE=DE 时,过E 作EH ⊥x 轴于点H ,则AD=2AH ,由△AEH ∽△ABO 得,AH=()31025t -,∴()61025t t -=,∴6017t =; ③当AD=DE 时,过D 作DM ⊥AB 于点M ,则AE=2AM ,由△AMD ∽△AOB 得,AM=35t ,∴61025t t -=,∴258t =; 综上所述,t 的值为103或6017或258. (4) ①当AD 为边时,则BF ∥x 轴,∴8F B y y ==,求得x=4,∴F (4,8); ②当AD 为对角线时,则8F B y y =-=-,∴2288833x x -++=-,解得2x =±∵x ﹥0,∴2x =+∴()28+-.综上所述,符合条件的点F 存在,共有两个1F (4,8),2(2F +,-8).“点睛”本题考查二次函数综合题、相似三角形等知识,解题的关键是学会待定系数法确定函数解析式,学会分类讨论,用方程的思想解决问题,属于中考压轴题.4.如图,抛物线y=ax 2+6x+c 交x 轴于A ,B 两点,交y 轴于点C .直线y=x ﹣5经过点B ,C .(1)求抛物线的解析式;(2)过点A 的直线交直线BC 于点M .①当AM ⊥BC 时,过抛物线上一动点P (不与点B ,C 重合),作直线AM 的平行线交直线BC 于点Q ,若以点A ,M ,P ,Q 为顶点的四边形是平行四边形,求点P 的横坐标; ②连接AC ,当直线AM 与直线BC 的夹角等于∠ACB 的2倍时,请直接写出点M 的坐标.【答案】(1)抛物线解析式为y=﹣x2+6x﹣5;(2)①P点的横坐标为4或412或5-41②点M的坐标为(136,﹣176)或(236,﹣76).【解析】分析:(1)利用一次函数解析式确定C(0,-5),B(5,0),然后利用待定系数法求抛物线解析式;(2)①先解方程-x2+6x-5=0得A(1,0),再判断△OCB为等腰直角三角形得到∠OBC=∠OCB=45°,则△AMB为等腰直角三角形,所以2,接着根据平行四边形的性质得到2,PQ⊥BC,作PD⊥x轴交直线BC于D,如图1,利用∠PDQ=45°得到2PQ=4,设P(m,-m2+6m-5),则D(m,m-5),讨论:当P点在直线BC上方时,PD=-m2+6m-5-(m-5)=4;当P点在直线BC下方时,PD=m-5-(-m2+6m-5),然后分别解方程即可得到P点的横坐标;②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,利用等腰三角形的性质和三角形外角性质得到∠AM1B=2∠ACB,再确定N(3,-2),AC的解析式为y=5x-5,E点坐标为(12,-52),利用两直线垂直的问题可设直线EM1的解析式为y=-15x+b,把E(12,-52)代入求出b得到直线EM1的解析式为y=-15x-125,则解方程组511255y xy x-⎧⎪⎨--⎪⎩==得M1点的坐标;作直线BC上作点M1关于N点的对称点M2,如图2,利用对称性得到∠AM2C=∠AM1B=2∠ACB,设M2(x,x-5),根据中点坐标公式得到3=13+62x,然后求出x即可得到M2的坐标,从而得到满足条件的点M的坐标.详解:(1)当x=0时,y=x ﹣5=﹣5,则C (0,﹣5), 当y=0时,x ﹣5=0,解得x=5,则B (5,0), 把B (5,0),C (0,﹣5)代入y=ax 2+6x+c 得253005a c c ++=⎧⎨=-⎩,解得15a b =-⎧⎨=-⎩, ∴抛物线解析式为y=﹣x 2+6x ﹣5;(2)①解方程﹣x 2+6x ﹣5=0得x 1=1,x 2=5,则A (1,0), ∵B (5,0),C (0,﹣5), ∴△OCB 为等腰直角三角形, ∴∠OBC=∠OCB=45°, ∵AM ⊥BC ,∴△AMB 为等腰直角三角形, ∴AM=2AB=2×4=22, ∵以点A ,M ,P ,Q 为顶点的四边形是平行四边形,AM ∥PQ , ∴PQ=AM=22,PQ ⊥BC ,作PD ⊥x 轴交直线BC 于D ,如图1,则∠PDQ=45°,∴222=4,设P (m ,﹣m 2+6m ﹣5),则D (m ,m ﹣5), 当P 点在直线BC 上方时,PD=﹣m 2+6m ﹣5﹣(m ﹣5)=﹣m 2+5m=4,解得m 1=1,m 2=4, 当P 点在直线BC 下方时,PD=m ﹣5﹣(﹣m 2+6m ﹣5)=m 2﹣5m=4,解得m 15+41,m 25-41, 综上所述,P 点的横坐标为4或5+412或5-412; ②作AN ⊥BC 于N ,NH ⊥x 轴于H ,作AC 的垂直平分线交BC 于M 1,交AC 于E ,如图2,∵M1A=M1C,∴∠ACM1=∠CAM1,∴∠AM1B=2∠ACB,∵△ANB为等腰直角三角形,∴AH=BH=NH=2,∴N(3,﹣2),易得AC的解析式为y=5x﹣5,E点坐标为(12,﹣52,设直线EM1的解析式为y=﹣15x+b,把E(12,﹣52)代入得﹣110+b=﹣52,解得b=﹣125,∴直线EM1的解析式为y=﹣15x﹣125解方程组511255y xy x=-⎧⎪⎨=--⎪⎩得136176xy⎧=⎪⎪⎨⎪=-⎪⎩,则M1(136,﹣176);作直线BC上作点M1关于N点的对称点M2,如图2,则∠AM2C=∠AM1B=2∠ACB,设M2(x,x﹣5),∵3=13+ 62x∴x=236,∴M2(236,﹣76).综上所述,点M的坐标为(136,﹣176)或(236,﹣76).点睛:本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、等腰直角的判定与性质和平行四边形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.5.如图,已知抛物线经过原点O,顶点A(1,﹣1),且与直线y=kx+2相交于B(2,0)和C两点(1)求抛物线和直线BC的解析式;(2)求证:△ABC是直角三角形;(3)抛物线上存在点E(点E不与点A重合),使∠BCE=∠ACB,求出点E的坐标;(4)在抛物线的对称轴上是否存在点F,使△BDF是等腰三角形?若存在,请直接写出点F的坐标.【答案】(1)y=x2﹣2x,y=﹣x+2;(2)详见解析;(3)E(5524,);(4)符合条件的点F的坐标(17171,71,27【解析】【分析】(1)将B(2,0)代入设抛物线解析式y=a(x﹣1)2﹣1,求得a,将B(2,0)代入y =kx+2,求得k;(2)分别求出AB2、BC2、AC2,根据勾股定理逆定理即可证明;(3)作∠BCE=∠ACB,与抛物线交于点E,延长AB,与CE的延长线交于点A',过A'作A'H垂直x轴于点H,设二次函数对称轴于x轴交于点G.根据对称与三角形全等,求得A'(3,1),然后求出A'C解析式,与抛物线解析式联立,求得点E坐标;(4)设F(1,m),分三种情况讨论:①当BF=BD2122m+=②当DF=BD 24522m m-+=,③当BF=DF22145m m m+-+m=1,然后代入即可.【详解】(1)设抛物线解析式y=a(x﹣1)2﹣1,将B(2,0)代入,0=a(2﹣1)2﹣1,∴a=1,抛物线解析式:y=(x﹣1)2﹣1=x2﹣2x,将B(2,0)代入y=kx+2,0=2k +2, k =﹣1,∴直线BC 的解析式:y =﹣x +2;(2)联立222y x y x x =-+⎧⎨=-⎩, 解得1113x y =-⎧⎨=⎩,2220x y =⎧⎨=⎩,∴C (﹣1,3),∵A (1,﹣1),B (2,0), ∴AB 2=(1﹣2)2+(﹣1﹣0)2=2, AC 2=[1﹣(﹣1)]2+(﹣1﹣3)2=20, BC 2=[2﹣(﹣1)]2+(0﹣3)2=18, ∴AB 2+BC 2=AC 2, ∴△ABC 是直角三角形;(3)如图,作∠BCE =∠ACB ,与抛物线交于点E ,延长AB ,与CE 的延长线交于点A ',过A '作A 'H 垂直x 轴于点H ,设二次函数对称轴于x 轴交于点G .∵∠BCE =∠ACB ,∠ABC =90°, ∴点A 与A '关于直线BC 对称, AB =A 'B ,可知△AFB ≌△A 'HB (AAS ), ∵A (1,﹣1),B (2,0) ∴AG =1,BG =OG =1, ∴BH =1,A 'H =1,OH =3, ∴A '(3,1), ∵C (﹣1,3), ∴直线A 'C :1522y x =-+, 联立:215222y x y x x⎧=-+⎪⎨⎪=-⎩,解得13x y =-⎧⎨=⎩或5254x y ⎧=⎪⎪⎨⎪=⎪⎩,∴E (52,54); (4)∵抛物线的对称轴:直线x =1, ∴设F (1,m ),直线BC 的解析式:y =﹣x +2; ∴D (0,2) ∵B (2,0),∴BD =12x xBF ==DF ==①当BF =BD= m =∴F 坐标(11②当DF =BD=, m =∴F 坐标(1,1,2③当BF =DF, m =1,F (1,1),此时B 、D 、F 在同一直线上,不符合题意.综上,符合条件的点F 的坐标(111,1,2﹣【点睛】考查了二次函数,熟练掌握二次函数的性质是解题的关键.6.已知抛物线2y ax bx c =++上有两点M (m +1,a )、N (m ,b ). (1)当a =-1,m =1时,求抛物线2y ax bx c =++的解析式; (2)用含a 、m 的代数式表示b 和c ;(3)当a <0时,抛物线2y ax bx c =++满足24b ac a -=,2b c a +≥,34m ≤-, 求a 的取值范围.【答案】(1)11b c =⎧⎨=⎩;(2)b=-am ,c=-am ;(3)161393a -≤≤- 【解析】 【分析】(1)根据题意得到M (2,-1)、N (1,b ),代入抛物线解析式即可求出b 、c ;(2)将点M (m +1,a )、N (m ,b )代入抛物线2y ax bx c =++,可得22(1)(1)a m b m c a am bm c b⎧++++=⎨++=⎩,化简即可得出;(3)把b am =-,c am =-代入24b ac a -=可得214a m m=+,把b am =-,c am =-代入2b c a +≥可得1m ≥-,然后根据m 的取值范围可得a 的取值范围.【详解】解:(1)∵a =-1,m =1,∴M (2,-1)、N (1,b )由题意,得4211b c b c b -++=-⎧⎨-++=⎩,解,得11b c =⎧⎨=⎩(2) ∵点M (m +1,a )、N (m ,b )在抛物线2y ax bx c =++上22(1)(1)a m b m c a am bm c b ⎧++++=⎨++=⎩①②①-②得,2am b b +=-,∴b am =-把b am =-代入②,得c am =-(3)把b am =-,c am =-代入24b ac a -=得2224a m a m a +=0a <Q ,22141,4am am a m m∴+=∴=+把b am =-,c am =-代入2b c a +≥得22am a -≥,1m ∴≥-34m Q ≤-,314m ∴-≤≤-224(2)4m m m +=+-Q ,当2m >-时,24m m +随m 的增大而增大2393416m m ∴-≤+≤-216113943m m ∴-≤≤-+ 即161393a -≤≤- 【点睛】本题考查待定系数法求函数解析式以及二次函数的图像和性质,由函数图像上点的坐标特征求出b am =-,c am =-是解题关键.7.如图甲,直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶点为P.(1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;(3)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究).【答案】(1)y=x2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E点坐标为(,)时,△CBE的面积最大.【解析】试题分析:(1)由直线解析式可求得B、C坐标,利用待定系数法可求得抛物线解析式;(2)由抛物线解析式可求得P点坐标及对称轴,可设出M点坐标,表示出MC、MP和PC 的长,分MC=MP、MC=PC和MP=PC三种情况,可分别得到关于M点坐标的方程,可求得M点的坐标;(3)过E作EF⊥x轴,交直线BC于点F,交x轴于点D,可设出E点坐标,表示出F点的坐标,表示出EF的长,进一步可表示出△CBE的面积,利用二次函数的性质可求得其取得最大值时E点的坐标.试题解析:(1)∵直线y=﹣x+3与x轴、y轴分别交于点B、点C,∴B(3,0),C(0,3),把B、C坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=x2﹣4x+3;(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线对称轴为x=2,P(2,﹣1),设M(2,t),且C(0,3),∴MC=,MP=|t+1|,PC=,∵△CPM为等腰三角形,∴有MC=MP、MC=PC和MP=PC三种情况,①当MC=MP时,则有=|t+1|,解得t=,此时M(2,);②当MC=PC时,则有=2,解得t=﹣1(与P点重合,舍去)或t=7,此时M(2,7);③当MP=PC时,则有|t+1|=2,解得t=﹣1+2或t=﹣1﹣2,此时M(2,﹣1+2)或(2,﹣1﹣2);综上可知存在满足条件的点M,其坐标为(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)如图,过E作EF⊥x轴,交BC于点F,交x轴于点D,设E(x,x2﹣4x+3),则F(x,﹣x+3),∵0<x<3,∴EF=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x,∴S△CBE=S△EFC+S△EFB=EF•OD+EF•BD=EF•OB=×3(﹣x2+3x)=﹣(x﹣)2+,∴当x=时,△CBE的面积最大,此时E点坐标为(,),即当E点坐标为(,)时,△CBE的面积最大.考点:二次函数综合题.8.若三个非零实数x,y,z满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x,y,z构成“和谐三组数”.(1)实数1,2,3可以构成“和谐三组数”吗?请说明理由;(2)若M(t,y1),N(t+1,y2),R(t+3,y3)三点均在函数y=kx(k为常数,k≠0)的图象上,且这三点的纵坐标y1,y2,y3构成“和谐三组数”,求实数t的值;(3)若直线y=2bx+2c(bc≠0)与x轴交于点A(x1,0),与抛物线y=ax2+3bx+3c(a≠0)交于B(x2,y2),C(x3,y3)两点.①求证:A,B,C三点的横坐标x1,x2,x3构成“和谐三组数”;②若a>2b>3c,x2=1,求点P(ca,ba)与原点O的距离OP的取值范围.【答案】(1)不能,理由见解析;(2)t的值为﹣4、﹣2或2;(3)①证明见解析;2≤OP<2且OP≠1. 【解析】 【分析】(1)由和谐三组数的定义进行验证即可;(2)把M 、N 、R 三点的坐标分别代入反比例函数解析式,可用t 和k 分别表示出y 1、y 2、y 3,再由和谐三组数的定义可得到关于t 的方程,可求得t 的值; (3)①由直线解析式可求得x 1=﹣cb,联立直线和抛物线解析式消去y ,利用一元二次方程根与系数的关系可求得x 2+x 3=﹣b a ,x 2x 3=ca,再利用和谐三数组的定义证明即可;②由条件可得到a+b+c =0,可得c =﹣(a+b),由a >2b >3c 可求得ba的取值范围,令m =ba,利用两点间距离公式可得到OP 2关于m 的二次函数,利用二次函数的性质可求得OP 2的取值范围,从而可求得OP 的取值范围. 【详解】(1)不能,理由如下:∵1、2、3的倒数分别为1、12、13, ∴12+13≠1,1+12≠13,1+13≠12, ∴实数1,2,3不可以构成“和谐三组数”;(2)∵M(t ,y 1),N(t+1,y 2),R(t+3,y 3)三点均在函数kx(k 为常数,k≠0)的图象上, ∴y 1、y 2、y 3均不为0,且y 1=k t ,y 2=1k t +,y 3=3k t +, ∴11y =t k ,21y =1t k +,31y =3t k +, ∵y 1,y 2,y 3构成“和谐三组数”, ∴有以下三种情况:当11y =21y +31y 时,则t k =1t k ++3t k +,即t =t+1+t+3,解得t =﹣4;当21y =11y +31y 时,则1t k +=t k +3t k +,即t+1=t+t+3,解得t =﹣2;当31y =11y +21y 时,则3t k +=t k +1t k+,即t+3=t+t+1,解得t =2;∴t 的值为﹣4、﹣2或2; (3)①∵a 、b 、c 均不为0,∴x 1,x 2,x 3都不为0,∵直线y =2bx+2c(bc≠0)与x 轴交于点A(x 1,0), ∴0=2bx 1+2c ,解得x 1=﹣c b, 联立直线与抛物线解析式,消去y 可得2bx+2c =ax 2+3bx+3c ,即ax 2+bx+c =0, ∵直线与抛物线交与B(x 2,y 2),C(x 3,y 3)两点, ∴x 2、x 3是方程ax 2+bx+c =0的两根, ∴x 2+x 3=﹣b a ,x 2x 3=c a, ∴21x +31x =2323x x x x +=b a c a-=﹣b c =11x ,∴x 1,x 2,x 3构成“和谐三组数”; ②∵x 2=1, ∴a+b+c =0, ∴c =﹣a ﹣b , ∵a >2b >3c ,∴a >2b >3(﹣a ﹣b),且a >0,整理可得253a b b a>⎧⎨>-⎩,解得﹣35<b a <12,∵P(c a ,ba), ∴OP 2=(c a )2+(b a )2=(a b a --)2+(b a )2=2(b a )2+2b a +1=2(b a +12)2+12, 令m =b a ,则﹣35<m <12且m≠0,且OP 2=2(m+12)2+12, ∵2>0,∴当﹣35<m <﹣12时,OP 2随m 的增大而减小,当m =﹣35时,OP 2有最大临界值1325,当m =﹣12时,OP 2有最小临界值12, 当﹣12<m <12时,OP 2随m 的增大而增大,当m =﹣12时,OP 2有最小临界值12,当m =12时,OP 2有最大临界值52, ∴12≤OP 2<52且OP 2≠1, ∵P 到原点的距离为非负数,∴2≤OP<10且OP≠1.2【点睛】本题为二次函数的综合应用,涉及新定义、函数图象的交点、一元二次方程根与系数的关系、勾股定理、二次函数的性质、分类讨论思想及转化思想等知识.在(1)中注意利用和谐三数组的定义,在(2)中由和谐三数组得到关于t的方程是解题的关键,在(3)①中用a、b、c分别表示出x1,x2,x3是解题的关键,在(3)②中把OP2表示成二次函数的形式是解题的关键.本题考查知识点较多,综合性较强,特别是最后一问,难度很大.9.如图,已知抛物线的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5)。

2024年九年级中考数学解答题一轮复习——二次函数与角度问题专项训练

2024年九年级中考数学解答题一轮复习——二次函数与角度问题专项训练

2024年九年级中考数学解答题一轮复习——二次函数与角度问题专项训练1.已知:如图,在平面直角坐标系中,直线8y kx k =-交x 轴于点B ,交y 轴于点C ,经过B ,C 两点的抛物线24y ax bx =++交x 轴负半轴于点A ,10AB =.(1)求抛物线的解析式;(2)点P 为第一象限内抛物线上一点,作PH BC ⊥于点H ,设PH 的长为d ,点P 的横坐标为t ,求d 与t 的函数关系式;(3)在(2)的条件下,点P 关于直线BC 的对称点为M ,连接OM ,若OM BC ∥,作PD x⊥轴于点D ,连接CD ,F 在线段BC 上(对称轴右侧),连接PF ,CDP CBD FPD ∠=∠+∠,求点F 的坐标.2.如图,在平面直角坐标系中,抛物线y =ax 2+bx +c (a >0)的顶点为M ,经过C (1,1),且与x 轴正半轴交于A ,B 两点.(1)如图1,连接OC ,将线段OC 绕点O 顺时针旋转,使得C 落在y 轴的负半轴上,求点C 的路径长;(2)如图2,延长线段OC 至N ,使得ON =3,若∠OBN =∠ONA ,且13tan 2ABM ∠=,求抛物线的解析式;(3)如图3,抛物线y=ax2+bx+c的对称轴为直线52x=,与y轴交于(0,5),经过点C的直线l:y=kx+m(k>0)与抛物线交于点C、D,若在x轴上存在P1、P2,使∠CP1D =∠CP2D=90°,求k的取值范围.3.如图,抛物线y=x2+bx+c交x轴于点A,B两点,OA=1,与y轴交于点C,连接AC,tan∠OAC=3,抛物线的对称轴与x轴交于点D.(1)求点A,C的坐标;(2)若点P在抛物线上,且满足∠P AB=2∠ACO,求直线P A与y轴交点的坐标;(3)点Q在抛物线上,且在x轴下方,直线AQ,BQ分别交抛物线的对称轴于点M、N.求证:DM+DN为定值,并求出这个定值.4.如图1,抛物线y12=-x2+bx+c与x轴交于点A(4,0),B(﹣2,0),与y轴交于点C,线段BC的垂直平分线与对称轴l交于点D,与x轴交于点F,与BC交于点E.对称轴l与x轴交于点H.(1)求抛物线的函数表达式及对称轴;(2)求点D和点F的坐标;(3)如图2,若点P是抛物线上位于第一象限的一个动点,当∠EFP=45°时,请求出此时点P的坐标.5.如图,在平面直角坐标系中二次函数y=ax2+bx+3的图象过点A,B两点,其坐标分别为(﹣5,0),(﹣2,3).(1)求二次函数的表达式;(2)点C在抛物线上,若∠ABC=90°,求点C的坐标;(3)在(2)的条件下,BC与y轴交于点D,点P在抛物线上,若∠PBC=∠OAD,直接写出点P的坐标.6.在平面直角坐标系中,抛物线y=﹣x2+(a﹣2)x+2a与x轴交于A,B两点(A在B的左侧),与y轴的正半轴交于点C.(1)若AB=5,求抛物线的解析式;(2)若经过点C和定点M的直线与该抛物线交于另一点D,且S△ACM=S△ADM(“S”表示面积).∠求定点M的坐标;∠连接BD交y轴于点E,连接AE,若∠AEO=∠BDC,求a的值.7.如图,已知直线y=2x+n与抛物线y=ax2+bx+c相交于A,B两点,抛物线的顶点是A(1,﹣4),点B在x轴上.(1)求抛物线的解析式;(2)若点M是y轴上一点,点N是坐标平面内一点,当以A、B、M、N为顶点的四边形是矩形时,求点M的坐标.(3)在抛物线上是否存在点Q,使∠BAQ=45°,若存在,请直接写出点Q的横坐标;若不存在,说明理由.8.如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+6(a≠0)交x轴于A、B两点,交y轴于点C,且OA=OC=3OB,连接AC.(1)求抛物线的表达式;(2)点P从点C以每秒2个单位长度的速度沿CA运动到点A,点Q从点O以每秒1个单位长度的速度沿OC运动到点C,点P和点Q同时出发,连接PQ,当点P到达点A 时,点Q停止运动,求S△CPQ的最大值及此时点P的坐标;(3)抛物线上是否存在点M,使得∠ACM=15°?若存在,求出点M的坐标;若不存在,请说明理由.9.如图,抛物线y=﹣x2+(m﹣1)x+m(其中m>1)与x轴交于A,B两点,与y轴交于点C,点D在该抛物线的对称轴上,且DA=DC.(1)点A的坐标为,用含m的式子表示点D的坐标为;(2)若△ACD与△BCO的面积之比为5:9,求该抛物线的表达式;(3)在(2)的条件下,若动点P在该抛物线上,且当∠PBC=∠DAB时,求点P的坐标.10.如图,在平面直角坐标系xOy中,抛物线y=ax2-2x+c与x轴交于点A和点B(1,0),与y轴相交于点C(0,3).(1)求抛物线的解析式和顶点D的坐标;(2)找出图中与∠DAB相等的一个角,并证明;(3)若点P是第二象限内抛物线上的一点,当点P到直线AC的距离最大时,求点P的坐标.11.如图,在平面直角坐标系中,二次函数y12=-x2+bx﹣2的图象与x轴交于点A和点B(4,0),与y轴交于点C.(1)求二次函数的表达式;(2)若点P是抛物线上一点,满足∠PCB+∠ACB=∠BCO,求点P的坐标;(3)若点Q在第四象限内,且tan∠AQB32=,M(﹣2,1),线段MQ是否存在最大值,如果存在,求出最大值;如果不存在,请说明理由.12.如图,抛物线y=ax2-bx-3与x轴交于点A、C,交y轴于点B,OB=OC=3OA.(1)求抛物线的解析式及对称轴方程;(2)如图1,连接AB,点M是对称轴上一点且在第四象限,若∠AMB是以∠MBA为底角的等腰三角形,求点M的坐标;(3)如图2,连接AB,点P在抛物线上,当∠P AC=2∠ABO时,求点P的坐标.13.如图,已知抛物线23=++(a、b为常数,且a≠0)与x轴交于点A(-1,0)y ax bx和点B,与y轴交于点C,其对称轴是直线x=1,顶点为P,连接BP,CP.(1)求抛物线的表达式;(2)判断△BCP的形状,并说明理由;(3)该抛物线上是否存在点Q,使得△QBC=△ACO?若存在,请直接写出满足条件的所有点Q是坐标;若不存在,请说明理由.14.如图,点B,C分别在x轴和y轴的正半轴上,OB,OC的长分别为x2-8x+12=0的两个根(OC>OB),点A在x轴的负半轴上,且OA=OC=3OB,连接AC.(1)求过A ,B ,C 三点的抛物线的函数解析式;(2)点P 从点C 出发,以每秒2个单位长度的速度沿CA 运动到点A ,点Q 从点O 出发,以每秒1个单位长度的速度沿OC 运动到点C ,连接PQ ,当点P 到达点A 时,点Q 停止运动,求S △CPQ 的最大值;(3)M 是抛物线上一点,是否存在点M ,使得∠ACM =15°?若存在,请求出点M 的坐标;若不存在,请说明理由.15.如图,在平面直角坐标系xOy 中,抛物线2y ax bx c =++与x 轴交于(1,0)A ,(4,0)B 两点,与y 轴交于点(0,2)C .(1)求抛物线的表达式;(2)求证:CAO BCO ∠=∠;(3)若点P 是抛物线上的一点,且PCB ACB BCO ∠+∠=∠,求直线CP 的表达式.参考答案: 1.(1)213442y x x =-++ (2)2545105d t t =-+ (3)285,65⎛⎫ ⎪⎝⎭2.(1)点C 的路径长为324π (2)抛物线的表达式为y =3x 2﹣11x +9(3)0<k <2633-3.(1)点A 、C 的坐标分别为(1,0)、(0,﹣3) (2)直线P A 在与y 轴交点的坐标为(0,34-)或(0,34) (3)DM +DN =84.(1)抛物线的表达式为:y 12=-x 2+x +4,抛物线对称轴为:直线x =1 (2)D (1,1),F (3,0)(3)P (46-,36-3)5.(1)二次函数的表达式为212355y x x =--+ (2)C (5,﹣4)(3)点P 的坐标为(152,−454)或(103,−59).6.(1)抛物线的表达式为y =﹣x 2+x +6;(2)∠点M 的坐标为(﹣2,﹣4);∠a =16+ 7.(1)223y x x =--(2)点M 坐标为:(0,72-)或(0,32)或(0,﹣1)或(0,﹣3)(3)存在,点Q 的横坐标为﹣2或438.(1)y 12=-x 2﹣2x +6 (2)S △CPQ 的最大值为922,点P 的坐标为(﹣32,6﹣32) (3)存在,点M 的坐标为(﹣4﹣23,﹣43)或(﹣4233-,431633-+)9.(1)(﹣1,0),1122m m D --⎛⎫⎪⎝⎭,(2)y =﹣x 2+2x +3(3)点P 的坐标为(2,3)和21139⎛⎫- ⎪⎝⎭,10.(1)y =﹣x 2﹣2x +3,顶点D 的坐标为(﹣1,4)(2)∠ACB ,(3)点P 坐标为(32-,154)11.(1)y 12=-x 252+x ﹣2(2)P (73,109)(3)971322+12.(1)2=23y x x --,1x =;(2)M 坐标为(1,6-)或(1,﹣1);(3)点P 的坐标是(154,5716)或(94,-3916).13.(1)223y x x =-++(2)直角三角形(3)Q (1,4)或Q 17(,)24-14.(1)y =−12x 2−2x +6; (2)最大值为922; (3)存在,点M 的坐标为(−4−233,16433-)或(−4−23,−43).15.(1)215222y x x =-+;(3)直线CP 的解析式为423y x =-+或2y =。

中考数学一轮复习《二次函数》专项练习题-带含参考答案

中考数学一轮复习《二次函数》专项练习题-带含参考答案

中考数学一轮复习《二次函数》专项练习题-带含参考答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列函数解析式中,一定为二次函数的是()A.s=2t2−2t+1B.y=ax2+bx+c C.y=3x−1D.y=x2+1x2.将抛物线y=(x−3)2−4先向上平移2个单位长度,再向右平移1个单位长度后,所得抛物线的解析式为()A.y=(x−4)2−6B.y=(x−1)2−3C.y=(x−2)2−2D.y=(x−4)2−23.已知抛物线y=ax2−bx(a>0)经过这两点(−3−n,−1)与(n+1,−1),若点P(1,h)在抛物线上,则h可能的值是()A.2B.2.4C.2.8D.3.24.对于抛物线y=−5(x+1)2−2的说法正确的是()A.开口向上B.顶点坐标是(1,-2)C.对称轴是直线x=1 D.当x<-1时,y随x的增大而增大5.抛物线y=−2x2+4x+5上有三个点A(−1,y1)、B(2,y2)、C(4,y3),则y1、y2、y3的大小关系正确的是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y3<y2<y16.已知抛物线y=-x2+bx+3的顶点坐标为(1,4),若关于x的一元二次方程-x2+bx+3-t=0(为实数)在-1≤x≤5范围内有两个不同的实数根,则实数t的取值范围是()A.-12≤t<4 B.t<4 C.-12<t≤0 D.0≤t<47.如图,抛物线y=x2−2x−3与y轴交于点C,点D的坐标为(0,−1),在第四象限抛物线上有一点P,若△PCD是以CD为底边的等腰三角形,则点P的横坐标为()A.1+√2B.1−√2C.√2−1D.1−√2或1+√28.如图所示是二次函数y=ax2+bx+c(a≠0)的图象,以下结论:①abc<0②3a+c=0③ax2+bx+ c=0的两个根是x1=−1,x2=3④4a+2b+c>0,其中正确的是()A.③④B.①②C.②③D.②③④二、填空题9.已知二次函数y=x2+2x−5,当x=3时,y=.10.若抛物线y=−x2+6x+a的顶点在x轴上,则a的值是.11.当x≥m时,两个函数y1=−(x﹣4)2+2和y2=−(x﹣3)2+1的函数值都随着x的增大而减小,则m的最小值为.12.如图,抛物线y=ax2+c与直线y=mx+n交于A(-2,-3),B(3,q)两点,则不等式ax2-mx+c<n的解集是.13.如图,甲、乙两人进行羽毛球比赛,羽毛球飞行的路线为抛物线的一部分,以点O为原点建立平面直角坐标系,羽毛球的飞行高度y(m)(m)之间满足解析式y=﹣15(x−4)2+205,球网BC离点O的水平距离为5米,乙运动员在球场上N(n,0)处接球,若乙因接球高度不够而失球,则n的取值范围是.三、解答题14.已知抛物线y=﹣x2﹣3x+t经过A(0,3).(1)求抛物线的解析式;(2)设点P(m,n)在该抛物线上,求m+n的最大值.15.某品牌服装公司新设计了一款服装,其成本价为60(元/件).在大规模上市前,为了摸清款式受欢迎状况以及日销售量y(件)与销售价格x(元/件)之间的关系,进行了市场调查,部分信息如表:销售价格x(元/件)80 90 100 110日销售量y(件)240 220 200 180(1)若y与x之间满足一次函数关系,请直接写出函数的解析式(不用写自变量x的取值范围);(2)若该公司想每天获利8000元,并尽可能让利给顾客,则应如何定价?(3)为了帮助贫困山区的小朋友,公司决定每卖出一件服装向希望小学捐款10元,该公司应该如何定价,才能使每天获利最大?(利润用w表示)16.如图,抛物线的顶点坐标D(1,4),且图像与x轴交于A、B两点,A(-1,0)请回答下列问题(1)求出抛物线的解析式;(2)求抛物线与y轴的交点C的坐标;(3)求△ABD的面积?17.城市绿化部门定期安排洒水车为公路两侧绿化带浇水,如图1,洒水车沿着平行于公路路牙方向行驶,喷水口H离地竖直高度OH为1.5m.如图2,可以把洒水车喷出水的内、外边缘抽象为平面直角坐标系DE=,竖直高度中两条抛物线的部分图象;把绿化带横截面抽象为矩形DEFG,其水平宽度3mEF=.内边缘抛物线2y是由外边缘抛物线1y向左平移得到,外边抛物线1y最高点A离喷水口的水0.5m平距离为2m,高出喷水口0.5m(1)求外边缘抛物线的函数解析式,并求喷出水的最大射程OC;(2)求内边缘抛物线与x轴的正半轴交点B的坐标;BD=时,判断洒水车行驶时喷出的水能否浇灌到整个绿化带,并说明理由.(3)当1m18.如图,在平面直角坐标系中,抛物线y=ax2+bx−4与x轴交于A(4,0)、B(−3,0)两点,与y轴交于点C.(1)求这条抛物线所对应的函数表达式.(2)如图①,点D是x轴下方抛物线上的动点,且不与点C重合.设点D的横坐标为m,以O、A、C、D 为顶点的四边形面积为S,求S与m之间的函数关系式.(3)如图②,连结BC,点M为线段AB上一点,点N为线段BC上一点,且BM=CN=n,直接写出当n为何值时△BMN为等腰三角形.参考答案1.A2.D3.D4.D5.C6.D7.A8.C9.1010.-911.412.-2<x<313.5<n<714.(1)解:将A(0,3)代入解析式,得t=3∴抛物线的解析式为y=﹣x2﹣3x+3;(2)解:∵点P(m,n)在抛物线y=﹣x2﹣3x+3上∴n=﹣m2﹣3m+3∴m+n=﹣m2﹣2m+3=﹣(m+1)2+4∴当m=﹣1时,m+n有最大值是4.15.(1)y=-2x+400(2)解:由题意,得:(x−60)(−2x+400)=8000解得x1=100∵公司尽可能多让利给顾客∴应定价100元(3)解:由题意,得w=(x−60−10)(−2x+400)=−2x2+540x−28000=−2(x−135)2+8450∵−2<0∴当x=135时,w有最大值,最大值为8450.答:当一件衣服定为135元时,才能使每天获利最大.16.(1)解:∵抛物线的顶点坐标为(1,4) ∴可设抛物线解析式为y =a(x −1)2+4 ∵抛物线与x 轴交于A (-1,0) ∴0=a(−1−1)2+4 ∴a =−1∴抛物线解析式为y =−(x −1)2+4=−x 2+2x +3 (2)解:令x =0,则y =3∴抛物线与y 轴的交点C 的坐标为(0,3) (3)解:∵抛物线顶点坐标为(1,4) ∴抛物线对称轴为直线x =1∴抛物线与x 轴的另一个交点B 的坐标为(3,0) ∴AB=4∴S △ABD =12AB ⋅y D =8.17.(1)解:如图1,由题意得()22A ,是外边缘抛物线的顶点 设()2122y a x =-+又∵抛物线过点()01.5, ∴1.542a =+ ∴18a =-∴外边缘抛物线的函数解析式为()211228y x =--+ 当0y =时()210228x =--+,解得16x =,22x =-(舍去) ∴喷出水的最大射程OC 为6m ; (2)解:∵2y 对称轴为直线2x =∴点()01.5,的对称点为()41.5, ∴2y 是由1y 向左平移4m 得到的由(1)可得()60C , ∴点B 的坐标为()20,(3)解:∵当1m BD =时3m OD =,则6m OE =∴点F 的横坐标为6 把6F x =代入100.5y =< ∴所以不能浇灌到整个绿化带.18.(1)解:把A(4,0)、B(−3,0)代入y =ax 2+bx −4中 得{16a +4b −4=09a −3b −4=0解得{a =13b =−13∴这条抛物线所对应的函数表达式为y =13x 2−13x −4. (2)解:当x =0时∴C(0,−4)当−3<m <0时当0<m <4时S =S △ODC +S △OAD =12×4×m +12×4×(−13m 2+13m +4)=−23m 2+83m +8. (3)解:n =52,n =2511,n =3011.。

中考数学一轮复习《二次函数》专项练习题-附带答案

中考数学一轮复习《二次函数》专项练习题-附带答案

中考数学一轮复习《二次函数》专项练习题-附带答案一、选择题1.下列y关于x的函数中,属于二次函数的是()A.y=2x2−x B.y=2x+1C.y=1x D.y=34x2.二次函数y=(x−1)2−2的顶点坐标是()A.(−1,2)B.(1,−2)C.(−1,−2)D.(1,2)3.二次函数y=x2的图象向右平移3个单位,向下平移2个单位,得到新的图象的函数表达式是()A.y=(x+3)2+2B.y=(x−3)2+2C.y=(x+3)2−2D.y=(x−3)2−24.在同一平面直角坐标系中,一次函数y=−kx+1与二次函数y=x2+k的大致图象可以是()A.B.C.D.5.关于抛物线y=-3(x+1)2+1的图象,下列说法错误的是()A.开口向下B.对称轴是直线x=-1C.顶点坐标为(1,1)D.与x轴有两个交点6.如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c>0的解集是()A.−1<x<5B.0<x<5C.x>5D.x<−1或x>57.如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①abc>0;②2a+b=0;③b2−4ac<0;④a−b+c=0;⑤8a+c<0;其中正确的个数为()A.1个B.2个C.3个D.4个8.一位篮球运动员在距离篮圈中心水平距离4m处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为2.5m时,达到最大高度3.5m,然后准确落入篮筐内,已知篮圈中心距离地面高度为3.05m,在如图所示的平面直角坐标系中,下列说法正确的是()A.篮球出手时离地面的高度是2m B.篮圈中心的坐标是(4,3.05)x2+3.5C.此抛物线的顶点坐标是(3.5,0)D.此抛物线的解析式是y=−15二、填空题9.二次函数y=−x2+3x+3的图象与y轴的交点坐标是.10.已知点A(3,n)在二次函数y=2x2−5x−3的图像上,那么n的值为.11.已知,二次函数y=4x2−4ax+a2+2a+2在0≤x≤2上有最小值4,则a=.12.已知二次函数y=ax2+bx+c的图象如图所示,则当0≤x<3时,函数值y的取值范围是.x2,当水面13.赵州桥的桥拱是近似的抛物线形,建立如图的平面直角坐标系,其函数关系式为y=−125离桥拱顶的高度DO是4米时,这时水面宽度AB为米.三、解答题14.已知二次函数y=−2x2+bx+c的图象经过点(0,6)和(1,8).(1)当x在什么范围内时,y随x的增大而增大?(2)当x在什么范围内时,y>0?15.如图,抛物线的顶点坐标为(1,−4),且图象经过点(3,0).(1)求抛物线的表达式;(2)若在y轴正半轴上取一点P(0,m),过点P作x轴的平行线,分别交抛物线于A,B两点(A在B点左侧),若PA:PB=1:2,求m的值.16.某商场销售一种商品,进价为每个20元,经调查发现,每天的销售量y(个)与每个商品的售价x(元)满足一次函数关系,其部分数据如下所示:每个商品的售价x(元)…30 40 50 …每天的销售量y(个)…100 80 60 …(1)求y与x之间的函数表达式;(2)设商场每天获得的总利润为w(元),求w与x之间的函数表达式;(3)不考虑其他因素,当商品的售价为多少元时,商场每天获得的总利润最大,最大利润是多少?17.已知抛物线y=ax2+bx+6(a为常数,a≠0)交x轴于点A(6,0),点B(−1,0),交y轴于点C.(1)求点C的坐标和抛物线的解析式;(2)P是抛物线上位于直线AC上方的动点,过点P作y轴平行线,交直线AC于点D,当PD取得最大值时,求点P的坐标;(3)M是抛物线的对称轴l上一点,N为抛物线上一点;当直线AC垂直平分△AMN的边MN时,求点N的坐标.18.如图,抛物线经过A(-2,0),C(0,-3)两点,且对称轴为直线x=1.2(1)求抛物线的函数解析式;(2)若直线y=kx-5与抛物线交于点M,N,交x轴于点B,交y轴于点P,连接CN,且tan∠OPM=1.2①求△CMN的面积;②在平面内是否存在点一是E,使E,C,N,M四点能构成平行四边形,如果存在,请直接写出点E的坐标.参考答案 1.A 2.B 3.D 4.A 5.C 6.A 7.C 8.D 9.(0,3) 10.011.1或−1−√3 12.-1≤y<3 13.2014.(1)解:∵二次函数y =−2x 2+bx +c 的图象经过点(0,6)和(1,8) ∴{c =6−2×12+b +c =8 解得{b =4c =6即该二次函数的解析式为y =−2x 2+4x +6; ∴y =−2x 2+4x +6=−2(x −1)2+8 ∴该函数的对称轴是x =1,函数图象开口向下 ∴当x <1时,y 随x 的增大而增大;(2)解:当y =0时0=−2x 2+4x +6=−2(x −3)(x +1) 解得,x 1=3,x 2=−1 ∴当−1<x <3时15.(1)解:∵抛物线的顶点坐标为(1,−4)∴设抛物线表达式为y =a(x −1)2−4,把(3,0)代入得0=a ×(3−1)2−4∴a =1∴y =(x −1)2−4(2)解:解法一:设AP =a∵AP :BP =1:2 ∴BP =2a 则A(−a ,m)分别代入y =(x −1)2−4,可得(−a −1)2−4=m∴(−a −1)2=(2a −1)2 解得a =0(舍去)或a =2 ∴A(−2,m)把(−2,m)代入得y =(x −1)2−4,得 m =(−2−1)2−4 ∴m =5. 解法二:设AP =a ∵AP :BP =1:2 ∴BP =2a ∴2a −1=a +1 ∴a =2 ∴A(−2,m)把(−2,m)代入得y =(x −1)2−4,得 m =(−2−1)2−4 ∴m =5.16.(1)解:设y 与x 之间的函数表达式为y =kx +b 由题意得{30k +b =10040k +b =80 ∴{k =−2b =160∴y 与x 之间的函数表达式为y =−2x +160 (2)解:由题意得w =(x −20)(−2x +160) =−2x 2+40x +160x −3200 =−2x 2+200x −3200(3)解:∵w =−2x 2+200x −3200=−2(x −50)2+1800,−2<0 ∴当x =50时,w 最大,最大为1800∴当商品的售价为50元时,商场每天获得的总利润最大,最大利润是1800元.17.(1)解:∵抛物线y =ax 2+bx +6经过点A (6,0),B (−1,0) ∴{a −b +6=036a +6b +6=0 ∴{a =−1b =5∴抛物线的解析式为y =−x 2+5x +6 当x =0时,y =6 ∴点C (0,6); (2)解:如图(1)∵A (6,0),C (0,6) ∴直线AC 的解析式为y =−x +6设D (t ,−t +6)(0<t <6),则P (t ,−t 2+5t +6) ∴PD =−t 2+5t +6−(−t +6)=−t 2+6t =−(t −3)2+9 当t =3时,PD 最大,此时−t 2+5t +6=12 ∴P (3,12);(3)解:如图(2),设直线AC 与抛物线的对称轴l 的交点为F ,连接NF∵点F 在线段MN 的垂直平分线AC 上 ∴FM =FN ,∠NFC =∠MFC ∵l ∥y 轴∴∠MFC =∠OCA =45° ∴∠MFN =∠NFC +∠MFC =90° ∴NF ∥x 轴由(2)知,直线AC 的解析式为y =−x +6 当x =52时,y =72 ∴F (52,72) ∴点N 的纵坐标为72设N 的坐标为(m ,−m 2+5m +6)∴−m 2+5m +6=72∴m =5+√352或m =5−√352∴点N 的坐标为(5+√352,72)或(5−√352,72).18.(1)解:设抛物线的解析式为y =ax 2+bx+c ∵对称轴为直线x =12 ∴-b 2a =12 ∴b =-a ∴y =ax 2-ax+c将点A (-2,0),C (0,-3)代入 ∴{c =−34a +2a +c =0 解得{c =−3a =12∴y =12x 2-12x-3;(2)解:①y =kx-5与y 轴的交点P (0,-5) ∴OP =5 ∵tan∠OPM =12 ∴12=OBOP ∴OB =52 ∴B (52,0) 将B 点代入y =kx-5 ∴52k-5=0 ∴k =2 ∴y =2x-5 联立方程组 {y =2x −5y =12x 2−12x −3解得 {x =1y =−3 或 {x =4y =3 ∴M (4,3),N (1,-3) ∵C (0,-3),P (0,-5) ∴CP =2∴S △CMN =S △CPM -S △CNP =12×2×4-12×2×1=3;②存在,E 点坐标为(5,3)或(-3,-9)或(3,3).。

浙江省萧山区党湾镇2017届中考数学一轮复习二次函数的应用课后作业2

浙江省萧山区党湾镇2017届中考数学一轮复习二次函数的应用课后作业2

二次函数应用课后作业1、某校校园内有一个大正方形花坛,如图甲所示,它由四个边长为3米的小正方形组成,且每个小正方形的种植方案相同.其中的一个小正方形ABCD如图乙所示,DG=1米,AE=AF=x米,在五边形EFBCG区域上种植花卉,则大正方形花坛种植花卉的面积y与x的函数图象大致是()A. B. C. D.2、如图所示,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(-2,0)、B(1,0),直线x=-0.5与此抛物线交于点C,与x轴交于点M,在直线上取点D,使MD=MC,连接AC、BC、AD、BD,某同学根据图象写出下列结论:①a-b=0;②当-2<x<1时,y>0;③四边形ACBD是菱形;④9a-3b+c>0你认为其中正确的是()A.②③④ B.①②④ C.①③④ D.①②③3、某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映,如果调整商品售价,每降价1元,每星期可多卖出20件.设每件商品降价x元后,每星期售出商品的总销售额为y元,则y与x的关系式为()A.y=60(300+20x)B.y=(60-x)(300+20x)C.y=300(60-20x)D.y=(60-x)(300-20x)4、为了美观,在加工太阳镜时将下半部分轮廓制作成抛物线的形状(如图所示),对应的两条抛物线关于y轴对称,AE∥x轴,AB=4cm,最低点C在x轴上,高CH=1cm,BD=2cm,则右轮廓DFE所在抛物线的解析式为( )A .y=41(x+3)2B .y=41(x-3)2C .y=-41(x+3)2D .y=-41(x-3)25、如图,半圆A 和半圆B 均与y 轴相切于O ,其直径CD ,EF 均和x 轴垂直,以O 为顶点的两条抛物线分别经过点C ,E 和点D ,F ,则图中阴影部分面积是( )A .πB .2π C .3πD .条件不足,无法求6、某地要建造一个圆形喷水池,在水池中央垂直于地面安装一个柱子OA ,O 恰为水面中心,安置在柱子顶端A 处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.在过OA 的任一平面上,建立平面直角坐标系(如图),水流喷出的高度y (m )与水平距离x (m )之间的关系式是y=-x 2+2x+45,则下列结论: (1)柱子OA 的高度为45m ;(2)喷出的水流距柱子1m 处达到最大高度; (3)喷出的水流距水平面的最大高度是2.5m ;(4)水池的半径至少要2.5m 才能使喷出的水流不至于落在池外. 其中正确的有( )A .1个B .2个C .3个D .4个7、如图,一抛物线型拱桥,当拱顶到水面的距离为2米时,水面宽度为4米;那么当水位下降1米后,水面的宽度为米.8、某电商销售一款夏季时装,进价40元/件,售价110元/件,每天销售20件,每销售一件需缴纳电商平台推广费用a元(a>0).未来30天,这款时装将开展“每天降价1元”的夏令促销活动,即从第1天起每天的单价均比前一天降1元.通过市场调研发现,该时装单价每降1元,每天销量增加4件.在这30天内,要使每天缴纳电商平台推广费用后的利润随天数t(t为正整数)的增大而增大,a的取值范围应为9、已知:如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度a为10米),围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB为x米,面积为S米2.则S与x的函数关系式;自变量的取值范围10、某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x (元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)请直接写出y与x的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?11、某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润多少元?(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?12、九年级(3)班数学兴趣小组经过市场调查整理出某种商品在第x天(1≤x≤90,且x为整数)的售价与销售量的相关信息如下.已知商品的进价为30元/件,设该商品的售价为y(单位:元/件),每天的销售量为p(单位:件),每天的销售利润为w(单位:元).时间x(天) 1 30 60 90每天销售量p(件)198 140 80 20 (1)求出w与x的函数关系式;(2)问销售该商品第几天时,当天的销售利润最大?并求出最大利润;(3)该商品在销售过程中,共有多少天每天的销售利润不低于5600元?请直接写出结果.参考答案1、解析:先求出△AEF 和△DEG 的面积,然后可得到五边形EFBCG 的面积,继而可得y 与x 的函数关系式.解:S △AEF =21AE×AF=21x 2,S △DEG =21DG×DE=21×1×(3-x )=23x -, S 五边形EFBCG =S 正方形ABCD -S △AEF -S △DEG =9-21x 2-23x -=-21x 2+21x+215,则y=4×(-21x 2+21x+215)=-2x 2+2x+30,∵AE <AD , ∴x <3,综上可得:y=-2x 2+2x+30(0<x <3). 故选:A2、解析:①由抛物线与x 轴的两交点坐标即可得出抛物线的对称轴为x=-ab2=-0.5,由此即可得出a=b ,①正确;②根据抛物线的开口向下以及抛物线与x 轴的两交点坐标,即可得出当-2<x <1时,y >0,②正确;③由AB 关于x=0.5对称,即可得出AM=BM ,再结合MC=MD 以及CD ⊥AB ,即可得出四边形ACBD 是菱形,③正确;④根据当x=-3时,y <0,即可得出9a-3b+c <0,④错误.综上即可得出结论.解:①∵抛物线y=ax 2+bx+c (a≠0)与x 轴交于点A (-2,0)、B (1,0), ∴该抛物线的对称轴为x=-ab2=-0.5, ∴a=b ,a-b=0,①正确;②∵抛物线开口向下,且抛物线与x 轴交于点A (-2,0)、B (1,0), ∴当-2<x <1时,y >0,②正确; ③∵点A 、B 关于x=0.5对称, ∴AM=BM ,又∵MC=MD ,且CD ⊥AB , ∴四边形ACBD 是菱形,③正确; ④当x=-3时,y <0, 即y=9a-3b+c <0,④错误. 综上可知:正确的结论为①②③. 故选D .3、解析:根据降价x 元,则售价为(60-x )元,销售量为(300+20x )件,由题意可得等量关系:总销售额为y=销量×售价,根据等量关系列出函数解析式即可.解:降价x 元,则售价为(60-x )元,销售量为(300+20x )件, 根据题意得,y=(60-x )(300+20x ), 故选:B .4、解析:利用B 、D 关于y 轴对称,CH=1cm ,BD=2cm 可得到D 点坐标为(1,1),由AB=4cm ,最低点C 在x 轴上,则AB 关于直线CH 对称,可得到左边抛物线的顶点C 的坐标为(-3,0),于是得到右边抛物线的顶点C 的坐标为(3,0),然后设顶点式利用待定系数法求抛物线的解析式.解:∵高CH=1cm ,BD=2cm ,且B 、D 关于y 轴对称, ∴D 点坐标为(1,1),∵AB ∥x 轴,AB=4cm ,最低点C 在x 轴上, ∴AB 关于直线CH 对称,∴左边抛物线的顶点C 的坐标为(-3,0), ∴右边抛物线的顶点F 的坐标为(3,0), 设右边抛物线的解析式为y=a (x-3)2, 把D (1,1)代入得1=a×(1-3)2,解得a=41, ∴右边抛物线的解析式为y=41(x-3)2, 故选:B .5、解析:观察图形在y 轴两边阴影部分面积,将y 轴左边的阴影对称到右边得到一个半圆的阴影,就是所求的图中阴影面积.解:由分析知图中阴影面积等于半圆的面积,则s=22r π=2π故选B .6、解析:在已知抛物线解析式的情况下,利用其性质,求顶点(最大高度),与x 轴,y 轴的交点,解答题目的问题.解:当x=0时,y=45,故柱子OA 的高度为45m ;(1)正确; ∵y=-x 2+2x+45=-(x-1)2+2.25, ∴顶点是(1,2.25),故喷出的水流距柱子1m 处达到最大高度,喷出的水流距水平面的最大高度是2.25米;故(2)正确,(3)错误;解方程-x 2+2x+45=0, 得x 1=-21,x 2=25,故水池的半径至少要2.5米,才能使喷出的水流不至于落在水池外,(4)正确. 故选:C .7、解析:根据已知得出直角坐标系,进而求出二次函数解析式,再通过把y=-1代入抛物线解析式得出水面宽度,即可得出答案.解:如图,建立平面直角坐标系,设横轴x 通过AB ,纵轴y 通过AB 中点O 且通过C 点,则通过画图可得知O 为原点,抛物线以y 轴为对称轴,且经过A ,B 两点,OA 和OB 可求出为AB 的一半2米,抛物线顶点C 坐标为(0,2),通过以上条件可设顶点式y=ax 2+2,其中a 可通过代入A 点坐标(-2,0), 到抛物线解析式得出:a=-0.5,所以抛物线解析式为y=-0.5x 2+2, 当水面下降1米,通过抛物线在图上的观察可转化为:当y=-1时,对应的抛物线上两点之间的距离,也就是直线y=-1与抛物线相交的两点之间的距离,可以通过把y=-1代入抛物线解析式得出: -1=-0.5x 2+2, 解得:x=±6,所以水面宽度增加到26米, 故答案为:26米.8、解析:根据题意可以列出相应的不等式,从而可以解答本题. 解:设未来30天每天获得的利润为y , y=(110-40-t )(20+4t )-(20+4t )a 化简,得y=-4t 2+(260-4a )t+1400-20a每天缴纳电商平台推广费用后的利润随天数t (t 为正整数)的增大而增大, ∴−)4(24260-⨯-a>29.5解得,a <6, 又∵a >0,即a 的取值范围是:0<a <6.9、解析:可先用篱笆的长表示出BC 的长,然后根据矩形的面积=长×宽,得出S 与x 的函数关系式.解:由题可知,花圃的宽AB 为x 米,则BC 为(24-3x )米. 这时面积S=x (24-3x )=-3x 2+24x .∵0<24-3x≤10得314≤x<8, 故答案为:S=-3x 2+24x ,314≤x<8.10、解析:(1)设y=kx+b ,根据题意,利用待定系数法确定出y 与x 的函数关系式即可; (2)根据题意结合销量×每本的利润=150,进而求出答案;(3)根据题意结合销量×每本的利润=w ,进而利用二次函数增减性求出答案. 解:(1)设y=kx+b ,把(22,36)与(24,32)代入得:22k +b =36, 24k +b =32 解得:k =−2, b =80, 则y=-2x+80;(2)设当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是x 元, 根据题意得:(x-20)y=150, 则(x-20)(-2x+80)=150, 整理得:x 2-60x+875=0, (x-25)(x-35)=0,解得:x1=25,x2=35(不合题意舍去),答:每本纪念册的销售单价是25元;(3)由题意可得:w=(x-20)(-2x+80)=-2x2+120x-1600=-2(x-30)2+200,此时当x=30时,w最大,又∵售价不低于20元且不高于28元,∴x<30时,y随x的增大而增大,即当x=28时,w最大=-2(28-30)2+200=192(元),答:该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元.11、解析:(1)根据售量y(件)与售价x(元/件)之间的函数关系即可得到结论.(2))设每星期利润为W元,构建二次函数利用二次函数性质解决问题.(3)列出不等式先求出售价的范围,再确定销售数量即可解决问题.解:(1)y=300+30(60-x)=-30x+2100.(2)设每星期利润为W元,W=(x-40)(-30x+2100)=-30(x-55)2+6750.∴x=55时,W最大值=6750.∴每件售价定为55元时,每星期的销售利润最大,最大利润6750元.(3)由题意(x-40)(-30x+2100)≥6480,解得52≤x≤58,当x=52时,销售300+30×8=540,当x=58时,销售300+30×2=360,∴该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件.12、解析:(1)当1≤x≤50时,设商品的售价y与时间x的函数关系式为y=kx+b,由点的坐标利用待定系数法即可求出此时y关于x的函数关系式,根据图形可得出当50<x≤90时,y=90.再结合给定表格,设每天的销售量p与时间x的函数关系式为p=mx+n,套入数据利用待定系数法即可求出p关于x的函数关系式,根据销售利润=单件利润×销售数量即可得出w关于x的函数关系式;(2)根据w关于x的函数关系式,分段考虑其最值问题.当1≤x≤50时,结合二次函数的性质即可求出在此范围内w的最大值;当50<x≤90时,根据一次函数的性质即可求出在此范围内w 的最大值,两个最大值作比较即可得出结论;(3)令w≥5600,可得出关于x 的一元二次不等式和一元一次不等式,解不等式即可得出x 的取值范围,由此即可得出结论.解:(1)当1≤x≤50时,设商品的售价y 与时间x 的函数关系式为y=kx+b (k 、b 为常数且k≠0), ∵y=kx+b 经过点(0,40)、(50,90), ∴b =40, 50k +b =90,解得:k =1, b =40, ∴售价y 与时间x 的函数关系式为y=x+40; 当50<x≤90时,y=90.∴售价y 与时间x 的函数关系式为⎩⎨⎧+=)为整数x ,且90≤x <90(50)为整数x ,且50≤x ≤(140x y由数据可知每天的销售量p 与时间x 成一次函数关系,设每天的销售量p 与时间x 的函数关系式为p=mx+n (m 、n 为常数,且m≠0), ∵p=mx+n 过点(60,80)、(30,140),60m +n =80,30m +n =140, 解得:m =−2, n =200∴p=-2x+200(0≤x≤90,且x 为整数),当1≤x≤50时,w=(y-30)•p=(x+40-30)(-2x+200)=-2x 2+180x+2000; 当50<x≤90时,w=(90-30)(-2x+200)=-120x+12000. 综上所示,每天的销售利润w 与时间x 的函数关系式是⎩⎨⎧≤++=)为整数x ,且90≤x <12000(50+120x -)为整数x ,且50≤x 2000(1180x 2x -2y(2)当1≤x≤50时,w=-2x 2+180x+2000=-2(x-45)2+6050, ∵a=-2<0且1≤x≤50,∴当x=45时,w 取最大值,最大值为6050元. 当50<x≤90时,w=-120x+12000, ∵k=-120<0,w 随x 增大而减小,∴当x=50时,w 取最大值,最大值为6000元. ∵6050>6000,∴当x=45时,w 最大,最大值为6050元.即销售第45天时,当天获得的销售利润最大,最大利润是6050元. (3)当1≤x≤50时,令w=-2x 2+180x+2000≥5600,即-2x 2+180x-3600≥0, 解得:30≤x≤50,50-30+1=21(天);当50<x≤90时,令w=-120x+12000≥5600,即-120x+6400≥0,解得:50<x≤5331,∵x 为整数,∴50<x≤53,53-50=3(天).综上可知:21+3=24(天),故该商品在销售过程中,共有24天每天的销售利润不低于56002019-2020学年中考数学模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,AB是⊙O的直径,点C、D是圆上两点,且∠AOC=126°,则∠CDB=()A.54°B.64°C.27°D.37°2.如图,直线a∥b,直线c与直线a、b分别交于点A、点B,AC⊥AB于点A,交直线b于点C.如果∠1=34°,那么∠2的度数为()A.34°B.56°C.66°D.146°3.一次函数y=ax+b与反比例函数a byx-=,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是()A.B.C.D.4.五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是()A.2、40 B.42、38 C.40、42 D.42、405.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为( )A.0.7米B.1.5米C.2.2米D.2.4米6.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.30°B.25°C.20°D.15°7.已知:如图,AD是△ABC的角平分线,且AB:AC=3:2,则△ABD与△ACD的面积之比为()A.3:2 B.9:4 C.2:3 D.4:98.不等式5+2x <1的解集在数轴上表示正确的是( ).A.B.C.D.9.如果解关于x的分式方程2122m xx x-=--时出现增根,那么m的值为A.-2 B.2 C.4 D.-410.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x人,物价为y钱,以下列出的方程组正确的是( )A.8374y xy x-=⎧⎨-=⎩B.8374y xx y-=⎧⎨-=⎩C.8374x yy x-=⎧⎨-=⎩D.8374x yx y-=⎧⎨-=⎩11.下列对一元二次方程x 2+x ﹣3=0根的情况的判断,正确的是( )A .有两个不相等实数根B .有两个相等实数根C .有且只有一个实数根D .没有实数根12.如图,在△ABC 中,∠C=90°,∠B=30°,AD 是△ABC 的角平分线,DE ⊥AB,垂足为点E,DE=1,则BC= ( )A .3B .2C .3D .3+2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图△ABC 中,∠C=90°,AC=8cm ,AB 的垂直平分线MN 交AC 于D ,连接BD ,若cos ∠BDC=35,则BC 的长为_____.14.如图,已知O e 的半径为2,ABC ∆内接于O e ,135ACB ∠=o ,则AB =__________.15.因式分解:x 2y-4y 3=________.16.如图,将边长为12的正方形ABCD 沿其对角线AC 剪开,再把△ABC 沿着AD 方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于________.17.如图,在△ABC 中,P ,Q 分别为AB ,AC 的中点.若S △APQ =1,则S 四边形PBCQ =__.18.某种商品因换季准备打折出售,如果按定价的七五折出售将赔25元,而按定价的九折出售将赚20元,则商品的定价是______元.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)某超市预测某饮料会畅销、先用1800元购进一批这种饮料,面市后果然供不应求,又用8100元购进这种饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.第一批饮料进货单价多少元?若两次进饮料都按同一价格销售,两批全部售完后,获利不少于2700元,那么销售单价至少为多少元?20.(6分)先化简,再求值:()2111x x ⎛⎫-÷- ⎪+⎝⎭,其中x 为方程2320x x ++=的根. 21.(6分)某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x (h )之间的函数关系,其中线段AB 、BC 表示恒温系统开启阶段,双曲线的一部分CD 表示恒温系统关闭阶段.请根据图中信息解答下列问题:求这天的温度y 与时间x (0≤x≤24)的函数关系式;求恒温系统设定的恒定温度;若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?22.(8分)计算:3﹣1﹣cos61°﹣(12)1.23.(8分)在一个不透明的盒子中装有大小和形状相同的3个红球和2个白球,把它们充分搅匀.“从中任意抽取1个球不是红球就是白球”是 事件,“从中任意抽取1个球是黑球”是 事件;从中任意抽取1个球恰好是红球的概率是 ;学校决定在甲、乙两名同学中选取一名作为学生代表发言,制定如下规则:从盒子中任取两个球,若两球同色,则选甲;若两球异色,则选乙.你认为这个规则公平吗?请用列表法或画树状图法加以说明.24.(10分)如图,在东西方向的海岸线MN上有A,B两港口,海上有一座小岛P,渔民每天都乘轮船从A,B两港口沿AP,BP的路线去小岛捕鱼作业.已知小岛P在A港的北偏东60°方向,在B港的北偏西45°方向,小岛P距海岸线MN的距离为30海里.求AP,BP的长(参考数据:2≈1.4,3≈1.7,5≈2.2);甲、乙两船分别从A,B两港口同时出发去小岛P捕鱼作业,甲船比乙船晚到小岛24分钟.已知甲船速度是乙船速度的1.2倍,利用(1)中的结果求甲、乙两船的速度各是多少海里/时?25.(10分)某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边周长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为x米.若苗圃园的面积为72平方米,求x;若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;26.(12分)手机下载一个APP、缴纳一定数额的押金,就能以每小时0.5到1元的价格解锁一辆自行车任意骑行,共享单车为解决市民出行的“最后一公里”难题帮了大忙,人们在享受科技进步、共享经济带来的便利的同时,随意停放、加装私锁、推车下河、大卸八块等毁坏共享单车的行为也层出不穷•某共享单车公司一月投入部分自行车进入市场,一月底发现损坏率不低于10%,二月初又投入1200辆进入市场,使可使用的自行车达到7500辆.一月份该公司投入市场的自行车至少有多少辆?二月份的损坏率为20%,进入三月份,该公司新投入市场的自行车比二月份增长4a%,由于媒体的关注,毁坏共享单车的行为点燃了国民素质的大讨论,三月份的损坏率下降为14a%,三月底可使用的自行车达到7752辆,求a的值.27.(12分)如图,四边形AOBC是正方形,点C的坐标是(20).正方形AOBC的边长为,点A的坐标是.将正方形AOBC绕点O顺时针旋转45°,点A,B,C旋转后的对应点为A′,B′,C′,求点A′的坐标及旋转后的正方形与原正方形的重叠部分的面积;动点P从点O出发,沿折线OACB方向以1个单位/秒的速度匀速运动,同时,另一动点Q从点O出发,沿折线OBCA方向以2个单位/秒的速度匀速运动,运动时间为t秒,当它们相遇时同时停止运动,当△OPQ为等腰三角形时,求出t的值(直接写出结果即可).参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】由∠AOC=126°,可求得∠BOC的度数,然后由圆周角定理,求得∠CDB的度数.【详解】解:∵∠AOC=126°,∴∠BOC=180°﹣∠AOC=54°,∵∠CDB=12∠BOC=27°故选:C.【点睛】此题考查了圆周角定理.注意在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.2.B【解析】分析:先根据平行线的性质得出∠2+∠BAD=180°,再根据垂直的定义求出∠2的度数.详解:∵直线a∥b,∴∠2+∠BAD=180°.∵AC⊥AB于点A,∠1=34°,∴∠2=180°﹣90°﹣34°=56°.故选B.点睛:本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同旁内角互补,此题难度不大.3.C【解析】【分析】根据一次函数的位置确定a、b的大小,看是否符合ab<0,计算a-b确定符号,确定双曲线的位置.【详解】A. 由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,∴a−b>0,∴反比例函数y=a bx-的图象过一、三象限,所以此选项不正确;B. 由一次函数图象过二、四象限,得a<0,交y轴正半轴,则b>0,满足ab<0,∴a−b<0,∴反比例函数y=a bx-的图象过二、四象限,所以此选项不正确;C. 由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,∴a−b>0,∴反比例函数y=a bx的图象过一、三象限,所以此选项正确;D. 由一次函数图象过二、四象限,得a<0,交y轴负半轴,则b<0,满足ab>0,与已知相矛盾所以此选项不正确;故选C.【点睛】此题考查反比例函数的图象,一次函数的图象,解题关键在于确定a、b的大小4.D【解析】【分析】根据众数和中位数的定义分别进行求解即可得.【详解】这组数据中42出现了两次,出现次数最多,所以这组数据的众数是42,将这组数据从小到大排序为:37,38,40,42,42,所以这组数据的中位数为40,故选D.【点睛】本题考查了众数和中位数,一组数据中出现次数最多的数据叫做众数.将一组数据从小到大(或从大到小)排序后,位于最中间的数(或中间两数的平均数)是这组数据的中位数.5.C【解析】【分析】在直角三角形中利用勾股定理计算出直角边,即可求出小巷宽度.【详解】在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD >0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选C.【点睛】本题考查勾股定理的运用,利用梯子长度不变找到斜边是关键.6.B【解析】根据题意可知∠1+∠2+45°=90°,∴∠2=90°﹣∠1﹣45°=25°,7.A【解析】试题解析:过点D 作DE ⊥AB 于E ,DF ⊥AC 于F.∵AD 为∠BAC 的平分线,∴DE=DF ,又AB:AC=3:2,11:():():3:222ABD ACD S S AB DE AC DF AB AC ∴=⋅⋅==V V , 故选A.点睛:角平分线上的点到角两边的距离相等.8.C【解析】【分析】先解不等式得到x <-1,根据数轴表示数的方法得到解集在-1的左边.【详解】5+1x <1,移项得1x <-4,系数化为1得x <-1.故选C .【点睛】本题考查了在数轴上表示不等式的解集:先求出不等式组的解集,然后根据数轴表示数的方法把对应的未知数的取值范围通过画区间的方法表示出来,等号时用实心,不等时用空心.9.D【解析】【详解】2122m x x x-=--,去分母,方程两边同时乘以(x ﹣1),得: m+1x=x ﹣1,由分母可知,分式方程的增根可能是1.当x=1时,m+4=1﹣1,m=﹣4,故选D .10.C【解析】【分析】分析题意,根据“每人出8钱,会多3钱;每人出7钱,又会差4钱,”可分别列出方程.【详解】设合伙人数为x 人,物价为y 钱,根据题意得8x-y 3y 7x 4=⎧⎨-=⎩故选C【点睛】本题考核知识点:列方程组解应用题.解题关键点:找出相等关系,列出方程.11.A【解析】【分析】根据方程的系数结合根的判别式,即可得出△=13>0,进而即可得出方程x 2+x ﹣3=0有两个不相等的实数根.【详解】∵a=1,b=1,c=﹣3,∴△=b 2﹣4ac=12﹣4×(1)×(﹣3)=13>0,∴方程x 2+x ﹣3=0有两个不相等的实数根,故选A .【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.12.C【解析】试题分析:根据角平分线的性质可得CD=DE=1,根据Rt △ADE 可得AD=2DE=2,根据题意可得△ADB 为等腰三角形,则DE 为AB 的中垂线,则BD=AD=2,则BC=CD+BD=1+2=1.考点:角平分线的性质和中垂线的性质.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.4【解析】试题解析:∵3 cos5BDC∠=,可∴设DC=3x,BD=5x,又∵MN是线段AB的垂直平分线,∴AD=DB=5x,又∵AC=8cm,∴3x+5x=8,解得,x=1,在Rt△BDC中,CD=3cm,DB=5cm,222253 4.BC DB CD=-=-=故答案为:4cm.14.22【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB的度数,然后根据勾股定理即可求得AB的长.详解:连接AD、AE、OA、OB,∵⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,∴2故答案为:2.点睛:本题考查三角形的外接圆和外心,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.15.y (x++2y )(x-2y )【解析】【分析】首先提公因式y ,再利用平方差进行分解即可.【详解】原式()224(2)(2)y x y y x y x y =-=-+.故答案是:y (x+2y )(x-2y ).【点睛】考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.16.4或8【解析】【分析】由平移的性质可知阴影部分为平行四边形,设A′D=x ,根据题意阴影部分的面积为(12−x)×x ,即x(12−x),当x(12−x)=32时,解得:x=4或x=8,所以AA′=8或AA′=4。

中考数学总复习《二次函数》专项练习题-附带参考答案

中考数学总复习《二次函数》专项练习题-附带参考答案

中考数学总复习《二次函数》专项练习题-附带参考答案一、选择题:(本题共8小题,共40分.)1.若二次函数y=x2+bx+5配方后为y=(x﹣2)2+k,则b,k的值分别()A.0,5 B.﹣4,1 C.﹣4,5 D.﹣4,﹣1 2.在平面直角坐标系xOy中,直线l经过点(0,−2),且直线l//x轴.若直线l与二次函数y=3x2+a的图像交于A,B两点,与二次函数y=−2x2+b的图像交于C,D两点,其中a,b为整数.若AB=2,CD=4 .则b−a的值为( )A.9 B.11 C.16 D.24 3.如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(−2,0)、B(1,0)两点.则以下结论:①ac>0;②二次函数y=ax2+bx+c的图象的对称轴为x=−1;③2a+c=0;④a−b+c>0 .其中正确的有()个.A.0 B.1 C.2 D.34.如图,在平面直角坐标系中,已知点A(-2,0)、B(-2,2)、C(0,2),当抛物线y=2(x-a)2 +2a与四边形OABC的边有交点时a的取值范围是()A.-1≤a≤0 B.−5−√132≤a≤−1−√52C.−4≤a≤−1+√52D.−5−√132≤a≤−1+√525.已知函数y1=mx2+n,y2=mx+n(m>0),当p<x<q时,y1<y2,则()A.0<q−p<2B.0<q−p≤2C.0<q−p<1D.0<q−p≤16.如图,在平面直角坐标系中,抛物线所表示的函数解析式为y=﹣2(x﹣h)2+k,则下列结论正确的是( )A.h>0,k>0 B.h<0,k>0 C.h<0,k<0 D.h>0,k<07.已知抛物线y=mx2+4x+m+3开口向下,且与坐标轴的公共点有且只有2个,则m的值为()A.m=﹣4 B.m=﹣3或﹣4C.m﹣3、﹣4、0或1 D.﹣4<m<08.在平面直角坐标系中,我们把横纵坐标都是整数的点叫做整点,已知二次函数y=−x2+ bx(b>0)和反比例函数y=4x(x>0)的图象如图所示,它们围成的封闭图形(不包括边界)的整点个数为4,则b的取值范围是()A.72<b≤103B.103<b≤4 C.174<b≤92D.4<b≤133二、填空题:(本题共5小题,共15分.)9.抛物线y=x2−10x+c的顶点在x轴上,则c=.10.请写出同时符合以下两个条件的一个二次函数的解析式;①过点(3,1);②当x>0时,y随x的增大而减小.11.已知点A(4,y1),B(√2,y2),C(﹣2,y3)都在二次函数y=(x﹣2)2的图象上,则y1、y2、y3的大小关系是.12.如图,一条抛物线与x轴的交点为A、B两点,其顶点P在折线C﹣D﹣E上运动.若C、D、E的坐标分别为(﹣1,4)、(3、4)、(3,1),点B横坐标的最小值为1,则点A横坐标的最大值为.13.若二次函数y=ax2+2ax−3的图象与x轴的一个交点是(2,0),则与x轴的另一个交点坐标是.三、解答题:(本题共4题,共45分.)14.黔东南州某超市购进甲、乙两种商品,已知购进3件甲商品和2件乙商品,需60元;购进2件甲商品和3件乙商品,需65元.(1)甲、乙两种商品的进货单价分别是多少?(2)设甲商品的销售单价为x(单位:元/件),在销售过程中发现:当11≤x≤19时,甲商品的日销售量y(单位:件)与销售单价x之间存在一次函数关系,x、y之间的部分数值对应关系如表:销售单价x(元/件)11 19日销售量y(件)18 2请写出当11≤x≤19时,y与x之间的函数关系式.(3)在(2)的条件下,设甲商品的日销售利润为w元,当甲商品的销售单价x(元/件)定为多少时,日销售利润最大?最大利润是多少?15.如图1,排球场长为18m,宽为9m,网高为2.24m,队员站在底线O点处发球,球从点O的正上方1.9m的C点发出,运动路线是抛物线的一部分,当球运动到最高点A时,高度为2.88m,即BA=2.88m,这时水平距离OB=7m,以直线OB为x轴,直线OC为y轴,建立平面直角坐标系,如图2.(1)若球向正前方运动(即x轴垂直于底线),求球运动的高度y(m)与水平距离x(m)之间的函数关系式(不必写出x取值范围).并判断这次发球能否过网?是否出界?说明理由.(2)若球过网后的落点是对方场地①号位内的点P(如图1,点P距底线1m,边线0.5m),问发球点O在底线上的哪个位置?(参考数据:√2取1.4)16.已知抛物线经过A(-1,0)、B(0、3)、C(3,0)三点,O为坐标原点,抛物线交正方形OBDC的边BD于点E,点M为射线BD上一动点,连接OM,交BC于点F(1)求抛物线的表达式;(2)求证:∠BOF=∠BDF:(3)是否存在点M使△MDF为等腰三角形?若不存在,请说明理由;若存在,求ME的长COD=60°,且OD=OC.(1)A点坐标为,B点坐标为;(3)点M在抛物线的对称轴上,点N在抛物线上,若以M、N、O、D为顶点的四边参考答案1.B2.B3.C4.D5.D6.A7.B8.B9.2510.y =−x 2+10 11.y 3>y 1>y 2 12.213.(−4,0)14.(1)设甲、乙两种商品的进货单价分别是a 、b 元/件,由题意得:{3a +2b =602a +3b =65解得:{a =10b =15.∴甲、乙两种商品的进货单价分别是10、15元/件.(2)设y 与x 之间的函数关系式为y =k 1x +b 1,将(11,18),(19,2)代入得: {11k 1+b 1=1819k 1+b 1=2,解得:{k 1=−2b 1=40. ∴y 与x 之间的函数关系式为y =﹣2x +40(11≤x ≤19). (3)由题意得: w =(﹣2x +40)(x ﹣10)=﹣2x 2+60x ﹣400=﹣2(x ﹣15)2+50(11≤x ≤19). ∴当x =15时,w 取得最大值50.∴当甲商品的销售单价定为15元/件时,日销售利润最大,最大利润是50元.15.(1)设抛物线的表达式为:y =a (x ﹣7)2+2.88 将x =0,y =1.9代入上式并解得:a =−150故抛物线的表达式为:y =−150(x ﹣7)2+2.88; 当x =9时,y =−150(x ﹣7)2+2.88=2.8>2.24 当x =18时,y =−150(x ﹣7)2+2.88=0.46>0故这次发球过网,但是出界了;(2)如图,分别过点作底线、边线的平行线PQ 、OQ 交于点Q在Rt △OPQ 中,OQ =18﹣1=17当y =0时,y =−150(x ﹣7)2+2.88=0,解得:x =19或﹣5(舍去﹣5) ∴OP =19,而OQ =17故PQ =6√2=8.4 ∵9﹣8.4﹣0.5=0.1∴发球点O 在底线上且距右边线0.1米处. 16.(1)设抛物线的表达式为2(0)y ax bx c a =++≠ 将A (-1,0)、B (0、3)、C (3,0)代入得03093a b cc a b c =-+⎧⎪=⎨⎪=++⎩,解得123a b c =-⎧⎪=⎨⎪=⎩ ∴抛物线的表达式为2y x 2x 3=-++;(2)四边形OBDC 是正方形 ,BO BD OBC DBC ∴=∠=∠ BF BF =()OBF DBF SAS ∴≅BOF BDF ∴∠=∠; (3)存在,理由如下:当点M 在线段BD 的延长线上时,此时90FDM ∠>︒ ∴ DF DM = 设(,3)M m设直线OM 的解析式为(0)y kx k =≠ 3km ∴=解得3k m=∴直线OM 的解析式为3y x m=设直线BC 的解析式为11(0)y k x b k =+≠把B (0、3)、 C (3,0)代入,得1303bk b =⎧⎨=+⎩解得131b k =⎧⎨=-⎩∴直线BC 的解析式为3y x =-+令33x x m =-+,解得33m x m =+,则93y m =+ 39(,)33m F m m ∴++ 四边形OBDC 是正方形 3BO BD OC CD ∴====(3,3)D222222239981(3)(3),(3)33(3)m m DF DM m m m m +∴=-+-==-+++ 222981(3)(3)m m m +∴=-+ 222981(9)m m ∴+=-解得0m =或33m =33m =-点M 为射线BD 上一动点 0m ∴> 33m ∴=33BM ∴=当2323y x x ==-++时,解得0x =或2x =2BE ∴=332ME BM BE ∴=-=.当点M 在线段BD 上时,此时 90DMF ∠>︒MF DM ∴=MFD MDF ∴∠=∠2BMO MFD MDF MDF ∴∠=∠+∠=∠ 由(2)得BOF BDF ∠=∠ 四边形OBDC 是正方形 90OBD ∴∠=︒90BOM BMO ∴∠+∠=︒ 390BOM ∴∠=︒ 30BOM ∴∠=︒ 3OB =3tan 33BM BOM OB ∴=∠⋅==2,3BE BD ==1DE =∴33123ME BD BM DE ∴=--==综上,ME 的长为332或2317.解:(1)y =23735322x x -+,令y =0,解得:x =2或5 故A 点坐标为:(2,0)、B 点坐标为(5,0);(2)连接CD 、BD由(1)知:OA =2,AB =3,等边三角形ABC 的边长为3 ∵△ABC 为等边三角形∴AC =BC ,∠ACB =60°=∠CAB ,∴∠CAO =120° ∵∠COD =60°,且OD =OC ,则△OCD 为等边三角形 ∴OD =CD =CO ,则∠OCD =60°=∠OCA+∠ACD 而∠ACB =60°=∠ACD+∠DCB ∴∠OCA =∠DCB 而CO =CD ,CA =CB∴△OAC ≌△DBC (SAS )∴BD =OA =2,∠CBD =∠CAO =120°,而∠CBO =60° ∴∠OBD =60°,则y D =﹣BDsin ∠OBD =﹣2×32=﹣3 故点D 的坐标为(4,﹣3)当x =4时,y =23735322x x -+=﹣3 故点D 在抛物线上;(3)抛物线的对称轴为:x =72设点M (72,s ),点N (m ,n )n =32m 2﹣732m+53①当OD 是平行四边形的边时 当点N 在对称轴右侧时点O 向右平移4个单位,向下平移3个单位得到D 同样点M 向右平移4个单位,向下平移3个单位得到N即:72+4=m ,s ﹣3=n ,而n =32m 2﹣732m+53解得:s=633 8则点M(72,6338);当点N在对称轴左侧时同理可得:点M(72,2738);②当OD是平行四边形的对角线时则4=72+m3n+s,而n=3m2733解得:s=73则点M(72,73)故点M的坐标为:(72,633)或(72,273)或(72,73).。

浙江省杭州市2019年中考数学一轮复习第三章函数及其图象第六节二次函数的综合应用同步测试含答案

浙江省杭州市2019年中考数学一轮复习第三章函数及其图象第六节二次函数的综合应用同步测试含答案

第六节二次函数的综合应用姓名:________ 班级:________ 用时:______分钟1.(2018·湖北孝感中考)如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(-2,4),B(1,1),则方程ax2=bx+c的解是________________________.2.(2018·浙江湖州中考)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx(a>0)的顶点为C,与x轴的正半轴交于点A,它的对称轴与抛物线y=ax2(a>0)交于点B.若四边形ABOC是正方形,则b 的值是________.3.(2019·易错题)某校在基地参加社会实践活动中,带队老师考问学生:基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长69 m的不锈钢栅栏围成,与墙平行的一边留一个宽为3 m的出入口,如图所示,如何设计才能使园地的面积最大?下面是两位学生争议的情境:请根据上面的信息,解决问题:(1)设AB =x m (x>0),试用含x 的代数式表示BC 的长; (2)请你判断谁的说法正确,为什么?4. (2018·湖北襄阳中考)襄阳市精准扶贫工作已进入攻坚阶段.贫困户张大爷在某单位的帮扶下,把一片坡地改造后种植了优质水果蓝莓,今年正式上市销售.在销售的30天中,第一天卖出20千克,为了扩大销量,采取了降价措施,以后每天比前一天多卖出4千克.第x 天的售价为y 元/千克,y 关于x的函数表达式为y =⎩⎪⎨⎪⎧mx -76m (1≤x<20,x 为正整数),n (20≤x≤30,x 为正整数),且第12天的售价为32元/千克,第26天的售价为25元/千克.已知种植销售蓝莓的成本是18元/千克,每天的利润是W 元(利润=销售收入-成本). (1)m =________,n =________;(2)求销售蓝莓第几天时,当天的利润最大?最大利润是多少? (3)在销售蓝莓的30天中,当天利润不低于870元的共有多少天?5.(2018·山东泰安中考)一元二次方程(x +1)(x -3)=2x -5根的情况是( ) A .无实数根B .有一个正根,一个负根C .有两个正根,且都小于3D .有两个正根,且有一根大于36.如图,已知直线y =-34x +3分别交x 轴、y 轴于点A ,B ,P 是抛物线y =-12x 2+2x +5上的一个动点,其横坐标为a ,过点P 且平行于y 轴的直线交直线y =-34x +3于点Q ,则当PQ =BQ 时,a 的值是__________________________.7.如图,抛物线y =a(x -1)2+c 与x 轴交于点A(1-3,0)和点B ,将抛物线沿x 轴向上翻折,顶点P 落在点P′(1,3)处. (1)求原抛物线的函数表达式;(2)学校举行班徽设计比赛,九年级(5)班的小明在解答此题时顿生灵感:过点P′作x 轴的平行线交抛物线于C ,D 两点,将翻折后得到的新图象在直线CD 以上的部分去掉,设计成一个“W”型的班徽,“5”的拼音开头字母为W ,“W”图案似大鹏展翅,寓意深远;而且小明通过计算惊奇的发现这个“W”图案的高与宽(CD)的比非常接近黄金分割比5-12(约等于0.618).请你计算这个“W”图案的高与宽的比到底是多少(参考数据:5≈2.236,6≈2.449,结果可保留根号).8.(2017·湖南邵阳中考)如图所示,顶点为(12,-94)的抛物线y =ax 2+bx +c 过点M(2,0).(1)求抛物线的表达式;(2)点A 是抛物线与x 轴的交点(不与点M 重合),点B 是抛物线与y 轴的交点,点C 是直线y =x +1上一点(处于x 轴下方),点D 是反比例函数y =kx (k >0)图象上一点,若以点A ,B ,C ,D 为顶点的四边形是菱形,求k 的值.参考答案【基础训练】1.x 1=-2,x 2=1 2.-23.解:(1)AB =x m ,可得BC =69+3-2x =(72-2x)m. (2)小英说法正确,理由如下:矩形面积S =x(72-2x)=-2(x -18)2+648, ∵72-2x>0, ∴x<36,∴0<x<36.∴当x =18时,S 取最大值, 此时x≠72-2x ,∴面积最大的不是正方形.4.解:(1)第12天的售价为32元/千克,代入y =mx -76m ,得32=12m -76m , 解得m =-12.第26天的售价为25元/千克,代入y =n , 则n =25,故答案为m =-12,n =25.(2)由题意知,第x 天的销售量为20+4(x -1)=4x +16, 当1≤x<20时,W =(4x +16)(-12x +38-18)=-2x 2+72x +320=-2(x -18)2+968,∴当x =18时,W 最大=968元.当20≤x≤30时,W =(4x +16)(25-18)=28x +112. ∵28>0,∴W 随x 的增大而增大, ∴当x =30时,W 最大=952元.∵968>952,∴当x=18时,W最大=968元.(3)当1≤x<20时,令-2x2+72x+320=870,解得x1=25,x2=11.∵抛物线W=-2x2+72x+320的开口向下,∴11≤x≤25时,W≥870.又∵11≤x<20,x为正整数,∴有9天利润不低于870元,当20≤x≤30时,令28x+112≥870,解得x≥27114 .∴27114≤x≤30.∵x为正整数,∴有3天利润不低于870元.∴综上所述,当天利润不低于870元的天数共有12天.【拔高训练】5.D 6.-1,4,4+25,4-2 57.解:(1)∵点P与点P′(1,3)关于x轴对称,∴点P的坐标为(1,-3).设原抛物线的表达式为y=a(x-1)2-3,∵其过点A(1-3,0),∴0=a(1-3-1)2-3,解得a=1.∴原抛物线的函数表达式为y=(x-1)2-3,即y=x2-2x-2. (2)∵CD∥x轴,P′(1,3)在CD上,∴C,D两点纵坐标均为3.由(x-1)2-3=3,解得x1=1-6,x2=1+6,∴C,D两点的坐标分别为(1-6,3),(1+6,3),∴CD=2 6.∴“W”图案的高与宽(CD)的比为326=64(或约等于0.612).【培优训练】8.解:(1)依题意可设抛物线的表达式为y =a(x -12)2-94(a≠0),将点M(2,0)代入可得a(2-12)2-94=0,解得a =1.故抛物线的表达式为y =(x -12)2-94.(2)由(1)知,抛物线的表达式为y =(x -12)2-94,其对称轴为x =12,∴点A 与点M(2,0)关于直线x =12对称,∴A(-1,0).令x =0,则y =-2, ∴B (0,-2).在Rt△OAB 中,OA =1,OB =2,则AB = 5. 设直线y =x +1与y 轴交于点G , 易求G(0,1).∴△AOG 是等腰直角三角形, ∴∠AGO=45°.∵点C 是直线y =x +1上一点(处于x 轴下方),而k >0,∴反比例函数y =kx (k >0)的图象位于第一、三象限.故点D 只能在第一、三象限,因此符合条件的菱形只能有如下2种情况: ①此菱形以AB 为边且AC 也为边,如图1所示,过点D 作DN⊥y 轴于点N , 在Rt△BDN 中,∵∠DBN =∠AGO=45°, ∴DN=BN =52=102,∴D(-102,-102-2). ∵点D 在反比例函数y =kx (k >0)图象上,∴k=-102×(-102-2)=52+10. ②此菱形以AB 为对角线,如图2,作AB 的垂直平分线CD 交直线y =x +1于点C ,交反比例函数y =kx (k >0)的图象于点D.再分别过点D ,B 作DE⊥x 轴于点F ,BE⊥y 轴,DE 与BE 相交于点E.在Rt△BDE 中,同①可证∠AGO=∠DBO=∠BDE=45°, ∴BE=DE.可设点D 的坐标为(x ,x -2). ∵BE 2+DE 2=BD 2, ∴BD=2BE =2x. ∵四边形ABCD 是菱形, ∴AD=BD =2x.∴在Rt△ADF 中,AD 2=AF 2+DF 2, 即(2x)=(x +1)2+(x -2)2, 解得x =52,∴点D 的坐标是(52,12).∵点D 在反比例函数y =kx (k >0)的图象上,∴k=52×12=54,综上所述,k 的值是52+10或54.。

2021 中考数学 一轮复习专题 二次函数的图象及性质 -答案

2021 中考数学 一轮复习专题 二次函数的图象及性质 -答案

2021 中考数学 一轮复习专题 二次函数的图象及性质 -讲评卷一、选择题(本大题共10道小题)1. 如果将抛物线y =x 2+2向下平移1个单位,那么所得新抛物线的表达式是( )A. y =(x -1)2+2B. y =(x +1)2+2C. y =x 2+1D. y =x 2+3【答案】C 【解析】根据图象平移变换口诀“左加右减,上加下减”进行解答.把抛物线y =x 2+2向下平移1个单位得y =x 2+2-1=x 2+1.2. 抛物线y =-3x 2+6x +2的对称轴是( )A .直线x =2B .直线x =-2C .直线x =1D .直线x =-1【答案】C3. 若y =ax 2+bx +c ,则由表格中的信息可知y 与x 之间的函数解析式是( )A.y =x 2-4x +3B .y =x 2-3x +4C .y =x 2-3x +3D .y =x 2-4x +8【答案】A[解析] ∵x =1时,ax 2=1,∴a =1.将(-1,8),(0,3)分别代入y =x 2+bx +c ,得⎩⎨⎧1-b +c =8,c =3,解得⎩⎨⎧b =-4,c =3.∴y 与x 之间的函数解析式是y =x 2-4x +3.故选A.4. 抛物线y =2x 2-22x +1与坐标轴的交点个数是( )A. 0B. 1C. 2D. 3【答案】C【解析】抛物线y =2x 2-22x +1,令x =0,得到y =1,即抛物线与y轴交点坐标为(0,1);令y=0,得到2x2-22x+1=0,即(2x-1)2=0,解得:x1=x2=22,即抛物线与x轴交点坐标为(22,0),则抛物线与坐标轴的交点个数是2.5. 如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点(-3,0),其对称轴为直线x=-.结合图象分析下列结论:①abc>0;②3a+c>0;③当x<0时,y随x的增大而增大;④一元二次方程cx2+bx+a=0的两根分别为x1=-,x2=;⑤<0;⑥若m,n(m<n)为方程a(x+3)·(x-2)+3=0的两个根,则m<-3,n>2,其中正确的结论有()A.3个B.4个C.5个D.6个【答案】C[解析]①由图象可知a<0,b<0,c>0,∴abc>0,故①正确;②由于对称轴是直线x=-,∴a=b.∵图象与x轴的一个交点是(-3,0),∴另一个交点是(2,0),把(2,0)代入解析式可得4a+2b+c=0,∴6a+c=0,∴3a+c=-3a,∵a<0,∴-3a>0,∴3a+c>0,故②正确;③由图象可知当-<x<0时,y随x的增大而减小,∴当x<0时,y随x的增大而增大是错误的;④一元二次方程ax2+bx+c=0的两根为x1=-3,x2=2,∴一元二次方程cx2+bx+a=0的两根分别为x1=-,x2=,正确;⑤由图象顶点的纵坐标大于0可知,>0,∴<0,正确;⑥若m,n(m<n)为方程a(x+3)(x-2)+3=0的两个根,则a(x+3)(x-2)=-3,由图象可知,当y=-3时,m<-3,n>2,⑥正确,综上,正确的结论有5个,故选C.6. 在同一直角坐标系中,一次函数y=ax+c和二次函数y=a(x+c)2的图象大致是()【答案】B7. 若二次函数y=ax2-2ax+c的图象经过点(-1,0),则方程ax2-2ax+c=0的解为()A. x1=-3,x2=-1B. x1=1,x2=3C. x1=-1,x2=3D. x1=-3,x2=1【答案】C【解析】∵图象过点(-1,0),∴将点(-1,0)代入方程得a+2a+c =0,即3a+c=0.当x=3时,将(3,0)代入方程也得到3a+c=0成立,当x=-3时,将(-3,0)代入方程也得到15a+c=0(与3a+c=0不相符),∴方程的两个根为x1=-1,x2=3.8. 若二次函数y=x2+mx的对称轴是x=3,则关于x的方程x2+mx=7的解为()A. x1=0,x2=6B. x1=1,x2=7C. x1=1,x2=-7D. x1=-1,x2=7【答案】D【解析】∵二次函数y=x2+mx的对称轴为x=-m2=3,解得m=-6,则关于x的方程为x2-6x=7,解得,x1=-1,x2=7.9. 二次函数y=ax2与一次函数y=ax+a在同一坐标系中的大致图象可能是()【答案】D[解析] 由一次函数y =ax +a 可知,其图象与x 轴交于点(-1,0),排除A ,B ;当a >0时,二次函数y =ax 2的图象开口向上,一次函数y =ax +a 的图象经过第一、二、三象限;当a <0时,二次函数y =ax 2的图象开口向下,一次函数y =ax +a 的图象经过第二、三、四象限.排除C.10. 如图,将函数y =12(x -2)2+1的图象沿y 轴向上平移得到一条新函数的图象,其中点A (1,m ),B (4,n )平移后的对应点分别为点A ′,B ′.若曲线段AB 扫过的面积为9(图中的阴影部分),则新图象的函数解析式是( )A .y =12(x -2)2-2 B .y =12(x -2)2+7C .y =12(x -2)2-5D .y =12(x -2)2+4【答案】D [解析] 如图,连接AB ,A′B′,则S 阴影=S 四边形ABB′A′.由平移可知,AA′=BB′,AA′∥BB′,所以四边形ABB′A′是平行四边形.分别延长A′A ,B′B 交x 轴于点M ,N ,因为A(1,m),B(4,n),所以MN =4-1=3.因为S 阴影=AA′·MN ,所以9=3AA′,解得AA′=3,即原抛物线沿y 轴向上平移了3个单位长度,所以新图象的函数解析式为y =12(x -2)2+4.二、填空题(本大题共8道小题)11. 已知函数y=-(x-1)2图象上两点A(2,y1),B(a,y2),其中a>2,则y1与y2的大小关系是y1y2(填“<”“>”或“=”).【答案】>[解析]因为二次项系数为-1,小于0,所以在对称轴x=1的左侧,y 随x的增大而增大;在对称轴x=1的右侧,y随x的增大而减小,因为a>2>1,所以y1>y2.故填“>”.12. 已知二次函数y=-(x-1)2+2,当t<x<5时,y随x的增大而减小,则实数t的取值范围是.【答案】1≤t<5[解析]抛物线的对称轴为直线x=1,因为a=-1<0,所以抛物线开口向下,所以当x>1时,y的值随x值的增大而减小,因为t<x<5时,y随x的增大而减小,所以1≤t<5.13. 已知抛物线y=ax2+4ax+4a+1(a≠0)过点A(m,3),B(n,3)两点,若线段AB的长不大于4,则代数式a2+a+1的最小值是.【答案】[解析]∵抛物线y=ax2+4ax+4a+1(a≠0)过点A(m,3),B(n,3)两点,∴=-=-2.∵线段AB的长不大于4,∴4a+1≥3,∴a≥,∴a2+a+1的最小值为:2++1=.14. 顶点坐标是(2,0),且与抛物线y=-3x2的形状、开口方向都相同的抛物线的解析式为________.【答案】y=-3(x-2)215. 如图,抛物线y=ax2+c与直线y=mx+n交于A(-1,p),B(3,q)两点,则不等式ax2-mx+c>n的解集是________.【答案】.x<-1或x>316. 已知抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=1,其部分图象如图所示,下列说法中:①b>0;②a-b+c<0;③b+2c>0;④当-1<x<0时,y>0,正确的是(填写序号).【答案】①③④[解析]根据图象可得:a<0,c>0,对称轴:直线x=-=1,∴b=-2a.∵a<0,∴b>0,故①正确;把x=-1代入y=ax2+bx+c,得y=a-b+c.由抛物线的对称轴是直线x=1,且过点(3,0),可得当x=-1时,y=0,∴a-b+c=0,故②错误;当x=1时,y=a+b+c>0.∵b=-2a,∴-+b+c>0,即b+2c>0,故③正确;由图象可以直接看出④正确.故答案为:①③④.17. 如图,抛物线y=-x2+2x+3与y轴交于点C,点D(0,1),点P在抛物线上,且△PCD是以CD为底的等腰三角形,则点P的坐标为________.【答案】(1+2,2)或(1-2,2) 【解析】抛物线y =-x 2+2x +3与y 轴交于点C ,则点C 坐标是(0,3),∵点D(0,1),点P 在抛物线上,且△PCD 是以CD 为底的等腰三角形,∴易得点P 的纵坐标是2,当y =2时,∴-x 2+2x +3=2,则x 2-2x -1=0,解得方程的两根是x =2±222=1±2,∴点P 的坐标是(1+2,2)或(1-2,2).18. 如图,在平面直角坐标系xOy 中,已知抛物线y =ax 2+bx (a >0)的顶点为C ,与x 轴的正半轴交于点A ,它的对称轴与抛物线y =ax 2(a >0)交于点B .若四边形ABOC 是正方形,则b 的值是________.【答案】-2 [解析] 抛物线y =ax 2+bx 的顶点C 的坐标为(-b 2a ,-b24a).把x =-b 2a 代入y =ax 2,得点B 的坐标为(-b 2a ,b 24a ).在y =ax 2+bx 中,令y =0,则ax 2+bx =0,解得x 1=0,x 2=-b a ,∴A(-ba ,0).∵四边形ABOC 为正方形,∴BC =OA ,∴2·b 24a =-ba ,即b 2+2b =0.解得b =-2或b =0(不符合题意,舍去).三、解答题(本大题共5道小题)19. 如图,已知抛物线y =ax 2+bx +4(a ≠0)的对称轴为直线x =3,抛物线与x 轴相交于A ,B 两点,与y 轴相交于点C ,已知B 点的坐标为(8,0). (1)求抛物线的解析式;(2)点M 为线段BC 上方抛物线上的一点,点N 为线段BC 上的一点,若MN ∥y 轴,求MN 的最大值;(3)在抛物线的对称轴上是否存在点Q ,使△ACQ 为等腰三角形?若存在,求出符合条件的Q 点坐标;若不存在,请说明理由.【答案】(1)根据题意得,ab 2-=3,即b =-6a ,则抛物线的解析式为y =ax 2-6ax +4,将B (8,0)代入得,0=64a -48a +4,解得a =-14,b =32,∴抛物线的解析式为y =-14x 2+32x +4; (2)设直线BC 的解析式为y =kx +d ,由抛物线解析式可知:当x =0时,y =4,即点C (0,4), 将B (8,0),C (0,4)代入得:804k d d +=⎧⎨=⎩,解得⎩⎪⎨⎪⎧k =-12d =4, ∴直线BC 的解析式为y =-12x +4,设点M 的横坐标为x (0<x <8),则点M 的纵坐标为-14x 2+32x +4,点N 的纵坐标为-12x +4, ∵点M 在抛物线上,点N 在线段BC 上,MN ∥y 轴,∴MN =-14x 2+32x +4-(-12x +4)=-14x 2+32x +4+12x -4=-14x 2+2x=-14(x -4)2+4,∴当x =4时,MN 的值最大,最大值为4; (3)存在.理由如下:令-14x 2+32x +4=0, 解得x 1=-2,x 2=8, ∴A (-2,0), 又∵C (0,4),由勾股定理得,AC =22+42=25,如解图,过点C 作CD ⊥对称轴于点D ,连接AC .解图∵抛物线对称轴为直线x =3, 则CD =3,D (3,4). ①当AC =CQ 时,DQ =CQ 2-CD 2=(25)2-32=11,当点Q 在点D 的上方时,点Q 到x 轴的距离为4+11, 此时,点Q 1(3,4+11),当点Q 在点D 的下方时,点Q 到x 轴的距离为4-11, 此时点Q 2(3,4-11);②当AQ =CQ 时,点Q 为对称轴与x 轴的交点,AQ =5,CQ =32+42=5, 此时,点Q 3(3,0); ③当AC =AQ 时,∵AC =25,点A 到对称轴的距离为5,25<5, ∴不可能在对称轴上存在Q 点使AC =AQ ,综上所述,当点Q 的坐标为(3,4+11)或(3,4-11)或(3,0)时,△ACQ 为等腰三角形.20. 如图,在平面直角坐标系中,直线y =34x +m 与x 轴、y 轴分别交于点A 、点B (0,-1),抛物线y =12x 2+bx +c 经过点B ,交直线AB 于点C (4,n ). (1)分别求m 、n 的值; (2)求抛物线的解析式; (3)点D 在抛物线上,且点D 的横坐标为t (0<t <4),DE ∥y 轴交直线AB 于点E ,点F 在直线AB 上,且四边形DFEG 为矩形(如图),若矩形DFEG 的周长为p ,求p 与t 的函数关系式和p 的最大值.【答案】(1)∵直线y =34x +m 与y 轴交于点B (0,-1),∴m =-1, ∴直线解析式为y =34x -1, ∵直线经过点C (4,n ),∴n =34×4-1=2;(2)∵抛物线经过点C 和点B , ∴⎩⎪⎨⎪⎧12×42+4b +c =2c =-1, 解得⎩⎪⎨⎪⎧b =-54c =-1, ∴抛物线的解析式为y =12x 2-54x -1;(3)∵点D 的横坐标为t (0<t <4),DE ∥y 轴交直线AB 于点E ,∴D (t ,12t 2-54t -1),E (t ,34t -1),∴DE =34t -1-(12t 2-54t -1)=-12t 2+2t , ∵DE ∥y 轴,∴∠DEF =∠ABO ,且∠EFD =∠AOB =90°, ∴△DFE ∽△AOB , ∴DF OA =EF OB =DE AB ,在y =34x -1中,令y =0可得x =43, ∴A (43,0),∴OA =43,在Rt △AOB 中,OB =1,∴AB =53,∴DF 43=EF 1=DE 53,∴DF =45DE ,EF =35DE ,∴p =2(DF +EF )=2×(45+35)DE =145DE =145(-12t 2+2t )=-75t 2+285t =-75(t -2)2+285(0<t <4),∵-75<0,∴当t =2时,p 有最大值285.21. 如图,在平面直角坐标系中,直线y =x +2与x 轴交于点A ,点B 是这条直线上第一象限内的一个点,过点B 作x 轴的垂线,垂足为D ,已知△ABD 的面积为18.(1)求点B 的坐标;(2)如果抛物线212y x bx c =-++经过点A 和点B ,求抛物线的解析式; (3)已知(2)中的抛物线与y 轴相交于点C ,该抛物线对称轴与x 轴交于点H ,P 是抛物线对称轴上的一点,过点P 作PQ //AC 交x 轴于点Q ,如果点Q 在线段AH 上,且AQ =CP ,求点P 的坐标.【答案】 (1)直线y =x +2与x 轴的夹角为45°,点A 的坐标为(-2, 0).因为△ABD 是等腰直角三角形,面积为18,所以直角边长为6.因此OD =4.所以点B 的坐标为(4, 6).(2)将A (-2, 0)、B (4, 6)代入212y x bx c =-++, 得220,84 6.b c b c --+=⎧⎨-++=⎩ 解得b =2,c =6.所以抛物线的解析式为21262y x x =-++. (3)由21262y x x =-++,得抛物线的对称轴为直线x =2,点C 的坐标为(0, 6). 如果AQ =CP ,那么有两种情况:①如图2,当四边形CAQP 是平行四边形时,AQ //CP ,此时点P 的坐标为(2, 6). ②如图3,当四边形CAQP 是等腰梯形时,作AC 的垂直平分线交x 轴于点F ,那么点P 在FC 上.设点F 的坐标为(x , 0),根据F A 2=FC 2列方程,得(x +2)2=x 2+62.解得x =8.所以OF =8,HF =6.因此39tan 642PH HF F =⋅∠=⨯=.此时点P 的坐标为9(2,)2.图2 图3第(3)题等腰梯形CAQP 时,求点P 的坐标也可以这样思考:过点P 作PE //x 轴交AC 于E ,那么PE =PC .直线AC 的解析式为y =3x +6,设E (m , 3m +6),那么P (2, 3m +6).根据PE 2=PC 2列方程,得(2-m )2=22+(3m )2.解得12m =-.所以P 9(2,)2. 其实第(3)题还有一个“一石二鸟”的方法:设QH =n ,那么AQ =4-n ,PH =3n ,P(2, 3n ).根据AQ 2=CP 2,列方程,得.(4-n )2=22+(3n -6)2.整理,得2n 2-7n -6=0.解得n 1=2,232n =. 当n 1=2时,P (2, 6),对应平行四边形CAQP (如图2);当232n =时,P 9(2,)2,对应等腰梯形CAQP (如图4).图422. 如图,在平面直角坐标系中放置一直角三角板,其顶点为A (0, 1)、B (2, 0)、O (0, 0),将此三角板绕原点O 逆时针旋转90°,得到三角形A ′B ′O .(1)一抛物线经过点A ′、B ′、B ,求该抛物线的解析式;(2)设点P 是第一象限内抛物线上的一个动点,是否存在点P ,使四边形PB ′A ′B 的面积是△A ′B ′O 面积的4倍?若存在,请求出点P 的坐标;若不存在,请说明理由;(3)在(2)的条件下,试指出四边形PB ′A ′B 是哪种形状的四边形?并写出它的两条性质.【答案】 (1)△AOB 绕着原点O 逆时针旋转90°,点A ′、B ′的坐标分别为(-1, 0) 、(0,2).因为抛物线与x 轴交于A ′(-1, 0)、B (2, 0),设解析式为y =a (x +1)(x -2), 代入B ′(0, 2),得a =1.所以该抛物线的解析式为y =-(x +1)(x -2) =-x 2+x +2.(2)S △A ′B ′O =1.如果S 四边形PB ′A ′B =4 S △A ′B ′O =4,那么S 四边形PB ′OB =3 S △A ′B ′O =3.如图2,作PD ⊥OB ,垂足为D .设点P 的坐标为 (x ,-x 2+x +2).232'1111(')(22)22222PB OD S DO B O PD x x x x x x =+=-++=-++梯形. 2321113(2)(2)22222PDB S DB PD x x x x x ∆=⨯=--++=-+. 所以2'''2+2PDB PB A D PB OD S S S x x ∆=+=-+四边形梯形. 解方程-x 2+2x +2=3,得x 1=x 2=1.所以点P 的坐标为(1,2).图2 图3 图4(3)如图3,四边形PB ′A ′B 是等腰梯形,它的性质有:等腰梯形的对角线相等;等腰梯形同以底上的两个内角相等;等腰梯形是轴对称图形,对称轴是经过两底中点的直线.第(2)题求四边形PB ′OB 的面积,也可以如图4那样分割图形,这样运算过程更简单.'11'222PB O PS B O x x x∆=⋅=⨯=.22112(2)222PBO PS BO y x x x x∆=⋅=⨯-++=-++.所以2'''2+2PB O PBOPB A DS S S x x∆∆=+=-+四边形.甚至我们可以更大胆地根据抛物线的对称性直接得到点P:作△A′OB′关于抛物线的对称轴对称的△BOE,那么点E的坐标为(1,2).而矩形EB′OD与△A′OB′、△BOP是等底等高的,所以四边形EB′A′B的面积是△A′B′O面积的4倍.因此点E就是要探求的点P.23. 如图,已知抛物线的方程C1:1(2)()y x x mm=-+-(m>0)与x轴交于点B、C,与y轴交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2, 2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;(3)在(1)的条件下,在抛物线的对称轴上找一点H,使得BH+EH最小,求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.【答案】(1)将M(2, 2)代入1(2)()y x x mm=-+-,得124(2)mm=-⨯-.解得m=4.(2)当m=4时,2111(2)(4)2442y x x x x=-+-=-++.所以C(4, 0),E(0, 2).所以S△BCE=1162622BC OE⋅=⨯⨯=.(3)如图2,抛物线的对称轴是直线x=1,当H落在线段EC上时,BH+EH 最小.设对称轴与x轴的交点为P,那么HP EOCP CO=.因此234HP=.解得32HP=.所以点H的坐标为3(1,)2.(4)①如图3,过点B作EC的平行线交抛物线于F,过点F作FF′⊥x轴于F′.由于∠BCE=∠FBC,所以当CE BCCB BF=,即2BC CE BF=⋅时,△BCE∽△FBC.设点F的坐标为1(,(2)())x x x mm-+-,由''FF EOBF CO=,得1(2)()22x x mmx m+-=+.解得x=m+2.所以F′(m+2, 0).由'CO BF CE BF =,得244m BF m +=+.所以2(4)4m m BF ++=. 由2BC CE BF =⋅,得222(4)4(2)4m m m m +++=+⨯. 整理,得0=16.此方程无解.图2 图3 图4②如图4,作∠CBF =45°交抛物线于F ,过点F 作FF ′⊥x 轴于F ′,由于∠EBC =∠CBF ,所以BE BC BC BF=,即2BC BE BF =⋅时,△BCE ∽△BFC . 在Rt △BFF ′中,由FF ′=BF ′,得1(2)()2x x m x m+-=+. 解得x =2m .所以F ′(2,0)m .所以BF ′=2m +2,2(22)BF m =+. 由2BC BE BF =⋅,得2(2)222(22)m m +=+.解得222m =± 综合①、②,符合题意的m 为222+.。

中考数学一轮复习备考专练 二次函数的实际应用2(有答案)

中考数学一轮复习备考专练  二次函数的实际应用2(有答案)

中考数学一轮复习备考专练 二次函数的实际应用2一、单选题1.如图,正方形ABCD 的边长为5,点E 是AB 上一点,点F 是AD 延长线上一点,且BE DF =.四边形AEGF 是矩形,则矩形AEGF 的面积y 与BE 的长x 之间的函数关系式为( )A.5y x =-B.25y x =-C.25y x =-D.225y x =-2.有长24 m 的篱笆,一面利用围墙围成如图中间隔有一道篱笆的矩形花圃,设花圃垂直于墙的一边长为x m,面积是2m S ,则S 与x 的关系式是( )A.2324S x x =-+B.2224S x x =--C.2324S x x =--D.2224S x x =-+3.竖直上抛物体离地面的高度(m)h 与运动时间(s)t 之间的关系可以近似地用公式2005h t v t h =-++表示,其中0(m)h 是物体抛出时离地面的高度,0(m /s)v 是物体抛出时的速度.某人将一个小球从距地面1.5m 的高处以20m/s 的速度竖直向上抛出,小球达到的离地面的最大高度为( )A.23.5mB.22.5mC.21.5mD.20.5m4.某商店从厂家以每件21元的价格购进一批商品,该商店可以自行定价.若每件商品售价为x 元,则可卖出()35010x -件商品,那么卖出商品所赚钱y (元)与售价x (元)之间的函数关系式为( )A.2105607350y x x =--+B.2105607350y x x =-+-C.210350y x x =-+D.2103507350y x x =-+-5.一位篮球运动员在距离篮圈中心水平距离4m 处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为2.5m 时,达到最大高度3.5m ,然后准确落入篮框内.已知篮圈中心距离地面高度为3.05m ,在如图所示的平面直角坐标系中,下列说法正确的是( )A.此抛物线的解析式是21 3.55y x =-+ B.篮圈中心的坐标是(43.05),C.此抛物线的顶点坐标是(3.50),D.篮球出手时离地面的高度是2m二、填空题6.如图,正方形EFGH 的顶点在边长为2的正方形ABCD 的边上.若设AF x =,正方形EFGH 的面积为y ,则y 与x 的函数关系式为______.7.某种商品每件进价为20元,调查表明:在某段时间内若以每件x 元(2030x ≤≤,且x 为整数)出售,可卖出()30x -件,若要使利润最大,则每件商品的售价应为 元.8.一个周长是20cm 的长方形,它的面积()2cm S 与长边()cm x 之间的函数表达式为 ,自变量x 的取值范围是 .9.一个足球被从地面向上踢出,它距地面的高度h (m)与足球被踢出后经过的时间t (s)之间具有函数关系式219.6h at t =+.已知足球被踢出后经过4s 落地,则足球距地面最大高度是 m.三、解答题10.某公司生产A 型活动板房成本是每个425元,图1表示A 型活动板房的一面墙,它由长方形和拋物线构成,长方形的长 4 m AD =,宽 3 m AB =,抛物线的最高点E 到BC 的距离为4 m .(1)按如图1所示的直角坐标系抛物线可以用2(0)y kx m k =+≠表示.求该抛物线的函数表达式.(2)现将A 型活动板房改造为B 型活动板房.如图2,在抛物线与AD 之间的区域内加装一扇长方形窗户FGMN ,点,G M 在AD 上,点,N F 在抛物线上,窗户的成本为50元/2m .已知2 m GM =,求每个B 型活动板房的成本是多少?(每个B 型活动板房的成本=每个A 型活动板房的成本+一扇窗户FGMN 的成本)(3)根据市场调查,以单价650元销售(2)中的B 型活动板房,每月能售出100个,而单价每降低10元,每个月能多售20个.公司每月最多能生产160个B 型活动板房.不考虑其他因素,公司将销售单价n (元)定位多少时,每月销售B 型活动板房所获利润w (元)最大?最大利润是多少?参考答案1.答案:D∵(05)BE x x =<<,∴5,5AE x AF x =-=+,∴2(5)(5)25y AE AF x x x =⋅=-+=-,故选D.2.答案:A花圃垂直于墙的一边长为m x ,则平行于墙的一边长为(243)m x -,根据长方形的面积公式得2(243)324S x x x x =-=-+.故选A.3.答案:C本题考查二次函数的实际应用.由题意知()22520 1.55444 1.5h t t t t =-++=--+-+=225(2)20 1.55(2)21.5.50t t --++=--+-<,∴当2t =时,h 取最大值为21.5m ,故选C.4.答案:B每件商品售价为x 元,则可卖出()35010x -件商品,商品进价为每件21元.∴商品所赚钱(21)(35010)y x x =--,2350107350210y x x x ∴=--+,2105607350y x x ∴=-+-.故选B.5.答案: A抛物线的顶点坐标为(0)3.5,,∴可设抛物线的函数关系式为23.5y ax =+.篮圈中心的横坐标为4 2.5 1.5-=,纵坐标为3.05,篮圈中心1.53().05,在抛物线上,确,B 错误;(m ), ∴篮球出手时离地面2.25m ,故D 错误.6.答案:2244(02)y x x x =-+<<∵四边形ABCD 是边长为2的正方形,∴90,2A B AB ∠=∠==°,∴90AEH AHE ∠+∠=°. ∴四边形EFGH 为正方形∴90,HEF EH EF ∠==°,∴90AEH BEF ∠+∠=°,∴AHE BEF ∠=∠在AHE △和BEF △中,,,,A B AHE BEF EH FE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴(AAS)AHE BEF ≅△△,∴,2BF AE x AH BE x ====-在Rt AHE △中,由勾股定理得2222+EH AE AH x =+=22(2)244x x x =-+-,即2244(02)y x x x =-+<<。

2024年中考数学第一轮复习:二次函数

2024年中考数学第一轮复习:二次函数

2024年中考数学第一轮复习:二次函数一、单选题1.将抛物线22y x =的图象向左平移1个单位,再向上平移3个单位,平移后抛物线的顶点坐标是( )A .()1,3-B .()1,3--C .()1,3-D .()1,3 2.在平面直角坐标系中,二次函数22y x mx m m =++-(m 为常数)的图象经过点()0,12,其对称轴在y 轴左侧,则该二次函数有( ) A .最大值8 B .最大值494 C .最小值8 D .最小值4943.如图抛物线()20y ax bx c a =++≠的对称轴是直线1x =下列说法正确的是( )A .0abc >B .240b ac -<C .20a b +=D .2am bm a b +>+(m 为任意实数)4.将抛物线()212C y x =--∶向左平移2个单位长度,得到的新的抛物线C '的顶点所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 5.把抛物线()2312y x =+-先向右平移1个单位,再向上平移n 个单位后,得到抛物线23y x =,则n 的值是( )A .1B .4C .2-D .2 6.在平面直角坐标系中,若点P 的横坐标和纵坐标相等,则称点P 为完美点.已知二次函数()²30y ax x c a =-+≠的图象上有且只有一个完美点()2,2,且当0x m ≤≤时,函数()25304y ax x c a =-+-≠的最小值为1,2最大值为11,4则m 的取值范围是( ) A .302m ≤≤ B .332m ≤≤ C .312m ≤≤ D .342m ≤≤ 7.在同一平面直角坐标系中,一次函数y ax c =+和二次函数2y ax 2x c =++的图像大致为( ) A .B . C .D .8.如图,将一个小球从斜坡的点O 处抛出,小球的抛出路线可以用二次函数2142y x x =-刻画,斜坡可以用一次函数12y x =刻画.下列结论错误的是( )A .小球距O 点水平距离超过4米呈下降趋势B .当小球水平运动2米时,小球距离坡面的高度为6米C .小球落地点距O 点水平距离为7米D .当小球拋出高度达到8m 时,小球距O 点水平距离为4m二、填空题9.抛物线245y x x =--向左平移2个单位长度,再问上平移3个单位长度,所得抛物线对应的函数表达式为 .10.在平面直角坐标系中,抛物线2(0)y ax bx c a =++≠过点()1,0,其对称轴为直线1x=-,则222b c a +的值为 . 11.已知抛物线2y x bx c =-+-的顶点在直线21y x =+上,且该抛物线与y 轴的交点的纵坐标为n ,则n 的最大值为 .12.如图,一名学生推铅球,铅球行进高度y (单位:m )与水平距离x (单位:m )之间的关系是 ()()1929y x x =--+,则铅球被推出的水平距离OA 为 m .13.如图,在平面直角坐标系中,抛物线()20y ax bx a =+>和直线()0y kx k =>交于点O 和点A ,则关于x 的不等式2ax bx kx +>的解集为 .三、解答题14.如图,二次函数228=+-y x x 的图象与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C ,点P 是抛物线的顶点,连接AC AP CP ,,.(1)求B 点的坐标;(2)求ACP △的面积.15.如图1,抛物线2y x bx c =++与x 轴交于点()1,0A -,()3,0B ,与y 轴交于点C .(1)求b与c的值.(2)观察图象,直接写出不等式2233--<-的解集是______.x x x∥轴,交x轴于点N,若(3)如图2,点M在抛物线上,且点M在第四象限,MN y=,求点M的坐标.MN BN316.“三只羊”是我市某直播平台,近年,销售额频频突破百亿大关.某坚果公司在“三只羊”直播平台中推出一款“新春”产品礼盒,每盒的成本为100元,若按每盒150元销售,则同时段每天可售出400盒.为了新年回馈网友,公司决定降价销售.经核算,发现销x≥),售价每降低1元,同时段每天的销量就增加20盒.设该礼盒售价为每盒x元(100同时段每天的销售量为y盒,每天的销售利润为w元.(1)写出y与x的函数表达式(含自变量x的取值范围);(2)直播间在让利顾客的前提下,要使1天的销售利润达到24000元,销售价应定为每盒多少元?(3)当销售价定为多少元时每天的利润最大?并求出最大利润.x-.17.如图,已知二次函数的部分图象如图所示,对称轴是直线=1(1)求这个二次函数的表达式;(2)当22x -≤≤时,求函数值y 的最小值和最大值.18.如图1,灌溉车为公路绿化带草坪浇水,图2是灌溉车浇水操作时的截面图.现将灌溉车喷出水的上、下边缘线近似地看作平面直角坐标系xOy 中两条抛物线的部分图象.已知喷水口H 离地竖直高度OH 为1.2m ,草坪水平宽度3m DE =,竖直高度忽略不计.上边缘抛物线最高点A 离喷水口的水平距离为2m ,高出喷水口0.4m ,下边缘抛物线是由上边缘抛物线向左平移4m 得到的,设灌溉车到草坪的距离OD 为d (单位:m ).(1)求上边缘抛物线的函数解析式,并求喷出水的最大射程OC 的长;(2)下边缘抛物线落地点B 的坐标为______;(3)要使灌溉车行驶时喷出的水能浇灌到整个草坪,d 的取值范围为______.参考答案: 1.A2.C3.C4.C5.D6.B7.C8.B9.26y x =-10.1311.212.913.0x <或3x >14.(1)()2,0B(2)615.(1)2b =-,3c =-(2)03x <<(3)()2,3M -16.(1)203400y x =-+(100x ≥)(2)130元(3)销售价定为135元时每天的利润最大,最大利润为2450017.(1)223y x x =--+;(2)最小值为5-,最大值为4.18.(1)喷出水的最大射程OC 为6m ;60,(2)()(3)6m7m≤≤d。

浙江省萧山区党湾镇重点中学中考数学一轮复习乘法公式与因式分解课后作业(Word版含答案)

浙江省萧山区党湾镇重点中学中考数学一轮复习乘法公式与因式分解课后作业(Word版含答案)

乘法公式与因式分解课后作业1、下列运算正确的是()A.2a2+3a3=5a5 B.a6÷a3=a2C.(-a3)2=a6 D.(x+y)2=x2+y22、若4x2+axy+25y2是一个完全平方式,则a=()A.20 B.-20C.±20 D.±103、把8a3-8a2+2a进行因式分解,结果正确的是()A.2a(4a2-4a+1) B.8a2(a-1)C.2a(2a-1)2 D.2a(2a+1)24、多项式x2y2-y2-x2+1因式分解的结果是()A.(x2+1)(y2+1) B.(x-1)(x+1)(y2+1)C.(x2+1)(y+1)(y-1) D.(x+1)(x-1)(y+1)(y-1)5、已知甲、乙、丙均为x的一次多项式,且其一次项的系数皆为正整数.若甲与乙相乘为x2-4,乙与丙相乘为x2+15x-34,则甲与丙相加的结果与下列哪一个式子相同?()A.2x+19 B.2x-19 C.2x+15 D.2x-156、已知a,b,c为△ABC的三边长,且满足a2c2-b2c2=a4-b4,判断△ABC的形状()A.等腰三角形 B.直角三角形C.等腰直角三角形 D.等腰三角形或直角三角形7、若a4+b4=a2-2a2b2+b2+6,则a2+b2=8、已知a=20152015×999,b=20142014×1000,则a与b的大小关系: a b.9、图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是(1)分解下列因式,将结果直接写在横线上:x2-2x+1= ,25x2+30x+9= ,9x2+12x+4=(2)观察上述三个多项式的系数,10、有(-2)2=4×1×1,302=4×25×9,122=4×9×4,于是小明猜测:若多项式ax2+bx+c(a >0)是完全平方式,那么实系数a、b、c之间一定存在某种关系.①请你用数学式子表示系数a、b、c之间的关系②解决问题:在实数范围内,若关于x的多项式mx2+8x+n是完全平方式,且m,n都是正整数,m≥n,求系数m与n的值.(3)在实数范围内,若关于x的多项式x2+mx+2n和x2+nx+2m都是完全平方式,利用(2)中的规律求mn的值.11、生活中我们经常用到密码,例如支付宝支付时.有一种用“因式分解”法产生的密码,方便记忆,其原理是:将一个多项式分解因式,如多项式:x3+2x2-x-2可以因式分解为(x-1)(x+1)(x+2),当x=29时,x-1=28,x+1=30,x+2=31,此时可以得到数字密码283031.(1)根据上述方法,当x=15,y=5时,对于多项式x3-xy2分解因式后可以形成哪些数字密码?(2)已知一个直角三角形的周长是24,斜边长为11,其中两条直角边分别为x、y,求出一个由多项式x3y+xy3分解因式后得到的密码(只需一个即可).12、已知△ABC的三边长a、b、c都是正整数,且满足a2+b2-6a-14b+58=0(1)求a、b的值;(2)求△ABC的周长的最小值参考答案1、解析:A、原式不能合并,本选项错误;B、利用同底数幂的除法法则计算得到结果,即可作出判断;C、利用积的乘方及幂的乘方运算法则计算得到结果,即可作出判断;D、利用完全平方公式展开得到结果,即可作出判断.解:A、原式不能合并,本选项错误;B、a6÷a3=a3,本选项错误;C、(-a3)2=a6,本选项正确;D、(x+y)2=x2+2xy+y2,本选项错误,故选 C2、解析:根据这里首末两项是2x和5y这两个数的平方,那么中间一项为加上或减去2x和5y 乘积的2倍,即可得出a的值.3、解:∵4x2+axy+25y2是一个完全平方式,∴(2x±5y)2=4x2±20xy+25y2,∴a=±20,故选:C.3、解析:首先提取公因式2a,进而利用完全平方公式分解因式即可.解:8a3-8a2+2a=2a(4a2-4a+1)=2a(2a-1)2.故选:C.4、解析:接将前两项提取公因式分解因式,进而利用平方差公式分解因式得出即可.解:x2y2-y2-x2+1=y2(x2-1)-(x2-1)=(y2-1)(x-1)(x+1)=(y-1)(y+1)(x-1)(x+1).故选:D.5、解析:根据平方差公式,十字相乘法分解因式,找到两个运算中相同的因式,即为乙,进一步确定甲与丙,再把甲与丙相加即可求解.6、解:∵x2-4=(x+2)(x-2),x2+15x-34=(x+17)(x-2),∴乙为x-2,∴甲为x+2,丙为x+17,∴甲与丙相加的结果x+2+x+17=2x+19.故选:A.6、解析:首先把等式的左右两边分解因式,再考虑等式成立的条件,从而判断△ABC的形状.解:由a2c2-b2c2=a4-b4,得a4+b2c2-a2c2-b4=(a4-b4)+(b2c2-a2c2)=(a2+b2)(a2-b2)-c2(a2-b2)=(a2-b2)(a2+b2-c2)=(a+b)(a-b)(a2+b2-c2)=0,∵a+b>0,∴a-b=0或a2+b2-c2=0,即a=b或a2+b2=c2,则△ABC为等腰三角形或直角三角形.故选:D.7、解析:先对原式进行变形得(a2+b2)2-(a2+b2)-6=0,经过观察后又可变为(a2+b2-3)(a2+b2+2)=0,又a2+b2≥0,即可得出本题的结果.8、解:有a4+b4=a2-2a2b2+b2+6,变形后(a2+b2)2-(a2+b2)-6=0,(a2+b2-3)(a2+b2+2)=0,又a2+b2≥0,即a2+b2=3,故答案为3.8、解析:先将a=20152015×999变形为2015×999×10001,进一步得到(2014+1)(1000-1)×10001,再展开得到2014×1000×10001-2014×10001+1000×10001-10001,将b=20142014×1000变形为2014×1000×10001,通过计算-2014×10001+1000×10001-10001的正负即可求解.解:a=20152015×999=2015×999×10001=(2014+1)(1000-1)×10001=2014×1000×10001-2014×10001+1000×10001-10001,b=20142014×1000=2014×1000×10001,∵-2014×10001+1000×10001-10001=(-2014+1000-1)×10001<0,∴a<b.故答案为:<.9、解析:先求出正方形的边长,继而得出面积,然后根据空白部分的面积=正方形的面积-矩形的面积即可得出答案.解:∵图(1)是一个长为2a,宽为2b(a>b)的长方形,∴正方形的边长为:a+b,∵由题意可得,正方形的边长为(a+b),∴正方形的面积为(a+b)2,∵原矩形的面积为4ab,∴中间空的部分的面积=(a+b)2-4ab=(a-b)2.故答案为(a-b)2.10、解析:(1)根据完全平方公式分解即可;(2)①根据已知等式得出b2=4ac,即可得出答案;②求出64=4mn,求出方程的特殊解即可;(3)根据规律得出m2=8n且n2=8m,组成一个方程,求出mn即可.解:(1)x2-2x+1=(x-1)2,25x2+30x+9=(5x+3)2,9x2+12x+4=(3x+2)2,故答案为:(x-1)2,(5x+3)2,(3x+2)2;(2)①b2=4ac,故答案为:b2=4ac;②∵关于x的多项式mx2+8x+n是完全平方式,且m,n都是正整数,m≥n,∴82=4mn,∴只有三种情况:m=16,n=1或m=4,n=4或m=8,n=2;(3)∵关于x的多项式x2+mx+2n和x2+nx+2m都是完全平方式,∴m2=4×2n=8n且n2=4×2m=8m,∴m2n2=64mn,∴m2n2-64mn=0,。

2021年九年级中考数学 一轮分类训练:二次函数(含答案)

2021年九年级中考数学 一轮分类训练:二次函数(含答案)

2021中考数学一轮分类训练:二次函数一、选择题1. 已知抛物线y=-x2+bx+4经过(-2,n)和(4,n)两点,则n的值为()A.-2B.-4C.2D.42. 已知二次函数y=x2+bx+c与x轴只有一个交点,且图象过A(x1,m)、B(x1+n,m)两点,则m、n的关系为()A. m=12n B. m=14n C. m=12n2 D. m=14n23. 函数y=ax2+2ax+m(a<0)的图象过点(2,0),则使函数值y<0成立的x的取值范围是()A.x<-4或x>2 B.-4<x<2C.x<0或x>2 D.0<x<24. (2019•雅安)在平面直角坐标系中,下列说法中错误的是A 1B.图象顶点坐标为(2,1)C而减小D2个单位长度,再向上平移1个单位长度得到5. (2020·陕西)在平面直角坐标系中,将抛物线y=x2-(m-1)x+m-3沿y轴向下平移3个单位,则平移后得到的抛物线顶点一定在()A.第一象限B.第二象限C.第三象限D.第四象限6. 在平面直角坐标系中,把一条抛物线先向上平移3个单位长度,然后绕原点旋转180°得到抛物线y=x2+5x+6,则原抛物线的解析式是()A. y=-(x-52)2-114 B. y=-(x+52)2-114C. y=-(x-52)2-14 D. y=-(x+52)2+147. (2019•岳阳)对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y=x2+2x+c有两个相异的不动点x1、x2,且x1<1<x2,则c的取值范围是A.c<-3 B.c<-2C.D.c<18. 已知抛物线y=x2-4x+3与x轴相交于点A,B(点A在点B的左侧),顶点为M.平移该抛物线,使点M平移后的对应点M′落在x轴上,点B平移后的对应点B′落在y轴上,则平移后的抛物线的解析式为()A.y=x2+2x+1 B.y=x2+2x-1C.y=x2-2x+1 D.y=x2-2x-1二、填空题9. (2019•荆州)二次函数2245y x x =--+的最大值是__________.10. 某抛物线的形状、开口方向与抛物线y =12x 2-4x +3相同,顶点坐标为(-2,1),则该抛物线的函数解析式为________________.11. 已知函数y=的图象如图所示,若直线y=x+m 与该图象恰有三个不同的交点,则m 的取值范围为 .12. 抛物线y =ax 2+bx +c 经过点A (-3,0),对称轴是直线x =-1,则a +b +c =________.13. 已知函数y =⎩⎨⎧-x 2+2x (x >0),-x (x ≤0)的图象如图所示,若直线y =x +m 与该图象恰有三个不同的交点,则m 的取值范围为________.14. (2019•天水)二次函数2y ax bx c =++的图象如图所示,若42M a b =+,N a b =-.则M 、N 的大小关系为M __________N .(填“>”、“=”或“<”)三、解答题15. 已知抛物线y=ax2经过点A(-2,-8).(1)求此抛物线的解析式;(2)判断点B(-1,-4)是否在此抛物线上;(3)求出抛物线上纵坐标为-6的点的坐标.16. 如图,抛物线y=-x2+bx+c与x轴交于A,B两点(A在B的左侧),与y轴交于点N,过A点的直线l:y=kx+n与y轴交于点C,与抛物线y=-x2+bx+c的另一个交点为D,已知A(-1,0),D(5,-6),P点为抛物线y=-x2+bx+c上一动点(不与A,D重合).(1)求抛物线和直线l的解析式;(2)当点P在直线l上方的抛物线上时,过P点作PE∥x轴交直线l于点E,作PF∥y轴交直线l于点F,求PE+PF的最大值;(3)设M为直线l上的点,探究是否存在点M,使得以点N,C,M,P为顶点的四边形为平行四边形.若存在,求出点M的坐标;若不存在,请说明理由.17. 如图,已知抛物线212y x bx c =++(b 、c 是常数,且c <0)与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴的负半轴交于点C ,点A 的坐标为(-1,0).(1)b =______,点B 的横坐标为_______(上述结果均用含c 的代数式表示);(2)连结BC ,过点A 作直线AE //BC ,与抛物线交于点E .点D 是x 轴上一点,坐标为(2,0),当C 、D 、E 三点在同一直线上时,求抛物线的解析式;(3)在(2)的条件下,点P 是x 轴下方的抛物线上的一动点,连结PB 、PC .设△PBC 的面积为S .①求S 的取值范围;②若△PBC 的面积S 为正整数,则这样的△PBC 共有_____个.18. 如图,在平面直角坐标系xOy中,二次函数y=-x2+2x+8的图象与一次函数y=-x+b的图象交于A、B两点,点A在x轴上,点B的纵坐标为-7.点P 是二次函数图象上A、B两点之间的一个动点(不与点A、B重合),设点P的横坐标为m,过点P作x轴的垂线交AB于点C,作PD⊥AB于点D.(1)求b及sin∠ACP的值;(2)用含m的代数式表示线段PD的长;(3)连接PB,线段PC把△PDB分成两个三角形,是否存在适合的m值,使这两个三角形的面积之比为1∶2?如果存在,直接写出m的值;如果不存在,请说明理由.2021中考数学一轮分类训练:二次函数-答案一、选择题1. 【答案】B[解析]由抛物线过(-2,n)和(4,n),说明这两个点关于对称轴对称,即对称轴为直线x=1,所以-=1,又因为a=-1,所以可得b=2,即抛物线的解析式为y=-x2+2x+4,把x=-2代入解得n=-4.2. 【答案】D【解析】因为二次函数y =x 2+bx +c 的图象与x 轴只有一个交点,∴b 2-4c =0,即c =b 24,由题意知,点A ,B 关于抛物线的对称轴对称,∴12AB=|n|2=-b 2-x 1,b =-|n|-2x 1, ∴c =(-|n|-2x 1)24=|n|2+4|n|x 1+4x 214,∵A(x 1,m)在y =x 2+bx +c 上,∴m =x 21+bx 1+c ,∴ m =x 21+(-|n|-2x 1)·x 1+|n|2+4|n|x 1+4x 214,化简整理得m =14n 2,故选D .3. 【答案】A [解析] 抛物线的对称轴是直线x =-2a 2a =-1,∴抛物线与x 轴的另一个交点坐标是(-4,0).∵a <0,∴抛物线开口向下,∴使y <0成立的x 的取值范围是x <-4或x >2.故选A.4. 【答案】C∴该函数的图象开口向上,最小值1的增大而减小;故选项A 、B 的说法正确,C 的说法错误;2平移1故选项D 的说法正确,故选C .5. 【答案】【答案】D 【解析】平移后的抛物线的表达式为y =x 2-(m -1)x +m -3,由于m >1,>00,所以平移后的抛物线的顶点一点在第四象限.6. 【答案】A【解析】∵抛物线的解析式为:y =x 2+5x +6,∴绕原点旋转180°变为y =-x 2+5x -6,即y =-(x -52)2+14,∴再向下平移3个单位长度得到的抛物线解析式为y =-(x -52)2+14-3=-(x -52)2-114.7. 【答案】B【解析】由题意知二次函数y=x2+2x+c 有两个相异的不动点x1、x2, 所以x1、x2是方程x2+2x+c=x 的两个不相等的实数根,整理,得:x2+x+c=0,–4c>0,又x2+x+c=0的两个不相等实数根为x1、x2,x1<1<x2,所以函数y=x2+x+c=0在x=1时,函数值小于0,即1+1+c<0,解得c<-2,故选B .8. 【答案】A [解析] 令y =0可得x2-4x +3=0,解得x1=1,x2=3,可得A(1,0),B(3,0).根据抛物线顶点坐标公式可得M(2,-1).由点M 平移后的对应点M′落在x 轴上,点B 平移后的对应点B′落在y 轴上,可知抛物线向左平移了3个单位长度,向上平移了1个单位长度,根据抛物线的平移规律,可知平移后的抛物线的解析式为y =(x +1)2=x2+2x +1,故选A.二、填空题9. 【答案】7 【解析】222452(1)7y x x x =--+=-++,即二次函数245y x x =--+的最大值是7,故答案为:7.10. 【答案】y =12(x +2)2+1 [解析] 已知抛物线的顶点坐标,可以设顶点式y =a(x -h)2+k.又因为该抛物线的形状、开口方向与抛物线y =12x 2-4x +3相同,所以a =12,所以该抛物线的函数解析式是y =12(x +2)2+1.11. 【答案】0<m< [解析]由y=x +m 与y=-x 2+2x 联立得x +m=-x 2+2x ,整理得x 2-x +m=0,当有两个交点时,b 2-4ac=(-1)2-4m>0,解得m<.当直线y=x +m 经过原点时与函数y=的图象有两个不同的交点,再向上平移,有三个交点,∴m>0,∴m 的取值范围为0<m<.12. 【答案】0 [解析] ∵抛物线y =ax 2+bx +c 经过点A(-3,0),对称轴是直线x =-1, ∴抛物线y =ax 2+bx +c 与x 轴的另一交点的坐标为(1,0),∴a +b +c =0.13. 【答案】⎝ ⎛⎭⎪⎫23,00<m<14 [解析] 联立y =x +m 与y =-x 2+2x ,得x +m =-x 2+2x ,整理得x 2-x +m =0,当有两个交点时,b 2-4ac =(-1)2-4m>0,解得m<14.当直线y =x +m 经过原点时,与函数y =⎩⎨⎧-x 2+2x (x>0)x (x≤0)的图象有两个不同的交点,再向上平移,有三个交点,∴m>0,∴m 的取值范围为0<m<14.故答案为0<m<14.14. 【答案】<三、解答题15. 【答案】解:(1)∵抛物线y =ax 2经过点A(-2,-8),∴4a =-8,解得a =-2,∴此抛物线的解析式为y =-2x 2. (2)当x =-1时,y =-2,∴点B(-1,-4)不在此抛物线上.(3)把y =-6代入y =-2x 2,得-2x 2=-6,解得x =±3,∴抛物线上纵坐标为-6的点的坐标为(3,-6),(-3,-6).16. 【答案】[分析] (1)将点A,D的坐标分别代入直线表达式、抛物线的表达式,即可求解;(2)设出P点坐标,用参数表示PE,PF的长,利用二次函数求最值的方法.求解;(3)分NC是平行四边形的一条边或NC是平行四边形的对角线两种情况,分别求解即可.解:(1)将点A,D的坐标代入y=kx+n得:解得:故直线l的表达式为y=-x-1.将点A,D的坐标代入抛物线表达式,得解得故抛物线的表达式为:y=-x2+3x+4.(2)∵直线l的表达式为y=-x-1,∴C(0,-1),则直线l与x轴的夹角为45°,即∠OAC=45°,∵PE∥x轴,∴∠PEF=∠OAC=45°.又∵PF∥y轴,∴∠EPF=90°,∴∠EFP=45°.则PE=PF.设点P坐标为(x,-x2+3x+4),则点F(x,-x-1),∴PE+PF=2PF=2(-x2+3x+4+x+1)=-2(x-2)2+18,∵-2<0,∴当x=2时,PE+PF有最大值,其最大值为18.(3)由题意知N(0,4),C(0,-1),∴NC=5,①当NC是平行四边形的一条边时,有NC∥PM,NC=PM.设点P坐标为(x,-x2+3x+4),则点M的坐标为(x,-x-1),∴|y M-y P|=5,即|-x2+3x+4+x+1|=5,解得x=2±或x=0或x=4(舍去x=0),则点M坐标为(2+,-3-)或(2-,-3+)或(4,-5);②当NC是平行四边形的对角线时,线段NC与PM互相平分.由题意,NC的中点坐标为0,,设点P坐标为(m,-m2+3m+4),则点M(n',-n'-1),∴0==,解得:n'=0或-4(舍去n'=0),故点M(-4,3).综上所述,存在点M,使得以N,C,M,P为顶点的四边形为平行四边形,点M的坐标分别为:(2+,-3-),(2-,-3+),(4,-5),(-4,3).17. 【答案】(1)b=12c ,点B的横坐标为-2c.(2)由2111()(1)(2)222y x c x c x x c =+++=++,设E 1(,(1)(2))2x x x c ++. 过点E 作EH ⊥x 轴于H .由于OB =2OC ,当AE //BC 时,AH =2EH .所以1(1)(2)x x x c +=++.因此12x c =-.所以(12,1)E c c --.当C 、D 、E 三点在同一直线上时,EH CO DH DO =.所以1212c c c --=--. 整理,得2c 2+3c -2=0.解得c =-2或12c =(舍去). 所以抛物线的解析式为213222y x x =--.(3)①当P 在BC 下方时,过点P 作x 轴的垂线交BC 于F .直线BC 的解析式为122y x =-.设213(,2)22P m m m --,那么1(,2)2F m m -,2122FP m m =-+.所以S △PBC =S △PBF +S △PCF =221()24(2)42B C FP x x FP m m m -==-+=--+. 因此当P 在BC 下方时,△PBC 的最大值为4.当P 在BC 上方时,因为S △ABC =5,所以S △PBC <5.综上所述,0<S <5.②若△PBC 的面积S 为正整数,则这样的△PBC 共有11个.考点伸展点P沿抛物线从A经过C到达B的过程中,△PBC的面积为整数,依次为(5),4,3,2,1,(0),1,2,3,4,3,2,1,(0).当P在BC下方,S=4时,点P在BC的中点的正下方,F是BC的中点.18. 【答案】(1)∵当y=0时,-x2+2x+8=0,解得∴x1=-2,x2=4.∵点A在x轴负半轴上,∴A(-2,0),OA=2,∵点A在一次函数y=-x+b的图象上,∴2+b=0,∴b=-2,∴一次函数表达式为y=-x-2,如解图,设直线AB交y轴于点E,则E(0,-2),OE=OA=2,∴△AOE为等腰直角三角形,∠AEO=45°,∵PC⊥x轴交AB于点C,∴PC∥y轴,∴∠AEO=∠ACP=45°,∴sin∠ACP=sin45(2)∵点P在二次函数y=-x2+2x+8图象上且横坐标为m,∴P(m,-m2+2m+8),∵PC⊥x轴且点C在一次函数y=-x-2的图象上,∴C(m,-m-2),∴PC=-m2+3m+10,∵PD⊥AB于点D,∴在Rt△CDP中,sin∠ACP=PDPC=22,∴PD=-22m2+322m+52;(3)存在,m的值为-1或2.【解法提示】如解图,分别过点D、B作DF⊥PC,BG⊥PC,垂足分别为F、G.∵sin∠ACP=22,∴cos∠ACP=22,又∵∠FDP=∠ACP,∴cos∠FDP=22,在Rt△PDF中,DF=22PD=-12m2+32m+5,∵点B纵坐标为-7,且点B在直线AB:y=-x-2上,∴点B(5,-7),∴BG=5-m,∵P不与A、B两点重合,∴-2<m<5,∴当PCDPBCSS∆∆=DFBG=12时,解得m1=-1或m2=5(舍).当PCDPBCSS∆∆=DFBG=2时,解得m1=2或m2=5(舍),∴m的值为-1或2.解图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数课后作业1、在同一平面直角坐标系中,函数y=ax+b 与y=ax 2-bx 的图象可能是( )A .B .C .D .2、已知函数y=ax 2-2ax-1(a 是常数,a≠0),下列结论正确的是( ) A .当a=1时,函数图象过点(-1,1) B .当a=-2时,函数图象与x 轴没有交点 C .若a >0,则当x≥1时,y 随x 的增大而减小 D .若a <0,则当x≤1时,y 随x 的增大而增大3、已知二次函数y=ax 2+bx+c (a >0)的图象经过点A (-1,2),B (2,5),顶点坐标为(m ,n ),则下列说法错误的是( )A .c <3B .m≤21C .n≤2D .b <1 4、如图,已知二次函数y=ax 2+bx+c (a≠0)的图象如图所示,给出以下四个结论:①abc=0,②a+b+c >0,③a >b ,④4ac-b 2<0;其中正确的结论有( )A .1个B .2个C .3个D .4个5、已知二次函数y=ax 2+bx+c (a≠0)的图象如图所示,则下列结论:①b <0,c >0;②a+b+c <0;③方程的两根之和大于0;④a-b+c <0,其中正确的个数是( )A .4个B .3个C .2个D .1个6、以x 为自变量的二次函数y=x 2-2(b-2)x+b 2-1的图象不经过第三象限,则实数b 的取值范围是( )A .b≥45B .b≥1或b≤-1C .b≥2D .1≤b≤2 7、如图,在平面直角坐标系中,菱形OABC 的顶点A 在x 轴正半轴上,顶点C 的坐标为(4,3),D 是抛物线y=-x 2+6x 上一点,且在x 轴上方,则△BCD 面积的最大值为 .8、已知抛物线y=ax 2+bx+c 开口向上且经过点(1,1),双曲线y=x21经过点(a ,bc ),给出下列结论:①bc >0;②b+c >0;③b ,c 是关于x 的一元二次方程x 2+(a-1)x+a21=0的两个实数根;④a-b-c≥3.其中正确结论是 (填写序号)9、如图,抛物线y=-x 2+2x+3与y 轴交于点C ,点D (0,1),点P 是抛物线上的动点.若△PCD 是以CD 为底的等腰三角形,则点P 的坐标为 .10、如图,已知抛物线y=-x 2+mx+3与x 轴交于A ,B 两点,与y 轴交于点C ,点B 的坐标为(3,0)(1)求m 的值及抛物线的顶点坐标.(2)点P 是抛物线对称轴l 上的一个动点,当PA+PC 的值最小时,求点P 的坐标.11、如图,已知点A(0,2),B(2,2),C(-1,-2),抛物线F:y=x2-2mx+m2-2与直线x=-2交于点P.(1)当抛物线F经过点C时,求它的表达式;(2)设点P的纵坐标为y P,求y P的最小值,此时抛物线F上有两点(x1,y1),(x2,y2),且x1<x2≤-2,比较y1与y2的大小;(3)当抛物线F与线段AB有公共点时,直接写出m的取值范围.12、如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.参考答案1、解析:首先根据图形中给出的一次函数图象确定a 、b 的符号,进而运用二次函数的性质判断图形中给出的二次函数的图象是否符合题意,根据选项逐一讨论解析,即可解决问题.解:A 、对于直线y=ax+b 来说,由图象可以判断,a >0,b >0;而对于抛物线y=ax 2-bx 来说,对称轴x=ab2>0,应在y 轴的右侧,故不合题意,图形错误; B 、对于直线y=ax+b 来说,由图象可以判断,a <0,b >0;而对于抛物线y=ax 2-bx 来说,对称轴x=ab2<0,应在y 轴的左侧,故不合题意,图形错误; C 、对于直线y=ax+b 来说,由图象可以判断,a >0,b >0;而对于抛物线y=ax 2-bx 来说,图象开口向上,对称轴x=ab2>0,应在y 轴的右侧,故符合题意; D 、对于直线y=ax+b 来说,由图象可以判断,a >0,b >0;而对于抛物线y=ax 2-bx 来说,图象开口向下,a <0,故不合题意,图形错误;故选:C .2、解析:把a=1,x=-1代入y=ax 2-2ax-1,于是得到函数图象不经过点(-1,1),根据△=8>0,得到函数图象与x 轴有两个交点,根据抛物线的对称轴为直线x=-aa22-=1判断二次函数的增减性.解:A 、∵当a=1,x=-1时,y=1+2-1=2,∴函数图象不经过点(-1,1),故错误;B 、当a=-2时,∵△=42-4×(-2)×(-1)=8>0,∴函数图象与x 轴有两个交点,故错误; C 、∵抛物线的对称轴为直线x=-aa22-=1,∴若a >0,则当x≥1时,y 随x 的增大而增大,故错误;D 、∵抛物线的对称轴为直线x=-aa22-=1,∴若a <0,则当x≤1时,y 随x 的增大而增大,故正确;故选D .3、解析:根据已知条件得到a −b +c =2, 4a +2b +c =5,解方程组得到c=3-2a <3,b=1-a <1,求得二次函数的对称轴为x=-a b 2=-a a 21-=21-a 21<21,根据二次函数的顶点坐标即可得到结论.解:由已知可知:a −b +c =2,4a +2b +c =5, 消去b 得:c=3-2a <3, 消去c 得:b=1-a <1,对称轴:m=x=-a b 2=-a a 21-=21-a 21<21,∵A (-1,2),a >0,那么顶点的纵坐标为函数的最小值, ∴n≤2, 故B 错.4、解析:首先根据二次函数y=ax 2+bx+c 的图象经过原点,可得c=0,所以abc=0;然后根据x=1时,y <0,可得a+b+c <0;再根据图象开口向下,可得a <0,图象的对称轴为x=-23,可得-ab2=−23,b <0,所以b=3a ,a >b ;最后根据二次函数y=ax 2+bx+c 图象与x 轴有两个交点,可得△>0,所以b 2-4ac >0,4ac-b 2<0,据此解答即可.解:∵二次函数y=ax 2+bx+c 图象经过原点, ∴c=0,∴abc=0∴①正确;∵x=1时,y <0,∴a+b+c <0,∴②不正确; ∵抛物线开口向下,∴a <0,∵抛物线的对称轴是x=-23,∴-a b 2=−23,b <0,∴b=3a ,又∵a <0,b <0,∴a >b ,∴③正确;∵二次函数y=ax 2+bx+c 图象与x 轴有两个交点,∴△>0,∴b 2-4ac >0,4ac-b 2<0,∴④正确;综上,可得正确结论有3个:①③④.故选:C .5、解析:由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.解:∵抛物线开口向下, ∴a <0,∵抛物线对称轴x >0,且抛物线与y 轴交于正半轴, ∴b >0,c >0,故①错误;由图象知,当x=1时,y <0,即a+b+c <0,故②正确, 令方程ax 2+bx+c=0的两根为x 1、x 2, 由对称轴x >0,可知221x x +>0,即x 1+x 2>0,故③正确; 由可知抛物线与x 轴的左侧交点的横坐标的取值范围为:-1<x <0, ∴当x=-1时,y=a-b+c <0,故④正确.故选:B .6、解析:由于二次函数y=x 2-2(b-2)x+b 2-1的图象不经过第三象限,所以抛物线在x 轴的上方或在x 轴的下方经过一、二、四象限,根据二次项系数知道抛物线开口方向向上,由此可以确定抛物线与x 轴有无交点,抛物线与y 轴的交点的位置,由此即可得出关于b 的不等式组,解不等式组即可求解.解:∵二次函数y=x 2-2(b-2)x+b 2-1的图象不经过第三象限, ∴抛物线在x 轴的上方或在x 轴的下方经过一、二、四象限, 当抛物线在x 轴的上方时, ∵二次项系数a=1, ∴抛物线开口方向向上,∴b 2-1≥0,△=[2(b-2)]2-4(b 2-1)≤0, 解得b≥45; 当抛物线在x 轴的下方经过一、二、四象限时, 设抛物线与x 轴的交点的横坐标分别为x 1,x 2, ∴x 1+x 2=2(b-2)≥0,b 2-1≥0, ∴△=[2(b-2)]2-4(b 2-1)>0,① b-2>0,② b 2-1>0,③ 由①得b <45,由②得b >2, ∴此种情况不存在, ∴b≥45, 故选A .7、解析:设D (x ,-x 2+6x ),根据勾股定理求得OC ,根据菱形的性质得出BC ,然后根据三角形面积公式得出∴S △BCD =21×5×(-x 2+6x-3)=-25(x-3)2+15,根据二次函数的性质即可求得最大值.解:∵D 是抛物线y=-x 2+6x 上一点, ∴设D (x ,-x 2+6x ), ∵顶点C 的坐标为(4,3),∴OC=2234 =5, ∵四边形OABC 是菱形, ∴BC=OC=5,BC ∥x 轴, ∴S △BCD =21×5×(-x 2+6x-3)=-25(x-3)2+15, ∵-25<0, ∴S △BCD 有最大值,最大值为15, 故答案为15.8、解析:根据抛物线y=ax 2+bx+c 开口向上且经过点(1,1),双曲线y=x21经过点(a ,bc ),可以得到a >0,a 、b 、c 的关系,然后对a 、b 、c 进行讨论,从而可以判断①②③④是否正确,本题得以解决.解:∵抛物线y=ax 2+bx+c 开口向上且经过点(1,1),双曲线y=x21经过点(a ,bc ), ∴a >0, a +b +c =1,bc =a21 ∴bc >0,故①正确;∴a >1时,则b 、c 均小于0,此时b+c <0, 当a=1时,b+c=0,则与题意矛盾,当0<a <1时,则b 、c 均大于0,此时b+c >0, 故②错误;∴x 2+(a-1)x+a21=0可以转化为:x 2-(b+c )x+bc=0,得x=b 或x=c ,故③正确; ∵b ,c 是关于x 的一元二次方程x 2+(a-1)x+a21=0的两个实数根,∴a-b-c=a-(b+c )=a+(a-1)=2a-1, a+b+c=1故b+c=1-a <1,当1>1-a >-1,即2>a >0时,有(b+c )2<1, 由(b-c )2>0可得:b 2+c 2>2bc ,所以4bc <(b+c )2, 即4bc <1,bc <41,从而得出a >2,与题设矛盾; 故a≥2,即2a-1≥3; 故④正确; 故答案为:①③④.9、解析:当△PCD是以CD为底的等腰三角形时,则P点在线段CD的垂直平分线上,由C、D 坐标可求得线段CD中点的坐标,从而可知P点的纵坐标,代入抛物线解析式可求得P点坐标.解:∵△PCD是以CD为底的等腰三角形,∴点P在线段CD的垂直平分线上,如图,过P作PE⊥y轴于点E,则E为线段CD的中点,∵抛物线y=-x2+2x+3与y轴交于点C,∴C(0,3),且D(0,1),∴E点坐标为(0,2),∴P点纵坐标为2,在y=-x2+2x+3中,令y=2,可得-x2+2x+3=2,解得x=1±2,∴P点坐标为(1+2,2)或(1-2,2),故答案为:(1+2,2)或(1-2,2).10、解析:(1)首先把点B的坐标为(3,0)代入抛物线y=-x2+mx+3,利用待定系数法即可求得m的值,继而求得抛物线的顶点坐标;(2)首先连接BC交抛物线对称轴l于点P,则此时PA+PC的值最小,然后利用待定系数法求得直线BC的解析式,继而求得答案.解:(1)把点B的坐标为(3,0)代入抛物线y=-x2+mx+3得:0=-32+3m+3,解得:m=2,∴y=-x2+2x+3=-(x-1)2+4,∴顶点坐标为:(1,4).(2)连接BC交抛物线对称轴l于点P,则此时PA+PC的值最小,设直线BC的解析式为:y=kx+b,∵点C(0,3),点B(3,0),∴0=3k+b, 3=b解得:k=−1, b=3∴直线BC的解析式为:y=-x+3,当x=1时,y=-1+3=2,∴当PA+PC的值最小时,点P的坐标为:(1,2).11、解析:(1)根据抛物线F:y=x2-2mx+m2-2过点C(-1,-2),可以求得抛物线F的表达式;(2)根据题意,可以求得y P的最小值和此时抛物线的表达式,从而可以比较y1与y2的大小;(3)根据题意可以列出相应的不等式组,从而可以解答本题解:(1)∵抛物线F经过点C(-1,-2),∴-2=(-1)2-2×m×(-1)+m2-2,解得,m=-1,∴抛物线F的表达式是:y=x2+2x-1;(2)当x=-2时,y p=4+4m+m2-2=(m+2)2-2,∴当m=-2时,y p的最小值-2,此时抛物线F的表达式是:y=x2+4x+2=(x+2)2-2,∴当x≤-2时,y随x的增大而减小,∵x1<x2≤-2,∴y1>y2;(3)m的取值范围是-2≤m≤0或2≤m≤4,理由:∵抛物线F与线段AB有公共点,点A(0,2),B(2,2),∴m2−2≤2, 22−2m×2+m2−2≥2或m2−2≥2, 22−2m×2+m2−2≤2解得,-2≤m≤0或2≤m≤4.12、解析:(1)把A与B坐标代入二次函数解析式求出a与b的值即可;(2)如图,过A作x轴的垂直,垂足为D(2,0),连接CD,过C作CE⊥AD,CF⊥x轴,垂足分别为E,F,分别表示出三角形OAD,三角形ACD,以及三角形BCD的面积,之和即为S,确定出S 关于x的函数解析式,并求出x的范围,利用二次函数性质即可确定出S的最大值,以及此时x的值.解:(1)将A (2,4)与B (6,0)代入y=ax 2+bx , 得4a +2b =4, 36a +6b =0,解得:a =21,b =3; (2)如图,过A 作x 轴的垂直,垂足为D (2,0),连接CD ,过C 作CE ⊥AD ,CF ⊥x 轴,垂足分别为E ,F ,S △OAD =21OD•AD=21×2×4=4; S △ACD =21AD•CE=21×4×(x-2)=2x-4;S △BCD =21BD•CF=21×4×(-21x 2+3x )=-x 2+6x ,则S=S △OAD +S △ACD +S △BCD =4+2x-4-x 2+6x=-x 2+8x , ∴S 关于x 的函数表达式为S=-x 2+8x (2<x <6), ∵S=-x 2+8x=-(x-4)2+16,∴当x=4时,四边形OACB 的面积S 有最大值,最大值为16.。

相关文档
最新文档